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ABSTRACT 

In Part One sets of minimal indices 
It is shown that M and Mare inmtune and 

s 

M and Mare defined. 
tftat M = ¢" M J. oin 

T ' s 
K =T ¢" . Subsets of M called~ and~ are defined and it is 

proved that ~ =T ¢ ' and that ~ =T If1M =T »lM =T ¢". Ms is 

relativized with respect to a set A of integers, and for any 
two sets A and B of integers such that A" s:T B' and any total 

function g :,;;T B" and a size function s s:T A the following set 

C is shown to be nonempty 
A B A 

c = {y I ax[W = W and x EK- and s(x) > g(y)]} 
· X Y S 

C however is empty for some total functions g s:T B"'. Various 

special cases are considered, e.g. WB in the definition of C 
i s restricted to be finite or a singleton. 
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INI'RODUCTION 

It has been known for some time that if the power of a pr ogr amming 

language is restricted it very often tends to lose succinctness in its 

description of programs. A primitive recursive definition scheme for in­

stance is frequently not as concise in describing primitive recursive func­

tions as a double recursive definition scheme. A careful s t udy of the 

problem has been made by Meyer [7], where he shows that as one i ncreases t he 

power of programming languages, one can obtain economies in pr ogr am size by 

any recursive amount for even very simple functions. This par al l e ls a sit­

ua tion in the arithmetic hierarchy where it is possible to get a recursively 

enumerable set whose smallest recursively enumerable index is much larger 

than the smallest index for the same set considered, say, as a s e t recur­

sively enumerable in¢'. Parikh has obtained results of this na t ure using 

t he recursion theorem (see [10], p. 216). 

The principal objective of this part of the thesis is the gener alization 

of the results of Meyer to sets of integers A and B r e lated in some recur­

sion theoretic manner, e.g. A" ~TB'. As a major tool we have us ed the 

concepts of minimal index and size function defined by Manuel Blum (see 

We use M to denote the set of minimal indi ces given a size function 
s 

s, and we write M for M whens is t he identity funct i on. The first chapter 
s 

of Part One attempts to place M and Min the arit hmetic hier archy for 
s 

recursive size functions s. In the second chapter we deter mi ne t he degrees 

of unsolvability of certain "naturally" defined subsets of M. The main 
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interest here is in getting intuitively interesting innnune sets at various 

arithmetic degree levels. For instance we prove the existence of an i mmune 

subset of M of Turing degree equivalent to¢•. We come to our main problem 

in the third chapter. Given two sets of integers A and B such that , for 

example, A" ~TB', we try to settle problems of the following form: is it 

the case that for any total function g ~TB" there exists a B-r.e. s e t w! 
whose smallest A-r.e. index y exceeds g(x)? The answer to the ques tion is 

in the affirmative. The answer is in the negative however for s ome total 

functions g ~TB'". At the end of the chapter we enumerate a number of 

very interesting questions we were unable to resolve. 

Topics related to the subject matter of Part One have been treated by 

various research workers in the past. The work that has been done can be 

br oadly divided into four categories, as follows: 

l) First come the papers that deal directly with economy of descrip­

tions and program size. In this group falls the paper by Bl um [l] already 

cited, in which he shows that in order for programs to be economical in 

size, the progrannning language must be powerful enough to compute arbitrary 

general recursive functions, rather than some restricted subset such as t he 

primitive recursive functions. Meyer [7) gives specific ins tances of t his 

phenomenon when he compares the sizes of Loop and Double Loop programs 

computing primitive recursive functions. He also shows how t he ability t o 

wr i te programs which refer to the universal func t ion of an enumer ation 

enables one to decrease significantly the size of programs. His paper i s 

the first to consider the problem of placing Min the arithmetic hierarchy. 

- 2 -



A new approach to the theory of automata and formal grammars which 

attempts to classify systems by their size rather than their power of des­

cription or recognition has been proposed by Meyer and Fischer [8] . Two 

different types of automata may be equal in their powers of recognition 

while being of quite different sizes (in the context of a meaningful and 

sensible definition of machine size). Consider, for instance, nondeter­

ministic and deterministic finite state machines. Meyer and Fischer point 

out that when it comes to practice, more powerful machines (like Turing 

machines) tend to be favored over less powerful ones(like pushdown automata), 

because of the advantage gained in size and simplicity of construction. 

There is a need for a systematic and detailed study on the subject of 

economy of descriptions with reference to the hierarchy of automata and 

formal grammars. 

