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- ABSTRACT

Modern, large-scale computer systems typically operate
under the control of an operating system or executive program,
and reserve for the exclusive use of the operating system a
set of privileged instructions, which the normal users may
not issue, This very necessary arrangement produces a prcb-
lem of equipment availabllity for those who wish to develop
or investigate operating systems programs, because such
programs cannct be run as normal user jobs under an execu-
tive program.

This thesis describes SIM360, a detailed simulator of
a representative IBM S/360 computer, which was written to run
student programs, programs assigned as machine problems for
g course in operating systems, The simulator allows programs
to issue all of the priveleged instructions of the S/360,
eand thus provides a readily available tool for the study of
operating systems programs.

Thesis Supervisor: John J., Donovan
Title: Professor of Electrical Engineering
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1. INTRODUCTION

A simulation of a system is normally undertaken to
provide a manipulatable model of the system for investi-
gation and study. In some cases the system being simulated
may not exist, or may be in a development stage, and thus
is unavailable for use, This would be the case with a
proposed mass transit system, for example, where the capa-
bilities and performance of the system must be carefully
evaluated before committing perhaps millions of decllars for
development. Another, and very frequent use of simulators
in this respect, is to provide the ability to develop the
hardware and software of a new computer system in parallel.
A simulator of the computer system, written to operate on
existing computer hardware, is used to develop and debug
the software for the computer before a working prototype
is completed, and in this way a large savings in total
system development time can be realized,

In other cases the simulated system may exist, but for
some reason be difficult or impossible to use for experi-
mentation. One cannot, in practice, block a traffic artery
in a major city to study the resulting flow of traffic,
or vary the mass of the moon to study the effect on the tide.

In much the same sense, a simulation of an existing computer

system can provide an important tool for research, develop-




ment, and teaching., Modern, large-scale computer systems
operate under the control of an operating system or exec-
utive program, and place definite restrictions on the op-
erations which may bte performed by programs run on the
system. Typically, user programs may not use instructions
which directly affect input/output devices, protection
mechanisms, the interrupt structure, and other basic as-
pects of the processor state, Because the operating system
provides user programs with indirect methods of performing
operations with privileged facilities, most programs can

be run; however, operating system programs, that is, com-
plete programs which may issue any instruction implemented
by the computer, programs which in fact may be intended to
provide the indirect methods for performing privileged
operations, are excluded. For this large and important
class of programs, then, the computer system is unavailablel
for testing or development. A simulator of the computer
system provides a solution to this basic problem, and offers

other substantial advantages as well,

1 In a relative sense., Manufacturers! personnel and
softwgre support staff members at large installations may
have access to a "bare-bones" system on a limited basis.
Most users, even systems programmers, never have this
opportunity on a large scale system, for obvious reasons

of efficiency and economy.




A simulator is not the only solution to this problem;
it is, however, frequently the only practical one. The
obvious approach, somehow to obtain the desired computer
for exclusive use, has been mentioned, and is clearly in-
convenient, impractical, expensive, and not necessarily
sufficiently useful when it is possible at all, HMost
system programmers have encountered that maddening class of
program errors which exist, are perhaps regularly repeat-
able, but which do not occur when the CFU is stepped through
the erroneous code one instruction at a time, Similar
timing dependencies may exist in input-output operations
of interest. Finally, the computer may not exist in the
desired configuration, if some particular feature or device
is desired for study.

Another method of running operating system programs
involves the use of a virtual machine, such as IEM's
GP-571 provides, The primary drawback in this approach is
the requirement that a very expensive and infrequently
available S/360 model 67 is required, In addition, the
virtual machine does not accurately reflect the timing

and behavior of the simulated computer in the area of 1/0

1 control Program-67/Cambridge Monitor System User's
Guide. IBM Publication.
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operations and privileged instructions. This is a fairly
serious drawback, since this area is the focus of interest
in operating systems programs.
A simulator, in contrast, offers the advantages
summarized below.
-~ HReadily avallable to users
-- Bun complete programs
-= Achieve any level of accuracy desired
-~ Incorporates comprehensive debugging aids
== Allows detailed performance monitoring
== Arbitrary configuration - size, features, and
devices
== May be optimized for solution of problem(s)
of interest

-~ HMay be readily modified - software program

A complete discussion of these points is postponed
to the following section, where they are covered in depth
as features of SIM360. A simulator incorporating most
or all of these features is potentially useful for:

~-=- Software development

==. Teaching tool - student runs

== System testing of new versions of operating

system software

== Evaluation of different system configurations
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== Evaluation of new hardware

Software development is probably the most freguently
occurring reason for using a computer simulator. Most
development programs for new computer systems involve the
early implementation of a2 simulator for the reasons dis-
cussed above.,

SIN360 was specifically written for use as a teaching
tool in a course in advanced operating systems, and has
been successfully used for two machine problems (to date)
in the current academic semester. The checkout of a new
version of an operating system, or some component of it,
could be accomplished on a simulator without the necessity
for interrupting normal cperations, bringing down the current
system, installing the new version, running the desired
tests, bringing down the new system, reinstalling the old
system, etec., etc., through many iterations of the testing
procedure, With some modification, perhaps, a simulator
could be used to evaluate the effects and operating char-
acteristics of totally new hardware in the form of new
devices, a more powerful system, or perhaps a completely
new system (transition from a S/360 to a S/370, for example).
Simulators have not been widely used in these last three
areas, but because 1t is a uniquely complete and accurate

simulation, SIN360 could be a powerful and useful tool

for systems work of this type.




2. DESCRIPTION OF SIM360

SIN360 is a computer program written in PL/I which
simulates to a high degree of accuracy the behavior of a
representative member of the IBM S/360 series of computer
systems, The simulator runs as a problem program under
0S5/360 (or other operating system which supports FL/I),
implements the full complement of privileged instructions,
and provides very detalled and accurate simulation of the
basic I/0 devices of the $/360. It is specifically designed
to run student programs assigned as machine problems for a
course in operating systems, but provides a general solu-
tion to the problem of computer system availability dis-

cussed above,
2.1 ADVANTAGES AND FEATURES

All of the advantages of a simulator listed in Section 1
are incorporated in some measure in SINM360. It is poten-
tially readily avallable to any user of the computer system
on which it is in usel, and could be made available on any

1 The IBM 5/370-155 at MIT's Information Frocessing Center
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S/360 or 5/370 which supports the IEM S/360 operating system
and can provide a 200K user partition. Further, it could
be made available on any comparable large scale computer
system which supports FL/I, with appropriate, but probably
minor, medifications to the simulator code. 1In one sense,
SIM360 can run complete programs; it implements all of the
I/0 and privileged instructions of the S/360. The complete
instruction set is not implemented, but was not desired; the
simulator is specifically designed to run student assipn-
ments emphasizing I/C programming, interrupt handling, and
other operating system techniques, An instruction subset
adequate for this purpose is provided.l

The level of accuracy of the simulation is as high
as could be reached using available documentation. In-
struction timings, for example, for those instructions which
have variable length operands, are adjusted to reflect the
length specified in the particular instruction being simu-
lated. I/0 operations which result in data transfers by
the data channels on a cycle stealing basis are accurately
reflected.? Interrupt timings are adjusted to account for

device characteristics such as clutch points (on card

1 See Appendix A,

2 see Appendix C,
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readers and card punches) and line spacing (on printers).

SIM360 incorporates powerful and comprehensive de-
bugging aids. A program being executed by the simulator
may dynamically request diagnostic or program flow informa-
tion to be printed by the simulator on the basis of a num-
ber of distinct conditions:

1) Successful branch

2) Reference to a particular address as an operand

3) Reference to a particular zddress for instruction

execution
4) Execution of a particular instruction (by class,
i.e., Load or Multiply, not instance)

5) Occurrence of an interrupt

-6) Occurrence of significant channel activity

7) Occurrence of a dump request
All of these conditions may be dynamically set and reset
by the simulated program through the use of supplied macro
instructions.l Because the simulator, as implemented, is
not an interactive system, there are no breakpoint facil-
ities, or other very useful capabilities usually found in
interactive debugging aids., Such features could, however,

be easily added to the simulator should 1t ever be desirable

1 see Appendix A
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to use it in an interactive environment. The capabilities
provided for debugging also serve for performance monitor-
ing. All aspects of system performance may be selectively
examined through use of the features outlined.

SIN360 is specifically adapted for the use for which
it was written, It is being used to run student programs
for a relatively large class, and has many features which
are desirable for this use. For example, most of the options
discussed in Appendix B are provided to give the instructor
a measure of control over how much machine time and output
volume may be generated by student programs, To a2 limited
extent, the options also reflect the ability to choose an
arbitrary configuration for the system being simulated,
but, in general, achieving a truly arbitrary configuration
is a matter which requires modification of the simulator

code,
2.2 CONFIGURATION COF THE SIMULATED SYSTEM

The simulated computer (see Figure 1) which SIM360
provides is a representative IBM S/360 with up to 32K bytes
of core stcrage.l Up to six channels are available, although
at present only one, the byte multiplexor chammel, has
attached devices. Two 2827 control units are attached to

multiplexor channel 0, and’ each 2821 services a 2540 card

1 7Tnis ridiculously small amount of core (for a S/360) is

considerably more than adequate for student programs,
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reader-punch and two 1403 printers. No Special features
are implemented on the CPU or any device., Certain aspects
of the CPU are not simulated. The machine check interrupt
and diagnostic scan-cut are not available, nor is the
operator's console.1 At present, no direct access or tape
devices are available, but direct access capablility for
2311 and 2314 type devices are under development and will
be available in the near future. Tape facilities are a
possible, but not imminent, addition. This confifsuration
provides the ability to run systems programs which dezal with
every phase of S/360 CPU operation except error detection,

and with card and printer I/0 devices.
2,3 STRUCTURE OF THE SIMULATOR

SIM360 is a complete system for rumning student pro-
grams. As an overview of the simulator Structure, a brief
description of how the simulator is utilized will be given;
complete detailed instructions for using the simulator
are given in Appendices A and B.

Students are assigned a problem and prepare their

programmed solutions in S/360 Basic Assembler Language,

1 The operators console might be a useful addition to

an interactive version of SIN360,
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Student decks are collected and grouped into one large
input deck; appropriate control cards are added for the
operating system and SIN360. The entire assembled deck is
submitted as one batch run., When returned, student decks
are reseparated, and printed output of assembler listing,
simulator output, and simulator trace and diagnostic out-
put are assembled for each student and returned., Final
results after a series of runs are submitted by the student
for grading.

The simulator produces this overall result by first
assembling all of the student programs using the G level
assembler’ in batch mode. Object module output of the
assembler is held 1n a temporary file, which is the input
to the second (simulation) pass over the data. When all
student decks are assembled, the simulator proper is given
control.

The simulator consists of four major modules.2 The
first module, & very simple loader, reads the object
module output from the first (only) student deck and builds
an executable program in a reserved storage area. This

activity is entirely analagous to that of the $/360 Loader?.

