. MASSACHUSETTS
I INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS/TM-18

AUTOMATIC CODE-GENERATION

FROM AN OBJECT-MACHINE DESCRIPTION

Perry L. Miller

October 1970

545 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139

AUTOMATIC CODE-GENERATION

FROM AN OBJECT-MACHINE DESCRIPTION

Technical Memorandum 18

Perry L. Miller

October 1970

PROJECT MAC

Massachusetts Institute of Technology

Cambridge Massachusetts 02139

ACKNOWLEDGMENT

Work reported herein was supported in part by
Project MAC, an M.I|.T. research project sponsored
by the Advanced Research Projects Agency, Depart-
ment of Defense, under Office of Naval Research
Contract Nonr-4102(01).

Perry L. Miller

ABSTRACT:

This memo outlines the basic elements of a2 macro code-generating
system, and develops an informal machine-independent model of a
code generator. Then the memo discusses how an implementation
of this model could be set up to generate code for a particular

machine from machine-dependent information given in descriptive

form.

Keywords: compiler, tramslator, macroprocessor, code-generation,

automatic code generation

CONTENTS :

Introduction

Chapter 1

Chapter 2

Chapter 3
Chapter 4
Chapter 5
Appendix I

Appendix II

The Elements of a Code-Generating Systems

1.1 Description of a Code-Generating System

1.2 A Framework for Data-References and Data-Types
1.3 The State of the Code-Generator (Implementation)
1.4 Summary

ode-Generator as a State Machine

AC
2.1 The State Machine
2.2 Implementing the State Machine

Descriptive Data-Reference Macros

"Procedural" vs. "Functional" Description
Summary of Results and Areas for Further Thought
Sample Macros and Machine Descriptionms

MIML and OMML BNF

o On 0o AN

" ,i.ﬁj i

25

41

53

29

61

INTRODUCTION:

The compilation process is traditionally divided into parsing and
code-generation. A great deal of work has been done in formalizing
parsing. Systems have been developed in which a parser can be automati-
cally created from a BNF description of a language, rather than from al-
gorithmic procedure. Very little work, however, has been done to similarly
formalize code generatiom.

A great deal of work has been done on a very closely related problem:
that of language transferability. The problem of how to minimize the
difficulties of implementing a language operating on a variety of different
machines has been approached inm several ways. One such approach is typified
by the 'mobile programming system' of Orgass and Waite. [6]) In this system,
the source language is translated into a series of macros by the language
processor. Then a user-written set of macros translates this intermediate
macro language into user machine code,

A second approach to language transferability is seen in the UNCOL
macro language, [8,9] This was an attempt to create a universal macro
language into which all high-level languages could be translated, and which
itself could be translated into any machine code. If successful, this
system would have solved the problem of transferability, since only one
translator would ever have to be written for any machine. Notice that this
differs from the Orgass and Waite system, since their intermediate macro
language was specifically tailored to their source language, whereas UNCOL
puts no restriction on the source language at all. In practice, the res-
trictions imposed by having only one intermediate language have proven very

confining and too inefficient for a practical solution,

Both of these systems are similar in that both attempted to solve the
problem of language transferability by letting the user specify information
about his machine in procedural form. Most of the information about the
structure of his machine is buried implicitly in the coding of his macros.
This procedural approach has been used in all major published work on
code generation,

This memo will describe a system which allows a cede generator to
be created, for a class of object machines, from descriptive information.
In this memo, the code generation process is first formalized, and a
machine- independent model of a code generator is informally presented.
This model pictures the code generator as:

1. A state machine which makes repeated transitions into permitted

states from which it can emit computational machine instructions.

2, Operating on conceptual (semantic) data-types,.

3. Built on low-level semantic primitives.

Then the memo shows how an implementation of this machine-independent
model could be set up to generate code for a number of different machines
from machine-dependent information given in descriptive form.

Chapter 1 first describes the code-generating process in general terms.
Then a framework is outlined which allows different data-reference macros
and different data-types to intermesh smoothly. This is called the
PLOT-LOCATE-LOAD/UPDATE framework. This framework is based on the premise
that a data macro need not know whether its result is to be used as an
address or a value. As a result, it can compute a 'location', to which a

load or an update function may later be applied. The form of this 'locatim

>

and the particular load or update function used, will be different for the
different data-types. Chapter 1 then outlines how this framework could

fit inte the implementation of a code-generator.

Chapter 2 describes a code generator as a state machine whose state is
determined by the location of the values which are to be used in generating
code, These values may be in simply addressable core locatiom, in non-simply
addressable core locations, or in a register, of which there may be several
classes,

Each computational macro has associated with it certain permitted
initial states for its operands., For the 360, for instance, initial
states for an integer ADD macro would be: 1, both operands in registers,
or 2, ome in a register and the other in core. The process of generating
code for such a macro, therefore, is the process of the code generator making
a transition into one of these initial states, followed by the emission
of a particular code sequence from that state,

In a procedural macro language, the user specifies how these transi-
tions are to be made. In DMACS, the descriptive macro system of this memo,
the code generator itself is set up to perform these transitions automatically.
To do this, it must have a description of the register and memory struc-
ture of the machine, and of the paths (load, store, register-register trans-
fers) between different storage classes. Thus, computational macros can be
defined merely by describing the instruction sequences from permitted states.

Chapter 3 discusses how data-reference macros could be written
machine-independently and then filled out by a machine description. 1Inm

these macros, the user would specify the computations he wanted done, using

'semantic' data-types and semantic primitives defined over these data-
types. A machine user could then give a description of his memory hier-
archy, its addressability, the operations that move data-items between
core and registers, and how his language data-types map into this
memory hierarchy. Using this descriptive information, DMACS would map
user data-types into the appropriate semantic data-types for that machine,
and it would define an implementation for the various semantic primitives
over these data-types.

Chapter 4 discusses how further parts of the code-generator could
be written in machine independent form and then filled in by descriptive
information.

There would be two steps in writing a code-generator using the DMACS
system., The first step would be to define a set of procedural macros
in a machine-independent, somewhat skeletal form. The second step would
be to supply descriptive information about 2 machine which would be used
to flesh out the macro definitions. The two steps would be quite independ-
ent, so that once the first step had been done for a given macro language,
the second step could then be done for a variety of object machines. To
facilitate these two steps, DMACS provides two languages MIML, a procedural
machine independent macro language, and OMML, a descriptive object machine
macro language. Programs written in these two languages are bound together
by the DMACS system.

In summary, the memo is a step towards formalizing the process of
code-generation and abstracting it from any particular machine. Toward
this end, the memo shows how a code-generator could be created from a

machine description. It examines some necessary design features which a

4

compiler must have to make such machine independence possible. Finally,

it describes the PMACS system which is designed to implement such a

code generator,

CHAPTER I: THE ELEMENTS OF A CODE GENERATOR

1.1 DESCRIPTION OF A CODE-GENERATING SYSTEM:

A macro code-generator is set up to accept a linear string (sometimes
called a 'matrix') of macro calls and generate the appropriate machine
instructions. In a complex compiler with many data-types, it is advantag-
eous to allow the code generator direct access to the symbol table con-
structed in the syntactic pass by the parser. The code-generator can then
use the data-type information directly to generate different code to access
the differing data-items,

The data flow in such a system is illustrated below:

=
SOURCE == PARSER == MACROS
" MACRO
YMBOL
STABLE > i
GENERATOR
MACHINE
CODE

The parser analyzes the source program, converts it into a linear sequence
of macros, while simultaneocusly building the symbol table. The code-genera-
tor accepts the macros and the symbol table as input for generating machine
instructions.

The macro-instructions can be thought of as having normal prefix form:

for example, ADD X,Y. In fact, this instruction would conmsist of 3 pointers

(also called uniform symbols): (ADD)I (x)' (Y) Where (ADD)

is a pointer into a table of macro definitions, and the operands (X) and (Y)

are pointers into the symbol table constructed by the parser. An operand
could alsc be a pointer to the result of a previously macro line.
Examples of this sort of macro:

(line no.) (macro name) (operands)

A 1= B4C*D i MUL c,D
i+1 ADD i,B
i+2 ASSG A, i+l

C := P(N)®A(I).B(J) i SS P,N
i+1 PTR 1,A
42 ss i+1,1
i+3 SUBST i+2,B
it ss i+3,J
i+5 ASSG C, i+4

As an example of the code-generation process, consider a simple
computaticnal macro such as ADD for the IBM-360. There are two possible
add-instructions for integers: 'A' which adds a full word of memory to
a register, and 'AR' which adds two registers. When generating code for
an ADD macro, the code-generator must check the location of the wvalues
to be added to see if either of these instructions can be emitted directly.
If not, the code-generator must emit appropriate instructions to load one
or both into registers, If in the process of finding a free register to
load into, the code-generator has to save the previous contents of that
register in a temporary location, this must be recorded. Furthermore, if
one of the values is not simply addressable (e.g., a bit string), the
code-generator must output appropriate load and shift instructions to
isolate it in a register before it can be used in the addition. Finally,
the code-generator must record where the result of the addition is located.

To create a code-generator which performs these tasks, therefore, it
is necessary to describe:

1. A set of macro definitioms.

2. The machine registers, and classes defined over these registers.

i Routines to keep track of what values are in which registers.

4, A 'GETREG' function to obtain a free register of a given class.

5. Data-handling routines which will generate code to fetch a value

into a register, and routines to yield some simple representation
of the value, such as an indexed address,

The MPL macro language, which is part of the LPS compiler-building
system created by Professor Graham at M,I,T,, was developed to offer these
facilities, It allows the user to create code-generators for a wide range
of object machine structures., The following ADD macro, written in MPL
for the 360 is given as an example to give the reader a flavor for such a
procedural macro language.

