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Abstract 

A basi ,c unsolved problem in science is that of under

standing learning, the nrocess by which people and machines 

use their experience in a situation. to gui.de future A.ctions 

in similar s .i tuations.. This th,esis. pres.,ents an apuroacl7 to, 

the learning problem and a learning-oriented approach t- the 

artificial intelligence problem. These approa.ches are 

illustrated .in a computer program ,call•ed INSIMl, whi •ch 

models simple forms of learning analogous to the learning 

of a uman infant during the first few ~eeks of hiF- life, 

such as learning to suck the thumb and l ,earning to perform 

elementary hand-eye ooonUnation. 

The program operates by discov,erin cause-effect 

relationshi.ps and arwranging t .hem in a goa tree. For ex

ample, if A causes B, and the program wants B, it will set 

up A as a subgoal, working backward along he chain of 

causation unti.l it reaches a subgoa 

directly;. i.e. , a mus,cle pu 1. 

h ich can be re·ached 

he work is discussed in relation to fundamental 

scienti fic issues, and proposa s are made -or .future re

search. 
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Chapter 1: The Artificial Intelligence Problem--An verv ~ew 

The idea of an artificially :intellip;ent beine; has !'I 

long history in literature, olklore, and science r · ction. 

From the le~en.d of the Golem through Karel Capek 1 ~ rrobo · 3 11 

to the r-ec,ent movie, 11 2001, 11 the human imagination has be _n 

gripped by the concept of a machine endowed with a ind, 

t oughts, and feel.ings. Fictional artificially intelligent 

beings u .~ually ex:hi bit an odd mixture of intel igent and 

very uni_ telligent aspects of behavior; their speech s,ound.s 

like a pre-reco~ded ,annou:nc,emen t; their personality is cold 

and "machinelike; 11 and, of ,course, they often beco e hostile. 

One pr,esumes that real intel i ent ma.chines wi 11 see very 

"human and not '1 machinelik,e 11 a all. With the i ventio 

of the electronic computer, art'ficia.1 int l'gence moved 

out of the r ,ealm o,f fiction, and, starting around 195,5, a 

techno·lo y of heur· sti c programming has been developing, 

with he development o,f programs which p~ove theorems in 

logi,c (Newell and Simon, 1956), plane ~eometry (Gerlernter, 

19 58) , and group theory· (Norton• 966) ; a program hi ch plays 

an excellent, if not yet master-level game of ch,es.s ( 1967) ; 

program.s whieh do symbolic integration (Slagle, 1961 · 

.o,ses, 1967), and recognize geometric analogie ( 1 64) , al 

,of which are diff ~cult problems for humans to ol ve Th,ere 

has been a parallel effort in the direc ion o wha+- · a e 



-page a 
called niower behavior," including cybernetic models of early 

learning (Becker, 19?0), and learning in neural nets 

(R,osenblatt, 1958· Rochester, 1956). In the classic state

ment of the artificial intelligence problem by Minsky ( 1 6 ) , 

the program is to solve a hard proble'm by sear-ching throu;h 

some space ,o.f solution attempts, aided by heur-i sti cs such as 

learning, pattern recognition, plannin t and induction. 

I seems to me that the way to achieve artific·a.1 

intelligence is to build an 11 .arti ficia.1 infant1 ( compare 

- ring, 1950), which would grow up in much the same way as 

a human child. Its deve . opment would be divided roughly into 

three overlapping phas.es : 

.Phase I~ 

This is the enginee r~,ng pha se of developing the arti

fi,cial infant and requires most of the har-d work, The arti,-

1 cial infant is to ,contain something analogous t,o the 

capabilit · es of a human infant's brain, which enables him to 

learn about the world and develop so,me degree 01' control o·ver 

it. -he machine would have a bo,dy w· th sensory and motor 

equi-pment for interacting with the real world. 

Phase I : Sensorimotor learning 

The, artificial infant plays and. explores,, lear.ni.ng to 

relate sensory data to mo,tor actions, coding the basic sub

routines associated with the concepts ,of ob· ect s, space, and 

time (Piaget, 1952); this phase is to be compared with the 



lea.rn·ng or a human infant aged 0~18 months. 

age 9 

ote that the 

prog"!"am must discover these matt,ers for itself, with only 

mi imal assistance f ram outside ( such as doing in tere sti n ! r 

thin s _or it to i - ita.te). 

Phase III: The education phase 

In this period, the machine i :s to be comparf!d with a 

human child who has learned t o talk. The objective is to 

transmit to it a cultural heritage of concepts;, values, 

goals, and acts. The major medium of communicatio is to 

be English or another natural language. 

The education of an intelligent ma.chine wou d have m.any 

simi-arities with ordinary programming; one would co munic-ate 

with it in a language, ~peci y p ·oblems, correct bugs• etc. 

The di ferenc,e is maj1or in that the innate and previo sly 

earned software must bear most of the bu en of deciding 

th,e precise algori th s to be employed in a na.rticular situ-

ation; the teacher· would specify the problem and perhaps 

give some helpfu.1 but ambiguous character zation ,o the 

methods to be employed. The distinc ion is the distinction 

bet1een a calculus textbook and a computer program for doing 

calculus problems such as the ones by Slagle (1961), ~oses 

(1967), and Charniak (1969). There is a large body o 

information built 1.nto the program. which is not i the al .. 

culus bock at all (Heuristics, pattern-recognition methods, 

and the like), information which a human s t udent discovers 

or himse f and which one a. reasonab __ ec a ntel-
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ligent computer program to discover for itself, given the 

proper innate· :Programming and intellectual background 

Phase IV: 

his phase corresponds to an adult human and is the 

"Ohase n which the intelligent ma.chine can solve hard prob

lems: if we !have done our engineering properly, · t should 

be much faster than a hum.an and much more adept at such 

skills as memorization and mathematical calc · la.tion, making 

it a very clever ,entity indeed. 

Th· s i ,s obviously a long-term pro,ject; however, there 

is no reason 1hy it could not be done given enough time, 

effort, and cleverness. The key unknown parameter is the 

amount of illllate code needed to get the ma.chine to bootstrap 

itself into intelligence. If the amount of in..riate co•de is 

of the oro.er of 10,000 to 50,000 words, th - so tware prob

lem is the easy part and the hard part is clev,eloping hal"d ... 

ware with sufficient speed and memory capacity .. If, as I 

suspect, the innate code must be of the order of .50,000 to 

1,00 ,ooo words, we have a deaades~lon research proje.et. 

(If a bill' on words of innate code a.re needed 1 the p.roject 

is probably not feasible.) 



Cha.pt.er 2. Review of the Literature 

A. J ,a.get: The Ori ins of In tell" gone e i.n Chi 1 dren ( 19 5:2} 

Tis book, by the noted Swiss child psychologist, deals 

i h the mental development of infan from birth t o arou d 

18 months. Pia.get presents very detaile observations of 

three of his own children, the flavor o: which is best given 

by an example: 

Observati.on · 6- A (age 1 month, 1 day) Laurent is held by 

his :nur.se in a; al ost vertical position, shortly be ore 

the meal. .e· • s very hun_gry and tl'ics t o nurse with his 

mo tt o,pen and continuous rotations of the head. His a'I"' s 

describe big rapid movements and oonstan.tly knock again.st 

his face. Twice, when his hand was laid on his right cheek, 

Lauren turned his head and tried to ~rasp his · ingers with 

his mouth. The first time he failed and succeeded t he second. 

But the mcvement.s of .his arms are no co-o:!icUnated w th those 

of is head; the hand escapes whil,e the outh tries to ma5.n

tain contact. Subsequently, however, he catches this thumbt 

hi whole body is then immobiliz,ed, his :right hand happens · 

t •o grasp his le t arm and his left hand pr esses agai s t is 

mouth. hen a long :pause ensu~s during which Laurent sucks 

ht s eft thumb in the same way in which he nurse s, 1i h greed 

and passion (pantings 1 etc.). 



(Copyri ht 1952, by nterna.tional 

Reproduced by permission.) 
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i verF-i ty Pr~ss. 

P_aget calls this eriod of the child s 11 e he 

"sensorimotor" period. since the child i concer ed with 

a velopi g sensory and mot,or capa ili ti es sueh as seeinp: 

and icki up obJec -s. 

Piaget an.a1yzes the child's ehavior in erms o 

schemas which corre pond roughly to subroutines in a com 

puter program; thus the n sucking schema, 'rr the ,, grasping

sucking schema, 11 etc. As the child de elops, schemas are 

formed, co- o,rdina ted (compare= a i her leve _ rogra.m is 

coded which uses one subrou t · ne to pre.pare fo,r ano er to 

opera e prope ly), diff_erep:tiated ,(compare: a new sub ... 

routine is coded by modifying and add ng to a previous y 

,exis ing one) , and ~eralized (compare: extending a 

subroutine to new cases). 

It is fascinating indeed to read Piaget's description 

of infants in language which ''makes sense'" to computer 

researchers, and Piaget 1 s worl< is a ric source ,of i ea.s 

for thi gs to get machine leam:in~ rograms o do. 
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B Pavlov 

Pavlov (1927) developed one of the earl·e t. and mos 

famou s theories of behavior learni.ng. Pavlov regarded 

behavior as synthesized ou.t of ~e, l _ex,es ( stimulus-respon s ~. 

corn'!ections). Pavlov• s most tamous experimen,t wa.s performed 

on d,ogs .• A dog I s salivary glands wi 11 emit saliva when the 

dog sees or smells food. Pavlov's experiment cons · sted of 

repeatedly ringing a bell, then. f .e,e.d · ng the dog Aft,er 

many repetitions, the bell became a dinner bell; i.e •• 

the dog would sal1 va be upon hearing the bell, in prepa.ra.tion 

f ·or being f ,ed. 

Pavlov postulated that this behavior pattern was: 

implemented as follows: Let the UCS (uncondit ioned stimulus, 

the sight and smell of food in th·s case) be connected to the 

UC:R. ( unconditioned. r ,esponse, ,salivating in this case} • 

ucs-->•·· .uca 

Now suppose another stimulus S (the .bell) occurs 

repeatedly befo,re the UCS. Pavlov postulated that S would 
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'become a CS ( •conditioned stimulu .s) connected tc the espon se~ 

ucs~ UCR i(and CR) 

cs/ 

Pavlov regarded the reflex as the basic unit from w ·ch 

behavior i .s synthesized;· thus the ref lex plays a ro 1 e in his 

system similar to the goal-subgoal link in INSH1 l. 1 a.vlov 

postulated a second s;!gnal system which he regarded as 

responsible for complex 1 voluntary behavior. Thus · he "re

flex of f ·eedom; 11 also I he ,considered thinking to be a set 

of conditioned ref lex es. Pavlov described a lang lis o 

characteristic.s of reflexes I · tne unconditioned stimulus 

(the bell) occurs without the conditioned stimulus ( t he 

f ,ood) , the conditioned re·sponse is gradually i hi bi ted The 

reflex is no•t forgotten, and it is restored after a delay 

of a. few hours 

rec,overJ. 

This phen.omenon is called snontaneou.s 

After the animal has been conditioned to respond to 

one stimulus, other-, similar stimuli will elicit the same 

response. This p~ocess is called gene~alizat ion. I f the new 

sti mu 1 s is not rei nf o ced, say, by foo · , a di s_cri01:inati on 
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process wil occur, and t e animal will earn to res.ond onl :v 

to, the original stimulus. Pavlov -oostulated a cortical 

p·rocess called irradiation which was to underlie . Emera • ze.

tion and one called concentration to underlie discrim'nation. 

·To me, the basic prob em with Pavlovian neurop.sycho o y 

is its inability to handle adequately matters o mot·vation 

and ·oal-subBoal relationships. 

C. Hu .' l's 'A Behavior System" (19.52} 

Hull Is behavior model is ,one of the most interesting 

concepts originating from th.e behavio,rist school of A.mer-lean 

psychology, the most famous member of which is Sk" nner ( 19.53). 

The model attempts,, w· th some succeas to give a ma the , atieally 

precise the.ory of simple form.s of learning .. such as a rat 

lea.ming to press a bar to obtain food. There are seventeen 

geomet:ry- like postu ates wt,· ,ch describe a network device, 

with stimulus (input), resoons,e ( q as output) an.d dl" ye 

(e.g., hunger) va.~iables. 
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The idea is that a S·ensory input, such as seeinB a 

light flash, activates an appropriate esponse, such as 

pressing a lev.er, provided the appropriate drive (nunge ) 

exis,-s. Whether or not a response is emitted depends on 

1 ts reaction notential, a conti.nuous-valu.ed function of 

time f the reaction potential of a response is greater 

than some threshold, and if it is gre te. than that of all 

incompa.ti ble responses ( e .• g., turn left vs. turn r.ight) • 

then the res,po,nse is emitted. IJ.,he reaction po ten ti al 1 s 

* the product of drive strength and habit st_rength 5H8 , 

The latter variable contains the learned i nformation; 5H:s 

is increme.nted whenever S and R bring reward and decremented 
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wh nev·er S and R ai 1 to bring reward. This, if one f las}1es 

a li ht and then feeds the rat after he pushes the lever, 

5HB iilill increase and the rat wil _ be · ore likely o ake 

the correct action the next time the light f ashes. 

he basic reason or using numerically valued -r·eac on 

l)O entials is that it handles the goal-:9Qn 1 · ct prob _cm h 1 a 

very direct and plausible way. I t\110 goals conflict {e.g. , 

desire -ror food and fear of an electric shock), the one which 

is II stronges 11 wins., ( I c - aim that this numerical weighing 

of values belongs at a different interpretive l ,eve entirely.) 

Eull' s ·theory was very pr,ecisely wo.rked out, and there 

is no obvious reason why it d,oes not constitute an a] gori thm. 

If it does, it is the only such learning theory except for 

NSI 1. It is surp i .sing that the usychologi sts have not 

at tempted a computer implementat ,_ on of Hul 1 11 s theory in ordet· 

to see i tis really an algorithm, and if so, what its 

per ormance 11 bugs" are. I suspect th t the reatment of sub

goa.l.s 1 s unsound in that Hull d · d not prov·• de a. separate 

variable for the subgoal; instead,, the subgoal is a partial 

activation of a response variable. Also, ull did not hand e 

stimulus nteraction or concept fomation. 
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If nothing else, TNSIM1 has demon.strated the feasibi L

i ty of computer models of learning theories. I ho -e that 

psychologists will adopt this method of testing their 

the ries, as o pos,ed to rhetoric, persuasion, and manual 

methods, which are much more clumsy and uch less 1 ikely ~o 

reveal perf onnance II bugs. 1 

D. Other behaviorist learning models 

In addi ti,on to Hull' s beh.avi or system , there are 

several other interest· ng learni .g the,ories of the behav

iorist school. (See Hilga::rd (1956) for a.n excellent survey 

of _earning theories.) Thorndike (1898 antedated the 

behaviorists and p ovided several co cept which have p;reatly 

influenced learning theorists. Thorndike's mos famous 

ex~er1ment consisted of confining a hungry cat in a box 

with food outside. The cat mu.st op,erate a. latch to es,ca.pe. 

On the first few trials. the cat da e around, claws, and 

bites in a manner which some observer have characterized 

as " random. 11 
( Whether or not there is rea - ly a randomi za. ... 

tion proces s involved is unknown.) n later trials, the 

cat learns gradually to operate the latch with less and les,s 
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The gradualness •of this learning sug est s the 

fam 11ar statistical coefficient 1earn1n~. 

Thomd:tke exp,la1ned · ehav:1or as the result of "bonds' 

,or "~onnecttons" between sense data und act1ons and thus 

m1 ht be considered to be an or1 1na.to:r o st1mu1 us-• 

response psycholop-y. S--R psychology has been ,cri tlci zed, 

I think correctly, ( e. ,- • , by M11 ler, c.a.lan ter, and Pri bra • 

( 19 60) ) as fa 11 ln to adeq u.a tely take 1n to account the 

p-urpos1 veness of beha.v1or. However, 1 ts tnfluenoe has 

been large and often turns up 1n une.xpected plaoes. (The 

FS,IH subsystem of INSlM1 as ·ot1 vated to a larpe ep;ree 

by a a.es 1re to dev1 se a. co pu ter langua ~e which \Ii Rs 

"st1m lus response or1ented.) 

Thornd1ke proposed (and later .aband,oned) three la~s 

governing the formation of S-R bonds: the a.1ri1 of e fe,ct, 

"1hieh stated that behavlor whlch 1s· fo_lowed by reward 1s 

likely to be repeated., the law o .f exercise, wh1ch took 

into account the amount of pract1oe*; e.nd the law or 
readiness, wh1ch 1ncluded the tunoti.o 

ass1gn to a goal ... su goal system .. 

~h ch we would today 

·•The later, simple fo,rmal ma.themat1ca.l models of Bush and 
Mosteller (1955) and stes1 ( l 9'67) attempt to "explain" the 
need for pr:eo t:l oe ; Bl1Sh and .Mos teller show how, 1n these 
models, the gradual o.oeff'1o1ent-learn1ng theo ts actuallY' 
1,somorph1c (mathematically 1nd1st1nguishable) th the e.11-
or-none "st1mulu -sampl1ng" ,co,nnect:lon theory of Estes 
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Watson 1s otten considered to, be· the rounder of' the 

behav1or1st movement 1n. psychology, w'h1ch takes overt 

be·ha:vior as 1 ts sub jeo t matter I rather than oonsc1ous 

experience. Be ha v1or1 ·m arose as a revolt e.gatnst the 

rather sterile trad1t1on of 1nt~ospectlve psychology 

prevalent around the tu.mot the century. Prom a modern 

v1ew-po1nt it 1a probably good ,trategy ln lea.ming theory 

to study- simple forms· of behav1or and t0 neglect c.onso.1ous 

exper1ence, slnce bahav1,or 1s easier to handle 1n a learn .. 

lng mo,del. But beha v1or1 Sill mu.st be regarded as met:ho•d.

olog1callJ" 1nadequ.ate because or· 1t rejection ot 1ntro

spect1ve reports, Wh1oh o.an be used to great advantage; 

see, tor tnstanoe, :Newell and. Simon (1958). 

