
LABORATORY FOR ~ ·.· 
COMPUTER SCIE ,cE ~ 

MIT/LCS/TM-18 

· ~ MAS ACHUSETT 
INSTITUTE OF 
TECH OLOGY 

AU'iOMA.TIC CODE- GENERATION 

FROM AN OBJECT-MACHINE DESCRIPTION 

Perry L. Miller 

October 1970 

5 S TECHNOLOGY Q ARE. CAMBRlDGE. -l AS ACH SETTS 0 21 9 



AUTOMATIC CODE-GENERATION 

FROM AN OBJECT-MACH I NE OESCRl1 PTI ON 

Technical '1emorandum 18 

Perry L. Mi 11 er 

October 1970 

PROJECT MAC 

Massachusetts Inst I tute o.f Technology 

Cambridge Massachusetts 02139 



ACKNOWLEDGMENT 

Work reported here i r, was supported in pa rt by 
Project MAC• a M. I . T. research p roj ec t sponsored 
by the Advanced Research Projects Agency , Depart
ment of Def,eose. und,er Off ice of Nava Research 
Contract Nonr-4I02(01). 



Perry L. Miller 

A~TRACT: 

This memo outl'nes the basic elements of a macro code-generating 

system, and develops an inform.a 1 llii!achine- · ndependent model of a 

code generator. Then the memo discusses how a implementation 

of this model could be set up to generate code for a. particular 

machioe from machine-dependent information given in desc -iptive 

form. 

Keywords: compiler~ transl.atorJ macroprocessor code-generation 

automatic code generation 

, 
I 



CONTENTS: 

Introduction 1 

Chapter l ·The Elements of a Code-Generat i ng Syst~ms 

Chapter 2 

Chapter 3 

Chap,te , 4 

Chapter 5 

Appendix I 

Appendix II 

1.1 De.sc.ripcion of a C ode:-Gene:ra ting System 5 
1. 2. .A. Framework for Data- References and Data-Types 8 
L 3 The State of the Code-Generator (lmple-ment:ation) 16 
l. 4 Summary 20 

A Code-Generator as a State Machine 

2.1 
2 •. 2 

The State Machi.ne 
Implementing the State Machine 

Descript i v,e Data-Reference Macros 

np roe edo r a 111 .!! . 11F unctions l" Des c. rip ti on 

Summary of Results aad Areas for Further Thought 

Sample Macros and Machine Desc-riptio:ns 

MIMI. a:nd OMML BNF 

r --

21 
25 

41 

53 

59 

61 

65 



IHTRODUC1'ION; 

The compilation proces~ is traditionally divided into parsing and 

c,ode-gener.ation. A great ideal of work has -e.en done 1n formalizing 

parsing. Systems: have been developed in whic:h a parser can be automati

cally creat,ed from a BNF ,description of a language, rather than rem. al

gor 1. thmic procedure. Very it t e work, however, has been done to s irnilar l~• 

formalize code generation. 

A great deal of ork has been done on a very closely re ated problem: 

that of language transferability. The problem of how to minimize the 

difficulties of implementing a language operating ,on a variety of d · fferent 

machines has been approached in seve:ra 1 ways. One such approach is typified 

by he 1mobi le programming system I of Orgass and Waite. [ 6 J I11 this system 

the source language is translated into, a series of macros by the li.anguage 

processor. 'l'hen a user-written. set of macros translates chis intermedia e 

macro language into user ma.ch ne. code. 

A second approach to -a:nguage trans fer ability is seen i:n the UNCOL 

macro, language. [8, 91 This was an attempt to create a universal macro 

language i to, ~hich a 11 high- le.v,e 1 languag:es could be trans lated, and which 

itself could be transla.·ted into any machine code~ If successful" this 

system would have s.olved the problem of tran,s,ferabi.lity since only one 

trans la tor would ever have to be ritte:t1 for a.ny machine. Notice that this 

differs from the Orgass and Waite system, since their intermediate macro 

language was sp,ec1fically tailored to their source languageJ whereas UNCOL 

puts no r ,estriction on the source language. at all.. In practice, the res

tric ', ions imposed by having only one. 'ntennediaite language have proven very 

confining and too inefficient for a prac tica so utiou. 



Both of t ese sys te1'n5 are sitni lar n tba t both at tempted to so 1 ve the 

problem of language transferabi I ity oy lee.ting the user specify information 

about his machine in procedura form. Most of the infol.'1tlo'altion about the 

structure of his machine is buried implicitly in the coding of h s macros. 

This procedural approach has been used in all major published work on 

code generation. 

This memo wi.11 describe a system which allows a code generator to 

be created, for a class of object machines., from de.scriptive information. 

In this rnemo !:he code generation process is first formalized., and a 

machine-i.ndependeot model of a code generator h "nformally presented~ 

This model pie tures the code generator as; 

L A state machi.ne w.1hich makes repeated ransitions into permitted 

states from which it can emit computational machine ins true t ions. 

2. Opera t :l.ng on conceptual (semantic) data- types. 

3. Built on low-level semant:ic primitives. 

Then the me o shows how an imph,mentation of this machine- i dependent 

model could be set up to generate code for a number of different machines 

from mach lne-depend,e t information given in descriptive form. 

Chapter l first describes the code- genera c ing p:r:ocess in genera 1 terms. 

Then a .framework is out lined wb.ich allows different dat:;1 reference macros 

and different data-t:ypes to intennesh smoothly , This is called the 

PLOT-LOCATE-LOAD/UPDATE framework. This framework i& based on the premise 

that: a data macro need not know whether its result is to be used as an 

address or a valu,e. As a result,, it can compute a 'location , to which a 

oad or .an update function may later b-e applied. The form of this loca icn 1 
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and the particular load or update function used, will be: different for the 

different data- types. Chapter l then outlines how thi,s framefflork could 

fit into the implementation of a code-generator. 

Chapter 2. describes a code genera tor as a state mac:h i.:ne whose state is 

determined by the location of , he values which are to be used in generat i ng 

c'ode. These values may be in simply addressable core location, in non-simply 

addressabl,e core locations~ or in a register of (,,i'hich there may 'be severa l 

classes. 

Each computational macro has associated \.Ii th it certain ?ermi t ted 

initial states fer its operands~ For the 360, fer in.stanc.ej init ial 

stat,es for an integer ADD macro would be: L both operands in registers, 

or 2. one in a register and the other in c.ore. The process of generating 

code for such a lll8cro, the ref ore is tlie process of the code genera tor making 

a tr-ansition into one of 1:hes ,e initial statesJ followed by th~ emission 

of a particular code sequence from that state •. 

In a procedural macro language, the user specifies how these transi

tions are t:o be made+ In DMACS~ the descriptive macro system ,of this mernoJ -- --......... -
the code generator itself is set up to perfor111 these transitions automatically . 

To do this, :Lt must have a de.scrip tion of the register and memory struc-

ture of the machineJ and of the paths (load. store registe-r-registe. trans

.fen), between different storage classes+ Thus., computational macros can be 

defined merely by desc..rib ing the instruction sequences from permitted states. 

Chap,ter 3 discusses how data-reference macros could be written 

machine~ iodepe~dently .and then filled out by a machine descript :I.on. In 

these macros, the user would specify the computations he. wanted done, using 
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1 semantic• data~ types and semantic primitives defined o,v,er these data

types. A machine user could then give a desc:tip ci.,on of his memory hier

archyJ its addressability, the operations that move data-it::ems between 

core and registers and bo-w bis lanL'Uage ,data-types map int,o this 

memory h 1erarchy. Using this descriptive information, DMACS rwould map 

user data- types into, the app rop iate semantic da a- types for that machine 

and it ..,ou ld de fine an imp lemen ta tion for the va:ri.ous semantic: p im · I: i ves 

over these data-types 

Chapter 4 disc.usses, how further part of the code-genera or could 

be written in machine independent form and then filled in by descriptive 

inf orma tioo. 

There would be two, steps i.n writing a code-generator using the DMACS 

system. The first s.tep w,ould be to define a set of procedural macros 

in a machine- independent, somewhat skeletal :ioT'ID. The second step would 

be to supply descriptive information about a machine which would be used 

i::o, flesh out the macro defio tions. The two steps, would be quite independ

e.it, so that once the first step had been done for a given ma ro language 

the second step could then be done for a var·ety of object machines. To 

facilitate these two steps, DMACS provides two 18nguages MIML, a procedunl 

_!!taChi.ne ,independent _!!aero ]an,guage, irod OMMI. 7 a descriptive £hject machine 

,_!!Bero language. Programs written in these two la,nguages are bound together 

by the DMACS system. 

In surom~.n-y, the memo ·s a step towaTds, formalizing the process, of 

code-g!neration and abstracting it from any pa ticular machine. Toward 

this end the memo shows, how a code-geneTator could be created from a 

machine description. It examines so e necessary design features which a 



compil,er must have to make such machine i:nd,ependence possible. Finally J 

it describes the DMACS system which. is designed to imple- e-nt such .a 

code generator. 

CHAPTER I: Tl:IE ELEMENTS OF A CODE GllNBRA.'rOR - - -- - - ------
1.1 DESCRIPTION OF A CODE-GENERATING SYSTEM: 

A macro cod,e~generator- is set up to accept a U n.ear string (someti es 

called a I matrix•) of m.a ere calls and generate :t:he appropriate machine 

ins true tion_s~ In a cOtllplex cowpi er with manry data-types~ it is .adva·ntag

eous to allow tile code generator direct access to the symbol table con

structed in the syntactic pass by the parser. The code-generator can then 

us,e the data-type info mation di ectly to generate different code to access 

the differing d.ata- items. 

The data f ow in such a system is 1 ustrated below: 

SOURCE ....... EJ-• S,YMB,OL 
TABLE -,,-

MACROS 

MACRO 
OODE 

GENERATOR 

MA!HINE 
CODE 

The parser a.nalyzes. the s ,ource program, c ,cuverts it into a linear sequence 

o,f macros, while simultaneously building the symbol table .. The code-genera 

tor accepts the. macros and the symbol table as input for ge ,e.rating machine 

instructions. 

The macro- instructions can be thought of as having normal prefix fom~. 

for example ADD X,Y .. In factJ this instruction would •consist of 3 pointers 

(also ca led uniform symbols,): Where (ADD) 

is a pointer into a tabl<e of macro, defini.t .i ,ons., and the operands (X) and (Y) 
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are pointer into the symbo table construct,ed by the parser.. An operand 

could also be a pointer to the result of a previously macro line. 

Exampl,es of this sort of macro: 

(line no . ) (macro name) (operands) 

i MUL C,D 
i+l ADD i,B 
i+2 ASSG A Hl 

C •- P(N)~A(I).B(J) i ss P,N 
i+l PTR i, 
:t+2 ss i+l, 1 
i+3 SUBST i+2 B 
i+4 ss i -:)~J 

1+5 ASSG c,, i+4 

· s ao example of the cod,e-ge ,er.ation processJ cons det' a simple 

comput,atiooa macro such as ADD for the IBM-360. There are two possible. 

add- ins true tions for integers: •A' wh icb adds a fu 1 word of memory to 

a register and I AR I which adds two registers. Wb,en genera ting code for 

an ADD macro, the code-g,e.nerat ,or wast check the location of the values 

to be added to see if either of :these in.structions can be emitted dit'ectly. 

If notJ the cod.e-gene.rator must emit appropria.te instructions to load one 

or both int,o registers. If in tbe process of finding a free register to 

load into che code-generator bas to save the previous contents of hat 

register i.n a te10porary location, tbis must be r ,ecorded. Furthermore, if 

one of the values is not simply addressable (e.g.~ a bit string), the 

code~generator must output appropriate load ind shift instructions to 

isolate it in a register before it can be used in t.he addition. Finally, 

the code-generator must r ,ec,ord where the result of th.e additio111 is locate . 

To create a code- g,enerat,or which perfot:ms these tasks~ tberefor,e it 

is necessary to describe: 

l, A set of macro definitions. 

2. 1'he machine registers . a ·nd cl.as.sea defioed over these 1:egisters. 
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3. Routines to keep track of what values are in which registers~ 

4. A 1GETREG 1 function to obtain a free register of a given class. 

5~ Data-handling routines which will generate code to fetch a value 

into a register~ and routilms to yield some simple representation 

of the value, such as an indexed address. 

Th-e MPI. macro langua.geJ which is part of the LFS compile ~building 

system created by Professor ,Grahail! at M. I. T. was developed to dffer these 

facl l ities. It allows the user to create code-genera tors for a wide range 

of object machine structures. The following ADD macro, written in MPL 

for the 360 is given a,s. an example to give the rea,d,er a flavor for such a 

proc.edural macro language. 