2) In a category by itself is the work of David Pager [9], who has 

applied recursion theoretic methods to problems of interest to computer 

scientists. His main concern is in showing that it is not effectively 

possible to determine minimal length programs for two element decision 

tables of the form { < x,O >, < y,l >}, where x and y are integers, irre­

spective of whether the given size function is recursive or not. (His 

definition of minimal index is slightly different from our own. See section 

1.2 of Part One.) His proof uses the somewhat obscure fact that maximal 

sets are strongly inseparable (see [10], p. 125 and p. 250). Inspite of 

many attempts we have not been able to come up with a simpler proof of 

his theorem. 
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3) A third category of papers have dealt with size of functions 

admitting speed-up in the sense of Blum [2J, mainly to answer a question 

raised by him. He had asked whether, given a sufficiently large 

recurs ive function rand a recursive function f with r speed-up, there 

necessarily existed a recursive function bounding the size of program 

needed to effect the speed-up? While not actually answering the ques­

tion in the negative, Helm and Young in [5 1 came very close. An even 

better result has been achieved by Meyer and Fischer r12], who have 

shown the following: 

a) Let F be a total effective operator. Then there exists a zero­

one valued recursive function f with F speed-up and a recursive 

function b such that for all i 

:B:j < b(i) [cpJ. = f and F(P.) < ~- a,e.] 
J l. 

b) Let a recursive function r be given. Then it is possible to 

define a total effective operator Fin terms of r such that there 

exist recursive functions f with F speed-up for which the size of 

programs which are merely faster by r cannot be estimated effectively. 

A similar result has been obtained by Constable and Hartmanis 

r3J. This issue however is only marginally related to the contents 

of this thesis. 

4) Size of programs plays an important part in many of the defini­

tions that have been proposed for random sequences. Kolmogorov, for 

instance , introduced two measures of complexity for finite sequences in 
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which he used the lengths of minimal descriptive programs (see Loveland 

f6]) as the basic measure. An alternative but similar definition has 

been proposed by Loveland [6]. The aim has been the following: 

Let x be an infinite binary sequence and let xn be the initial 

subsequence of x of length n. Let K(xn) represent the complexity of 

n the sequence x. Then there would be reason to believe that the in-

finite sequence xis random in a statistical sense iff K(xn) is suff­

iciently complex often enough (e.g. if there exists a constant c such 

n 
that K(x) > n-c for infinitely many n). 

In a recent review paper (11), Schnorr has critically analyzed 

many of the proposed definitions for random sequences. Various open 

problems remain, and the concept of minimal length of program appears 

certain to play an important part in discussions on random sequences 

in the future. 

This completes the introductory survey. Through the entirety of 

Part One, a fixed Godel numbering of the r.e. sets is assumed. The 

notation, whenever not defined in the body of the thesis, is as in 

[10]. A list of open problems can be found at the end of each 

chapter . 
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__j_ 

Chapter 1 

SIZE FUN::TIONS AND MINIMAL INDICES 

1.1 Definition: A total functions: N ➔ N is called a size function if it 

-1 
is finite to one, i.e. s (n) is finite or empty for all x EN. 

Definition: Given any size functions, we define M as follows: 
s 

M = ( z I Vy [s(y) <s(z) ~cp f.cp]} s y z 

If z EM, we say that z is ans-minimal index. 
s 

Whens is the identity function, we write M as M, i.e. 
s 

M ( z I Vy < z [cp f. cp ]} y z 

If z EM, we say that z is a minimal index. 

Theorem 1: Lets be a recursive size function. Then 

M join K - ¢" s T 

Proof: The theorem will follow from the next four lennnas: 

Lennna 1A: Let E c z I q, <x) z 
0 for all x}, then 

Proof: Using the s-m-n theorem we get a recursive function f such that 

<:pf(x) (y) { 

0 if cpx(y) converges 

divergent otherwise 
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Clearly, 

cp total ~ f(x) E E 
X 

Since the set ( x j cpx total} is n
2 

complete, it follows that ¢" ::::T E. 

Lenuna lB: Let F = { < x,y > I cp lcp} 
X y 

Then F :::;T ¢" 

Proof: By a Tarski-Kuratowski computation, Fis in ~
2

• 

Lenuna lC: M ~ ¢" 
s 

Pr oof: To determine whether a given integer z is in M, we proceed a s 
s 

follows: 

a) Let 

ymax = uy[Vu > y [s(a) 2 s(z)]] 

By definition of s, y must exist and its value can be determined with max 

the help of a K-oracle since it has a n
1 

definition. 

b) Let I = (y I y ~ y and s(y) < s(z) } . z max Since y is now known, we max 

can get a canonical index for I, which must be a finite set. 
z 

c) Since 

z E M "' Vy E I [m :/ cp ] s z ~y z 

and since we know the elements of the finite set I, we can now settle 
z 

whether z is in M by checking to see if Vy EI [ < y,z > E F]. By 
s z 

Lenuna lB, this can be done with a¢" oracle. 
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Lemma lD: E ~T Ms join K 

Proof of Lenuna lD: To determine whether a given integer z is in E, we 

proceed as follows: 

a) If z is in M the solution is easy, and we ignore that case. Let 
s 

Z . = ( z' I z' E M and qJ i<x) = 0 for all x} min s z 

Then Z . is a finite set, and we can write min 

z. = ( zo,z1,···,z} min r 

b) Define y as in the proof of Lemma lC and determine I, using the max z 

K-oracle whenever necessary. Then using the M -oracle, get I' = I n M. 
s z z s 

c) Enumerate the set {y I ~y # ~z} with the help of the K-oracle. This 

is possible since the set is in ~
2

, and hence is r.e. in K. If any element 

of I' appears strike out that element from I' • z z 
t Let I represent the 
z 

elements not struck out in I' after t steps of the enumeration. 
z 

d) There must come a time t when either It= Z • 
z min 

or It n Z . 
z min 

the former then z EE. If the latter then z i E. 