Skinner ( 195 )) has ad.Yanced. one of the most :t'smou 

of the recent behavlor1st learn1.ng theor1 s. In Sk1nner ''s 

, :,stem, the fundamental unit of behavior is oal ed. a 

operant. Examples are eat1:ng a meal , 1 g a lett r 1 

and. d..r1 v1n,g a car. In Skinner' ode.l , o,perants. are e:m1 ttecl 

aocor4.1ng t ·o a stochaat1c prooes,s , and t he k ey parameter 1 s 
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the probability- of emitting a particular operant under 

vari ,JUS stimulus cond1 t .· .ens. Certain stimuli, such as ocid 

and 111ater, are called reinfop.cing st·muli. The U. demental 

law of learning in Skinner• s system .s that if ·he occurrenc·~ 

of a.n operant is foll,owed by presentation of a reinfor<>i 'lf-~ 

stimulus, the strength (probability of emission) o the 

operant is increased. magine a rat in a box where pellC'':s 

of food wi 11 be given it i.f it presses a bar wi h its foo .• 

At irst, the ra presses the bar by chance and is fed 

( reinforced) • Then the pro babi li ty that it wi 11 res s t~hc 

bar (emit the ope ant) is incPeased. 

The behaviorist learning theorit--E have had ~rea. , prac

tical value in pro,v.iding t e sort of sem· -empirical. under

standing needed in education. It is no accident thn . 

several clever innovati.ons in ed catio:r.131 technoln _y , such 

as Skinner•s teaching machine ap roach (19 8), have been 

made by behaviorists. From a theoret'cal viewpoint.• '1owcver , 

the behaviorist theories, excepJL.. ossibly or Hull s, are 

subject to the usual criticism made by computer scientists 

abou.t psycho,logical theories. That thP-:V are o a diff,erent 

level of abs raction from what is needed for a precjse, 

formal odel, a.na. that they are too vague be ade the 

basis· of an algorithm., Dozens of atte . pts have been made 

to develop computer models of l ,earninr;, based on behavior 
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theory ( myself have made a dozen or so), withou notice 

able auccess. One can only conclude hat, except or 

Hults, these behaviorists model are not sui -4h e bn~e-s 

for ornal theories. 

E. Hebb: Organizatio•n of Behavior { _949) 

In. contrast with Hull's model,, where the · nf' uence of 

neurophysiological data was ju.st below the su.r ace, Heb 

constru.cted a learning theory which akes e:x.plici t refer,ence 

t ,o ne rons which fire, sending electri ,cal impulses down 

p,erv_e fibers to sYna -se_s through whic • the informat:i on is 

trans i tted to, o,ther neurons. Hebb ade a basic postula.te 

which may be understood throuell the exampl of an exJeriment 

in which the subject hears a list or pa. · rs of nonsense 

syllables· the goal ·s to remember the second syllable, 

in response to the first, or ~ syllable Assume that w0 

have eells which fire,. corre·sponding to various praoperties 

of the syllables (Wic~,e gren,,. 1966). Hebb postulated a 

11 fire together., stay togeth.er11 rule· cells A and B fire 

at the same time (hearing the pa..ir Kc- LZ), the connection 

joining them will be strengthened so that i f A fires aga·n 

(hearing the cue KNC), B ill fire also (retrieving JLZ}. 
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Hebb suggested hat cel 1 s ,. i th a fi re-toe;e the ,.. n_ '-

ogc1 he rule would combine to onn hj erarchicA-1 eel l 

as ser 1bl i ef;, the neurological enalor; of su brou t.:i ne~ · n A. 

comp 1 er pror;ra • He p;ave a cohere . account of l1r.n-1 such 

~ell RSsembl"es cold develop the abili~ to recor i e ~ 

vi s1J.a l pat em such as a triangle. 

A cornpu ter s imu la tion hy Rochester, L ~) ( 19 5A) 

showed he incompleteness or Hebb' s model. The work o. !-I ebb, 

-' cCu l loch• and others s ti mu la t.ed a eat dea 1 of in tP.re st in 

11 
Sf' - o:rg.:mi i ng neural ne .s 11 ( Farley and CJ ark,, 19 4; 

-Shimhel ; Ashby, 1952). 

F~ MULTIPLE 

·UL'rTPLE (MUL_I-Pu pos theorem prover that Learns') 

(Slagle and ursky, 1968) is A. progT>am which so1ves prob ems 

( such as end-games in kalah) by prov· . r. heoPems. Tti.e pro

eram stR.l"'ts wi ti') a ma.in pro osi 1 on ( com are: main t;oal) :ind 

e;enerates sub-pr,oposi tir.ms which; i proven, wou1n al]o"' thr: 

ma i.. n proposition o be .,r,ovP.d • The pro ns j . ions may he 



dis layed in a tree (compare: goal tree). 

he pro,cess of enerating subpropo"'i tions s ca led 

sorouting. The basic decision which 

that of which proposition to spout 

ust ake i.s 

MULTIPLE does 

this by assigning a numerically valued merit to each untried 

proposition. The conce_ t · s that a p~oposi.ti.on has er-it 

to the extent that proving it is li k,ely to chann-e the 

pro ba bi l 1 ty of the top ~ ropo si tion and if · is ineXJ)ensi ve 

to ove .• ore precisely, the progra .,.elects tne propos1-

tion which maximizes 6p/c , whe,re 4 p · the ( estimated) 

change in the probabil1t of the. top propositio. and c is the 

estimated cost of sprouting.. The num rical heuristj._cs yield 

an e ficie.nt, but not theoretically optima proof search. 
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G.. Winston• s orogra:m ( 1970) 

'i'his program is capable of learning simple visual 

categc ri ,es, such as an arch I from examples. The program has 

a descriptive langua e whi.ch is the output of an analysis of 

the struc ure of an •object. 

A 

B C 

Figure 1 

Here ·show W:ins ton. 1 s program would earn the concept of an 

arch. First, we give it the object in Figure 1 and tell it 

that the obJect i .s an arch. Next, we give it the object of 

Figure 2 and tell ·it that tni~ obj e,ct i~ not an arch. 
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A 

B C 

Figure 2 

The pr,o,gram AND' s int·o its list of requi.rem,en.ts for e.n arch 

the rule that the must not abUt one another. 

ust-be~supp rted-by 

Figure 3 

This requirement is put in because, the difference in position 

is the ••most p,rominent difference between the ob·ects of 
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Figure 1 and Figure 2. Next, we present it with the objects 

of Figures 4 and 5. The program learns that an arch ust have 

the t •cp-object s pported by the co umns, and that th,e top

object need not be a brick. 

B I C 

A 

Figure 4 

B C 

Figur,e 5 
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insto•n • s -program includes many arbitrary elerner!ts . , 

ass·i~ing priori t .ies to differences and in matchi n of 

descri .ions, and one has troub -e understandin juet Mha . 

he oro,.,..ram does. 1evertheless, I believe that t inst,on 1 

110 l illustrates that there is a. quan· um jump i learnin~ 

abi 1 · ty wh · ,ch becomes avai labl,e when a proRTa ca: deco, po ~e 

the uni verse into entities ... 

H. GPS 

he Generalized Problem Solver of 1ewell 1 Shaw, and 

Simon ( 19 59) is an o:rgani za i o·nal framewo~k within wh1 eh a 

va.rie ' y of problem-so ving processes may he mechanized. 

GPS is a teleological { oa.1-seeking) de ice in which a 

difficult goal is achi-ved by reducin , it o simp e u -

goals, each of which may be s1 bdivided. This process is a 

0 

II wan 

lanning which is familiar in co mon-s.ense thin1<ing. 

to go to the airport. herefore, I will. wa l to 

the car get in, s art the mo or, and drive it to the air 

port. fi\o wa.lk to the car, I wil 1-·- " 



lialk to 
C J'" 

Go to 2i rport 

:et in St.art 
motor 

• 1ut k ey Pu t p;ear 
n .,,witch in neut al 

,! 

t o 

I n he OPS f o_ ali sm, a pro ble is d e ,scr'i bed 1 tel"'ffls 

of o b jects and ooe.r..,ators which transform one obj ect into 

an.other. For a problem inv-olvinp.; act i or. · in he physical 

wor _d, t he objects would be state descr i i on and the 

opera tors would be actions. If he pro le is t ,o prove a 

t heore in mathemati ,cal lop.:.i,c t the ob' ec t s would be expres 

s ions , and t he operat ors would be rules of inference. 

The executive organ:i za tion i si .1 le. 

Goal Eval uate Select rn,ethc,d 
-----:;1,1 goal 1----3111 f'or thi :s 

t ype goal 

'.R e j,ec t 

Execute 
ll------:i""il method 

Gorl 
ach ev er! 
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Of course, the hard problem in such a system is to find 

sub ~oo.ls '1hich wi 1 aid in a•chi.eving the goal a the· next 

hi.ghe!' _evel. Goals a.re classir.· ,ed · nto three types, w. th 

a corresponding me 'hod for each type. The probla 1s usually 

posed as a oal of ty,pe 1: Transform object a i!'lto object !2,. 

Goal type . o • 

/ atch i! to l! 

Transform 0 1bj1ect a into ob' ec t b 

. educed between 
a and !2 

Differenced 
odif·ied obj'ec £. 

succeed 

1•
1 a il, try 

1 for n-ew 
ob,1ect 

ethod succeeds r rans form £. i. to l! 

The two ob·ects being tested are matehed and a pattern 

recognition proces~· is used to find several dlfferences 
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bet •=-en th,em. For example, if the problem is to transforr.1 

one expression in sy bolic logic into another, t e differ

ence!i mie;ht be that the two expressions had di erent aiH 

co ,=,ctives or that the terms were grouped differe l y. 

table o di ference priorities is used, causing the machine 

t.o attack he hardest differences irst. The process of 

redur.· n • differences involves two O•the oal types. 

Fails 

,oa.1 type no. 2: Apply 

ransf,orm a 
into c(q) ,
the input 
form of g_ 

erator £ to ob eet ~ 

succeeds 
Produce the 
output c 
from F(q), 
the in ut form 
of g 

Goa type no. j: Reduce the differetice ~ betwee objects 
~ and b 

Search for ,operator 
9. reLevant to 
reducing .~ a Apply£ t------~ to~ ..___ ____ ........ ____ _, 

Method fails 
Fail 

Try ,or ne ,operator 

Met od 
succeeds 
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A table of differences vs. operators is used to te_l e 

machine which operators will help in reducing a. e;iv & di er

ence ~ The process of· reducing differences imparts a n di re ... 

tionality 11 to the program, allowing it to progress owa!"d the 

g-oal in a seq ence of steps. 

In add.i tion to proving theorems in symbol· c logic, OPS 

ha been used successfully to prove trigonometric id,atitt ies 

and solve simple puzzles .. 

J. ewell, Shaw, and Simon: A Variety of Intelligent 
Learning in a General Problem Solver 

The Newell,. Shaw, and Si on pa er, A Variety of Intel~ 

ligent Learn~ng in a General Prob em Solver ( 1959) :i.s an 

enigma ,e.mon.g scientific papers. It presents an in ricate 

pro osal for getting OPS to solve adu -le al problems, such 

as p'!"'OOf s in .symbol.i c logic, on a heavily self organizing 

basis,. with i ttle manually repared ro lem-speoific 

information. The enigma lies in the fac t hat he 19.59 

proposal has not, as of 1970, been 1 plement ed, and that, 

if implemented, it would constitute a signifi ant advance 
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over -an- learnin code available in 1' ?O, jncludtng I.!SI~::. 

·rhe 11 Intelli ent· Learning 11 aper proposes a s.imple mc~hod 

for learning the operator-difference ·able and am ch more 

complicated method for learni g the di ercnce~ the 1sclve". 

T e ethod fo - learning th,e operator ... oi f'ference able r .' iL;~ 

on the fact that o erators are stated in what mny be called 

a II theore u form, such as AV B-,, B v A ( o_ era tor Rl in the Logic 

task ~nvironment}. o ind out that this operator is r lcvant 

to a ci · ff erence in ord,er of the subex~ es ions, one ? eed only 

apply the difference computing subroutine to the let and 

rig t sid,es of the expression which describes the ope ator 

and note that Av B diffe s in order from Bv A. ote hat no 

use has been made of experience on actual roblem •* By con-

ras , I .SI :1 ust laboriou:sly est its operators ( _ erformo.nce 

subroutines) in .actual situat ons to see what if~e:rerJce they 

make in the environm,ent. 

*But if the operator had been described by ~lmos any 

kind of procedural form, like 11 If CAR equals OR then swap 

CADR E an- CADDR .!., n testing o:n examples wo 1ld ._e eeded. 
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A much harder and more interesting problem is to p:et 

GPS to invent a good set of differences. In order to do 

thi'=; the authors ·nvented a language- called DPL (difference 

pr,ocessing language) in which ,di "'ference subroutines are to 

be written. The elements of the lanrruage a.re: 

Symbol 

' 
r 

C 

V 

b 

f 

PROCESSES FOR SYMBOLIC LOGIC ENVIRONME 1T 

·l?ind te·rms 

Pind left 

' Firu'i right 

Find 
comiec ive 

Find sign 

Find 
variable 

•rest if 
c:onstan 

Test if 
. rf'!A 

variable 
'."csl; if=" 

Input 

object 

object 

O:bj,ect 

ob' ,ect 

ob ect 

anythin 

anything 
connective 

output 

se ·· of all sub
objects 
left-hand sub
ol:> ect (,, i. 
does 1 t. exist) 
i~ht-•hand sub

ob;rect ( tJ j. f 
doesn't exist) 

main •co,nne,cti ve 
of object (- if 
ob·ec:t is 
varia le) 
main sign of 
object 

var·nble lette 
(f if a com
pound object) 

in ut, ,. con-
tan., c; i' it 

co tain free 
varia 1 s) 
nputt .:.r ~ 
re. a.riable 

( ; if not. 
:, :r connect -

1 ive is= 
c; if not) 

Examples' 

t (p .. QJ= (f'yQ)., 
P.., Q. 

'CPv~- p t (Q)::t9S 

r(P,,- Q)•-Q 

c((P~c)vftpv 

.s(-(R:l!IP.»= -
s{-Rv PJ- + 

v(P:,Q} ; 
v(-GO•C2 

1-(A}•A 
f{P) -
:,, (:, )::::, => 
:t (.) .. . 



A 

;;: 

B 

C 

Symbol 

V 

..;.. 

PROCESSES F R SYMBOLIC LOGIC f:: ~VIHO 1E./r 
Contd 

Name In°ut l p - - output 

.:. est if V connective V i connect·ve 
is V ( '~ i no ) 

mest if connective • if connect .~ v,e 
i·s ( ~ if no ' • 

Te., . if J. sign -t- if sir;n J. + ,, 

(¢ ir not) 
Test if - sign ·- j sign is 

if not 

v( v)=, v 
V (.::ii)="' ~ 
.(.)-. 

(vJ ¢ 
+(•) "=' + 
+ (-)= </) 
-(-J =-
- (-f-)- qS (~ 

A ( 'B.i~•· Test if .A A if letter is A (A).,.,A 
A(P)p;¢ 

P,(Q) R,1'.) 

Symbol 
I 

[x] 

[x] 

[X] 

( B ,c, ) variable A ( ,, if nnt) 
Test if p p :. f ] etter j _s P (P).,.. P 
( 

- ' ' .. ) va.riab] e p { izs, i not p (Q)= ¢ 

G:RJEBAL DPL PROCESS S 

~ame 

Assi.gn 

Inve se 
assirr 

Blan.1< 

Find 
component 

Input 

any object 

any ob' ,cct 

any ob,jcct 

s t 

utput Examplc!l 

X if input is not 
; , ~ if .input · s r/J 

X · u1put is f, 
~ if i .put not, 

goe through all 
subparts of inpu 
x. If X (x) o 

(21 , replace X{x) 
by fJ in i ~ t. 

takes any cornpon-
e:nt. or ut u 

Al+J(P, Q)- + 
At+J515= r6 

A[4J (P..Q}=, 
,A[-1-3¢' = +-

S(c] (P;::9 (a-"'R)) 
= p; (&¢ R} 



Sjmbol 
I 

!) 

E 

I 

F 

G[X] 

I 

K[X) 

L 

M 

I 
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GENERAL DPL PROCESSES 
Cont'd 

-

Name Input Output .... xamples 

Difference 1 any pair of compares •Cor- D ((~Q, ~)., •object.s responding -ub- (Q,,a.,R, P)) . parts ef the two ' = ( ( 'P., , ... O!SJJ inputs., If equal, (Cl.,-,.., ;.,P)) replaces each by 
~ . o·utput 1 ,S 

modified pail:". 

Expand set of sets output is s ,et of E"f{ P,aj,;,f eRll 
all eleme.nts in e(f3 'Q.." R) ' the subsets of 
input, with 
multiplicity 

Fin.d fire:t list first item on F(P,,~1\)- p 
the li ,st. ( ,jd if 
doesn't exi t) 

Group set output is a set 'S·Gl]( P.,J P. Q.... 
of sets. Each p R aj= subset contains {(p, ,: 1-' ( ~oi all the items of flt.) 
the input set 
With the same 
value of X(x) 

Id.entity any object input J:X=X 
Constant any obj ,ect ~. for any K(+]J>• + 

nput 

Find last list last item on the L (P,Q,kJaR 
1·st 

HP· ft-o,.. I Find prior itern from item preceding 
list I input item (9 if (Q... R" P,.5)- R 

doesn't eX1st) 



Symbol 

R[YJ 

s-[x] 

u 

GENERAL DPL PROCESSES 
Cont 1d 

pa e 3? 

ame Input Output Examp1es 

Find next 1 · tern from 
list 

item fol lowing 
input i tern (¢ - i · 
doesntt exist ) 

Intersecti:n set of sets set of items 
com o to all 
subset .s of in
put 

Select rep ... set 
resentative 

set consisting 
of one representa
tive element of 
each value of X(x). 
compare G [x] 

NP frcn, 
((\1,esJ S 

Pl i P .. QJ., 
{G.,R} {QJ 

Select set set of i terns of .s-tv] {P. a, 
input set with X{ x:1 - R; R.~" J 

Set list 

at~ =i-R,rO 
set of' :i ems on 
list 

For example, the sub ·ou tine D(R [IJ vt) * detects a d ·fr erem:::e 

between the lists of variables which occur 1 two expres 

sions. 