MACRO ADD X,Y: 
call Getloc(X. tREGl tBASEJ tINDEX, 'DISP); 
c, lmGFLAGJ :set~ l::JXinreg; (branch if X in register) 
call Load(Y 1 REGL); 
out (A,RE.GL BASE~ INDEX,DISP); (output add frcm storage) 
calh Mark{,REGL); (set t"esult of current line a'!l'.ld exit) 

Xinreg: ca 11 Get loc (Y, 'BEG2~ 'BASE,J, r INDEX, 1[JISP); 
c RegflagJ set~ t~.xYinreg;, (branch 1£ Y in register) 
out (A RE,Gl, BASI!l, INDE.X,DISP) i (output add from storage) 
callx Mark(R.EGl); 

.XYinreg: out (AR BEG2,REG1) ;, (output add re.gist.er) 
ca 11 Mark (REG2) 
endm; 

ixp_lana5.ion of 121.!-£: Getloc(X~ R, B~ I,D) is a c:ode~generating subroutme 
which attempts t.o return (in the variables 15, I~ and D) a s "mply address
able location fer X. If it cannot, it sets Regf !Lag al'ld returns a regis
ter containing the value in variable R. 

Loa.d (Y ~ R.:) is a similar routine which loads Y into a register which 
it returns in va~iable R. 

Mark (R) miin'.'ks -register R as containg the result of the current macro 
line .. 

The routines Getloc and Load handle (directly or by subroutine) all 
the symbol- table searching~ all the data-typ,e de.pendent ogic, and any 
necessary searching for free registers. 
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Not"ice that MPL is a proce.dura 1 rather than a desc.riP-tive language 

and that the user gives a pr.ocedura.l outline of the mac o log:Lc. The 

user mu.st similat'ly specify procedural logk for handling data-dependent 

logic acd :for oht:a ining free reg.is tel'&. 

Chapter 2 will show how computation.a macros of this sort couLd be 

d-educed from descriptive ·information about an object machine and discuss~s 

some of the problems involv~d. The rem.ab:iitig sections of chapter wi l 

discuss further general asp.ects of a code-ge erator. 

A FRAMEWORK FOR DATA-REFERENCES AND DAT.A-TlPES; 

A powerful computer language, -ike PL/I, has. a variety ,of constructs 

for referencing data, inc ludi'ng simple a.rrays, mat1: ices, pointers and 

structures. Reference to a s:ingle data item ca1:1 involv,e arbit.:rary com-. 

pounding of any of tbese.. This gives the user a great: dea o,f power 1 but 

presents problems :for the com il,er wrt ter. This is es pee ia ly t :nie when 

these data :ref,erences are defined n.ot only o-ver words (i..e., addressable 

units), ut also over bytes wit'hin wordsJ and bit strings which are not 

directly addressable at alL 

This section describe.s ,a framework whictll .allo s differen data-ref

e rence mact",os and differen data- types to intermesh .smoothly. This is 

called the PIJOT-LOCATB-:WAD/UPD:ATE framework. 'This frameworlc is based on 

the premise that a data macro need not know whether its result is to be 

used as an address or as a value. As a. result~ can it ,compute a 'locat · og • , 

to which a, load, or an update function may later be applied, to ei her 

access or a te:r the va foe a c the I location 1 
• The form of th· s I location' 

and the particular load or update function used., ould be different for 

the different data- ypes 



1. 2., THE '11.0CATE' PROBLEM: 

One fundamental problem in generating code for any data-reference is 

that the isolated reference itself does. not indicate whether that data 

i .tem is to be used as an address to store into, or as a value. Only 'When 

it is used in context does this become clear. For e:xamp le:. A (I) :;; A (I) B. 

Rere the first A(l) refers to an address, while the second refers to the 

value at that address. 

Similarly, if the subscript was represented by the macro line SS A!I 

it would be impossib _e to determine whether code should be ,generated to 

yield a value or an address. One solution to this problem is to et the 

parsel' determine the context and output two macros: SSA A I when an a.ddre ss 

is wanted, and SSV A, I for a value. A variant of this so ution is to let 

the parser always ou.tput an SSA macro, followed by a unary 'value macro 

to convert this add~ess to a v.alue when desired. A second solution is to 

let the data reference macros always compute an address and let the macro 

which uses this result determine the mode. 

A data re f ,erence macro wb ich computes an address can be seen as a 

•LOCATE I function which generates a representation of the location of the 

data item. 

].. 2. J TBE LOAD-UPDATE PROBLEM 

The fact that not all data :i ems are s.iraply addressab e gives rise to 

the concept of a oad-update pair: a complementary pair of routines to 

access or update a data-item. 

The simplest example o,f such a •complex I da.ta i.tem in a word-addressed 

ma<:hine would be a byte within a word. Its I location '', genet'ated by a 

ocate function m.ight be: L an address (poss:tbly indexed), and 2. a byte 

numb,er. The load/update pair w,ould consist of two routin.es iorhich would ta.k,e 
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this 1 locatioo' and generate code as fo ows: 

1. oad: load the word in to 8 register,. shift ]Left to eliminate high 

order bytes~ hen right to e_liminate low order bytes, thus right.

adjusting the des.ired byte in t :.e regist,er. 

2, update: load the wordJ use a mask to zero out the targ t byte~ 

shift the ne:w value to the corr@c position 'ol: then~ s ore the wo,rd 

with its new byte. 

ln pr:i•r. tice tbis data item would have two kinds of 'loca ion I a.nd corres

pondingly two load/update pairs: one for when the byte ith ·n. the word is 

known a compile- time the second for when the byce lr,,lithin the word is 

ca culated at run time by he loca e function and is g · ven o "ts load/update 

pair as a computed value. 

The load/update routines would he further complicated if a data Hem 

extended across a word boundary 

I 1 
I 
I 
l 

I 
I -+-, 
I 

but the code generated would sti 1 fi.t into the -framework o .f a I loca ion' 

an.d load/update pair. 

It can be seen that th is problem stems from t.he fa~ t that possible 

data i 1:ems do not map direct y i.nto addr,essable units. Generally only 

an address ( perhaps indexed by registers) can be put into a machine in

s ruction. If it we-re possible co specify an address and .a byte nwnber 

or address, st rting bit and bit-length, hen the pr9b em of special lo d/ 

update f unctions would disappear. A ma.clltne hich allowed thi would pay 

a penalty in efficiency when it "Was lilorking with full word items. A :simpler 

trade-cff might be to, have a special hardware load and store i.n,struct:io-ns 

to access bits of a word. This ~ould still ret.aio the load/upda e framewor k, 



but would make the load/update routines 1DU<:b simpler s inc ,e each woul d 

cons·st of onlly one instruction • 

• 2 • 4 LOCATE. & LOAD /UPDATE: 

[ LOCA'm 

L------.LO_. AD _ __.~~---DA'-:l'E______.· 1 

It can be seen that the previous y mentioned locat,e function fits 

toge thet' neatly with the conce.pt of a load/update pair. A locate function 

generates a 'location' cons·sting of: 

1. An address (perhaps indexed) if a data re·ference is s imp e. 

2. An address (perhaps inde,red) and auxiliary pointers to within th.a 

address if the reference is a complex data ite:m 

In the simple case this address can be fit directly into either a 

load or a store ins true tion or directly into a machine instruction such as 

a storage- to- register ADD. For non-simple itelll-S, the address and pointers 

can be given as arguments to the appropriate half o,f a load/update. pair, 

to either gene ate or value or update t.he item with a new va l u,e. 

The various da t .ai-s true tu re macros can each perform thei l'. own compu

tat i ons on their operands and associate the 'location' thus generated with 

the c ur:ren t: macro line. This I location 1 can be any number of run time: and 

compile- ti.me values~ dependi g on the nature of the data. item.. When the 

result of this line is later used J this 11 location ' wi 11 be .f,ed to the proper 

half of a load/update pait .. Since the I location I format put: out for a glven 

type of da t:a item. would be the same for all data~ reference PLacros (subscript~ 

matrix s true tur,e J etc.) they cou Id be fed to the same load/update pair. 

Th · s t location' format is a typea indicator followed by an arbitrary ·number 

of operands. Since the type-indicator tells which lo d/upda.te applies 
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this 'location I can be thought of as a 'twin I Junction followed .!I_!_..! 

arguments, Either the load or the update p.art of this function will be 

called by a ater macro which references this r ,esult . 

SUBSCRIPT MATRIX 

ARGl 

ARG2 

~C:J-. L/U 
- byte 

STRUCTURE 

LOCATION' 

compi e time 
bit 

run time 
bit 

etc. 

etc. 

C,onsidering the optimization of common .subejcpressions helps shed some 

ight on this loca.te.- load/update framework. Iu. optimiz1ng A(B,(I)) : ,,._ A(B(I) )+l 

the result of he locate of A(B,(I)), Youl<l be used twice. In optimizing 

C : = A (B (1.)) D (A(B (I))) the result of the lc,.ad would be used twice. Whe her 

these references were simple of complex acd no matter how complicated the 

locate or load/updat,e routines were or how complicat,ed the I location 1 , this 

would remain valid. 

l.2.5 A 'IWO-PART LOCATE FUNCTION. 

To hand le st rue tu res J a mod if ica tion of this I locate I id,ea is he pfu l. 

Consider the structure: 

A (I) .B(J) .c(F:.) 

i rs t le us ask how th · s should look i.n macro form.. One might try as a 

first at temp co consolidate the whole reference into a single macro: 

12 



LOCATE.STRUCTURE A I, B, J, C, K. 

This approach is unwieldy. l t hides st rue tul'. al i format ion SO· tha it 

would be vir tu.ally inacc,essab le to an opt imizatioo pass. Also, it would 

riequire a proliferat:ion of d · ffer,ent macros for various number of operands 

and st.i 1 could never be completely general . 

A cleaner approach is to have a I sub- s true ture 1' macro. Th is would 

handle any structure format in a simple, general fashion~ and would let 

the I structure I of the st rue ure be obvious to the optimi.zation pass. For 

example: 

A(I) .B(J) .C (K) i ss A I 
i+l SUBST 1,B 
i+2 ss Hl,J 
i+3 SUBST i+2,C 
i+4 ss i+3,K 

There is one major difference between the SS macro as it appeal."s here 

(in a structure) and as it appears by itself. When AJ , appears by itself 

the location it generates is passed directly to the load/upda e routines 

When it appears in a structureJ howeve.rJ its result will not be used as a 

location until the very end o , the structure is reached. As a result there 

is more flexib" lity i.n what the SS D1acro computes within a structure. Con

s .ider the follow log examples: 

Example. 1. A(I). B(J)' .c (K) where all dtsplaeemeots and indices are full 

words and array sizes are fixed. Since the displacements of A, B~ and C 

are known at compile time, the compiler can add these tog.ether at compile 

. ti~e, wh' le g,euerating cod,e in the different; subscr-ipt macros to add the 

index factors together, 'I'hen at the vecy endt it can em"t a single i:ns,

s true. t ion to add in the sum A+B+C, or alternatively us,e this sum as a 
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d ·splace.men in a rnach"ne instru,ct.ion. Th1.s 1s an example ,of code- genera

t ·on being deferred over a number of macros .. lilithi.n the structure~ the 

SS macros keep their l'.esults ,·n an '111ternally pl,otted' form, affi ed 

to the macro line. This 1 plotted location would indicate the reg.ister 

in which t:he index was being computed, and the compile-time number which 

wa.s k•eeping track of the sum of fixed dis placements. 

TY.PE 

--..--register containing index 

--+--dis p 1 ac eme ri t 

E:xample 2. A(I). B,(J) .C (K) where this refers to a st ucture o _ packed 

bytes, where displacements and indices ,efer -,o the number of bytes. Array 

sizes are fixed. Here the SS macro would keep a) a base address, 

b) a compile time count of displacement ·n bytes, and c} a computed number 

o byt,es from the base. Before this ''internally plotted location I can 

be used (b) will have to be added o (c), and then the resu t will have 

to be divi.ded by 4 (byt,es/word)., and added to, (a) while the remainder is 

kept as a pointer into that address .. Clearly, • · would be grossly i.nefficien 

to, do this in every S5 ma.ere, since a running total of (b) and (c) can be 

kep t and tll e conversion from 'in e~na l p lot ·ted ·1 form to I location I need 

only be done at the very end of th,e struc ure reference. 

This gives rise to the idea of using a two-pa.rt locate function in 

generating code for structures. 

l. The 'PLOT I function whic keeps an lntemal plotted form of location. 

2. a 1CONVEEIT I function which c onve r s this in e tua 1 form in to a I location ' 
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that can be used by a load/ u.pda te pair. 

LOCATE 
(0 

UPDATE 

LOCATE() ~ CONVERT(PLOT(PLOT(etc.))) 