1 rmhis is a mofe efficient S/360 Assembler written at the

University of Waterloo.

(A% ]

See Figure 2,
3 IBM System/360 Operating System : Linkage Editor and
Loader, Form GC28-6538,
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When the program has been loaded, the CPU simulation module
initiates system activity in a manner analagous to 5/360
Initial Program Loading, Thereafter, under the control of
the CPU simulator, the I/0 simulation module and the trace
module are invoked as required by the program, and the
simulated execution of the student program procedes until
it terminates, or until an unrecoverable error is detected,
Control then returns to the module SIMLINK, which loads

the next student program and reinitializes the simulation

DProcess,
2.4 TPROGRAM OPERATICH

The simulator receives control from the operating system
in the module SIMLINK, First the parameters of the run are
processed,l and then the first (or only) assembled student
program is loaded. When the program is loaded, the module
SIMCPU is called to simulate program execution. When SIMCPU
returns, SIMLINK loads the next program and continues in
this manner until all programs have been simulated,

The module SIMCPU performs some initialization, and
proceeds to simulate the execution of the program by using

the doubleword at simulated location.zero as the initial

1 see Appendix B, section B.3.1 and Appendix C, section Ci2ils



program status word. Each instruction is simulated by a
small routine (typically four or five PL/I statements) which
does appropriate processing to implement the instruction.
After each instruction the elapsed time in the simulation

is updated, and a check for an interrupt or other special
condition is made. Interrupts may occur because the timer
decrements from zero to minus one, or because an apprepriate
condition exists in the 1/0 subsystem. Other conditions
which are handled are data transfers between core storage
and I/0 devices, I/0 events,land the special considerations
which arise when the CPU is in the wait state.

If in the course of instruction simulation the simu-
lator encounters a reguest that a trace condition be en-
abled (or disabled), the TRACE module is called at an appro-
priate entry point. This module checks and decodes the
trace request, makes (or deletes) an appropriate entry in
the list of enabled trace conditions, and, if necessary,
prints any requested trace informatiocn. The other class of
events which causes the TRACE module to be called is the
occurrence of a condition which is currently being traced.
In this case an appropriate entry point in TRACE is called
to formet and print the information requested by the enabled

1 see Appendix C, section C,.4.6.
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trace condition.

When SIMCPU encounters an I/0 instruction, or when an
I/0 event occurs, the module SIMIO is called. Different
entry points are used for different functions, The simu-
lation of the HALT I/0 and TEST I/0 instructions involves
1llttle more than examining the state of the addressed channel,
subchannel, and device, and setting the CSW and the condi-
tion code to appropriate values. The HALT I/0 routine may
also involve the scheduling and rescheduling of interrupts.
The START I/C instruction, on the other hand, frequently
initiates a long and very complex chain of events. In a

1

very simple case~ the following outline lists major activ-

ities in their order of occurrence.

Fetch the CAW from core and validate.

- Fetch the CCW from core, decode and validate.

- Call a routine which implements the specific device

involved in the operation.
- Validate the specific command to the device,

- Schedule a device end interrupt to occur after

completion of mechnnical activity.

—_—

1 For example, the Read, Feed, and Stacker Select command to

the 2540 card reader, discussed in Appendix C, section
C-""l?o
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- Set up data transfers between core storage and the
device, to occur at appropriate intervals over an

extended period of time,

- Set up conditions and parameters associated with
the end of data transfer (e.z. channel end interrupt

or event).
- Heturn to SIMCPU,

In addition to the simulation of 1/0 instruetions, SIMIO
performs 1/C event processing, and initialization for and
termination of I/0 simulation.at separate entry points,
Figure 3 shows an overview of the operation of SIM360,

and may help to clarify the foregoing discussion.
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3. FROGRAMMNING TECHNIQUES

SIM360 is & program, and some insight into the tech-
nigques used in programming SIM360 is useful for increased
understanding of the simulation and its scope., Some of
the more important tachniquesl and data structures used
in SIN360 are discussed in a general way in the following

sections.
3.1 THE VIRTUAL CORE ARRAY

The contents of the core memory of the simulated
computer are held in an array .composed of n elements,
where n is the memory size of the simulated computer.
Each of the elements In the array 1is an elght bit logilcal
quantity which represents one 5/360 byte. The bounds of
the array are so defined that the index of an element is
egual to the memory address of the represented byte.
Based arrays defined to contaln groups of adjacent bytes
are overlayed (by a pointer) on the virtual core array to
allow aggregate entities (halfword, fullword, etc.) to be
referenced directly. This technique 1s fully discussed
in Appendix C.

%
-

- A representative s. mry only, not by any means complete,
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3.2 THE PROGRAM STATUS WORD

The program status word, PSW, of the simulated com-
puter is represented by a structure which contains variables
corresponding to the various fields of the PSW in appro-
priate formats. The condition code, for example, is rep-
resented by a bit string of two bits; the program counter
(instruction address) is a signed interser which can be
used as an index into the virtual core array to feich an

instruction.
3.3 THE INTERRUPT AND EVENT QUEUE

Some interrupts, such as program interrupts, occur
immediately whenever the proper circumstances erise.
Other kinds of interrupts, particularly those associated
with I/0, may remain pending indefinitely after they are due
to occur either because they are masked off, or because
some other interrupt occurs first. In addition, a device
simulation routine,’ in the course of simulating device
operation, may determine that one or more interrupts should
occur at some future time as a result of device operationm.
In such a case, an entry or entries will be placed in the

interrupt and event queue, a list of pending and scheduled

1 see Appendix C, section C.4.7.
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interrupts or events! maintained in order by scheduled
time of occurrence., Entries in this gqueue contain infor-
mation which determines the channel and device involved,
status information for the C5W, channel and device, and
other necessary information. This queue is examined after
the completion of each instruction to see if an interrupt

or event is due to occur.
3.4 I/0 SPECIFICATIZI ELUCKS

The 1/0 capabilities of the simulated computer are
defined by a set of specification blocks, one for each
channel, control unit, and device simulated, A chammel
specification block (CSB) contains information on the
current state of the channel (available, interrupt pending,
or working), and a pointer to the control unit specification
block (CUSB) of the first attached control unit. The CUSB
contains similar status information, and pointers to the
next CUSE and the device specification block (DSB) of the
first attached device, The DSB for a device contains all
necessary information to simulate the device, for example:

== A pointer to the device simulation routine

Events are assoclated with conditions in the I/0 sub-
&

system and are fully explained in Appendix C, section

C.hk.6.
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-- The data transfer rate of the device
-- The record size of the device (if fixed - cards=80,
printers=132, etc.)
-- The device status and sense state
-- Pointers to any data in the process of being
transferred to or from the device
-= Information on the CCW or chain of CCW's the
device is executing
-= etec,
All of this information, and a good deal more, is used
by the device simulation routines, the channel interpreter,
the event processor, el othes TaRGtIoHAl routines in the

process of simulating I/0 operations.
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k. CONCLUSIONS

SIN360 is an unusually complete simulator of a larpe
scale computer, complete in a mammer important in the study
of operating system programs., It makes available to =
large number of people who have no complete access to
S/360 hardware a model of that hardware which is sufficiently
accurate to be useful in many areas where most simulators
are of little use. It has proven useful as a teaching aid
and is potentially useful as a tool for:

1) Systems program development and testing

2) Performance monitoring

3) Debugging complex programs
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APPENDIX A
PROGRAMMING FOR THE S/360 SIMULATCR

This appendix is intended to be a self-contained and
sufficient guide for students or other users of SIN3F0.

Familiarity with the S/360 assembler language is assumed,

A.1 INTRCDUCTION

The S/360 simulator is a program written in PI./I
which is designed to execute small (less than 32K) assembly
language programs in such a fashion that the programmer is
unaware of any difference from a physical $/360. In partic-
ular? priveleged instructions, protection mechanisms, in-
terrupts and I/0 channel programs may be used and manipu-
lated. There are exceptions and qualifications which surround
such a statement about any simulation, and several of the
more important of these are discussed below. In general,
however, any program which will run on the simulator will
run on the S/360 and vice versa. Your primary guides in

using the simulator eare therefore FPrinciples of Cperation

and the S/360 Assembler language.

A.2 IMPLEMENTED INSTRUCTIONS

The simulator does not handle the full complement of
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S/360 instructions. A subset designed to be adequate for

systems programming use is implemented:

HEXADECIMAL
MNEMONIC FORMAT OP-CODE NAME
I. ILOAD INSTRUCTIONS

3 h BRX 58 Load

2, IR RR 18 Load

3. 1IN BS 98 load Multiple

bk, LH RX Lg Load Halfword

5. LTR RR 12 Load and Test
II. STORE INSTRUCTICHNS

s ST RX 50 Store

2. STM RS Q0 Store Multiple

3, STH RX 4o Store Halfword

L, sSTC BX L2 Store Character
III. ADD INSTRUCTIONS

1. A BX 54 Add

2. AR RR 1A Add

3. AH RX La Add Halfword
IV. SUBTRACT INSTRUCTIONS

1. S RX 5B Subtract

2. SR RR 1B Subtract

3. SH RX LB Subtract Halfword
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V. MULTIPLY INSTRUCTIONS

l1. M RX 5C Multiply

2. MR RR 1C fultiply

3. MH RX Le Multiply Halfword
VI. DIVIDE INSTRUCTIONS

I: D RX 5D Divide

2. DR RR 1D Divide

VII. COMPARE INSTRUCTIOCNS

1. € RX 59 Compare
2. CR RR 19 Compare
3. ©CH RX Lo Compare Halfword

VIII. CCMPARE LOGICAL INSTRUCTIONS

1, CL RX 55 Compare Logical
2. CIR RR 15 Compare Logical
3., CIC RS D5 Compare Logical
4y, CLI SI 95 Compare Logical

IX. MOVE INSTRUCTIONS
1. MVC S5 D2 Move
2, MVI SI 92 Move
X. AND INSTRUCTIONS

l, N RX 54 And
2. NR RR 14 And
3. NC S5 DL And

L, NI SI ok And



XI'

XII.

XIII.

X1V,

OR INSTRUCTIONS

3
L

XCR (EXCLUSIVE OR) INSTRUCTIONS

1,
2,
3
L

X

XR
XC
XI

SI

RX

-7 -

56
16
D6

96

57
17
D7
97

SHIFT INSTRUCTIONS (LOGICAL)

1,
2,
3.
b,
BRANCH
1.