A key concept in the Intelligent ,earning1
i paper 

i. tna t GPS is used recursively to sci 1 ve the hurnan-leve l 

problem of l ,earn1ni?: (i.e., o.i sc,over· ng) a. sood set o 

di i'ferences.. There is a separatP. task envirorLen ca led 



pa e ·r 
the :s-environment wher'e the objects are s,3ts of di -

erences.. The B-op,era.tors a.re .: (no e. an A-difference 

is a difference perts. ning to the performance environment, 

J.or,ic: theorems in this case) 

B-Ouerators 

Ql Add an A-difference that gives+ for pa1r X 
and ~ for palr Y.. (A pair may e1 ther he a 
pair of objects, o,r the condition and product 
~orm s of an ope:ra tor. } 

Q2 Modify A-difference T to gjve + for pair x. 
Q.J •todify A-difference T to g ve; for pair x ... 
Q4 Delete A-difference T from set s. 
Q5 Ad·d an A-.diff1erence that gives + OT' oair x. 

Apparently the B-operat,ors are intended to be of the 

character of goals: rather than tidy li. ttle su·broutines·. 

here is a set ,of B-differences wh1.eh express the 

characteristie:s of a goo·d. set elf A-differences· 

B-Differences 

Dl The set of A-a.1ffeJ:tenoes not consistently 
def:i.ned for some pair of ,objects .. 

D2 The set of A-opera.tors wi h o a8sociated 
difference. 

DJ The se:t of A-object pa.i rs Iii th no associated 
dif erence. 
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B•Differepges ( cont I d) 

D4 The set of non-orthogonal s tuatione (each 
si tua. tion consists of an. A-obj e,c t, a list of 
A-operators,, the p;roiduct from app ying the 
opera.tors to the given A object, and the new 
differences between the input and output that 
are not associated with any ,of the operators). 

D5 The set of full A differences (hav1ng all A
oper.ators ass,ociated with them). 

D6 The set of empty A--di .fferences ( having no A
operators associated with them). 

D7 The set of A-differences. with more than one 
associated A-ope·rator. 

D8 The set of A-operators with more than one 
associated A difference. 

D9 Tbe to,tal number of A-diff,erences. 

The paper concludes with a. rather sketchy hand 

simulation of how the p,rogram might learn a set of dif

ft!t'tences for the logic environment. 

It 1 s im.po.ssi ble to evaluate the soundness of the 

proposal without actually trying to pro~ 1 a:nd see 

where the ,gaps a.re. It 1 s quite unclear what is ne·eded to 

make i .t work or what degree of success can be achieved. 

The paper unders,cor,es the importance of the dirty work" 

of · arti fi ci al inte ligen.ce research. w 1 tho t programming 1 

debugging, and experimenting on the progl"am.J the project 

remains a que.stion ma.Ji!, although on paper" I consider 

this to be the most exciting and p:romi s nG: of the GPS 

~tud:.es . 
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The next two sections discuss several compute·r-

or ented lea.rn·ng techniques which are dissimilar to each 

other in many ways, bu,t are lumDed tor;cther because they 

have -he same generat formal charactP.r and could be 

in -e rf aced into ,a learning c,ode ,of the I SIM type · n 

similar ways. Each of thes,e programs attacks· in a 

di -ferent way what may be called the signal prediction 

, roblem in learning codes. Formally, they em t nredtetio s 

abo ·, some variable, e.g., a variable which has the value 

1 . .. l an ob·ect _s in a ,certain category ( :mch as a patter?" 

. .Jhi ch is an instance of the letter .A) , the value O other

wise). The predictions a.re made ,on the basis ,of so,me 

set c,r b,asi s Yari,able,s b1 , b:,, ••• , 1'n t, such as a set of 

visual p~operties related to the objeot (e.g., whether or 

not 1 t has ,a vertical stroke). 

K. Th,e P,erceptron 

The term 11·perceptron. 11 ( Hosenbl,att, 19 58) refers to 

a ,class of pattern reeogni tj on de i ces us ng a simple 

l near weighted-vote technique . A typical perceptron 

consists of a re,t,ina on which a atte·rn pro j ,ec ted , ,a 

set o,f feature recogn· zer,s which compute th predicates 

;. of the retinal pattern,, a.no. a w:eig ted vote mechanism 

which outputs, 1 if,, and on_y if, l: « i 0,i (X) =-- 8 -1her'e S is 

the thresh~l_g, the oe 's are weigh_t factors. a n X is the 



We:1g)1ted 
vote 
l ogio 

Ii"--~ output 

...., o •j ded by I1c ea ture dr a.bnitt whet:-:c r.ir not the pntter·n 

~ s an instance o the lAtt0r A I t e total Avide~ce 

at l:e 

P("rccrtr s can be cqu5 upec'l o ltY r•n the C(lP.. f'i cien :r• 

o coeffi ci.ent 1 earning. As pat .~rn ,..ecogn · P s, t.hcy 

\1) r1.t well or noorly, depcndinr- 1:"-'rgel: on l ow well th,3 

ea rires ¢· match the dist-i r-tli s' . .' , , or,erti e~ of i. e 

.. '.:!.t em. espjte i. s name, the crceptron is only a snall 

1 )1?~.:.nninf_:: of the solution ·of the oat· crn recoe;ni tio~ 

rr hl~. ; either the real porcFrotio . ,rmabj li ,y ,·st '1 ,_i veu 

in he functions ¢;, or eli=te th,ey ~t be ut to ,et ~r 

1 n some uch more v rsa ti le wa:v thari as a mere linear 

r,hrPshold funct. ·on. 

The a, onto resea ch ~nd lite ature on he .erceptron 

urnerou pape s and two tlOOl7-::, 



by Rosen· latt { 196·2) a,,i.d Minsky and Pnpert ( l Q69) , hnvE> 

hee11 writ .en,. bri stl ine; with eq iatio~ .... , theorem~, nnd 

proo~·s about w at various types of -p~rceptron <".a. a a 
cannn do. Because of i s sim-cli cit~ , the r,ercoptro'?"' 

Je iir; itsel well to athematical analyses. 

con_vergcnce theore. i ves an algori tr-1 .. far fi d..in , .hP. 

coefficients «1which is guaranteed to fiTid the st or 

coef f · c ient s if a <!"ct ,ex: st s which wj 11 idonti fy th~ pat P.l"Tl 

in ues ion (such as the letter A rrom the set off nct·ons 

,zS;(X ) , al though it will not nee ssar ly · nd i . in a 

reasonable length of ti e. Min.riky an · Paper rove several 

thenrem about what certain types o ercc :rons can o 

le3.rn to do. We have little mathematical theory for 

ys ems like J SI 1 The evidence a its obil ties is 

do not 1ave pr-oof. of it inabili ,y 

to Lenr to solve any type of prob ems ., ( 1 t i c r, 1 

·.o e that I sun cannot lea 1 to d.o, say, vi si. on roblems 

. 1 s1.rnp_,'f ecause · t la•cks the necpssary machine-. , it cannot 

psrs~ ows 0 1 noin s into lines or a a F f 1:nes into 

• EFAM 

Fei .... e baum• s EPAI (Elect on ic Perce· ,,er R d · ~morizer~ 

( 19~1) ~ ror,ra. is a mode] o sim le for of ne-triaJ 

learning; i .e ,. learnine which occurs afte.,. · s one 
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ex:pe~ience rather than by a slow, statistical process as 

in t1e I.SIM] coefficient learner. 

Fei~enbaum modeled a verbal lea - in~ ex eriment of 

th€ type desc ibed previouslr, in w ich t.he sub·ect -s 

aske, to rem0['1ber Associated pairs of nonsense syl1ablei; 

and recall the second syll~bl~ u_on presentation oft.he 

firs t as a cue. EPAM p;rows a di scri min.a tion .t.,reJ~- of te. ts 

wnic. are appliea to the due syllab e,; Petriev~d syllabli3-s 

at>I!' sto ea at the bottom nones of tne tree. 

0 Test node 

An example of a test would be 11 Is ne first. let.ter 

D?• Feigenbaum developed a ver '!f f i eien alg,o:ri thm f o~ 

building these tref!'s and retr eving information from them. 

The behavior of EPAM in learni.ng (and forr;etting) nonsense 

sylla le uairs was com_ ared t·1i th that of human subjects 

and found to ~ree quite well 
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Adding a modified version. of EPAM into an advanced 

pro~ram of the INS type would greatly improve its capa

bilities because of the ability of EPAM to learn in one 

trial. To see how this ight possibly be done, de ine 

the cu_e basis of an EPAM system to be the ordered list 

of tests ( noticing order) ( T1, Tz, .•. Tn) whic.h EPAM inserts 

in to the tree. EPAM systems perform well if the cue ba.si s 

corresponds to the p..rnperties of the enti t1es w..:. th which 

the system is deali.ng... 'rhe idea that there is such a. thing 

as an entity (such as a syllable) whose properties 11 belong 

together' is so commonplace that its importance is easily 

overlooked. For example, in a rea.1 psychological experi

ment, the subject is bombarded with stimuli which have 

nothins: to do with the experiment~ I EPAM were, to include,, 

in ·ts decision tree, tests about stimuli elating to the 

states of the experimenter 1 s eyebrow or whether- or not 

there were birds visible in the laboratory window, the 

erformance of the EPAr system would. be r;reatly degraa.ed 

Pei enbaum's program had a great deal of specialized 

knowledge about en i ties coded into · t in.'11.ately. ~ 

system of the INSI· type would need to ha e so ·ware to 

learn this entifica •ion for itself. nee the cue basis 

was learned, the EPA tree could learn L one tr· al that 

some set of entity properties , such as blue a'rld. rou d, 
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gave a high Pr (Bf A) f.or some link, .. uch as shake ... i~at Ji ! • 

sound 1 ·r the object were a rattle. 

Whi e believe 1 t easi ble to inmlement an e t.:. f:ica-

tio learner, it would be premature to speculate on how 

th s syste would work 
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Chapter;: I SIM!: 
A Com-;,uter Mo el of Simple orm of Learninr.: 

A I - ntr,.oduction and Summary 

I S_M 1 is a computer p,rogram, writ ten in LISP 

(McCarthy, 1960 on the ITS time-sharing system, which 

models simple forms of lea:rning analo~ous to the learning 

o:f a human inf'ant during the first few weeks of his lire, 

such as learnin, to suck the thumb anc1 learning to 

per orm eleme1tary hand- eye coordination. 

The program operates ~Y' discovering ca:us.e-effect rela

tionships and arranging them in a goal tree .. For example, 

if A causes B, and the program wants . , it. wi 11 set up A 

as a subgoal, working backward alo g the chain of ,causation 

until it reaches a. subgoal which can be reached d1rect1Y, 

A typical problem is the ,one-dimensional, three-point 

thu b-sucking prob em, which can be escr'bed i logical 

notation a ,s follows: 

( 1) object tou,chi ng mouth..., pleasure 

( 2) { left check touch (\ tu:rn head le t}.;a,. mouth touch 

( 3) ( right ohee!<: touch A turn head right)+ mouth to,uch 

( 4) ( left cheek touch V r1 ght cheek touch) = face touch 



Face 

Lift 
hand 

( 5 ) face touch-+o mouth touch ( some i rnes ) 

t 6 ) if hand-+-face tou,ch 

Pleasure 

Ob3ect touch1ng 
mouth 

Left ohMk 
· touch 

Tum head 
l.ei"t 

After the program has learned 

Right ,cheek Tum 
touch head 

right 

se onnectio s, it 

wiJl emit the behavior sequence "lift hand, turn head {left 

or ri ght) 111 '
11 resu ting in pleasure. 

Be ow is a blook diagram of INS! 1: 



PSIM 
interpreter 

-

As,sembler
'Scheduler 

Motivation 
s,e,ction 

Bespons•e 
si,gnals 

Body and 
,environment 
simulator 

Cue signals: 

Experience-directed 
compiler 

D [ 

Display 
,,.___~ section 

The per1'ormance progr>am ha the direct responsibility 

for synthesizing behavior ., It is wri - ~1en i.n an interpretive 

lanzuage called PS!M. (parallel simulator). The performance 

_ rogram. reeei ves ,stimuli from and ena.s responses to a 

body and environm_ent simulator, the display section rovides 

real-t:i.me monitoring on the cathode-ray tube. The motiva

tion sect_ion activates the main goal { oral grati. ication 

or curiosity). 

Relatively little of the per or"ltance program is innate. 

Most of it is generated by an experience-driven compil,er, 

which is the core oft ,e learning part of the · rograrn. 

Causality is detected by statistical corre1ati.on; if' 

a signal occurs oc line A followed by one on line , and 

if this sequence is repeated sufficiently many times, the 
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pr-ogram assumes that A causes B. The pro ram is equipped 

for t !1e simp,lest. tyPe of patte.rn reco~n.i tion and cc .cept. 

format·on: the formation ,of logical A n,•~ and OFPs of 

nrevi ous l , known variables. The pror.-rrun has an j n t~ leC'. t, 9-l 

motivation system which causes 1., to exhibit simole for . s 

of curiosityt play, and exploratory behavior. 

B. The P .rformance Prggram 

s described above, the perfol"man,ce pT'ogram has the 

direct responsibility or receiv"r, · cues f om the environ

ment and emitting roperly timed ~d sequenced. behavior. 

It is coded 1 PSIM, a. language which will be described 

1n detail below. The performance p~ogram operates by 

a.cti.vating various bra.'l'lches of the goal tree at the ,appro

priate times. In the thumb-sucking proble ass'U P that 

the motivation section has act1vated the ma.in goal 11 oral 

gra ti fie a tio,ri. 11 The first step · s to activate the extreme 

l eft branch. or the .... ree (the dotted line indicates activa

tion): 



Face 
touch 

Lift 
hand 

Pleasure 

Left cheek 
touch 

touching 

Turn head . 
l ,e f t 

Right 
cheek 
t ouch 
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Turn 
! head 
I r.i ght 

The 11 li fthand 11 response at the bottom of thi s branch 

is emitted to the body and environment simulator. After a 

delay of r oughly two s i mulated-time seconds , a cue , e.g. 

1 left cheek t ouch,. comes bacl{, indicnting that t he simulated 

ha:-id has been lifted to t ouch the (simulated) lef cheek. 

ext, the branch ending in 11 turn hea l eft" is act ve.ted~ 

Pl easure 
r 
I 
I 

Obj ect t ouching 
1 mouth -

·. Lift Left 
: hand

1 

h k c ·ee , 
tou.ch 1 

I 
I 
I 

TUrn 
head 
lef t 

R ght 
ch ek 

ucl 

Turn 
ead 

r . ght 
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A umouth tou.c. 11 SiP-J}.a1 comes back rom thG bo .v and 

envirn1ment simulator, indicating that this goal hs.s bee1. 

reached; the moti.vation section act· vates the o a_ .r •'i. i i - · 

ca.ti ci'!l. f"lag, r reward· ng 11 the ro~-ra ror its ucces s fu_ 

cff.:,r • 

. he basic prob_em s to, decide wh· ch branch ,o"' the 

oal :ree to activate: 1
( L sr 1 perfonnance programs al ow 

on y one · ranch ·o be active at a time hE>nce t e1"19 is no 

we.v to ,,. ork o . two goals s.: mul ta:neousJ y . ) I a gi v .n 

situat_on, the decision is made in two phases a feasibility 

study -pnas:e and a choice phase. 

In the f ear:-;i bili ty s·tudy phase, '3BOh branch of the 

tree is assessed and an ,e:stimat,e .is made of which branch 

is the quickest and surest wa.y to the main goal .. Tw 

numerical quantities a.re compute for e·ach subgoal GPR 

(global succes"" probability) and a GC (global cost). 

The GPR of a subgoal is an e·stimate of the· condi t1011al 

pr babili ty that, if the pr10~ atte uts to achieve · he 

subr,oal ,, it wi 11 succeed in r ,each ng it. 

1. conm.u ta tion o Q;,~R .a.nd GC 

This section is dev,oted t •o a detailad disc ss\.cn of 

how PR al d GC are compu tea.. On a first reading, readers 

may skip to Section 2 on the choice, . hase 



nPR , .s de i n~a recursi v~ly as follows: 

1 1) or a response" ( di r ·ectly c. n -rollable) v· r* a.blt-· , 

such as 11'lif hHnd or 11 turn head lef .11 , GPR=l. 

( 2) Suppose th:--e.t A 1 s one of several OR I ed s ubr;oa c "' 

B: 

If A i s the 1best 11 subgoal according t o a criterion o be 

prese·nted momentar y, then GPR:(E) = OPH (.A) Pr (BI A), where 

Pr ( B f A) · is the conditional probabiU ty of B give A { 1 e. ,. 

the p·.robability •of getting from A to B) as estimated by the1 

ico efficient learning program P'RDLRN ., discussed be·low. 

The 11 best 11 subgoal is selected so as o maximize the 

Slagle coefficient (1964)~ 

GPR (Bl 
GC (B) 

In actual1ty, this sutigoal may not eally prove to be the best 

one• ~ f, say 1 the probability or cos t es t imates turn out to ,e. 

incorrect Th,e perfo:Mnance program is a heuristic program and 

is forced to make decisions base on 1 rnperfect evidence. 

A more soohistica.ted program would take into accoun the 

po s si bi li ty of trying to achi. eve A, failing , then trying to 

achieve A1 and succee ine;. 'Thus a goal i t h se eral gooa 
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subgoa_s would have a: larger GPR for this reason. Bowever

NSIM1 considers only the one best subgoal. 

(3) Suppose that Al and A2 are components of he 

ordered-AND ,oal A1TH2 ( Ai then A2) Th•en GPR ( .Al TH2) -

GPR (Al) * GPR (A2} • 

(4) Notw1 ttu~tanding any of the above, if a goal has 

already been a:chievedJ its 'J-PR=1.. A goal is defined as 

11 already achieved II if the corresponding signal has ,occurre 

within the last five seconds .. 

Similarly, the GC (time delay) of a subgoal is defined 

recursively as follows: 

(1) For a response va.t"iable, GC-= o. 
( 2) If A is the best of several OR• ,ed subgoals of B, 

then GC(B) = OC(A) + GPR(A) Delay (A--+B. 

( J) The GC of an ordered-AND goa A1rr HA2 ( At then A2) 

is GC ( A1THA2) ~ GC(A1) + GPH( Al) *GC( A2) .. 

( 4) otwi thstandi ng any of the above,, the oc or a goal 

is if' the goa.l is a ready achieved ( in the pa. t f; ve seeo,nds) 

To summarize,. in ,e feasibility study phase, e ti.mate· 

are made or the succes .. probability and time delay ,of ea.ch 

path to the main goal. 