<Value> = LOAD (LOCATE()) 

4l tor e> "' UPDATE (LOCATE O ) 

In an actual i:mplem.entatio□, it would probably make sense to have the 

tennina l s true ture element recognize fr om t.he s true ture table that it wa ,s 

in fact terminal., and apply the conver functioa itself -- rather t:han 

further defer this until the result was .used. 

L2 .. 6 'l'HE REI.EV ANCB OF PI.O'l\ LOCATE, it nd LOAD: 

lt might seem at first glance l:bat this division into FLOT~ CONVERIJ 

and LOAD/UPDATE is fairly arbitl:'at'yJ and that there mig.'1:tt be other equally 

valid l.tays of partitioning the problem. It can be demonstrated that th is 

partition is at least meaningful by considering optimization of common 

subexpressions. 

1. 

Here tbe internally plotted forn would give the most efficient optimintion. 

2. IA(l). B (J)1i :- E51). B(J)I + l 

Here 1::he result of the convert. (Le.,. locat.e) could be used twice: once 

with update and once with load. 

3. 

Here th~ result. of the load could he used twice. 

Ia all of 'these cases, this is true no matter what data- types t.he various 

items .,n,e 
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In fact, you ca.n tum this, illustration around, and d.!!,ine PLOT as 

goducing. what you need to optimize (1) tll.Os.t efficiently, and define 

LOCATE and LOAD simila:tly for (2) and (3) ~ 

1. 2 • 7 SUMMA.RY : 

This discuss ion of data structure macros has ou Hn,ed the desirabil1ty 

of being ab e to defe"t code-generation by letting a mac'iro put out a 

:v.a.riety of values to whicb a code~gen,erating function will later be applied. 

lhe next section will demonstrate how this defeul of code-geneTation cao 

be imp emented. 

l • 3 THE STATE OF THE CODE-GENERATOR (IMPUlMENTJd' ION) : 

This section describes how the code-generator keeps track of where the 

various values it has computed. are s ored at any one time. 

The code-generator records its variable stat .. e infonmation i.n two ables. 

(See figure on following page). The BST (register state able) records 

wbat values are i.n which registers and also conta11.ns additional fields for 

temporarily locking values into :tegisten. 'Ihe MR! (macro result table) 

conl:.aiQs one set of entries for each macro .ime of input .. In itJ the code 

generator r~cords where the various results computed by a macro are stored 

(L e. J which registers or temporaries.)~ and also records compile-time 

information for data• st rue ture macros~ The e~c t format of these is des

cribed below. 

MRT: For each mac~o lin.e, che MRI: contains a set o.f en -ries of Che oUowing 

form, de,sc r ibing that macro I s results. 
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TYPE 

Ll 

L2 

. 
- --

. 

I 

Ln 

TYPE e:: s - simply addressable 
r - in register 
f. ·- function r ,equired 

l. 
to obtain re sulc 

MRT ENTRY pi ~ an int~rnall.y plotted 
form 

A - e:mpty 

Li = :r. - register j 
J 

ti - temporary i 

lk - some other location 

n - some compile time: 
parametel' 

If TYP'.E is r, then Ll indicates the register ccntaining the value: 

I.2-Ln are empty. If TYPE is s Ll-L3 contain the basej index and dis

placement of the loca t · on containing that value. If TYPE is a tune t · on f 

then the rest of the. entry contains ordered ,arguments which that function 

w · u use. If argument: i is a runtime value~ then Li indicates its loca

t:io,n. If argument i is a compHe~time value~ then Li itself i _s that value. 

As discussed in section 1.2 - f represent a load/update pair and the Li 1 s 

can be considered arguments passed to it~ indicating a comp lex loca ioo in 

core. When TYPE is P 11 the Li I s represents ao1ne 'internally plotted' 

form.at used within structure references. 

The MRT contains f "elds which a ma~ r o can use ~o indtcate wh,ere its 

computed result is and to put out information for d,efe:n:ed code gene1·ation. 

In practice th is infonna I: • on need only be kept recorded for a :fe inter-

vening ma L"os before the values are usedJ after which he MRT entries can 

be cons· de red empty. U optimi~ation of common subexpresaions is being 

done, cf courseJ a value spec:i :fied by an MRr entry might have to be used 

s.evera l times be ~ore that entry could be cm:isidered empty. 
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RST: For each reg is teT, the RST ,:on ta ins a set of entries of the 

fol ' owing form: 

VALUE 

MISC! 

VALUE - a poi:11ter to the MR'£ en _ ry 
(ma tr ix line no. J entry no.) 

- A (empty), 

MISC . - ·miscellaneous infonnat · an fot' 
l. locking valu,es inco registen 

The RST is use.d fo-r recording Yhat registers are currently in use and 

wh a t va Jlues they con ta in. This in.format ion is used by the G TREG function 

to locate a fr,ee register. When this function bas to store a register, 

it uses the pointer ( he VALUE) to update the correct MRr en try so that 

the en.try then contains the temporary into t,,1hich the va - ue was stored. 

The RST is accessed by the GETREG function via a class-definition 

table which indicates which registers are in the various c asses. 

USES OF THESE TABLES; - --------- The code generator uses these tables as outlined 

below: 

l. C,omputat: ion macros - When a macro outputs code to p~ rf,orm some 

computacion, it sets any r ,egisters containi.ng operands to A (unless 

that value is to be reused), it sets any MRT ent ies fo-r the opera.nds 

to ti. (unles s it ts to be r ,eused.,. in which case it merely decrements 

a ,count), it updates the appropriate ent y in its MRT ce 11 to the 

result of he ,computation, and it puts. a pointe r to this entry into 

the appropriate place in the RST. 

2. When the GETREG function stores a regis,te.r into a tempora.ey, it auto 

mat ·cal ly sets the appropriate MRT entry to con.ta in t:hat ·cempor ary. 
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In this ~ay l ,ooking at the MRr will tell you e1Cactly 'Where every 

value which has been computed but not yet f u Uy u s ed is locate,d. 

1.4 SUMMARY: 

In summary, a code ,generator consists of the following :routines and 

tables: 

ROl!IINES: 

User source macros: including 
a. computation macros (such as ADD) which ca~ be written 

independently of data-dependent infonn:at~on 
b. data structure macros (such as SUBSCRIPI) which fi 

int:.o the l'LOO'-LOC.ATE framework 

2, Cod!!-- geneu Ung u t il iSzi routines: to hand le , he data-dependent l og· c. 

3. A GE'fREG function: to obtain fre,e registers of a given class 

4. l,OAD{UPD.ATE and CONVE,RT functions: which can be applied to I locations 1
• 

TABLES: 

l. MR.T . which records lihere every relevant CO!llputed v.1 ue is at any time 

2. RST: which -records the state of the t'egisters. 

Comp u t.a t. ion 
macros 

ADD, Mm., etc. 

data dependent' 
logic 

GETREG 

Rough Hierarchy of Routines 
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CHAP'l'ER 2: 

:2. l A CODE GENERATOR AS A STATE MACHINE. 

This chapter describes a code generator as a state machine whose state 

is determined by the location of the values which are to be used ·n genera

ting code. These values may be in simply addr,easable core location, in non

simply addressable core locations or in a egisterJ of which here may be 

several classes:. 

Each computational macro has associated with it certain permitted 

initial states for its operands,.. For the 3 160, for instance, in it ia 1 states 

for an integer ADD macro would be: 1. bo,th operands in registers , or 

2. one in a register and th,e ol:her in core . The pr,ocess of generating 

code for such a macro therefore ts t.he process. of the code ~enerator 

making a tra.sition into one of these initial states, followed by the 

emission of a pa rt icu lar code sequence from that state .. 

Computation macros are thus described in terms of permitted initia l 

'' s ates I a code sequence to, be emitted from each state, aod a location 

where the. result of the computation wil be e.ft .• 

Tbere are sev,eral advantages to this more descriptive sort of macro 

system. It makes the j oh of writing macros simpler since. it eliminates 

the repet itive testing (as descr·bed in section 1.1) in each rn.acro to as

certain the state of the operands, since this i.s done by the system. Also 1 

by making code-gene.rating a more descriptive, rathe:r than procedural process 

it is a. step to1-1ards automatic code generation,. in which 'the code-generator 

need onl'y be .fed some suitable description of the object machine. This 

syste.m provides a good environment within which to explore. some ,of the 

pt'ob ems involv,ed in automatic cod,e gene atioo for a broad class of object 

machines. 

21 



2.1.2 AN OVERVIEW OF THE STATE MACHINE •· 

This prcpo'Sed 'state machlne t model rests on three conceptual levels 

of looking at c-0de generation. 

l. The code generator is seen as a state machine. Its operation is seen 

as one of making auccessive transitions ·nto a sequence ,of initial 

states required for emission of code for a given sequence of operations. 

This picture of code generation is independent of whether the user 

specifies these tn'mli tions p"tocedura l.ly ~ or wbe tbe r the system deduces 

them autema.tically from descriptive information. 

2. For a class of object iOOChines, ·t is possible to create .ar1 automa ic 

mechanism to perform these trans itions from any arbitt'.ary state into 

a permitted initial state. The he t that such an automatic m.e tb.od 

.5!!! be specified~ irrespec•tive of .efficiency, is significant in i se f, 

since it points the -way to more autrnnatic code generation, and provides 

a framework for evaluating cos and efficiency problems of such a 

system in detail. 

3. This mechanism can have rules built into it for choosing which of 

severa l per~itted initial states to aim for, and which of se~eral path

ways to use to get thereJ based on cos ia.formation alld efficiency con

siderations. The degree to which these rules are successful determines 

hew efficient the code will be. In a practical system, this m.ight be 

the most critical aspect. In fact there does not s ,eem to be any in

heren reason that this sort of system should not be able to produce 

efficient code. 
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2 l.. 3 USING TRE STATE-MACHINE: 

There would be n.,o sta,ges in -writing .a macro in DMACS taking 

advantage of this state machine concept. First, the language. writer 

w,ould use MIMI. to, create a machine indca.pt! dent ma:cro. Then a machine 

user would fill out this macro ~ith OMML declarations. As an example, 

consider an ADD macro. If there was only fixed arithmetic in the language, 

the HUtL cod,e 'would be trivia 1: 

macro ADD X,Y (commutative) 

ADD XJY 

'I'his indicates that part of ,an OMMl:. program labeled ADD is to be used in 

expanding this macro. For the 360 this piece of OMML code would be: 

!DU Al~A2: 

from R!G (Al), REG (A2.) emit .AR Al.,A2 result REG(Al) 

from REG(Al) ,lii'ORD(A2) emit A Al,A2 result REG(Al) 

Notke that this OMML code is a non-procedural description of 360 integer 

arithmetic.. Together wit:h this OMI-IL s ection, the machine user would ha.ve 

als o given a description of his machines regis ter structure and of pa'ths 

between it and core . 

If the JiJ)D macro was to handle floating ar'ithm.etic as well the . IML 

·progr.a.t11 would have to be mor,e cornple:I(. It would check · o see whether the 

operands wer,e fixed or floating and indicate different OMML sections for 

the two cases: Le , ADD X., Y and FADD X:, Y. Tbe macr,o might a s o hand le 

conversion between the tw,o modes. 

2. l.4 TYPICAL MACROS : 

Typical macros might be defined as follows for 1.nteger arithmetic 10n 

an IBM-360- like niachine with a complement- register instruction. 
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MIML code: 

macro 

macro 

OMML code: 

from 
from 

from 
from 
from 

ADD X,Y 
ADD X,Y 

( c oumu ta ti ve) * 

SUB X,Y 
SUB X:i,Y 

MUt X,Y 
MUI. X,Y 

( commuta:I: :l.ve) 

ADD Al,A2: 

REG*(Al), aEG (A2) 
REG·(A 1), WORD*(A2) 

SOB Sl,S2: 

B.EG,(S l),REG(S2-) 
BEG(S 1) .:1 WORD(S2) 
REG(S2) ,W01R!:)(Sl) 

MU~ Hl,,112: 

emi.t 
emit 

emit 
emit 
~mit 

AR. l,A2 
A Al,A2 

result 
result 

REG(Al) 
REG(Al)· 

SR Sl,S2 result BEG(S 1) 
S Sl1,S2 result REG(Sl) 
COMPL S2;A S2,S l r ,esul!.t REG(S2) 

from OODBEG*(Ml),UG(Mg) ,emit MR EPAIR(Ml),M2 result REG{Ml) 
from ODDREG(MlL,WORD1,(M2) e it M E.P IR(Ml),M2 result REG(Ml) 

Notice that the pr,o,grammer only specifies permitted initial st.ates 

:for code emis .sJe,n., For each m&icro r;all, the code genu·,ator has to check 

if on.e of these ~tates exists, and if not, it must have the necessary mach

inery to attaiq one of these perm.itted states, by generating the appropriate 

code. 

