
MIT /LCS/TM-30

SIM360_

A S/360 SIMULATOR

Wm. Arthur Mc Cray

May 1972

SIM.360 ~

Wrn. Arthur Mc Cray

MAC Tee ical emorandum 30

May 1972

This research was supported by the Advanced Res arch
Projects_ gency of the Depar tment of Defe se under
ARPA Orde~ o . 2095, and was monitored by ONR under
Contract 10. 00014- 70-A-0362-0006 .

rtassach s tts Institute of mechno_ogy

PROJECT MAC

Cambridge Massac usetts 02139

SIM:3,60 A S/:360 SIMULATION

by

WM. ABTHUR Mc CRAY

Submitted to the Deuartment o"' Mechanical Engineering
on I•~ay 12 • 1972 in partial fulfillment of the require ents
for the degree of Bachelor of Science.

ABSTBACT

Modern, large-scale computer systems typically operate
under the control of an operating system or executiv-e _ro ram,
and reserve for the exclusive use of the operating system a
set of privileged 1nstruct1ons, which the normal users may
not issue. -his very necessary arrangement produces a prob­
lem of equipment availability for those who wish to develop
or investigate operating systems programs. because such
programs cannot be run as normal user jobs under ari ex.ecu-
ti ve program.

This thesis describes SIMJ60, a detailed simulator of
a representative Bf S/360 computer, \• hich was written to run
student programs, programs assigned as ma.chine problems for
a course in operating systems, The simulator allows programs
to issue all of the pri v,eleged instructions of the S/360,
and thus provides a readily available tool for the study of
operating systems programs.. ·

Thesis Supervisor: John J. Donovan
Tit1e: Professor of Electrical Engineering

- 3 -

ACKNOWLEDGl1E TS

The au4.hor wishes to express sincere apprecia io to

Professor ohn Donovan and · r, .. Stuart ':adnick for t½eir

suggestions , guidance, patience and ,e couragement , and par­

ticularly for the fact that the wri in~ of Sl~J60 nas been a

rewardi:r!.g and truly educ at' ona.l ex erience.

The students of 6 802 , Ad anced Operating Sys er:is :11 \,;ho

exhibited remarkab_e atience and a gentle insistence on

absolute accuracy, are d.ue .speeial thmMS for their elpful

critic sms and faithful reporting of bugs .

Finally-, to my incredibly patie t and loving wife, typist

and he pmeet, I offer my pr,ofound gratitude for her constant

end irres1stable encouragement and su_port ..

- 4 -

TABLE OP CO TENTS

1 INTBODUCTION

2 DESCBIPTIO OF SIM360

2. Advantages a11d Features

2 · 2 Configurat'on of tbe S1.. ulated System

2.3 St:t'ucture oft e Simulator

2.4 Program Operation

J PROGRA ~ ING ECH IQ.UES

3.1 The Virtual Core Array

3.2 The Program Status 1ord

J.J The Interrupt and Event · ueue

3 4 I/0 Specification Bloc s

4. CO CL SIONS

APPENDIX A : PBOGBA~ I G FOR THE S/'.360 SIMU ATOR

A.l Introductio,n

A.2 Impl,emented Instructions

A.3 ·reparing a P~ogram

A.4 Input/Output Environme:t

A. 5 Debugging Aids and •toni toring Features

A.6 Hints

APPENDIX B. INSTBUCTOH.S MANUAL

B.l Student eeks

B.2 Assemble.r Instructions

3 Simulator Instructions

pa e 7

12

12

15

17

20

29

29

JO
30

31

33

34

34

34

39

41

42

63

6.5

6.5;

66

67

- s -

AP.P NDLX: C : GUIDE TO MAI TENANCE, MODIFICATION AND
REPHOGRAMMI G 75

C 1 Overview

c.2 Viodule SIMLINK

C 3 odule SINCPU

c.4 ·odu e SIMIO

c.5 : odule TRACE

BIBLIOGRAPHY

75

76

83

95

117

- 6 -

LIST OF FIGUBES

1 Simulated Hardware Co~figuration

2 Simula. tor S tructur.e and Data Fl ow

J Simulator Operation Overview

C-1 Paraneter Processing

C-2 Program Loading

C-3 nstruction Interpretation

C-4 Accessing the Virtual Core Array

C-5 Alignment and Protection Checking

C-6 Interrupt and Event Proeessi;ng

C-? : Simulation of HALT I/0

C-8 Simulation of TEST I/0

C-9 ; Channel Interpreter

C 1 o : Interrupt and Event Queue En tries

C-11: Event Processing

C-12: BFS Command to Card Header

C-13: Trace •Iacro Data

C-14-: Traoe Q.ueue Entries

page 16

19

24

77

80

85

88

90

92

99

100

102

104

107

109

113

114

- ? ... ,

1. 11-I ROD -cTIO

A simulation of as stem is normally undertaken to

provide a manipulatable model of the system for · __ ves i­

gatio:n and study. I some cases the system bein si-ulated

may not exist, or may be in a developmen stage, and thus

is mavaila.ble for use. Th:is would be th,e case with a

proposed mass transit system, for example, where the capa­

bi ities and per~orma.nce of the system must be carefully

evaluated before committ~ng perhaps mi lions of de lars for

dev,elopment. Another,, an,d very frequent use of s imuletors

in this respect, 1.s to provide the abil ty to develop the

hardware and soft1are of a new computer system in parallel.

A s 1mulat or of the ,computer sys tern, wr t ten to operate on

existing computer hardware, is sed to develop and debu

the software for the computer before a work1 prototype

is completed, and in this way a large savings in total

syste development t1 e can be realized.

In other cases the simulated system may exist, but for

some reason be d1ff1cu tor impossible to use for experi­

mentation One cannot, i'n practice, block a traffic artery

in a ajor city to study the resulting flow of traf' ic,

or vary the mass of the moon to study the effect on the tide.

In much the same sense, a si ula.tlon of an ex1st1 ·g co pute:r

system can provide an 1 portant tool for research, develop

ment, and tea.c ing. flodern , large-scale computer systems

operate under the cor.trol of an operating system or exec­

utive program, and place definite restrictions on the op­

erations which may be performed by pro rams run on he

syste • Typically, user programs may not use instruction~

w ic directly affect input/output evices, protection

mechanisms, the interru t structure, and other basic as­

pects of the processor state. Because the operating system

provides use.r programs w1 th indirect ethods of _ erfor ing

operations with privileged facilities. ost progra~s can

be run; howe er, o_erating system pro rams, that 1s, com­

plete programs which may issue any instruction i pee ted

by the computer. prog ams which in fa.ct may be inte ded to

provide the indirect methods for performing privileged

operations, are excluded. For this l:'arge and i portant

class of programs, then, the computer system is unavailable1

for testing or development .. A sirnu ator of the co putet"

s stem provides a solution to this basic prob em, and offers

other substantial advantages as well

1 In a relative sense. Manufactures personnel and

software support staff members at large installations may

have access to a. ~bare-bones system on a 11 :ited ba.s1s.

ost sers 1 even systems prog:ra.mers, ever ave this

opportunity on a large scale system 1 for o 1ous reasons

of ef iciency and economy.

- 9 -

A simulator is not the only solution to h s ro lem;

1 t is I ho.-,·ever, frequently the only practical one. - e

·obvious approach, somehow to obtain the desired com_ uter

for exclusive use 1 has been mentioned ., and 1s clear_y in­

conve ient, impractical, expensive, and not necessar ly

sufficiently useful when 1 t is possi le at all, ·tos t

system programmers have encountered that maddeni:nK class of

pro ram errors which exist. are perhaps regularly repeat­

able, but hieh do not occur when the CFU is ste_ped. throue;h

the erroneous code one instruction at a time. Similar

t ming dependencies mar exist 1n input-output operations

of interest. Fina ly 1 the computer may not exist in the

desired configuration, if some particular feature or device

1s desired for study.

Another method of running operating system programs

involves the use of a v1rtual ma-chine 1, such as IBM I s

CP-671 provides. The p:r1mary drawback in this approach is

the re,uirement that a ery expensive and infrequently

available S/J60 model 67 is required. In addition, the

virtua machine does not accurately reflect the timing

and behavior of the sl.mula.ted c ,omputer in the are-a of I/0

l Control Program-67/Cambrldge Monitor System Userts

Guide. IBM Publication.

- 10 -

operations and. privileged instructi.ons. This is a fairly

serious drawback, SLl'J.ce this area 1s the focus of interest

in operating systems programs

A simulator. in contrast, offers the advantages

summarized below.

Headily ava1lable to users

Run complete programs

Achieve any level of accuracy desired

Incorporates comprehensive debugging aids

-- Allows detailed performance monitoring

Arbitrary configuration - size, featurest and

devices

rira:v ce optimized for solut1on uf problem'(s)

of interest

-- May 'be readily modified - software program

A complete discussion of these points ls postponed

to the following section, where they are covered in depth

as features of SIM360. A simulator :incorporating most

or all of these features is potentially useful for:

Software d:evelopment

Teaching tool - student runs

... System testing of .new versions of operating

system software

Evaluation of different system configurations

11 -

Evaluation of new hardware

Soft .. mre development is probably the most frequently

oecurrin reason for using a computer si ulator. ios

developme t programs for new computer systems 1 valve the

early implementation of a simulator for the reasons dis­

cussed a ove.

M 60 was spec f cally written for use as a teaching

tool in a co rse in advanced operating syste s, and has

been successfully used for two machine problems (to date)

1n the current acade io semester. The checkou of a new

version of an. operating system, or some component of it,

could be accomplished on a simulator without the necessity

for L'.11.terl'\lpting nor al operations, bringing doWl1 the current

system 1 installing the new versionJ runnin the des.ired

tests 1 bringing down the net system, rei stalli g he old

system I etc., etc., through many i te·rations of the te ting

oroced :re ·lith some modification, perhaps, a simula or

cou d be used to evaluate the effects and operat·ng char­

acteris cs of totally new hardr.rare i the form of new

devices, a more powerful system. or perhaps a completely

new system (transition from a S/;60 to a S/370, for exam le).

S mulators have not been idely used 1n these last three

areas, bu because it is a uniquely co plete and accurate

sim lation, SI 1)60 could be a powerfu and useful oo

ror systems work of this type.

- 12 ...

2. DESCRIPTIO?; OF SIMJ60

SH J60 is a. computer program written in Pl/I w!1ich

simulates to a high degree of accuracy the behavior of a

representative member of the IBM s/360 series of computer

systems. The simulator runs as a problem program u..~uer

OS/J60 (or other operating system which supports L/I)J

irn_le ents the full complement of priviler.ed ins~ructions,

and provides vecy detailed and accurate simulation of the

basic I/0 devices of the S/360. It is specifically designed

to run student programs assigned as machine problems for a

course in operating systems, but provides a general solu­

tion to the problem of computer system availability dis­

cussed above.

2 l ADV ANT AGES AND FEATURES

All of the advantages of a s1mu1a.tor listed in Section 1

are incorporated in some measure in SI 360 It is poten-

tially readily available to any user of the computer system

on which it is in use1, and could be made available on any

1 The rs• S/370- 155 at MIT's Information Processing Center

13 ...

s/360 or S/370 which supports the IE. S/J60 operatin~ syste.

and can provide a 200K user par ition. Further, it could

be made available on any comparable large scale copter

syste w lch supports P /1 1 with appropriate, but _rob bly

minor, odif1cat1ons to the simulator code. In one enset

SI 360 can run co ple e programs t implements all of the

/o and priv le ed instructions of the S/360. e complete

inst_uc io set is not imulemen ed, but was no desired; the

simula o s specifically designed to run studs t assifn-

ments emphasiz1n~ I/0 pro~rammin • interrupt ha..ndlina, and

ot er operating syste techniques n instr C Or:! subset

adeq_uate fo th·s purpose 1s rovid d. 1

The le el of accuraey of the s mulation is as hip:h

as could be reached using available documentation. In-

struct1on timings, for example, for those instructions which

have variable length operands, are adjusted to reflect the

length specified in the particular instruction eing simu­

lated. I/0 operations which result in data transfers by

the data cnannels on a cycle stealing basis are accurately

reflec ed. 2 Interrupt timings are e justed to account or

devioe characte istics such as elute points (on card

1

2

See Appendix A

ee A pendi C.

- 14 -

readers aYld card punches) and line spacing (on printers).

s111360 incorporates powerful a11d comprehensi •e de­

bugging aids. A program 'being executed by the si□ulator

may dynamically request diagnostic or program flow informa­

tion to be printed by the simulator on the basis of a num­

ber of distinct conditions:

1) Successful branch

2) Reference to a particular address as an operand

J) Reference to a particular address for instruction

execution

4) Execution of a particular instruction {by class.

i.e., Load or r-iultlply, not instance)

5} Occurrence of an interrupt

· 6} Occurrence of significant channel activity

7) Occurrence of a dUD1p request

All of these conditions may be dynamically set and reset

by the simulated program thr'ough the use of supplied macro
l .ins true tions. Bee a.use the simulator, as impl emen tea., is

not an interactive system, there are no breakpoint facil­

ities. or other very useful capabilities usually found in

interactive debugging aids. Such features could, however,

ibe easily added to the simulator should it ever be desirable

l See Appendix A

- 1.5 -

to use it in an interactive envi.ronment. The capabilities

provided for debugging also serve for performance monito:r­

_ng. Al aspects of system performance may be selectively

examined through use of the features outlined.

SIJ· 360 is specif -Cally adapted for the use for which

1. t ":as wri en It is being used to run student nro~rams

for a relatively large class, and has many features wh"ch

are esirable for this use. or exam_le, most of the o tions

disc ssed n Appendix Bare provided to give the inst~uctor

a easure of control over how much machine time and output

volume may be generated by student prorrams. To a li1ited

extent, the opt·ons also reflect the a ility to choose an

arbitPary eonfigurat:ion for the syste being simulated,

but, in general. ao ieving a truly arbitrary con igu:ra.tiou

is a matter ~rhich requires

code.

modifica ion of the s·mulator

2 • 2 CO .. · FIGURATI r OF THE S Il ULA_ ED SYSTB~

Te simulated computer (see Figure 1) whic SI 1360

provides 1.s a representat ve IB s/360 with up to 32:K bytes

of core storage 1 Up to six channels are ava11a.ble, although

at present only one, the byte mul t 1 lex or channel, ~.as
.

attached devices. T\'m 282 : control un: ts are attached to

mul tip exor c annel O, and,. . each 2821 services a 2.540 card

l his ridiculously smal amo\lllt of core (for a S/J60) is

conside a ly more than adequate for student p:r gra s.