2.
3.
L.
5.
6.,
-

SIDL RS
SLL RS
SRDL RS
SRL RS
INSTRUCTIONS
BAL RX
BALR RR
BC RX
BCR RR
BCT RX
BCTR RR
EX RX

8D
89
8C
88

4s
05
W7
07
Lé
06
Ly

Or
Or
Or
Or

Exclusive Or
Exclusive Or
Exclusive Or

Exclusive Or

Shift Left Double
Shift Left Single
Shift Right Double
Shift Right Single

Branch and Link
Branch and Link
Branch on Condition
Branch on Condition
Branch on Count
Branch on Count

Execute
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XV, GENERAL INSTRUCTICNS

1, 1A RX b1 Load Address

2y 30 BRX 43 Insert Character’
XVI, I/0 INSTRUCTIONS

1. SIO S1 oC Start 1/C
2. HIO SI 9E HEalt I/0
3. TIO SI 9D Test I/0
L, TCH ST 9F Test Channel

XVII, SYSTEM CONTROL INSTRUCTIONS

1, LPSW ST 82 Load P3W

2. SVC RR 0A Supervisor Call

3. SFM RR ok Set Program Mask
4, SsSM SI 80 Set System Mask

5. ISK RR 09 Insert Storage Key
6, SSK ER 08 * Set Storage Key

Use of a valid S/360 instruction which is not imple-
mented by the simulator results in a program interrupt for
an operation exception. 1In addition to the machine in-
structions listed above, there is a set of simulator ex-
tensions to the S/360 instruction set which currently
includes: A

1., TRACE and TRACEOFF - discussed in section A-5
2. QUIT - the simulator termination commands.
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These are implemented as macro=instructions and should be

used as such, as they are subject to change.

A.3 PREPARING A PRCGRAMN

A program must consist of a single control section
with no external references, and must be assembled starting
at relative locatlion zero., The simulator initlates ex-
ecution of a program in a manner simllar to the hardware
IPL function, and the programmer must provide at location 0

an initisl FSW. For example:

EXAMPIE1 CSECT
IPLPSW DC A(0,START)
UNUSED DC 7XL8'0002000000000000"
CSWETC DC 6F! Q!
NOINTS DC 5XL8'0002000000000000"
START SR 12,12 SET UP BASE
USING EXAMPLE1,12
L L4 ,BEGINADR
SR 5,5
LA 6,256
INITLOOF ST L5,0(4)
LA 5,10 52
LA L (k)
BCT 6,INITLOOP
QUIT




BEGINADR

BLOCK

Zero

PSW,

- Lo -

DC A(BLOCK)
DS 256F
END

The DC labeled IPLPSW defines a doubleword at location

which will be used by the simulator as the initial

In this particular example:

All maskable interrupts are disabled.

The storage protection key is zero, providing
unlimited access to all storage.

The CPFU is in the runnming state and the supervisor
state.

The initial condition code is zero,.

The first instruction to be executed is at location
START.

Other details illustrated by this example are:

1.

The programmer must somehow initialize the per-
manently assigned core addresses (24 - 127) to
the initial values he desires, The method used

here is recommended.,

. The programmer must provide the assembler with a

base register and initialize the register. Another

example will show an altermative method.
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3. The simulator should be terminated by the use of

the QUIT macro-instruction.

AL INPUT/OUTPUT ENVIRONMENT

The current version of the simulator implements only
a byte multiplexor channel with two attached 2821 control
units, Each 2821 has attached one 2540 card reader-punch

and two 1403 printers. The assigned device addresses are:

First 2821: vive) ncoder
00D Punch
00E First Printer
O0F Second Printer
Second 2821: 012 Reader
013 Punch
010 First Printer
011 Second FPrinter

Detailed information on the programming required to

support these devices is contained in Prineiples of Operation

and in IBM 2821 Control Unit, Component Description (A24-
3312-7).

Special considerations involved in programming for these

devices on the simulator are: -

Ll "\

1. No special featires are supported.




- b2 -

2. Stacker select commands to the reader punch are
not simulated. Stacker select information in
2540 commands must be valid, but is ignored by
the simulator.

3. Carriage skip commands to the printer are all
interpreted as a skip to channel 1 (head of form).
Carriage skip information in 1403 commands must
be valid, but regardless of the channel specified,
the paper is positioned at head of form.

A.5 DEBUGGING AIDS AND MONITORING FEATURES

A.5.1 FACILITIES

The simulator has extensive and powerful trace facil-
ities to 2id in debugging programs. Proper use of these
facilities will greatly reduce the number of runs reguired
to solve a given programming problem. The trace facilities
are dynamically controlled at execution time by the use of
the TRACE and TRACEOFF simulator control instruction. The
following trace features are provided:

1. Branch tracing: whenever a successful branch

instruction is executed, the stan-
dard trace information will be

printed. Options may be specified.
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2, Address tracing: whenever a given location is
referenced as an instruction
operand, the standard trace in-
formation will be printed. Options
may be specified.

3. Execution tracing: whenever the given location is
referenced for execution, the
standard trace information will
be printed, Optlons may be
speciflied,

L4, Instruction tracing: whenever & given instruction
(LR, M, SSM, etc.) is ex-
ecuted, the standard trace
information will be printed.
Options may be specified.

5. Interrupt tracing: whenever the specified type of
interrupt occurs, an abbrevi-
ated version of the standard
trace information will be printed.
Options may be specified.

6. Channel tracing: whenever the specified channel

performs significant operations,

an explanatory message is printed.

Examples are:




a) A new CCW is fetched in a
chain of command chained
CCW's, This information,
and the address and text of
the fetched CCW are printed.
b) The channel receives status
from an attached device.
This information and the sta-
tus byte are printed.
Options may not be specified.
7. Snapshot: whenever the trace command itself is en-
countered, an abbreviated version of the
standard trace information will be printed.

Options may be specified.

In addition to the above, the simulator can print the
standard trace information for each instruction executed.
This facility is not dynamically controlled, and must be
set by the instructor.

A.5.2 STANDARD TRACE INFORMATION

The standard trace information mentioned above contains
the following information:
1. The current hexadecimal value of the location

counter (LOC).



SNAPSHOT

3. The instruction count at the time of the trace
message, l.e., the number of Instructions which
have been executed (COUNT).

b, The elapsed virtual (simulated) time since the
start of execution.

5. The contents of the current PSW (hexadecimal).

+ The IEM mnemonlc op-code of the instruction asso-

ciated with the trace message (OP).

7. A hexadecimal dump of the instruction associated
wilth the trace message (INSTRUCTION).

8. The hexadecimal absolute addresses of address
operands 1 and 2, if present (ADR1, ADR2).

9. The first four bytes of operands 1 and 2, if present
(OFERAND1, OPERANDZ),

The abbreviated trace information printed in an in-

—11-5-

The type of the trace request which caused this
message. For example:

PGM INTERRUPT

ADDRESS 00F6

INSTRUCTION SSM

terrupt trace message contains only items 1 = 5.

The informa-

tion printed in a trace message associated with instruction

execution(Branch, Address, Execution, and Instruction trace
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types) reflects the state of the CPU at a theoretical point
in time after instruction fetech and address generation, and
before any data has been changed by the execution of the
instruction. The information printed in a trace messare
associated with an interrupt is that existing after the old
PSW has been stored and before the new PSW has been fetched.
Snapshot information is associated with a point in time
after completion of the execution of the instruction pre-
ceding the trace request and before fetching the instruction

following the trace request.

A.5.3 OPTIONS

The three types of options which may be specified in
a trace command are status, registers, and core dump.
Status information 1s that contained in the permanently
assigned low core area from location 2475 - 12779, This
includes the o0ld and new PSW's for the five interrupt classes,
the channel status word, the channel address word, and the
timer. Any status options requested are formatted appro-
priately and identified. The régisters option 1s obviously
the 16 general purpose registers which are dumped in hexa-
decimal and decimal and identified. Core dumps are in hex-
adecimal and character format. Further discussion of the

options is included in the syntax description.
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A.5.4% TRACE SYNTAX

The syntax of the trace command is

- -

BRANCH
ADDRS ,adr
EXEC,adr

[%ATEE] TRACE \ INSTR,opcode [;optimné}

where

gdr

opcode

type

chadr

options

I

n

INSTFT,type
DUNMP

CHANWL ,chadr

& label or decimal address

hexadecimal opcode of instruction

- -

PG
1/0
{ EXT }
sve
MCK

= 4

an integer 0 - 6

STATUS= status spec
{:{status spec [,Etatus Epeé] ) }

REGS= integer 0 - 15
(integer 0 - 15 [,rntEger 0 - li] :}

CORE=(core spec |,core spec




S .us -

status spec = CLDPGM
NEWPGM
OLDI/0
NEWI/O
OLDEXT
NEWEXT
QLDSVC
NEWSVC
OLDNCK
NEWMCK
TINER
osu
CAW

— —

core spec = adr, wordcount

wordcount = decimal integer 1 - 128

Note the following points:
1. Each 'core spec'! is a pair:
address,wordcount
2. In each trace command allowing options a maximum of
16 registers
13 status "fields"
8 veie dump specifications
may be Speci-i'iEd.
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3. The example uses snapshots heavily. This is ac-
ceptable for very simple programs but for complex
problens the more useful information comes from
interrupt and branch tracing, and well chosen

instruction tracing.

The sample program which follows should help to clar-
ify the information given above. The circled numbers on

the trace listing refeir 'to tie notes which follow the example.

=




s B

LSTMAMF, A, Fs SECT ION=-~

L"C OPJECT CODE ADDR1
A%Coce
CCCCCC 0ConDOOnDO0N00RD

acoecs 00C2000000CC0OCCO

naoes R 00ca00n0000000Rn
oCocsC occraoccooceoocn
02C0AE QOCONOODOONONIRA
pCccvC 0OCC2000000G00000
0JCOTE 0CCOOONOOOCOOLCA

cccooo

OCCNSE 1RES
Coooea S060 0050
0CCOSE 4150 0001

0CcoaC n2G0 0080 QooBo

ogceng
Q000RcC DLC2000000C00D0D

OCCCCE 95EF 0150 001 58

ADDHR2

nnos o
00001

L]

STHT

2
3

=S a3

-

13
14

L6
17
18

30
31
32
13
42
43
44

&b
47
56
57
58

&0
&1

63

&5
&6
T9
88
a1

INSTRUC TOR=~=

SOURCE STAT EMENT

LSTHNAME CSECT

nc

nc

Do
ne
oc
oc
oc

A(D,REGIND

LOX*0002000000000000°

AlLO TSTRT)

X' 0002000000000000°
AlDyPGMINT)
X'pooz2o000000000000¢
AlOLTDINT)

USING LSTNAME,D
PRINT NOGEN

INITIAL PSH.

UNUSED LOCATIONS.

EXTERNAL NEW PSW FDR TIMER.
UNUSED PSW'S IN THIS PROGRAM.
PRCGRAM INTERRUPT PSHW.
UNUSED PSH. !

ID INTERRUPT HANDLER.

I
+ I

PROGRAM IS ABSOLUTE.