* (REG and O.DDREG are user defined register cla:as,es .. EPAJ.R is a 
register-register re lat ion WORD is a \Iser defined memorv class. 
Commutat • ve 1' ells the syste111. that the COlll;putation is symmetricJ 
and the ref ore Q also accept REG (A.Z), WORD(A l) for J.nstanc,e, in 
the case of the Al;)D inac :co.) 
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2.2.1 IMFLEMENTING THE STATE MACHINE: 

This chapter will outline how DMACS is organ.tied to implement the 

state machine concept .. Th· s organh&t ion bas s .evera l parts. 

1. A regis ter-s true ture desc r :i.p•tion: in which the machine user defines 

his registers, classes over thes•e reg-is tew, and data pat s among 

registers and between reg·sters and core. 

2. A GE-TREG function which is deduced from t:hls regis.ter-structure 

desc:r ption. 

3. An algorithm for choosing a target permitted in"tial state to aun for~, 

for each possible iopu t state in the automatic transition. 

4. An algorithm fo.r sequencing the app ication of transformatio s to 

accomplish this transition. 

5. A general a gorithm for locking and half-locking values into registers 

in preparation for code emis.sion from a permitted state. 

6 . A top- leve 1 algorithm to coo:rd inate a macro ex.ec ut ion: i.e.~ the 

automatic transition followed by code emission. 

The ['emainder of this chapter will discuss each of these topics in 

turn. 

2.2.2 REGISTERS : 

Registers are the system resources which the cod,e generator IIIllSt mani

pulate to attain permitted initial states. Therefore the user must be ab e 

to de cribe registers flexibly enough to include a large class of objec 

machines, yet with enough re-strict ions so that GETREG logic: can be ger.iera

ted from this d.escription automatically. In particular · he system lllUSt 

be able: 

l. o obtaio a free register of a giv.en type. 

2. To store any register. 
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3. To load any :reg s te.r .. 

4. To trans,f _er any value from a register where. it m.' ght be left by a 

computational macro into any other register wher,e it then might be 

requir,ed. 

To allow the Sy.stem to do this., t e user defines a register sttucture, 

and indicates the data-pa'thways both within it, and connecting it to simple 

memory (for temporaries). There are a f~ simplifying assumptions made as 

to wha this stl'.ucture looks like, but these assumptions follow intuitive 

no•tions of object machine su·uctur,e. he user defines: 

L 

2. 

Registers ri i ="' i, m 

Classes over these regis t.ers R
1 

i = l, m 

st. 'J r. (3 R. st. r. eR.) 
1 J J!. J 

and 'dR, \IR •..J.• (R.[)Rj--R. or R. or n · ) 
-k Jri i i J 

In ,other words every register ii; in at least one class, if only by 

itself. Also any tw10• classes are either subsets or disjo,in_t. 'l'here is no 

partial overlap. 

3. S init: The s-ubse t of these c las.ses which might hold computed results 

4. 

5. 

is cal ed R res 
Therefore, the initial arhHnu:y input state of the 

macros is taken from S. • ::::,R L,MEM, whete MEM is core memory. 
in1.t res 

Pathwal:! l:o ~: Each class of reg ·s ·ters is assumed to have a direc 

path to snd from core. Th.ere is no need to go tnrough a second regis

ter in either loading or storing... '!'he user must specify what. these 

pathways a·re. 

Paths from R t ,o other re_gisters: The user must specify possible 
---- res - -

register to regis er lllOVe:S from, and within. Rres 
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6. Relationships between registers: 'Jl'be user can define spectf ic: re

lationships between r ,egisters (such ~s even-odd pairs). He ca · also 

specify that when using one under a given c ass name, the other mus 1:. 

be .stored and made available as welL 

Thus the user describes a register structure, and defines paths 

with in this s true ture and be tween it and core. Us lng this infonnat ion, the 

sy.s.tem wil l construct a GETREG function for t e various register classesJ 

and \.Ji 1 have 'the machinery to re.store any change tba t that funct i on makes 

to the register structure's state. 

2 2.3 THE GET REG FUNCT ON: 

The function G:ETREG (REGTYPE) returns a free register of the type 

''REGTY'PE I or alternately a free reg:..ster-pai-r, for instance . Thi& routine 

has the ability to, store values out ,of register!; (and update the MRT). 

When aoy function is ,called which in turn ca s GETREG, it is not necessarily 

known what s ate the code generat,or will be left 1n, since values may have 

been stored. 

The logi.c of the GETREG function i.s quite straight-forward. It con-

sis ts of eye l "ng through a g1ven class o,f registers attempting to find an 

empty o,ne. If there are no e, it must dee ide which reg1s ter to store ba.sed 

on, the I f lags ' attached to the various registers. The.s ,e f la.gs a re used 

t ,o lock certain values into registers :n dir,ect preparation for output:i.ng 

code, and to half- ock values so that they wi.11 not be stored duri.ng: a given 

macro expansion unless necessary. The actual mechanism for flaggin.g "('equires 

some thought: since macros can be ca lied as sub:r,outine.s during 8 given 

macro expansion. Flags set by the d :iffer,ent macros in a single source macro 

e·xpans ion would hav,e to be s ,eparable. (An a.lgot:ithm to perform this is 

given ·n section 2.2.7). 
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Another ·prob em that the G,E'J'REG function has to handle is a situation 

like an even -cdd registe.r pair,, when two re.gistel's must be freed simul

ta.neously. To be able to deduce this sort of og ,c fxom a mach ·ne des

cription , flt is necessary to tr-y to .ant ice ipate this sort of~, re la tionship 

between reg·sters. 

2..2.4 SAMPLE REGISTER DESCRIPTlO IBM- 360 

re lass REG: r2, r3, r4, r5, r6 r7, rB, r9,, 1:10, rl 1 

re lass ODDREG: r 3, r.5 ,, r7, 1:9,, rll 

n acion EPAIR (stored:ODDREG) 

r3:r2 
r5:r4 
r7:r6 
r9: r8 
rl:rl0 

rpath WORD-REG: 
rps th REG-WORD; 
rpatb RilG--OODREG: 

L REG,WORD 
ST REG,WORD 
LR ODD REG,, REG 

This defines two register c asses .. For each member of ODD, a related 

EFAlR register is def ·ned which · s to be sto,red when the ODDREG member 

is used .!!. ODDREG. Paths between storag.e a.nd registers .are described. 

2. 2, 5 lNPUT '!O THE CODE GENERATOR:· 

lnpu co the ,code generator · s a series of macros o,f the for-m; 

OP Al •... An, where OP is the macro name and Ai is the ith argument. 

Arguments can be desc ibed by a triple, ,(t, f,p), where: 

t ,( type) is s - the a.rgument is simply addressable 
r C the argum.en.l: is in reg· ster r 1 
Ri f - the .argument w.111 be in a :r·egisteir of class Ri after 

applying the function f. 

(function) is a code-genera ting function ( tra:ns fo,rma t ion),, possibly ni 1; 
required to generate the ac tua 1 value represented by the 
by the operand 
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p (poi.nteT) is a pointer, eith,er to the symbol table or to i:esults 
left in the MR'r by a prev · ous macro. The information 
pointed to w· 11 be used by f. 

'l'he code genet:ator will us,e this i formation to automatically geoerate 

a pennitted init1al state for a given macro~ 

2.2.6 THE AillOMATIC TRANSF,ORM: 

There are two steps ·n the p-rocess of automattc transfottn:acion. First -

choosing a target state c:.o aim for,. and second - s ,equencing the application 

o functions to the macro, 1 s, ope.rands to attain I: at state. 

Choosing. Targe t States; Choosing target states is quite straight-

forward. Each operand of a mac o rep~esents a value which is eithe-r in 

core, in a register, or pointed to by a complex address to which a LOAD 

function can be applied . 

The target selection algorithm is d,esign.ed for macros of t:wo, operands., 

but the ideas could be expanded to handle mo·re operands easily. This al

gorithm maps each two-operand pa.i.r (from the set of possible inputs) into 

a peruli tl:ed i:nitia state. If there is only one such permissible stat,e 

then the selection process is already done. 

The most general way to do this is, for a given input state, to minimize , 

over the permitc.ed states~the sum of 

the execution times of the instructions of the macro, plus 

2. the execution time for the pathway to that initial state. (i.e • ., the 

,oads, s to-res., or register- to- reg.is te r transfers) . 

The a gor:tthm gi.ve.n he'l•,e merely minimizes the. numbet" of instruct ions in the 

path~ay. 

For a given input state the algorithm us,es the function 'C omparer t ,o 

obtain the cost (in number of instructions) of transfonning that input to 

29' 



each permitted state. The target: for that state is set to be the permiss ib e 

sta e with lowes.t cost. 

The Compare function determines where :the two states differ~ and ho-r,., 

many .ins ructions it would take to readjust operands. 

Examples; input permitted state cost in nstructions 
l'~S R,s 0 
s,, s R,s 1 load 
r s R'' l* load register ,s 
Rf1S R', s D* 
Rf,Rf R s 1 store 
r $ s r 2 s _ore, load 
e ·tc .• 

(In this exanple r is a register ln cla-5s R but not R' and R '1 is a 
subset of R . s refers to, an operand 1.a. sirup y addressable memory. he 
cost function is based on a 360- like computer.) 

'ft"I'he only minor idiosyncracy of this a gorithm is that if one compo

nent of the input pair is of the form 'R ' (indicating that the operand 

is complex but can be generated into a register of type R), and its 

fins l sta e is a register of type Rt, here R I iB a subset of R., then it 

is assumed that the value will be gen,erated d · t"ectly 'nto an R register 

by the fuoct: ion f and therefore the cos '(due to this operand) is O. 

The se lee t ion of a target state for each ini ia 1 state pair need not 

be done every tim-e the macro .is executed. 

when the ID8tCro definit'on :Ls processed. 
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AlgoTithm ~ select target state: 

I= se of possib e input states, 
wbe re S == MEM and Rj €S INIT 

1£(S j ~j f)X(SLJ{j j f) 

P - set of permitted initial states p i;; (S Rj)X(S Rj) 
where s ~ MEM and Rj i ,any register class 
(P is assumed otdered. for convenien,ce) 

Problem: to map each i into one p 

2. 

if IPI = l then"t/ ieI arget (i) = pe;P 

for each i e: I do: 
a, save1-P1 

save2 - compare (i., P1) 

b. , or P'j eP j>l do: 

1. temp ... compare (i, pj) 
2. temp:save2 if greater or equal do nothing 

if less save1 • P j 
save2 temp 

c. carget (i) = savel 

finished 

Compare (i, p) 

1. cost - 0 

2. (each argument is a two-tuple) 
for n "" l and 2 do,: 

a. if in =- Pn do noth ·ng 

b. if (in is of form Rif and P:n is of form Rj and Rj is a 
subset of .R1) do nothing 

c. cost - cost= Instr (in
7 

Pn) 

finished 

Instr (12, I2) determines fr01ll a table the number of instructions in the 

pathway be tween the storage classes. 
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II. S•eg.uencing !!! functions: There ar,e two different st rateg: · es for 

sequencing the functions One is 1 b ind sequencingm which is used when 

enough i.s not known about the functions to predict what they wil do. The 

other is 'controlled sequeoci:ng• which is use.d when information ts avai 1-

able abou how the functions will us,e registers and can be used to s,e

quence them 'more optimally'. 

1. B ind sequencing: This .is the general case which could handle an ar

bit~ary regi.ster s.tructure where the eifects of GETLOC were not easily pre

dictable . In this case , it would be possible for the c ,ode gene:rator to use 

certain o•ptimi:zing rules at macro definition time to actually COU1pile a 

graph -- which .for each input state would tell which operand to apply 

vi1hat functions to and in what. order. 

The graph has a node for each combina t 'ion of (s · i tPi f) 
2

• 

For each node JI the blind sequencing algorithm decides which function (or 

load of store) to apply first, .and then draws an arc to the node represent

ing the result of that application. Since ea.ch a re goes to another oode 

in the graph this sequenc ng algorithm need only detetmice for each st.at 

the first function t ,o apply ,. These arcs are labelled by a tup e indicating 

what the cransform.at ·on is and which operand is involved. (see figure) I n 

1he examples given, Che permitted st.ates are enclosed in recl:a.nglesJ• and 

the applica t .· on o,f functions (either f 1 or load JI ,or stot'.e.) are imp lie it in 

the labelling o . he arcs. The dotted arcs are explained in ii::he followiog 

paragraph. 

One problem in construc::ting this sort: of graph is that if an operand 

value .is in a register wben a function i.s: applied to another operand, then 

the first ope.rand may be stor,ed .. 
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I INPUT: 

f 

BLIND SEQUENCING GRAPHS 

{S U r U R f) X (s r U R f) 

(r, s) (r, ) 

s,s 

..... 