This proves the theorem. 

If 

Q.E.D. 

Theorem 2 : Lets be a recursive size function such that there exists a 

recursive function f, 

- 1 
s (x) = Df(x) for all x. 

Then K ~T Ms' and hence Ms -
T 

¢11. 
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1 

Proof: To determine whether a given integer z is in K, we proceed as 

follows: 

a) Using the s-m-n theorem, we get a recursive function g such that 

b) Let 

G . min 

{ 

n if cp z (z) converges 

divergent otherwise 

inn steps 

(y I y E M and cp (x) is divergent for all x} 
s y 

Define a total function h recursive in M as follows: 
s 

h(x) max 

s(y) 

y E 

y i 

::::; s(x) 

M s 

G . min 

(the first element in the enumeration 

of range cp } 
y 

By convention, we let h(x) = 0 if the set on the RHS over which the 

maximum is being taken is empty. This makes h total always. We also get 

h ~ M because G . is finite and because by the given condition on s, 
T s min 

it is possible to get effectively a canonical index for the set {y I s(y) 

~ s(x)} . 

c) Since by definitioncpg(z) is either everywhere divergent or a con­

stant function, we have 

z EK ~cp/z) converges incpg(z)(O) steps 

~cp (z) converges in~ hg(z) steps 
z 
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and the RHS is recursive in M. 
s 

Corollary 2: 

Proof: Innnediate from Theorem 2. A proof can also be found in [7]. 

Theorem 3: (Blum): Lets be a recursive size function. 

innnune. 

Then M is 
s 

Q.E.D. 

Proof: If x and y are integers, let (x) be the exponent of the yth prime 
y 

number in the prime decomposition of x. Also, let W be any given infinite 

r.e. set. We will show that W intersects the complement of M. For any 
s 

X integer x, let W be W enumerated to x steps. 

Using the s-m-n theorem, we get a recursive function f such that 

r:p f(z) = cp (u) 
0 

where u = µx[(x) E w<x)l 
0 

and s((x)
0

) > s(z)] 

By the recursion theorem, there exists an integer n such that cpf(n) = cpn. 

Thus 

r:p n = cp (u)O where u 

which proves that W contains an integer not in M. 
s 

Q.E.D. 

This completes a discussion of the more interesting recursion theor­

etic properties of M when the size functions is recursive. Some of the 
s 

problems not yet resolved will be tabulated in section 1.3 . 
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1.2: In section 1.1 we restricted ourselves to considering size functions 

that were recursive. If we allow ourselves nonrecursive size functions it 

is possible to get M nruch lower down in the arithmetic hierarchy, as the 
s 

following theorem shows. 

Theorem 4: There exists a one-one nonrecursive size functions such that 

Ms is recursive and s ~ ¢". 

Proof: By working with the graphs of partial recursive functions, it is 

possible by a technique due to Friedberg (see [4]) to get an infinite r.e. 

set W such that W contains one and exactly one index for each partial 

recursive function. Let f be a one-one recursive function that enumerates 

Wand let p be a recursive function such that for all x and ally, 

cp = cp ( ) and p(x,y) < p(x,y+l) 
X p x,y 

Define a one-one increasing recursive function gas follows: 

g(O) = f(O) 

g(Irl-1) = p(f(rn-1), x) where x = µy[p(f(Irl-1) , y) > g(n)] 

We will define the size 

M. s Let 

{X s (x) = 
y 

functions in such a manner that range g will be 

if X E range g 

if X {/. range g, where y is the least number not 

in range g such that y > s(z) for all z < x, 

and y > w where w E range g and qJ = cp • 
W X 
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Clearly, s is one-one and Ms = range g. Also, from the definition, s ::;T (!)". 

Q.E.D. 

Thus it is possible to get M to be recursive if we are willing to pay the 
s 

price and make the size functions sufficiently nonconstructive. In view 

of Theorem 4, a question that arises is: Given an integer z, how hard is 

it to get an integer w E M such that cp = cp ? We show below that it is 
s z w 

never easy to do so. 

Theorem 5: Let a size functions be given. Then there does not exist a 

total function g with the following properties: 

a) g ~T K 

b) Vz[g(z) EM and rr, - rri ] s 't"'z - 'l"'g(z) 

Proof: Define Z . as in the proof of Lennna lD. Then Z. is a finite 
min min 

set. Suppose there does exist a function g with the properties given above. 

Then given any integer z we can determine whether z EE with a K-oracle as 

follows: 

Compute g(z) and see if g(z) € Z .• If so, then z EE. If not, then 
min 

z 'f:. E. This is a contradiction, since by Lemma lA, ¢" ~ E. 
T 

Q.E.D. 

Instead of defining M as we did in the last section, we could have 
s 

done it in the following two different ways: 

Definition: Lets be a size function. Define 

MI = (z ify[s (y) < s(z) ⇒ r:p icpy]} s z 

MW = (z I Vy[s(y) < s(z) ⇒ w #W y]} s y 
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It is easy to see that the conclusions of section 1.1 (Theorems 1, 2, 3) 

hold with the redefined M's. Very minor modifications are required in most 
s 

of the proofs. 