*NCT EXPECT ING PROGRAM INTERRUPTS AT THIS TIME, S50 IF ONE OCCURS,
*OUMP ALL OF USED CORE AND THE REGISTERS TO SEE WHAT HAPPENED. .
RECIN TRACE INTRPT,PGM,STATUS=0LDPGM REGS={05132¢31%4s5:6+T+8¢94100y X 1

*WE WILL FIRST SET UP A TIMER
» ARBRITRARY 3.3 MS,

CORE=(0,128)

R INTERRUPT., THE WAIT WILL BE AN
BECAUSE THAT TS ONE TIMER UNIT. WE WILL TURN ON

*THE EXTERNAL INTERRUPY TRACE TO WATCH THE INTERRUPT OCCUR.
TRACE INTRPT,EXT

SR
ST
LA

*TC VERIFY THAT WE*VE GOTTEN THIS FAR,

L TL]
6480
S5y1

TRACE DUMP
*A(W GO INTO THE WAIT STATE UNTIL THE TIMER INTERRUPY OCCURS.
®KCTYE THAT THE EXTERNAL INTERRUPT BIT IS SET CN IN OUR WAIT PSHW.

LPSH

0s
WATT nc

*WFEN THE TIMER INTERRUPT CCCURS,

WAIT

on
X*Clozcooooocooooo®

T0O SEE TIMER INTERRUPT.

MAKE A NOTHING-=3.3 MILLISEC.

STCRE IN THE TIMER WORD.
FOR FUTURE USE.

DO A SNAPSHOT.

WALT FCR A TIMER INTERRUPT .

WE COME HERE (SEE THE EXTERNAL NEW
$PSWle NOW WE WILL DO A SHORT LOOP WHICH PRINTS A LINE.DOURLE SPACING,

#AND WATCH AN INSTRUCYION, A LOCATION, AND I/0 INTERRUPTS.
TS5TIRT TRACE ADDRS ySWITCHREGS=(15+4:5) ,CORE=(M5G2,1,80,1)
SHOW THE LH INSTRUCTION AT CHEND

TRACE INSTR, 48
TRACE INTRPT, L/D

GCLN CLi

SWITCHX*EF*

WATCH THE (/0 INTERRUPT 5«
TEST FCPR LODP DONE.

PAGE 1
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LELC

CCCRE2
CCCTLE
ACNIFA
0IC3EC
NLIORF 4
RICaF"
cLcl1cc
gcclce

cccLen
ccclinc
ncolLn
0sCcll¢<
oaclie

JCCL34
pcC1as
nan1ig
OCCLAE

Fal ol al B
L* b

AOC1GE
0AanLa4
GCC1 5L
Qoeise
Qeel 50
gCClER

coClLal

LSTIAME 8. P

CRJICCT CODE

- B =

SFCTICN--

ANDRY1 ADDR2

4780 N16K DOl&6R
S0 CO 0COF noons

4770 011C notic
Nnz2eo3 2049 0ICA DOO4BE DOLCAE
SC 00 N00E aonore

4200 0100 00100
§0C2020000CCO0CH

&850 0044 D004 4
4%%N 0lCC "nolcc
4TB0 D134 00134
4550 DICE 001CE
4TED DODE DCODE
57240 DLSA ooise
4150 DCOl 00001
1845

£040 OL5R 0oD1s8
12C0 0100 £0100

neeo

1LIn0015CANECO00GC
C3ICTC15820C0000%

FOFJENE2

FICANLHCTL0C3D6 64

5040 L .8 nols58

S5TMT

oA

99
1on
101
102
103
104
10%

107
108
109
110
111
112
113
114
115
11&
11T
118
119
130

135
136
137
138
139
140
141
142

143
144
145
146
147

149
LS50
156

177
i

INS TRUC TOR=-- . PAGE 2
|

SOURCE STATEMENT ; 10 MAY 72
BE TCONT G0 DO PGM! INTERRUPTS.
TIN  X'00E* PRINTER FREE?
BNZ  ARORT IF NOT, ERROR, SO OUIT.
MVC  T204),=A(PRINTCCH) SET UP CAN.
SI0  X'DOE" AND START| THE 1/0 DPERATIO {.
LPSHW  WAITIOD WAIT TILL| 1/0 OP DONE. A
DS oD

WAITIO DC X* 8002 0000 00000000 *

NOTE CHANNEL O BIT ON.
' "
z |

®1/0 INTERRUPT HANDLER. :
*THIS VERY STUPID ROUTINE LOOKS FOR A CHANNEL END OR DEVICE END,
*AND) TAKES APPRDPRIATE ACTION IF THEY ARE FOUND.- ANYTHING ELSE I5
*CCNSIDERED AN ERROR. MDTE THAT INTERRUPTS ARE ASSUMED TO COME FIROM

*THE PROPER DEVICE.
ICINT LH 5,68 GET CSW STATUS BITS. i
CH 5,=X'0800" TEST FOR CHANNEL END.
BF CHEND GO DO CHANNEL END PROCESSING.
CH 5,=X70400" TEST FOR DEVICE END. :
BE GOON IF DEVICE END, CONTINUE LODP,
*NOT CHANNEL END OR DEVICE END. IN THIS VERY SIMPLE-MINDED EXAMPL i,
*WE WILL ASSUME THAT THIS IS AN ERROR AND ABORT THE PROGRAM.
ARCRT TRACE DUMP,STATUS=(0OLDI/0,CSH) yCCRE=(0,128) ,
QuIT ABORY PROGRAM.
|
*GOT A CHANNEL END FRCM THE ODPERATION IN FROGRESS.
CHEND L 44M5G2 DECREMENT QUR COUNTER—
LA 541 WE CAN DO THIS BECAUSE CHAWNEL
SR 445 END SIGNIFIES THE END OF DATA
ST 4, M5G2 TRANSFER.
*hE MUST, HOWEVER, WAIT TILL DEVICE END BEFORE WE CAN INITIATE

*ANOTHER OPERATION TO THE SAME DEVICE.
LPSW MWAITID

PRINTCCHW CCW K*L1* 4 M5G, XK*BO® 4 12 TRANSFERS TEXT *LOOP COUNT="*

CCw X'DIY MSG2 . X"20" 4 NDTE SLT BIT, NOT DOING 132 CH.

MEG2 oc C*ooD3"
MSE pc CYLOOP COUNT= ¢
SWITCH EQuU MSGZ+3
#*TURN OFF THE TRACES AND SHOW THAT NOTHING HAPPENS NOW.
TCONT TRACEQOFF ADCF SWITCH

e MSG2

r-*!v,"n YainAar

i




nacien
DCClAC

OCClEE
ooccloz
ooclee

opcles
GCClca
goolec
0CClAC
00C1lAg

nocins

[+ o 4 o
cocice
GCCIC4

gccira
accicc
02CLCE

i 8%

LS TNAME,A. E. SECT I CN—~ »
NBJECT CODE ANDRL ADDRZ STMT
160
169
170
171
5870 0ICO 001C0 180
04 70 181
5840 01C4 001C4% 183
4150 0002 0ooo2 184
LAY 185
186
187
LeTT 188
0470 189
SR&40 01C4% 001C4% 190
4150 0002 o0no2 191
LA 45 ) - 192
193
202
203
R200 0028 ooo2s 208
210
Qa000000 211
TFFFFFFF 212
213
DOCo0l 48 214
0ECo 215
0400 216

INSTRUC TOR== .

| {

SOURCE STATEMENT .

#DCNE WITH OUR PRINT LOOP. NOW WE WILL CREATE SOME FIXED PODINT

*CVERFLOW CONDITIONS AND WATCH THE INTERRLUPTS. FIRST CHANGE TI:

* PROGRAM INTERRUPT TRACE TO GIVE US SLIGHTLY LIESS DUMP VOLUME.
TRACE INTRPT+PGM o STATUS=0LDPGMyREGS=[f4+51)

L 7, FOFLON PROGRAM| MASK TOD ALLOW FIXED
SPM 7 POINT IFTERHUPTS. 3
I
L 44 MAXPOS GET THE MA XIMUM POSITIVE NUMBER.
LA 542 ANC ADC' 2 TO IT TO CAUSE| AN
AR Se OVERFLCW

*TRACE LISTING SHOULD SHOW A PROGRAM INTERRUPT,
*NCW TURN DFF FIXED POINT EXCEPTION INTERRUPTQ AND TRY AGAIN.

SR Te7
SPM T :
L &Ky MAXPCS SAVME PROCEDURE
LA 5:2 )
AR 445 i
TRACE DUMPLREGS=(4,5)
*ENOUGH  TERMINATE. _ “
QUIT :
PGMINT LPSH 40 THIS IGNORES PROGRAM INTERRUPTS.
DS OF ’ i
FGFLON DC X*'08000000°
MAXPOS nc X*TFFFFFFF"
END
=A{PRINTCCH)
=X*0800"
=X"0400"

PAGE 3
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CROS S-REFERENCE . PAGE 1

|

cYNALL LEN VALUE DEFN REFERENCES , 10 MAY 72

ARCRTY 1 00C11C 122 100

AENIM 1 00OCDRO 21 3

CHEND 4 O0CLA4 134 114

FOFELTIN 4 0QClCC 211 1EOQ

GTON 4 DOOONE q7 116 |

ICINT 4 occlor 112 11 | A

LSTNAME 1 00C09C 2 13 ;

MAXECS 4 DOCIC4 212 183 190 |

MG 12 00CISC 146 143 :

MSE2 4 00C158 145 73 136 139 144 14T 156 ‘ [

PCNMINT 4 DO0OLAA 208 9 .