Sample Macro Written in MPL:

MACRO ADD X,Y:
call Getloc(X, "REG1, 'BASE, 'INDEX, 'DISP);
c REGFLAG, set, t,Xinreg; (branch if X in register)

call Load(¥, 'REGL);
out (A,REGL, BASE, INDEX,DISP); (output add from storage)

callx Mark(REGL) ; {(set result of current line and exit)
Xinreg: call Getloc(Y, 'REGZ, 'BASE, 'INDEXK, 'DISF);
c Regflag,set,t,XVinreg; (branch if Y in register)
out (A,REGl,BASE, INDEX,DISP); (output add from storage)
callx Mark(REGL);
E¥inreg: out (AR,REGZ,REG1) ; (output add register)
call Mark(REGZ);
endm;

Explanation of logic: Getlec(X,R,B,I,D) is a code-generating subroutine
which attempts to return (in the variables B,I, and D) a simply address-
able location for X. 1If it cannot, it sets Begflag and returns a regis-
ter containing the value in variable R.

Load(Y,R) is a similar routine which loads Y into a register which
it returns in wvariable R.

Mark(R) marks register B as containg the result of the current macro
line.

The routines Getloc and Load handle (directly or by subroutine) all
the symbol-table searching, all the data-type dependent logic, and any
necessary searching for free registers,

Notice that MPL is a procedural rather than a descriptive language
and that the user gives a procedural outline of the macro logic. The
user must similarly specify procedural logic for handling data-dependent
logic and for obtaining free registers,

Chapter 2 will show how computational macros of this sort could be
deduced from descriptive information about an object machine, and discusses
some of the problems involved. The remaining sections of chapter 1 will
discuss further general aspects of s code-generator,

1.251 A FRAMEWORK FOR DATA-REFERENCES AND DATA-TYPES:

A powerful computer language, like PL/I, has a variety of constructs
for referencing data, including simple arrays, matrices, pointers, and
structures, Reference to a single data-item can involve arbitrary com-
pounding of any of these. This gives the user a great deal of power, but
presents problems for the compiler writer. This is especially true when
these data references are defined not only over words (i.e., addressable
units), but also over bytes within words, and bit strings which are not
directly addressable at all,

This section describes a framework which allows different data-ref-
erence macros and different data-types to intermesh smoothly., This is
called the PLOT-LOCATE-LOAD/UPDATE framework. This framework is based on
the premise that a data macro need not know whether its result is to be
used as an address or as a value. As a result, can it compute a 'location’',
to which a load or an update function may later be applied, to either
access or alter the value at the 'location'. The form of this 'location’',
and the particular load or update function used, would be different for

the different data-types.

| THE 'LOCATE' PROBLEM:

One fundamental problem in generating code for any datd-reference is
that the isolated reference itself does not indicate whether that data
item is to be used as an address to store into, or as a value, Only when
it is used in context does this become clear. For example: A(I) := A(I) + B.
Here the first A(I) refers to an address, while the second refers to the
value at that address,

Similarly, if the subscript was represented by the macro line 8§ A,I,
it would be impossible to determine whether code should be generated to
yield a value or an address. One solution to this problem is to let the
parser determine the context and ocutput two macros: SSA A,I when an address
is wanted, and S8V A,I for a value. A wvariant of this solution is to let
the parser always output an SSA macro, followed by a unary 'value' macro
to convert this address to a value when desired. A second solution is to
let the data reference macros always compute an address and let the macro
which uses this result determine the mode.

A data reference macro which computes an address can be seen as a
'LOCATE' function which generates a representation of the location of the
data item.

1.2.3 THE LOAD-UPDATE PROBLEM

The fact that not all data items are simply addressable gives rise to
the concept of a load-update pair: a complementary pair of routines to
access or update a data-item.

The simplest example of such a 'complex' data item in a word-addressed
machine would be a byte within a word, 1Its 'location', generated by a

locate function, might be: 1. an address (possibly indexed), and 2, a byte

number. The load/update pair would consist of two routines which would take

this 'location' and generate code as follows:

i load: load the word into a register, shift left to eliminate high
order bytes, then right to eliminate low order bytes, thus right-
adjusting the desired byte in tae register,

2, update: load the word, use a mask to zero out the target byte,
shift the new value to the correct position,'or;uhen, store the word
with its new byte,

In practice, this data item would have two kinds of 'location' and corres-

pondingly two load/update pairs: one for when the byte within the word is

known at compile-time, the second for when the byte within the word is
calculated at run time by the locate function, and is given to its load/update
pair as a computed value,

The load/update routines would be further complicated if a data item

extended across a word boundary,

1
- | A —b¢

but the code generated would still fit into the framework of a 'location'
and load/update pair.

It can be seen that this problem stems from the fact that possible
data items do not map directly into addressable units. Generally only
an address (perhaps indexed by registers) can be put into a machine in-
struction. If it were possible to specify an address and a byte number,
or address, starting bit, and bit-length, then the problem of special load/
update functions would disappear. A machine which allowed this would pay
a penalty in efficiency when it was working with full word items. A simpler
trade-off might be to have a special hardware load and store instructions

to access bits of a word, This would still retain the loadfupdate framework,

but would make the load/update routines much simpler since each would

consist of only one instruction,

1.2.4 LOCATE & LOAD/UPDATE:
LOCATE
LOAD L UPDATE

It can be seen that the previcusly mentioned locate functiom fits
together neatly with the concept of a load/update pair. A locate function
generates a 'location' consisting of:

1. An address (perhaps indexed) if a data reference is simple,
2., An address (perhaps indexed) and auxiliary pointers to within that
address if the reference is a complex data item.

In the simple case, this address can be fit directly into either a
load or a store instruction, or directly into a machine instruction such as
a storage-to-register ADD. For non-simple items, the address and pointers
can be given as arguments to the appropriate half of a load/update pair,
to either generate or value or update the item with a new value.

The various data-structure macros can each perform their own compu-
tations on their operands and associate the 'location' thus generated with
the current macro line. This 'location' can be any number of run-time and
compile-time wvalues, depending on the nature of the datz item. When the
result of this line is later used, this ‘location' will be fed to the proper
half of a load/update pair. Since the 'location' format put out for a given
type of data item would be the same for all data-reference macros (subscript,
matrix, structure, etc.) they could be fed to the same load/update pair.
This 'location' format is a type-indicator followed by an arbitrary number

of operands. Since the type-indicator tells which load/update applies,

11

this 'location' can be thought of as a 'twin' function followed by its

arguments, Either the load or the update part of this function will be

called by a later macro which references this result,

SUBSCRIPT MATRIX STRUCTURE etc.
\ 1
ARGl
T]
ARG2 LOCATION

PR s Gepaene

L/u L/ L/U
; t ;
Simple byte ‘ Eg:pile time abiis

Considering the optimization of common subexpressions helps shed some
light on this locate-load/update framework. In optimizing A(B(I)) := A(B(I))+1
the result of the locate of A(B(I)) would be used twice. 1In optimizing
C := A(B(I))+D(A(B(I))) the result of the load would be used twice. Whether
these references were simple of complex and no matter how complicated the
locate or load/update routines were, or how complicated the 'location', this
would remain valid.

1.2%5 A TWO-PART LOCATE FUNCTION:

To handle structures, a modification of this 'locate' idea is helpful.

Consider the structure:
A(I).B(J).C(K)
First let us ask how this should look in macro form. One might try as a

first attempt to consolidate the whole reference into a single macro:

12

LOCATE,STRUCTURE A, I, B, J, C, K.
This approach is unwieldy. 1t hides structural informatiom so- that it
would be virtually inaccessable to an optimization pass. Also, it would
require a proliferation of different macros for various number of operands,
and still could never be completely general,
A cleaner approach is to have a 'sub-structure' macro. This would
handle any structure format in a simple, general fashion, and would let

the 'structure' of the structure be obvious to the optimization pass. For

example:
A(I).B(J).C(K) i S8 AT
i+l SUBST i,B
i+2 88 i+1,J
i+3 SUBST i+2,C
i+ sSs i+3,K

There is one major difference between the 5SS macro as it appears here
(in a structure) and as it appears by itself. When A,I appears by itself,
the location it generates is passed directly to the load/update routines.
When it appears in a structure, however, its result will not be used as a
location until the very end of the structure is reached. As a result, there
is more flexibility in what the SS macro computes within a structure. Con-
sider the following examples:
Example 1. A(I).B(J).C(K) where all displacements and indices are full
words, and array sizes are fixed. Since the displacements of A,B, and C
are known at compile time, the compiler can add these together at compile
time, while generating code in the different subscript macros to add the
index factors together, Then, at the very end, it can emit a single ins-

struction to add in the sum A+B+C, or alternatively use this sum as a

13

displacement in a machine instruction. This is an example of code-genera-
tion being deferred over a number of macros. Within the structure, the
55 macros keep their results in an 'internally plotted' form, affixed

to the macro line. This 'plotted' location would indicate the register

in which the index was being computed, and the compile-time number which

was keeping track of the sum of fizxed displacements,

TYPE

+—— register containing index

+—1+—displacement

Example 2. A(I).B(J).C(K) where this refers to a structure of packed
bytes, where displacements and indices refer to the number of bytes. Array
sizes are fixed. Here the 58 macro would keep a) a base address,

b) a compile time count of displacement in bytes, and ¢) a computed number

of bytes from the base. Before this 'internally plotted location' can

be used, (b) will have to be added to (c), and then the result will have

to be divided by 4 (bytes/word), and added to (a) while the remainder is

kept as a pointer into that address. Clearly, it would be grossly inefficient

to do this in every SS macro, since a running total of (b) and (c) can be

kept and the conversion from 'internal plotted' form to 'location' need
only be done at the very end of the structure reference.