16 -

~rt -S\o-r°:ie..
(_ 1.1.f' \- a ~ :,._ \\ J

'l.9, d,.\ ~~ .. ed

Lov-.~e, L; ·,-\

t-. r<\v,Jh ~ \<. l
C. A.. 'i\-t!.\

i ure 1 . Simulated Hardware Confi uration

- 1? -

reader-p c and two 1403 printers !;o special eatures

are im le ented on the CU or any device. Certai as_ec s

of the CF are not simulated. The achine c .eek ·n e rut

a.r1_d diaf!1'lostic scan-out are not available, nor is the

opera or's console. 1 At present, o direct access or a_e

dev·ces are a aila le, but direct access capa ility for

2311 and. 23 4 type dev· ces are under development ru d will

be a ailab e in the near future. e e acilities are a
possib_e, b not i 1ne t, addition Tis cor.fir.ura on
prov·des t~e abili to run systems _ roe-rams \' 'l:ich 'eal with

every phase of S/360 CPT operation except error detection,

and witr: card and printe I/0 devices

2 :3 STR CT JRE OF THE SI ·lULATOR

SIMJ60 s a complete system for Tunning st de t pro-

grams. s an over lew o the simu a or structure, a brief

description o how t e simulator ·s utilized will be given;

comp_ete 1 detailed instructions for sin the s1 u ator

are give 1 Appe dices A and B

St dents are assigned a problem and prepare t eir

programme solut.ions ·n S/360 Basic Assem ler Language.

1 The operators co sole 1 ht be a usefu addition to

a11 in racti ve version of SIMJ60

- 18 -

Stu n decks are collected end grouped into one lar e

input deck; appropria e control cards are added for he

operating system and Ir-1360. The entire asse bled deck is

submitted as one batch run. Hhen returned. student decks

are reseparated, and printed outp t of assemb er istin~,

si u_ator out ut, and simulator traee and dia , os out­

put e.re assembled for ea.c s udent a.nd returned, inal

resul after a ser·es o runs are submitted ·y the st dent

for grad ng.

he sim lator produces this orerall resu t by _irst

assem li g all of the student programs usin the G level

assem le 1 in ba ch mode. Object odule output of the

assem ler is held in a temporary file, wh1ch is the input

to e second (simu a ion) pass over the data When all

student decks are assemb ed, the simulator prope is given

contro.

The simulato consists of four major modules. 2 The

first modu e, a very simple loader, reads the object

mo e o tput fro· he first (only) student deck and builds

an executable program in a reserved storage area. his

ac vi ty is entirely analagous to. that oft e s/360 Loader'.3

1 Th1s .is a more eff cient S/J60 Asse bler

Univers ty of Waterloo
.,

See Figure 2.

J IB •: System/360 Operating yste . Linkage Editor and .
loader, For GC28-6538

- 19 -

e_«.Jl ~ o'-o~-U.'t 'MC ~\e,

L-o:i.A \ 1"b \/~, ~
C...O(e.. S~r~e...

s.,W\ \~ e.:
4S 1"'1.4<.: ,~ e_ tu..: i c.,.,_
O'i'f\ 'Pi <.\tit: u.... ~0-'il t e. I"'$

Ilo!\~er.-~ 1",s

\.,_""'12.T °'-C..½w L''t'i !S

~""ov 1'1.~ r~.._e;: eA
~_,,:d \\~, "'\ 5, c(StQ..1:-t.,

of ':,,; ~ t"es\1c I:. +
'i_f ~. ,· l!i\ €.\le.\/\ ~

S.\\"'1\1.&..\~~-.
c.cw J.ecoci "'<\
~e..v 1c.~ ci..chijrr·es

~et~·.
T.f O ~~te,'r'f~"T$

~'Wt(l. d.A..-to.... ti S't e v S

Figu e 2 · Si ulator Structure and Data Flow

- 20 -

When the program has been loaded, the CPU simulation module

initiates system activity in a manner analagous to S/360

Initial Program Loading. Thereaft,er, under the control of

the CPU si ulator, the I/0 simulation module and the trace

module. are invoked as requ1:red by the program, and tLe

simulated execution of the student program procedes un 11

it ter inates, or until an unrecoverable error is detected .

Control then returns to the module SI ·lLJHK, which loads

the next student program and reinitializes the simulation

p:r>ocess.

2.4 PROGRA ·: PERATIC?!

The simulator receives control from the operating system

1n the module SIMLINK. First the parameters of the run are

processed, 1 and then the fi!"st (or only) assembled student

program is loaded When the program is loaded,. the module

SIMCPU is called to simulate program execution. When SIMCPU

returns, sn:LINK loads the next proe;ram and cont1nues in

this manner until all pro13rams have been simulated,,

The module SIMCPU performs so e ·nit1alization, and

proceeds to simulat e the execution of the program by using

the d.oub1eword at simulated location zero as the initial

1 See i\.ppendix B, section B. 3 . 1 and Appendix c, section c .2.1.

- 21 -

progra status war. ach instruct·on 1s sirnula~ed ya

s .all rou ine (typically four or fi e PL/I state e · s) rrrhich

does a_propriate processing to implement the instruction.

After eacn instruction the elapsed time in the si ulatio

is upq.a ed, and a check for an interrupt or other s~ecial

condition is made. I te rupts may occur because the timer

decrements from zero to, minus one I or ecause an a~ ro riate

condit~on exists in he I/0 subsyste .• Other co~di~ions

which are ha..T?.dled are data transfers betwee core storap.-e

and I/0 devices• I/0 e ents, 1and the specia. considerations

which arise when the CPU is in tne wait state.

If n the course of instruction simulation he simu­

ator encounters a r-equest that a tra.ce condi ion be en­

abled (or disabled), t e TRACE modu_e is called at an appro-

priate entry point is module checks and decodes the

trace requestJ makes (or deletes} an appropriate entry in

the list of ena led trace conditions, and, if ecessary,

prints any requested trace information. ~he other class of

events \',Th ch causes the TBACE module to be called is the

oceurrence of a condition which 1s currently bein traced~

In this case an appropriate entry point in TRACE is called

to format and pr"nt the information requested by the enabled

See Appendix C1 section C,4.6

- 22 -

trace condition

1hen SIMCPU encounters an I/0 instruction, or \·Jhen an

I/0 event occurs, the module SIMIO is called. Different

entry points are used for different functions. The simu­

lation of the HALT I/0 and TEST I/0 instructions involves

11 ttle more tha.'11. examining the state of the addressed channel,

subohanne, and device, and setting the CSW and the condi­

tion code to appropriate values. The HAIT I/C routi _e may

also involve the scheduling and rescheduling of interrupts.

The START I/0 instruction, on the other hand 1 frequently

initiates a long and very complex chain of events. In a

very simple case1 the follow1~g outline lists major activ­

ities in the1r o:rder of occurrence .

1

.. Fetch the CAW from core and validate.

- Fetch the ccw from core, decode and validate.

- Call a routine which implements the specific device

involved in the operation.

Validate the specific command to the device.

- Schedule a device end inte:J:1rupt to occur after

com9letion of mech{?nical activity.

For example, the Read,·Feed, and Stacker Select command to

the 2,540 card reader., discussed in Appendix C, section

c.4 .. 7.

- 23 -

- Se u data. transfers betwee core storaf'e ad the

de ice, to occur at appropriate interva s ove a.~

extended period of time.

Set up condi ti.ons and para.meters associated with

he end of data transfer (e •. c annel end i terru t

or eve t).

- eturn to SI 'CPU.

In ada.itio tote simulation o /0 instructions, SIMIO

perfor s I/0 e ent processing, and i _itial· zation or and

terminatio of -;o simulation.at separa e entry point.

Figure J sho\•,s an overv ew of the operat · on of SI J60,

and may elp to clari y the foregoing discussion.

e.s

.. 24 -

'?o..to..w..e... \'e 'I"
~"fOC..t"=,,'!:o\....,,~

s \ 'tl\U.\O.: •
Q. 1-eu...-t-i. C\f\. ~
r t'O i rc.\.N\ .

Figure J • SimulatoF Onerat_on Over iew
(continued on next page)

- 25 -

~<.;"'~~~,
\'{\~ 'N,.C..\-\1:1 •

O~ Ced_ S
- o~~,-o. a:r.

~~ s.~J.ei...-te.

e. 'V

•~.t tut.""~°"5
~--,-:It..._---,
5 .'fl'\'1.o.\a...¾e..
• 'C\S.T'r-,1.q\ o..,..
C -,.e,c........ "'\\ i)

X./o
l 'l'\s.-\: ~\..lt."'tl O"'

Figure J con~inued
(continued on next page)

'i\c, o..~c~d.,~
to c.c...A\ o~
~(; --'"~ ~

0

- 26 -

\.l(ld.A.k""' ~,.
l.~-r~ '(~ . '
~~c.,e.~Sc...r-~,

\)~

~\~t·'t'
l\\~4t.t" er T./b')

Fi ure J co tinue ·
(continued on next page)

•

~ ~ e.. "'"" 1 ~c. ~
'tf-l~I.I.~

- 27

Figure J conti ed
(co tinued on next page)

~ :; (.0\i\d,., l"\C.,,
"'°'f.. o..,.J /:;; ~
c.~w
o.{) f'l" C ~ 'C"\a., ~\'t

~-.,.,~ ,;.Wt_
c{ ~t(..\,(t_d,
~\i\ci. ,,.,.,t.\'
... L..\,:~ ~l,',.'I',.&.\

n.i,d tl<. ,c..e-

Se:: o:;...:i o,w:1,/
o u: ,,,ch-n c VI,

cd.t-. .
01.f'{' f'D~H"1c,.; i!.~

- 28 -

ft..--\.c,.~ C.t 1.u
(l0~1A\ t.d. 't"0 'a~
C..'e-,1.J;.).

D~~ c.d,,e. ((w .

C:.aJ.\ ct~vxc.'I!
~~ft.1.1,...\0...--\-,0'1"\

(0'1.-L \V,,.~

Figure 3 continued

bo TT~--'=~r:
~JQ,.-k c_c.w
~d.d (" C 5 c_,,.

u..~Ji.a..-\,f. ci.a.f,o..,

~-, c..d.d.'{,e.~ &....J,
Olat,v,,. S

- 29 -

3. PH OGRAJ•J• I G lfECP. UQUES

SI·360 is a program, and ome insight into the tech­

niques used in programming SIM360 .is useful for increased

understanding of' the simulation and its scope. Some of

the more important techniques1 and data structures used

1n S ~ 360 a e discussed in a general way in the follo'>·:ing

sections.

J 1 THE VIRTUAL COHE AHHAY

The contents of the core memory of the simulated

computer are held in an a!'ra.y.composed of n elements,

where n is the memory size of the simulated computer.

Each of the elements in the array is an eight bit logical

quantity which represents one S/360 byte. The bounds of

the array are so defined that the index of an element is

equal to the memory address of the represented 'byte.

Based ar-reys defined to c ontain groups cf adjacent bytes

are overla.yed (by a pointer) on the virtual core array to

allow aggregate entities (ha.lf'10rd. 1 fullword, etc.) to be

reference- directly. This technique is fully discussed

in Appendix C.

----------- - '·---------------
A representative s. m:· ~· only, not by any means co plete.

- 30 ...

J.2 THE FROGRA1 STATUS WORD

The program status word, PS\-1, of the simulated com­

puter is represented by a structure which contains 2.riables

corresponding to the various fields of the FSW in appro­

priate formats. The condition code, for example, is rep­

resented by a bit string of two bi ts; the prof!ram co1..n1ter

(instruction address) is a signed inte .~er Nhich can ba

used as an lndex into the irt~l core array to f.etch an

instruction.

J. J THE INTEBRUPT Al~D EVENT QUEUE

Some interrupts. such as program interrupts, occur

imrnedietely whenever the proper circumstances e,r1se.

Other kinds of interrupts, particularly those associated

with I/0, may remain pending indef ini.te l y after they a.re due

to oecur e1 ther because they are masked off ., or because

some other interrupt occurs first. In addition, a device

simulation routine, 1 in the course of simulating device

operation, may determine that one or more interrupts should.

occur a some future time as a result of device operation

In sue a case, an entry or entries w111 be placed in the

internipt and event queue, a J.ist o.f pend1ng and scheduled

1 See Appendix C, sectiion G, .. 4 .. 7.

- Jl -

interrupts or events1 maintained in order by scheduled

time of occurrence. Ent::r1es in this queue contain L for­

mation ,., hich determ.1 es the c}',a..vm.el and deviae invo_ ved,

status information for the CSW, channel a11.d device a. d

other necessary information. This queue is examine ft_r

the comp_etion of each instruction to see if an interr"u_ t

or event is due to occur.

The I/0 capabil'ties of the simu ated computer are

de · ned by a set of spec if 1cat ion blocks ,, one for each

c a.nnel, contPol unit, and device simulated. A chari..nel

specification block (CSB) contains information on t .e

current state or the channel (available, interrupt pending,

or working), and a pointer to the control unit specit"ieat1on

block (C SB) oft e first attached control unit. _he CUSB

contains similar status information, and pointers to the

next C ' SB and the device specification block (DSB) of the

first attached device. The DSB for a de·vice contains all

necessary 1nformat on to simulate the device, for example;

A pointer to the device simulation routine

1
....

-vents are associatci -~th conditions in the I/0 sub-
,J.

system and are fully explained in ppendix C, section

32 -

- The data transfer rate of the device

The record size of the device (if fixed - cards:80 1

printers:132 1 etc.)

The device status and sense state

Pointers to any data in the process of beina­

transferred to or from the device

Information on the CCW o:r chain of ccw•s the

device is executing

- etc

All of this information, and a good deal ore, is used

by the device simulation routines, the channel interpreter,

the event proc.ess or, a.nd other f1.U1:ctio al routines i .n the

process of simulatlng I/0 operations.

- 33 -

4. CONCLUSIONS

Sii•: 360 is an unusually complete simulator of a lar e

sea.le computer, co p ete in a manner important i. the stud

of operatin, system programs. It a.kes ave·lable to a

large nu ber o peo_le who have no eorn_lete access to

S/360 hard~· are a model of that hard. 1are which is sufficiently

accura e to be useful in many areas where mosts ,ulators

are of lit e use It ·has proven use ul as a teac inF aid

and is _otentially useful as a tool for:

1) S:itstems - rogram development and test in

2) erformance onitoring

3) Debugging complex programs

- 34 -

APPENDIX A

PBOGHAMMI G FOB THE S/360 SlMULATOB

This appendix is intended to be a s 1elf-contained ar:d

suffi~ient ~uide for students or other users of SIYJ'O .

Familiarity \'11th the S/;60 as,se bler language is assumed.

A_. l I TB ODUCTION

The S/360 simulator is a prorram written in _I/I

which is designed to execute small (less than J2r~) assembly

lanBuage programs in such a fashion that the programmer is

unawa'.r"e of any difference from a physical S/360. In partic­

ula?W, priveleged instructions, protect on mecha.'11.isms, in­

terrupts and I/0 channel programs may be used and manipu­

lated.. There are exceptions and quali ications which surround

such a statement about any simulation, and several of the

more important of these are discussed below. In general,

however 1 any program which will run on the simulator will

run o::n. the s/360 a.11.d vice versa. Your primary guides in

using the simulator are therefore Fr"nciyles of Oneration

and. the S/3§..0 Assembler Langu.ag_e.