PRINTCCH 8 0OCCl4F 143 1Cl1 214

SWITCH 4 000150  1&7 10 97 154 157

YCCAY 1 D0Cl58 153 GH

TSTRT 1 oocoAae &9 "

WATIT A 00OCDA0D 61 58 2

WAITIO 8 0CClLOC 1C5 103 142 ‘




o il e
RELOCATION DICT INNARY x PAGE 1
i
PCS.ID  RFLLID FLAGS  ADDRESS . 10 MAY 72
01 01 oc 000004
Cl ol ce 00005 C
el 01 ce 00CCAC
01 01 oc 00007C
cl1 01 c4 0000BA
clL 0l C4 00GCC 0 i 4
o1 01 08 000149 i
01 01 CE 000151 \
01 01 04 000164 :

01 01 0c 0001C8 !




q

Kt

STMT ERROIR

CIDE MESS

ASMGD46] AT

STATE PENTS

FLAGGED

LEAST

IN

A
ALE

THIS

ONE

RELOCATABLE Y-=TYPI

ASSEMBLY

4 WAS HIGHEST SEVERITY CODE

DIAGNOSTICS

CONSTANT IN ASSEMBLY,

PAGE

L

10 MAY 72




LSTSAVYI TRACE LISTING,

LPC TRACE TYPE COULNT TIVE
COAC SNAPSHNT 3 L PSW: 00 0O Q
goon KXY ]NT[TRRUPT & 3,333 PSW: 01 0 2
OGE2 ACDPESS5S: 0l1%A &4 3,333 PSW: 00 0 O
REGISTERS:
R 4: FFFFFFFF, =1 R 5: 00000001y
CARE NUMP:
n158, 344 FOFOFOF3
0050, AC: FFFFFFOD
QZCcC I/ INTERRUPT i1 14428 PEM: 80 0 2
01CC Lk INSTRUC TION 11 3,428 PSW: 00 0 O
G136 ACDRFSS: nlﬁE(::) © 14 3¢431 PSW: 00 0 O
RTGISTERES:
R &: FFFFFFFF, =1 R 5: 00000800,
CIRE DUVF:
Dl=3, 344 FCFOFCF)
00450, AQ: FFFFFFOD
0142 ARDRESS: OLSA 17 3433 PSW: 00 0 O
RFGISTERE:
R &4: FCFOFOF2, =-252645134 R 5: 00000001,
CORE DUMF:
D158, 3%44: FGFOFOF3
0050, 80: FFFFFFOOQ
CCCc 140 INTERARUPT 19 S9,6B0 PSW: 80 0 2
QLCC LM INSTRUCTION 19 99,680 PSH: 00 O O
COE? ICDRESS: Q1SR 24 S9: 684 PSW: 00 0 O
REGTSTERS:
P &: FCEOFOF2, <=252645134 R 5: 00000400,
(ORE CUME:
O15E, ALK FOFOFOF2
0050, FFFFT 280
anc LA INTYERRUPT 11 99,T79 PSN:z B0 0 2

- 56 -
0 CUNDITIONS ENAPLED,

0000

0080

0000

000E

0000

0000

0000

0DOE

0000

gooo

000E

‘oL'a

*L0'B

fi10'8

f10'n

*L0'R

11C'B
2048

f10'B

*lo0'e

"10'8

FLO'8

L1024

*00*8 0 000D0AC
*00*B 0 000000

*00*B 0 0000E2
R15: FFFFFFFF,

‘o0'A 0 000000
"00'B O 0O01GC

‘0o's 0 ooO138

R15: FFFFFFFF,

'01'8 0 000142
R15: FFFFFFFF,

*oo*B 0 oOODOOO
*00*B 0 oCcOLCC

'00'8 0 OO0OEZ

R15: FFFFFFFF,

*go*e C QooOOv

op

cLl

0003
T

LH

0003
77

5T

o003
77

LH

CLl

oooz
T

INSTRUCTION

95EF

4850

5840

4850

95 EF

o158

0044

oLs8

ols8

0045

0158

——

i F

;DRI ADR2 OPERANDL OF

-—— -

- ——

i

o158 F3D3D6D6 )
.

i

(044 08000074
(158 FOFOFOF2
0158 FOFOFOF3
0044 04000000
0158 F 203060 £
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LSTNAME TRAGE LISTING. 5
LEC TRACE TypE CLCUNT TINME
D13& ACDRESS: QLSP 3} 99 ,TR2
REGISTER &z
% &3 FOFOFOR2, =-252645134 R
CORE DUMEF:
nLsa, 34k FOFOQOFOF2
0050, AR0: FFFFE300
0l42 ACDRFSS: OL1SAH T 69y THE
FEGISTERS:
? 4: FCFOFOFl, =252645135 R
CORE DUMP:
0158, 344: FOFOFOF2
N0S0, AC: FFFFE300
OZCC 1/0 INTERRUPT 39 198,181
01CC Lh INSTRUC TIDN 19 1S8,181
O0E2 ACDRFSS: O15F by by 198, 186
REGISTERS: :
P 4: FOFOFOFl, =252645135 R
CMRE DUMF:
0158, 344: FCFOFOFL
0050, AC: FFFFCS00
OCCC [/ INTERRUPT 51 198,281
010C L# INSTRUCTIOM 51 168, 281
D138 ACDRFSS: OLSR 54 168, 284
_PEGISTERS:
? 4: FCFOFQFl, =-252645135 R
CT?E DUMF:
dLEf, 344 FOFOFOFL
2050, AC: FFFFCS00
gle2 ACCRESS5: 0158 57 198, 285

REGISTERS:
R 4: FCFOFOFQ,

CTRE DUMF:
0158, 344: FOFOFOFL
0050, 8C: FFFFLC 500

1/7 INTERRUPT 55 300, 98°

COMCITIONS ENABLED.

P5W: 00 0 O

5%

PSW:

5z

PSWz

PSH:

PSH:

5: 00000400,

PSW:

PSW:

PSkz 00 0 O

5t 00000800,

r

P5W:

00 00

B0 0 2

00 0 0

00 00

80 0 2

00 00

00 0 0

00000800y

00000001,

-252645L36 R 53 00000001,

0000

0000

000E

0000

0ooo

O0DE

0000

0000

o0ooo

O00E

1108

2C48

*1L0'8

*io0'e

‘108

*1G'B
1024

*l0%a

*10'8

*io0'a

2048

110'B

FLO'R

*00'8B C 00OL3B

R15: FFFFFFFF,

*01l"B O 000142
R15: FFFFFFFF,

‘0D0*B O 000000
'o00*B 0 oooloc

*00*B C 00DOEZ

R15: FFFFFFFF,

'oo*B 0 OODOOO
"00'B O ooOlOC

*00'B 0 000138

R15: FFFFFFFF,

‘01"8 0 ODOL42

R15: FFFFFFFF,

TCO'E © G000

oe

B

ooo2
277

5T

0002
M?

LH

CLI

o001
TE?

LH

0001
TIET?

57

oool
T?E?

{NSTRUCTION
5840 0158

=1

|
5040 0158

-1

4850 0044

95EF 0158

4850 0044

5840 0158

o158

ARL ADRZ

0 58

01 4%

0C 4%

0158

0158

P

OPERANDL QP

FOFOFOF2

FOFOFOF 2

0400000C

F1D3D6Dé&

08000074

FOFOFOF 1

FOFOFOF 1
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STt TRACF  ISTING,. 5 CONCIT IONS ENAEBLED. PA

CC TRACE TYPE COWNT TIME op INSTRUCT ION ADRL ADR2 DPERAND1 DPE

[
o —— e — o —— ——

REGISTERS:

% 4: FCFOFOFD, -25264%5136 R 5: 00000400, 1C24 R15: FFFFFFFFy t =1
COGRE DUME: :
0158, 344 FOFOFQOFO 0000
nOS0, B0: FFFFAG00Q 77
CCC 122 INTERRUPTY Tl 3C1,085 PEW: BO O 2 DOOE *10°*B *00'B O 000000
160 LM INSTRUCTIOM T1 301,085 PSW: 00 O O ODOO *10°B *00*8B O OOOLCC LH 4850 0044 0044 0800007 4
138 ACDRESS: DLSA T& 301,088 PSW: 00 O O 0000 *10°B '00'B O OOOL38 L 5840 0158 0158 FOFOFOFO
PEGI STERE: )
R 4: FCFOFCFO, =-25264%136 R 5: 00000800, 2048 R15: FFFFFFFF, =1
CO2F DUNEF:
oL&a, 344: FCFOFCFO 0000
an S0, AQ: FFFFA&00 M
142 ACDRESS: 015D 77 301,089 FPSW: 00 O O 0000 °*10°"B *OL1°'B O 000142 5T 5040 0158 oL58 FOFOFOFO
REGISTERS:
R 4: FOFOFDEF, =252645137 R 5: 00000001, 1 R15: FFFFFFFF, -1
COREZ DUMP:
D156, 344 FOFOF OFO 0000
0050, B0: FFFFA&00 T
CCC 147 INTZRRUPTY 79 366,693 PSW: BO O 2 OD0OE *10°'B *00*'8 O 000000
18C LM IHSTRUCTION T9 356,693 PSW: 00 0 O 0000 "10'B "00°*B O OOOlCC LH 4850 0044 0044 04000000
OE2 ACDCESS: OLSPR B4 3664697 PSW: 00 0 0 0000 *LC"'B *'00'B O OOOODEZ CLI 95EF 0158 0158 EFD3D6DE
REGISTERSE:
R 4: FCFOFCEF, -25264513T7 R 5= 00000400, 1024 RL5: FFFFFFFF, =1
CPPE CUMF:
0159, 344: FOFOFOEF 0007
L0500y 8C: FFFFBSCO 7 .
LTE SAAPSHOT 83 396,700 PSW: 00 0 O 0OO0 'O1°B '10°8 C O0OLTE
LS8 FGM INTERRUPT 92 36,702 PSW: OO ©C 0 OOOB "0O1'8 "11*B 8 000198
STATUS:

LD PRG: GC D C DOOA  *O1'R *11°'RA 8 00OLl98
R=CISTERS:
T A4t TFFFFFFF, 2147403647 R 5: BOOD0001, —2147483E47

LB0 EALPSHOTY a: 356 TO8 FSKW: 00 O O ODDD *OQ1°6 *L1'B U O0OLE
FEGISTERS:

' B | ' 5 ! N -
n ¢ InAA 7



GRAM LSTNAME

31964 1056

120 4£25
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Notes on the example:

1)

2)

3)

4)

5)

The location shown in this columm 1is usually the
location of the instruction following the in-

struction associated with the trace.

The time is the elapsed time, in microseconds,

gsince the start of the simulation,.

See the LPSW instruction at statement 58, and its

operand at statement 61,
This group defines one iteration of the print loop.

Note that although this instruction does not address
the traced location directly, the location is con-

tained in the operand, and the trace occurs.
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A.5.5 TURNING CFF TRACING

Any requested trace facllity may be removed when no
longer needed by means of the TRACECFF command. The syntax
of this command is identical to that of the trace command,
except that no options are included, 1In addition, all
traces of a given type may be turned off by replacing the

explicit specification adr, opcode, type or chadr with the

word ALL, For example:

TRACE INSTR,45 TRACE BAL
TRAGE INSTR, 82 TRACE LPSW
TRACE INSTR, 50 TRACE ST

TRACE INSTR,40  TRACE STH
TRACE INSTR, 42 TRACE STC

- = code - =
TRACECFF INSTR,ALL TURN OFF ALL INSTR

A.6 HINTS
1. Do not place any cards containing // or /# in
colums 1 and 2 in your deck.
2, Use your last name (maximum of 8 characters) as
the label on the CSECT card which must be the first
card of your program. This makes 1t easy to iden-
tify your assembler listing and output. Use a

TITLE card with your name also for further ease



3.
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in ldentifying listings.

Your deck should have one each CSECT card (above,
first card) and END card (last card).

Do not use the EXTREN or ENTRY statements or @ or

V address constants,

The first 128 locations (16 doublewords) must be
properly initialized,

The instructor can set the maximum number of in-
structions you can execute and the amount of virtual
time which you have to run. Be efficient in your

code and use the wait state properly.
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APPENDIX B
INSTRUCTORS MANUAL

An overview of the steps in running the simulator was
given ih section 2.3. The detailed procedures are only
slightly more involved. The following sections discuss in
detail 211 the necessary considerations.