This gives rise to the idea of using a two-part locate fumction in
generating code for structures.
1. The 'PLOT' function which keeps an internal plotted form of locatienm.

2 a '"CONVERT' function which converts this internmal form into a 'location'

14

that can be used by a load/update pair,

O
e X LOCATE() = CONVERT (PLOT (PLOT (etc.)))
CONVERT <value> = LOAD(LOCATE())
¥ <store> = UPDATE (LOCATE ())
LOAD UPDATE

©,

In an actual implementation, it would probably make sense to have the
terminal structure element recognize from the structure table that it was
in fact terminal, and apply the convert function itself -- rather than
further defer this until the result was used.

1.2,6 THE RELEVANCE OF PLOT, LOCATE, 4nd LOAD:

It might seem at first glance that this division into PLOT, CONVERT,
and LOAD/UPDATE is fairly arbitrary, and that there might be other equally
valid ways of partitioning the problem, It can be demomstrated that this
partition is at least meaningful by considering optimization of common

subexpressions.

1. Q := ﬁ(I}.F{J},.C(K} +A(I).B(J)| .D(L)

Here the internally plotted form would give the most efficient optimization.

2. A(D).B() := D3]+ 1

Here the result of the convert (i.e., locate) could be used twice: once

with update and once with load.

3. Q :=|A(I).B(I)|+ Z (E(I}.B(J)}

Here the result of the load could be used twice.

In all of these cases, this is true no matter what data-types the wvarious

items are.

15

In fact, you can turn this illustration around, and define PLOT as
producing what you need to optimize (1) most efficiently, and define
LOCATE and LOAD similarly for (2) amd (3).
1.2.7 SUMMARY :

This discussion of data structure macros has outlined the desirability
of being able to defer code-generation by letting a macro put out a
variety of values to which a code-generating functiom will later be applied,
The next section will demonstrate how this deferal of code-genmeration can
be implemented.
1.3 THE STATE OF THE CODE-GENERATOR (IMPLEMENTATION):

This section describes how the code-generator keeps track of where the
various values it has computed are stored at any one time,

The code-generator records its variable state information in two tables,
(See figure on following page). The RST (register state table) records
what values are in which registers, and also contains additional fields for
temporarily locking values into registers., The MRT (macro result table)
contains one set of entries for each macro line of input, In it, the code
generator records where the various results computed by a macro are stored
(i.e., which registers or temporaries), and also records compile-time
information for data-structure mucros. The exact format of these is des-
cribed below.
MRT: For each macro line, the MRT contains a set of entries of the following

form, describing that macro's results.

16

INPUT
(MACROS)

Lo DR o R WY]

OP AlA2
OP Al
OP AlA2

MACRO
LOGIC

o o= W

MRT

Machine
Code

(Macro result table)

RST
(Register State Table)

CODE GENERATOR

IMPLEMENTATION

17

TYPE : TYPE = 8 - simply addressable
r - in register
- f. - function required
to obtain resulc
MRT ENTEY P; - an internally plotted
L2 form
M - empty
. ‘ Li = rj - register j
t; - temporary i
3 1, - some other location
L n - some compile-time
parameter

1f TYPE is r, then Ll indicates the register containing the value:

L2-Ln are empty. If TYPE is s, L1-L3 contain the base, index and dis-
placement of the location containing that wvalue, TIf TYPE is a function f,
then the rest of the entry contains ordered arguments which that function
will use, If argument i is a runtime value, then Li indicates its loca-
tion. If argument i is a compile-time value, them Li itself is that wvalue.
As discussed in section 1.2, f represents a load/update pair, and the Li's
can be considered arguments passed to it, indicating a complex location in
core. When TYPE is Py, the Li's represents some 'internally plotted'
format used within structure references.

The MRT contains fields which a macro can use to indicate where its
computed result is, and to put out information for deferred code generation.
In practice this information need only be kept recorded for a few inter-
vening macros before the values are used, after which the MRT entries can
be considered empty. If optimization of common subexpressions is being
done, of course, a value specified by an MRT entry might have to be used

several times before that entry could be considered empty.

RST: For each register, the RST contains a set of entries of the

following form:

VALUE VALUE - a pointer to the MRT entry
(matrix line no., entry no.)
MISC1 = A (empty)
. MISC, - miscellaneous information for
locking wvalues into registers
MISC,

The RST is used for recording what registers are currently in use, and
what values they contain. This information is used by the GETREG function
to locate a free register. When this function has to store a register,
it uses the pointer (the VALUE) to update the correct MRT entry so that
the entry then contains the temporary into which the value was stored.

The RST is accessed by the GETREG function via a class-definition
table which indicates which registers are in the various classes.

USES OF THESE TABLES: The code generator uses these tables as outlined

below:

1. Computation macros - When z macro outputs code to perform some
computation, it sets any registers containing operands to A (unless
that value is to be reused), it sets any MRT entries for the operands
to A (unless it is to be reused, in which case it merely decrements
a count), it updates the appropriate entry in its MRT cell to the
result of the computation, and it puts a pointer to this entry into
the appropriate place in the RST.

2. When the GETREG function stores a register into a temporary, it auto-

matically sets the appropriate MRT entry to contain that temporary.

19

In this way looking at the MRT will tell you exactly where every
value which has been computed but not yet fully used is located.
1.4 SUMMARY :

In summary, a code generator cuﬁsists of the following routines and
tables:
ROUTINES:
1. User source macros: including

a, computation macros (such as ADD) which can be written
independently of data-dependent information

b. data structure macros (such as SUBSCRIPT) which fit
into the PLOT-LOCATE framework

2 Code-generating utility routines: to handle the data-dependent logic,

3. A GETREG function: to obtain free registers of a given class

4. LOAD/UPDATE and CONVERT functionms:

TABLES:

which can be applied to 'locations'.

Ls

&

which records where every relevant computed value is at any time

which records the state of the registers.

Computation Data
‘ macros . macros
Tun-time
ADD, MUL, etc. computations 88, BUBST
data de?endent; CONVERT LOCATE
logic .

LOAD

IHPD&TE

NS

GETREG

Rough Hierarchy of Routines

20

CHAPTER 2:

2.1 A CODE GENERATOR AS A STATE MACHINE:

This chapter describes a code generator as a state machine whose state
is determined by the location of the values which are to be used in genera-
ting code. These values may be in simply addressable core location, in non-
simply addressable core locations, or in a register, of which there may be
several classes,

Each computational macro has associated with it certain permitted
initial states for its operands. For the 360, for instance, initial states
for an integer ADD macro would be: 1., both operands in registers, or
2, one in a register and the other in core. The process of generating
code for such a macro, therefore, is the process of the code generator
making a trasition into one of these initial states, followed by the
emission of a particular code sequence from that state,

Computation macros are thus described in terms of permitted initial
'states', a code sequence to be emitted from each state, and a location
where the result of the computation will be left,

There are several advantages to this more descriptive sort of macro
system, It makes the job of writing macros simpler since it eliminates
the repetitive testing (as described in sectiom 1.1) in each macro to as-
certain the state of the operands, since this is donme by the system. Also,
by making code-generating a more descriptive, rather than procedural, process,
it is a step towards automatic code generation, in which the code-generator
need only be fed some suitable description of the object machine. fhis
system provides a good environment within which to explore some of the
problems involved in automatic code generation for a broad class of object

machines.

21

2.1.2 AN OVERVIEW OF THE STATE MACHINE:

This proposed 'state machine' model rests on three conceptual levels

of looking at code generation,

1.

The code generator is seen as a state machine., 1Its operatiom is seen
as one of making successive transitions into a sequence of initial
states required for emission of code for a given sequence of operations.
This picture of code generation is independent of whether the user
specifies these tmmsitions procedurally, or whether the system deduces
them sutomatically from descriptive informatiom.

For a class of object machines, it is possible to create an automatic
mechanism to perform these tramsitions from any arbitrary state into

a permitted initial state, The fact that such an automatic method

can be specified, irrespective of efficiency, is significant in itself,
since it points the-way to more automatic code genmeration, and provides
a framework for evaluating cost and efficiency problems of such a
system in detail,

This mechanism can have rules built inte it for choosing which of
several permitted initial states to aim for, and which of several path-
ways to use to get there, based on cost information and efficiency con-
sideratioms. The degree to which these rules are successful determines
how efficient the code will be. In a practical system, this might be
the most critical aspect, In fact, there does not seem to be any in-
herent reason that this sort of system should not be able to produce

efficient code.

22

L USING THE STATE-MACHINE:

There would be two stages in writing a macro in DMACS taking
advantage of this state machine concept. First, the language writer
would use MIML to create a machine independent macro. Then & machine
user would fill out this macro with OMML declarations. As an example,
consider an ADD macro, If there was only fixed arithmetic in the language,
the MIML code would be trivial:

macro ADD X,Y (commutative)

ADD X,Y

This indicates that part of an OMML program labeled ADD is to be used in
expanding this macro. For the 360 this piece of OMML code would be:

ADD Al,A2:

from REG(Al),REG(A2) emit AR Al,A2 result REG(AL)

from REG(Al),WORD(A2) emit A Al,A2 result REG(ALl)
Notice that this OMML code is a non-procedural description of 360 integer
arithmetic. Together with this OMML section, the machine user would have
also given a description of his machines register structure and of paths
between it and core.

If the ADD macro was to handle floating arithmetic as well, the MIML
program would have to be more complex. It would check to see whether the
operands were fixed or floating and indicate different OMML sections for
the two cases: i,e,, ADD X,Y and FADD X,Y. The macro might also handle
conversion between the two modes,

2.1.4 TYPICAL MACROS:
Typical macros might be defined as follows for integer arithmetic on

an IBM-360-1like machine with a complement-register instruction.