A.2 IMPLEMENTED INSTRUCTIONS

The simulator does not handle the full complement of

S/'.360 instructions. A subset designed to be adequate for

syste s programming use s implemented:

HEXADECI · AL
FOR}A OP-CODE NA IB

I L /CJ I STR CTims

1. L RX .58 Load

2. LR BR 18 Load

J. u ES 98 I.oad .ult iple

4. LH BX 48 Load P.alfwo d

5. I.TR RR 12 Load and Test

II. STORL INvTRUC rm.s

1. T RX 50 Store

2. ST~ RS 90 Store M ltiple

:, . STH RX 40 Store Half11ord

4 STC BX 42 Store Character

III. ADD I STRUCTIO JS

1. A RX .5A Add

2 AR RR lA Add

:, . AH RX 4A .Add Halfword

IV. SUE_RACT IiSTRICTIONS

1. s RX .5B Subtract

2. SR HR lB Subtract

3. SH RX 4B Subtrac Halfword

.. 36 -

v. MUL-IPLY INSTRUC ro rs
1. 1'] BX 5C Mult1p y

2. MB HR lC •1ulti ly

J. NH EX 4C Multiply Ha f ·1ord

VI. DI !ID:. L STHUCTIOl S

1. D RX 5D Divide

2., DB BR lD Divide

VII. COMPARE INSTRUCTIO~S

1. C RX .59 compare

2 CR BR 19 Compare

3. CH BX 49 Compare Halfword

VIII. COMPARE LOGICAI n STRUCTIO s

1. CL RX 55 Compare Logi,cal

2. CLR RB. 15 Compare Logical

3. CIC B.S D.5 Compare ogical

4. CLI SI 95 Compare Logical

IX. MOVE I STBUCTI0 1S

1. MVC ss D2 Move

2., MVI SI 92 Move

x. AND I STRUCTIOrs

1. N RX _54 And

2. NR RH 14 And

:, .. NC ss D4 And

4. N'I SI 94 And

- 37

XI. OR r;s R CTIO S

l 0 RX 56 Or

2. OR RB 16 Or

J. oc ss D6 Or

4. OI SI 96 Or

XI XOR (EXC USITE OR) l TSTB CTIO.:S

1. X RX 57 Exclusive Or

2. XB RR 17 Exclusive Or

J. XO ss D? Exoluo11e Or
Ls. X I 97 Exclusi e Or

XIII. SHIF LTSTRUCTIO s (OGICAL)

1. SLDL RS 8D Shift Left Double

2. SLL RS 89 Shift Left Single

J. SB:DL RS 8c Shift Big t Double

4. SBt BS 88 Shif Right Single

XIV. BBANCH I STHUCTIO S

1. BAL RX 4.5 Branch and ink

2. ALB RR 05 Branch and Link

J. BC RX 47 B:r-anch on Condition

4. BCB BR 07 Branch on Condition

5. BCT RX 46 Branch on Count

6. BCTR RR 06 Branch on Count

7 ■ EX BX 44 Execute

- ;8 -

xv GENERAL INSTR CTIOl~S

1. LA RX ~l Load Address

2 IC RX 43 Insert Character ·

XVI. I/0 INSTRUCTI or.s

1. SIO SI 9c Start I/

2. HIO SI 9E Halt I/0

J. TIO SI 9D Test I/0

4. TCH SI 9F Test Channel

XVII. SYSTEI•; CONTROL ISTRUCTIO ~S

l. LPSW SI 82 Load PSW

2. SVC BR OA Supervisor Call

J. SFM RB 04 Set Program ~ ask

4. SSM SI 80 Set System Mask

;. ISK BR 09 Insert Storage Key

6. SSK BR 08 Set Storage Key

Use of e valid S/360 instruction which is not imple­

mented by the simulator results in a program interrupt for

an operation exception. In a.dditi.on to the ma.chine in­

structions listed above, there is a set of simulator ex­

tensions to the s/360 :instruction set which currently

includes:

. 1. TRACE and TB.ACEOFF ... discussed. in section A-5

2 QUIT - the simulator termination. ,commands.

- 39 -

These are 1 plemented as macro instructions and should be

used as such, as they are subject to chan e.

A. 3 P :S:PARn rr A PROGRA~

A program must consist of a single control section

with no external references, and must be asse bled starti 6

at re la ti ve 1 oca ti on zero T.he simulator ini t 1a te s ex-

ecu ion o a pl"ogram in a manner similar to the hard ·are

IPL f !lction. and the programmer must pro id,e at location O

an :tnitial FS ~ For example:

EXA PlEl

IFLPS -I

UNUSED

CSWETC

NOI ·Ts

START

INITLOOP

CSECT

DC

DC

DC

DC

SH

USING

L

SB

LA

ST

LA

LA

BC

QUIT

A(0 ,START),

7XL8 1 0002000000000000 1

6F 10 1

,5XL8 100020000O0000000 1

12,12 SET UP BASE

EXAIPLEl,12

4,BEGINADE

.5, .5

6,256

4,5,0(4)

S,1(5)

4,4(4-)

6,INITLOOF

BEG! ADR

BLOCK

DC

DS

END

- 40 -

A(BLOCK)

256F

The DC labeled IPLPS~I def.ine s a doubleword at 1 oc a t ion

zero which will be used by the simulator as the initiaJ

PSW In th s part 1cular, example :

1. All maskable interrupts are disabled.

2, The storage protection key is zero, prov"dinr,

unlimited access to all storage.

3. The CPU 1s in the runn1ng state and the supervisor

state.

4. The initial condition code 1s zero.

s. The first instl"'uct1on to be executed is at location

START.

Other details illustrate,d by this example are:

1 The programmer must somehow in1tial.ize the per

manently assigned core addresses (24 - 127) to

the initial values he desires. The method used

here is recommended.

2. , he programmer must provide the assembler with a

base register and 111itialize the register. klother

example will show an alternative method.

- 41 -

J. The simulato~ should be terminated by the use of

the QUIT aero instruction.

A.4] JPU1JO TPUT

Te current version of the simulator implements only

a byt e m ti 'Olexor c· annel with t ·ro attached 2821 control

units Each 2821 has attached one 2540 card reader-punch

and two 1403 printers.

Firs 2821:

Second 2821

.. -
v

00D

OOE

OOF

012

01:3

010

011

he assigned device addresses are:

Punch

First ~rinter

Second inter

Header

Punch

First Printer

Second Printer

Detai ed information on the programming required to

support these devices is contained in Principles of peration

and in IB 2821 Control UnitJ Comnonent Descri ption (A24-

3312-7)

Special considerations involved in urogramming for these

devices on the s imula t{1r are: ·
◄

l. _Q. special fe · t \ i:•e s are supported

- 42 -

2. Stacker select commands to the reader punch are

not simulated. Stacker select inf,ormat ion in

2,540 COI!lmands must be valid, but is ignored y

the simulator.

3. ■ Carriage skip commands to the printer are all

1nter-preted as a skip to channel 1 (head of form).

Carriage skip information in 1403 commands must

e valid, but regardless of the channel speciniea,

the paper ls positioned at head of form.

A. 5 DEB C·-GI:•;G AIDS AND HO ITOBI 1G FEAT J'RES

A.5.1 FACILITIES

The simulator has extensive and poKerful trace facil­

ities to aid in debugging programs, Proper use of these

facilities will greatly reduce the number of runs required

to solve a given programming problem. The trace facilities

are dynamically controlled at execution time by the use of

the TRACE and TRACEOFF simulator control instruction. The

foll ol'iing trace features are pr,ovided:

1. Branch tracing: whenever a successful branch

instruction 1s exeeuted1 the st.an­

dard trace information will be

printed. Options may be specified.

- 43 -

2 Address tracing: whenever a given locati on i s

referenced as an instruc ion

operand 1 the standard trace in­

formation w 11 be printed C' ions

may be specified.

J Execution tracL g: whenever the gi,rcn location is

referenced for executionJ t e

standard trace inform.e.- ion will

be pri ted. Options nay be

speci "ied.

4. Instruction tracing: whenever a give i~struct·on

(LR, M, SSM, etc.) is ex­

ecuted, the standard trace

in.for ation will be printed.

0 tion ay be spec fied.

5. Interrupt trac1 g. whene er the spe,c1f1ed type of

inte rupt occurs, an abbrevi-

ated version of the standard

trace information will be printed .

Options ay be specified.

6. Channel tracing: whee er the speciried channel

performs significant operations.

an explanat ocy mes.sage is pl"'1n ted.

Example are:

- 44 ...

a) A new CCW 1s fetched in a

chain of command chained

caws. This information,

and the address and text of

the fet.ched CCW are printed.

b) The channel receives sta s

from an attached device.

This information and the sta-

tus byte are printed.

Options may not be specified.

7 Snapshot: whenevel' the trace command itself is en­

countered, en abbreviated version of the

standard trace information will be printed.

Options may be spec1fied.

In addition to the above, the simulator ean print the

standard trace information far each instruction executed

This facility 1s not dynamically controlled, and must be

set by the instructor.

A.5.2
The standard trace information mentioned above contains

the following information:

1. The current he.xad:ec1mal value of the location

counter (LOC)

2. The type of the trace request which caused this

message. For example·

PG INT.EREUPT

ADDRESS OOF6

11 STBnCTIO J SSI-J

SNAPSH T

J The instruction count at the time of the trace

message, i.e., the number of 1:ristructi.ons w .icr1

have been executed (CO T)

4. The elapsed virtual (simulated) time since the

start of execution.

5 The contents of the current S.~ (hexadecimal).

6. mhe IBM mnemonic op code of the instruction asso­

ciated with the trace message (OP)

7. A hexadecimal dump of the instruction associated

with the trace message (I ISTR CTIO).

8. The hexadecimal absolute addresses of address

operands 1 and 21 if present (ADRl, ADR2)

9 ■ The f1rst four bytes of operands 1 and 2, if present

(OPERANDl, OPEHAND2) •

The abbreviated trace information printed in an in­

terrupt trace message contains only items l - 5. he informa­

t1o _ printed in a trace message associated wit instruction

exec t·on(Branch, Address, Execution, and Instruction trace

- 46 -

·ypes) reflects the state of the CPU at a theoretical point

in time after instruction fetch and address gene:r"ation, and

before any data has been changed by the execution oft e

instruction. The information printed in a trace messap-e

associated with an interrupt is that existing after t!'ie l)ld

PSW he.s been stored and befoI"e the new PS\•/ has bee. fetched.

Snapshot information is associated with a point in time

afte"" completion of the execution of the instruction pre­

ceding the trace request and before fetchin~ the instruction

follm,ing the trace request.

A.5.J OPTIONS

The three types of options which may be specified in

a trace command ere status, registers, and core dump.

Status 1nforma.tion 1s that contained in the permanently

assigned low core area from location 2410 - 12710, This

includes the old and new PSW 1s for the five interrupt classes,

the channel status word, the channel address word, e.nd the

timer. /my status options req_u.osted are formatted appro­

priately and identified. The registers option is obviously

the 16 general purpose reg1st,ers which are dumped in hexa­

decimal and decimal and ident.ified. Cotte dumps are in hex­

adecimal and character format.- Further discussion of the

options 1s included in the syntax description.

- 47 -

A ~,.5 .4 TRACE SYNTAX

where

The syntax of the trace command is

TRACE

adr --
opcode -

type --

chadr --

opt1ons =

a label

BRArCH

ADDRS,e.d:r

EXECJad:r

I S'!1R 1 opcode

n STFT' type

CHA.1 L, ehadr

or decimal

hexadecimal opcode

PG

I/0

EXT

SVC

MCK

an integer 0 - 6

Go. tion~

address

of instruction

STATUS= { s ta. tus s pee

(status spec [,status spe~

REGS= { inte er O - l.5

(integer O - 5 [,integer

CORE=(core spec [,core spec])

status spec -... OLDPGM

NEWPGM

OLDI/0

NEWI/0

OLDEXT

NEWEXT

OLDSVC

OlDFC K

HEW 1CK

TIMER

csw
CAW

core s pee = adr, wordcmmt

wordeount -- decimal integer 1 - 128

!~ate the following points:

1. Each 1core spec• is a pair:

address,wordcount

2. In each trace command allowing options a maximum of

16 registers

13 status 0 f1elds 1

8 e< ~·e dump specifications

may be specified.

- 49 -

J. he example uses snapshots heavily. This :is ac­

ceptable for very s1mple programs but for complex

probler::is t e ore useful information comes fro .

.interrupt e.n.d branch traeLn.g and well c· osen

instruction tracing.

The sample program which follo1s should hel~ to clar-

ify the info mation ffiven above 1he circled numbers o

the t:rac e 1 is ting ref e:.t.· · to t1 1;:; r.iutes which fol 1 ow the exam le •

• .

l ~T~1a-,F, fl.••

- 50 -
SEC:HOri-- 1N5 TRUC TQR-- • PAC 1

L,,C OPJl:CT COO /l['IQR1 ADDR2' TMT snu RC'E ST AT E"\ENT lo),AY 72

;;f:OCC
cccccc occoooonooooooRo

occccq OOC7000000CCOCCn

000~~ noonDOOOOOOOOU~ "
or.(C&(ocr1ooccoocc10co
oJco~~ oocoooooooooo1n~
CCC C 7 C OC CJ' 0 DOOOO GOOO<lO
oaco1e OCCOOOOOOOCOOlC~

cccooo

oi:: rn r;
0000 0
o c coq E

l llf6
50f-CJ 0050

1.50 OOOL

OCCQ M '12 00 OOFIO

ccco,c

00000

oooo~c 0101.oo ooooeoooon

0 C C C r £ 9 S ff O l 51\ 001

noo5 o
00001

2 LS l!'fAil'IE CSEC T
)

5

1
fl
q

10
11

lJ
Ji.

DC ACO,REGINI

m:: l OX I ooozoo 0000,0,00000'

oc Alo, TS nnt
or x•ooozoooooooooooo•
oc A ID, PG,..1'1.IT l
oc x•ooo2ooooooooooaa•
DC: ACO,IOIITTt

US (NG lSTN.i\M!!,O
PRINT NClGE!lt

INITIAIL PSW

UNIJS ED LOCATIONS•

I
EXTER~~l NEW PSW~OR Tl~ER,
UNUSED PSW•s IN rs PROGRAH
'P~ CCRA IPII [IHERRUP I PSW,.
UNUS1En PSW.
10 lNTIE-f:lR.UPlf HANDlER

I

!

PRCGR.At' JS ABSCLU.Tco

l6 • JiJCT EXP E er ING ll'FlOGllAM INTERRUPTS AT TH IS TI HE, so I
lT •IH.,MP ALL OF USEll CORE Atm THE t!EGISTERS TO SEE ~11.IIT
11! BEG IN TRIIC E UHRP T • P,G,., STATUS .. DLDPGH, REGS• UJ, l,. ,2,

ONE CC.CURS,
NA9PEN1EO.
r\,5,6t7•B,9,IOI, X

CORE,.IO,l2B J

*l,jE Will FlltSI SET UP A TIMEn lfilTER.RUPT. THIE HAif WILL BE AN
•OBRJTRAR't 3 • .J 11S, BECAUSE TtlA l IS ONE TlMER !UNIT .. W,E WILL TURN ON
•lHE EXTEflN1'L lNlERRUPT TRACE TCI wuc~ JHE UlTERRUPl OCCUR

TRlCE l~TR?T,EXT TD SEE TIMER INTEllRUPT
SR 6,6 NAKE A NDTHING--J.3 MUU5EC.
ST 6, 80 5T Cfl.E IN HIE TI MER MORO
LA 5, 1 FOR FUTURE USE.