We digress briefly here to discuss a problem posed and solved by David 

Pager [9]. Lets be a size function (possibly nonrecursive) and let c be 

an integer. Is it possible for any arbitrary choice of c to get a recursive 

function f such that for all x 

cp f(x) (c) = 0 and cp f(x) (x) = 1 and f(x) E M!? 

The question has been answered negatively by Pager in [9]. His result also 

implies the following: Given a size functions there does not exist a 

recursive function f such that 

1.3: In this section we will list some of the problems still unresolved 

A) Is the following true or false? For any recursive size functions, 

Ms 2 T ¢". 

By Theorem 1, Ms join K =T ¢". Hence it follows that Ms f.T K. Thus 

it must be the case that either K ::::T Ms ( and hence Ms =T ¢") for all 

recursive size functions s, or that there is a recursive size functions 

for which Kand M are Turing incomparable. It should be noted that the 
s 

proof of Theorem 2 does not work for an arbitrary recursive size func tion 

s because it is not possible in general to obtain a canonical index for 

the finite set (y \ s(y):::: s(x)} uniformly in x. 
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B) Does there exist a recursive size functions such that M is hyper­
s 

immune? It is easy to see that Mis not hyperinnnune (cf. [7)), and for any 

size functions, the set 

sM = {s(z) I z EM} 
s s 

is not hyperinnnune, as we show below. 

Using the s-m-n theorem, get a recursive function f such that 

cp f(x) (y) = x for all y 

Now define a recursive function gas follows: 

g(O) = sf(O) 

g(n+l) = sf(u) where u = µv[sf(v) > g(n)) 

Then g majorizes sM, since M contains an index for each constant function. 
s s 

By Theorem XV of [10], there exists a recursive function 8 such that 

Leth be a recursive function such that for all u, 

Then 

Vu[Wh(u) is finite] 
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Hence by [10], p. 144, M is not hyper hyperirrnnune. However, the question 
s 

whether M can be hyperimmune remains open, and we conjecture that it can be. 
s 

C) Since M is immune, it cannot be the case that¢"= M, since that 
s m s 

would make M productive. It has been shown by Paul Young that there exist 
s 

recursive size functions s 1 and s 2 such that Ms
1

1 M (see [7)). 
s2 

The 

problems still open are: 

i) 

ii) 

iii) 

Do there exist recursive size functions sl and s2 such that 

M .,, M ? 
sl m s2 

Do there exist recursive size functions s
1 

and s
2 

such that 

M "1 M ? We conjecture a positive answer to both i) and ii). 
s 1 tt s 2 

Is M = ¢" for all recursive size functions s? 
s tt 
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Chapter 2 

SUBSETS OF M 

2.1 This chapter will be concerned with determining the degrees of unsolva­

bility of certain subsets of M. The following subsets will be considered. 

a) ~ = ( z z E M and qi is not total} 
z 

b) ~ = ( z z E M and w is a singleton} 
z 

c) K n M 

d) - n M K 

All these subsets of M obviously are or will be shown to be infinite and 

hence innnune. 

2.2 Theorem 7: ~ =T ¢" 

Proof: By a Tarski-Kuratowski computation, ~ s;T © rr. 

¢" s;T ~ i n t wo stages. 

a) cb"s;T~joinK 

We wi 11 prove 

The proof parallels Theorem 1. Define E as in Lemma lA and let 

E' = ( z I w (x) = 0 for all x # 0, and w (0) divergent} 
z z 

It is easy to check that E' -TE. Also let 

Z I• 
min 

( z l z E ~ n E'} 

Given any integer z, we have to determine whether z EE'. The procedure is 

exactly as described in the proof of Lennna 1D except that we work with Z' 
min 
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and replace M
8 

by~ ands by the identity function, 

b) Ks M 
T N 

The proof parallels Theorem 2, except that we redefine cog(z) as follows 

{

n if y = 0 

ccg(z) (y) = 
divergent 

and ~
2

(z) converges inn steps 

otherwise 

and replace Ms by~ ands by the identity function. 

Q. E. D. 

2.3 Theorem 8: ~ =T K 

Proof : The proof is in two steps 

a) ~ sT K 

We will write out a definition for~: 

z E ~ ~ W
2 

is a singleton and Vy < z 

[[W is not a singleton] or [W is a singleton and co f: CD]] 
y y y z 

and we note that 

W is a singleton~ 3u[u e W] and VuVv[u f: v ⇒ u F W or v ¢ W l 
7, z z z 

and the RHS is recursive in K. It follows that~ sT K, since if we know 

WY and W to be singletons we can effectively check whether co f: ~ . 
z y z 

The proof is essentially the same as for part (b) of Theorem 7. 

Q.E.D. 
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We have thus exhibited the existence of a "naturallyrr defined and intui­

tively interesting immune set that is Turing equivalent to K. 