13

MIML code:

macro

macro

macro

OMML code:

from
from

from
from
from

from
from

ADD X,Y (commutative)*
ADD X,Y

SUB X,Y
SUB X,Y

ML X,Y (commutative)
MUL X,¥

ADD Al,A2:

REG*(A1) ,REG(A2) emit AR Al,A2 result REG(Al)
REG(Al) ,WORD*(A2) emit A Al,A2 result REG(Al)

SUB S1,52:

REG(S1),REG(52) emit SR §51,52 result BREG(S1)
REG(S1),WORD(S2) emit S $1,82 result REG(S1)
REG(S2),WORD(S1) emit COMPL S2;A S2,51 result REG(S2)

MUL M1,M2:

ODDREG* (M1) ,REG(M2) emit MR EPAIR(M1),M2 result REG(M1)
ODDREG(M1) ,WORD(M2) emit M EPAIR(M1),M2 result REG(ML)

Notice that the programmer only specifies permitted initial states

for code emission. For each macro call, the code-generator has to check

if one of these states exists, and if not, it must have the necessary mach-

inery to attain one of these permitted states, by generating the appropriate

code,

%* (REG and ODDREG are user defined register classes. EPAIR is a
register-register relation. WORD is a user defined memory class.
'Commutative' tells the system that the computation is symmetric,
and therefore to also accept REG(A2),WORD(Al), for instance, in
the case of the ADD macro.)

24

22,1 IMPLEMENTING THE STATE MACHINE:

This chapter will outline how DMACS is organized to implement the

state machine concept. This organization has several parts.

1. A register-structure description: in which the machine user defines
his registers, classes over these registers, and data paths among
registers and between registers and core,

25 A GETREG function which is deduced from this register-structure
description.

3. An algorithm for choosing a target permitted initial state to aim for,
for each possible input state, in the automatic transition.

4, An algorithm for sequencing the application of transformations to
accomplish this transitionm.

3. A general algorithm for locking and half-locking values into registers
in preparation for code emission from a permitted state.

6. A top-level algorithm to coordinate a macro execution: i.e., the
automatic transition followed by code emission.

The remainder of this chapter will discuss each of these topics in
turn.

2202 REGISTERS:

Registers are the system resources which the code generator must mani-
pulate to attain permitted initial states. Therefore the user must be able
to describe registers flexibly enough to include a large class of object
machines, yet with enough restrictions so that GETREG logic can be genera-
ted from this description automatically., In particular the system must
be able:

B To obtain a free register of a given type.

2 To store any register.

25

3. To load any register.

4, To transfer any value from a register where it might be left by a
computational macro into any other register where it then might be
required,

To allow the system to do this, the user defines a register structure,
and indicates the data-pathways, both within it, and connecting it to simple
memory (for temporaries). There are a few simplifying assumptions made as
to what this structure looks like, but these assumptions follow intuitive
notions of object machine structure, The user defines:

1. Registers T, i=1i,m

2 Classes over these registers Ri i=Lm

se. Vr (3, s raR)

and ‘dak, VRJ'#(R MR.=R, or R. or nil)

i] i

In other words, every register is in at least ome class, if only by
itself. Also any two classes are either subsets or disjoint. There is no
partial overlap.

3. Sinit; The subset of these classes which might hold computed results

is called Rres' Therefore, the initial arbitrary input state of the

macros is taken from sin =RresLMEH, where MEM is core memory.

it

4, Pathways to core: Each class of registers is assumed to have a direct

path to and from core. There is no need to go through a second regis-
ter in either loading or storing. The user must specify what these

pathways are.

o Paths from Rres to other registers: The user must specify possible

register to register moves from, and within, Rres'

26

6. Relationships between registers: The user can define specific re-

lationships between registers (such as even-odd pairs). He can also

specifyAthat when using one under a given class name, the other must

be stored and made available as well,

Thus the user describes a register structure, and defines paths
within this structure and between it and core. Using this information, the
system will construct a GETREG function for the various register classes,
and will have the machinery to restore any change that that function makes
to the register structure's state.

2.2.3 THE GETREG FUNCTION:

The function GETREG(REGIYPE) returns a free register of the type
"REGTYPE', or alternately a free regilster-pair, for instance. This routine
has the ability to store values out of registers (and update the MRT).

When any function is called which in turnm calls GETREG, it is not necessarily
known what state the code generator will be left in, since values may have
been stored.

The logic of the GETREG function is quite straight-forward. It con-
sists of cycling through a given class of registers attempting to find an
empty one., If there are none, it must decide which register to store based
on the 'flags' attached to the various registers. These flags are used
to lock certain values into registers in direct preparation for outputing
code, and to half-lock values so that they will not be stored during a given
~ macro expansion unless necessary. The actuai mechanism for flagging requires
some thought, since macros can be called as subroutines during a given
macro expansion., Flags set by the different macros in a single source macro
expansion would have to be separable., (An algorithm to perform this is

given in section 2,2.7).

27

Another problem that the GETREG function has to handle is a situation
like an even-odd register pair, when two registers must be freed simul-
taneously. To be able to deduce this sort of logic from a machine des-
cription, it is necessary to try to anticipate this sort of.relationship
between registers.

2.2.4 SAMPLE REGISTER DESCRIPTION: IBM-360

rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,rl0,rll

rclass ODDREG:r3,r5,r7,19,rll

relation EPAIR (stored:ODDREG)

r3:r2
r5:rh
r7:rh
r9:18
rll:rl0

rpath WORD-REG: L REG,WORD

rpath REG-WORD: ST REG,WORD

rpath REG-0ODDREG: LR ODDREG, REG

This defines two register clssses, For each member of ODD, a related
EPAIR register is defined, which is to be stored when the ODDREG member
is used as ODDREG. Paths between storage and registers are described.
Zeted INPUT TO THE CODE GENERATOR:

Input to the code generator is a series of macros of the form:

OP Al An, where OP is the macro name and Ai is the ith argument.
Arguments can be described by a triple, (t,£f,p), where:
t (type) is s - the argument is simply addressable
r;- the argument is in register r
R.f - the argument will be in a register of class R; after
applying the function f.
£ (function) is a code-generating function (transformation), possibly nil,

required to generate the actual value represented by the
by the operand

28

p (pointer) is a pointer, either to the symbol table or to results
left in the MRT by a previous macro. The information
pointed to will be used by f.
The code generator will use this information to automatically gemerate
a permitted initial state for a given macro.
2.2,6 THE AUTOMATIC TRANSFORM:
There are two steps in the process of automatic transformation, First -
choosing a target state to aim for, and second - sequencing the application

of functions to the macro's operands to attain that state,

8 Choosing Target States: Choosing target states is quite straight-

forward. Each operand of a macro represents a value which is either in
core, in a register, or pointed to by a complex address to which a LOAD
function can be applied,

The target selection algorithm is designed for macros of two operands,
but the ideas could be expanded to handle more operands easily. This al-
gorithm maps each two-operand pair (from the set of possible inputs) into
a permitted initial state. If there is only one such permissible state,
then the selection process is already done.

The most general way to do this is, for a given input state, to minimize,
over the permitted states, the sum of
! the execution times of the instructions of the macro, plus
e the execution time for the pathway to that initial state. (i.e., the

loads, stores, or register-to-register transfers).

The algorithm given here merely minimizes the number of instructioms in the
pathway.

For a given input state, the algorithm uses the function 'Compare' to

obtain the cost (in number of instructions) of transforming that input to

29

each permitted state., The target for that state is set to be the permissible
state with lowest cost.
The Compare function determines where the two states differ, and how

many instructions it would take to read just operands.

Examples: input permitted state cost in instructions
r,s R,3 0
8,s R,s 1 load
I R',s 1* load register
Rg, s R',s 0%
Rf,Rf R,s 1 store
r,s 8,r 2 store, load
ete.

(In this example, r is a register in class R but not R' and R' is a
subset of R, s refers to an operand in simply addressable memory. The
cost function is based on a 360-1like computer,)

*The only minor idiosyncracy of this algorithm is tﬁat if onme compo-
nent of the input pair is of the form 'Rf' (indicating that the operand
is complex but can be generated into a register of type R), and its
final state is a register of type R', where R' is a subset of R, then it
is assumed that the value will be generated directly into an R' register
by the function f, and therefore the cost (due to this operand) is 0.

The selection of a target state for each initial state pair need not

be done every time the macro is executed. It can be compiled into a table

when the macro definition is processed.

30

Algorithmlsg select target state:

I = set of possible input states, 1e(SRIRIE)X(SRIRIE)
where S = MEM and RjE€SINIT

P = set of permitted initial states P € (SURJX(SUR])
where s y MEM and Rj is any register class
(P is assumed ordered for convenience)

Problem: to map each i into one P
1. if |[P| = 1 thenV icI target (i) = pep

L. for each i e I do:
a. savel « P
save? « compare (i,p;)

b. for PjeP j>1 do:

1. temp -~ compare 93
2. temp:save? if Breater or equal do nothing
if less save] « Pj
save? ~ temp

c. target (i) = savei
finished

Compare (i,p)
Ya: coBt = 0

2. (each argument is a two-tuple)
forn = 1 and 2 do:

a. 1if i, = Pn do nothing

b. 1f (in is of form Rif and Pn is of form Rj and Rj is a
subset of R}) do nothing

€. cost «~ cost = Instr (in, Pn)
finished
Instr (I2, I2) determines from a table the number of instructions in the

pathway between the storage classes.

31

IT1, Sequencing the functions: There are two different strategies for

sequencing the functions. One is 'blind sequencing' which is used when
enough is not known about the functions to predict what they will do. The
other is 'controlled sequencing' which is used when information is avail-
able about how the functions will use registers, and can be used to se-
quence them 'more optimally'.
Ls Blind sequencing: This is the gemeral case which could handle an ar-
bitrary register structure where the eifects of GETLOC were not easily pre-
dictable. In this case, it would be possible for the code generator to use
certain optimizing rules at macro definition time to actually compile a
graph -- which for each input state would tell which operand to apply
what functions to and in what order.