46 • u;. VER I FY TI-IAll' WE• VI: GOTTEN THIS FA 00 SN.IPSHOT
'4 7 TRACE DUMP
'56 HCW GO I .,.to THE "AH S

•td:'TE THAT fttE ElTERNJl
'58 LPSM MAI

l TE UNT ll THE TIMEFl I NTERll UPT OCCUR
INTERRUPT Bn rs Sl:f Ofll rn OUR w-.n PS ...

WAIT FC~ A T[~ER INTERRUPT ■

60
l W~l

OS
DC

OD
ClOZC00000C000001

63 • 111-<EN THE TIME Fl l NT EllllUPT cccu~s. WE COl'IE HERE t SEE TIIE EXTER NAL NEW
64 •PSWla NDM WE WJLI. DO A SHORT LOOP WHIC~I PP:ll'ITS A UNE 1 ll0IJRLE SPAC:ilNG,
6 5 Ufl.D WATC l:f Ill~ INSTIi.UC TION, ill LOC.I\ T ION, MofO EiC UlfERR UPH
61, T SlflT fllACE AtlDRS, SWITCH.REGS,. U!i, 4~ 5, I ,COR l;;;(P45G2, l 180 ,1 I>
7~ TR~CE INSTR.~a ~iaw THE lH rNSTRUCTION ~T CHEND
Rft TUCE INTRPI, l/D 1,t&.TC ►~ THE 110 INTERRUPTS.
q7 GCCN Cli S~ITCM,X'EF' TEST FC~ LOOP 00

· I
,J

.,
••

,

- 5
L,1·1 .• .,.f,r .. r. SF(rt (INSTRUCTOR--

rr. r- ruur n1of l\flOR 1 AODR 2 STMT SOURCE' $fi\TEMENT

00168
rrnoo~

CC Cl;'= 7
0C r '.::..
acr:Jr.~

1"JE i::

4 rllO
r;r, co
1.110
fl 2 CJ

n:::-: r, r-,, Q(r.O
C Jr ,"I r. ~ 9 ;:i 0!)
CCC JC(

nt,;s
DCOE
11 lC

OLC\
OOE

i'HO

01 CR
no11c

noo4~ no tco
noru::r
OOLOO

acclcc soc20Jaooaccooco

CCCLOB 4850
CCC Ll}C 4<; ,;-n
(ICOl lO 4780
0!:Clll: 'i!t~O
OOClle 47E:J

0044
01cc
OLJt.

OlC'=
o,ooE

~CCll4 ,?40 OL5~
accu ~ 4 L50 OCOl
0.'.)~l"IC l!',<,5
OCCl'.'E ':Qt,O Ol'i

a~ r 1; ~ 17cn 01nn
·1 '.! ~ l r, ! '1 r r.n

co1on

r. ·1 r: 1 t. -1
C~ f l ~C
, .. ,. 'C.,: .. ._
o::..:~ 5 C
0 C ::? ':!1

•'10r. l 6L

1 1110 c, scan r.na a oc.
~ 3 r :::: l ; ~2 c rco o ct'.

C :.:: f ,) C ,1 f: ~

r3Cbn~CHO 006 f4

... l\
I ',.

0004"
. oou:c
00l34
OOlCE
oc,ooE:

0 0 L5 El
000D l

00158

a

9A
qq

lOO
10%
102
103
104

BE
TJrl
BNZ
MVC
Sia
rsw

OS

TCONT
x•ooP
An □ P:T
7214J,aA[~R1NTCCWI
X. I DOE'
WAITID
OD

GD DD PGHI I NlE RRUPT S.
PR H\lfER FREE?
IF NOT, EfR~R, Sa QUIT.
SET UP CA
AND START THE 110 nPERATIO~.
MA n r ILLI 1 ,a aP aoNE. .:

105 MIil fl a DC X' 8002 000000000000 1 NOTE Cf,IAN~EL O en ON. 1

107
108
lQg

un
lll
n2
113
U4
ll5
116
u
118
119
130

1,.]

•1/0 INTERRUPT ~ANDLER. 6
• Un S VF RY ST UP I fJ ROUT I NE LOOKS FOR • CHANNEL EN OR DEV ICE END
•A~O l/lKES APPRnP IUATE ACTION IF THEY ARE FOUhD. ANYTHING ELSE U
• C CNS I DER ED AN ER.RO R ■ NOTE 1' HAT INTERRUPTS ARE AS SUH ED TO C□ M E f!l0'1
* THE PROP ER DEV I CE.
H IN'T LH 5,611 GE l CUI STATUS ens.

CH 5,-X 1 0800 1 TEST FOR CHANNeL END.
Of CHEN□ GO 00 CHANNEL ENO PPOCESSl~G.
CH s.~x•o~oo• TEST FOR DEVICE ENO.
0E GODIN IF DEV ICE ENO, CONT rNUE LOl]P ■

+NCIT CHANNEL am OR DEVICE E~O. I IN TH IS VERY SIMPLE-MINDED EXAMPL ;.
+WE W Ill ASSUME THAT THIS IS IN ERROR AND ABORT THE PROGRAM
AACRT TRACE DUHP.STArus~101.011a.csw1.ccRE•[O,l2BI

,au IT AB CIRJ PROGRAM.

•GOT A C~ANNEL END FRCM THE OPERATION IN FROGPESS ■
C~END L 4,MSGZ

LA !it
SR 4,5
ST 4. MSG

* .. E t1UST, HOWEVER, WAIT Till DEVICE
Ot,.0THER OPFR ATf □ N TO THE SA~E ClE ... l

LPSM MAITID

DECREMENT OUR C□UNTER-
M E CAN 00 TH r S 8 ECA USE CHAl~NE l.
END SIGNIFIES THE ENO OF D~TA
TRANSFER

END BEFORE WE CAN INITIATE

•

143 P IHNTCC W CC W x•11 1 ,,sG,x•eo1 ,12 TRANSFERS TEXT •LOOP COUNT ~•
NDlE SLT OIT, NOT DOl~G 132 CH. 144- cc.w x•01•.MSG2,X 1 20',~

l45 M ~G1 oc (I 000) I
146 MSG DC C 1 LODP COUNT
147 SW ITCH ECU M:SG2•

*T URN OF F TlfE TR ACE S ND SHOW HA T NO THI NG APPENS NOW
TCC NT TR ACE□FF hD 'iWf

HS
r, t r1,1 Y II"'~ !"I I

AGE

10 MAY 12

STNAMEo'l.f=.

lCC 118 J!:CT COO[

O~JCI eq 5e7o OlCO
O:.':CI ~ C 04 70

OCC18E 5840 01C4
Cl CC l 0 L 4 l ~O 00 02
ODCl"6 Lli!::4

OCCt<l':! LPTI
ccn~.11 o~no
0001~(5R4O OlC4
0 CC l 4 C 4 L 50 0 00
OOCll'\'- U45

OOCl~A 8200 0028

,r.ccu:c
(l OClf C o~nr)O'JOO
OC(lCl; 7fFFFFFf

0 CC1 r 8 0OCOO148
o::::c1cc occo
oncicE oi,on

- Jc -
SECT r CN-- IHS TR.UC Tn R-- •

A □ORl AOOR2 STMT !QURCE ST AT EMl:NT

00•028

J~H •DCNE WIT~ OUR PRINT LOOP. NOW WE Will CPEAT~ SO~E FIXEO POINT
Lb<l 1HVERflOW C.'JNOIT IONS .AND WATCH THE IN TERR UP Ts.I FIRST CHA·NGE Tl- .:
170 • PPnGRAM f NTERRUPT TR~CE T□ GI V'E US SLIGHTlY L~SS . DUMP VOLUME.
l1 L TRAC E INTRP T ,PGM t STA TU S"'-OLO PGM, REGS"' [ft .,5 t

OOlCO 180 L 7,, FOFLON PROGRA~ MAS.K T□ Alt0W fl i<ED
HI l 5PM 7 POINT TfE 'RRU?TS. ,-'

001C4 l 83 l 4, MAXPOS GET THB MA XI MUM POSI Tl VE NU!IIB ER.
a,0002 184 LA 51 Z AN C AO~ 2 TO n TO CAUSEj AN

If.I 5 AR 5, 4 OVERFl CW
186 •1 PACE LI ST lNG S,MDUL 1D StOM ,. PROGRAM INlERRUPT.•
187 •NCH TURN OFF FU.ED POINT ElCCEPTI ON I h'TERRUPJ Sl AND TAY AGAIN.
18A S~ 1,1
lB9 SPM 7

0 0 lC4 I qo L 4, HA)IP OS SA flE PflnC EOURE •
00002 19l LA 5,2

192 AR 415
193 TRACE DU"4P,REGS=(4,51
02 • E f\ClU GH TERMINATE,. ;i

203 QUIT

208 PGf'INl LPSW 'tO TH IS r GNORES P'AOG~AM INTE,RRUPTS •

21D cs OF ~

211 FGFLON DC x • oa 000000•
2l2 NUPOS DC X1 7FFFFFFF•
213 END
214 •Al PR INlCC 10
215 =x•osoo•
1t& a)(• 0400 1

PAGE

lO MAY 12

- 5 ...
CROSS-REFERENCE I . PAGE I

I
1

J

~Yr" H L LEN VAUJ E OF r•~ RE FEA,ENCES
! 10 MAY 72
'

l OOCJIC 122 10
l OOCOA 0 21

OOCl_14 L% I 14
OOClC C 2 U Leo

4 oooonE en 116
IC!~T 4 OCCl or 112 ll
snuv1 e l OOCO'JC 2 1

X~[S 4 00Cll C4 217. lfll l'lO
:.-s:c 12 ooct5c l4o l 'i
M~r-2 4 OOCl'>S 1'<5 73 136 139 144 l ltT 15t.
PG1"l /I. 1 4 OOOL{t~ 2011 9
PR nncor 8 OC (l4P l't3 lCl
H n C-1- 4 000\SP t"'7 10 g7 l 54 157
TCC/1. T l OOCl~fl 151 q9

T'-T~T 1 oocoe P tQ 1
\!I.it 11 B OOC0HO ld se
-'~1Tl0 B OCCl OC te5 103 14

~

- 54 -
RELOC ATION O ICT IONARJ' I PAGE l

~ Pt:'S.rr. RFL. In FLAGS liOHRE 5 S ,
lO MAY 72 I

0 I 01 or M0004
Cl OL er: ooon~ r.
r. I Ol Cf OOCCl>C
0 1 01 Of 00 C>O7C
Cl 01 C.t, OOOOllA
CL Ol c~ ooooc 0
Ol 01 OB 00 0 [49
Ol Ol cs 000l5 l
Ol 01 04 00011.6A
Ol 01 oc 0001C8

5--. -
nuc::~osucs

Sl"' T (R P1~ C10E ~ESSA GE

A.S"1 li046 I ~T LFAST ONE RELOCATAB LE Y-TYPE CONSTANT I~ ASSE~BLY

NC STA1E~[NTS FlAGGEC IN THIS ASSEMBLY
~AS H1GHEST SEVE~(TV CODE

.J

" r.

"' I

PAGE L

10 MAY 7

- 56 -
L S l": 1\Y : illA f'E LISHNC.. 0 CONCrTi r NS ENAP.LED. I

I
F

L f'C TR AC ~ TYP E CCl l.,Nf Tl,_.F OP INSTRUc:TIO~ ~DRl ADR 2 OPERANDl Of
---- ---------------- ---- --------- --·-- --------------- z - --- -- ------I

0 ©
COM ~M P snnT 1 L ?'SW : 00 0 0 0000 1 01 1 13 100 1 8 0 OOOOAC

I ;

J:n r: frn. lJ P T 0 I ,J

o con ["(T 4 3 , 333 PSW: 01 0 Z 0080 •1o•e •oo•e o 000000

I

OCE 2 ACDP ~S ~: 01 5 A 4 3,333 Psw. oo o a 0000 1 10"8 1 00 1 8 0 OOOOE2 cu 1
95EF 0158 61se F3D3D6D6

REG I STE9S~
R 4: F FFF F FFF, - 1 R 5: 00000001, l Rl!!i: F 1FFFFFFF, -1

cn i:i E nmo:
rn O::,ji. :,,.4: FOf:OFOF3 0003
ooi;o, q,c= FHFFFOO ? ?71

occo rm [N TER RUPT u 3~ -42 B p sw: BO O 2 0O0E I 1 (ll " I QQf 8 0 00100 00

o 1cc U · INSTl:UJr, Tl ON ll]7428 PSW: 00 0 0 0000 '10 1 A 1 00 1 8 0 OOOlOC LH 4850 0044 (10~4, 0800007 4

013 6 tton F'iS : OPi £ © 14 3, 43 l. PSW~ 00 0 0 0000 'lC'B 1 00 1 9 O ,000138 L 5840 0158 (158 FOFOFOF 3
R-GISHRS:

l's 4: F FFF~ FFF, -I R s: oooooaoo. 2048 Rl5: FFF1FFFFF • -l
C JPf: OiJfl f:

o l c3 • J li 4: F CF OF CF l ,0003
noso, Ba: FFFFF FOO ????