Theorem 9: Kn M (/; II 

T 

Proof: The proof is in stages: 

a) K n Mis infinite 

This is immediate since if w is total and x ~ M then x EK n M. 
X 

b) K :s; K (') M. 
T 

The proof given for Theorem 2 works with very minor modifications. 

c ) dJ '' :s;T K n M. 

let us define 

A = (<x,y> w = w and Vz :s; max(x,y) [© (x) convergent] 
X ' Y X 

We will show that 

</;" - A 
T 

By a Tarski-Kuratowski computation, A :s; ¢". Using the s-m-n theorem, we 
T 

define a recursive function f such that 

{ 

0 if © (y) convergent 

divergentx otherwise 

If e is some fixed integer in E, then 

hence 0 II 

w total~ <f(x), e> EA 
X 

::;;T A. 
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Now we will prove that A ~T Kn M. Let <x,y> be given. To determine 

if <x,y> EA we proceed as follows: 

Since K ~T Kn M, we first check whether Vz ~ x [co (z) convergent] and 
X 

Vz ~ y [coy(z) convergent]. If not, then <x,y> ~ A. If so, let x
0 

EM be 

such that 0 =: co . Since XO ~ x, l'.p X (x0) converges, hence x
0 

E K n M. 
XO X 

0 
Similarly there exists Yo E K n M such that co =: cp • 

Yo y 

To determine x
0 

recursively in Kn M consider the finite set 

G == ( z 
X 

z ~ X and z EK n M} 

Since K ~T Kn M, enumerate the set (z I CO
2

# <px} with a Kn M oracle, and 

strike out elements of G as they appear until exactly one element remains 
X 

in Gx. This element must be x0 . 

Similarly, Yo can be determined recursively in Kn M. Then <x0 ,y
0
> EA 

if x0 = y0 , otherwise not. Since¢" =TM this proves Kn M =TM= ¢r1. 

2.5 Theorem 10: <b " • 
T 

Proof: The proof is in stages. 

a) Kn Mis infinite. 

Using the s-m-n theorem, we get a recursive function f such that 

cof(x) (y) 
{X ify=O 

divergent otherwise 

Q. E. D. 

Let kx EM be such that cok = co for each x. Then k's are all distinct, 
X f(x) X 

hence at most one of them can be 0. Thus at most one of the k's is in K. 
X 

It follows that Kn Mis infinite. 
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() 

b) 

Using the s-m··n theorem, we get a recursive g such that 

= {m if y = 0 and ©x(x) converges in m steps 

divergent otherwise 

Not e that if nx EM is an index for the function ©g(x) (for each x) , then 

n E (K n M) u {O}. 
X 

Let b ~ M be an index for the empty function. We define a new s e t A 

recursively in Kn Mas follows: 

A ci<. n M) - ( o} if b = 0 

A ((Kn M) - (b}) U (OJ if b I 0 

Then for each x, n EA, and A does not contain an index for the empty func ­
x 

tion. 

We will now define a total function h recursively in A: 

h(x) =10 
'-- max 

clearly, 

if Vz :;;; x, z i A 

(cp (v) l z :;;; x 
z 

and z E A and vis the 

first element in an entm1eration of W} otherwise 
z 

x EK ~ © (x) converges in:;;; hg(x) steps,and the RHS is r ecurs ive 
X 

i n A and hence in Kn M. 

c) (/)" ::': KnM 
T 

Let us define 
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We will show that B =T 0 11
• 

By a Tarski-Kuratowski computation, B ~T 0 11
• In the other direction, 

we use the s-m-n theorem to get two recursive functions f' and g': 

'9f' (x, z ,w) (y) 

(? 1 ) (y) g (x, z ,w 

{

divergent if y ~ max(z,w) 

= 0 if y >max(z,w) and 
~ (y-1-max(f(x), g(x))) converges 

X 
i 
' divergent otherwise 

--{O if Y>max(z,w) 

divergent otherwise 

We can now use the double recursion theorem of Smullyan (see [lOJ, P• 190) to 

get recursive functions f and g such that 

Then we have 

f 
divergent if y ~ max(f(x), g(x)) 

= 0 if y >max(f(x), g(x)) and 
wx(y-1-max(f(x), g(x)) converges 

divergent otherwise 

if y >max (f(x), g(x)) 

divergent otherwise 

~ total~ <f(x), g(x)> ~ B 
X 

Hence dJ" :S B T . To get B ~T Kn M we follow the procedure outlined in the 

proof of Theorem 9, part (c), using Bin place of A and Kin place of K. 

Q. E. D. 
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2.6 In this section we will describe some problems yet unresolved. 

a) Let ~ = ( z l .~ F M and co is total} 
z 

Clearly, MT ~T ¢". By techniques described in this chapter, it is 

easy to get K ~T ~- The question we pose is: Is~ =T 0 11 ? 

b) We have proved in section 2.3 the existence of a subset of M Tur ing 

equivalent to K. Does there exist an intuitively interesting and 

easily definable subset of M that is co-simple? 

c) While we have shown that 

are these sets truth-table or many-one equivalent to one another? 