The graph has a node for each combination of {SLRiLEif)z-
For each node, the blind sequencing algorithm decides which function (or
load of store) to apply first, and them draws am arc to the node represent-
ing the result of that application. Since each arc goes to another node
in the graph, this sequencing algorithm need only determine for each state
the first function to apply. These arcs are labelled by a tuple indicating
what the transformation is and which operand is involved. (see figure) In
the examples given, the permitted states are enclosed in rectangles, and
the application of functions (either £, or load, or store) are implicit in
the labelling of the arcs. The dotted arcs are explained in the following
paragraph.

One problem in constructing this sort of graph is that if an operand
value is in a register when a function is applied to another operand, then

the first operand may be stored.

32

BLIND SEQUENCING GRAPHS
i INPUT: (S UryREf)X(suUryRE)

FINAL: (r,s)(r,1)

‘ G
£2
% o

r,s £2

5 Rf,r @
Y

8 f

\‘- f

b i 1 r,r - 21
r'eR'
II. INPUT: (s Ur Ur' URE) X (syUryr' YR 9 s

R'CR
FINAL: (r',s8),(r',x)

33

When this happens, an accidental tranmsition has occured. As a result,

in the general case, this graph must be augmented to include transitioms,
in such 'unstable' situations, to a state where the "unstable' value is in
core. These transitions are represented on the graph by dotted arcs.

Algorithm for blind sequencing: This algorithm for sequencing the graph

is quite ad-hoc. It consists of examining each state together with the
the target state and determining which function to apply first. This
algorithm is applied to each state to determine what arc to draw from it,
Applying this algorithm to every state completes the graph.
1. 1. 1If any operand is r and is to be s, then apply store to it.

2. 1If any operand is Rf and is to be s, then apply f to it.

3, 1If only one operand is te be in r, and it is s or Rf, then apply
load or f respectively.

4, 1f only one operand requires a functiom applies, apply it.

5. (Both operands require complex function and are to be in registers),
I1f there is an alternate permitted state, differing from target
only in that one value is in core, then apply £ to that operand
first, (Then, if the 'unstable' value is stored, you are still
in a permitted state.)

6, If one operand requires a register class that is a subset of the
cless required by the other, apply it first, (on the theory that
there will be more chance of finding one of the more restrictive
class first).

II. For all above, if there was a value in & register when a function

was applied, put a dotted 'accidental' transition to the appropriate state.
(The only additional consideration is that if a2 simple variable requires

a base or index register loaded, this must be loaded before emitting code) .

This blind sequencing need not be done at every macro-execution, but

merely when the macro definition is processed.

Controlled Sequencing: If it is known how many registers are needed by the

functions, and how many are required by the results, and a method is avail-

able for flagging registers so thatvthey would not be stored, it would

3

often be possible to determine a sequence inm which the functions could be
applied, with results locked into registers, so that no deadlocks would
occur, (A deadlock might occur if a number of values were irrevocably
locked into registers in such a way that the register needs of a later
function were unsatisfiable,)

For situations where even-odd pairs of registers were used by the
function, this determination might not be quite as clean and linear. In such
cases there might be a 'blind' indeterminate range where it was unclear
whether a given sequence would work. But even in such a case, attempting
controlled sequencing would give some degree of optimizatiom.

Algorithm: The general outline of the algorithm is:

AR = available registers 5

res{i) = number of registers used by results of i operand

use(i) = number of registers used by genmeration of ith operand

Fi res(1l) + use (2)
Fg2 = res(2) + use(l)

]

if AR > F, and AR>> F, then use 'blind' sequence
2 else if F; <Fp apply f; first else apply f; first

—
.

This controlled sequencing clearly must be done independently for
each macro execution.
2.2.7 GENERAL PROBLEM OF TRANSFORM:
Automatic transformation looks at the type of its operands, looks at
the permissible target states, and then initiates one or more transformations
to achieve one of these states. This process can be described in general
terms. It is the problem of:
Ea having an environment containing certain resources (registers) in a
given state (containing certain values).
2: wanting to transform these resources into a new state with certain

properties (certain values in registers).

35

3. having local functions which utili;e the resources while transforming
them, thus altering the resources in a p;ssibly unpredictable way,
while effecting a desired local change to them.

4, desiring to make a sequence of such local transformations and still
have the resulting global state well-deined (i.e., either the origi-
nally desired final state, or & permissible alternative).

5, allowing these local transformations to communicate
(via the Register State Table -- locking values into registers, ete.)
To accomplish this goal, the mechanism that generates initial states

must be able to detect when one function it applies stores a register that

it expected to be loaded, and either reload that value, or else pick a

different target initial state. There are two potential problems in a

general system of this sort: 1, static deadlock and 2. thrashing

(dynamic deadlock).

In the case of the code generator, this blind, unpredictable mode of
operation evantually degenerates to a simpler situation where values are
simply addressable and where the results of various operations are well
defined since simply addressable temporaries are used. Assuming that enough
registers do exist to handle the final results, controlled sequencing can
eventually be done with the necessary results securely locked into registers.
In other words, blind sequencing, even if necessary, eventually degenerates
into controlled sequencing.

The role of communication between these local functions via the RST
is an important ome. In blind sequencing, the best that can be done is to
half-lock critical values into registers, so that these will be stored

only in last resort. In controlled sequencing, when you know that enough

36

resources exist for the functions you apply, this half-lock is effectively
a full-lock and values can be counted on to stay in registers. This
implies that an integral part of expanding a macro is half-locking any
appropriate values into the RST, before applying any of the functioms.

Algorithm to prepare a macro for emission:

Associated with each macro is the current source macro line number:
CURLINE. Since several macro subroutines can generate co e during the
expansion of one source macro, a global number (MACROSUBR) is incremented for
each macro call, Since a macro subroutine call could be recursive, a
local wariable CURSUBR is provided to hold MACROSUBR for each macro.

This algorithm locks wvalues into registers by flagging the RST entries:

Value

Lineno

RST entry
Subrno flags

Trans

The algorithm also uses a global vector called ACCIDENT, set initially to
zero, which is used to record when accidental transitions occur. Entries
in this vector are set by the GETREG functionm.

MACRO: OP Al,A2

1s MACROSUBR ~ MACROSUER + 1
CURSUBR ~ MACROSUEBR

2. for n = Al,A2 do:

a., 1is n to be in a register?
ves - is n in that register?
lineno ~ CURLINE
subrno ~ CURSUBR
trans « 1

37

b is n indexed or based?
yes - is index or base in correct register
yes - in the RST entry for index or base
lineno « CURLINE
subno « CURSUBR
3. (sequence the application of functions):
a. if controlled sequencing can be done, then do it
b. if the blind sequencing graph is to be used
1. go to first node
2, 1if node is a final node go to 4.2
3. apply function
4

if an accidental transitien occurred
(i.e., if ACCIDENT (CURSUBR) = 1) then follow dotted arc
else follow mormal arc to next node

5. go to 3.b.2

4, (all values are in correct locatioms):

e load any necessary index and base registers for simply
addressable operands

b, erase all locks set by this macro in 2 above
output correct code sequence

d. erase operands from RST and MRT (unless subexpresalon
optimization is being done).

e, place record of macro result, if any, in RST and MRT

Algorithm of the GETREG function:

GETREG (REGTYPE)
This function cycles through the 'REGTYPE' class of registers in the RST

performing tests. Each RST element has the following form:

VALUE Value is a pointer to the MRT
or is empty §j

Lineno.

Subrmno.

Trans

CURLINE is the current source macro line number.

CURSUBR is the number of the macro which has issued the GETREG.

38

Algorithm for single register: look at each class member for:

1. an empty one - if so return
else 2, one with Lineno # CURLINE
- if so store it in temporary, update MRT and return
else 3. one with Subrno # Cursubr
- if so store it in temporary, update MRT and return
else &4, store anyone, update MRT return
(if trans = 1 for any register stored, then set ACCIDENT [Subrne] = 1)

Algorithm for register pair: this algorithm is very similar

first look for a free pair

then for a pair with at worst a different lineno. (if possible
half empty)

then for a pair with at worst a different Subrno. (if possible
half empty, else if possible half different lineno.)

else any pair
(if trans = 1 for any register stored then set ACCIDENT [Subrno] = 1)
2.3 OPERATIONS TO MEMORY:

A useful extension to the state machine concept, as outlined, would be
to allow operations-to-memory. These are a common class of instructions
and it would be straightforward to incorporate them. The user would be

allowed to specify alternate destinatioms for a value, i.e., for the PDP 10:

ADD X,Y
from REG (X), REG (Y) emit ADD X,Y result REG (X)
from REG (X) MEM (Y) emit ADD X,Y result REG (X)

OR emit ADDM X,Y vresult MEM (Y)
Only four alternations need be made to the logic outlined in this

chapter.

39

In outputting code for a macro: when one of these alternatives
occurs and the MEM is a temporary, defer the code generation and
flag the RST entry indicating the two operations and the MEM
location.

In the GETREG logic: when looking for a register to store -- gen-
erate any OPM instruction in preference to storing some wvalue expli-
citly,

In the target selection algorithm: when an input value is deferred,
evaluate both possible input stztes and choose the. one with lowest
cost. If the lowest cost option is 'OP-to-register' continue to
defer generating the code until it is clear that the value need not

be stored.

As preparation for a macro, generate any necessary OP-to-register code

of this sort for operands which have been deferred.