0 lli 2 l'lnD ':l fSS : 01 5 R n 3 • .r.,33 P5W: 00 0 0 0000 1 1a•e •01 1 0 o 000142 ST 5040 0158 0158 FOFOFOF3
Rl'.'.GJS Tl:ll ~:

~ , .. ·= FCF0F0F2, - 252645114 R 5: 000000011 I R 15: FFFFFFFF, -1
C:JRc DUMF:

0158, J H: F OF OF OF l 0003
oo,; □, srn~ FFFF FFOO ???i!

crcc r 1a U4 TERH UPT 19 ~(), 6 80 PSW: 80 O 2 OOO E 1 10•0 1 001 0 o 000000

,:a ce LH r NS rni,r. TI ON [CJ 99,l-Sa PSW : 00 0 0 0000 I 10 1 a, •oo•e 0 OOOlCIC LI-I 485 0 0044 00 44 04'000000 .,

COE7. lCDRf.SS: Ol"i~ 2 lt i;~,6B4 PSW: 00 0 D COOO • 1 O•B • 001 B O OOOOE2 CLI 9SEF 0155 01 58 F2O3O6ot
Pi:GlSTE?S :

t> '-: FC!=OF=ora z , - 2 ~26~ 5134 R 5: 00000400• 1024- ll 15! FFFFFFFF, - 1
(:"Pf CUl'-'f=:

01 ~ E, , :1,: ~l'1FOl'(lF? ooa~
OO'iO, • I : r-'r-fl:1" ;CO ? ?T

nr,c~ 11.:, J•,Tf UPIJP'!' 11 99, 71'9 P~W: AO O 2 OOO E • 1 c•e coo1 B C 00000

57 -
l~f\ft~E r~~tE Ll~Tt~r. ~ r:n~JCrT 1rNS ENAf'LED. I p

l CC 1 µ .\r.[T't"PC CCLNf T r r,f OP ~ N Slfl UC Tl ON AfORL AORZ OPERAND! □ ? ---...----------- ----- ----- . --- i---------- -- --- - ·-- --------

0 l 1t= llCClRCSS: 015 P. H 90,782 PSW: 00 0 0 0000 •10 1 0 •oo•a c oool38 L 840 0158 0 58 FOFOFOF
PEG TSTEP~ ~

Q I',: FOFOFOC2, -2'i2l,4Sl34 R 5: ooooosoo, 2C'4B R.15: FFFFFFFF 1 ! -1 CORE DUMP:
n I c,n, J(, l;; F0f0F 0F2 0002' I

:

00'>0, fl O: Fff FEJ0O i!7T7 I ~·
I

I
0l~2 ~r.nR~SS: O15A l7 C,9y 784 PSW: 00 0 0 0000 1 10 1 8 1 01 1 8 0 D0014Z ST S040 0158 10158 FOFOFOF 2

Er. 1 $.TJ;ll'S: I :
II: 4: FC'FOFOFl, •252645135 R 5: 0000000l 1 I R IS; FFFFFHF11 ! -1

CORE DUH?i
Ol 581 344: FOFOFOF2 0 1002
005 ,a~ ao: FFFFE300 ?1T1

o:;cc r ia I~TERRUPT 19 l<i81181 p sw: BO O Z OOOE • 101 13 • OIJI D O 000000

0 ICC Lh (NSTRUCHON j9 198,lBl PSW: 00 0 0 0000 •1o•e •oo•e O OOOlOC LH 4850 0044- 01,44 04DOOOOO
•

OOE2 ,cDR'FS~:: 015 F. 44 198, Ulo PSW: 00 0 0 0000 1 10 1 & •oo•e _c ooooe2 cu 95EF 0158 OJ5B 1FlDlD6D6
RCG,I STE ,Ft S:

P. 4: F0F0FOF 1, -2526~5135 R 5 : 00000~00, 10~4 R(5,: FffFFFFF,, -1
er.RE o·u,n:

0 l '38. 34(i: F CF OF Oi=l 0001
0050, RC: FFFFr. 500 ? 1E'1'

OCH I /fl INTE IUWP l 51 19Bt28I PSW: 80 0 2 0001: •1o•e • 00 1 e o 0000cm

OHlC U- P~STFIUCTl::JflJ .51 l4i8 1 28l P SW: 00 0 0 0000 1 101 8 1 001 8 C OOOlOC l .H 4850 0044 OC•ltlt 0800007

Ollfl ACOPf"'<;;'): Ol'i8 54 1 c;e., 28't PSh: 00 0 0 0000 •101 8 •oo•e O OODLJB L 581.,0 0158 0158 fOFOFDF I
~r:ISTF~S:
·t '~: FCFOFOFl, -2. 5264 5135 fl 5: 00000800 • 2048 Rl5: FFFFFFFF, -1

C: ?E 011'11 F:
0 l ~Fl, 3"•'i: FOFOFOrt 1 0001
00', C, R r.: FHT(: 500 ??E7

Clt.2 ll[C::' rs'5~ OlSB 57 1 qa, zes PSW: 00 0 0 0000 1 10 1 8 1 01 1 9 0 0D0l42 ST 501t0 0158 0158 F0F0FOF l
REr. r STl:PS:

P 11 : F CF O F OF O , -25264 ~136 R 5: 000000Ol, l fil 15: FFFFFFFF ,, -1
C ~ r1 E DLJM F:

01ce. 344: FOF"OfOfJ 0001
oo~o, 8(: PH Fr 'i{l0 ??E?

90' P$H: 80 0 2 OOOE sau•R 'CO'E C 00000

T • .. ,

- 58 -
LST'.:. -..~ ,i:- ~r r 1STTNfi. 5 cn~CITJONS ENAelEO. P'A

LCG J(;tALE TYPE CC1lJ~T T J ~E OP INSTRUCT ION ADRl ADRZ 0 PERAND 1 lll' E
----··--------·------ ----- --------- ' ----- --------------- ---- - ·- ---------

pr-r,}ST[~~=
Q 4: f C~OFOFO, -252~45136 ~ 5: 00000400, 1CZ4 R 15~ FFFFFFFF, -1

r.or.r DU~F:
o 1 Stl, 144: For or OFO 0000
nn5o, eo~ FFFFl\600 nn

JC CC l / :'. fN TE ~RUP T n 3 Cl, 01\5 P H,j: 80 0 2 OOOE 1 10 1 0 •oo•s a oaoooo
-

llGC ll"I J NS TRUC lT Of\ H]01,085 PS,W: 00 0 0 0000 •10 10 •oc•e o 0001<1C LH 4850 OO't4 00-44 08000074

113~ .a 1:DP ES S : Ol ~p. 7 It 301,088 PSW: 00 0 0 ODDO •io•e •oo•R 0 00011a L 5840 DIU 0158 FOPOPOFO
PEr.l STER~:

Fl 4:, FC'FOFCFO, -25264~136 R 5; 0 IJQQQR Q,Q I 20-"te Rl5: FFFFFFFF, -1
(Q:!f OU~ F:

Ol~'!, H-4: FCFOF c~o 0000
on so, PO: FHfA600 ?1?1

It;2 tiCDRFSS: 0150 77 J01,DB9 PSW: Q,0 0 0 0000 1 10 1 8 1 01'8 0 0001~2 ST 5040 0158 0158 F DFOFOFO
IH:r.J.STERS:

R 4: F CFO FOE F • -252645137 R 5: 000000011 1 RlSi FFFFFFFF, -l
cC11-::: our-,P:

0 l 'i6, 344: FOFOF OFO oa,oa
0050, no: FFFFl\600 ?'1'1?

CCC ! / •7 !NT:: RRUPl 7~ 3% • 6'f3, PSM~ 80 0 2 OOOE 1 101 0 1 0D'B O 000000

l CC. LI' l ~•~ TPUC TJ ON 7q, 3C.6,69l PSW: 00 0 0 0000 • 1 o• s •oo•B C ,QQOlCC LH 4 BS O 100lt.o\ 0044 O'tOOOOOO

o E~ ~rno F(~: 015P l:l4 H6 1 691 PSWl 00 0 0 0000 • l C1 8 1 oo• 8 0 OOOOEZ cu 95EF 015 B 0158 EFDlD'6DE
Qf r.t5TE'1S:

R 4: F CFOFCEF, -Z52645lJ7 R 5: 00000400, lOZ.lt- ~U: FFFFFFF F. -1
[r"l'l E CUHF:

nt ~ II• J 4,4: FCF OFOEF 0001
005 G, ec: l=FFl=65CO ?111

l "?~
• C s: .. 1 rc::11 - r ij ,l 396. 700 IP SW: 00 0 0 0000 I 01 1 8 1 10• 8 0 O0O1 lE

l SP p, G"I ti; lFRRLJI" T Q2 :J 1:6, 702 P !H: 00 0 0 CIDOB • 0 I' 8 ' l l' 0 8 000 l 98
S"'ATt:S:

rLD P~ G: cc o c: oo on 1 0l'R 1 11•~ 8 000190
!l-~ lST ~i:i S:

<1 '·' ., FFJ:FFFF, 2147ttf'l647 R 5: BOOOOOOlt -Zllt7't 83f4

'H'I <-:. :c•~H~T n. .!~(.,'106 P ~H: 00 C. 0 0000 • 0 l. B C 1l. l.l O 0001
Gl~TE

' I '7 I C r, , I') " 1 'I

- 59 -
:;ri:::,.,,,~l sr"'ULAT,"'R TF.R,Yff\llTHIN HR FROGR4.M LSTNl'IME

SIMULAT~O REAL Tl~E:

.~l"'UL,tiTFn CPU TJ."IE:

396, 70 ~.687

120 • t25 .

• r :,. .. ;/\ ...
II ... 11' • ~ ,
• ?,o .. .- ..i-,. ,.,., • • "' ii 1
• ~ , ,.
* "' • ;:t:
-1- ...
-1- -0,

* ...
• ~

~ -'f
ii ...
~ t
• It
11- ;1-.. ~ ,.

' 4, • • ~

• ' .. ,.:
II- ..
♦ ,. .. 'f

C' ..
CJ' + • • It 0

* ".J ♦

* - • • -4 ..
• 1:1.
•C:* ·~· • ..
J:4• => •

• • "'0'.
♦ ;i., ~ •-· •2:• •--i • +m• * ,0 •

fo: • C.
•rn* • • • t.o, .. . -4. * i. ..
.. ,0 •
• -4.
•'-"* • • • J:!I, • . ~ ..
I ::c I
• rn *
.. p, * ·~· 1t ..
20• .,, ..
• • . ..,, .
.. l"'I • . :,:, . .. ""J:. • *
♦ r'I .. . :t'. • • •z • *m• •>:: • • -I •
• • • "U ... •~: •C'I •m * • * • • .. • • • • + • • • • • ..
• • • • * '*
* ii-

• • • • • • • • ii • • ii

• • • I • • • • • • •·
* • • • ..

• • • ...

... r r r
Cl ..., r, r,
'1 ""' r-, .-,
" 1j ""0

, n ,, ..., ., - C: C ~
~ 7 -j

II ,. u

0 C 0 0
0 0 0 0
0 0 0 0
0 1\,1

• 62 -

Notes on the example·

1) The location shown in this colunm is usually the

location of the instruction following the in­

struction a..ssoc1ated with the trace.

2) The time is the elapsed time, in microseconds ,

since the start of the simulation.

J) See the LPSW instruction at statement 58, and its

operand at statement 61.

4) This group defines one iteration of the print loo.

5) . ote that although this instruction does not address

the traced location d.ireetly, the location i.s con­

tained in. the operand, and the trace occurs

A.5~5 TURNING OFF TRACING

Any requested trace fac111ty may 'be removed when no

longer needed by eans of the TRACEOPF command The syntax

,of this command is identical to that o"f the trace command,

except that no optirms are includ.ed. In addition, all

traces o . a gi en type may be turned off by replac·ng the

explicit specification adr_, opcode.~ or ohadr with the

word

A~6

ALL. .or

T.RACE

TBACE

TRACE

TRACE

TRACE

- -
THACEOFF

HINTS

example:

I STBJ45

INSTB. 1 82

INSTB. 1 59

It STH 1 40

I STB,42

code - -
INSTR,ALL

TRACE BAL

TRACE LPSW

TRACE ST

TRACE STH

TRACE STC

TURN OFF ALL INSTB

1. Do not place a:n:J' carcls containing// or/* in

columns land 2 in your deck.

2. Use your last name (maximum of 8 characters) as

the label on the CSECT card which must be the first

canl of your program; This makes it easy to iden­

tify your assembler listing and output. Use a

TITLE card with ;your name a so for further ee.se

... 64 -

in identifying listings

3. Your deck should have one each GS ... CT card (above,

first card) and END card (last card).

4 Do not use the EXTRN or ENTHY state ents or Q or

V address constants.

5 .. The first 28 locations (16 doublewords) must be

properly initialized.

6 The instructor can set the maximum number of in­

structions you can execute and the amount of virtual

t1rne which you have to run. Ee efficient 1n your

code and use the wait state properly.

- 65 ,_

APPENDIX B

l iSTBUCTOBS PA Al

An overview of the steps in runn ng the simulator was

given in section 2 • 3 11he detailed p::roc edures are only

s1.ightly o:re involved. The following -sections discuss in

detail all the necessary considerations.

E.l STUD~r DECKS

Bach student deck must be one (only) S/360 asse bler

lanp-ua,F:e control section. The 1 ulator's loader can ot

llnk control sections, properly process external sy els,

or relocate to a base address other than zero. To enable

all of the smulator output to be easily collated, the nae

(label) on the CSECT card ls used by tpe simulator as an

identifying tag on all ouptput. A student deck should

therefore look l1ke

name CSECT IRST CARD

assembly languaire statements

E,D I -AST CARD

where name 1s an approtiriate :ldentifier· {student' s last

name or assi1tt1ed I.D. number, for exampLe). It should be

- 66 ...

noted that improper use of the ICTL assembler control

instruction can cause the assembler to terminate processin~,

and thus abort many assemblies 1n a batch run. It has

been a successful policy to simply make no mention what­

soever of this, since this feature of the assembler is

very rarely used. Should the problem a.rise, students can

be instructed never to use this statement.

B.2 ASSE'E!ER I ISTRtCTIOtTS

All .student decks for a r,1ven run should be ~rouped

into one large deck, check ·ng each student deck for the

presence of an END card. In front of the student decks

appropriate Job Control language control cards ust be pro­

vided. The following cards are the appropriate ones for

M.I .. T.•s Information Processing Center:

// JOB, PROVIDED BY IPC

// 1SUBMITTER 1S ! ANE 1 ,REG10Nc200K,CLASS:B 1 NSGISVEL;;(l,l)

/* ITID USEB..(M12J4,.5678)

/*SHI LOW

/*MAIN TlME:5, Ll-iIBS=6

//STEPNA.MS EXEC ASN,LEVEL=G,PARM .. C= 1LOAD,~OD:ECK,,BATCH 1

//C.SYSLIE DD DS AME=USERFILE.M4568.10113,JiACLIB 1

// DISF=SHH

//C.SYSIN DD ~

student decks

l*
- more control cards to follow, d1seusRed below -

""' 67 -

The first four cat'ds a.re the job and job parameter

cards. The number of cards and :information require . here

will vaey widely from installation to installation. '11he

cards shown are included for completeness .• The next three

cards shown are included for completeness The next three

cards are those required when a ca. ta.l ogued procedure such as

the one provided y IBM is available; refer to the Assemblc~(F)

R,r.2.e;,.r_arnmer • s Gu'.l..de J.C28-3756) for further informat'ion The
~

importa.llt point ere is tha.t the temporary data set na ed

&&TEMP must be created, contain the object module output of

the assembler, a.'l'l.d be passed to the next job step. rote tna. t

a priva. e macro 1ibra.ry 1 containing the TRACE, TBACEOFF, and

QUIT macros 1 must be used~

B 3 . SIMULATOR .INSTI:t_UCTIONS

The complete JCI. necessary to run the simulator ls:

//STEFSIM EXEC PG~:SIMJ60J

// PARM= 1MAXTIME=lOOOO,MAXCOUNT=4ooo,,cARDS:2,PRINT=3,MAXPGE=ll'

//STEPLIB DD DSNAME:USERFILE. M4568.1011J.LDLIB,DISF:SHR

//SIML!N DD DSNAME=&&TEMP,DlSP:(oLD,DELETE)

//SYSPHINT DD SYSOUT=A

//STRACE DD SYSOlJT:A

//SI .'PR T DD SYSOUT;:A

//SD PR r2 DD DUMMY

//srrPRJJ DD SYSOUT:=A

//SIMPRN4 DD DUMMY

/ /SIMPNCH DD DUMMY

//SIMFNC2 DD DUMMY

//SI P~GJ DD

//SI prc4 DD

/ /SIMI DD ~

DUM Y

DU MY

... 68 ...