They cannot all be one-one equivalent, since, for example, Kn Mis 

a proper subset of the irmnune set M. It is known that i f Bis an 

innnune set and A is a proper subset of B then A 1 B (see [7] , lemma 5). 
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Chapter 3 

SMALLER INDICES AT HIGHER HIERARCHY LEVELS 

3.1 In [7] Meyer proves the existence of a 0-1 valued primitive recursive 

function whose smallest primitive recursive index is in some sense "arbitrarily" 

larger than its smallest double recursive index. This chapter generalizes 

and extends some of Meyer's results to the arithmetic hierarchy. We describe 

the major problem below: 

Let A and B be sets of integers . If B ST A then any set r .e. in Bis 

alse r.e. in A, and there exists a recursive function f such that given any 

B-r.e. set if, 
X 

the numerically smallest A-r.e. index for if is~ f(x). 
X 

Suppose, however, that B iT A. In this case not every B-r.e. set is A-r.e. 

any more. Indeed, B' (the jump of B) cannot be r.e. in A. However, there 

still exist infinitely many B-r.e. sets which are A-r.e. (consider the 

finite sets for instance). But does there necessarily exist a B-r.e. set 

which is also A-r.e. and whose numerically smallest A-r.e. index is (in a 

sense to be madle precise in the following pages) "arbitrarily" larger than 

its numerically smallest B-r.e. index? Do we need to impose additional 

conditions on A and B, such as, for example, some relationship in the Turing 

hierarchy like A" ~TB', in order to be able to answer the above question? 

I f there are such B-r.e. sets, are there infinitely many of them? In the 

following section we will endeavor to answer these questions in as great a 

generality as we can. See [10] , p. 216 , for some related results of Parikh . 
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3.2: We have been unable to resolve the questions posed in the last section 

in the general case when all we know about A and Bis that B ~TA. In the 

more restricted situation which arises when A" s B', the questions have 
T 

been answered. We begin by redefining the set M in an appropriate way. 
s 

Definition: Let A be a set of integers and lets be a size function. Then 

~ = ( ,;: l Vy [s(y) < s(z) ⇒ 0 1 0n 
s y z 

Remark: If the size function s is A-recursive, then MA s A'r. This is a 
s T 

relativization of Lemma lC. 

The next theorem tells us that given two sets of integers A and B such 

that A' s B' whenever a B-r.e. set is also A-r.e. its smallest A-r.e. index T , 

can be bounded above by a total function recursive in B 111
• 

Theorem 11: Let A and B be two sets of integers such that A' ST B', and let 

s be an A-recursive size function. Then there exists a total function g 

recursive in B 111 such that the set 

(x l 3y r0 
y 

is empty. 

if and y E ~ and s(y) > g(x)]} 
X S 

Proof: If A' ST B', then the set RB where RB= (x l ~ is r.e. in A} is in 

i:~ by the Tarski-Kuratowski computation shown below. 

3y[if = 0] 
X y 

3:y V z [ z E if ~ 
X 

- 24 -



and the term within square brackets on the RHS is clearly recursive in B' 

under the assumption A' s: B'. Then define a total function gas follows: 
T 

where 

g(x) 

0 w13 
y X 

otherwise 

and y E ~ 
s 

Clearly g s:T B'", and g satisfies the required conditions. 

Q. E. D. 

The next question we can ask is whether a total function g with the 

properties described above exists among only those functions that are recur­

sive in B". We show in Theorem 12 that given the somewhat stronger relation­

ship A" s:T B', for any function g such that g is total and g s:T B", there 

exist infinitely many B-r.e. sets whose smallest A-r.e. indices are at l east 

g larger than their smallest B- r.e. indices. 

Theorem 12: Let A and B be sets of integers such that A" s:T B', let g be a 

total function recursive in B", and lets be an A-recursive size function. 

Then the set 

C = [x J3 and y E ~ and s(y) > g(x)] } 
X S 

is not recursive in B". A fortiori, C is infinite. 

Before we prove Theorem 12, we present a couple of lemmas. 

Lemma 12A: Let A and B be sets of integers such that B ~TA, and let 

( x I ii is r. e. in AJ . 
X 

Then 

B" s: R 
m B

0 
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Proof of Lennna 12A: Since B ~TA, it must be the case that B' is not r.e. 

in A. Using the s-m-n theorem, we get a recursive function f such that 

B 

[ 

0 1.· f y E B ' and (V ) [co ( ) J z z~y x z convergent 

divergent otherwise 

Then 

Hence it follows that B" ::5: R 
m B' 

Lennna 12B: Let A and B be sets of integers such that A" ::5:T B'. Then 

BIii - R 
=T B 

where RB is as in Lennna 12A. 

Proof of Lemma 12B: Hote that the set 

( x I w13 is recursive} 
. X 

is Turing equivalent to B'" by a direct relativization of Theorem XVI, 

p. 327 of [10). We will show that QB ::5:T RB join B". Since RB ::5:T B' 11 

by a Tarski-Kuratowski computation, this will be enough in view of Lemma 12A. 

a) 

b) 

To determine whether a given integer xis in QB, proceed as follows: 

See if x ERB. If not, xi QB. 

If x ERB, find z = µz[~ = w13J 
0 Z X 

This can be done with a B" oracle. 
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c) Now see if if" is recursive. 
zo This can be done with an A' 11 oracle, hence 

with a B" oracle, since A" ST B'. If so then x E QB. 