40

CHAPTER III: DESCRIPTIVE DATA REFERENCE MACROS

3.1 THE NATURE OF DATA REFERENCE MACROS:

This chapter represents a first attempt to develop a framework
which would let programming language data-references be automatically
implemented for an arbitrary machine. The class of machine structures which
this chapter deals with is not very broad, but hopefully could be extended.

The automatic state transition discussed in Chapter 2 allows a
machine user to generate computation macros from descriptive information.
The problem of acheiving the same kind of machine independence for data
structure macros must be solved by a different approach.

When writing data structure macros for a particular machine, one has the
following general flowchart:

Branch on data-type into:

Simple: ==~

Byte: ===

Bit: ===

(ete)
Here, the user knows exactly what data-types he will be dealing with and
knows exactly how each is mapped into core: ie. the machine addressability,
how the data-item fits into Hardware-addressable units, how to generate
ite 'location',6 and how to move it between core and registers. All of this
information in contained implicitly in the coding of the macro.

On the other hand, although the exact formats are different, and the
factors needed to convert indices to actual core locations are different,
the conceptual operations which are performed are very similar for the
various data-types. Thus it would be possible for the user to write
machine-independent data macros by specifying in the macro definition

the conceptual operations which are performed on the operands, and else-

where specify in descriptive form the machine-dependent information, which

41

will be needed to flesh out these operations for the various data-types, such
as:

1., What the different classes of storage are (bits, bytes, words,double-
words, etc.), how big each is, what boundaries they start on, and how they
map into one another.

2. What the basic addressable item is (byte?, word?).

3. The instructions or imstruction sequences needed to transfer the
different data-types between core and registers (ie. load, store, insert byte,
deposit byte, masking, shifting, etc.).

4., How the different user data-types map into this memory hierarchy.

The specification of these machine dependent details would be straight-
forward since it is done descriptively. The crucial advantage of this
gseparation of macro and machine-description, however, is that it allows the
macro to be written independently of the machine, and then be expanded by

a description of the machine memery and of the data-types used.

3.2 COMPILER ORGANIZATION:

This chapter describes how a compiler can be organized to yield
machine independence for complex data referemces. It does not describe the
internal workings of the DMACS system. Rather it describes a framework which
the language writer could use in organizing his compiler to attain this
independence. Then the chapter shows how this framework could be incorpora:ed
into DMACS to handle data-structures with fixed bounds. With such structures,
all the core allocation could be done at compile-time. and therefore machine
code need not be generated to compute at run-time data-item offsets within
structure elements.

The framework to be discussed involves:
1. Certain assumptions about machine addrrssing structure.

2. A general algorithm which would take machine-descriptive information
52

and compute, for a data structure, offsets and lengths for each data-item,

and determine what data pathway is to be used to access that item, and

other auxilliary information.

3. Data reference macros which are set up to use the information computed

in 2 to determine how to handle a given data-item on a particular machine,.

A particular data-item might be handled by different sections of logic

on different machines. (This is the key concept). Thus a macro can be pictured

as being written using 'semantic data-types', and the algorithm in 2. can

be seen as mapping actual data-types into semantic data-types for a given

machine, and computing semantic primitives describing these,

This approach differs from a machine-oriented compiler in several ways.

Parser

Symbol
Table

A machine-oriented compiler

> Macros
Core
Allec
Code
S
Generator

——> Machine code

In a machine-oriented compiler, the core allocator is generally built

into the parser, and its operation is seen as being quite separated from

the code generating logic, although the results it computes are part of the

generated code.

Parser

fStorage

Informat

<—YHierarchy

ion

DMACS

Code
Generator

f—>= Machine code

(user data macros
written in semantic terms)

In DMACS, the core allocator is, conceptually at least, divorced from

the Parser.

information about a machine.

It operates on the symbol table after being fed descriptive

43

Information which it puts onto the symbol

table (semantic primitive information) will be used directly by the user

data-macro logic when generating coce.

3.3 ASSUMPTIONS ABOUT THE STORAGE HIERARCHY:

Storage-classes: there exist a number of storage classes: cj

=

Storage hierarchy: these classes are hierarchically ordered; as in
bits, bytes, words, double-words

lowest class: there exists a lowest class- called 'bits', and all higher

classes contain an integral number of bits

addressable unit: There exists one member of this hierarchy with the

attribute 'addressable unit’
path: for each of these classes there are paths between core and registers

data-item mapping: & user language data-item can be mapped into this

storage hierarchy
Assumptions:
1. all data-items smaller than the addressable unit are accessed by the
bitstring pathway
2. BSome data-items larger than the addressable unit can be accessed by the
bitstring pathway on some machines (ie. 2-byte items on the 360)
3. no data-item is larger than the target register
These assumptions about the nature of machine memory addressing and
accessing are far from comprehensive. There are many machines which could
not be fit into this framework at all. This is especially true of small
machines where bit-consrving design strategies sometimes result in unusual

addressing schemes. The assumptions made in this chapter are oriented towards

S

a fixed word machine of the IBM 360, PDF 10, GE 645 wvariety. It would
be interesting to explore the problems of expanding this data-macro
discussion to include some more anomolous memory structures, but that will

not be done in this paper.

3.4 SEMANTIC DATA-TYPES:

The assumptions that we have made imply that indexing and offsetting
is either to be done in addressable units or in bits. As a result, when
manipulating indices, a macro can assume that the lengths of data-items
are expressed either in addressable units or in bits.

Therefore data-items can be considered as being of two different
'semantic' types in these manipulations.

1. single-unit items: items which were either one addressable unit long

or one bit long.

2, multiple-unit jtems: items whose length is either a multiple of addresaable

units or a multiple of bits. Associated with such an item is a number Np
which represents the length of the item in single units. Thus, in a subscript
macro, for instance, the index must be multiplied by Np.

Using this partitioning of data-items, a subscript macro could gemerate
a proper index pointing into a data base. There still remains the problem
of how to normalize this pointer so that it can be used to access the data-
item. Consider the problem of accessing a bit-string on the GE 645 and the IBM
360. Assume that you have the address of the base of the data area and
a bit index into it. (If the base of the data area includes a bit displacement,
then this must be added to the bit index). On the 645, you want to divide that
index by 36 (the word length), use the quotient as a full-word index, and

use the remainder as the bit displacement. On the 360, you want to obtain

45

the address of a full-word boundary, plus a bit displacement. To do this,
you could divide the index by 32 (the word length), and the remainder
would be a bit displacement. Then multiplying the quotient by 4 would
yield an index in addressable units. (This assumes that the base of
the area was full word alligned).

This discussion implies that a data item also may have the following
attributes:
Ng- & number to divide a bit pointer by, to yield a bit pointer as a

remainder
Ng- a number to multiply the result of that division by to yield addressable

units
Ny- a number to multiply the remainder by to yield an expression in bits
(N, and N, may be 1);

These numbers Np, Ng, Na, Ny may be considered to be semantic primitives.
A given data item would be characterized differently by these on different
machines, and hence would be handles by a different section of the data
macro logic.

The following example shows how such a semantic macro could be coded
for subscripting with fixed array sizes,
Sample macro logic: (Subscript)

S8 X, X1

is size of X fixed?

yes-- is X a single unit item
yes-- put into MRT locate(X;:I)
no-- multiply I by Ny yielding In
put into MRT locate(X,In)
finished :

where locate(X,I) is

is I in bits (to be used by the bitstring pathway)?
no-- put into MRT: Load/Update 'type', X,I

yes--i:igidi E by N4 yielding Id as quotient, Ir as remainder
aﬂ

46

yes-- put into MRT: L/U type, X, Id, Ir, length
no -- multiply Id by Na yielding Ia; put out L/U,X,Ia,Ir,length

Notice that a given data-item mizht be handled by different parts of this
logic for different machines. For instance, on the IBM 360 the byte is

the addresaable unit and would be handled by the single unit logic, wherz-as
on the word-addressable GE 645, a byte item would be handled as a bit string

by the logic for multiple unit items.

3.5 STORAGE MAPPING:

Part of the user's description of the memory hierarchy of his machine
involves describing how his data-types are to be mapped into this hierarchy.
Some data-types may start automatically on a particular boundary. Other
data-types may start automatically on some boundary when the user has
specified the attribute 'alligned'.

Since the machine user specifies this information to the code generator,
and can specify different sets of this information (different machine
descriptions), obviously no storage allocation of any sort can be built
into the parser. Only after processing a machine description, can it be
computed just how big different data-items are, and where they are located,
what semantic data-types they are, and what semantic attributes (Np etc.)
they have.

An algorithm is presented in section 3.7 to process a data-structure
using a machine description, and produce this information for the elements.
The algorithm outlined is designed to perform these cumputatiuns for
arrayswith fixed bounds. It can be thought of as a preprocessing of the
structure declarations, which 'primes the pump' for the machine-independent

data macros.

47

3.6 COMPILE-TIME COMPUTATIONS:

The previous discussion has presupposed that array sizes are known at
compile time. In languages like PLl, this need not be so. The problem that
arises when array sizes are not known is that all displacements below that
array cannot be known until runtime. Hence, in accessing any of these,
code must be ganerated to calculate displacements for these elements.

The exact nature of these computations and depends on the implementation
of the language. The problem of making these references machine independent
is different from the fixed array problem, since the algorithm described in
3.7 must be implemented partly in a procedural macro language, and partly
in a higher level language which could be compiled into machine code for
a particular machine. This problem is a sticky one, but still retains the
basic concepts discussed for acheiving machine independence in
data reference macros.

3.7 MACHINE INDEPENDENT CORE ALLOCATION ALGORITHM:

The following algorithm is a rough outline and may need some refine-
ment, Its purpose is to accept first, a machine description, and second
a set of data and structure declarations, and then to allocate core posi-
tions where possible, and also to compute the semantic primitives for that
data-machine pair. These primitives include: lengths of items in either
addressable units or in bits, semantic type (single or units), Nm (if
appropriate), and the appropriate lbad/update pathway to access that item

on that machine,

48

This algorithm makes several assumptions. Array sizes are fixed,
If a structure element itself is not aligned, then nothing within it is
to be aligned. Each structure element, if aligned on an addressable
boundary will be given a length in addresssble units, otherwise in bits.