2. The choice phase 

The next step is to activate the go.a tree branch which 

is estimated, acc,ording to simple heu ri sti cs, to be the 

qui ck est and sur·e.st pa.th to the main goal. A goal 1 s active 

if, and only if,, its WANT variable has the va~ue TRU.E. 

'.}. Comp_u~atLon of :the WA~T variables 

{On a r · rst reading, readers may skip to section 4 on 

the inner loop ) The WANT variable of a goal O is defined 

recursively a.s fol ows. 

(1) If G is a main go.a- , WANT(G) = TRUE or FALSE as set 

by the motivation system .• 

( 2) lf A is one of several OR 1 ed subgoals of B, 

WANT( A) = (WANT B) A (A is not already achieved) /\ (A :ts the 

hes t subgoal of B) ) V ( A i I a curiosity goal ( see bel,ow} ) , 

where 11 alrea,dy .achieved means that the signal A has occurred 

in the last five seconds, and the best" subgoal is that which 

maximizes 

( 3) lf A1THA2 is the ordered•AND subgoal Al t .hen A2", 

WA T ( A.1) • WANT ( Al THA2) /\ ( A 1 s not alreadY achieved) . 

WANT ( A2) - WAN (Al THA2) f\ ( Al is achieved) /\ (.A2 is not 

achieved). 
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( 4) If G is a response ( ,directly controllable) varial~le, 

WAN ( r}) causes the response t.o be e i ~ ted. 

• ' he nner 1.aop 

The _easibility study and choice rhases a ·e pe~formed 

every time the simulate ... time clock, TCI.DCK, changes 

.-~~ Feasibility 
study· 

Choice 

Emit respo.ns,es, 
if any' 

Change TCWCK 

Thus the GPR , GC, and the program' s deci sion.s are con

stantly being updated on the ba.c-• s o chanff ng condt tions 

The PS ,'j interpreter ensures t'easonable efficiency by reco1n

putin only the variabl,es which depend on some condition 

which has chan,ed. since the last TCLOCK ,ime. 
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A samn~le nro blem 

.ow that the , a thematics o the oerformance program 

has been p esented in some detail 1 let us 1•eturn t(', the 

humb-sucking --oroblem of ,section A and see how the ech@.n-' 

. sms work in a concrete case. _ssum the ol , o ing values 

o c~ndi tonal probabilities Pr (Bf A)*: 

Pr ( ace touc I lift hand) = o. 50 
Pr (mcuth touch I face touch) ..,., 0.27 
Pr (mouth touch I left cheek touch, then turn head. left 

7E 

Pr (m uth touch I r.:.ght cheek touch, then turn head right) 

Tosi plify the discussion, asSUme tha.t a 
time delay (cost) 

r·gu:r-es are sim "lar enough that they do not affect the choices 

of which branch of the go,al tree to activate,. 

Assume that the simulated i ran has just come to want 

somPthing in its mouth; i.e., that the mot vation sact on has 

*In some ca e·, these values are experime tal results from 

act al runs on the NSI 1 progran,. In ,ot ers, 

rec ed for a bug in the orogram. 
hav_ cor-
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j st SBt WANT ( oral ratification} = 'l1P..UE. Also, assume thn.t 

nothin.~ has recently touched tl1e inf an , s face or mo • th . nc.er 

these con itions, the program wi11 ass t a low SUCC(JS S 

probability, .and henc,e a low merit, to the goal ree 'hrancl1:1s 

i volvin left c}'rnek touch and right c- ~eck touch~ But the 

l i t -hand-fac~- t onch ra ch wi.. 11 have .1 h r,her mc!"i , oncl r,c 

acti vated. 

,oral gratification 
GPR - 0.1)5 

Pr (BI A) 1.0 

Face 
touch 
GPH 0.,5 

' 

Mouth 
touch 
GPR = 0 .135 

(B I A) ~ 

f !r 0 ~~ J A) 

Left 
cheek 
touch 
GPR = 0.1 

Lift 
hand 
GPR = l.O 

R.esponse emitted 

Tm"n 
heed 

, left 
GP'.B. =ii 1.0 

- ().8 

Right 
cheek 
tcuch, 

1 GPB = 0.1 

head 
right 
OPR = 
1.0 



par;e ! ' 

The .lse on the 1 J · ft hand·' line goes to the body and 

environment simulator, where a random number is gene.rated 

and w . outcome is determined. With pr,o babi li ty o • .5, the 

hand misses the face. If it h.it the face, ·t appears at 

the 1 cf t cheek, right ,cheek, or mouth with eg_ al pro babi -

i ty. 

Assume that the outcome s that the hand hits t.he rlght 

cheek. T e body and environment simulato,r etum a pulse 

on the ' right c eek touch t I ne 1 an he di splay is H da tad 

to sho" the nfant I s hand at his right cheelc. 

( 11 Rightn relative to th.e infant; eft relative to the page. ) 

. ext , the tree variables are updated to reflect the, new 

situation. 1R.ight cheeJr touch, then m head r.ight 11 now 

ha a high ach ievement prooobilit~·~ itn GPR;;:: 1~0. Since 

it is strongly oormectea t,o "mouth t,o 1 nh, " the branc' end 

jn 1 .... um head ri,ght" is activated. 



pral gratification 
GPB. = 0.8 ' 

Pr ( B I A) .... l. o 

- 0.78 Pr (BIA), 
o.s 

1GPR = 0.1 GPB=-1 0 
Face 
touch 
GPB. = l .~O 

Lift 
hand 

Pr (BI A) 
= 0 • .5 

GPR l.iO 

Left 
,cheek 
touch 
GPR O.l 

-

~ ight 
eh.eek 
touoh 

1.0. GPR ,... 1.0 

TUrn 
head 
r1.ght 
GPH-~O 

1 

!espo -e 
em1tted 

The body and environ:men simulat-ol" receivie., the 11 turn head 

ri htfT command, and, after a delay of 2 s rnulated-ti e 

seconds, sets the head position to 11 r·ght a. d ret rns a 

"mouth touch 11 pulse. 



PHDLR.· .. then increments Pr ( mouth touc r· ght C'lheelr touc - , 

then turn head. -ri(';ht) fr,o • Bo o o. 2. 

6. Di§cu_ssi,on 

INSIMl per 'orm.anee, programs 1:ncorporate simple, neurist 

ics wh1c work well in ca,ses where the assumptions on which 

they are based. hold hold true. 

Am.one; t;he assumptions are .. 

(1) Success p~obabilities and time delays are assumed 

to be statistically indepenc'l'ent. If this · s not true, the 

chainifl.g formulas used in computing success probabilities md 

time elays will not be accurate. 

(2) tis assumed that ~oals do not conflict: i.e., 

that the achievement of one goal does not d,ecrease the, 

probability of achievlng another goal .. 
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Removin · these performance limita ions wou1rl e.uirf' 

add . t C'nal machinery beyond the scope of the ·NSIM1 project, 

such as a. look-ahead me hod of the typ!; used in ch.es pro-

rams. 

c. The exuerience-driven compiler 

As men ioned previously, most o the performance proe:;rarn 

is coded by an internal compiler which, instead of using as 

its inpu a source code pre!)a!"ed by a human, is eontrolle□ 

by · he experience acciui red by t_ .e program as it intera.t"'t s 

with 1 ts ( simulated} environment. In keeping with he di crtu.m 

that · n order to learn something, one must know somethj_n~ 

a.lread.y, the compiler incorpora as the probability fo!'fflulas 

described above, plus kn.owl edge of basic aspects of' the 

physical world, including time and causality. 

The ccmpi ler consists of pat!..,ern .r_eso1.mi ze~, cod~ 

generators, and a ol@.ttsi bl,e move g_enera tor ( not implemented 

at this w..,i ting). 



I 
Plausible 
move 
generator 

' Causality 
pattern 
recognizer 

' A 

I 
I 
I 

Code 
generator 
(goal-subgo.a1) 

~. 
Pattern 
r,ecogni zer 

B 

~ 
Al A2 

I 

Code 
generator 
(OR of 
subgoals) 

i 
Pattern 
recognizer 

B 

A 
Al A2 

I 
I . 

Cecile 
generator 
(THEN of 
subgoals) 

The· plausible move generator is used instead of tes in.g 

for causality between all possible var· ables t-., B. The 

latter .approach would involve on the order of n2 tests, where 

n is he number of variables. 

It is the compiler ifhich sets thP upner limit on the 

prof"ram I s ability to lea.."1'11. For example, IJSIM1 co ld never 

learn to play chess even with very lonG trainine, because the 

necessary pattern recognizers and code generators are not 

present. 
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The experience-driven compil,er ope ate.s as fo _lows~ The 

p:rogra.m :starts out with an innat,e · ai!l goal which j c- noral 

gra ;\ ficat : on 11 in the th mb-suc:king prob1e • Fir~ , the plau 

sible move eenerator is called to enerate a 1.· s o.:- ve:rj -

ables whi.ch are likely to 'be 11 releva.n~ 11 to the ora_ era.ti fica

tion goals, and cau_sali t,.l test links ( ind ica.ted b dot , d 

connections) are formed 

~ext, the £? . . sality oatter. recor;n·· z:er learn-=- Nhich test 

linkr. represe actual causal relationships. The attern. jt 

s -colcing f o,r is: 

A - -- .... 

1! 

B - --
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Tf a nulse O" r,ariable A i !=: fol] owed h:: "' nu 1 t.:{" or 

varia. ble B su f'f i c i ently of ten,. A. is n P :;u ed to cau s ('-> B. 

:or·"' nrcci sely, if Pr ( B l A) - Fr( B l A or -A) > O. 5 

af ,:?r at least 15 pulse~ on A and 15 ,m 9 have nccu ,...r~a 7 

A is ~s:::;lT, ea to cause B.. The pulses on A a11d B urt be 

ler-.:::: t.h:3,.., five simulated-ti P. si:?c6nds a-psrt. ( :r -f:h0rc- a,., ... 

an:,r t .1leec- at all on B, then a . ulse on A will alway~ be 

j f we wait suf'ficiently lcmg.) 

Pr (P. I A) is estinated by the coef:jci~nt learninr. ro 

~ram .?RDL..ij_ •, discussed below. 

•~hese simple heuri sties w"i 11 mi sr- some act~ml causal 

relationships when the delay is ore ,han five seconds .. It. 

would not be hard tc malrn the program 11 a.dapti vo 11 to this 

arbit.,..ary parameter, say by matching t he time de ay to the 

rec-en': density of pulses on the .a.we li .es. ~htu:, if -i::.here 

were only one pulse- on B about every 15 minutes, the allow

able delay m:ight br. five minutes :rather than five seconds. 

Al~a, th£"' Yieuri sti cs wi 11 sonrntimes II i r, cn1-: i fy 11 a causal 

relntionshi \•There nonP exists. :S . ~ . , if the allowable imP. 

delay were lonr; enough, it wo~1ld think that day cau::::es ni~ht. 

(Pi are t ha.s found .hat small children al sc, .i.:ht nl~ hat day 

causes night . • ) 

In some cases , it is ~uf f i ci en t to wait pric s j _ vcly for 

a pulse on A. In other cases, the curio~ity section of the 



perf,ormance proe;ram sets W T {A) to ~UE, activatine some 

goal tree branch ending in A and initiating behav;Lor which 

hopefully will lead to a pulse on A, in order to see if B 

fol lows (e.g. , i. t a.cti va tes II turn head lef' t 11 to ~ee if 

n mouth touch II fol lo s) ; this is the •• !)lay II or n expl ra tory 

bena v:. or 11 mentioned above. The curiosity section a.. ernnt. s 

to test inlcs which are new and have not been testea. many 

times ; links where the in:i ti al ,,ariab le, A, is reason.'l.bly 

eas to obtain; and where the final variable 1 B1 is l'lbio

logical .Y' useful 11 (i.f one may use t e term to describe a 

computer -program) in that ability to obtain 'B would con

tribute to the program I s ability to obtain prima.ry reward. 

Specifica.lly, the curiosity section ta-sts the link A.........,. 

whic . maximizes 

GPH.!_A) Sa. func(A B) reed( B) 
GC(A) 

where Satfunc(A,B) (saturation function) decreases Ii.nearly 

from 1 to Oas the number of times whe A, has been tested 

increases from o to 1~. Need( ) s an \r!dcx of how much the 

abi l.:.ty f the p:rosram o obtai _rimary reward would be 

improved by improvements i ·ts abili. y t obtain • 
appendix 2 for a descri pti,on of he heu i sti cs u scd in co -

pu t .'...ng 1". eed(B). nly links A➔B which have been designated 

as 11 plau s i b] e II by the plausible move generator are i..ested, 

. . . 2 prevening an n ex:_losion as the nurnbe of variables increAse 
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=.~hen the oausali ty pattern recognizer detects that two 

variables. A and 3, are causally related, the corresponding 

code generator is called to compile the link A~3 in the goel 

tree This code generator is a LISP function called 

MAK20RGCiAL (A,9) so named because it also handles the case 

where A is one of several logically OR 1 ed goals. :n LISP 1 

the code generato~ turns out to be a straightforward and 

rather prosaic, if slightly longi program. Separate sections 

are provided for compiling the entries for W.FT 1 G.:i, GC, and 

each variable associated with the curiosity system. Each 

section looks ~p the names of the variables involved in the 

formula in question and substitutes tnern into the formula, 

using LISP's symbol-substituting capability. 

Crd1narily, one considers it eas·er to wr·te an inter

preter for a particular language than a com~il~r for it. It 

would be possible in principle to store the goal tree 1n a 

very compact form as a set of links tn storage, withe. vector 

for each node to store ::-FR, C-C > WANT, etc. , then write an 

interpret,er which incorporates he · R I GC, and WANT formulas. 

The difficulty is that, somewhat counter-intuitively, the 

interpreter would seem to be quite a let harder to w:rite han 

the compiler. The most obvious algorithm fa · the L erpreter 

would have a recursive function FINDH (find-response) which 
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would be called for each response variable each time· the 

situation changes. FINDR would call the function ~l.DWAiT 

to compute WANT variables; then FINDG :i and FL DGC would be 

called. But th1s a.lgor:i tnm would colla.pse if the goa. Htrea.11 

ra.ther than being a tru.e t!'lee, has loops in it. In this case, 

the algor1 thm becomes non-terminating 1 basically becaus,e the 

GPB-GC f'ormulas then d,efine a set of simultaneous equations 

rath,er than a recursive computation. In I SI u J this pro,blem 

is solved by PSIM, which is equipped to solve simultaneous 

equa.t:ons when these occur. 

The only algorithm I hav,e thought of which would work 

in a goal tree interpreter would recompute every var·aole 

of each goal, th.en recompute the variables of all goals 

linked to goals where a variable has changed., then _ terate 

until no variables change. Thi.s algori.thm is quite "brute

force," and I think it would show severe pe:rformance prob

lem·s. 

In the thumb-sucking pro•blem, the program f i.rst l earns 

the links: 

F'ace 
touch 

Turn head 
le.ft 

Turn head 
right 
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Although th1s version of the performance program will 

sometimes succeed. in o,btaining II mouth touch, " it does not 

yet know which way to turn the ( simulated) h,ead. 

next, the plausible move generator is called to provic.e 

a list of variables to be THEN 1ed with the partially success

ful subgoals. Causality test links are compiled for the 

ordered-AND variables. .tun.on.g them a.re: 

Left 
cheek 
touch 

v, 

Turn head 
right 

Left cheek 
touch 

V2 

'liJrii. head 
left 

Vl correlates very poorly with outh to ch; V2 cor

relates very well. Since Pr (mouth r;.ouch j V2) is v·ery high, 

the yerforman,ce program wl.11 activate this 'bra."l'lch, rather 

than the others. and the simulatea. infant will emit 11 turn 

head left in response to "left cheek touch." Similarly 1 

it learns to emit "turn head right" in response to "right 

cheek touch 11 

What ·s happening here is that the conditional proba

bility figures, such as Pr (mouth touch I turn head 1-eft) 

are being used .as a. hill-climbing criterion in _rogram space 

(Minsky, _961, p. 10). {TUrn head eft I mouth touch) works 
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some c:f the time; INSIM1 f'orms new properties of the 1':r:"ob

lem by c-ombining properties which hav,e pro,ved useful in 

the past ( Mi.nsky, 1961, p. 13). 

Finally,, 11 face touch n 1 s 1d.entif" ,ed as a II biologi ca:lly 

useful variableJ and the program learns to activate "lift 

hand n ~ when the ( simulated) hand touches tne face, th,e 

previously learned program takes ove and ,completes the 

thumb .... suck": ng ,operation. 

One way or looking at the learning process is that the 

program builds a suhro.u tin_e ~ e:rarchy. Each. node on the 
-

goal tree defines a subroutine: the nrocess of a .,chieving 

a stimulus o.n the line defined by the node; e.g.• the 

11 obtain mouth tou,ch subroutine. Each link on the tree 

de· ines ,a subroutine call.. Thws,. the obtain face touch" 

subroutine calls the lifthand• subroutine. 

See appendix. 4 for a discussion of how the ex:oerience

dri ven compiler is organi.zed and programmed. 
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It ls inter,esting to note the similarity between this 

learning sequence and Piaget s observations on the learning 

of human infants. Although the real inf~"lt' s learning is 

uch more complicated, it follows the same gross sequence 

of stages; the real infant first learns to search from ler·t 

to right with its head; then it learns which way to turn; 

then it learns to lift its hand and. suck its thumb. 

The .next two sections are devoted to a disc~ssion of 

the PSIM interpreter and the PRDLRN coeffiei.ent-learning 

program; they may be skipped on a first reading. 

D. PSIM {Parallel Simulatorj 

The PSIH interpreter, embedded within LISP, handles the 

details of arranging the second-by-second ocCUJ'llrence of simu

lated events and relieves the compiler of 1,he need to 

schedule the sequence of computations. A PSIM program con

sists of a set of variable ea.ch of which has an S-expression 

which determines its value. E~g: 

( Z (Al\ir> X ( NOT Y))) 

(X ( PO!SSOM O .1)) 

(Y (POISSON O.l)) 

The Fotsson expressions generate PO!SSor -distr_ bi..n;:ed 

pulse trains with mean frequency 0.1 pu.lses tler second. 
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Whenever a variable, such as X, changes th.e variables which 

depend on it ar,e automatically updated. A graph of X, -- , 

and z versus simulated time will ook something like this: 

y 

z 

PSI 1 also· handles. the colll1)lioatio,ns which arise when 

the goal tree is cirouler;. in this case, an 1 t ,er.at1on pro

cedure is used to, calculate the GFB., GC, and WANT variables. 