- data cards for simulated reader OOC -

//SI I 2 ~

- data cads for .reader 012 -

/ / I}·I. J DU iMY

/ /s r ! ., 4 DD nu ,rr,ry

The se cf the various cards 1s expla: ed belo, after

the discussion of the parameters which ay be included in

the PARM'"" field.

E.3.1 SIJ'filLATOB: OPTIOdS

The PA!rn- parameter on the EXEC card wb1ch invokes

the simulator may contain any combi ation of the f(.ll owing

options. Defaults assumed by the simulator are underlined;

any eI"ror n the parameter field p oduces a terse diagnos­

tic, and the s1mulator wi 1 not run. t does examine the

entire parameter field for validity,however.

JAXTIME=n n must be a positive decimal integer

which repre.s ents t e maximum amount of

simulated real time 1n milliseconds

which will be allowed to elapse or one

program Default is 1000, or one second.

MKX.COill T=n

MAXPGE=n

CARDS: 0,!,2,J,4

- 69 -

n must be a positive dec1mal integer

which represents the maximum number of

instructions whio the simulator will

execute for one program. Default is 500.

n must be a po~itive decimal inte~er

which represents the maximum nu ber or·

pag.es of trace output (pr1n s r data set

STBACE) which will be allowed for ea~h

program run 'Default ls 5.

The number of input streams to the sim-

u at,or, corresponding to the D stat,e­

ments labeled SIMI (corresponding to 1) 1

SIMIN2 (corresponding to 2) • Sl'.MI!'il'J

{ corresponding to 3) , SIMIN-4 { corres­

ponding to 4) .1

The number of punch output streams to

be used. Corresponding DD statem.ents

are SIMPNCH - SIMP C4. 1

1 Only two 2540 card reader-p@ches are available 1:n the cur­

rent version of ·the simulator; the card input (output)

strea s J and 4 are available for expansion.

• 70 -

The number of print output streams to

be used, Corresponding DD statements

are SIMPRNT - SIMPR~.4.

PNCHDEST= 1:fil!.I,P:CH If it is desired to print rather than

punch the pu.T1ch output streams, use• PB!-!T'.

If they are to be punched, use 1 P'CH 1 •

PGMIIT= YES,JQ

TRAC.E: ALL,fillli!

The DD cards SI 1PNCH - SI tF~rc4 must be

corre0 yJi1.:.1.,i:. .. 0 :7 adjusted .•

If 1N0 1 , then a program interrupt which

occurs after a.. program interrupt and
.

before an LPS\il instruction is executed

will cause the simulator to print a

diagnostic and terminate the program.

1YES 1

' causes the simulator to ignore

this condition.

If 1 ALL 1 , then every instruction causes

the standard trace message to be

printed., Otherwise, only trace condi­

tions enables dynamically by the program

are printed.

The followlng opticYJs [re for maintenance and debugging
~

\
use only. Note that they l.aD cause many thousands of lines

to go to SYSPRI}T.

TDUMP= .Q,1,2

PDUNP- YES,!!Q

B J. 2 S!riULATOB. JCL

.. 71 •

•1 1 causes the trace que e to be dumped

every time a new trace condition is

enabled 1 2 1 causes a trace queue dump

as for 1 1 , and in addition on every

occasion when a rac,e message ~ s printed.

0 1 inhibits all trace queue durnps

1 1 1 causes the interrupt and event

queue;.. be duped each time an I/0

interrupt occu!'s. '2' causes the channel.

specification block and the I/ speci­

.f1cation block to be dumped after the

initiation of each device operation

; 1 causes both of the above. 1 0 1 1s

f o:r no cl.umps.

'l'he simulator's link ... loader module will

print relevant information on programs

loaded ana initiation of simulation lf

1 YES".,

/ /STEPLI DD OS Ab:.= etc.

This defines the 111brary 1 which will be searched first to

find SD1J60 when the system starts to execute the simulator.

Refer to IN srstem/360 Qperat1ne; System: Job Control Le.nguage

Reference, Vorm C28-67O4

- T2 -

//SI r Lir DD DSNA ·1E=&&TEMP ,DISP= (OLD, DELE':'-E)

This defines the assembLer· output from the previous step

as the program input to the simulator.

//S~SPBINT DD SYSOUT A

In the event of a serious error detected by the simulator

or the operating system, diagnostic informatio will be

printed on the SYSFE.lJT data set. This control card is

also used by the main.tenance and debugging options of t &e

simulator (DUFP=, etc.}.

//STRACE DD SYSOUT~A

All trace information generated by the simulator goes to thi.s

data . set. Note that the MAXPGE= opt'ion may be used to pr,e­

vent an erroneous program from generating hundreds of pages

of trace output.

//SIMPRNT DD SYSOUT=A

Output to printer OOE goes to the data set det'ined by this

control card. This card and all following may be punched

as follows 1 the simulated I/0 device :ls not to be used:

/ /SIMPFU 2 DD D MMY

Remem er · that correspondence is required betw-een the PRINT=

option of the s'1mulator and the SU1PR. x control cards

- 73 -

(PRI T:l implies tbat on y SI PH T and printer OOE will

be used; PRINT==2 implies that SI FRN2 and printer OOF will

be used in add tion, ete.).

//SI FR J DD SYSOUT-A

This particulars mulator run (of an assigned student

machine pro lem) was using printers OOE and 010 but not

printer OOF or 011.

//SI·PR 4 DD DU·

Not used in this case.

/ /SD1Pt C DD DU MY

//SI prc2 DD DUMMY

/ /SIMPNCJ DD DUMMY

//SIMHC4 DD D MMY

No card punches were used n this example. If a punch

we~e to be used, the corresponding JCL card would normally be

/ /SIMPNCx DD SYSO T=

/ /SIMI T DD *
Th1s JCL card must be followed b,y the data cards wh ch are

to be read by the simulated card reader OOC. Note that

because of Sy tem/360 Operating System conventions I none o ·

- 74 -

these da a cards may contain// or/• in columns 1 and 2.

/ /SH1IN2 DD *

To be followed by cards for simulated reader 012~

//SIMIN3 DD D ·iMY

//SIJ,iI I4 DD DUNNY

The simulator 1n its cur.rent implementation has no device

which uses these data sets. It is recommended, however,

that they be included, since the simulator may attempt to

open the data set if an e:r-ror occurs in punchinF; the

GP.RDS= option.

- 75 -

APPENDIX C

GUIDE TO MAINTE JA CE, MODIPICA IO AJ D REPROGRA i '.Im

Bec,ause · t is wr1 tten in PL/I, maintenance or re ro­

gramming of the simulator should be fairy strai htforward.

The following discussion will therefore trace the overall

logic and f ct1onal behav1or of the code, and avoid detailed

deseri ton except where necessary.

C 1 OVERVIEW

The simulator 1s composed of four major modules:

1. SIMLINK - eads and oad. into virtua co:re

array the object module (assembler

output). Also does initial parameter

processing~

2 • SlMCPU - Does simulation of C.FU f unc ti one ,

instruction execution, timer, inter­

rupts,. Also does s1mula.t1on of DMA

data transfers •

J. TRACE

~. SI.MIO

... Processes dynamic trace command in­

terpretation and does the processing

and formatting associated with trace

output.
'·

- :·.1~ · s a l process in related to I/0
-~--

- T6 -

instructions, CCW I s, e.."'1.d the in­

ternal performance of I/0 su

systems •

. n addition to these four major components, t here is

a very_ small (42 BAL instruct.ions) assembly lane;uage sub­

routine which does simulation of fullword multiplication

and di vision. This is neces.sary because these two s/360

instructions (M alld D) re _uire 64 bits of precis ion and PL/I

does not have this capability.

C.2 MODULE SIMLINK

C 2 .1 PABAMETEB PROCESSING

This module contains the initial entry point to the

simulator. First the parameters passed to the simulator from

the PA.BM= field on the EXEC card are processed. Processing

is very straightforward and 1s outlined in Figure C-1. Hefer

to the Appendix B for fu:rther information on parameter key

words and their effect.

C.2.2 PBOGBAM LOADING

When parameter processing is completed, the error switch

is tested and if an error has occurred the program terminates.
"' - ~ - _ .._., - L , '1il'4 " ,_. -

Otherwise, some 1nit1ali.zation ls performed (at the label

RESTRT; see Figure C-2), and the output data set of the

assembler is implicitly opened and the first ce..rd read. Of

the five valid record types produced by the assembler, 1 only

1 IBM System/J60 Operating System: Assemble.r(F) Frogrammer•s

Guide, For C26-3?56

- 77 -

~c.t \cc;...\.\ '1/o...no..\a\e
[~] ~ f.o..rc..:•"'l tr
<..\,,,a.." t f" '::> n""'

D'r

Figure C- : Parameter Frocessing
(continued o. next page)

- 78 -

c:i~o.-~\,, ~c...- i,-,,,wci~
~ a... vCl.-\;.a_ 't.t\~c,.•.i

~'C'O<.e~~ o..C.ce'C'.:X.\-....~\~

Soi2-\ \ ~.e.'"~
'.>-.ol ',-'ft:c_"' 'tS.-

Figure C-1, continued
(continued on -next page)

Valid Key · ords

·iAXTIME

MAXCO .!

T ACE

PGHJ

CAHD3

P "CH

PBDJT

MAXPGE

F C.DES_

D ·.P

lQDU~P

PDUMP

- 79 -

Inte al Switches or
ariables Affected

MAXT

"):X

TS ITCH

PG1'1_S

OI TSTB

NOP STB

OPBSTH

NXPGCNT

PPR'I SW

TQD•IPSW

CDDMPS .f • IQDMPS 1

PDU~FSW

igure C-1 continued

<;.~"'t ~-":t t:, ~

s~ 'oa \ 'f\.G\.Vll'le:.

- 80 -

<;e.,-t E,_ <;W

~;.._.;,,i~f \~~ ~~(0~
'N\ t. ~ s..o.. i e. .

TXT

Figure C-2 : .Program Load.ing
(continued on next page)

- 81 -

£>n'V\t e.t~o'<
\'\'\~~Sil.i.e..

c;e. \- t. - <; w

\..co.A s , .. ,."l\., ed

-h: ... ~t

Figure C-2 continued
(continued on next page)

- 82 ...

~1"\"4',: f..tl"'O'f

iVvf.5,.~~ e.

Fi gure C-2 cont i nued

S.e..~ e.__ Suj ~ ­
\1\\\i,~.h~e.. fk~,.r

\'.l\!. 'It.\ ~':. -to x~rc
• , T \' L<;,1-,.; o '•\·

- e;

three are processed by the assemble ; HLD and SYM records

are ignored (without causing an error cond1tio). The ESD

record is used to establish the 1dentify1ng name of the pro-

gram being 1mu1ated. f the conventions for progra1'!l prepar-

ation ou lined in Appendices A and Bare followed, this will

be the name (label) on the CSECT card of the progra be1np;

simu ated. The END record signals the end o the program

and causes the actual s1mu at on process to be init·ated. TXT

records supply the text of the progra and are loaded into

the v·rtual core array PROO This 1s a o e dimensional array

oi' ali ed eight bit elements which is u.sed to re esent the

core storage of the simulated computer.,

the logical flow o:f' the oading process.

F 1gure C - .2 shows

ote that if an in-

valid ca.rd type is detected or the· student program does not

initialize the first eight bytes of core storage (us,ed as the

1n1 tial PSW') the prog·re.m will not be n executed • Also note

that when the si ulation of one program is finished (return

from call to SIMCPU), SIMLINK reinitializes and continues to

load following prog.rams I terminating only when an end of

file condition on the input occurs

C 1 3 10D ~LE SIMC PU

C, 3 .1 START P~ AND I I IALIZATIO .

On entry to this module various local variables are

initialized and two ,calls are made to 1n:ltia11zation entry

- 84 -

points in the modules SIMIO and THACE (SIMIO and s1~·TBAS •

re spec ti vely). The first operand address ls forc.ed to zero

and the LPSW instruction is given control to load the ini.tial

PSW.

C .,J •~2 I STRUCTION SII1ULATION

Instruction simulation, 1n itself, is quite straight­

forward. The interpretation and decoding of the instructions

(Figure C-3) is not quite so simple, and the actions taken

after the completion of the simulation of each instruction are

quite complex. Figure c ...) shows the outline of the algorithm

fo:r instruction interpretatiOni reference should be made,

if necessary, to IE~ System/J60 Princinles of Operation.

Given the information in Fii-ure C-3 and the diagrnm showing

the accessing scheme for the virtual core array (F1gure CM4},

underst,anding the code which simulate~ the various 1nstruc­

t1ons is easy (most instructions involve only four or five

line:s of PL/I code).

As shown 1n Figure C-4 1 the virtual core array may be

accessed in six ways:

l) As a byte - 8 bit logical value

2) As a. halfword - 16 bit logi.cal value

:;) As a halfw,ord .signed integer in the range

-32768 to 3276?

4) As a fullword 32 bit logical value

i- i!"r r C-3 · In t ... · ct on 1 terpr ta.tion

ontinued on r ex pa e)

- 86 -

C..\\1t.C.~ tot \~S.-'IT1.1(.;n0\\

i'fLI..C.t. , e_ i- '-...... '"10~,
't't'Ci.tt::, -

u,..\\ -tr~t.. w..cd-.1-4 \t..
\~ f\~.eci-t<L

U.rd.~._-\ e.. TT''' E.
~ \ ""~:,h I.I.~ , \Cl\/\,,

-\-\W,.(..

Figure C-3 continued
(continued on next page)

lar1able

ADDRl

D82

I

REGXl

REGX2

- 87 ..

Address of operand l (if presen -

RX, SI, RS orr at)

Address of operan 2 (if present­

SS forrna -)

Value of opera~d 2 (if an im ediate

operand) o v·alue o count field

(if SS format)

Rl specification forge eral purpose

register operand (if RR or RX

f 'ormat)

R2 spec1fic,at1on for general purpose

register operand (RR format}

Figure C-3 continued

'"I)
1-'­
-rq
s::
'1
(b

n
h

~
0
0
CD
(A
(I)
I-"
::1

OQ

C't
~
((I

<: .,...
~
C't
s:::
~
1--'

0
0
1-j
(ii

>
'i
~
n,

c..:

PROG(BITES,8 BITS)

BIT_:HW (HALFWORD, 16 BITS)

HW(HALFWOHD,SIGN and 15 BITS)

BIT....;FW(FULLWORD,32 BITS}

FW(FULLWORD,SIGN and J.l BITS)

BIT_DBL(DOUBLEWORD.64 BITS)

A similar scheme is used for the p;eneral

purpos.e registers.