B.1 STUDENT DECKS

Each student deck must be one (only) S/360 assembler
lanpuage control section. The simulator's loader cannot
link control sections, properly process external symbols,
or relocate to a base address other than zero. To enable
all of the simulator output to be easily collated, the name
(label) on the CSECT card is used by the simulator as an
identifying tag on all ouptput. A student deck should
therefore look 1like

name CSECT FIRST CARD
assembly language statements
END IAST CARD

where name is an appropriate identifier (student's last

name or assipned I.D. number, for example). It should be
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noted that improper use of the ICTL assembler control
instruction can cause the assembler to terminate processing,
and thus abort many assemblies in a bateh run. It has

been a successful policy to simply make no mention what-
soever of this, since this feature of the assembler is

very rarely used, Should the problem arise, students can
be instructed never to use this statement,

B.2 ASSEMBEIER INSTRUCTIONS

All student decks for a given run should be grouped
into one large deck, checking each student deck for the
presence of an END card. In front of the student decks
appropriate Job Control Language control cards must be pro-
vided. The following cards are the appropriate ones for

M.I.T.'s Information Frocessing Center:

// JOB, PROVIDED BY IFC
// 'SUBMITTER'S NAME',REGION=200K,CLASS=B,MSGIEVEL=(1,1)
/#MITID USERa(M1234,5678)
/#*SRI LOW
/®NMAIN TIME=5,LINES=6
//STEPNAME EXEC ASM,LEVEL=G,PARMN.C='LOAD,NODECK,BATCH'
//C+SYSLI1B DD DSNAME=USERFILE.M4568.10113,MACLIB,
// DISP=SHR
//C.SYSIN DD *
student decks
/*

- more control cards to follow, discussed below -
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The first four cards are the job and job parameter
cards, The number of cards and information required here
will vary widely from installation to installation. The
cards shown are included for completeness. The next three
cards shown are included for completeness. The next three
cards are those required when a catalogued procedure such as

the one provided by IBM ls available; refer to the Assembler(F)

Programmer's Guide (C28-3756) for further information. The

important point here is that the temporary data set named
&&TEMP must be created, contain the object module output of
the assembler, and be passed to the next job step. MNote that
a private macro library, containing the TRACE, TRACEOFF, and
QUIT macros, must be used,

B.3 . SIMULATOR INSTRUCTIONS

The complete JCL necessary to run the simulator is:

//STEPSIM EXEC PGN=SIM360,

// BARM='MAXTINME=10000,MAXCOUNT=4000,CARDS=2,PRINT=3,MAXPGE=11"
//STEPLIB DD DSNAME=USERFILE.N4568.10113,LDLIB,DISP=SHR
//SIMLIN DD DSNAME=&&TEMP,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=A

//STRACE DD SYSOUT=A

//SIMPRNT DD SYSOUT=A

//SINERN2 DD DUMMY

//SIMFRN3 DD SYSOUT=A

//SIMPENL DD DUMMY

//SIMPNCH DD DUMMY

//SIMPNCZ DD DUMMY
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//SIMPNC3 DD DUMMY

//SIMPNCL DD DUMMY

//SIMIN DD #

- data cards for simulated reader 00C -
//SIMINZ DD *#

- data cards for reader 012 -

//SIMIN3 DD DUMMY

//SIMIN4G DD DUMMY

The use of the various cards is explained below, after
the discussion of the parameters which may be included in
the PARM= field.

B.3,1 SIMULATOR OPTIONS

The PARM= parameter on the EXEC card which invokes
the simulator may contain any combination of the following
options, Defaults assumed by the simulator are underlined;
any error in the parameter field produces a terse diagnos-
tic, and the simulator will not run. It does examine the

entire parameter field for validity, however,

MAXTIME=n n must be a positive decimal integer
whnich represents the maximum amount of
simulated real time in milliseconds
which will be allowed to elapse for one

program, Default is 1000, or one second,




MAXCOUNT=n

MAXPGE=n

CARDS= Drllztasu‘

PUNCH= 0,1,2,3,4

. 69 =

n must be a positive decimal integer
which represents the maximum number of
instructions which the simulator will

execute for one program, Default is 500,

n must be a positive decimal integer

which represents the maximum number of
pages of trace output (printer data set
STRACE) which will be allowed for each

program run. Default is 5,

The number of input streams to the sim-
ulator, corresponding to the DD state-
ments labeled SIMIN (corresponding to 1),
SIMIN2 (corresponding to 2), SIMIN3J
(corresponding to 3), SIMIN4 (corres-
ponding to 4).1

The number of punch output streams to
be used. Corresponding DD statements

are SIMPNCH - SIMPNC&.I

1 Only two 2540 card reader-punches are available in the cur=-

rent version of the simulator; the card input (output)

streams 3 and 4 are available for expansion.
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PRINT= 0,1,2,3,4 The number of print output streams to
be used., Corresponding DD statements

are SIMPRNT - SIMPRN4,

PNCHDEST= PRNT,PNCH If it 1s desired to print rather than
punch the punch output streams, use'FRNT'.
If they are to be punched, use'PNCH'.
The DD cards SIMPNCE - SIMPNC4 must be

COTTED plliasisoy adjusted,

PGMINT= YES,NO If 'NO', then a program interrupt which
occurs after a program interrupt and
before an LPSW instruction is executed
will cause the simulator to print a
diaegnostic and terminate the program.
'YES' causes the simulator to ignore

this condition.

TRACE= ALL,NCNE If 'ALL', then every instruction causes
the standard trace message to be
printed, Otherwise, only trace condi-
tions enables dynamically by the program
are printed.

The following optioms sre for maintenance and debugging
use only. Note that they b;D cause many thousands of lines

to go to SYSFPRINT.,
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TDUMP= 0,1,2 '1' causes the trace queue to be dumped
every time a new trace condition is
enabled. '2' causes a trace gueue dump
as for '1', and in addition on every
occasion when a2 trace message is printed,

0! inhibits all trace queue dumps.

IQDuiPF= 0,1,2,3 '1' causes the interrupt and event
queue .. be dumped each time an I/0
interrupt occurs. '2' causes the channel
specification block and the I/C speci-
fication block to be dumped after the
initiation of each device operation,
13! causes both of the above, '0' is

for no dumps.

PDUMP= YES,NO The simulator's link-loader module will
print relevant information on programs
loaded and initiation of simulation if

"YES*",

B,3.2 SIMULATOR JCL

//STEPLIB DD DSNAME= etc,
This defines the 'library! which will be searched first to
find SIM360 when the system starts to execute the simulator.

Refer to IEM System/360 Operating System: Job Control Language

Reference, Form C28-6704,




//SIMLIN DD DSNAME=&&TEMP,DISP=(OLD,DELETE)
This defines the assembler output from the previous step

as the program input to the simulator.

[/SISPEINT DD SYSOUT=A
In the event of a serious error detected by the simulator
or the operating system, diagnostic information will be
printed on the SYSPRINT data set. This control card is
also used by the maintenance and debugging options of the
simulator (TDUMP=, etec.).

//STRACE DD SYSOUT=A
All trace information generated by the simulator goes to this
data set. Note that the MAXPGE= option may be used to pre-
vent an erroneous program from generating hundreds of pages

of trace output.

//SINMPRNT DD SYSOUT=A
Qutput to printer OQOE goes to the data set defined by this
control card, This card and all following may be punched
as follows if the simulated I/0 device is not to be used:
//SIMERN2 DD DUMMY
Remember that correspondence is required between the PRINT=

option of the simulator and the SIMFRNx control cards
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(PRINT=]1 implies that only SIMPRENT and printer 0CE will
be used; PRINT=2 implies that SIMFRNZ2 and printer O0OF will
be used in addition, etec.).

//SIMFRN3 DD SYSOUT=A
This particular simulator run (of an assigned student
machine problem) was using printers O00E and 010, but not
printer O0OF or 011,

//SIMFRN4 DD DUMMY

Not used in this case,

J//SIMPNCH DD DUMMY
//SIMPNC2 DD DUMMY
//SIMPNC3 DD DUMMY
//SIMPNC4 DD DUMMY
No card punches were used in this example, If a punch
were to be used, the corresponding JCL card would normally be

//SIMPNCx DD SYSOUT=B

//SIMIN DD *
This JCL card must be followed by the data cards which are
to be read by the simulated card reader 00C. Note that

because of System/360 Operating System conventions, none of




- Th -

these data cards may contain // or /* in columns 1 and 2.

//SIMINZ2 DD *
To be followed by cards for simulated reader 012.

//SININ3 DD DUMMY

//SINING DD DUMMNY
The simulator in its current implementation has no device
which uses these data sets., It is recommended, however,
that they be included, since the simulator may attempt to
open the data set if an error occurs in punching the

CARDS= option,
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AFPENDIX C

GUIDE TC MAINTENANCE, MODIFICATION AND REPRCGRANMMING

Because it is written in PL/I, maintenance or repro-

gramming of the simulator should be fairly straightforward.

The followlng discussion will therefore trace the overall

logic and functional behavior of the code, and avoid detailed

description except where necessary.

C.1 OVERVIEW

The simulator is composed of four major modules:

1, SIMLINK = Beads and loads into virtusl core

2., SINMCPU
3. TRACE
L, SIMIO

array the object module (assembler
output). Also does initial parameter

processing.

- Deoes simulation of CPU functions,

instruction execution, timer, inter-
rupts. Also does simulation of DMA
data transfers.

Processes dynamic trace command in-
terpretation and does the processing
and formatting associated with trace

outputﬁ

—jtﬁ's all processing related to I/O
o




instructions, CCW's, and the in-
ternal performance of I/0 sub-
systems,
In addition to these four major components, there is
a very small (42 BAL instructions) assembly language sub-
routine which does simulation of fullword multiplication
and division. This is necessary because these two S5/360
instructions (M and D) require 64 bits of precision and PL/I
does not have this capability.
C.2 MODULE SIMLINK

C.2.1 PARAMETER PROCESSING

This module contains the initial entry point to the
simulator. First the parameters passed to the simulator from
the PARM= field on the EXEC card are processed. Processing
is very stralghtforward and is outlined in Figure C-1. Refer
to the Appendix B for furthef information on parameter key-
words and their effect.
C.2.,2 PROGRAM LOADING

When parameter processing is completed, the error switch

is tested and 1f an error has occurred the program terminates,

wh B -

Gtherwise, some initialization is. performed (at the label
RESTRT; see Pigure C-2), and the output data set of the

assembler is implicitly opened and the first card read. Of

1

the five valid record types produced by the assembler,” only

1 IBM System/360 Operating System: Assembler(F) Frogrammer's
Guide, Form C26-3756
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Figure C-1 : Parameter Frocessing
(continued on next page)
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(PRRMERR )
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Figure C=1, continued
(continued on next page)
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Internal Switches or

Variables Aff

ect

ed

MAXT
MAXI
TSWITCH
PGM_SW
NOINSTR

PUNCH NOFPNSTR
FRINT NOPRSTR
MAXFPGE MXPGCHNT
PNCHDEST PPRNTSW

TDUNP

TQDMESY

IQDUMP CDDMPSEW, IQDMESW

FPDUMP PDUMFSW

Figure C-1 continued
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PARWMDONE

[No

Set E_SW

Print excor
W\t‘.i&c..%e_.

