
THE RELATIONAL APPROACH TO THE MANAGEMENT OF DATA BASES

MAC Technical Memorandum 23

Alois J. Strnad

April 1971

Work reported herein was supported in part by

Project MAC, an M.I.T. research project sponsored

by the Advanced Research Projects Agency, Department

of Defense, under Office of Naval Research Contract

N00014-69-A-0276-0002.

PROJECT MAC

Massachusetts institute of Technology

Massachusetts 02139Cambridge

;?3?AS AiM. -40 TH3M3DAMAM OTr OT Ht3A6M-,A JAMOiTfUAJ3

(Smubrwtlns Iezir,trfzm,%T

Awtt.1.lr

itef Iri-qA

4

Ceuso etszeudi~s'as sgbiiaa3

-4

Page 1

1. I n t r o d u c t io n,

The ultimate goal of Project MacAIVS (MAC Advanced

Interactive Management System) is to build a computer

facility which will be able to support non-trivial decision

making processes. (See reference 4). In the early stages

of our experiments we discovered that traditional approaches

to the management of data bases do not satisfy our needs.

We have determined the following requirements for the

management of Large Data Bases (LDB) in a dynamically

varying environment such as an interactive Management

Information System:

- high degree of flexibility

- data independence (i.e. programs are unaffected by

changes of data representation or by addition

of new data types)

- ability to operate on different data structures

- access pat-h Independent of data structure

- acces control below the file level

- uniform retrieval time and (possibly) update time

The relational approach to management of LDB offers a

solution which satisfies most of the above requirements.

Page 2

This paper is concerned primarily with our implementation of

this approach. The theoretical basis for the relational

approach to management of LDB can be found in recently

published papers (1,2).

We are gradually implementing our system on MULTICS

(Multiplexed Information and Computing Service). MULTICS is

a major achievment in the area of multi-programming,

multi-processing and time-sharing computer systems. It is a

prototype of the computer utility, where "utility" is used

in the same sense as the telephone or power utility. It can

run seven days a week, twenty four hours a day, and it Is

capable of meeting a wide range of service demands.

Two aspects of MULTICS are very important for our

implementation -- memory organization and access control.

In MULTICS, the traditional hierarchy of storage -.- ranging

from core through disks, tapes etc.-- appears to the user as

a single level, two-dimensional memory organization. Each

user process has available up to 256,000 identical memories

called segments, and each segment may contain up to 64,000

36-bit words. The entire range of this space (2) is

directly addressable.

The other important aspect of MULTICS for our purposes

is the facility for access control. Again, a

Pafe 3

two-dimensional approach has been taken. Each sevment has

associated with it an access control list which identifies

all the users authorized to use that segment and which

specifies the mode of access for each user. The second

dimension of access control is provided by concentric

protection rings. Any attempt to access a segment from an

insufficiently privileged ring (i.e. an outer ring) will

cause a trap, and a routine supplied by the owner of the

segment will be called to decide whether or not to permit

the access.

Let me also mention that our system is entirely

programmed in PL/1, the primary language on MULTICS and the

language in which MULTICS system itself is written.

II. G e n e r a I n f o r m a t i o n.

We take the view that information we might store in our

data base consists of sets of Data Elements (DE) and sets of

relations among them. The basic set theoretic primitive

operations are used for manipulating the Relation Data Sets

(RDS).

Given Data Element Setss (DES) S1, S2,... Sn,

corresponding Relation Data Sets consist of n-tuples (tuples

Page 4

of degree n), each of which has its first element from set

S1, its second element from S2, and so on. The Relation

Descriptor (RD) is, in our terminology, the n-tuple composed

of the names of the sets S1, S2, Sn. Suppose, for

example, that there are Data Element Sets for persons'

names, for addresses and for telephone numbers. We might

construct an RDS which will represent the relations among

members of these sets. The Relation Descriptor for this RDS

will be the 3-tuple <person-name,address,telephone-number>.

All other tuples will express the relation among the members

of these sets. In our implementation, the relations are

stored exclusively in terms of Reference Numbers.

The whole system is logically divided into two major

parts. In the first, Data Element Sets are stored,

Reference Numbers are assigned to the Data Elements, and

operations are performed on DES's. In the second part of

the system, Relation Data Sets are created and stored and

basic set theoretic primitive operations are performed on

them.