II. INPUT: (s Ur r' 

FINAL: (r',s),(r',.r) 

R f) X (s 

Rf s 

Rf, r 
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When this happens an ac-cide.ntal transition has occured. As a result, 

in the general case this graph must be augm~nted to include transitions~ 

in such 'unstab le I s itua t :fi.,ons _, to a state where the 'unst b le I value is in 

core. hese trans it ions a re represented on tbe graph by dotted arcs. 

h lgori thm fo~ blind seq ue.nc i.n.g: This algorithm fo · sequencing the graph 

· s quite ad-hoc. It consists of examining each state toge her with the 

the target stat,e and determining which functi.on to apply first. This 

alg,orithm is applied to each state to determine what arc to draw from it,. 

Applying this algorithm to every stat,e comp,l,etes the graph. 

I. 1. 

2. 

3 . 

4. 

5. 

If any operand is r and is to be s, th.en apply stoi-e to it. 

If any operand is Rf and is to be s , then apply f to it. 

If only one operand is to be in r and it is s or Rf then apply 
load or f respectively. 

1- only one operand requi.t'es a function app ies apply it. 

(Both operands require complex function and a.re to be in registers). 
If there is an :alternate pe1:mitted state, differing from target 
on y in 1:ha t one value · s in core~ then apply f to that operand 
first . (Then, if the 1 unsta·ble' value is stored you are s ill 

n a permitted state.) 

6. If one operand re qui res a register class that is a subset of the 
ctess required by the other apply it firs , (cm the beory that 
here will be more chance ,of finding one o.f tbe more rest ictive 

class first) 

II .. For al above if there i..ras a value in a register when a function 

was applied put a dotted 'accidental I tra sition to the appropriate sta e. 

(The only additional consideration is that if a simple variable requires 

a base or index register loaded this must be loaded befol'e emitting code:. 

This bli d sequencing need not b.e done at every macro-execution~ but 

me-.;e ly when the macro definition is processed. 

Controlled S,equencing: If it · known how many Teg.isters sr,e needed by the 

functions and how many are required, by the results, and a method is avail

able for flagging registers so that" t . ey wou d not be stored it would 

.34 



often be possible to determine a sequence in which the fu.t'lctions could be 

applied with results locked into registers, so that no deadlocks would 

0-ccur. (A deadlock might occur if a number of va ues were irrevocably 

lo-eked into registers in such a w.ay that ~he register needs of a ater 

function 'l<lere uns atisfiab e ) 

For situations where even-odd pairs of registers were use d by the 

function, this determination might not be quite as clean and linear. In such 

cases there might: be a 'blind r indeteUllina te range where i t was unc l ear 

whether a given sequence would. work. But ev.en in such a case,. attempting 

controlled sequencing would gi.ve some degree of optimi.zation. 

Algorithm: The general ou lioe of the algorithm is: 

AR = avai Lab le registers 
res{'.) ,,._ number of registe s 
u:se(i) "" num.b.er of registeu 
F 1 = res ( 1) + use (2) 
F2 ~ res(2) + use(l) 

db 1 f .th d use _y esu ts o 1 operan 
used by generation of ith operand 

1. if AR_> F 
1 

and AR>> F 2 t_~en use 'blind' sequeuc: 
2 e se l.f F1 < F2 apply f1 first else apply f2 hrst 

This controlled sequencing clearly must be done independently for 

each macro execution. 

2.2.7 GENERAL PROBLEM OF TRANSFORM: 

Automatic. tt"ansf,ormation looks at the type of its operandsJ looks at 

the pe:rmiss1.b e target s. ta tes . and then initiates one or more transformations 

to achieve one of these states. This process can be de.scribed in general 

terms.. It is the p·rob lem •of: 

l having an env ·ronment containing. certain res•ources ('registers) in a 

given state (contain ·ng certain values). 

2:. wanting. to trans:fo:rm these resources into a ew state with cert.a in 

propert"es (certain va ues in registers) .. 
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'.3. having loca.l functions which utilize the res.ourc ,es while transfonuing 

them~, tbus altering the resources iu a possibly unpredictable way, 

while effecting a desired local change to them. 

4 . desirtng to make a sequence of such local transfot"mations and still 

have t:he resulting global state well-deined (Le. either the orig · -

nally desired fina l sta.te, or a permissible alter:native). 

5.. s lowing these local t-ransformations to communicate 

(via the Register State Table -- locking values into registers. etc.) 

To ac.compllsh thi.s, goal~ the mechanism th.at generates tnitia l states 

must be able to detect when one function it applies stores a register th.a 

it expected to be loaded, ao.d either reload that value o:r else pick a 

different target initial state. There are two potent al problems in. a 

general sy.stem of this sort: l. static deadlock and L thrashing 

(dynamic deadlock). 

In the case of the code gen,erator, this blind unpredictable mode of 

opera - ion evantua ly degenerate.s to a simpler situation where values are 

s tmp ly ad ressa_ble and where the results of var:tous operations are we 11 

defined since simply addressable empora:ries are used. Assuming tha.t eno..1gh 

registers~ exis,t to handle he final r ,esults, controlled sequencing can 

eventuall be done w:ith the necessary re•sults securely l l•cked into register-s. 

In other words, blind se.quencing ev,en if necessary., evenl:ually degenerates 

inco controlled sequencing. 

The role of communication between these local functions via the RST 

is an i mportant one. In blind sequencing, the best that can be done is to 

ha l - lock cril:ica 1 values into regi'Sterst so that these will be stored 

only · n last resort. In controlled sequencing., when you kno-w that enough 
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resources exist for he functions you apply, !:his half-lock is effectively 

a ful - lock and values can be coun.ted on to stay in registers .. This 

imp lies that .an integra 1 part of expand1.ng a macro is half- locking any 

appropriate values in to the RST, before applying any of the func ions. 

Algorithm _!2 2repare _!! macro ~for emiss ion: 

Associated with each macro is the Lurren source macro 1 ·ne number: 

CURLINE. s ·nce several macro subroutines can generate co e during che 

expans · on of one source macro, a global number {MACROSUBR} ts ·ncremented for 

each macro call . Since a macro r-ubroutine call could be recurs.ive, a 

local variable CURSCIBR is provi..ded to ho,ld MI\CROSUBR fo each mac-ro .• 

This algorithm locks va ues into registers by flagging the RST entries : 

Value 

Lineno 
RST entry 

Subrno flags 

Trans 

The algorithm also uses a global vectot' cal ed ACCIDENT~ set ini. :tally to 

zero, which is used to r~cord when. accidental transitions occur. Entries 

in this vector are set by the GETREG function. 

MACRO : OP Al A2 

l. MAC ROSUBR ~ M!\CBOSUB·R + 1 
CURSUBR - MAC ROS1JBR 

2. for n == Al .AZ do: 

a. is n to be in a reg i s l:,e :r? 
es - is o: in that regi.s ter? 

l ineno - CURLINE 
subrno .- CURSUBR 
tra.ns - l 
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b. is ·n indexed or based? 
y,es- - is index or base in correct register 

y,es - in the RST entry fol'.' index or base 
line:no - CURLIN! 
subno ...... CURS UBR 

3.. ( .sequence the applicat icn of functions) . 

a. if cont oiled seque cing can be d0t1e~ then do it 

b. if the blind sequencing graph is to be used 

1. go to first node 

if node ls a final node go to 4.a 

3. apply function 

4. if an accidental transition occurred 
(i.e., . f ACCIDENT (CURSUBR), = l) then follow dotted arc 
else fol ow normal arc to next node. 

5. go to 3.b.2 

4. (a 11 values are in correct locations): 

.a. load any necessary tndex and base registers for simply 
addressable operands 

b. erase all locks set hy this macro in 2 above 

c. output correct co.de sequence 

d. erase operands frolD RST and MRT (unless .subexpression 
optimiz.a i ,on is being done) • 

e. place record of macro res-ult:1 if any in BST and MRT 

Algorithm of the GETREG function; 

GETREG (REGTYPE) 

This function c ye es through t.he· r REGTYPE I class of reg_i.s te s in the RST 

performing tu ts . Each RS'I' element has the following form: 

VALUE 

Lineno. 

Subrno. 

Trans 

Value is a pointer to the RI' 
or is empty A 

CORLINE is the current: source macro line number. 

CURSUBR i:s the number of the macro which has issued the GBTREG. 
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A lgo,ri thm for sing le register: look at each class member· f o 

l. 

else 2. 

else 3. 

else 4. 

an ,empty one - · f so return 

one with L i.neno #, CUB:LINE 

- if so store ·t: in temporary~ update MR'I and return 

one with Subrno -/, Cursubr 

- if so a.tore it in temporary~ update MRT and return 

store anyone, update MRI return 

(if trans • 1 for any registe stored, then set ACCIDJ.Uff [ ,SubrnoJ = ) 

A gorithm for register 2,_air: th.is a goritbm · s very similar 

firs~ look for a free pair 

then for a pair with at worst a different line.no. (if possible 
half empty) 

then for .a pai:r with at t-1orst a different: Subrno .• (if possible 
haU empty, else if possible half different lineno .. ) 

else any pair 

(if tra·ns - 1 fo:r any register stored then set ACCIDENT [Subrno] = 1) 

2. 3 OPE.RATIONS TO MEMORY: 

A useful extension to the state machine concep'I:, as out l ined, would be 

to allow operations-to-memo y. These are a com!Jil.on class ,of instructions 

.and i t would be straightforward to incorpora.Ce them. The user would be 

,allo'Wed to specify alternate des~inations for a value, Le., for the PDP 10: 

ADD XY 
from lmG (X), REG rt) emit ADD X,Y :result REG (X) 
from REG (X),. MEM (Y) emi.t ADD X, 1' result REG (X) 

OR emit ADDM X,Y result MEM (Y) 

Only four a 1 te rna tions need be made to the logic out itled in th is 

chapt,er. 
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l. In ,outputting code foT a macro: when one of these a ternatives 

occurs and the MEM is a t,empo:ra:ry, d,efer the code. gene rat, on and 

flag ·the RS'I entry indicating the two ope:ratioos, and the MBM 

location. 

2. In tbe GETREG logic: \ilben l ,ooking for a register to store -~ gen

erate any 0:F'.M instruct:ion in preference to storing some value expli

citly. 

3 .. ln 1!:he target sel1ect:i.on algor ,' thm: when an input value is defe:cred~ 

e\lalua e both possible input states and choose t.he. one with lowest 

cost. If the lowest cost ,option is 'OP- to- register I continue to 

de fer genera tlng the cooe until it is c lea:r that the value need not 

be stored. 

4. As prepat:a.tion for a macro, generate a.ny necessary OP-to-register code 

of this sort for operands 'Which have be,en deferred. 
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CRAFTER II I: DESCRIPTIVE DATA REFERENCE MACROS 

3. l THE NA'TIIBE OF DATA REFERENCE MACROS: 

This chapte represents a first: attempt: to develop a framework 

which would let progranming language data-ref.erences be automatically 

irnplemen ed for an arbitrary machine. The class of machine structures which 

this ch.ap'ter de.als 'l-li.th ·s ot very br,oad, but hopefully could be extended 

The automatic state transition discussed in. Chapter 2 allows a 

machine user to generate computation macros from descriptive information. 

The problem ,of acheivi.ng the same kind of machine independence for data 

structure macros must be solved by a different approach. 

When l-lriting data structure macros for a particular machine~ one has the 

following general flowchart: 

Branch on data-type into: 

Simple: 
:Byte: 
Bit: 
(etc) 

Here, the user knows exactly what data-types e will be dealing with and 

knows exactly hOl,,1' each, is 1mapped into ,core: ie. the ma.chine addressability 

how the dat.a- • tem fits into Hardware-addressable units, how to generate 

its I ocation 1 
, aod how to move it between core and 'registers. A 1 of chis 

information in contained implicitly in the coding of the ma:cr,o. 

On the other hand 1 although the exact formats are different 1 and the 

factors needed to convert indices to actual core locations a:re different, 

the con<::eptual operations which are performed are very similar for the 

various data types. Thus it -would be possible for the user to write 

machine-independent data macros by s:pecifying in the macro definiti.,on 

the conc,eptual operations wbich are performed on the operands, and ,else~ 

where specify in descriptive form the machine-dependent information 1 which 
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will be needed to flesh out t.hese operations for the va.riou.s data-types• such 

as: 

1. What the differ,ent cl.asses of storage are (bits, bytes. words t double

words, etc.), how big each is, what boundaries tb.ey start o - • and how they 

map into one another . 