The algorithm expects that a data-element will be described by
information (constructed by the parser) indicating: its data-type, whether
it is aligned, whether it is a terminal element (leaf) of a structure or not,
its length, whether it is indexed, and if so what the indexing bounds are.

The algorithm works on a structure recursively, determining absolute
addresses if possible for data-items., (For data items within an indexed
structure element, this is not possible). In doing this recursive analysis,
the algorithm determines the length of each sub-element on a given level

and then backs up to the next highest level,

Structure
1 A A'\x
2 B B"\\
- »
2E E
3F kk_.F

In performing this analysis the algorithm uses a 3 element vector to record

displacements and lengths. This has the following format:

49

DISP: ADDR
BITS
FLAG

Algorithm

ADDR is the number of addressable units
BITS is the number of bits

Flag can be 1. 'absolute' meaning that it indicates

actual core location

2. boundary X indicating that the dis-
placement is relative but starting
at boundary X

3. 'bits' meaning only bit lengths are
being counted, and no alignment is
being done,

1. set DISP vector to address of beginning of data area, absolute

2, call ALLOC (DISP) which returns LENGTH

add LENGTH to DISP

3. is this last data-item on this level
-yes- stop

-no - go to 2,

ALLOC (disp) Local: L-DISP, NEXT, TYPE, MEMTYPE, LEN

8

2

L-DISP «~ disp

NEXT + next item declared

TYPE «~ type of NEXT (from parser)

MEMTYPE ~ storage class that TYPE maps into

(from machine description)

is NEXT to be aligned? (from parser input)

- yes - is L-DISP at correct boundary?
- no - increase L-DISP to correct boundary

call Analyze (L-DISP, NEXT) which returns LEN
add LEN to L-DISP

is this last element at this level
no - go to 2,
yes - return L-DISP

50

Analyze (disp, next) LOCAL:DISP, LEN

b 55
L.
3.7
mem BIT

is next a structure element?

yes - 1,

4.,

3.

is it aligned?
no - set DISP to 0, 0, bit
yes- set DISP to 0, 0, alignment

call ALLOC(DISP) which returns LEN for the sub-element
of the structure

is this element indexed?

yes - a. if element is aligned and LEN doesn't end on
correct boundary then increase LEN to boundary

b. multiply LEN by index number

c. record Nm
if next is terminal perform II.1 and II.2

return LEN

(not a structure element)

1,

if disp is absolute then record disp as address of item

2. put out bit length of item, if relevant, and the correct

load/update pair for MEMTYPE

3. return length of item

A ROUGH EXAMPLE STORAGE DESCRIPTION

mem BYTE (8 BIT, addressable)
mem WORD (4 BYTE, 32 BIT, boundary 00)

mpath

mpath
mpath
mpath

mpath

mpath

WORD—REG :
REG-WORD:
BYTE—-REG:
REG-BYTE:

BIT-REG:

BIT-REG:

L REG,WORD
ST REG,WORD
SR REG,REG;IC REG,BYTE
STC REG,BYTE

(WORD,DISP,LEN)
: & REG,WORD
SLL REG],DISP
SRL REG, 32-LEN

(WORD, REG (DISP), LEN)
L REG, WORD
SLL REG,REG(DISP)
SRL REG, 32-LEN

i1

mpath REG-BIT: (WORD, DISP, LEN)
L ODDREG, ALLONES
XR EPAIR(),EPAIR()
SLDL EPAIR(),DISP
SLL EPAIR(),LEN
SLDL EPAIR(), 32-DISP-LEN
L REG,WORD
NR REG,EPAIR
SHL R, 32-DISP
OR REG,R
ST REG,WORD

map BIT to BIT (align:WORD)

map CHAR to BYTE (align: BYTR)

map FIXED to WORD (align:WORD)

This storage description is a partial rough outline of what is needed,

Not included are:

1 load/update routines for bit fields which run across word boundaries

& the inclusion of some kind of runtime computation facility to
perform calculations like 32-DISP-LEN when DISP is passed as a
runtime value,

Also, in apractical system more flexibility might be desired such as the

ability to perform some of the more complex load/update routines as

subroutines,

52

CHAPTER IV: 'PROCEDURAL' VS 'FUNCTIONAL' DESCRIPTION

4,1 'FUNCTIONAL' vs 'SEQUENTIAL' DESGRiPTIDN:

In chapters 2 and 3 we have looked at how computational macros, data
macros, and register manipulation logic can be generated from descriptive
information.

A good deal of this information described the structure of the machine
(the register structure and the memory hierarchy), and the functions that
individual instructions perform within this structure. The description
of lead/update routines, on the other hand, involved the user specifying
an ordered sequence of instructions to perform together a specific function.
Describing instruction sequences in not the same as merely describing the
machine instructions available.

A distinction can be made, then between two modes of description., A
'functional' description system would be one in which the user merely
described his register and memory structure and instruction set. Such
functional description would assume a whole 'machine state'. The user would
describe how each machine instruction operates on this state: for instance,
what indicators a compare instructions sets, whether it skips, (increments
the control count) and what indicators a Branch-on-condition instruction
tests. From this sort of descriétian, the system would have to deduce how
all the little pieces interrelated, and would have to construct primitive
code sequences from this deduction.

A 'sequential' description system, on the other hand, would be one
in which the user was required to give some information implicitly by
ordering instructions into very low-level sequential primitives. This se-

quential description system is perhaps less elegant in some unclear sense.

a1

It does not put any real burden on the user, however, and it does make
the job of creating such a system much easier.

It can be seen that the task of creating a functional description
system for code generation can be separated into two stages, First
the creation of a system in which primitives could be given in sequential
form. Then once these primitives were isolated, deductive routines
could be included to deduce these primitives from functional information.
It might be interesting to try to deduce such sequential primitives from
a hardware register-transfer- language description of a machine.

Load/update routines, for instance, might be deduced from some
functional description of shifting and masking. Similarly, 'compare-and-
branch' primitives discussed in the next section ‘might be deduced from
some functional description of condition-codes, automatic skipping,
comparison, and conditiomal branching.

DMACS is a 'sequential' system, at least at present. As the 'sequential
primitives' needed become more clearly recognized, however, it may be
possible to include routines to deduce them from descriptive informationm.
4.2 SEQUENTIAL PRIMITIVES:

Load/update routines are sequential primitives which system requires
to be described. The user in creating machine-independent macros can
create his own., A good example of a case where this might be mnecessary is
the testing and branching facilities of the ‘machine.

Consider a 'compare' macro which generates a result of true (1)
or false (2). For the 360, this would be accomplished by the following

instruction sequence:

54

REG (Gl), REG (G2) CR Gl, G2 REG(1)

BG .+10
8k 61, 61
B A6

1 S

This is not a satisfactory solution to the problem, however, because
it is not a machine-independent macro definition. To allow the code for
such a macro to be different for different machines, suitable sequential
primitives must be defined. An example of such & macro is
macro: GT Gl, G2 (inverse: LE)

COMPJIG Gl, G2, .+3

SETO

BRANCH .+2

SET1
This macro involves four primitives which will be filled out by the machine
user (COMPJG, SET0, BRANCH, SET1). DMACS would perform appropriate
mapping into instruction sizes on the object machine, so correct addresses
would be branched to.

In describing his machine, the user would then give meaning to these

primitives. For the 360 these could be:

COMPJG C1, C2, C3
from REG (C1l), REG (C2) emit CR Cl, C2

B C3
from REG (Cl), MEM (C2) emit C Cl, C2
B C3
SETO emit SR REG, Reg result REG
SET1 emit LA REG, 1 result REG

BRANCH Bl B Bl

This approach lets the user describe his machine in a compact and quite
descriptive form while allowing the macro to be written in machine inde-

pendent form.

55

4.3 SEQUENTIAL PRIMITIVES FOR SUBROUTINE CALLS:

Allowing the user to write machine independent subroutine call
macros (CALL, ARG, ENTRY, RTN) does not require any elaborate machinery
as did computation or data structure macros. The reason for this is
that there is a very direct mapping between the operations which the
source macro specifies and the actual machine instructions.

To allow flexibility as to object machine structure, however, care
must be taken to assure sufficient machine independence. For instance,
the stack should be allocated in the correct increments of addressable
units. The nature of the stack pointer should be flexible: either a
position in core, a special register, or a set-aside register of a given
class,

Te help the user attain this flexibility, four system-deduced functions
are provided: .MOVE, _MOVEA, .ADDR, and .STACK. .MOVE will move its
first operand from core or from a register to the address specified as its
second operand. . MOVEA is like ,MOVE except it moves the address of its
final argument., ,ADDR will convert a number (i.e., of words) to the proper
number of addressable units, ,STACK represents the stack pointer. The
expression (,STACK) acts as a base.

Using these primitives, subroutine macros might be defined roughly
as follows: (these may not be sufficiently general)

MACRO ARG Al
.MOVE Al, (,.STACK) ENDFRAME + N
neN+1

MACRO CALL C.
N0
,MOVE .STACK, (.STACK) ENDFRAME - 1
.MOVEA .+3, (.STACK) ENDFRAME - 2
.MOVEA (.STACK) ENDFRAME, .STACK
J cl

.MOVE (.STACK) - 1, .STACK

36

MACRO ENTRY
STOREREGS

MACRO RIN Rl
.MOVE RI1, (,STACK)
LOADREGS
JIND (,STACK) - 2
Notice that some of the problems we are getting into here are not local
code generation problems, but rather general machine-independence problems
of a more global nature. It is not really within the scope of this paper
to address these. For a given real-world language, the compiler writer
might want specific primitives to be defined for linkage pointers, argu-
ment pointers, etc. This paper has only gone as far as applying this
technique to the stack. Real world languages might require a more broadly
designed system.
4.4 THIS SYSTEM VS, UNCOL:
In the real world, there are a large number of programming languages
and a large number of object machines. Automatic code generation as des-
cribed in this paper is an attempt to simplify this situation.