Some readers have complained that they have trouble 

grasping the structure of this program because of the 

parallel simulation. See appendix 3 for a mo,re deta1 led 

discus:sion 
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E. PRD. N (P;rpbabilitY-De,la.;y Learner) 

Conditional 9roba.bilities and time delays are estimated 

by a ather orthodox ,coefficient learning procedure 

(Min sky, 1961 ) • Suppose there is a link between A and B • 

Whenever A occurs, followed within five seconds by B,. 

Pr (B t A) is incremented by an amount 8 (1-ol,d value of 

Pr (Bl A))t and Delay (A--:>B) is incremented by 81 (actual 

delay - old estimate of delay). If A occurs, but not B, 

Pr (B I A is decremented by an amount B (old value of 

Pr (B I A) l and Delay (A j B) is incremented by 8 ( 5 seconds -

old estimate of delay}. It can be .shown that this proeedur,e 

gives an unbiased estimate of Pr (13 I A) and Delay (A r B), 

with an exponential weighting such that old occurrences o,f 

A affect the estimates less than new ones 

co,ef ""i cient ,, is currently o. 1 The initial es time. te of 

Pr (B I A) is obtained by observing the first 10 occurrences 

of A Pr (Bf A) i ·s S'et to: 

number of A's followed by B's 
number of A. 1 s 
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Experimental results 

At this writing (August 1970) 1 the INSIM1 program still 

has residual bugs in 1t, but it Will perf'orm we.ll eno,ugh to 

demonstrate the coefficient learning,, causality detection, 

goal tree formati,on. and operat:ion,. and stages of learning. 

A t ,est run has f1 ve stages and lasts for roughly 1800 

simula·ted-time ,se.conds. 

Stage I: 0-400 seconds 

In its, earliest stage, the simulat•ed inf'ant ls entirelJ 

pe.ssiTe. · It is fed by placing the bottle in 1ts mouth. 

In.tern.ally, the goal tree cons1 sts of ,only one link, a 

,causality test link between mouth touch" and 11 0ral gra.tifi

cation." 

Stage II:· 4oi0-1000 s ,eoonds 

B;'/ t = 100 seconds ., PRDLRN has detected the causal 

relatio,ns·hip between mouth toueh• and Poral gratification, 

end this connection shifts from a test link to a goal tree 

link. The ,(dummy) plausible mo,e· genera.tor 11 ts seven 

plansi.ble caus,es for nmou th touch," and test links are pre

pared. These .are; face touch, •tu:rn heed left, 
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"tum head right 1 "kick right leg 1 "kick left l ,eg, 

"wiggle right toe," and ~wiggle left toe." 

Ir. the new stag,e, the curiosity system can activate 

the head motions,, and one can see it turning its head back 

and forth on the displsy screen. although 1n a totally un

eoordiDB.ted manner. 

Stage III: 1000-1200 seconds 

At t = 1000, the causal relationship nraee touch" to 

"mouth touch" is dietect,ed. At the same time, test links 

to nm,outh touch" are filed for 11 rigl1t cheek touch then 

tum head. ri.ght II and ii 1ef t cheek touch then turn head left. • 

These links affect ,only the explo.ratory behavior. 

Stage IV: 1200 ... 1600 seco,nds 

At t = 1200, the causal link 11 turn head left" to •mouth 

touch" is detected. Now the program i s slightly less help

less t han it was at first, whenever it wants oral grat:lf1ca

tion, it performs, a means-end analysis Whi ch leads it to 

turn head left,n which, 1f this is not always successful 

behavior, sat least relevant to the task at hand. 
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Stage V: t > 1600 seconds 

At this point, the program become,s a.ble to turn ·ts 

head to the left in respo,nse to a left cheek touch and 1 t 

could respond. properly to a right 1cheek touch, were t not 

for a program bug. Another bug pre,vents the ,development. of 

the lifthand ~esponse. It is believed that thes,e bugs 

are minor 1n nature. Other, undetected bugs may also exist. 
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Chapter 4: Analysis 

This chapter is devoted to a discussion ,of the funda

mental sei enti'fie issues to which the I 1SIM.1 research 

ad.dresses itself, and attempts to place the work in the 

context of research on learning and in the context of 

other research on artificial intelligence _he ""tlndamental 

issues to which the I SI ·!1 work. addresses itself are : 

( 1) Can one rnal1::e use of a relatively sr.u~.-1 anount of v·ery 

general innate lmm-rledge i .n order to obtain a ;, uch larger 

amount of specialized. knowledge I and, if so , ho-:·r? 

(2) What should the innate knowledge be? 

(J} How should the innate knowledge e i ncorporated i n to 

an information-processing system? 

These issues are as old as epistomology itself, but the 

first really careful analyses were by Hume (177'7) and Kant 

(1781}. Hum.e took the position tha the human mind was a 

11 tabul.a rasa11 (bla.nlt tablet) at birth and hat all know edge 

was acquired through the forming of associations (co. pare 

Hebb• s synaptic connect.ions)~ Kant, on the ot:1e:r hand, 

believed that the infan.~ had a store of innat e ( categorical, 

or a priori } lmow edge at birth and t .hat t hi s was necessary 
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to r:m.ke the earning process ,-sork properly. _Le •1• --~- 
-· ........ .J.. --

research supports ?'ant's viel~oint, no for abs ruse ph.:. lo-

sophica_ reasons bu rrom practica expcrie: ce 

l"i .._h _:_nfor . etion processing systems of his t"' _ e. I.1sr:-:1 

i association.:. t ( 11 turn head lef s associated T,ri t 11 mou th 

touch~) · howeve , in o der to mace t .. e a.ssocia.tio proceed 

properly , · nna te mowledge had to be incorporated in to the 

learning program, kn,_ow ed e that there are such tr1--1ngs as 

causa_ity and time, and that causally related events are 

liKely to occur in close temporal sequence 

A question immedia e y arises as to ·ust what is meant 

by state e ts such as unrsna knows that there is such a 

th·ng a.s causality." ':'he wo d uknow can be used i several 

senses. b iously I -SI ;1 does no kno ·1 about c sa i ty in 

the same ense that ari. adult kno • s aoo t causali t ; the 

program ca.nno t explain cau ali ty, cite e:.at ple s , or ans~rer 

questions about causes and effects; it has no verbal behe io 

at all. - stead, to e.y that I_~sli- 1 kno,,-- about a certa_n 

type of causality is to say that 

o:pt:5. mi zed to a uni Ve!)se in 1.-1hich cert2i types of ca sal 

relationships exist Thus, in a universe where there were 

no such thi s as causality or tie, or ere a se e.nd 

effect •sere al ·1e:ys seuarated by hours or days, I · IFl wou d 

not ,;rorK _ roperly. _n other ·1ords , the inn.ate know edge of 
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INsn:1 is incorporated in the form of algori thrns rather 

than as facts. 

The learned knowledge is also incorporated into the sys

tem in the fo:nn 01' algorithms rather than facts. Thus, the 

final version of the per orma.nee program knows right from 

left in the sense that it can turn its head i the proper 

direction :r stimulated; yet it has no verbal know_edge of 

space at all. Ex:pressing knowledge as algoritrl!!ls, as in 

program learning. is eritorious in that :tis algorithms 

which we lmow best how to combine into complex integra4,,ed 

sys ems. Thus riSI!"1 learns a nursing subroutinet then adds 

ad.di t~ on.al code to form a. thum'b-sucl<ing subroutine. 3y con ... 

trast, for a machine to learn fact.s is at present of ten lik.e 

adding more books to a libraryj the machine cannot do much 

,. i th them. any of the theorem ... proving efforts su ~er from 

this problem. Expressing kno·wleclge as acts has its com

plementary merits,, as discussed by Hewitt ( 19 69) and the 

present author (1966)~ 

Given the conce.pt of using a 'bese of very general · nne.te 

knowledge to obtain a uch larger repertoire of learned 

kno"' ledge I what can 1::1e say about wha the imiate knot•iledge 

(il'.lllate algorithm) should be; in particular, l.ow 1.Uch innate 

knm·:ledge :i.s needed and how problem-specific the innate 

knowledge needs to be? ~Jhy l'Jas the innate knot,..:.edge basis 

of I~:sn:1 chosen the way it was? For several reasons: 
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(1) The I! SI 1 program has a high noootstrapp.:.ng leverage 11 

ratio~ 

Amount o _earned problem solving ability 

Amount of i?lllate lmowledge 

where the 11 a.moun n is to be indexed by some criterion or other. 

Although this is not a fact which can be easily demons"-rated 

now, since the earning is severe.y limited by the body and 

env· ronment simulatort INSI'-il is capable in principle of 

synthesizing very la!"ge trees of OE red and THE 1' ed goals 

(limited by core storage), . mple. enting ong chains cf be-

hav or. 

(2) _JSIM1 is based upon a strong theory of problem-solving, 

means-end a.nal;rsis (Ne,lfell, Simon, a"'ld ha:.,,r 1959,, and one 

can be confident o,f the program I s ab. _i ty to be extended to 

other goal types and to solve harder pr,oblems. 

( J) I? s · 11 perf ormanee pr,ograms are free from t e "ex_ onen 

t al explosion" problem which pl8.c:,°'1:1ee any problem-soling 

systems. The simulated time to earn a tree grows only 

linearly with the length of the tree; the CU time per 

sJ:mulated time second grows a little worse t.an 1 early 

with th.e number of branches ,on the tree, and t_e number of 

branches is limited very effective_y by the cau ality pattern 

recognizer. 
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( 4) Lastly, the I SI • 1 s,etup was ,chosen because it works; 

i.e. J i constitutes .an integrated learning-behaving system. 

This requirement is perhaps harder to -eet than appears on 

the surface; I have 1100 pages of no·tes on setups •ihich did 

not work, developed before arriving at I SIMl. The nsuc

cess.ful efforts of Pavlov and Hull are also testimony to the 

d.:. ff ieul ty of getting anything which wi 11 work at all •. 

An important 1.ssue in A.I. research is the reative 

amount of learned and innate knowledge \'lhich is nece.ssary-. 

One may place resear,eh efforts in a spectrum ranging from 

the Perceptron workers and some behaviorists on the environ

mentalist end of the spectrum, to the Greenblatt chess 

program (1967) on the nativist end. On this spectrum. INSI 1 

is no,t far beyond the minimal self ... orga.nizing systems ( see 

the papers in von oer,ster and Zopf, 19 62; and Yovi t ts and 

Cameron, 1960). I would like to make it clear that, to the 

extent I SI a is minimal, it is minimal because of the mini

mal resources of the author, and not because I think self

organizing systems should be or can successfUlly be minimal 

See chapter 5 for an inventory of some of the innate imple

mentation which I believe should be n a good learning code. 

Referring again to the ratio 

Amount of' learned problem solvinr; ability 
- ·-Amount of j nnato knowled1~c 
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I claim that: 

(1) n a good learning codet the de _om nator should be much 

arger than in INSI11; and 

(2) p to some high saturation oin, the larger the 

denominator, the larger the ratio 

I SIHl does not ook very much like traditional arti

ficial intelligence programs ; it sol es · nf'anti ,e a the than 

ha.rd problems. (The learning program solves the hard prob em 

of riting the performance program.) !evertheless ·tis 

in eed oriented to ard similar goals and attitudes. It is 

an attack on the problem which occupie much of the scienoe 

of psychology until the l950's the proble of getting a pre

cise odel of simple forms of learning, but now using the 

concepts and ethods of modern computer science, with, 

believe, much greater success t an t"1e earlier er orts. 

This line of research s, and wi_l co tinue to be, hea il 

dependent on more t~ad.itional esearoh in artificial 1ntel

'1gence. 

I_ SI -:1 is se f-programming e ense that given 

some se o t sks , such as nursing from a ottle and sucking 

the thumb, instead o manually wr't ng a per rmance program 

to perform the tasks, one has a learJ"Jing pr gram w ich writes 

the per_ormanceprogram on the basis of exper·ence. he 
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dependence of this type of learning research on more tradi

tional A I. work lies in the fa.ct that, to write the learn

ing program, one must have· a fairly clear idea of the 

structure of the performance program; e.g~, that it is to 

be a certain type of goal tree. To coin a slogan. in order 

to write a prog am which pre:pares a program to d.o X, one 

must first be able to write a program to do X. The advantages 

of automating the process are the usual ones of greatly 

improved accuracy and potentially great saving in time and 

eff.ort. 

1,·J'hat are the prospects for using general learning tech 

niques in practical computer programming? Certainly history 

gives grounds for nothing but pessimism. The best chess 

program,, the best symbolic integration program, and the best 

vision programs do no learning at all. am cautiously 

optimistic about the prospects f ,or using the ueXperience

driven compiler" concept in certain application areas where 

the problem is fairly II sensorimo·tor; 11 Le., not too different 

from what the infant learns to do, such as vis1on and hand 

control. Even INSU11 could be interfaced quite readily into 

a robot to do a three-point block-moving prob_em, given 

LISP or assembly language primitive for 11 move bock left,u 

etc. The troubLe with self-organizing vision is that we do 
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not lmo enough about wha the per 'ormance program shoul ook 

like. I a.m quite pessimistic about developing, in the near 

uture, experience-d?-· ven compilers for adult-level . ro lems 

such as symbolic integration 

One possibi ity is that this type of learning research 

,ay p!lovide a psychologically liberating atmosphere ·n which 

to stud problems such as computer vis·on As Professo 

oel .'.'ose,s 1.s fond of pointing out, intelligence s a "· ludge, n 

and ood v · sion performance programs a.re 1 · ke.ly to be a much 

com!)osed of mess •looking co . lections of specia -case tr:cks 

as ol'derly general principles. Vision researchers are often 

:psychologically very uncomfortable With this, since the 

like the rest of us, want their work to be general in it 

applicability The experience-driven com.i _r provi es a 

:pos.sible way out of this bind, since the lea.rmng program is 

quite enera.lJ speciaJ.ized only to very broad aspects of the 

physical world such as t .ime and causali t , while the per,&"o • -

ance program contains the learned sp c1~1- a e tricks. 

Some readers may wonder f' the use of nh'gh-powered 

·techniques such as end-means analysis and Sl fficients 

is warranted ·n modeling si ple infan oe a ior. M expe -

ence has been that a fairly rugged prob em- ol ~ng system 

is needed in a learning program where the nroble solver 
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cannot be "spoon-fed" by a clever programmer. Something 11k,e 

the Slagle coefficients seems to be needed to get the program 

to aet·vate the correct branch of the goal tree in a situation 

where many unsound branches may have been constructed by the 

-earning urogram. * t may be true that s· mpler ways of ex-

press· ng the performance prog:ramJ sueh a.s a state-act·on table, 

would work in an environment as simple as the one described 

here. However, one wonders how much growth capability is 

available ultimately, without some sort of end-means analysi ,s. 

It seems to me that end-means analysis. in the form of some 

sort of goal tree, is uniquely matched to the. phys · cs of the 

situation in which the infant f"inds hi self., In the real 

world, there really are causes and effects; the causes pre 

cede thee fects in time, and the effects in turn become new 

causes,. We re,a.lly do want to have some co ed description of 

a desired end state { goal.) and try t ,o find a sequence of 

events (a plan) which Will lead to achi,eving the. goal. Each 

su,ch event becomes a subgoaJ. and is treated rec rsively in 

much the same way as a main goal, hence the goal tree 

*Of cour,se I since the Slagle coefficients are only heuristic 

approximations, and since one has great latitud.-2' in the 

details o end-means syst,e s, I am not suggesting that exactly 

a certain computational form seems to be required, only a 

computational quality 
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:Perhaps the ma·or unresolved ssu.e in machine (or 

human) learn·ng concerns the number and complexity of 

typer; of learning whi.ch are involv,ed in intelligent be

haviQr. The ty-pical learning theory tries to synthesize 

everything out o one or sometimes two forms o learning, 

such as Pavlovian conditioning or trial-and-error learn

ing. My feeling ·s that a fully developed earnin& sys

tem would be _ucky to get by with less tan :fifty essen

tially distinct forms of le-anung. Even INSI1"!l whose 

capabi li ti es are quite limited co pared w1 th ~zhat wi 11 

ultimately be neea.ed, has two f ,orms of learning ( co,ef f 1-

eien.t learning and program learning) wit . a third, learn

ing to give up, to be added as soon as it can be pro

g:rammed 

We may be in for so e pleasan surpr_ ~es meone 

devises a very clever way of synthesizing many good beha1-

ior ... def'ining functions from a smaller se o pr'mi ive 

functions. We simply do not know eno gh, no, to say with 

assurance that it is absolutely i poss: le fr a program 

no larger than GPS to bootstrap its way into intelligence. 

In fact, a very smail inconceivab y ·nefficie t mec an.is 

of the sort considered by Solomonoff (1957· 19~ or 

theoretical-- ndee , philosophical -purposes cold proba y 

do it, but that 1s essentially another su ject be ause it 
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involves such absurd eons of brute-force search. And what 

we kuow of genetics and other evidence of biolo,gical com

plexity, mak,es 1 t seem not so urgent to look for mechanisms 

with that small an innate endowment. 

INSIM1 goal trees contain a relatively high density 

of branches which actually contribute to the solution of 

the problem, compared with theor·em-proving programs and 

chess programs, in which mo,st of the tree branches turn out 

to be useless. The density of useful branches will be even 

higher 1n future versions of the p,rogrem., which will be 

equiDped to prone the tree of branches which are no longer 

used. In general:11 learning takes place as the p~ogram 

takes over more and more of the sequence of events leading 

up to reward. Thus, ,at first, tbe simulated infant I s simu

lated mother must place the bottl,e in the infant I s mouth. 

Then the simulated infant takes over the final stage in 

the seq_uence; getting its head into the proper position. 

Next, it becomes able to provide its own object (the thumb) 

instead of depending on its mother. One can imagine a fUture· 

adult able to prepare the food or earn the money to bu.7 it. 

In terms of the goal tree, the learning sequerire i t;n:i1 celly 

one of adding links in an order opposite to the order 1n 

which they are used 1u behavior: 
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Learning phase I pleasure 

Order or behavior ~ . 