1 J

L

I

o:>
CD

I

- 89 -

5) As a fullword signed inte .er in the ran~e

-231 to 231-1

6) As a doubleword - 64 bit logical value

The eneral purpose re isters are also represe ted by

an array (extent 16--0:15) and are accessed in the same way

as 32 bi logical, 31 bits with sign integer, and 64 · it

og cal val es. The frequently refere ced procedures A _PR

and FROT c eek operand locations for boundary al'rnment

(A ,_p OT only). address tracing requests; and emery pro

tection vio at·on {see 1 ure C 5).

C 3 J POS PROCESSI ·I

After the execution of each instruction, and before

interpret ng the next 1nstruct1on, the s mulator must check

for a · variety of conditions, and perform the necessary

processing associated with the conditions found.

D INTERRUFT SCHEDULI G

The label ND (very rarely D2) is the point where post

lnstrruction processing 'begins. The instruction count is

updated (and checked against the allo ed maximum), e.nd the

simulated real time (B_TIME) is updated by the execution time

of the in tr ction j st completed (nominally; value of temp

TI E). Then the timer counter (T_TII'1E) is updated and a

check is made to see if 333J microse,conds or more (virtual

time) have e apsed since the timer was last decremented. f

this condition exists 1 then the simu ated timer (ullword. at

location 80) 1s decremented by an appropriate amount, and, if

- 90 -

~ W\ ~>u-'\l'l.J\5-
-tS. ~\" -\Vl.t" h-ac.~ . , .

~ \'\.\<, r~'l"l o""-

t"ee:s"'f-~cl

Figure C-5 Alignment and Protection Checking

-. 91 -

the imer has gone rom a positive to a nef{at1v,e value as

a result, appropriate interrupt processin is done r
the system mask allows external interrupts (bi ? - 1)

then the interrup is taken 1m ediately.; if external in­

terr pts are masked off, t e 1 terrupt is sc1ed led to

occur as soon as the external interrupt mask bit is set to

al ow the interrupt.

C .3~3.2 SEARCH FOR H.TERRUPT

When t er processing 1s completed, t e inter pt and

even queue is searched to see if any pend1n (or previously

masked of) interrup or event is due to occur. An event

occurs when its scheduled time ii the q e e e tr) is less

than ore ual to the elapsed v1rtual time in the simulation.

owever, an event due to occur in tie may not take place,

because, for example, 1t 1s a timer interrupt and the exter­

na 1 terrupt mask b1t is zero. An event which is not an

interrupt might be the transfer of a byte to or from core
.

storage by a c arm.el in the process of data transfer, or

the occurrence of a device end for an operati,on initiated

by a channel command word with the command chainin bit on

Figure C-6 shows the outline of this process ,ote that the

interrupt and event ~ueue is maintained in sorted order by

che uled time of occurrence. and hat masked interrupts are

simply left at the head of the queue, and thus wi 1 be

- 92 -

.... -'r'"
I
I

\\'t<'\f.t

~'fbC.t.S~\~

-­..,.

\\l.o G..o \v,;-t--e.."t"1i'>'"€1t
>---.i ~i.:1,.+

l \/\ S."t'r U..<:.; ~\Cl'\.

Figure C-6 : Interrupt and Event Processing
(continued on next page)

Set ~.;~ :\c. ..­
~'-~.,.. ,,'-l-C.U..t.

~ ~f'j

93 -

Figure C-6 continued
(continued on next page)

i:;;-------
1 " l-!>~v; :
I \~trv..'-.,iC!I,';, I

: S.\~-u.J,,ti l G'I\, I
t.cat. \ O~S, I'-

1.J~ '(_$~- J ', ,.

W-t ~£,W '""
~Cl(?'l"\4.\~ c:U

(\;,,; ~ .. n-~ied)
~w \ occ..:.fv:,'t\

- 93 -

\)o t\ti'tl.\. ""n'~\·~i"
(c.tire....,. J..f..,,;1'-&:.­

~.--
d_.q:,,_itc.e-,. cc.<c.)

C.cd\ EV-t:t-,j
e_V\1 •~ ~C\V\

'\.'I\ \!'V\(,tt.Ji~
'S::. :t w,, 'I.0

~{!.~--­

bD_[VEN"T

i.e ~c.\...e~ \e J.ai... tc...
TCi..-¥\~~ ~.,. ~\I~"' 't w-ea c \"\ ct,,..ti,,...
de.. q' d.e.v,cce

Figure C- 6 continued.

- 94 -

examined every time the queue is searched. As sho"'m in the

figure, if an 1nterrupt or event occurs, he post instruc­

tion processing section of the simulator 1s re-e tered at

the timer processing- point (effectively the start of the

section). This is because time ls Pequired for an n~errupt

or eve t o take place, and thus the elapsed t me must e

a.ain upa..eted, and a possible t·mer 1 .terrupt checked for.

C~1.1.3 WAIT STA E FROCESSI 1G

s showri. in Lt 1 ure C-6 1 if' no in errupt or event takes

place, then the wait/:run state bit of the CPU is checked.

If ~he C ~ is in the run state, the instruction interpre­

tation code 1s invoked and the simulator continues I~

the processor is 1n the wait state then a somewhat clumsy

a..'ld hard to follow section of code attempts to find the

ex poi. t in time when an event will occur and poss bly

cause processing to continue. Candidate evens are a timer

1nterr pt or some type of I/0 interrupt or event If ~he

simulator cannot deter ine that there exists such an event,

then the simulation is terminated and an error messafle is

pri ted

C 3 J. PTS

.Proe:ram 1n errup s fall outside of the st rue t ure

out ned a ove Most program nterrupts cannot e masked,

. s which can. be mas!~,.;;:d do not remain pendi P; unti 7

"" 95 ...

enabled; they are completely ignored Therefore a special

section of code handles detected program exceptions. This

routine sets the appropriate interrupt ,code in the proP,"ram

old PSW (simulated core location 40), and aftel" appropriate

processing goes to the label TAKE_) in Figure C--6. The

appropriate processing may include completing an arithmetic

operation in which overflow was detected. or perhaps detect­

ing that the program exception which occurred was masked

off, a.T1d 1gnor1ng 1 t al together.

C.4 . MODULE SitIO

Th1s module has six separate entry points to perform

different functions related to I/0. The entry points are:

SIMIO In1tial1ze the control blocks and data sets

associated with I/0 device simulation.

SIMIOT

HALTIO

STAHTIO

TESTIO

Called to clean up I/0 simulation on ter­

mination of p,rogr,a.m_ being simulated. Closes

data sets, f ushes buffers, etc.

Performs processing assoe1ated with the

HIO instruction.

lmpl,ements the SIO instruction. Ini. t1ates

appropriate device activity as specified by

the ccw and the s t ,ate of the I/0 s u bsrs tern.

Simulates the TIO instruction by examining

the state of the simulated I/0 subsystem

- 96 -

and the specified devic , e.na approp a·ely

setting the condi on code and the s a~~

portion of the channel status word

Performs the processinp- associated w l.r re

occurrence of an I/0 event.

Sefore at empting to understand e functionin, : the

I _ m a' ion odule I t is extreme y imp rta.n t o tmde. -

st ,=1 _n de 11 the o:per·c:.L.J..vH u: 1,he s/360 /0 subr::·:st1::~s .

,eca ~e the -/360 can accornodate an extreme y wide _ ;,nr--e o

I/0 devices and because the I/0 capabi ies of the Ji'Q

are e. r "_owerfulu, I/0 operations are quite co lex~-~

if cult to understand, and the occurrence o s · tle ies

and excep 1o sis quite frequent. Therefore, t.e , ain­

enance rogrammer who snot very fa i 1ar wt s/3 O

I/0 1s encouraged to carefully study t.e I/0 sect1o~ of ~ri~ci 19$

conjunction with this guide and tr.e prog-ra.i.

l st.1.ig of SI HO

c.4 1 ~10 r:r IALIZATIO

s mentioned in section C.J.l, on,e of the first

ste s 1~ in ializat on for s1 ulation is to call the

l IE·' - Opera t.1-..,. Syst,em: Pr · c1ples or Cperati o .. ,

•• rn 22-'E21

... 97 -

i.ni. tialization entr~t point SIMIO in t e I/0 simulat · on

module Initialization 1s gu:ite straightforward. All

channels and devices are put 1n the available state, printer

and card punch data sets are opened and identifying head.ers

are written, and a few e.ntries in the device specif ca ion

blocks are in1.tialized to put the system 1n a clean,, ready

for operation state.

C • 4 2 I /0 TER~ IN A_TIOI

The I/0 termination function si ply checks to see if

any data is contained in the device specification blocks

which has been output by the pr-ogram being simulated, but

has not yet been written to the appropriate print or punch

data et. If there is any such data, it is PWlched or printed.

9 ... --4:..3 · HALT ILO INSTR

The entry poin.t HALTI O, in s imula-t ing the HI O 1 -

struc -ion. first checks whether or not the addressed channel

is operating in burst mode,. If the channel is so ope.rating

then the dev.ice with which the channel is communicating is

determined, the data transfer operation is term1nated, and

appropriate interrupts are scheduled. If the channel is

available I then the addres,sed device is found and its state

examined. If the addressed. dev1,ee 1s working, hen any

data transfer 1n prog:ress (there may be data transfer in

progress on the multiplexor ::hann.el without being in burst

98 -

mode) s terminated, and all 1nterru_ ts which would normally

occur due to device operation are so eduled to occur (with

appropriate changes to reflect the HIO). The condi io

code is se ... and the s_m _ation o the HIO .is corn_leted.

Fi ure C- shows the operation o this routine

C 4.' I/0 ITSTR CTIOi

e e try point ESTIO f1rst checks for the channel

work in s ate (urs t o. ration), and, f found I se :s d-:e

cor1 :.t · on code appropriately (102) an returns Ot'.rJerrrise,

the addre~sed device is found and exemined ft e device

is a.vailab e, the condition code is set (002) and a return

to 1 er is executed. If the device is in the interrupt

pend nf'.!. state then the CSW information associated witn he

interrupt ·s storedJ the interrupt 1s cleared, and he

condit"on code is set to 012 (CSW stored) If t e device

1 ·ork ng, the usy bit is set in the stored CS!, and the

cond tic __ code is set to 012. See Figure C-8 for further

inf orrna ti on

C. I/0

p n entr to the START IO routine the channel d

dev c~ are checked o avai ability. If one or the tner is

not vai able, action very similar to that of TESTIO fr

the c respond n~ situation 1s taken. If both the channel

and de ce are available, the cha el interpretation code

to (\, \ -\,.\ C\r\

C.cd.~ = o\ l.

- 99 -

\-\ ~ LTIO

1F {.....-1, ~f(.S~-uJ,

u~h·c.\ u.."f\\,;.
c,..,....J,, d.t.v\c

Ir: V1.d. a:J. \ "'\/ E. ••/tS
~\r.p. i~ -\-D
V\4re.\",1..,,,~'f.5 C\.S,

c,,.c."'-.~c.\...__\,e,c:l

No

Cowl \ '\ \ 0¥..

ccd.t. -:. ooJ..

.

'

,J i::;e.."t
>-,.._'(.._f._ C,..~(LV\V,, \

"'-.\).>...'. \il. I.a \e.

'r,"N!
o..s,;o
"~t.f~tr, 0

\"'

r~c fe.S.~

\4!..t''l'tl\~,-C, 1,\c..;
il'O,.);\<?.it..'(", <:,c.\.i,eJ,..!

\ et"'""'-f'T-\'o~
(.Q' fl; \" w.cJ. ..In. """e..

(o'C\O. \-t-\ o..._
c.od.t.. : \C ~

Figure C-7 · Simulation of HALT I/0

c:; (. \,,,,_,ed,.,t4 \E. "-.y,,

\°'f"\.""-(C\~ ~
·, 'I\; 4t,. 'C''{" {'s'\'

- 100 -

u.i t o..,...J.
R~~'("

cA J
.

e.

{ CL "00:i_
e.S) l"

\ t.S. c;: 0\"(_ c;.w

C:C -=. ot

Figure C-8 s · ulat1on o TEST I/0

• 101 -

1s entered.

Channel interpretation starts by c~eoking the channel

address word (location 72) for validity·, and, 1f valid,

setting the protection key and the CCW address. mhe chan_ne l

command word location 1s checked against the key for fetc

protection, and if no protection error ts found, the ccw
is fetched and the CCW address is updated. The ccw is first

checked to see if it is a TIC {transfer in channel). If

it is. then some validity checks are performed on t1e command

and its occurrence (i.e., a TIC CBT1..not start a command

chain). If invalid, appropriate action is taken, and if

valid the CCW address is set to the address given in the

TIC. The channel interpr•eta.tion code ts reentered at the

point · where the next CCW is fetched (see Figure C-9)

If the eha:n:n.el command word is not a TIC, then it is

checked for validity. If valid, the PCI {program controlled

interrupt) flag is examined, and if set,. an interrupt is

scheduled Then the various fields o,:f the CCW are extracted

and the chain data flag from the previously executed CCW

1s examined. If cha.in data is on, the parameters of the

data transfer in progress are updated with the data from

t e new CCW, and the data transfer is co,ntinued (note that

th is particular act ion cann.ot result from a start I /0--

no previous CCW--but only fr,_,m an event; see section C.4.6).