Sexr PLID =

S{wes| nawme

Sex TeLSw off

Kz

(RE\'-\‘D_T.N ) s |
Figure C-2 : Program Loading i

(eontinued on next page)
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\cod Smﬁ\\l ed
Test

Primt error REWD_IN
e Sslll.he. N

Ger E_SW

(READ-IN )

Figure C-2 continued
(continued on next page)
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Cattiadize Lirsy
A% bytes Yo 2erl.
Lot TPLSW oW
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Mts%&té‘&
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W 2% 'E.C.u-\r'b i

QT o%m.w. ;

Figure C-2 cont inued
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three are processed by the assembler; RLD and SEYM records
are ignored (without causing an error condition). The ESD
record is used to establish the identifying name of the pro-
gram being simulated. If the conventions for program prepar-
ation outlined in Appendices A and B are followed, this will
be the name (label) on the CSECT card of the program being
simulated. The END record signals the end of the program

and causes the actual simulation process to be initiated. TXT
records supply the text of the program and are loaded into
the virtual core array PROG, This is a one dimensional array
of aligned eight bit elements which is used to represent the
core storage of the simulated domputer. Figure C-2 shows

the logical flow of the loading process, Note that if an in-
valid card type is detected or the student program does not
initialize the first eight bytes of core storage (used as the
initial PSW) the program will not be "executed". Also note
that when the simulation of one program is finished (return
from call to SIMCPU), SIMLINK reinitializes and continues to
load following programs, terminating only when an end of

file condition on the input occurs,

c MODULE SIMCPU

C,3.1 STARTUP AND INITIALIZATION

On entry to this module various local variables are

initialized, and two calls are made to initialization entry




points in the modules SIMIO and TRACE (SIMIO and SIMTRAS,
respectively). The first operand address is forced to zero
and the LPSW instruction is given control to load the initial
PSH.
C.3.2 INSTRUCTION SIMULATION

Instruction simulation, in itself, is quite straight-
forward. The interpretation and decoding of the instructions
(Figure C=3) is not quite so simple, and the actions taken
after the completion of the simulation of each instruction are
quite complex, Figure C-3 shows the outline of the algorithm
for instruction interpretation; reference should be made,

if necessary, to IBM System/360 Principles of Operation.
Given the information in Figure C-3 and the diagram showing

the accessing scheme for the virtual core array (Figure c-#),
understanding the code which simulates the various instruc-
tions is easy (most instructions involve only four or five
lines of PL/I code).
As shown in Figure C-4, the virtual core array may be

accessed in six ways:

1) As & byte = 8 bit logical value

2) As a2 halfword - 16 bit logical value

3) As a halfword signed integer in the range

-32768 to 32767 |
4) As a fullword - 32 bit logical value
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Instsuction Interpretation

(continued on next page)
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Variable Represents
ADDR1 Address of operand 1 (if present-

BX, SI, RS format)

ADDR2 Address of operand 2 (if present-
SS format)
I Value of operand 2 (if an immediate

operand) or value of count field

(if SS format)

REGX1 R1 specification for general purpose
register operand (if RR or RX

format)

REGX2 R2 specification for general purpose

register operand (RR format)

Figure C-3 continued
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A simllar scheme is used for the general

purpose registers,
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5) As a fullword signed integer in the range
-231 to 231
6) As a doubleword - 64 bit logical value
The general purpose registers are also represented by
an array (extent 16--0:15) and are accessed in the same way
as 32 bit logical, 31 bits with sign integer, and 64 bit
logical values, The frequently referenced procedures AL PROT
and FROT check coperand locatlons for boundary elignment
(AL_FROT only), address tracing requests, and memory pro-
tection violation (see Figure C-5).
C,3.3 POST-INSTRUCTION PROCESSIMNG
After the execution of each instruetion, and before
interpreting the next instruction, the simulator must check
for a variety of conditions, and perform the necessary
processing associated with the conditions found.

C.3.3.1 TIMER UPDATING AND INTERRUFT SCHEDULING
The label ND (very rarely ND2) is the point where post

instruction processing begins., The instruction count is
updated (and checked against the allowed maximum), and the
simulated real time (R_TIME) is updated by the execution time
of the instruction just completed (nominally; value of temp
TIME). Then the timer counter (T_TIME) is updated and a
check 1s made to see if 3333 microsacdnds or more (virtual
time) have elapsed since the timer was last decremented. If
this condition exists, then the simulated timer (fullword at

location 80) is decremented by an appropriate amount, and, if
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Figure C=5 : Alignment and Protection Checking



- 01 -

the timer has gone from a positive to a negative value as
a result, appropriate interrupt processing is done. 1If
the system mask allows external interrupts (bit 7 = 1)
then the interrupt is taken immediastely; if external in-
terrupts are masked off, the interrupt is scheduled to
occur as soon as the external interrupt mask bit is set to
allow the interrupt.

C.3.3.2 SEARCH FOR INTERRUPT

When timer processing is completed, the interrupt and
event gqueue is searched to see if any pending (or previously
masked off) interrupt or event is due to occur. An event
occurs when its scheduled time ‘(in the queue entry) is less
than or equal to the elapsed virtual time in the simulation.
However, an event due to occur in time may not take place,
because, for example, it 1s a timer interrupt and the exter-
nal interrupt mask bit is zero. An event which is not an
interrupt might be the transfer of a byte to or from core
storage by a channel in the'prccess of data transfer, or
the occurrence of a device end for an operation initiated
by a channel command word with the command chaining bit on.
Figure C-6 shows the outline of this process., DNote that the
interrupt and event queue is maintained in sorted order by
scheduled time of occurrence, and that masked interrupts are

simply left at the head of the queue, and thus will be
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examined every time the queue is searched. As shown in the
figure, if an interrupt or event occurs, the post instruec-
tion processing section of the simulator is re-entered at
the timer processing point (effectively the start of the
section)., This is because time is required for an interrupt
or event to take place, and thus the elapsed time must be
again updated, and a possible timer interrupt checked for.

C.%.3.3 WAIT STATE FROCESSING

As shown in Figure C-6, if no interrupt or event takes
place, then the wait/run state bit of the CPU is checked.
If the CPU is in the run state, the instruction interpre-
tation code is invoked and the simunlator continues, If
the processor is in the walt state, then a somewhat clumsy
and hard to follow section of code attempts to find the
next point in time when an event will occur and possibly
cause processing to continue., Candidate events are a timer
interrupt or some type of I/0 interrupt or event. If the
simulator cannot determine that there exists such an event,
then the simulation is terminated and an error message is
printed.

C.3.3.4 PROGRAM INTERRUPTS

Program interrupts fall outside of the structure
outlined above. Most program interrupts cannot be masked,

and those which can be maslicd do not remain pending until
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enabled; they are completely ignored. Therefore a special
section of code handles detected program exceptions. This
routine sets the appropriate interrupt code in the program
0ld PSW (simulated core location 40), and after appropriate
processing goes to the label TAKE I in Figure C-6. The
appropriate processing may include completing an arithmetic
operation in which overflow was detected or perhaps detect-
ing that the program exception which occurred was masked
off, and ignoring it altogether.

C.4 MODUILE SIMIO

This module has six separate entry points to perform

different functions related to I/0. The entry points are:

SIMIO Initialize the control blocks and data sets
associated with I/0 device simulation,

SIMIOT Called to clean up I/0 simulation on ter-
mination of program being simulated. Closes
data sets, flushes buffers, etc.

HALTIO Performs processing assoclated with the
HIC instruction.

STARTIO Implements the SI0 instruction. Initiates
appropriate device activity as specified by
the CCW and the state of the I/0 subsystem,

TESTIO Simulates the TIO instruction by examining
the state of the simulated I/0 subsystem
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and the specifled device, and appropriately
setting the condition code and the statucs
portion of the channel status word.

JENT Performs the processing assocliated with the

t

occurrence of an I/0 event,

Before attempting to understand the functionins of the
I/0 simulation module, it is extremely important to under-
stand in detail the operatiuu ui vhe $/360 I/0 subgcystems,
Because the 5/360 can accomodate an extremely wide range of
I1/0 devices and because the I/0 capabllities of the 360
are very "powerful', I/0 operations are quite complex =nd
difficult to understand, and the occurrence of subtleties
and exceptions is quite frequent. Therefore, the main-
tenance programmer who is not very familiar with S/360

I/0 is encouraged to carefully study the I/0 section of Prirciples

of Cterationsl in conjunction with this guide and the program

listing of SINIO.
C.4.,1 I/0 INITIALIZATION

As mentioned in section C.3.1, one of the first

steps in initialization for simulation is to call the

1 ImM System/360 Opereti-~ System: Frinciples of Cperation,
Form A22-6821 ’




initialization entry point SIMIO in the I/0 simulation
module, Initialization is quite straightforward, All
channels and devices are put in the available state, printer
and card punch data sets are opened and identifying headers
are written, and a few entries in the device specification
blocks are initialized to put the system in a clean, ready
for operation state,

C.4.2 I/0 TERMINATION

The I/0 termination function simply checks to see if
any data is contained in the device specification blocks
which has been output by the program being simulated, but
has not yet been written to the appropriate print or punch
data set. If there is any such data, it is punched or printed.
C.4,3  HALT I/0 INSTRUCTION

The entry point HALTIO, in simulating the HIC in-
struction, first checks whether or not the addressed channel
is operating in burst mode, If the channel is so operating
then the device with which the channel is communicating is
determined, the data transfer operation is terminated, and
appropriate interrupts are scheduled., If the channel is
available, then the addressed device is found and its state
examined. If the addressed device is working, then any
date transfer in progress (there may be data transfer in

progress on the multiplexor chamnel without being in burst
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mode) is terminated, and all interrupts which would normally
occur due to device operation are scheduled to occur (with
appropriate changes to refleect the HIO)., The condition

code 1s set, and the simulation of the HIO is comprleted,
Figure C~7 shows the operation of this routine.

C.4.4% TEST I/0 INSTRUCTION

The entry point TESTIO first checks for the channel
working state (burst operation), and, if found, sets the
condition code appropriately (=103) and returns, Otherwise,
the addressed device is found and examined. If the device
is available, the condition code is set (003) and a return
to caller is executed, If the device is in the interrupt
pending state, then the CSW information associated with the
interrupt is stored, the interrupt is cleared, and the
condition code is set to 01z (CSW stored). If the device
is working, the busy bit 1s set in the stored CSW, and the
condition code is set to 0lp. See Figure C-8 for further
information.