Proof of Theorem 12 : Suppose there is a total funct ion g recursive in B" 

for which C s 
T B". Then 

X ERB ~ 3:y[i/ w13] 
y X 

~ 3:y [if" = 1/ and y E i.f 
y X S 

and s(y) S g(x)] V x EC 

The RHS is recursive in B", since with a B"-oracle, we can get a canonical 

index for the set 

( y I y E i.f and s(y) s g(x)}. 
s 

This contradicts Lennna 12B. 

Q. E. D. 

Using the notation of Theorem 12, we can now draw the following 

corollary: 

Corollary 12: There exist Turing incomparable sets A and B such that 

C f,.T B", where C is defined as in the statement of Theorem 12. 

Proof: I n p. 266, Corollary IX(b) of [ 10], Rogers proves the existence of 

sets A and B such that A" -
T 

B' and A is Turing incomparable to B. 

Q. E. D. 
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It should be remarked that in Theorem 12, whether the range of g be 

finite or infinite, C contains indices for infinitely many distinct B-r.e. 

sets. 

Theorems 11 and 12 answer most of the questions posed in section 3.1 

when A" :::;;TB'. When all we know is B ,:TA the questions_l:iecome more difficult 

to answer and have not been resolved. These will be listed in section 3.5. 

3.3 In section 3.2 we did not place any restrictions on the nature of the 

B-r.e. sets whose A-r.e. indices we were seeking. How are Theorems 11 and 12 

modified when only those B-r.e. sets are considered which are, say, singletons 

or finite sets? In this section we treat these special cases in a setting 

of less generality. We begin with a definition. 

Definition: Let A be a set of integers. Then 

~ = (x rry < x r✓ 
y 

Remark: If E ~- If x E ~' we say that "x is A-minimal". 

Remark: ( x I~ is a singleton} -TA'. 

Proof: ( x I ✓ is a singleton} ~ A' is a relativization of a result in 
X T 

section 2.3. We leave the proof in the other direction to the reader. 

Theorem 13: Let A and B be sets of integers such that A' $TB, and let g 

be any total funct ion recursive in B. Then the set 

(x I 3:y[~ ✓ and if is a singleton y X 

and y E MA and y > g (x)]} 

is infinite. 
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Proof: Let 

s {x I x E ~ 

o' \ 

and r/ is a singleton} 
X 

Then Sis an infinite set r.e. in A' and hence in B. Using the s-m-n theorem 

we get a recursive function f such that 

first integer in entnneration of S(with a B-oracle) larger 

than g(x). 

B Now consider the infinitely many fixed points of Wf(x)' 

set of those x for which ~(x) = w!. 
i.e. consider the 

Q. E. D. 

Theorem 14: Let A and B be sets of integers such that A' ~TB. Then there 

exists a total function g recursive in B' such that 

ifxVy[if = vf­
x y 

arl.d if 
X 

is a singleton and y 

is A-minimal ⇒ y ~ g(x)] 

Proof : Define a total function g recursive in B' as follows: 

g(x) {

µz rr/ = if] if if 
Z X X 

0 otherwise 

is a singleton 

Note that if WB is a singleton, we can determine µz[WA = if] effectively 
X Z X 

with a B' oracle by getting an increasing sequence of numbers 

. . . . . 

such that 

which r/ 
zk 

is a singleton for all k and then obtaining the least k for 

if. 
X 

Q.E.D. 
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Between them, Theorems 13 and 14 surrnnarize the situation when only single­

ton B-r.e. sets are being considered. We now proceed to finite B-r.e. sets. 

Theorem 15: Let A and B be sets of integers such that A' ~ B, and let g 
T 

be a total function recursive in B'. Then the set 

~ and w! is a finite set and y EMA and y > g(x)]} 

is infinite. 

Proof : The proof is in two steps: 

a) We will first show that if g is a total function recursive in B' then 

there exists a B-recursive total function f of two variables such that for 

all u, 

g(u) = lim f(u,v) 

B' 
Let e be an integer such that g = © Define fas follows: , e • 

if it converges in y step 

f(x,y) 
otherwise 

where B' is B' enumerated for y steps with a B oracle. Clearly, f is total y 

and f :5:T B. 

b) We use the function f obtained in part (a) and using the s-m-n theorem 

get a recursive function h such that 
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B 
c.,h(x)(y) 

= {·O if y EA' and 

divergent otherwise 

3:7.[y:,; f(x,z)] 

W~(x) is finite, but the minimal A- r.e. index for W~(x) mus t exceed g(x). 

B Now consider the infinitely many fixed points for Wh(x)' i.e. consider the 

set of those x for which 

Q. E. D. 

Theorem 16: Let A and B be sets of integers such that A' :,; B. 
T 

Then t here 

exists a total function g recursive in B" such that 

0 and WB is finite and y E ~ ⇒ y:,; g(x)] y X 

Proof: We note that (x I~ is finite} is Turing reducible to B". The rest 
X 

of the proof is similar to that for Theorem 14. 

Q, E. D. 