2. What the basic addressable it-em Ls (byl:e?, word?) • 

3 .. The instructicus or instruction sequences n.ee·ded to transfer the 

different da.ta--types between core .and reg1s t ,ers (ie .. load. store, i.nse.rt byte . 

deposit byt,e 1 masking, shifting , etc. )1 • 

4. How tne different user data-types map into this memory hierarchy .. 

The speci.ficat:ion of bese machine dependent detaUs would be straight

forward since it is done descrip,tiv,ely. The crucial advantage of this 

separation of macro and machine-,descript:Lon~ however. Ls that it al ows c.he 

macro to, be written independently of the mac ine, and then be expanded by 

a description of the machine memer-y and of the data-types used .. 

3. 2 COMPILER ·ORG..\NIZATION.: 

Th's chapter describes how a compiler cart e organized to yield 

ma--hine independence fo:r compl~ data references.. It does not describe the 

internal wor ing,s of the DMA:CS syst,em. Ra · her :i.t describes, a framework which 

the a.nguage writer could use in organizing his compiler t.o attain this 

indepe d,ence. Then the chapter shows how this framework could be incorpora ::ed 

into DMACS to handle data--s t.ructur,es wi 'th fbl:ed bounds. With such structures. 

all the core allocation could be done at compile~ti:me . and therefore ma.chine 

code oeed not be g,enerated to compute at run time d.a.ta-ite - offsets within 

structure· ele·Elilents. 

The framework to be discussed involves: 

1. Certain assumptions about machi.ne addrrssing stl!'.'ucture. 

2. A ,general algorithm \ofhich would take macbi.ne-descriptlve information 



and compute, fm, a data struct.ure, offsets and lengt_h:s for each data item, 

and determi ne what data pathway is to be used to access that it_em and 

other au.xil liary information. 

3. Data eference macros which are set up to use. the inf orERa tion computed 

in 2 to de termi-ne how to handle a given data. 9 item on a particular mach · :ne. 

A particular da.ta-item might be handl,ed by different sect:lons of logic 

on different machines. (Thi.s b the key r.:oncept). Thus a macro can be pictured 

.as being writ ten using 1 ,:s em.antic data types 1 
• and t e a lgor i hm in 2 .. can 

be seen as mapping actual data-types into seinantic data-types £01; a given 

macnin,e , and computing semantic prunitives describing these. 

This approach differs from a machine~oriented compiler in. several ways . 

Parser 

Core 
Alloc 

A machine-oriented compiler 

Machine ,code 

ln a machine~oriented comp,iler , the core allocator is generally built 

into the parser, and its operation is see·n as being quite separated from 

the code generating logic although the results · t computes a:re part of the 

generated code 

Gener.al 
Core 
.Alloc {

S..torage 
Hierarchy 
Information 

Generato:r 
(user data -macros 

'DMA.CS 

Machine code 

written in semantic terms) 

In DMACS the core allocator is ~ c.:onc,eptua.lly at. least , divor,ced from 

the Parser. It operates on. the symbol table after being fed descriptive 

inf ot"mation .a bout a machine. lnforme. ticm which: it puts on to the symbol 

43 



table (se:man:ti-c primiti.ve informat:ion) will be used di.rectly by the user 

data-macro loBiC: Whitn generating co e. 

3. 3 ASSUMPTIONS ABOUT THE STORAGE HIERARCHY: 

S tora,g,e-cl.as.se$: there exist a number of storage classes: c i 

Storage hiie:c:al'.chy: these classes are hiera.rchica ly ordered: as in 

bits byte , words, double-words 

lowest clas.s: there e i.sts a lowest class- called 'bits't and all hig er 

classes contain an integ:ral number of b · ts 

The~e exists one member of this hierarchy with the 

attribute 'addressable unit' 

pa.th: for each of these cla.ssas th.ere are pa.tbs between core and registers 

data-item_ ~pping.:: a. us,er langua,ge data-item can be mapped · into this 

storage ,hi.e-rarchy 

Assw;ip_tions ~ 

1, all data-items smaller than the addressable uni.t are accessed by the 

bitst~ing pathway 

2 .. Some data-items larger than the a:ddre.ssable un.it c~ be accessed by the 

bitstring pathway on so:im machines (ie . 2-byte. items on the 360) 

3. no data-item is larger than the t.arget register 

These .assumptions, about the nature of ma.c:b.1ne memory addres,s ·ng and 

accessing are far from comprehensive. There are tNmy machines which could 

not be fit into• this frarmework at all. This is ,especially true of smail 

machines w;b,ere b' t ccxu1!tvi.ng des•ign iSt4ategi;es sometimes result tn. unusual 

addl:'ess ing scheI!les. The assumptions made in this chapter are oriented towards 
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a fixed word machine of the IBM 360, PDP 10, GE 645 var 1ety. It would 

be tnteresting to explore the pt'oblems of expanding this data-macro 

discussion to include some more .anomolous memory structures) but that will 

not be done in this paper. 

3 .4 SEMAN'l'IC DA.TA-TYPES: 

':Fhe assumptions tbat we have made .imply that indexing; and off'setting 

is either to be done in a.ddressa.bl,e units or in bits:. As a result. when 

·me.nipula.ting indices 1 a macro can assume that the lengths of dat:a-itell!S 

are expressed eitb.e;r in addressable uni ts or in bits. 

'I' erefore data.-iterns can be considered as being of t'W'o different: 

1 sewmt:ic. 1 types in these manipulations. 

1. single~·unit items: items which were either one a.dd-re.ssable unit long 

or on.e bit long. 

2. multiple-uni.t items: items wh.ose length is either a mul l::iple of addr,esa.able 

units, or a mul t:ip,le of bi ts. Associated T,rtith such an item is a nwcber Nm 

which represents t e length of the item in single units. Thus, in a subscript 

macro, for ins tan.ce, Che indek ums t be tnul tip lied by Nm. 

Usf.ng this partitioning of ciat:a-items. a. subscript macro could generate 

a proper index pointing into a data base. There still rerma:.ins the problem 

of how to norma 1 ize. th 1s pointer so that it can. be used to access the data

item. Consider Che problem of accessing a bit-string on the GE 645 and 1:he IBM 

360. Assume that: you have the address of cbe base of the data. al."ea and 

a bit lnde:x i to it. (If t:he base of the data area includes a bit disp la.cement, 

then h1s must be added to the bit: index). On the 645, you want to dhide tb,a.t 

index by 36 (the word lengl:b.). use the quotient as a full""WOrd index) .md 

use tbe remainder as th.e bit displacement. On the 360 t you want to obtain 
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the address of a f-ull -·wo,rd boun.daryt plus. a bit displaoe.tnent.. To do this 1 

you could divide the i.ndex by .32 (t · e word lengt:b.), and the remainder 

would be a bit displacen:eat. Then multiplying tbe quotient by 4 would 

yield an index in addressable un1ts.. (This assumes that. the base of 

t:he area W'aS full word a.lligned) . 

This discussi,on impH,es that a data item also may have the following 

attributes,; 

Nd- a number to divide a bit poin.t-er by, to, yield a bit pointer as a 

remainder 

Na· a n.umber to multip y the result of that division by to yield addressabl e 

units 

Nr~ a number l:o multiply the remainder by to yield an e:xpression in bits 

(Na and r may be l); 

Thes.e numbers Nm, Nd, Na, Nr may be considered to be semantic pri.mitives . 

A given data t tem would be characteriZed differently by these on different 

macbines , and hence would be handles by a different ,section of the data 

macro logic. 

The fol lowing example shows how such. a semantic macro could be coded 

for subscripting with fixed array s:Lzes. 

SS X,I 

is size of X fboe.d? 
yes M is, X a single unit item 

yea-~ put into MRT locate(X,I) 
no-- multiply by Nm yielding In 

put into MR? locatce(X~In) 
finished 

is I in bits (to he used by the bi.tstring pathway)? 
no- put i , to MRT: Load/Updat:e 1 type ' , XJ I 

yes •~- divide B by d yielding Id as quotient, Ir as -r,e.111ainder 
is Na.""l 
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yes-- put into MRT: L/U type . X, Id 1 Ir, length 
no -- multip y Id by yielding Ia; put out L/U X Ia Ir,length 

a. 

Notice that a given clata.-i tem mi6b.t be handled by different parts of this 

logic for differ•ent machines. Fo,r instance, ,on the IBM 360 the byte is 

the addresaable unit and wou.ld be handled by tbe single unit logic whera-as 

on tb.e word-addressable GE 645 i a b.Yte item would be handled as a bit stt:ing 

by t:he logic for multiple unit items., 

3 . 5 STORAGE MAPPING: 

Part of the user's desct'iption ,of the im1n0ry hierarchy of his machine 

inviolves describing hO\f his data types are to be. tl'liapped into th.is hierarchy. 

Some data- ·types may start automatically on a particular bo,undary. Other 

data-types may start a tomatically on some boundary when_ the user has 

specified the a.ttr ibute 'a llig,ned 1 
• 

S in.ce the machine user specifies this infm:mat1on to che code generator , 

and can. specify different sets of this information (different ma.chine 

descriptions), obviously no stora.ge a _ location of any sort: can be built 

into the parser. Only after processing a machine description. can it be 

comp, ted just how: big different data- tems are, and where they are located ~ 

what semantic data-types they are, and what semantic attributes (Nm etc.) 

they have .• 

An algorithm is p,resented in section 3. 7 to process a data,-s true tu.re 

using a machine des cri:ption, and prod.1.1ce this information for the elements .. 

The algorithm outlined is designed to perform these computations for 

.arrQYswith fixed bounds. It can be thought ,of as a preprocessing of the 

structure declarations 1 which 'primes the pump for the mach.ine-independent 

data. macros • 
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3.6 OOMPILB-TIME COMPUTATIONS: 

The previous discussion. bas presupposed tbat array s tzes are knO'tm a.t 

compile time. In lang:u:a~s Uke PL1 1 this need not be ,so. Tb.e problem t.hat 

a.rises when array sizes are not known is tha:.t all displacements below tba.t 

array cannot be known until runtLme. Hence~ in accessing any of these., 

code mus be gan,e:i;ated to ca.leulate displacements for these elements. 

The exact nature of these computations and depends on the implementation 

of the language .. The ·problem of makin_g these re.f erenc,es machine .independent 

is different from the fix,ed array problemt since the algorithm ,described in 

3. 7 mnst be implemented partly i.n a p,rocedural macr,o language. and partly 

tn a higher level lang,uage which could be compiled into ma.chine code for 

a particular machine. this p1;oblem is a sticky one, but still retains the 

basic concepts dLscussed for acb.ehring machi.ne independeuce in. 

data reference ma.cros . 

3. 7 MACHINE INDEPENDENT CORE ALLOCATION ALGORltHM~ 

The following algorithm is a rough outline and may need some refine

ment. Its pu pose is t ,o accept first, a mach ne description and second 

a set of da a and structure de,c:larations, and then to allocate core posi

tions where possible, and also to compute the s,emantic pr 'mit · ves for that 

data-machine pair. These prim· ti ves include: lengths of · tems in either 

addressable units or in bits s ,emantic. type (sing,le or uni.ts), . (if 
O!I. 

appropriate) and the a.pp opriate load/update pathway to access that item 

on t · at macbine. 
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Th is algorithm makes severa. t assumptions. Array sizes are fixed. 

If a structure element itse Lf is no,t aligned, then nothing within it s 

to be aligned. Each structure element, if aligoed on an addressable 

boundary will be given a length in addr,essable units otherwise in bits 

The .algorithm expects that a data-element ,;,;ill be described by 

information (constructed by the parser) indicating~ ts data- type, whet.her 

it is aligned ~hether it is a tenn:inal element (leaf) of a structure or notJ 

·es length~ whether it is indexed_. and if so what he indexing bou ·.ds are. 

The algorithm works on a structure recursively, detennining absolu ~ 

addresses if possible for data-items. ( or data. iteni.s withi.n a indexed 

structure el,ement_ this is no•t possible). In doing this recursive analysisJ 

the algorithm determines the length of each sub-element on a given level 

and the:n backs up to the next highest level. 