C.b, START I1/0

Upon entry to the START I0 routine the channel and
device are checked for availability. If one or the other is
not available, action very similar to that of TESTIC for
the corresponding situation is taken. If both the channel

and device are available, the channel interpretation code
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is entered.

Channel interpretation starts by checking the channel
address word (location 72) for validity, and, if valid,
setting the protection key and the CCW address. The channel
command word location is checked against the key for fetch
protection, and if no protection error is found, the CCW
is fetched and the CCW address is updated. The CCW is first
checked to see if it is a TIC (transfer in channel). If
it is, then some validity checks are performed on the command
and its occurrence (i.,e.,, a TIC cannot start a command
chain)., If invalid, appropriate action is taken, and if
valid the CCW address is set to the address given in the
TIC., The channel interpretation code is reentered at the
point where the next CCW is fetched (see Figure C-9).

If the channel command word is not a TIC, then it is
checked for validity. If valid, the FCI (program controlled
interrupt) flag is examined, and if set, an interrupt is
scheduled. Then the various flelds of the CCW are extracted
and the chain data flag from the previously executed CCW
is examined. If chain data is on, the parameters of the
data transfer in progress ere updated with the data from
the new CCW, and the data transfer is continued (note that
this particular action cannot result from a start I/0--

no previous CCW-~but only from an event; see section C.4,6).
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If there is no data chaining from the previous CCW, then a
processing routine for the specific device is called to
initiate the operation specified by the CCW.

C.4.6 I/0 EVENTS

There are three different types of I/0 events, Two
are data transfer events, and their occurrence is marked
by the transfer of one or more bytes from virtual core
storage to a simulated device, or vice versa., The re-
maining event type is associated with the occurrence of
a channel end or device end condition which arises in the
process of an input or output operation. Since the ter-
mination of data transfer sometimes (on a multiplexor
channel, for example) causes a channel end condition, a
data transfer event is acted upon exactly as a normal
(third type discussed above) event when the last byte of
data specified by the operation has been transferred
(see Figure C-6). All three event types are kept in the
interrupt and event queue in sorted order by time of
occurrence. They are placed in the gueue by the device
processing routines and contain information that reflects
the characteristics of the device and the operation being
performed., Figure C-10 shows the PL/I declaration of an
entry in the interrupt or event queue, with comments ex-

plaining the items,



DECLARE

o 1Ol -

1 INT Q BASED(P CI),

2

g ]

4%

(a V]

FREV_I POINTER,

NEXT_I POINTER,

TIME_I DEC FLOAT,

F_DEV_DATA FOINTER,

E_CH POINTER,
E_DEV POINTER,
TIME_INTRVL DEC FLOAT,
TYPE_I FIXED BIN(15),

CODE_I BIT(16) ALIGNED,
CSW_I BIT(64)

ALIGNED,
CORE_INDEX FIXED BIN(15),

DEV_INDEX FIXED BIN(15),

DATA_COUNT FIXED BIN(15),

Figure C-10 :

/*NULL IF FIRST
QUEUE#/
/*NULL IF LAST ENTRY*/

ENTRY IN

/¥SCHEDULED TINME OF

OCCURRENCE*/

/#LOCATES DATA AT THE DEVICE
/#IDENTIFIES ASSOCIATED
CHANNEL#*/

/*IDENTIFIES ASSCCIATED
DEVICE#*/

/*FOR DATA TRANSFER EVENTS-—

-‘lj

TIME BETWEEN BYTE TRANSFERS®/

/*NEGATIVE FOR EVENTS*/
/¥DEVICE ADR, FOR PSW*/
/#CSW ASSOCIATED W/
INTERRUPT OR EVENT*®/
/*CORE LOCATION FOR NEXT
BYTE TRANSFER*/
/*IDENTIFIES NEXT BYTE
TRANSFER AT THE DEVICE#®/
/¥NO. OF BYTES TO EE TRANS
FERRED*/

Interrupt and Event Queue Entries

(continued on next pace)
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2 INCREM FPIXED BIN(15),

2 CH_STAT CHAR(1),

2 DEV_STAT CHAR(1),
2 MASK_I BIT(8) ALIGHNED,

2 I0_FROT BIT(4) ALIGNED;

/*NEGATIVE FOR READ
BACKWARD*/

/#4,I, OR W, STATUS AFTER
OCCURRENCE */

/*LIKEWISE FOR DEVICE#*/
/%¥.AND, W/ SYSTEN MASK TO
SEE IF INTERRUPT ENABLED#/
/*PROTECTION KEY ASSOCIATED
WITH OFERATION®*/

Figure C-10 continued
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The event processing routine (EVENT in SIMIO) handles
only normal events (data transfers are done in SIFCFU;
see section C.3.3.2). Upon entry to the routine the channel
and device involved in the operation associated with the
event are determined (using E_CH and E_DEV, Figure C-10)
and the status bits of the CSW assoclated with the event
are examined for unusual status (usually an error). If
there is unusual status then any chaining in effect is
cancelled, and an interrupt is scheduled to notify the
program of the unusual condition. In the absence of un-
usual status, the status bits of the CSYW are tested for
device end. Upon device end, and data if chaining is
present, the channel interpretation loop is entered
(CH_INT_LOOP, Figure C-9). If command chaining is on
from the previous queue, then the event is deleted from
the gqueue, and the channel interpretation loop is entered.
If there is no chaining, then the event is changed to an
interrupt (to occur immediately, if enabled) and a return
is made., If the event is not a device end, then if data
chaining is on,the channel interpretation loop is entered.
If command chaining is on, the event is deleted from the
queue and otherwise ignored; in the absence of chaining,
an interrupt is scheduled as above. See Flgure C-11 for

further detail,
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C.4.7 DEVICE SIMULATION ROUTINES

The details of the simulation of an I/0 operation to
a given device are handled by a set of routines, one for
each class of devices (see section C.4.5 and Figure C-9).
Each individual device is defined by a device specification
block (DSB) which contains all necessary information about
the device and its current state; one piece of this in-
formation ldentifies the particular device routine which is
used in simulating the device. The device routines decode
the command byte from the CCW and initiate appropriate
action, Entries are placed in the interrupt and event queue
as necessary. Any necessary 1/0 operations are performed, as
in the case of a simulated card reader where an input data
set of the simulator supplies the "cards" for the simulated
reader. All relevant command information is checked for
validity and proper sequence (there are invalid command
seguences on many devices), and appropriate error action is
taken if an anomzaly is detected. Since these routines vary
widely in form with the device simulated, an example of
such a routine is shown in some detail in Figure C-12, but
no attempt will be made to explain in detail the functioning
of each such routine. The appropriate reference manual for
a device will provide detailed infnrméticn on its performance,

and a complete understandins of the behavior of the device
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will tend to lead to an understanding of the device simulation

routine.

C.5 TRACE MODULE

There are 9 entry points to this module, two to pro-

cess dynamic trace reguests by the simulated program, and

6 to do the formatting and printing associated with a trace

message., The entry points are:

TRACE

NO_TRAS

BTRACE

TTRACE
NTRACE
ADTRAS
ETRACE
CTRACE

SIMTRAS

enables a trace condition in accordance with

information supplied in the trace request

turns off any existing trace conditions of

the type specified

called to do printing associated with a branch

trace

called to do an instruction trace
called to do an interrupt trace
called to do an address trace
called to do an execution trace
called to do a channei trace

initializes for simulation
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The processing done by the TRACE module is not particularly
interesting or difficult to understand, With a2 few excep-
tions, it consists of getting such and such a field to
print in character position n, and thus is pzinfully de-
tailed but conceptually unchallenging. Discussion will
therefore be brief,

C.5.1 DYNAMIC TRACE REQUESTS

A trace request extracts information compiled into
the program code by the Trace macro instruction, checks
it for validity, and makes an entry in the trace queue,
a 1list of enabled trace conditions, Figure C-13 shows the
data format in the program code, and Figure C-14 gives the
PL/I structure declaration of an entry in the trace aueue,
The transformation from one to the other is almost one for
one, and quite obvious., One item of interest is that if
invelid data is found in a trace request, it is assumed
that the program being simulated has erroneously modified
instruction locations, In this case, an attempt is made to
find the end of trace request flag, and if it can be found,
the invalid trace request is ignored; otherwise, an op-
eration exception (program interrupt for invalid op-code)
is takeﬁ. There is a separate routine to process each
type of trace request, but they are very small (about five

PL/I statements) and are necessary only because a different
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Ds OH ALIGN ON HALFWORD BOUNDARY
DC X029 TRACE QOF-CCDE
DC X'0n! TRACE TYFE:
- § 0: BRANCE
* 1: INSTRUCTION
2: ADDRESS
3 INTERRUPT
L EXECUTION
w 5: CHANNEL
6: UNUSED
7 UNUSED
* é: DUMP
DC XL2'ia! ADDRESS , 0OFCODE, INT.TYFE,ETC.
'DC BL2'status bit switches! BIT SWITCHES FOR
* STATUS DUNMPFS.
DC BlL2'register bit switches!
#*FOLLCOWING PAIRS ARE CORE DUMP SPECIFICATIONS
DC Y(address) FIRST ADDRESS TO BE DUMFPED
DS ALl(n,s) n

NUMBER OF WORDS DUMFED
indirect switch

® s
#THERE MAY BE UP TO EIGHT FAIRS, TERMINATED BY THE
#POLLOWING SENTIMNEL,

DC XLz2'8000! TERMINATCR

Figure C=13 : Trace liacro Data
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Figure C-14 : Trace Queue Entries
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internal indicator for each trace type is used to indicate
that a trace condition is enabled.,

A Traceoff command is processed at entry point NO_TRAS,
and simply removes from the trace list the particular in-
stance of the trace type specified, or, if ALL of the given
type were specified, then every instance,

C.5.2 TRACE OUTPUT ROUTINES

The six entry points associated with trace output
all do very much the same thing. The trace list is searched
for the entry assoclated with the trace condition. Note
that because the Traceoff command only removes the entry
from the trace list, the internal indicator which flags a
trace condition may still be set. In this case, when the
list-is searched, no corresponding entry will be found, and
the output routine will then reset the internal indicator
and return. In the more normal case, where an entry is
found in the trace list, then a call is made to an internmal
procedure (TDUMP) which formats and prints the trace out-
put as specified by the information in the trace queue
entry.

It should be noted that the snapshot (DUMP) type is
something of an exception, Because the dynamic trace re-
quest is, in effect, the trace condition in this case, a

slightly different sequence of events results. FHowever,
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examination of the code will show that no difficulties are
involved. Using existing code and procedures, a DUMP

trace request:
- sets up an entry in the trace list in the normal way

- c¢alls TDUMP in the normal way to print the informa-

tion requested

- enters the NC_TRAC rtutine in an appropriate place
to delete from the trace list the entry created in

the first step above

- returns to caller (SINCPU).
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