We sum up all our results in the table below. A and Bare as sumed to 

be sets of integers such that A' :,;TB. 

B-r.e. sets being 

considered are 

singletons 

finite 

unrestricted 

Can minimal A-r.e. index of set 

beg better than B-r .e. index 

for all g recursive in 

B B' BI" 

yes no no no 

yes yes no no 

yes yes yes no 

TABLE 
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There is a striking difference between the proofs for Theorem 12 and 13 

(orlS),While the proof of Theorem 12 is in some sense nonconstructive, that 

of Theorem 13 is "effective" in the following way : if we are given a B-r .e. 

index for the function g, we can uniformly obtain a B-r.e. index x for a 

singleton set such that the smallest A-r.e. index for if exceeds g(x). All 
X 

we need to do is to obtain a fixed point for the function f (in the proof 

of Theorem 13) in an effective manner. A similar comment applies to Theorem 

15. The question arises whether there is an alternative proof of Theorem 12 

which would give us the abovementioned uniformity in the general case. (Such 

uniformities can be found in the proofs of Meyer [7],) 

3.4 We will devote this section to a few illustrations from the arithmetic 

hierarchy . 

Example 1: By ¢(n) we will mean the n th jump of the empty set. Let n be an 

integer~ 2, and define a total function has follows 

h(x) = min (e I e is a minimal ¢(m) _r.e. index for W} 
m m x 

It is clear that h has a TI¢(n- 2) definition and is therefore recursive in 
2 

¢(n)_ Also, h has infinite range. 

Now let g be any total function recursive in ¢(n). We will find integers 

p and r such that 

1/n) 
w· 

r 
W and h(p) > g(r). 

p 

Using the s-m-n theorem, we get a recursive func tion fas follows: 
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{ 

W, where h(y) 

e:umeration of 

is the first integer in the 

range h larger than g(x). 

¢(n) 
Now let r be a fixed point for Wf(x) and let p be the corresponding y. 

clearly, 

and h(x) > g(r). 

Then 

Example 2: Suppose we try to generalize the definition of h in the following 

manner 

h(x) = min 

0 ~ m 

( e 
m 

e 
m 

is a minimal ¢(m)_r.e. index for W} 
X 

Unfortunately, it turns out that h so defined has finite range. To see this, 

we take a z such that 

= n for all n 

Such a z exists by [10], Problem 13-5. Now define 

w = w 
¢(n) n 

co (0) 
· z 

Then z' is independent of n by the unformity of the definition, hence 

h(x) ~ z' for all x. 

We can get around the problem by redefining has follows: 

h(x) = min 

O~m 

( <e I · · · 1 A.(m) . d f ,m> e is a minima ~ -r.e. in ex or m m 
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Assuming that our pairing function has the property that for all x and y, 

<x,y> ~ max(x,y) 

and since we know that h(x) ~ <x,O> for all x, in the determination of h(x) 

only those e 's need be considered for which m ~ <x,O>. If A is a set such 
m 

that 0(n) ~TA for all n uniformly inn, then it follows that h ~TA. N0w 

if g is a total function recursive in A then there will exist integer s p and 

r such that 

r/ W and h(p) > g(r) r p 

The proof is as before. 

3.5: In this section we will list some of the problems left unresolved in 

section 3.2 and 3.3. We will use the notations of those sections. 

(1) In section 3.2 we left open the question whether the condition A" ~TB' 

in the statement of Theorem 12 can be weakened to B ~TA (or perhaps 

to A <TB). This would be the same as asking the question whether 

given B ~TA there exists a total function g ~TB" such that the set 

( x I 2y[r/ = ~ y X 

A and y EM and y > g(x)] 

is empty. To exhibit the existence of such a function g, it woul d 

suffice to get A and B such that B ~TA and (x l w! is r.e. in A} ~TB". 

(2) Another question we can ask is whether it is possible to get sets A 

and B with a certain syrrnnetric relationship towards each other in the 

following sense: 

- 34 -



i) A and Bare T-incomparable 

ii) for any total function g recursive in both A and B, both 

of the sets defined below are nonempty 

( x I 8y[~ = ~ and y f ~ and y > g(x)]} 

(y I 3x[if w13 and x E MB and x > g(x)]} 
y X 

In the statements of the problems (1) and (2) we have ignored any A-size 

functions apart from the identity function. The consideration of other A-size 

functions may or may not cause any increase in the difficulty of the problems. 

(3) We mentioned at the end of section 3.3 that the proof of Theorem 12 

lacked a certain effectiveness. This heightens the interest in the 

following problem: 

Is it possible to parallel Theorems 13 and 15 in the case when we wish 

to consider total functions g recursive in Brr. by using cofini te sets for 

instance? It should be noted that 

( x I iJ3 cofinite} = B111 

X T 

(see [10], p. 328) . The major bottleneck here is in characterizing a 

function g recursive in B" in terms of a function recursive in B. It 

is clear from the proof of Theorem 15, that given a t otal function 

g ~T B11 we can get a total funct i on f ~TB such that 

g(x) lim lim f(x,y,z) 

Manipula t ion, however, becomes very difficult with two limit operations 

to take care of in this case. 
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