(seconds) / ', 

phase II 

iO:r'lder of 
learning 
(daY•> I 

phase II 

I 
I 

object n,ear face 

object within reach 

food is prepared 

Note the large fraction. of tree branche which actually have 

a benef io1al err ect o,n behavior. 

Mention should perhaps be made of two appealing formu-

1,ations of the learning ·problem whi ch d not seem to play 

a role n INS! 1 The first 1 s the s a ement that, 1n orc.,er 

to be capable of learning something• a prog am must first be 

capable of being taught it. IMSIM1 is ca a of be""ng 

taught only in the sense that a complete yr gr-amm1ng language 
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1s capable o,f being taught anything by writing the appro 

pria.te p,rogram The second formulation is that the learning 

program needs to have a •model of itself. • IMS IM 1 does keep· 

fairly detailed records about which pairs of variables are 

linked together I the names of var1ou:s variables, etc. Only 

in this sense, and in the sense that a program is its own 

model,, does INSIM1 have a model of 1 tself. 

Despite the name 1 1nfant simulator,• only strictly 

11mi ted clai.ms are made about the degree or b1olog1 cal 

realism of INSIMl. Thus, when I say that INSIM1 has "1rmate 11 

formulas for calculating· GPR, I am not sugges.ting, that th.e 

real infant has some representation of the formulas 1n his 

DNA code; only that the formal model behaves as if he did. 

Nothing is known about DNA coding ot behavior-related infor

mation. At th,e current state of computer modeling, if one 

is 1nterested in learning about real babies, one should 

stud,y real babies rather than make ,computer models. 

Weizenbau:m makes a distinction bet en •theory 11 mode, "per

formance!! mode, and 11 s .1.mulation• mode. In theory mode,, one 

is ooneerned with getting a. good formal model of some 

system; in. performance mode, the goal is to get a program 

which perlorms ell on some 1ntere ting (preferably usefUl) 

set o,f problems, in simulation mode, tthe objective 1s to 

get a model which is realistic enough to, say substitute 
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for actual observations of the system 'in question (such a s 

a s1mulat1on of a space flight). The INSIMl work is 

basically in theory mode; we get some performance out of 

1 t; but as for biologic.al realism, all we can say s that 

it exhibits stages :roughly analogous to those exhibited by 

a human inf'ant. 

I am indebted to Professor Marvin Minsky and Professor 

Seymour Papert for several ideas expressed in thie chapter. 
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Chapter ,5. Proposals for future research 

This chapter has two purpo,ses:. one is to µ esent 

pr,oposals fol' com.puter pro rams which 1neorpora.te ore 

advanced forms of t ,earn1ng than NSINl; another 1s to, 

suggest an ans'Wer to the· fundamental quest1on of how much 

a.nd what k:tnd ,of innate 1mplemente.t1on 1s needed for a. 

pro gram to bootstrap 1 tself into 1nt•ell1 l'Tenee. h1s 

will be done by mak1ng an inventory of subsystems wh.1ch 

believe should be 1n sn advan,ced 1 ,eamine:: code. 

?he proposals range fro · packages whose p,rel1rn1nary 

des1~n 1s complete and ~h1ch are ready to program, 

t ,hrough concepts which are "half-baked" 'but 1n which we 

have a reasonable chance ,of' achieving the goals 1 1 r 

perhaps not by the methods advocated., t o a-reas, such es 

learned mot1ve.t1on, where one can only speculate and 

bemoan our ignorance of the sub ject. 

A. The INSIMl plausible m.ove generator 

Recall that, in Chapter J, sect1on c, entlon s 

ma.de or· a n.ot yet implemented plaus1 ble move p;enerator 

which was to be called. to make hypotheses abo ut whi c h 

variables m1ght, be causally related to s01De goal B~ 

(If we tested all possible var1able pairs A B, the 

rnachlne t1me needed would increase on the order of n2 



l4herc! n is the number of var:1.ables; constl tut1 an 

1nto Lerao y large CPU and core stora~e load for larp:e n.) 

The pla Sible move p:ener.ator will use three relevanc•e 

heuristics: 

(1) (Imple,ented) Innately known relevance 

A var1able A 1s innately known to be relevant to a 

variable B lf A appears under B in the innately known file 

(1.e., manually prepared flle) RELVLIST • 

(2) The d1agona.l seaTch 

Thls w111 be used to assooia.te variables wh1eh are very 

"1mportan t" 1 su,ch ae a "large mov1nF v1suel st11:0ulus" an,d 

"arm motion," and wlll be use,d to make the 1n1 ti.al con

nect1ons between sensory modal1 t1e·& and motor uni ts such 

as arms or the head. The "imp0rtsnt 8 variables will be 

plaeed on an innate 11st 1n dec1"eas1nv o:rder of importance. 

Let Vk be the kihm0,st important va:r1able. Make a square 

matr1 : 

V1-V1 V1-V2 V1-V3 V1-V4 • • • 

V2-V1 V2-V2 V2 -v3 V2-V4 • • • 

V3-V1 V3-Vz v3 ... v3 V3-V4 • "' 

V4-Vl V4-Vz V4 V3 V4-V4 ■ ti I 

.. • .. • 
• • I • 
• • • • 
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. 01t let a dot represe,nt a matrix entry and search the 

~tr1x 1n the order specified by the arrows: 

Ro u.o;hly, the concept 1 s that the most 1mpor tRn t 

var1 bles are a.ssociat,ed w1 th each ,other flrst. 

( J) The relewJn ce chalner and. the lnna te n.et 

The innately lalo'WTI. relevance subroutine and the 

diagonal search subroutine will be used to get the, 

learning process started. To oon t1nue 1 t, thA 1",elevance 

chainer s ,ect1on of the plausi le move generator will be 

used. The relevance chainer 111 incorporate two 

heur.tst1as: 

l ■ If xis relevant toy, then y 1s relevant to x 

(symmetry ) • 

2. It x 1s ·relevant to y, and y 1s rele-i1ant to :z, then 

x is relevant t ,o z (t.rans1t1v1ty). 

The relevance cha1ner will be used top;ether wtth 

an ,..lnn=a--.... t_e n~t 'Wh1oh w111 incorporate 1nnete kno ,ledge a.bout 

which sen.sory mod.all ty a g1 v,en s 1gnal belongs to end innate 
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~nforCDSti.on about space (wh1.ch sl~als "be onp; 

to,ge ;her") • For a s,.1mple exampl,e, assume a one-d1mens on 

spac,e ,of to ch ree,eptors. T'he receptors w11 be ar an p-e 

1n. Rn OR tree w1 th a h1era..rohy of larF"e:r and }ar,cre·r 

sectors. 

Face touch 

Input level variable·s 

(Do not contuse this with a goal tree; the upper level 

variable are defined as O.R' s or the low-er l evel var1a l es .) 

B. The b1na:ry va ·ued goal,s package 

At th1s po1nt, the d1ecuss on shifts tote ubjuno-

t1 ve mood ( "wo ld ... rather than " 111" s1n e the mat he 

t1cs of this al ori thm has not bee·n pletely worked o ut 

and no firm dec1s1on to implement 1 t has been made. 

IN SI.Ml. 1a restricted to pulse go,a1s; 1.e , f!OB o the 

form "cause a pulse to appear on variable V" (such as 

"mouth touo h"). The b1ne.:r:y valued goals package trould 

extend lN SIMl to handle the case here a oal var1abl 



page ., 

co hl take a TB E or FALSE value and. hold 1 t fbr a perlo 

of t1me • This 1 s advantageous I slnce often we want e. st. "' -

of f1"a.1rs to cont1nue for a while ( 111 someth1np 1s ln the 

outh rather than "someth1ng mo entar1ly touches the 

o th") 

he binary var1able packa e would include three 

oa types. 

(1) "'Ach1e " goals 

h se goals are of the form "Set variable V to TBUE. 1 

An exa ple uld e "Set the mouth touch flag to TBUE." 

( 2 "H.ol " goals 

A 11 hold" goal wo,uld. be of the f'orm "Ma1nte.1n the 

variable V I which 1s TRUE, for the next t'1 ve secon&.'" A 

" ld oal would. not be WANT• ed unle e t.he va. e. b e 

re already TRUE. 

(j) "Avoid gee.ls 

An •avoid• goal would have the form rsvent the 

var1e.bl V from tak.1ng the value TRU for the ne:rt r ve 

seconds." 

A possible goal conflict could occur here. "Avoid" 

goals would hEne priority; 1.e. 1 1t the "avo _t... cl •ach1eve 1' 

goals were both ANT'ed, the •avo1dM :woula take effect and 

th.e FR of the naohl.eve" goal 110,uld be s t -to zero. 



page 95 

The p:robab1l1 ty•d·elay learner, PRDLRN, ould e 

exte~i.ded to obtain probab111 ty and de.lay values tor· this 

cas.e. 

An example of a problem which could be olved y 

the binary valued goals pa.cka e would be· a problem 1n 

which a robot is to move a block beck and fo,rth between 

three points 1n ,one dimension (left, center, and r1 ght), 

W1 th a binary variable for the ripper pos1 t1,on. The 

pro ram could learn to gr1p at the proper time, provided 

that having the gr1pper in the wrong pos1 t1on dur1ng a 

grasp operation did no permanent damage to tne robot. 

C. ..;-he ,oont1nuous val ed goals packe.g-e 

The 1earn1ng codes discussed above share a commo 

d1ft1culty 1n dealing with problems rel a ting to spa.ea: 

They are restr1,ct d to a few points (left, center, and 

l"ight the current body and e,nvi l'Onment simulator) wt th 

the leam1ng t1me 1ncreas1ng 1n propo,rt1o•n to the number 

of po1nts. Th1sd1ff1culty would be e l1m1neted by a 

pa,ckage wh1 ch would eq u1p the program to deal w1 th 

cont1nuou valued var1a lea (e •8•, o ,ject x co-ordinate") 

1n cases where simple h111-cltmb1ng will "WOr • There 

wou_d be t o types of goals: Increase (or d.eorease)x," 

a.nd "set x-A. tt A fa1rly elaborate pattern recogniz,er and 
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probab111ty-delay estl.mator would be needed. A prelimina ry 

version ,of this pr,ogram has been wr1 tten by J. Kohr. 

A very 1nterest1ng problem ls that of pred1ct1 

the val e of A such that some goal 1s achieved (e.. , the 

value of "hand X•coo,rdinate" such that "hand touch" 1s 

achieved, 1n a grasp:1ng problem) ?his would be, don,e by 

making a predlct1,on ot A, searching aromid w1 th x un t1 l 

the goal 1s ach1eved 1 1f possible, then comparing the 

predicted and!. correct values of A., Compare samuel' s (I 959) 

proc,ess or oompar1ng pred1cted and actual ,checker board. 

eve. ue. t1ons. ,Also compare Halstead, Uber 1, and Gielow' s 

program (1967). A polyno,m1al or the samuel type could 

be U ' ed tor the nred1.ct1on I perhaps w1 th a t ,aohn1q ue to 

allow cU rre:ren t po,lynom1a.1,s to· be u.sed f 'or d.1 tfer n t 

seotors of space. S1nce the co-ord1nate transformation 

1aws are fairly close to polynomials,. the program 

could learn. a very powertu.l technique, oo-ordlnate trans 

rorme. t1on., by a very general me ho,d .. 

If gl ven the proper v1,sua1 1nput I th.e pl"Ogram uld. 

be able to gra. · p, a block, no,t Just. at three points, but 

at an arb1trar,y pos1t1o.n. 

Somer e.d.ers may be 1nterested in a more d.ets.11ad 

desor1pt1on of how this GOU:ld'. be done; others may sk1p 

to section D W1thout loss of oont1nu1ty. Formally, the 
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problem 1s what I have1 referred to 1n Chapter 2 a the 

s1gnal pred1.ct1on p:ro'blemz We have a device which em ts 

pred1et1,ons about the value o,f some variable v (compare: 

some co-orcl1nate of an object to ibe grasped.) in t ,e·rme of 

the values of some set of basis var1abl•es b1, b2 •• , bn 

(compare: visual variables related to the object)• After 

each prediction, the oorrect 'il'&lue of v 1:s red. back 1nto, 

the predictor an.d used to improve 1 t. 

predictor predicted value of v 

bn 

( later) ·,correct value cf v 

In order ~o lmprove the pred1otor, will use two 

leamtng mechanisms (1) a stat1 .. t1es.l ooeff'1c1ent leamer 

to h11l•ol1mb on the ex1st1ng formu]..as 1 a.nd (2) a 

pla·u.s1 ble move genera. tor and precU ctor evaluator for 

symbolic les.rn1ng. 'lhe coeft1,o1e t learner would. work 

as rollowss Let~ be a parameter involved 1n the pred1ct1on, 

and l.et e.1 be the 1.ln errol' term (11!'.! true value or v - 1!.h 

predicted value or v). Then, art, reach oorreo ion, 

change I:( by-



• here t9 1 s a rate constant ·;. a large e w111 mean raster 

1 earning but a less rel 1e."ble answer. ( See Samuel (195 9) 

for a careful d1scuss1on of th1.s type of coe:f'f1e1ent 

leam1ng technique.) Fo:r example, .suppose the progra:m 

t h1nks tha. t v has the form v - 0(
0 
+ 0\ 1 b1 • As leamlng 

prooe,eas, ot 0 and. 0( 1 will converge t,0ward and then fluctuate 

about the "optimum" value I the alue h1 oh m1n1m1zes the 

2. average ve.lue of E1 • 

• ---------1-. . . . . optimum value 

time~ 

The plaus.1ble move genera.tor would be • reaponsibl or 

generating the formula 1n the .f1rst place. In tlall • 

the :tbrmula wu.ld be v = a constant 

would includes 

Plausible ov 

(1) Adding a new variable to the ormula, w1 h a conswnt 

ma_tiplier E.g., v - «a becomes v 

1n1t1ally set to ze:ro. 
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1(2) · nerat1ng a term b .1
2 , where b

1 
1s 1a1ready 1n the 

r0rmu1a. 

(J) ::;enerat1ng a term b
1 

j, wher b
1 

and bj are already 

in the formula. 

(4) Spl1 tt1n the dome.in or the fu.n 1ot1on 1nto two s b

doma1ns w1 th separate coerr101ent,s. 

Hopef lly, 1 t would be poss1 ble to re·str1ct th eearoh 

so that only one or few of the plaus1 ble moves would 

need to be made the subject of a new plaus1ble move 

generation. 

This uld be clone by restr1.ct1ng the earoh to one or two 

nodes having lower avera -e Ei than the1r oompet1 tors 

Thus Ef would be• used e.s s. h111 c11mb1ng cri ter1on. 

To 1lluet:rate the operation or the numer·1cal variable 

Pl"&d1etor, a ume a Bi tuation 1n _h1oh an arm 1 controlled 

by gl v1ng 1 t the 0111ndr1cal ao-ord1na.tea r, i9 , and z or 

the point to wh1ch the arm s to '111.0Ve. 
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z 

y 

camera 2-....;..o . 
0 

camera l 

~Two TV cameras point1n.g do·wn the axls pro,v1d.e stereos co pie 

1nfoirmat1on about the lo,cat1on of a target object. 

h 

s 

Let h, s
1

, and s 2, refer to the vert1cal and horizontal 

locat1ons ot the target as seen by camera land. camera 2. 

It the aamers.s are reasonably fa.r from the soe.ne, we may 

make the approx1mat1ons that s, y,, and z take the· form: 

l 

Y = Asx s + Bsx. 

Z :=t AhZ h + Bhz 

and the cap1te.11zed symbols ere 

constants. The transfarmat1on l,aws we are look1ng for 

take the form: 
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( 1) z - ¾z h + Bhz 

B =✓ASX )2 
~SY 

l 
+ Dsy] 2 (2) s + 5 sx + 

s2 - s1 

-1 y tR(h, 
l ] (J) e : sin 3 = 

s2) 
(Asx + 8 sx 

s1, 

one can trace the stages 1n the learn1ng of these laws as 

follows i 

Phase (1); The program starts out w1 th the 1n1 tlal app~x1-

.mat1on z =- a constant. 

Phase (2) 1 T·he plausible move generator guesses t .hat z 

m1ght tak.e the form .i! = C:( 1 h +Cl. After the coefficients ar 
0 

learned, th1s equation turns out to pred1et z with excellent 

ao,euracy, due to 1 ta res mblanc . to eq ua t1on (l) 

Phase (J): After tryin R a constant , he progra then 

tries; 

R - 0(0 + 0(1 s 

R = D< O(l s + <X2 s1 

(4) R ~cxo +oc1 s +o<2 sl + <X3 s2 

along wit.h other possible variables 

Phase (4) Arter equat1on (4), wh1.ch has all the r levant 

variables 1n it• 1s discovered, the domain o he tunet1on 

1s subdl v1d:ed and piecewise linear or q e.d.l'at1c curve 

.fl ts are made for each subd1 v1s1on bi .. :process may e 
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illustrated 1n ,a t•o-d.imenslonal ,d:ioma1n. 
y 

' A .simple, but serv1oeable, way of' d.o1ng the doma1n 

spl1 tt1ng 1,s the following I Suppose we are trying to 

make a f1 t of the torm R ;; oc0 +«1 s +tt2 s1 and suppose 

the linear function gives a poor fit 1n some domain. The 

plaus1 ble move genera to,r wou:id try sp,11 tt1ng on s, s
1 

and 

s2 • Let us 10,ok at, the prooess or spl1 tt1ng on a tn some 

d.eta11. Suppose the or1s1nal domain was 

A2 =e s1<B2 

A s1mpl liBJ to spli.t on s wo·uld be to simply spl:lt the 

domain down. the m1d:d.l.e 1 

rJ11ne of split 
I 
I 
I 

s 



Le1't subdomain1 

R1 ht subdoma.1n 

Al+ B1 
A1~S<-----

2 
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Next the pl1 t wo,uld. be eva. , us.ted by ma..k1ng eparate curve 

f1 ts on the subd.oma.1ns and testing to ,see :i.f t e f1 ts are 

substantially" better than on the or1g1nal do a1n, 1.e., 

1f the spl1 t leads to 11substant1.ally" less 1 oisy pred1 c ions 

It so, the new domain would be further subdivided as 

11:eed.ecl. 