Stn.\cture 

l A Al 
. '111 

2 8 
B~ 

3 C ~) 3 0, 

2i E' 3 :F ~F 

ln performing this analysis the algorithm uses a 3 element vector to record 

displacements a d lengths. This has the fol - owing format: 
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DISP : AJJ<DR 

BITS 

ADDR is the number of addressable unit.s 

BITS is the number of bits 

FLAG Flag 1c:ao be l. 'absolute' meaning tha i indica es 
actual core loca ion 

2. boundary X indicat~ng that the dis -
placemen is relative but starting 

boundary X at 
3. 'bits' meaning only bit. leogths 

being count,ed, and I:10 al gnment 
being done, 

l. set DISP vector to address of beginning of data areaJ absolute 

2. ca l ALLOC (DISP) which returns LENGTH 
add LE1 GTR to, DISP 

3. is this last data-item on th s level 
-yes- stop 
- no - go to .2 .• 

ALLOC (disp) Loea 1: L-DISP NEXT., TYPE, MEMrYPE LEN 

l . L-DISP - disp 

2. NEXT - next item dee lared. 

TYPE~ type of NEXT (from parser) 

MEMrYPE - stor.age class that TYPE maps into 
(from machi.ne description) 

J. is EXT to be aligned? (from parser input) 

- yes• is L-DISP at correct boundary? 
- no - increase L-DISP to corr,ect boundary 

4. call Analyze (L-DISP, NEXT) whkh returns LE 
add LE to L-D iSP 

5. is this last element at tbi.s leve 1 
no - go to 2. 

yes - return L-DISP 
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Analyze (disp next) LOCAL:DISP LEN 

I. is next a s true ture element? 

yes - l . is it aligned? 

no - set DISP to 0, 0, bit 
yes- se t DISP to O 0) alignment 

2. call ALLOC(DISP) which returns LEN for the sub-element 
of the structure 

3. is th is element indexed? 

yes - a . if element is aligned and LEN doesn 1 end on 
correct boundary then increase LE to boundary 

b, multiply LE by index number 

c. record N 
m 

4. if next is terminal perform II. l and IL 2 

5. re turn LEN 

IL (not a struct"Ure element) 

1. if disp is absolute then record disp as address of item 

2. put out bit length of item if relevant, a.nd the correct 
load/update pair for MEMrYPE 

3. return length of item 

3,7 A RO GR EXAMPLE STORAGE OESCRIPTIO 

mem B,I'I 
mem BYTE (8 BIT 
mem WO.RD (4 BYTE 

addressable) 

mpath 
mpath 
mpa•th 
mpath 

mpath 

mpath 

WORD-REG: 
REG-WORD: 
BYTE-REG~ 
REG-JWTE: 

BIT-..REG: 

BI'r .... REG : 

32 BIT, boundary 00) 

L 
ST 
SR 
STC 

REG,WORD 
REG,WORD 
REC..,. REG ;I. C REG, BYTE 
REG BYTE 

(WORD I DlSP LE ) 

1. REG WO.RD 
SLL REGl,DISP 
SRL REG,32-LEN 

(WORD, REG (DISP), LEN) 
L REG,WORD 
SLL REG, REG(D'ISP) 
SRL REG, .32.~LBN 



mpath REG-BIT: (WORD, DISP, LBN) 

map BIT to B · (align:WORD} 
map CHAR to BYTE (.align: .BYT'B) 
map FIXED to WORD (align:WORD) 

L 
XR 
SLDL 
SLL 
SLD1 

L 
R 

SHL 
OR 
ST 

ODORBG,ALLONES 
PAIR() ,EPAIR() 

EPAIR()) DISP 
EPAIR(),LEN 
EPAIR(),32-DISP-LEN 
REG,WORD 
REG,EPAIR 
RJ 32 - DISP 
REG,R 
REG..,WORD 

This storage descript on is a parti.al rough ,outline of what is needed. 

Not included are: 

l.. load/update routines for bit fields whi¢ ru across word boundaries 

2. the inclusion of some kind of :runtime computation facility to 

perform calculations like 32-DISP-LEN when DISP is passed as a 

runtime value. 

Also in a pnictical system ore flexibility might be d,esired such as the 

ability to perform some of the more conrple load/update routines as 

subrout i.nes. 

I 
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CHAPTER IV: 1 PROCEDURAL t VS 'FUNCTIONAL I DESC RIPI'10N - . 

4.1 'FU CTIONAL 11 vs 'SEQUENTIAL I DESCRIPTION: 

In ,chapters 2 and 3 we have looked at how computational macros~ data 

macros., and register manipulation logic can be generated from descriptive 

info mation. 

A good deal of this informatio,n described the structur-e of he machine 

(the register structure and the memory hierarchy), and the functions that 

individual ·nstr·uctions perform within this structure. The d,esctiption 

of load/update routines, on the other hand, involved the user spec.i.fying 

an ordered sequence of instructions to perform together a specific function. 

Describing instruct· on sequences in not the same as merely describing the 

machine ins true tions ava ilabl,e. 

A distinction can be made, theq bet:w,een two modes of description.. A 

1 functional I description system would be one in which the user merely 

described bis register and memo,ry structure and instruction set. Such 

.functional description won d assume a. whole 'machine state'. T'be user would 

describe hO'i,ri' each machine instruction operates on this state, for instance, 

what indicators a compare instl'uctions sets~ whether it skips, (incremen ~ 

the control count) and what indicators a Branch-on-conditi.on ·nstruction 

tests ... From this sort of description, the system would hav,e to deduce how 

a 11 the Ht tle: pieces interre: lated and would have to cons true t primitive 

code sequences fr,om t:his deduction. 

A I sequential I description system, on the oth•er hand would be one 

in which the user was required to give some informstion implicitly by 

cn:d•ering instructions iato very low- level sequential primitives. This se

quential description system is perhaps less elegant in some unclear sense. 
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It does not plllt any real burden on the user~ bowevel", and it does make 

the job of creating such a .system much e.as ier. 

It can be seen that the task of creating a functional descrii;:tion 

system for code gen,eration can be separaced into two stages. First 

the creat on. of a system. in. which primitives ,could be give:a in sequential 

fo m. Then once these primitives were isolated,, deductive routines 

could be included to deduce these primitives from functional information. 

It might be interesting to try to deduce such sequent:i..al primitives .from 

a hardware register-transfer- laaguage description of a machine. 

Load/update rout i.nes, for ins ta·nce, might be deduced :from some 

fu ctional description of shifting and masking. Similarly, 'compare~~md

branch I primitives discussed in the next section might be deduced from 

some func t iona 1 description of condit:ioo-code.s ~ aotoma tic skipping, 

comparison.~ and cond~tional branching. 

DMI\CS is a • sequentia 1 r system.; at least ,at pres,eo:t. As the I sequential 

primitives' needed become mo-r,e clearly r ,ecognized however, it may be 

possible to inc lode routines ·to deduce them 'from descriptive in~o:r-mation. 

4 2 SEQUENTIAL PRI.MITIVE'.S : 

Load/upaate rout ·:nes are sequential p:rimi ives which s,tste_m requires 

to be desc ibed. The user in creating machiue 1naependen.t macros can 

create h · s own. A go,od example of a case where -this might be 11ecessacy is 

he testing and b'ranching fa,c "liti.es of t=he chine. 

Consider a 'c:ompare macro wh C"b generates a result of true (1, 

or false (2) . Fol:' the 360 this. would be accomplished by t:he fo low-ing 

instruct i on sequence: 
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REG (Gl) REG (G2) CR Gl , G2 REG( ) 

BG .+10 
SR iGlJ Gl 
B .-t6 
LA Gl, l 

Th"s is not a satisfactory solution to the problem however, because 

it i s not .a mech ine- independent macro definition. To al ow the code for 

such a macro to be dif~erent for different machines,, su:U::,able sequen"tia 1 

primitives mu st be defined. An example of such a macro is 

macro: GT Gl, G2 (inverse: LE) 
COMPJG Gl, G2, .+3 
SETO 
BRA CH .+2 
SETl 

Th.is macro 1.ovolves four primitives, which will be filled out by the machin,E! 

user (COMPJG SETO~ BRANCH, SETl). DMACS w,ou d perform appro r1ate 

mapping into instruction sizes on he object machine, so correc·t: addresses 

would be branched to. 

In describing his machine, the user would then give. meaning to these 

primitives. For the 360 these could be; 

COMFJG Cl CZ C3 
from REG (C 1) REG (C2) emit CR Cl, C2 

B, C3 
fr,om REG ,(C 1), MEM (C2) emit C Cl,,, Cl 

B CJ 

SETO emit SR REG Reg result. REG 
SETl emit LA REG 1 result REG 
BRANCR B,l B Bl 

This approach lets the. user describe his machine in a compact and quite 

descriptive form while allowi.og the mac o to be written in machine inde

pendent form. 
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4 3 SEQttENrlAL PRIMITIVES FOR SUBROUi' INE CALLS : 

A lowing the user to write machine independent subrouti.ne call 

macros (CALL_, ABG, ENTRY, RTN) ~oes not require any elaborate mach1nery 

as did computation o:r da i:a s true ture ma,c ros,. The reason. for this is 

hat thel:e is a very direct mapping betw,een the operati.ons "1hich the 

source macro specifies and he actual machine ins true tions. 

To allow f ex.ibility as to object machine structure, however, care 

must be taken to assure sufficient machine in.dependence. For ins ta nee, 

the :9tack should be allocat,ed in the correct increments of addressable 

units. The nature of the stack pointer shou d be flexible: either a 

po.sition in c ,ore.,. a special register~ or a se , -asi.de register of a g·ve.n 

class. 

To help the U£.er attahl this flexibility, f ,our system deduced functions 

are provid,ed: .K>VE, • MJ,VEA, .ADDR, and .STACK. .KlVE will move its 

first operand from core OX" from a ugister to the address specif' ed as its 

second operan,d. MOVEA is like . MOVE ex:cep t it moves the address of its 

fina argument. .ADDR wil convert a number (Le.~ of ords) to the proper 

number of addressable uni ts:. • STACK represents, the stack pointer. The 

expression (. STACK) act,1; as a ba.se. 

Using these primitives, subr,outine macro,s might be defined roughly 

as fol lows: (these m,a,y rt•ot be suffic ·ently general) 

MACRO ARG Al 
.MOVE Al, ,(. STACK) ENDF!RAME + N 
n -- + l 

CALL C . 
.... 0 

MOVE .STACK, (.STACK) ENDFRAME -
• M)VltA .+3, ( .ST.ACK) ENDFRAME - 2 
• ti)VEA (.STACK) ENDFRAME,, .:STACK 
J Cl 
.MOVE (. STACK) l •. STACK 



MACRO 

MACRO 

ENTRY 
STOREREGS 

!ITN Rl 
.M}VE RlJ (.STACK) 
LOADREGS 
JIND (.STACK) - 2 

Not ice t.ha t some of the problems we are getting iato her,e .are not;. lot.al 

code generation problems but rather general machine◄ independence problems 

of a more g oba l nature. It is not really w · thin the, scope of this, paper 

to addre$S t:hese. For a given real-world language, the compiler writer 

might want specific primit ·ves to be defined for l "nkage pointers argu-

ment pointers,, etc This pap,er has on y gone as far as apply i ng this 

technique to the stack. Real world languages might require a more broadly 

designed s,ys tem. 

4.4 THIS SYSTEM VS . UNCOL: 

In the :real r,,1or d, there are a large number of prog·ramm ing languages 

and a arge number of object machines. Automatic code gene:rar.ion as des

cribed in this paper is an attempt to simplify t is situation. 

If DMACS is :successful, a language. written with a machin.e independent 

macro code geae;ra or wou d be able to run on a broad class .of machines. 

It is not quite so c _ ear how s imp e tbe inverse of this language to mach i.ne 

adaptation would be. In other words, once a machine-user had written a 

description of bis machine for one c ,ode-generator how much work would he 

have to do to convert this description so that a language loi'ith a different 

descriptive code-generator l.lould accept it? Pres,umably the register and 

memory hierarchy, .and compu , ational instructions would be described the same 

way. Obviously~ the. mapping of data- types "into memo-ry would have to change 

if the data types, were different. To tbe degl'."ee that the sec.o.nd language 

used different sequential primitives, th s part ,;;ould h.ave t ,o change but 

w · th some standardization this change could be kept minimal. Hopefully 

then~ any c:hanges would be small ones and rapidly done.. On the other hand, 
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f the language was radica.lly different, the chang,e s might be more sub 

stantial, but this is n:ot unreasonable . 

t is instructive to compare this ap,proach to, the prob em of pro

liferating languages and machines to that embodied UNC:OL an attempt at 

creating a universal macro- like int,erm.ediate la.ngµage. The hope was that 

any high-level language could first be ompi ed into 'IJNCOL and th.e UNCOL 

could be compiled in o any machine code. Thus complete program trans

ferability could be ensured at the ,cost ,of ,only one translator per lan~ 

guage and one code generatm.· per machine. In practice~ the restrictions 

of having only one universal i.ntermedia te langua.ge have proved too con.fusing 

to be easily so,lved, at least as yet. 

DMACS sideste·ps this problem in two ways~ 

l. It allows the user to spec if:y his own macro language., Thus the macro 

language can be tailored to the source language .• 

2. By lett ng , he user deal with s equential primitives it creates a 

standa d interface very close ~o machine language 

A.s a result, the process of adjusting to, this interface (writing different 

sequent.Lal primitives for different compilers) is logically very s "mple 

and str.aightforwa.rd for someone familiar -with bis machine but not with 

the language. 