Reference Numbers (identification numbers) play an

important role in our implementation. Whenever a new DF

enters the system, it is immediately assigned a Reference

Number. The RN is used for all subsequent operations on

Page 5

that DE. The method used for storing and ass igning PR''s to

DE's guarantees that the particular DE is stored only one

time within the system. This fact is a significant

contribution to our goal of storage and operational

efficiency. In our particular implementation, P's are all

36-bit quantities, which is the word length of the OF 645

computer on which VULTICS runs. Because the most frequent

operations are performed on the Relation Data Sets and

because all relations are expressed in terms of RNIs, the

operational efficiency of using the fixed length numbers is

obvious. We also save storage space since the average length

of a Data Element is almost always greater than one machine

word.

Both parts of the system are described in detail in the

following sections of this paper.

I1. D a t a E 1 e m e n t S e t s.

In our system each category of data, such as name,

address, telephone number, pointer, tuple, names of sets,

etc. might be stored in one Data Element Set (DFS). Note

that tuples, pointers, etc. are treated in the same fashion

For example, persons' names can beas other categories.

Pa'ge F

stored in one DES, and the name of this set is simply

"person's name".

Moreover, the name of a set is just another data

category. Therefore there is also one DES for names of Data

Element Sets, with its owen name being "set name". The names

of all DES's are stored in this DES. One reason for this

provision is that the system is self-descriptive -- i.e. all

information about the data is stored within the system

itself. Futhermore this descriptive data is treated exactly

the same way as any other data. This is one significant

advantage to our approach.

The total number of Data Element Sets depends on the

particular application. For example, a Library Information

System probably will have a DES for titles.

The reader might be somewhat confused at this point,

but figure 1 and the rest of the paper will give a clearer

explanation of the above concepts.

A Data Element Module (DEM) is a procedure which

operates on a Data Element Set. Each DES may have its "own"

DEM. We have defined the following functions of a DEM:

read - read the input stream and produce the Standard Form

(SF). For example, the input to the DEM for dates

might be "8, Febr., 1969". The SF returned by this

Page 7

entry is "19690208". Data Elements can be stored in

the DES in SF only.

write - write the given SF in natural, human-oriented

form. Taking the Standard Form from the nrevIous

example, the output would be "February 8, 1969".

get reference number - the Reference Number corresponding

to the given SF will be returned.

ret data element - the SF corresponding to the given RN

will be returned.

insert - the given SF will be inserted into the specified

DES and RN assigned,

delete - the specified SF is deleted from the DES.

Corresponding functions of all DEM's exept "read" and

"write" perform the same processing. Therefore a common

procedure called a Data Strategy Module (DSM) may be invoked

as an intermidiary between the DEM and the DES. However the

mechanism for assigning the RN to the DE (actually to the

SF) is different for each data type. Therefore there are

different DSM's for each data type. The most freguently

occuring data types are integers, character strings, and

real numbers. For example, data categories such as salary

or date have SF's which fall into the data type integer.

The Standard Forms of Data Elements are physically

Par'e 8

stored in the DES in the form of binary trees. The main

distinction between them is that for integers the SF and RN

are identical.

Figures 2 and 3 show the mechanism for storing the SF's

and assigning the RN's to them for both types.

As the Data Element Sets grow, the binary trees may

become unbalanced, resulting in less efficient operation of

the system. Programs which run in background mode handle

this situation by rebalancing the trees.

We have also implemented two "special" Reference

Numbers which are very useful. One is used to indicate a

null, or absent DE. The other one acts as a "wild card"--

that is, upon comparison with other Reference Numbers, it

will match any RN regardless of value. In the following

examples the null RN will be represented by "0" and the

"wild card" by "*".

The left part of figure 1 illustrates the interaction

between procedures and Data Element Sets. Notice that the

DEM's provide the direct interface between the outside world

and the part of the system described above.

Page q

IV. R e I a t i o n D a t a S e t s.

In section II the notion of Relation Data Set (PS),

Relation Descriptor (RD), relation, and tuple were

introduced. In section 1I1, the mechanism for keeping track

of Data Elements (DE) and assigning Reference Numbers (RNi)

to them was presented.

The exact structure of the RDS's is irrelevant to the

theory underlying the relational approach to data

management. However, we ' believe that data (tuples in the

case of RDS) should be stored using the representation most

efficient for the particular application. Therefore the

procedure, called a Relation Strategy Module (RSM), which

operates on a particular RDS is designed for a particular

data structure. Thus there is an RSM for lists, an RSM for

trees, an RSM for arrays, etc. Note the difference between

DEM's and RSM's: each DEM operates on Data Element Sets and

is designed for a particular category of DE's; each RSM

operates on Relational Data Sets, and is designed for a

particular data structure.