No

~~* ccw.
~~~ CC..W 

Ql,,.cld,T s.s 

- 102 -

Sci t1ro t'C:....... 
C.~«..t CS.w 
c_c_: O\'l. 

£ :\: ~•c' '!L C--..--­

C..~{_ ''\( 

Fi. re C 9 Channel I te preter 

~o t;Q..-t re.~~~ 
c., ~t.'\( 

C.t>- c.-r 

) 



- 103 -

If there is no data chaining from the p?"evious cm , then a 

processing routine fat' the specific device is called to 

initiate the operation specified by the ccw. 

C.4.6 I/0 EVENTS 

There are three different types of I/0 events. Two 

are data transfer events, and their occurrence is marked 

by the tra~sfer of one or more bytes from virtual core 

stora~e to a simulated device, or vice versa. The re­

maining event t:ype is associated with the occurrence of 

a chan.~el end or device end condition which arises in the 

process of an input or output operation. ~1nce the ter­

mination of data transfer sometimes (on a multiplexor 

ehannel 1 for exam"Dle) causes a channel end condition, a 

data transf,er event is acted upon exactly as a normal 

(third type discussed above) event when the last byte of 

data specified by the operation has been transferr,ed 

(see Figu~e C-6). All three event types are kept in the 

interrupt and event queue in sorted order by time of 

occurrence. They are placed in the queue by the device 

processing routines and contain information that reflects 

the characteristics of the d.evice and the operation beinp; 

performed. Fi.gu,re C-10 shows the PL/I declaration of an 

entry in the interrupt or event queue, with comments ex­

plaininF, the items. 



Lr _Q EASED ( _ CI), 

2 F ":.'"\f _J PO HTEB, 

2 t~Xm I POINTER, 

2 TI ,...., l DEC LOAT, 

2 - ~· _DATA POI TEB, 

:2 E C'.. POIIJTER , 

- 104 -

2 I. :='._INTRVL DEG FLOAT, 

2 TYI'L_l FIXED BIN(l5) • 

2 CO~ I BIT(16) ALIGNED, 

2 5d BIT(64) ALIGNED, 

/~NULL IF FIR-T ::;;:r:.Ri -·; 

QUEUE..,;/ 

/*1 L IF LA~T ErTR~~/ 

/*-CHED L D T FE OF· 

OCCURHENCi~ / 

/*LOCATES ATA A'! ':'r.- r t .. Jes~/ 

/*ID~N IFIES A .:;c::;r, -EL 

/*IDENTIFIES SSOG~ .. ~E.u 

DEV E*/ 

/ *FOR DATA TBA!i :F::;R EV;;, iT.S -

TIME B TWEEN B 'T:t: mF.Ar SFER / 

/*!,£GATIVE FOR E !:NT .), / 

/*DEVICE ADE. I FOR PSW* / 

/YCS\4 ASSOCIATED W/ 

INTERHTPT OR EVE~T / 

2 CORE INDEX FIXED BIN(l5), /*CORE LOOATIO FOR NEXT 

BYTE TRANSFER*/ 

2 DEV_ 4mEX FIXED BIN ( 15) 1 /*I EHTIFIES BYTE 

TRA1SFER AT TEED V_CE*/ 

c. DA A_com T FIXED BIN{l.5) 1 /~r:o OF BY _s O EE T. A;': 

'"'BRED*/ 

1 ~re C-10 : Inter ~upt ar..d Event Queue Snt es 
(continued on next _age) 



.. 105 -

2 I ~cBE FIXED I ( 15), 

2 C STAT CHAR( 1), 

2 . E" _STAT CHAR ( 1), 

2 MASK BIT(8) lGt~D, 

2 IO_PROT IT(4) ALIGrED, 

/*"EGATIVE FOH READ 

BACKWARD*/ 

/*A, I, OR W ~ STAT S A.FTl!.R 

OCGURR.ENCEir-/ 

/*LlKEWISa.;, F R :CVICE* / 

/* .AhD . W/ SYSTE .- ·: K TO 

s E IF n TERR PT _::r A LED*/ 

/* ROTECTIO: K~Y ASSOCIATE 

WIT PERATIO~ */ 

Figure C-10 continued 



- 106 

T e e 1 ent processing routine (EV T in SI •·ro) h a11 le~ 

only norma events (data transfers are done in S 1".CF · ; 

see sec ion C J.J.2). Upon entry to the outine t e cha.rme 

and de,1ce nvolved n the operation associated with ti.e 

e en ... are determined (using E_CH and .... _DEV, Figure C- 10) 

and.., es a us b its of the CS4 associated 1th t he even 

re ~xa or u...nusual status (usua ly a~ error ) . I. 

there is w1us al status t hen any cha i n i r; i e f fee'- i 

caric lled, an a interrupt is sched l ed to not ify ;le 

pro-ia o the unusual condition. n t he abse ce o_ ~-

~ iaJ s atus t he sta' s bits o the c ·: are tes ted for 

. evice en . Upon device end, and data 1.f chaininP.: i s 

pee t, ~he channel interpretation loop ls e.tered 

( _r.· _too- , Figure C-9). If eo mand chaininP- is on 

from the pr ev ious q_ue e, then th eve. t ls deleted fr m 

t e e e, and the charm.el interpreta tion loop 1s ent ered. 

ft .ere s n o chain.in_, then the event is changed o n 

inte:rr p ( to occur immediately, if enabled) and a ret i·n 

1s made If thee ent ·snot a device end, then 1 da a 

hain i s on,the charm.el interpretat on loop is e 

-r c mmand c aining is on, the event is deleted from .e 

eue and therwise ignored, in the absence of chaininit?.:, 

n i err pt is scheduled as above. See Fi ure C 1 or 

-urt e · etail . 



~ e. 
M~Vl-e.\ o..,.,_ti_ 
d_Q...V \C:. ,e. 

No 

\)e.\,~~ Q:..'J(!.'V\"T 

-£:~c\j'I,,\ \<.i,.."-~E.-

C~LI..NT _ L.ODf 

- 107 -

Sc.\«...ecl1.J..\e.. 
\ v,,w, t.d.. ¼...\e, 
\""-"\"e.Tl"1,,,.~'\" 

s~ --a~4'1(. 
-r- ----,, ~ v,•,td. \4..-\~ 

(...,_\..t'<-r ..... r-t-

e.\ ,t..1-(. t .. :\lt_.v,,.'T 

'fO>,N\ °DU..~U,.~ I 

Figure C-11 Event Processing 



- ,,08 -

c .4. 7 D3VICE SIMULA rm aouTnras 
The details o the simulation of an I/0 operation to 

a p;iven device are handled by a set of routines, one for 

each c ass of deices {see section C 4 5 and Figure C-9) 

Each il1dividual device is defined by a device specification 

block (!JS ) which contains all necessary information about 

the devi e a..nd its current state; one piece of this in­

f"ormation identi.fies tne particular device routine \'.Th· ch is 

used n s'm:rlating ne device. The de ice routines decode 

the am and byte from the CCW and initiate ap~ropriate 

action. -ntries are paced in the interrupt and event queue 

as necessary Any necessary I/0 operations are performed, as 

1n .he case of a simulated card reader where an input data 

set of the simulator supplies the 11 ca.rds for the s1mulated 

reader All relevant command information is checked for 

-va. idi and proper sequence (there a.re invalid command 

sequences on many devices), a.nd appropriate error act_o ·s 

taken if a.'l".l anomaly 1s detecte,d Sinee these rout1nes vary 

widely in form with the device simulated, an example of 

such a routine is shomi in some de ail in Figure C-12, but 

n.o at empt w 11 be made to explain in detail the functioni 

of each sue routine~ The appropria e ~eference manual for 

a de ice w · 1 p:rov · de deta · led inf orimat ion on its perf oI'ma.n.ce ., 

and c rnplete i.mderstand1nc- of the behavior of the de ice 



'be..c..oA~ .. 
t.oV'C\ vt\O.. ~ 

'°i*~ 
Gci'f('l.'f'>,C,..~·\j,, 

~,for.d: ,o..~ 
S-~c:'I' -s.e.l«"t 

~\-.d.....J..e, I,).. d.e..v·,u. 
~'<'\d. it.\l.U,,.-\- ·f D f 

\l'~~'(\-\ \~w,,e,. + ,,__;l\'\S 
c.l..d-~ ~l ~, cta\a_'j, 

fl~ ( 0 -;It) ""'5) 

<";t,"\- C.$w S"\u.¾ 
'o·, s. ~ ~"e\ 
e."'4,, 

• 109 ... 

~E--\- c~w~ 
~-~\s.--\1)~~ 
~'fd~u...i,t c:.\-.t.c..'(. 
~t Sc:.,,i,.e.. ~,'t (ri 

;,t ...._fH l.!..#,.t:f · 
\ Of.,, ~ "' c..,s.....: 

..;,"\'cl.: '::, In, s . s.e,,. 
~e."6e 1t I. 

St..~,A~ ~-e.. 
a.,.,,._ ~,.... en·~t 

£.c.'\' \l\<.C,,~c.+ 
\t_'('t,t,._~ ':,,~~ 

\::\-'t<.:i 

Figure C-12 : HFS Command to Card Reader 
(continued on next page) 



- no -

~c <.d,,...._\(. ~ 
t.v ,t:f\'t +c o<.c..'"'­

o..:: ~,c:.~~- -h ~ 

£, e:t c.ov-d_, ~-\ o 

oth. +o ·oo l. 

FJrr:ure C- 12 co tinued 



... H1 ... 

will tend to lead to an understanding of the dev·ce simulation 

routine. 

C.~ TRACE ~ODUIE 

Ther,e are 9 entry points to this module, tt-ro to pro­

cess d.ynar:iic trace req_ues s by the simulated program. and 

6 to do the formattin and prL~t nr. associated with a trace 

mes are. The entry points are: 

TRAC~ enables a trace condition in accordance with 

information supplied in the trace request 

NO_TRAS - turns off any existing t:race conditions of 

the type specified 

BTRACE - called to do, printing associated with a branch 

trace 

ITBACE ... called to do an instruction trace 

NTRACE - called to do an interrupt trace 

ADTRAS - called to do an add:vess trace 

ETRACE - called to do an execution trace 

CTBACE - called to do a channel trace 

SI TRAS - initializes for simulation 



- 112 -

The process g done by the TBACE module is ot particularly 

inte es i-; or diff cult to understand. it a few excep­

o s, it consis s of get ing sch and such a field to 

print in c_ arac ter position n, a."11 thus is pa.inf 1 J y de-

a · led but conceptua ly unchallengin . Discussion •.'ill 

theref re be brief. 

C,5.1 DY AMIC TRACE REQUESTS 

A trace request extracts nforrnat ·on co iled i. to 

tie .ro;ram code by the Trace macro instruction, checks 

it for validity, and makes an entry in the trace queue, 

a list o enabled traee conditions. igure C-lJ shoi·rs the 

data for.at 'n the progra code, and Figure C-14 gives t e 

PL/I structul"e declaration of an e. ry in the trace queue . 

he transformatio from one to the other is almost one for 

one and quite obv ous One item of interest is that 1 

invalid data is found in a trace request, it is assu ed 

tha t e program being simulated has erroneously odified 

instruction locations. In this case, an attempt 1 a.de to 

find the end o trace request flag, and if it can be found, 

the invalid trace request is ignored; otherwise, en op­

eration e ception (program interrupt for inva id op-code) 

i taken There ·s a separate routine to process each 

type of trace request 1 but they are very small {about five 

PL/_ sta ements) and a:re nPcessary only because a different 



* 

* 

* 

OS 

DC 

DC 

DC 

DC 

OH 

X I On' 

XL2 rid' 

... 11:, -

ALIGN or HALFWORD BOL~mARY 

'TRACE OP-CODE 

TRACE TYP ..... : 

o: BRP.lJCH 

1' ,. IJSTRUCTIOJ 

2: AD RESS 

3: L,rTEHBUPT 

4: EXECi.:TIO. 

5: CHAl•:HEL 

6: rnSED 

7: ID·;USED 

8: u·r,ip 

ADDRESS , OPCODE , I T. TYES ,ETC • 

BL2 1 status bit swi tcbes 1 BIT S HTCnES FOB 

STAT S DU •.PS. 

DC BL2' register 'bit switches 1 

*POLLCWI-1G PAIRS ARE COBE DU:MP SFECIFICATIO~S 

DC 

DC 

Y.(address) 

ALl(n,s) 

FIBST ADDRESS TO BE D J111PED 

n: NU:rraER OF WOBDS DUMPED 

s = indirect switch 

1-'-'FHERE 1-iAY BE UP TO EIGHT PAIRS, TER•IN.ATED BY THE 

*F0LL0WI:G SENTI JEL. 

DC XL2 1 8000 1 TERI• rATOR 

Figure C-lJ Trace •·aero Data 



... 114 -

D ... C_AP.E 

1 RACE_LIST BASED ( P _ C ) t 

2 PREV p LJTER, 

2 l F.XT .POI TEE, 

2 TY E ~DCE Bl (15), 

2 ID IT(16) ALIGl!ED, 

2 STATUS 3lm(16) ALIG.~.J • 

2 _EGS B -T( 6) ALIG IBD, 

2 •1P_OPT O I$( 8) • 

3 ADDRESS FIXED _11-r ( 15), 

J DCO ,T FIXED Bli( 5); 

Fi re C-14: Trace Queue Entries 



- 115 -

internal indicator fo each trace type is used to indicate 

that a trace condit on is enabled. 

A Traceoff command. is processed. at entry point 

and simply emoves from the trace list the particula 

O_TRAS, 

1 -

stance of the trace type specifi.ed, or, if ALL of the f["iven 

type ere spec if ied, then every ins ta'l'lce 

C .,5, 2 T.RACE OUTPUT B: UTINES 

The six entry points associated with trace out ut 

a.11 do very- much the same thing. The trace list ·s searched 

for the entry associated with the trace con ition 

that because the Traceoff command only r ,emoves the entry 

froID the trac,e list, the internal indicator w ich flags a 

trace condition may still be set., In this case, when the 

11st 1s searched, no correspond.ing e·ntry will be found, an.d 

the ou put routine will then reset the internal ind'ce.tor 

and return. In the more normal case 1 where an entry is 

found in the trace list, then a call is made to an internal 

procedure (TDUMP) which formats and prints the trace out­

put as specified by the inforrnatiori_ in the trace aueue 

entry 

It should be noted that the snapshot (DUMF) type is 

something of an exeept on . Because the dynamic trace re­

quest is, 1 effect, the trace condition in this case., a 

1.· g tly different sequence of events :results Eowever • 



- 116 -

examination of the code wlll show that no diffic lt_es are 

involved. Using existing code and procedures, a D !'JP 

race request: 

eets up an entry in the tra e list in the normal ,\far 

- calls TDUMP in t .e normal ·rar to print t1:e informa­

tion requested 

- enters the !.fC_'.:'. ~ :rt-; .:.ne in an a"Opro_ riate place 

to delete fro the trace list the ent y created in 

the first step above 

- returns to caller (SIMCPU). 



- 117 -

BIBLIOGRAPHY 

CMS Ero. ra Logic ·ianual , Form GI28-0 591. 

Control Prorram-67/Cambridge !Monitor Syste User's ";,;ide -
IEI· bl ication. 

CP-67 Program Logic ·~anual, Form GY20-0590. 

IEJ~ System/360 Component Descriptions - 2841 and Associated 
DASD,Form GA26-5988. 

IB: System/360 Operatin,'5 Sy stern: Asse bler (F) ronrammer I c­

Guide J Form GC26-3756. 

IEM System/360 Operating System: 
GC28-6514. 

As~embler Languare, For 
' 

I ·l Syste /360 Onerating System: Job Control ,a"l'l.gua;:re 
Reference 1 Form GCZB-6704. 

IB: Syste /360 Operating System: Job Control Lane;uare 
Use:r•s Gu de, Form GC28- 6703. 

IBM System/360 Operating System;. Linkage Edi.tor and Loader, 
Form GC28 6.538. 

IB System/360 Operating System: Linkage Editor(F) Program 
Logic Ma"rlual, Form GY28-666?. 

IBM System/)60 Operating System: Loader Progra Logic 
Manual, Form GY28-6714. 

IBM System/360 Operating System: PL/I Language Reference 
Manual. Form GC28- 8201. 

IBI~ Sys tem/360 OpeI-ating System: PL/I ( F) Programmer I s 
Guide, For · GC28-6_594. 

rm: Sys tem/J6O · Principles of Operation, For GA22-6821. 

IBM System/370 l·: odel 1.55 Fun-ctlonal Characteristics, Form 
G.22-6942 .. 

IBM System/370: Principles of Operation, For GA22-?000. 

I Er: 2 821 Con tro 1 Unit : Component De script ion , Form A24-J ;12. 