Not ice chat if DMACS were a I functional description I languageJ taking 

as input some register- transfet" descriptio -, of a machioe to fill out its 

sequential primitives~ t.ben this escript on could presumably be input 

unchanged to any code generator .. This would therefore. solve the lJNCOL 

problem by using a machine description ss an interface, instead of an 

intermediate- macro language .. 
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CHAPTER V: SUMMARY OF RESULTS AND AREAS FOR FUR'l'HER TROUGlfl' 

5.1 SU~RY OF RESUL'IS ! 

I. '!'his paper develops a machine independent mode 1 of the ,erocess of 

code- generation. This model p ic turea the code g,enera tol'. as: 

1 . a state machine which makes repeated transiti,ons into permitted 

states from which it ,can ,emit machine ins true tion. 

2. ope-rating on con.ceptual (semantic) data-types. 

3. bu· it on low- leve semantic pr:i1J1.itives. 

This abstract machine-independent mod,el is .a step towards a mor,e formal 

definition. of the code generation proces.s. 

11 • The pa per shows h O'l,,i au imp 1 emen ta ti on of this machine- inde p,enden t 

m.ode l could be set up t.o generate code £,or a number of d iffere -t machin.e s 

froin machi _e - de.pendent information given n a d,escriptive form. 

III. The paper discusses .some as.peels of h<M a compiler (parser and 

code gene ator) should be designed to allow this kind of machine-indepen

d,eoce. 

Thus the paper is a step towards fonnaliiing code ge·nerat onJ and 

abstracting it from any particular machine. This is similar to the formal

izat on of parsing which allows automatic creation •Of parsers from a BNF 

d.escr'ption. of a language. 

5 •. 2 FURTHER THOUGHT ; 

This paper has attempted, to set down main ideas ~nd to expa.nd 

upon a nu ber of them. Some specific problemsJ therefore, still re.quire 

some thought. 

It would be instruc ive to look through all of the coost.ructs of a 

powerful la guage like PL/I~ and see what problems com up in fitting them 

into the general automatic framework outlined in th.is paper. 
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It would. also be i:nterestin.g to consider the problem of deducing 

semant:ic primitives from something s imilar to a hardware regis,te.r transfer 

descriptioo of a machine's ins.truction set. This problem would be a 

substao ial piece of :research in itself. 

5. 3 GENERALIZATION OF tHIS MODEL: 

The model presented in th ls paper is a res t:ric ted one in s eve ra l 

way.s, It deals only with register machines and t assumes that the machine 

has index registers . Also, it is not SJ?ecifically designed to hand le 

operands of the sort required. for 360 dee ·mail arithmet k for ins ta nee. 

It \IOU ld there fore by worth~h.ile. to e:ittend the model to include a broader 

class of machine structures. In paTticula r it would be useful to extend 

it to stack machines, to machines with no registers, and to machines with 

more an,oma lou.s addressing schemes. 

It would also be very i;ele~nt to considet' how the framework discussed 

here could inurface with more globa · aspects of opeimization., such as 

common- subexpression optimization, remova 1 of invari.ance from loops J a,nd 

optimal register allocation over loops. 
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APPENDIX I: 

Ibis section co tains. a set of macros which handle computation and 

control, written in MI-ML {Machine-Independent Macro Language). It 

also contains part of two machine descr pt i ons written n OMML (Objec t 

Machine Macro Langua ge), lwb ich f esh out these macros 

To write an entire cod,e generator, data macros and subroutine macros 

woul d have to be added to the· MD.L code and register and storage descrip~ 

tions and additional primitive.s would have to be added to the OMML 

dee arations. 
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SAMPLE MACHINE INDEPENDENT ~CR01 DEFI_IIIONS: 

Note: the in eger io parenthes,es after a macro, name ind· ca tes t hat 
macro's number.. i.e.; the uniform symbol indicating an AD:O 
macr,o would have an inde1e of 1. , 

MACRO ADD( l) X, Y (COMMUTATIVE) 
ADD 

MACRO S B (2) X, Y 
SUB 

MACRO ASSGN ( 3) X, Y 
• UPDATE (X .Y) 

MACRO MPY (4) X,Y (COMMUTATIVE) 
MPY 

MACRO DIV(S) X Y 
DIV 

MM:RO GT'(6) X, Y (INVERSE: LE) 
CJG X,Y, . 3 
SETO 
J .+2 
SETl 

M!\CRO LT (7) X Y (INVERSE: CE) 

CJL X,Y,.+3; SETO; J .+2 ; SETl 
MACRO GE(8) X: Y (INVERSE: LT 

CJGE X~Y, .+3· SETO; J.+2 ; SET! 

MACRO LE(9) X, Y (INVERSE: GT) 
CJU: X,YJ.+3; SETO; J.+2; SETO 

MACRO EQ ( 10) X. Y (COMMUTATIVE) 
CJE X Y .+2; SETQi; J .+2; SETI 

MACRO NB ( 11) X Y (COMMUTATIVE) 
CJNE X~ Y, . • +3; SETO• .+2; SETI 

MAC.RO JMP(l2) X 
J X 

MACRO 'r.1MP(l3) X, Y 
CJE XJ =- l , Y 

IACRO FJMP(l4) X Y 
CJE X =0,Y 
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PDP 10: 

ADD X,Y: from REG(X) REG(Y) emit .ADD X,Y l'esult REG(X) 
from REG (X), WORD (Y) em.it ADD X,Y result REG(X) 

01' emit ADDM X,Y result WORD(Y) 
I 

SUB X,Y from RRG(X),REG(Y) emit SUB XJY result REG(X) 
from REG(X),,WORD(Y) emit SUB X~Y esult REG(X) 

or emit SUBM X,Y result WORil(Y) 
from REG (Y), WORD(X) emit MOVC Y,Y;ADU y X result REG(Y) 

or emit MOVC Y, Y~ADDM Y X resu t WORD(X) 

MPY X Y: from REcG (X), REG (''l) emit IMUL X1 Y 'esult REG(X) 
from REG (X), WORD (Y) emit !MDL X,l resul RBG{X) 

or emit IMOLM X,Y result WORD(Y) 

DIV X Y: from REG(!) , REG (Y) emit IDIV X,Y result REG(X) 
from REG (X) , WORD (Y) emit IDIV X,Y result REG(X) 

or emit lDlVM X,Y result WORD(Y) 

CJG cl.,c2, c3 
CAMLE cl, c2 
JRST c3 

CJL cl c2 -c3 
CAMGE cl,c2 
JRS'I c3 

CJGE cl c2 c3 
CAlfi.. cl c2 
JRST c3 

CJLE cl c2Jc3 
CAM; cl,c2 
JRST c3 

CJE c 1,c2, c3 
CAMN C 1, c2 
JRST c3 

CJNE cl c2,c3 
CAME cl c2 
JRST c3 

SETO: from nil emit MJVEI sl, 0 result. REG(sl) 

SETl: from nil. emit Ml'VEI sl, 1 result REG(sl), 

J j l: JRS'r jl 
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IBM 360: 

ADD: 

SUB . 

rom REG(X} REG(Y) 
from REG (X), WORD(Y) 

from REG(X),REG(Y) 
from REG(X),WORD(Y) 

emit AR ~y 
emit: A X,Y 

emit SR X,Y 
emit S X,Y 

MFY: from ODDREG(X), BEG(Y)emit MR EPAIR(X) ,Y 
ftom ODDRBG(X) ,WORD(Y)emit M EPAIR(X), Y 

DIV: .from ODDR!G(X), REG(l)emit DR E'PAIR(X) Y 
from ODDREG(X:), WORD (Y) emit D EPAIR(X), Y 

REM: from ODDREG(l), REG (Y)emit DR EP:AIB.(X), Y 
from a>DREG(X) WORD(Y)emit D EPAIR(X), Y 

CJG C 1,C.2,CJ 
COMP C C2 
BG C3 

CJI. Cl C2 ,.CJ 
COMP Cl C2 
BL C3 

CJGE cl,c2,c3 
COMP c 1, c2 
BGE c3 

CJLE cl,c2 c3 
COMP c ,c2 
BLE' c3 

CJNE ,c2, 3 
COMP cl, c2 
BNE c3 

CJE cl,c2,c3 

COMP 

SETl:· 

SETO• 

COMP cl_,c2 
BE c3 

cl,c2: 
from REG(c l), REG(c2) 
from REG(cl),WORD(c2) 

from tl"l 

from nil 

em ,· t CR cl, c2 
emi C cl ,c2 

emit LI sl, 1 
or emit MVC sl,=F 

ernit XR s , sl 

result 
'tesult 

result 
result 

result 
result 

result 
result 

result 
result 

result 
result 

result 
or emit MVC s:l,-:F (O)result 

J jl: J jl 
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RE 1G(X) 

REG(X) 
REG(X) 

REG(X) 
REG(X) 

REG(X) 
REG{X) 

REG(X) 
EPAIR(X) 

REG(sl) 
WORD (sl) 

REG(sl) 
WOIID(sl) 



APPENDIX II: 

This section contains a rough first description of the 

MIML and OMML BNF. 
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MIML,: Machine Independent Macro Language 

(FROG) : :~ (DECLARATION) * (MACRO) * end 

A program is a series of dee lara tions fo llowe,d by a series of macros. 

(DECLARATION) : :a.. de 1 (DCL) 

(DCL) ,: :"" external table ( NtJM ) NUM ( - ]l)N}* 

I meni .fest (NDM ) IDN ( .:IDN)* 

'I'be user declares auy e. ternal tables hP. might 'W'ant to referet1ce , te l ls 

what type it is, how many fields it has and optioua lly gives names by 

which he can :refer to the fields Hie also declares any menifest constants , 

giving type numbers for them. Var ables are automatically allocated and 

need not be declared. 

(MACRO ) :~"" macro ID ( NUM) IDN ( - lDN}*(,((A'IT)(;(Aff)}*)J-l(MDEF) 

(ATT ) • ~= commutative I inv,erse :, IDN 

A mact'o consists of a macro name followed by its number i n the macro 

definit i on table, fo,11,owed by any arguments follow,ed by any .attributes., 

and finally followed by the macro definition 

(MDEF) : :.a IDN I . ID:N [IDN <~ IDN )*fl 

I (PRl.MITIVE) <;,{PRIMITIVE))* I {LOGIC) 

(PRIMITIVE) : ~,,,, ION ( (ARG) (, (ARG? l*f l 
(ARG) ~ ·= IDN I . [+ NUM I - NUM} I :,, NOH 

A macro definition can specify tha:t OMML text be inserted, that a 

system fun c ion (. LDN) be app ie , that a primitive be ,expanded, o r 

hat logic be executed. 

(LOGIC) : ~=- (ST) I [(ST) +1 
(ST) : :"" if (BOOL) do (l.OGIC) I (COMMAND) 

(BOOL) ::= IDN I (VAL)~ (VAL) I .IDN [( IDN ( ID )*)f 1 
> -

(VAL ) : :- (VAR) I NlJM I (VAL) t (VAL) 

(VAR ) : :"" {mrt J IDN) ,( IDN ) . ION I lDN 

(COMMA ND ) : : = IDN ( IDN (, ION) * ), ' IO ( IDN (, IDN) * ) 
fbreak / (VAR) - (VAL) 
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OMML: OBJEC MACHINE MACRO LANG -AGE 

* . - * * (PROG ) : : = (DECL) ( REGDECL) (MEMDECL) ( INS TOEF ) ( P R!MDRF ) 8ND 

(DECL) : := manifest (NUM) (tENGTH:NUM) ID (, m >* 
(REGDECL} : := (CLASS DECL) * (REGREL )* (PATIIDECL) * 

* : ID1 (j IDN) (CLASSDECL) : :"' re lass IDN 

(REGREL) ::= rrelatioo IDN { ( (AT!') ( ; ( A · )) *) r 1< ID : 1D ) * 

(ATT) : := stored: ION 

(PATHDECL) : := rpath ID ,_ IDN : ID IDN (, IDN) * 
. * * (MEMDECL) : •"" (STORE.DEC)" (M~ PATH ) (DA'l'AMifF) 

(STOREDEC) : : ;,,, mem 1D [RUM ION (, NtJM IDr ) * (, (M-ATT)) *} 

(M-ATT) : := addressable l boundary o+ I picture = [NUM ID t 
(M-PATH) : :e:: m-path IDN ( [frommem I tOlilemJ : (INSTR)* 

➔ 1 
(DATAMA.P) : := map IDN ( NUM ) to IDN {(allign : ION) J 

(INSTDEF) : ~= IDN : (STATEDBF')+ 

( STATED,EF) . : = from IO ( IDN ) , IDN(IDN) emit (INST)* result IDN(IDN) 

(PRIMDEF) ::= 1 DN IDN (,IDN)*(PRIMBODY)* 

* (F RIMBODY) : :"° (PRnIDEF) (INSTR) I {STA'IEDEF) -
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