The basic set primitive operations and several non-set

theoretic operations are defined. These operations are

performed by an RSM on a particular PDS, Before we describe

Page 10

these operations in detail, we present examples of two

RDS's. For the purposes of the following explanations, it

is sufficient to represent RDS's as arrays, and the array

elements as DF's. Keep in mind, however, that other

representations are possible and that, in any case, the DF's

are actually represented by RW 's.

RDS (A) RDS (B)

name city prof. sal.

Wels Cambr eng. 18000

Owens Boston prog 16000

Niles Waban prog 15000

Jones Lynn dir. 24000

Strand Lexin. clerk 12000

name phone age

Jones 6205 30

Smith 5432 20

Strand 5857 34

Wyly 6669 42

The above RDS's have the following properties:

1. Each row represents an n-tuple.

2. All rows are distinct.

3. The ordering of rows and columns is immaterial.

In our implementation, all of the set primitive

operations require two RDS's as input and produce a third

Page 11

PDS which is the result of the operation. The other

operations do not necessarily follow this same scheme.

In order to have the capability of creating PDS's and

fillin; them with data we have had to define two "non-set

theoretic" operations:

create set

Input: RD Output: RDS

Example: RD = <name,city,phone>

Result: RDS(C)

name city phone

The result is an RDS with one tuple -- the Rn.

insert tuple

Input: RDS,tuple Output: RDS

Example: RDS(C), tuple = <Golub,Boston,888542)

Result: RDS(C)

name city ohone

Golub Boston 888542

The following operations are basic set primitives:

Page 12

Input: RDS,RDS outouti RDS

Example: RDS(A),RDS(E)

Suppose we created RDS(E)

name city prof. sal.

* * prog *

Result: RDS(F)'

name city prof. sal.

Owens Boston prog 16000

Niles Waban strog 15000

Note the use of the "wild card".

dif ference

Input: RDS,RDS Output: RDS

Example: RDS(A),RDS(F)

Result: RDS(G)

name city prof. sal.

Wels Camb eng. 18000

Jones Lynn dir. 24000

Strand Lexin clerk 12000

77

oroiection

Input: RDS,RDS

Example: RDS(A),RDS(H)

Suppoe we have

na

Result:-

atstput: RDS

RDS(H)

me sal.

RDS(I)

name sal.

Wels 18000

Owens 16000

Niles 15000

Jones 24000

Strand 12000

iSLIa

input: RDS,RDS

Example: RDS(A),RDS(B)

Result:

name city nrof

Jones Lynn dir.

Strand Lexin clerk

Output: RDS

. a

6205

5857

30

34

RDS(J)

24000

12000

Page 13

Pace 14

composition

Input: RDS,RDS Output: R

Example: RDS(A),RDS(K)

Suppose, we have the RDS(K)

sal, s

Result: RDS()

name city prof

Owens Boston prog

Jones Lynn dir.

Strand Lexin clerk

DS

eniority

8500 2

32000 45

16000 10

12000 14

24000 16

y Drof. seniority

10

16

14

cartesian Product

Input:RDS,RDS Output:RDS

Example: RDS(B),RDS(N)

Suppose we have the RDS(N)

affiliat. bulding

MIT 0

MAC E-58

Jones 6205

Jones 6205

Smith 532

Smith 5432

Strand 5857

Strand 5857

Wyly 6669

Wyly 6669

Input: RDS,RDS

Example: RDS(B),RDS(P)

are

30

30

20

20

34

34

42

42

RDS (0)

affIlit

MIT

MAC

MIT

MAC

MIT

MAC

MIT

MAC

Output: RD.S

Suppose, we created ROS(P)

name ohone -ae

Sames 5555

ltrend 5857

guck 8765

52

".k

66

Repul t:

Page 15

0

E-58

0

E-58

0

E-58

0

iE-5 0

union

AANVA31. M =Ult r
age bl dig

Page 1F

Result:

name phone

Jones 6205

Smith 5432

Strand 5857

Wyly 6669

Sames 5555

Buck 8765

RDS(T)

30

20

34

9 42

52

64

in order to improve efficiency and to make the usage of

the system simpler we have defined several redundant

operations i.e. they can be performed by several calls of

primitive operations.

sort

get successor

replace tuple

As has been previously mentioned, a Relation Strategy

Module is designed to operate on a particular data

structure. However, one of our requirements for management

of data bases is to have the capability to combine and

operate on data which have different representations. To

accomplish this, each RSM has the capability to process not

only the particular structure for which it is designed, but

name pho

Pacge 17

also to operate on the cannonical form of an RnS. A PSM is

able to reproduce its "own" type of RPS in the canonical

form, which in cur current implementation is a list.