An alternate way of do1ng the do a.in splitting uld 

be to use a linear separation :ru.not1on of' he form o.s .. b.s>6, 

obt1m1z1ng the coeft1o1ents a and 

(4) R =o<o +o<1 s +cx2 s1 o<3 s2 

mat1on of 

1 

'hi le get t1ng fro 

to e.n approx1-
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may seem qu1t,e a ju p, the hard part 1s getting equat1o. 

The predictor for & would be earned 1n a s1 11ar 

way. 

Because of tne dome.1n spl1tt1ng 1 this algorithm exh1oits 

an exponential explosion as the number of var1a les in

c:reases. one v1 tally needed ab111 t.y 1s that of akine: 

co, pos1 t1ons of functions previously di ,scoverecl to be 

seful ( oCarthy, 19.56). E.g., after the H function is 

learned, 1 t would be used to form the 0 function. 

The learning process would be speeded up, 1f' the 

pl.ausible move generator created terms of the form 

Ji+ b~ on the ground that adding 1ntens1t1es often 

makes sense. 

D. The tree command language a."'ld associate software 

As men t1oned 1n chapter III, IN SIMl performanoe programs 

have "bugs" 1n oases where oals oonfllct. T.e b1nary 

var1a ble packa. e w111 have s 1m1 eu: problems 1n ca,ees 

where the 'VBriS.bles on which GPR pred.i~t1ons, aTe based 

change With time. At this Point, the languag shifts from 

"wou:Ld. be to "m1g-ht be, n stnoe I cannot claim to know how 

to solve 1.he11e ti1:f'f1cult problems. Since 1 t is clear 

that they need solving, the~ oomman lan~usre snd its 
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e.ssoc.1a ted software are listed here as part or the 

1nve tory of innate 1mple mentat1on which I think e,10 n 

an a.dvanoed leam1n pro ram. Recall that I SIMl performs. ce 

pro rams consist of a goal tree whose 'branches are 

aot1 vated when the WANT ariables of the appropriate sub-

goals are set to TRUE The tree command language (abbre-

vlated T .c .L.) 1s a way of express1n ., command to activate 

branc es under certain cond1 t1on where a more soph1 st1 ca ted 

algorithm is needed than the goal tree its lf provides 

An example is ( IMPLIES PACETCH MOUTCHWANT) mean.1ng "Ir • faoe 

touch' occurs, act! va te the e-:oal 'mouth touch.•" In 

psychological terms, the T.C.t. system corresponds more or 

1,ess to ha.bit forme. t1on • 

A typical T.C.t. setup might look so et n 11ke this: 

(1) If G 1s a goal and ID/ANT 1 its W. , va 1a le, ANT 

1s a. T .c .t. program meaning "act1 vste the goal G." 

(2) If P 1s a T.c L. program an V is, a variable, (IMPLIES 

VP) 1s a T.C.L. progra ~ean1ng "If V occurs, activate 

the program P " 

( J) f Pi, P2 • • •Pn are 'I' .c .t. pro rams the (SEQUENCE 

PI. P2 ••• pn) is a .C.L. program mean1n "Act1 e p
1 

~hen 

1 ts goa ( s) are achieved, ae t 1 va te P 
2

, then th others 

1n sequence through P •" 
n 
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(4) f P1 , P2 •• Pn are T.C . L. programs, then (SI LP 
2 

•• 

Pn) ~s a T.C.L. program meaning "Ac tivate P
1 

P
2

, ••• p 

simultaneously." 

.c ■ L. pro ra s wo,uld be r ead and eo:mrnan s !. ::; ue 

the CL. nterpre er, wh1ch shoU.ld pose no speo1al 

proble s. Te programs would be enerated by a plausible 

,ero sre g___enera to.r and tested by a .e,ro gram e valuator 

plaus ble program generator would incorporate various 

stra tee_:1es or o1d1n goa conflicts. S ppose, · or 

he 

exa p e that A and B were binary variables with the o 1 

AND B he goal tree 1rst tr es to achieve A, then B. 
.Bu suppose tha 1,,, ach1evin B sets back to FA E. he 
progra might try: 

(1) chi v1ng B first, then A. 
2) Get ng B past the s ep which n er eres ·1th A ao 1 

1ne; A, then restarting n B. 

(J) Gettin A up to the sta e where lt ·ou db 
te ~ere 

With by B, ten aoh1evin~ B, then r eta t • 

he program eva. uator would s ct the bet oft e 

plau ible p -rams. It 1g t operate b a ontrolled 

randomized exper1men 1n hich the lea.ming _ i;:ra.rn 

a coin" to decide hie T.C L. program to use, ke ps 

records on succes and ailure, and finally adopts the 

bet T,C.L. program. 

v-
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he eak llnk 1n the system is the plaus1 e ro m 

generatol'.'. It might very well @'enerate an exponen tlal 

,explosion of bad T .. C .L. pr:op:rams unless des1p,:ned with p-rent 

care. 

This proposal recalls behav1or1st learn1n theory 

(Thorndike• 1898; Sk1nne·r, 195.J). 

E. Innate proble -specific software 

While this thesis pre.senta a "leamin,;-oriented 

approach to the artificial 1ntel 1e-enee problem, one must 

not fall into the t.rap of a naive ,env1ronmental1sm and 

ignore the po sible :role of old-fashioned, manually 

prepared, innate problem-spec fie software--as opposed to 

the learning so tware, wh1c ls very general and. problem-

1ndependlen t. For exampl,e, an oreanl sm that 1 t ,o see and 

ove would be 1mmensely better off wi ~. e aborate special 

softwa.re for such things as visual pre process1ns and oto 

control. Th quest1,on of just hat should be 1 ate and 

what should e leamed 1n models of hu,... infants 1s one 

which can be settled only by prolon ·e1. development ,of and 

e.x:per1mentat1on with learning codes. P,Ood heur1at1o 1s 

that capab111t1es wh1ch seem to be innate 1n nfa ts 

should probabiy be 1nnate 1n or first general learning 

programs and eepab111 ties: which see 
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be l9arned. (Most oapab111 tles are not known. to be one y,;ny 

or the other.) 

In studying the 11t,erature on lower animals, one s 

struck by the r1cmess and complexity of the innate 

software est-bu1ld1n@" behavior 1n l:lrds develop:; perfectly 

well when the b1rd is raised ln isolation and never has a 

chance to lee.m nes-t- bu1ldtne by watching another membe.r 

of t:he species .. To be sure, some k1nd of learning may 

well be 1nvo1ved; the bird probably bu1lds a better nest 

on the second try. 

Hubel and Wiesel have foun that the lowest-level 

phases of vision, 1nvclving percept1o. o edges, spots 

and corner, are innate 1n t he cat. In the case of humans, 

Gesell 1 s ( 948) obser·vat1ons sug est hat seve~al th1n s 

"Qi! ordinarily think of as "learned L th ch1lcl seem to 

be largely innate, such as walking. Eab1es ho ec1d ntal y 

creak a leg and axe 1mmob111Zt~ become able to wal at 

A pe nt e about the same age as healthy c ldren 

appearance or w.lking behavior 1s de the maturation 

or structures 1n the child's nervous s st m. 

*But, of course, !t 1s hard to separate th1 ea rom t~ 
view that a least part of walk1ng 1s learne • usua ly 
rather qu.1ck.1y one~ t)le neeeese.ry neural pa thways become 
avallable, and could not be iearn d beto e :hat or the 
same reason. 
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In the case of machines, the most obv1ous place where 

a good 1:nnate 1:m.plementat1on 1a needed 1s to provide 

use:fUl. sets of innate teature-deteotors for s1 tu.at1o.ns or 

objects. In INSI I things are carefully a:rranged. so 

the 1nnate features, such as hlert cheek touchM and ~faoe 

touch," correspond well to what the maoh1ne n eds to solve 

the pro bl ems . we 1 ve 1 t. EPAM woul not work we - l 1 f the 

tests in 1ts tree were such th1ngs as the number or zero 

crose1ngs made by the (ou.rsively written) characters 1n 

the sylla.b,le; instead, EPAM's tests are, 1n some sense, 

"usefulw features of the s llable. 

P. on -trial learn1ng ce.ps.b111ty 

p to now, the inventory has 1nolud.ed only learning 

m thod.s involving slow, pat -nt sta 1 t1cal learning. But 

the• t ma~ortty of te.cts that we kno are learn d a th 

res!Jl.t or oni, one or a re exp r1 noes. Afte b lng 

1ntroduoed to someone, one can emember tr. pr on' nam 

after being told 1 t onlf once. (And. :!"or get 1 t 1f1 th eq l 

ease, but that i different matter.) EP (1963) is the 

prot1p1cal one-trial leam1ng aystem. 

G. Look-ahead capab111ty 

The echan1sms ,described prev1ouslT woul ve no 

ab1l1t1 to make log1oal deduot1ons and store the results or 



pagt 110 

to test e. plan "1n s 1mula t ton" before try1ng 1 t. A prood 

1earntng code mu.st be able to do these th1nE(s. "Look

ahead'' 1s a term broad enough to cover such types of 

1n:f'ormat1on proces,s1.ng; hence the term "look-e.head capability 

Skinner (1957) has made the penetrat1ng co ent that 

th1nk1ng ia cove.rt behavior ·e may expect to find 

the same mecha 1sms which a.re used to opt1.m1ze other forms 

or behav1or used to oontrol the look-ahead process. For 

example, the look ahead system might use goals of the 

form "'Reduce the uncertainty about whether goal G oan be 

aoh1e ed," 1'1th the elementary continuous-valued goals 

package used. to learn the 1nformat1on needed to control 

t.he much more advanced. look-ahead mechanism. Compar e 

Ne ell and S1 mon • s (l 960) plan to use GPS reo rs! vely to 

control 1ts own leamlng process. 

a. Goa1 tree gene·ra 1zation capab111 ty 

Another Gapab1l1ty needed is that of g neral1z1ng 

from a pattern of goal tree entr1es., 

T1 be the 1th face touoh receptoI ~ 

x mp e, let 

na-d1mens1one.l 

problem, and et TBB be a .response h.1.ch •res tbe head 

so that an objeet moves from the 1.tb to the 1+1th 

receptor. The goal tree patte:m recogn1ze:r •ou d. d1sc.ov r 

this empirioa ly I abstracting the fact that (T1 Tmf I'EiR) T1-ti .. 
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The 3..b tre.cted equation would then be u.aed to comp1 e ma J 

tree 11nks :SY contra.st, INSIMl would have to learn each 

11nk separate1y. The ability to make this type of sy bollc 

abstraction seems to be an important component on 1ntell1 

gent thought. Compa:r Eve.n.s (1·96'+). Here 1s also a case 

where the p%ogram should recursively control its own 

leam.1ng • 

. It 1s not a'bso,lut lY 1mposs1ble that a very e ev11r 

abstract1ng program ,could be developed which would. take over 

a large fract1on of the work which I have ass1gned to the 

goal tree eehan1 ,sm~11 the en.ti ty ree-ogn.1:zer,, etc. 'I'h1s 

program would synthes1ze performance proerams, try them 

out, and keep the one which lead to the most reward. 

It would have to be smart enough to invent the goal tree 

concept for 1 tselt. (Compare FT1ed.'berP. ( 958 ) Unt1l 

this ·technology appears, sho ld conservatively assume 

that 1t 111 not appear, and continue to develop such 

techn1que:s as goal t .r -s ours lves. 

J. Leamed motivations 

Since the t1me ot Freud, rew aubJeots have rece1~ed more 

so1ent1t10 att ntion (or controve:rs ) than t t ,o how 

mot1v s (compare "main goal!=! '") are or D11ght be 1eamed. 
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Neve~thelees, this 1a an area where art1f1o1al 1ntell1geace 

theori ste w111 have to start essent1allJ arre sh, s:ince the 

current theories ,do not seem well enough struct.ured t,o 

suggest details ror ,computer 1mplementat1on. 

Al though 1 t 1s rathe:r specuiat1 ve· to d.1souss the 

personality and mot1vat1onal chsraGte:r1st1cs ot an a.rt1f'1-

o1a.1.ly 1ntell1gent be1ng, ,so, much has been sa.1,d about the 

subj,ect bJ so1enee f1ct1on wr1 ters, apparently 1th g:ree.t 

1nr·1uenoe on the general sc1ent1f1c oommtm1 ty, that I cannot 

res1st the desire to 1nt.rod.uce some informed. ,common sense. 

The term •rcbot" was invented by- Karel Capek (1923) in 

his R•!!•B.• (Rossum•s · nlve:rsa.1 Robots). Capek's robots 

were pseudo-b1olog1cal slaves wbioh were sold, presumably 

at a rather low cost, to do a var1ety of not ery inspiring 

tasks rang1ng from factory · orker to ',io1 senold servant to 

ex.eout1 ve seoretary The persona 1. ties O-. the .robots sre 

never pr sented in any clear ws.J, but one charaoter1st1c 

become 01ear: The rooot,s seethe wt th h.~tred at humans 1 

rebel, and pretty much wipe out ha 9 1ty. 

Asimov' a robots a.re mucb better than Ce.pek 's from a 

satet1 standpoint, but still not very br1ght. Thy ar 

governed a, three le.ws. 
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(1) B.obots must not end.anger human 11.fe, or, t ro h 

1na.ct1on, allow it to be endangered. 

(2) Subject to law 1, ·robots must protect the1r Ol,11")[ safety. 

(J) Subject to laws 1 and 2, robots ust do whs.t they e.re 

told to do. 

ot surpr1s·1ngly, most or Aslmo\' s robot,s turn out to 

be pa tholog1cally lacking 1n 1n1 tiat1 ve. on,e must remember 

that sc1ence-f1ct1on robots are 1n ented to ,erve 11 terary 

ends and. not for sc1entit1c real1sm. A real, 11ve 

art1f1o1ally 1ntell1g,ent being may be expected to be very 

much more "human" than unhuman The term ttart1 .f1.c.1a 

person 

that it 

1s more appropriate than "robot." I expect 

1 ght he clltt'1 oul t to prevent, the art1 f1 ciall;r 

1ntell1gent belng from having th ordinary, rather contra .. 

d1.ctory m1x or 1ntel11gent personality hara.eter1st1cs. 

It wou.ld probably have amblt1on and laz1ness; a oral 

code and guilt feelings; fee11n s or pleasure, pa1n, bo:redom 

and anger; likes and d1sl1kes; rr1ends and enem1es~ peers 

and. uper1ors; the normal mix of' 1n . t at ve, w1.111ngne s 

to do what 1t is told to do, and determination to do exactly 

as 1t pleases These phenomena may a.rise from natura.l 

oonfl1c.ts bet een useful but d1frerent heu.r1s cs and sub

goals. In these respects, all reasonably intelligent 



page_ 

beings may be s1m.1lar. On the other hand, 1 t would 

presuma'bly not be hard to exo.lude such spec1f1oally blo

logi. cal mo t1 va t1ons as hunger and sexual des 1 re I and 1 t 

could presumably be! made •pathologically" quiok-th nkln~ 

and good at those things computers are p.resen tly good at • 

If the artlflcall;J intelligent oetng were raised 

in a soc1ety, it would tend to absorb the values (,good and 

bad.) or the society. For exam.ple, 1 t . 1 s unll kely th.at 1 t 

would be willing to be a ~s1aven or work without a rat 

salan; this 1s oontrary to the value system.s or all 

countries 12veloped enough to acb1•eve art1.f1o1al intelligence. 

The question 1s often raised by thoughtful p ,oplez 

Wo,u1cl 1 t be de,s1rable or even safe to have art1f1o1all:V 1n-

tell1gent be1ngs around? My op1n1on 1a ·that we would pro

ba.blY be sater t .han we are now. I believe tha t the 

art1t1o1a,lly 1ntel11gent beings would be reasonabJ.y in tune· 

'With soc1ety 1s values, and. that the pioture ot :mach1ne-as .. 

monster, the hom1c1d.al maniac or 2001," 1s unrealistic.• 

•comiter-conjeoture I That the smarte ... machines would mvelop 
bugs, r .1rst subtle and then d1sastrious, mak1ng th m elabora .... 
tel7 and perhaps deviously 11 psyoho t1 c ," becoming sat ly 
r"811able cl tizens only a. ter-a lot of work 1n "'balancing-" 
the1r strategies. 



pa 1 '• 

It is not 1mposs1ble that art1f1c1ally 1ntell1gent be1n-~ 

could form a devlant subculture and expand. in power at 

the ex pen e or the rest of us • A more ree.11 st 1. c dang-er 1 s 

that the 1ntroduct1on of art1f"1e1al 1ntell1gence 1n a 

polar1zed world ooald d1 turb the bals oe or po er ch 

as did the 1ntroduet1on of nuclear weapons. 

On the other had, one ne a only v1s1t the neares~ 

hospital to leam that ife 1s unsafe 1n the current tate 

of scientific gnor-ance, and _ feel that knowledge
1 

1no ucl1ng knowledge about 1 telligenoe 1 ls not only more 

1nter sting than ignorance, it 1s better. too. 

K. Summary and conoluslone 

In summary, I e11eve that a pow rf ea 1n~ co 

1s go1n to bee large and 1 tr1cate en it· nd- d. T 1s 

is to 1:B contrasted w1 th what might be led the ttboo tre. 

from nothing" syndro e which has atn1oted n 1 a 

research ett'orte, the feelng that "All our so p -

blems Wlll be solved, onoe the me.ch e 

tor tself." Everyone dreams of g a 2000 

ea 1ng 

rd 

consider 

esent 

program the. t oan 1 am to b 1ntel 1 gent, • t 

this 1dea to be just that: e. dream If e 

inventory ot requirement 1s even oughly co ct , ~ 



an a::.-t1f1 ,c1ally 1ntell1gent leam1ng code 1s go1ng to be 

decades-long eftort, as ha.l'd as e,11:1tting to the moon, e. t 

least as sc1ent1f1cally 1nterest1ng, an•d pract1oall.r uc 

more useful. It 1s a ha.rd problem,, and one that should get 

the har'1 work 1 t deserves. 
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Appe~dix l ; On statistical coefficient learning 

Statistical co·efficient learning is one of the few 

areas of learning where we have ,a reasonably sa ti sf.a.ctory 

technology. The subject has been extensively studied, 

especially by pattern-recognition theor1.sts 1 even to the 

neglect of one-trial learning and symbolic learning. One 

can usefully regard this type of learning as a special case 

of the familiar tecimiq_ue of least-squares curve fitting. 