V. F i n a 1 R e m a r k s.

We believe that our implementation of a relational

system will give a solution for the management of Large Data

Bases which will be able to support our overal research

objectives. For experimental purposes, we have developed a

simple user interface, and we are just now starting to move

data into the system. We expect that during a relatively

short period of time vie will know enough about the behavior

and efficiency of the system that we will be able to make

substantial improvements. We should be able to report the

experimental results of this preliminary system in late

February 1971.

VI, i s t o f A b b r e v i a t i o s.

DE - Data Element

DES - Data Element Set

Page 12

DEM - Data Element Module

DSM - Data Strategy Module

RDS - Relation Data Set

RD - Relation Descriptor

RDS - Relation Data Set

RSM - Relation Strategy Module

MULTICS - Multiplexed Information and Computing

Service.

VII. R e f e r e n c e s.

1. Codd, E.F., "A Relational Model for Large Shared Data

Banks", Comm. ACM13,6 (June 1970),377-387.

2. Fillat, A.I., and Kraning, A.J., "Ceneralised

Organisation of Large Data Bases; A Set Theoretic Approach

to Relations", M.I.T. Electrical Engineering Dept., Master

Thesis, June 1970.

3. Goldstein, R.C., and Strnad, A.J. "The MacAIMS

Management System", Proceedings ACM - SICFIDFT Workshop

1970.

(~

Pane 19

4. Go~dstein, R.C., "The Substantive Use at Cebnputers for

Intelectual Activities", (Submitted to IFl 71)

~ZI5,eM ' Tr TtO f 15Ion between a

hine Decision System and Its EnviroI'. (Sbmitted

1971).

mh

(1~
f~r

~-

4

F

Page 200

0

fd rd

-pC p

ro
0

- p

(dd
-p

7dr7]

Page 21

Binary Tree for Character Strings

*

000000000000000000000000000000000001

Mauldin

Lewis Nelson

10 11

Kartew Linn Nelsen Rausch

100 101 110 ll

Hardin Myer Rabits Spann

1000 1100 1110 lill

Glatt
Mullo

10000 11000

Gold Murphy

100001 110001

*

In succeeding reference numbers, all bits to the left of the flag

have been omitted for clarity. First left-most "one" bit is used

as a flag to indicate the start of significance.

Figure 2

Page 22

Binary Tree for Integers

40

30 50

75
20 35

70 80

25
37

81

23

Figure 3

WNLL8RihlItU
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security ciasaification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology UNCLASSIFIED

Project MAC 2b. GROUP Nn

3. REPORT TITLE

The Relational Approach to the Management of Data Bases

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Memorandum
5. AUTHOR(S) (Lat name, first name, initial)

Strnad, Alois J.

8. REPORT DATE 7a. TOTAL NO.OF PA S .NO.OF REFS

April 1971 26 5
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

N00014-69-A-0276-0002 MAC TM-23
b. PROJECT NO.

9b. OTHER REPORT NO(S) (Any other numbers that may be
assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Advanced Research Projects Agency
3D-200 Pentagon
Washington D.C. 20301

13. ABSTRACT

This paper is concerned with the design and implementation of a relational
system for management of Large Data Bases (LDB) at M.I.T., Project MAC.

We have determined the following six major requirements for the management

of LDB in a dynamically varying environment, such as an Interactive Management

System: high degree of flexibility; data independence; ability to operate on

different data structures; access path .independent of data structure; access

control below the file level; uniform retrieval time.

We take the view that information we might store in our LDB consists of

sets of data elements and sets of relations among data elements. The basic

set theoretic operations are used for manipulating and operating upon these

sets.

14. KEY WORDS

Data Management System Data Manipulation Management Information System
Information Retrieval Access Control Data Base Management
Data Structure Data Organization Set-Theoretic Data Structures

D NOV 1473 (M.I.T.) UNCLASSI FIED
Security Classification

MIT/LCS/TM-23

THE RELATIONAL APPROACH TO

THE MANAGEMENT OF DATA BASES

Alois J. Stmad

April 1971