Suppose that we are predicting some variable v using a 

prediction fo,rmula.. Let Ei be the e-rror in the 1th pre 

•dict.:.on ( i~ true value - 1.th predicted value of v) and 

let c< be a coefficient involved 1.n the prediction . Suppose 

we require oc to be a stationary point, hope·fully a minimum, 

in < ef > 
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If WE. 1nerement o< by 

ot should hopefully Wind up fluct ating about the value 

which minimizes ( e}) .. The ut1li ty of equation ( l} lies 

in the fact that we can use it with an arbitrary nwell

behaved~ predictor function. 

Often we are interested in J)redicting a binary-valued 

variable 1. such as whether or not a retinal image 1 s a member 

of a g1ven class of patterns In this case, equation (1) 

ea.n be used to get a probability of the binary variable. 

To see that this is true,. consider· the following theorem: 

Theorem : Let vi be the l. 
th value of a ·, nary variable, and 

let c,c. be a cont1nuous valued _prediction of v 1 • The Ttalue 

of ,04. which minimizes the mean-squaz,ed error, <(vi- C() 2 ) 

1 ,s just the probab.ili ty p = Pr ( v 1 = 1) • 

Proof: 

To wiini mi:ce < ( Vi- cx) 2
) ~ set 

"t; ((vi-0:) 2 )=0 

= ( -i;. ( v.- riJ1
-) 

=-2 <Vi- ~) 
= - 2 [ p ( I- o<) + ( I- P) (- ot.)] 

= -2 (p-aj 
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This ;11.11 be zero iff « = p. Q~ B .D .• 

Por an application of this techniq_ue, consider the 

proble of recognizing a pattern from a list of properties 

(Minsky, 1961 ~ p~ 14). 

Let: 

i!!!. property, with value O or 1 
th 
j- class of objects 

; absolute probability that the object ls in class j 

V - the set of i's for which E1 = 1 

Then: 

(Fj ! V) 
Pr (F j A V) 

Pr -
Pr(V) 

(~P jl V ) 
Pr {"-'F AV) 

Pr = 
Pr(V~ 

Pr (F j j V) Pr (Fjf\V) 
:: 

Pr ("-'P j l V) Pr (.....,F j I\ V) 

Pr (VIFj) Pr ( F ;1 ) 
= 

Pr (V 1~F j} Pr ("\.rF j) 

IC._ Pr (E1 1"'Fj) 
iEV ~ ·· 
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unde,~ independence esswnptions similar to those ma.de by 

Mi.nsky. 

~ Ei fog = 
1 

Pr 

Pr (E11 F J) 
= L E1 lo,g -----:--- + 

1 Pr (E1,~Fj) 

+ I: ( 1 - E ) log Pr (~E1 j F j) 

f 1 Pr (~E
1

, .,,,p j) 

+ log 
Pr (F j) 

Pr (~Fj) 

Pr (E1lFj) 
- log 

Fr (E1 ,~F j) 

(-E1I Fj} 

Pr (~E1I F-} ] - J 
Pr {~E1l~Fj) 

Pr (F j) 
I:_ log + 

Pr (....,E11 ....,F j) 
+ log 

1 Pr (""Fj) 

This is of the form 

Pr (F j IV) 
log I 

Fr (""F j V) 

Pr {Fj IV) 
I.e., log 

Fr (-F.1 IV) 
independence conditions 

is linear in E1 under the 
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Let pm Fr (Fjlv) 

Pr (FjJv) 
log--~--

Pr (""Fjf V) 
L 

We may apply equation (1) us ing the fact that 

lP.... dF 
--- - E1, -- - E1 P (1 - P) d()( dL 

LHX=-9EE1 P(l-P), 

This procedure will give ,accurate values for 0( ij , subject 

to noise flu-etua:tions,. if the independence assumpti,ons hold. 

If the properties ar-e moderately statistically dependent. 

it will still give a reasonably accurate fit. If two 

properties E ... and E . are highly statiet ioally dependent , 
J. 1 -

one should define four new p.roperties corresponding to the 

Boolean oomb1nat1ons of E1 and E1 ,. 

Thus t he m,ethod presented he:r-e is a generalization of 

M1nsky- 1 s formula 1n which t he str ict independenc condittons 

are removed. 
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Appendix 2: The NEED subsystem 

Recall that the eurios1 ty .system selects for testin 

the link which maxi mi z,es 

Need (B) GPR(A) 

C(A) 
Satfu.ne (A,B) 

his appendi discusses computation of the 1>a.ram.eter 'eed (B), 

which is, roughly, an estimate o_ how biologically useful B 

is to the program. The ·aea is to get it to learn to do 

things which are potentially o,f some use t •o 1 t ,. such as 

putting objects into the mouth, rather than, say learning 

to ake meaningless patterns in the air w·th its finger. 

Need (B) is a weighted average of the variable l:l. <E> l B , 

wher,e .A <E) I B is an estimate of how much the 

ex.pected value of E (reward) would be improved if the goal 

B were achieved. For example , :lf Bis close to E in the 

causal chain (e.g.• mouth touch), th,e expected value of E 

would be a lot higher· if B were already achieved. 

is computed .as follows: 

(1)4<E)J E is given by 

A{E))E - EAMT (l - GPR (E)) + (EURG) GC ( ) 

where· GPR (E) . s the pr,obab111 ty of achieving E and. GC (E) 

is the ( estima·ted) tirn.e delay. EA.MT (E amount) and EURG 



(E urgency} a.re arbitrary weight factors, currently being 

run 3.t 1.0 and 0.05, respectively. 1.Phe .a<E>IE equation 

can be stated verbally as follows: 4 <E)I E is equal t o 

the amount of reward times the improbability of ge 

plus the "urgency" or 11unpleasure pe:r unit time" times the 

time d.elay before achieving E. 

(2) Suypose we have a causal link 

Then 

.o<E)I A = Pr (BIA) [4 < E>J B - EORG * Delay (A ...... BU 
or zero, whichever is greater. 

(3) If A is made a main goal by the Juriosity system, 

ti<.E) I A== ... CURA.MT (1 - GPR(A)) + (CURURG) GC (A, 

or zero, whichever is greater, where ClJRA?-lT = 0 .2 e.nd 

CUBUHG = 0.05. 

The weighted average. of .d (E)jlB is compu .ed as fol

lows: A 11 new problem" is defined to exist whenever WANTE 
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becomes equal to T or when a. new curio,s1 ty goal appears .. 

Let ti be the time of the i th new problem. Need CB) is 

given by 
-( t - t. ) 

1 

where -y is a time constant { currently 400 seconds) • Thus 

recent values of -4(E)IB affect Need (B) more than old values .. 
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Appendix 3: Technical a.spec.ts of PSIM 

In orde·r to s.implify the e:xperience dri'ven compiler, 

an i :.1.ternreter called. PSIM •( parallel simulator) was i•!ri tten. 

The ex:perience-dri v,en compiler II seesn a pseudo-machine which 

is quite different from the actual PDP-10 for which the pro

gram is written. he pseudo-machine is mu.oh like an analog 

computer in which each co.mponent has the versa.til1 y of a 

digita computer, but 1n which o,ne· does not need to, worry 

about the sequence ,of computations; · nstead • each component 

"continuouslyA monitors its input lines and responds to 

whatever signals it finds there. Thus PSI is a O ,stimulus

reponse 11 oriented interpr•eter which is eonveni en t for writing 

p~ograms which s1mu1ate actions in the real wo:rld. 

More precisely,, a PSIM program consists of a n.etwork of 

yariab_les whose values change w1 th simulated time and 

.t:Yn,ctional relationships which describe the way the variables 

c1epend on each •other. There is a simulated-~ cJ.ock, TCIOCK,. 

calibrated in seconds, which is set to zero at the start of 

the ,simu.latio~ and: advances as the simulation proceeds. There 

1 s an e·vat file, EFILE I which contaJ..ns. oompu tat1ons which are 

scheduled to occur at a future TCI.OCK time. 



page 2 

To see how PSI~ works, let us examine a program which 

produces a train of pulses, ,5, simulated-time seconds apa t 

each pulse lasting 0.1 seconds. 

~5 sec.~ IE- 0.1 sec . 
. - ,..... .... 

F rst, we will need a variable Fl for the first pulse. 

Before starting the simulation, we make the funct1on calls 

(ESETl 1P1 T o.o) 
(ESET1 1P1 NIL 0.1) 

These wi11 make two entires in the event l e, one at t = O 

setting Pl=T, another st t = O 1, sei;.t1ng Pl• NIL. Event 

file entries are sorted ,on order of oc,c rrence We wil need 

a variable for the output pulse train TB. The 5-second in er

pulse delay is implemented with a variab e TB.DEL. We have 

( TRDEL (DELAY TB 5. 0) ) 

(TR {OR P ANSDEL)) 

for the PSI progra.in This is the soft.ware equivalent of an 
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OR gate and a delay line: 

Initial 

\~ 0~ ~ Delay 1 pulse 

Each program ent.ry is ,of the form (VAR EXPB), where the 

EXPR is a LISP S-express:ion which is evaluated to get the 

value of the variable VAR .. Certain spec1.al functions, such 

as DELAY. operate by creating new EFILE entries Whenever 

TB changes, (DELAY TR ;.o) will make, an event file entry 

setting TRDEL to the new value . .5 ,seconds later. 

The simulation proceeds, as follows. Events ar,e taken 

from the EFILE in the order of their occurrence. The first 

entry is fort= o, made by the o.al (ESFX P1 T o.o). Pl 

is set to T. Next, var ables hieh depend. on Pi are updated. 

TB is set to the value of (OR F1_ TBDEL), which . s T. (DELAY 

TB 5 0) is ,evaluated, causing an entry to be made in the 

EFILE setting TBDEL to Tat t = 5.0. 

After all variables whioh change ~t t = a have been 

updated, PSIM looks for the, next entry in the nt file. 

This is the entry setting Pl to NIL at t = 0.1. TB. is updated 
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and ,ln entry is made in the event file for t :ii:: 5.1 for 
TRDEL 

At t : 5 o the events filed by the DELAY function co,me 

up for processing, and the cycle repeats. 

If a variable V2 depends on another variable Vl, and 

Vl changes, V2 is automatically updated. This process occurs 

in an interesting way: In addition to the variab e TCLOCK, 

which records simulated time, there is anothe.:r c · ook, called 

BTir• E ( base time) which cycles from one up to some maximum 

value during each TCU>CK time. Each variable has a base 

time at which it is updated The base time of a variable is 
s t as follows: 

(1) If a variable depends on the other variable only through 

a TCI.Oc delay, its base time ·s 1. 

(2) Otherwise, its 'base time equals o .. e plus the maximum of 

the ase times of the variables on which 1 t directly depends, 

i.e., the variables ·nits .EXPH. 
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For the pulse generator described above, the base

time assignments are: 

/1~ 
Pl TRDEL 

base time= 2 

ba.se time = 

Th.e base time o:f TR is one plus the base time of TBDEL and 

Pl. 

V,ariables with base time 1 are update,d f1?"st, then 

variables with base time 2, etc. This arrange ent ensures 

that a variable is not updated until after the correct values 

of all variable in its EXPR are available. 

During most TCLOCK events only a few variables change 

their values, PSlM ffflsuires reasonable efficiency by recom

puting only those ,;ariables which depend on a variable which 

has changed at the current TCWCK time. This is done in the 

following way: A one-dimensional LISP array, EVARHAY (event 

array), is maintained. llith one entry per base-time: 

EVAB.RAY: 

base 
t I 1 t I 

t me= 1 2 3 
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With each variable v there is stored a list of users-

variables which have v in their EXPB 1 s. The user variable 

must have a higher base time than v. Whenever v 1.s updated, 

the new value 1.s compar,ed with the old value, andJ if the 

values are not "almost equa*, each user variable is 

entered in the 11st in EV.AB.RAY at the appropriate base 

time. Since PSIM gets its list of vari.ables to update from 

EVARHAY, this ensures that the user variable Will be updated 

wh ts base time comes. Thus, the updating oceeds in 

a ave-front 11k.e manner, start.ing w1 t a vari able which 

has been changed through a TCWCK delay. 

*Non-numerical quantities are "almos e0ua l 1 f they are 

equal. umerical quantities are almos equal if they differ 

by less than 5 per cent or by less than 0.01. 
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- 4 

=:: 3 

= 2 

- 1 

Variable changed. through a TCU>CK delay 

Note the resemblance to a hard-wired device or a n.erve net. 

T.fuenever a simulation is .startee. ,or the PSil1 program 

.is changed by the experience-driven compiler, the PSIM 

schedµlg is called to .assign base times to the variables. 

This is done b:, the follo•wing alsor t F rst I t · e u ASGNED 

(unassigned) pro,perty of each variable v i in1 ti al· zed to 

the 1·st of all val"iables in the EKPR of v. Variables with 

base time ,one are so assigned because they are defined in 

terms of' functions ,on the Bl LIST, meaning t t the function 

uses a TCWCK delay. E.g., DELAY is such a function 

For each base time; the following loop is executed. 

(1) Assume that variables to be given the current base •ime 

are on al st, SONLIST. 
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( 2) Each variable v· on the ASGNLIST is assigned the curre t 

base t1me, and a scan is made of its u,ser list. 

(3) vis deleted from the UNASGNED property of each user of 

v. Thus the UNASGNED property of a variable ~s maintained 

as the list of all variables in the EXPB of v which have not 

been assigned base times. 

(4) If v was the last variable on the UNASGNED list of a user 

variable, the user variable is placed on the NEXTASGNLIST and 

assigned the next base time ( current base t1m•e plus one) 

(5) SGNUST is set to the MEXTASGNLIST, the base time is 

incremented by one, and the cycle repeats until NEXTASGNLIST 

turns out to be NIL. 

This can. occur either because all variables have been 

assigned base times. or becau.se the graph of non t_me-delay 

dependency relat1onsh1ps has a. loop in it, requiring special 

treatment: 
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("f one or more links of the loop involve a TCLC K aelay 

special treatment is not required.) such a loop indica ,1..- s 

that the PSIM program defines a set of simultaneous equations 

( X ( TI t~S O • 5 ( PLUS Y 1 • 0 )) ) 

(! (TIM=S o.; X)) 

In I SI~ • thi s means that the goal tree has a loop .in 

it; i.e. ,. A i sometimes a subgoal of B and B is sometimes 

a subgoal of A. PSI is equipped to solv,e an arbitrary 

number of simultaneous I not neces.sarily li.near eq_ua. ti,ons 

involving numerical and ,symbolic variables, using a.1'1 iteration 

method which em_pirioally seems to converge for INSII-11 programs 

This is one by inserting m!.t. point~ at vario s nodes in the 

dependency graph. once the pro ram locates loo, it 

searches around the loop until it finds a variable with a. 

CUTPOIN~ flag (put in by the experience-driven compiler). 

Suppose the cut point variable is v. A new variable PV 

cal-ed a pre-ve.riablg, 1s inserted . 



Becomes: 

V is assigned. a base time of one. An iteration co,nsi sts of 

starting W1th a value of V (initially provided by the 

exper1ence...a.riven compiler) and uposti:ng the variables 

of the loop until FV is computed. Then Vis set to the 

value of PV ., the base time is reset to o,ne, and a new 

iteration begins. The iterations continue until each vari

able 1 11 almost equaln to its previo •s value. A im1t of 

10 iterations prevents infinite loops. 

PSIM is rather elaborately equipped with debugging 

aids, allowtng tracing o,f an arbitrary variable and stopping 

at an arbitrary time, and is equi~ed with numerous internal 

error detectors 

In hindsight, PSIM contributed to the suc ~ess of INSIMl 

by simplifying the experi ence-dr1 ven compiler Readers who 

plan to work on this type of p~ogram are invited to obtain 



page )~' 

s_ ·' fro me rather than rewrite it. ( _ is is qu te 

Some credit s due to that voci"erous critic of 

art1 icial intelligence, . ubert L. Dreyfus, for anno i _ 

me in o writing PSIM b saying, if read him correc ._y 

tha1..,. digital computers cannot per orm this type of compu 

tat'o , 
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Append·x Teeh..'li,ca.l aspect - of the experi ence-dr _ ve.J 
compiler 

The eXperience-driven complle.r is a straightforward if 

somewhat long computer program, wr1 t ten in a FO.RTRAN -s,tyle 11 

LISP ( pur,e pseu,do-functi,ons with large PROG' s ) • The 

e,ssence of the compiler is contained in the formulas of 

chapter 3 ; basi ca ' _y, the c,omp:i ler substitutes particular 

variables into the formulas to create a PSIM program ... 

Supoose Al is, a ~oal variable . Ass,o.c1ated with it will 

be variable - for the GPR ., 00 1 etc. The,se variables are stored 

,on the property 11 st of A1. Thus the GPB propert7 of' Al has 

the pname A1GPR, and AlGPR is GPB (AI). In an earlier version. 

,of the program, such v,ariables as GPR (Al ) w :re gensyms. The 

r ,esul ting objec \,, code was so il e i b that a spec al program 

was wr1 tt,en, using the LISP fUnct1ons EXPLODE and MAK NAM, to 

generate atoms with more readable pname. 

special interpretive sy.s tem ca led CCI ( compiler 

con r,o interpreter) wa writt•en to increase the readability 

and ,conipactness of the compiler. A typical en ry is: 

{ CC ( BO NMDELE .A) (MAX ( PR .EED ~. A) 0 



~he expre s io~ ( PR 

page 1)7 

NI·DELE A) in.d·cates that the .d ELE 

propEJr yo A is to be retrieved or, :if it has not yet been 

enerated 1 that it is to be generated and stored on the 

pro pert __ t. When give the above entry, CCI ;, .:. _1 - re_ are 

a PSIM program en ry: 

( Al l'!DELE ( HAX AlNEEDVE ) ) 

i f A has the value Al. 

The main functions ,of the compiler are FILEPR LR ~, 

I AKEORGOAL, a.Yld MAKE HC-OAL. FILEPRDLBN ( A B) enters a 

causa1·ty test link between A and B; MAKEOBGOAL (A ) enters 

a goa ree link between A and B; and . AKETHGOAL {Al A2 A1THA2 ) 

create the "A, then A21'1 goal A1THA2. 

As the compiler grew, it became fragmenteQ and somewhat 

unread.ab e. pan to modify cc_ so that the oomp"ler loo s 

ore or less like a shee of formulas of the· tyPe seen in 

chapter 3. 
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