If DMACS is successful, a language written with a machine independent

macro code generator would be able to run on a broad class of machines,

It is not quite so clear how simple the inverse of this language to machine
adaptation would be. In other words, once a machine-user had written a
description of his machine for one code-generator, how much work would he
have to do to convert this description so that a language with a different
descriptive code-generator would accept it? Presumably, the register and
memory hierarchy, and computational instructions would be described the same
way. Obviously, the mapping of data-types into memory would have to change
if the data types were different. To the degree that the second language
used different sequential primitives, this part would have to change, but
with some standardization, this change could be kept minimal. Hopefully

then, any changes would be small ones and rapidly done. On the other hand,
57

if the language was radically different, the changes might be more sub-
stantial, but this is not unreasonable,

It is instructive to compare this approach to the problem of pro-
liferating languages and machines to that embodied UNCOL, an attempt at
creating a universal macro-like intermediate language. The hope was that
any high-level language could first be compiled into UNCOL and the UNCOL
could be compiled into any machine code, Thus, complete program trans-
ferability could be ensured at the cost of only one tramslator per lan-
guage and one code generator per machine. 1In practice, the restrictioms
of having only one universal intermediate language have proved too confusing
to be easily solved, at least as yet.

DMACS sidesteps this problem in two ways:

1; It allows the user to specify his own macro language. Thus the macro
language can be tailored to the source language.

2, By letting the user deal with sequential primitives it creates a
standard interface very close to machine language.

As a result, the process of adjusting to this interface (writing different

sequential primitives for different compilers) is logically very simple

and straightforward for someone familiar with his machine but not with

the language.

Notice that if DMACS were a"functinnal description' language, taking
as input some register-transfer description of a machine to fill out its
sequential primitives, then this description could presumably be input
unchanged to any code generator. This would therefore solve the UNCOL
problem, by using a machine description as an interface, instead of an

intermediate macro language.

58

CHAPTER V: SUMMARY OF RESULTS AND AREAS FOR FURTHER THOUGHT
3.1 SUMMARY OF RESULTS:

T This paper develops a machine independent model of the process of

code-generation. This model pictures the code generator as:

1. & state machine which makes repeated transitions into permitted
states from which it can emit machine instruction.
2, operating on conceptual (semantic) data-types.
3. built on low-level semantic primitives.
This abstract machine-independent model is a step towards 3 more formal

definition of the code generation process.

I1. The paper shows how an implementation of this machine-independent
model could be set up to generate code for a number of different machines,
from machine-dependent information, given in a descriptive form.

ILI. The paper discusses some aspects of how a compiler (parser and
code generator) should be designed to allow this kind of machine-indepen-
dence.

Thus, the paper is a step towards formalizing code generatiom, and
abstracting it from any particular machine. This is similar to the formal-
ization of parsing which allows automatic creation of parsers from a BNF
description of a language.

5.2 FURTHER THOUGHT :

This paper has attempted to set down main ideas and to expand
upon & number of them, Some specific problems, therefore, still require
some thought.

It would be instructive to look through all of the constructs of a
powerful language like PL/I, and see what problems com up in fitting them

into the general automatic framework outlined in this paper.

59

It would also be interesting to consider the problem of deducing
semantic primitives from something similar to a hardware register transfer
description of a machine's instruction set. This problem would be a
substantial piece of research in itself.

X3 GENERALIZATION OF THIS MODEL:

The model presented in this paper is a restricted one in several

ways. It deals only with register machines and it assumes that the machine
has index registers. Also, it is not specifically designed to handle
operands of the sort required for 360 decimal arithmetic, for instance.
It would therefore by worthwhile to extend the model to include a broader
class of machine structures, In particular, it would be useful to extend
it to stack machines, to machines with no registers, and to machines with
more anomalous addressing schemes.

It would also be very relevent to consider how the framework discussed
here could interface with more global aspects of optimization, such as
common-subexpression optimization, removal of invariance from loops, and

optimal register allocation over loops.

60

APPENDIX I1:

This section contains a set of macros which handle computation and
control, written in MIML (Machine-Independent Macro Language). It
also contains part of two machine descriptions written in OMML (Object
Machine Macro Language), which flesh out these macros.

To write an entire code generator, data macros and subroutine macros
would have to be added to the MIML code and register and storage descrip-
tions and additional primitives would have to be added to the OMML

declarations,

61

SAMPLE MACHINE INDEPENDENT MACRO DEFINITIONS:

Note: the integer in parentheses after a macro name indicates that
macro's number. i,e. the uniform symbol indicating an ADD
macro would have an index of 1, .

MACRO ADD(1) X,Y (COMMUTATIVE)
ADD

MACRO SUB(2) XY
SUB

MACRO ASSGN(3) X,Y
+UPDATE (X,Y)

MACRO MPY(4) X,Y (COMMUTATIVE)
MPY

MACRO DIV(5) X,Y
DIV

MACRO GT(6) X,Y (INVERSE: LE)
CJG X,Y, .+3
SETO
¥ 42
SET1

MACRO LT(7) X,Y (INVERSE: GE)
CJL X,Y, .+3; SETO; J .+2; SET1

MACRO GE(8) X,Y (INVERSE: LT)
CJGE X,Y, .+3; SETO; J.+2; SET1

MACRO LE(9) X,Y (INVERSE: GT)
CJLE X,Y,.+3; SETO; J.+2; SETO

MACRO EQ(10) X.Y (COMMUTATIVE)
CJE X,Y,.+2; SETO; J «+2; SET1

MACRO NE(11) X,Y (COMMUTATIVE)
CJINE X,Y,.+3; SETO; .+2; SET1

MACRO JMP(12) X
J X

MACRO TJMP(13) X,Y
CJE X, =1,Y

MACRO FIMP(14) X,Y
CJE X, =0,Y

62

PDF 10:

from
from

ADD X,Y:

from
from

SUB X,Y

from

from
from

MPY X.Y:

DIV X,Y: from

from

CIG cl,c2,c3

REG (X) , REG(Y)
REG (X) ,WORD (Y)
or

REG (X) , REG (Y)

REG(X) ,WORD(Y)
or

REG (Y) ,WORD(X)
or

REG (X) , REG(Y)

REG (X) ,WORD(Y)
or

REG (X) , REG (Y)

REG(X) ,WORD(Y)
or

CAMLE cl,c2

JRST

CJL ¢l,c?,c3

c3

CAMGE cl,c2

JRST

CJGE cl,c2,c3
CAML
JRST

CJLE cl,c2,c3
CAMG
JRST

CJE cl,c2,c3
CAMN
JRST

CIJNE cl,c2,c3
CAME
JRST

SETO: from

SET1: from

JRST

c3

cl,c2
c3

cl,c2
c3

cl,c2
e3

cl,c2
c3

nil
nil

il

emit
emit
emit
i
emit
emit
emit
emit
emit

emit
emit
emit
emit
emit
emit

emit MDVEI s1,0

emit MOVEI sl,1

63

ADD X,Y
ADD X,Y
ADDM X,Y

SUB X,Y
SUB X,Y
SUBM X,Y

MOVC Y,Y;ADD Y,X result
MOVC Y,Y;ADDM Y,X result WORD(X) _

IMUL X,Y
IMUL X,Y
IMULM X,Y
DIV X,Y

DIV X,¥
IDIVM X,Y

result
result
result

result
result
result

result
result
result

result
result
result

result

result

REG(X)
REG(X)
WORD(Y)

REG (X)
REG(X)

WORD (Y)
REG(Y)

REG(X)
REG (X)
WORD (Y)

REG (X)

REG(X)
WORD(Y)

REG(sl)

REG(s1)

IBM 360:

CJG

CJL

CJGE

CJLE

CJINE

CJE

COMP

SET1:

SETO:

from
from

from
from

from

emit
emit

REG (X) , REG(Y)
REG (X) ,WORD(Y)

emit
emit

REG(X),REG(Y)
REG (X) ,WORD(Y)

ODDREG (X) , REG (Y)emit

from ODDREG(X),WORD(Y)emit

from

ODDREG (X),REG(Y)emit

from ODDREG(X),WORD(Y)emit

from

ODDREG(X) , REG (Y)emit

from ODDREG(X),WORD(Y)emit

c1,c2,c3
COMP C1,C2
BG C3

c1,c2,c3

COMP C1,C2
BL C3

cl;c2,e3
COMP cl,c2
BGE «c3

cl,c2,ec3
COMP cl,c2
BLE c3

eljc2,c3
COMP cl,c2
BNE c3

cl,e? 63
COMP cl,c2
BE c¢3

cl,c2:
from REG(cl),REG(c2)
from REG(cl),WORD(c2)

from nil
or
from nil
or
11

AR X,Y result
A X,Y result
SR X,Y result

S X,Y result
MR EPAIR(X),Y result
M EPAIR(X),Y result
DR EPAIR(X),Y result
D EPAIR(X),Y result
DR EPAIR(X),Y result

D EPAIR(X),Y result
emit CR cl,e2

emit £ ¢l;e2

emit LI sl,l result
emit MVC sl,=F result
emit XR sl,sl result
emit MVC sl,=F(0)result

64

REG(X)
REG(X)

REG (X)
REG (X)

REG(X)
REG(X)

REG(X)
REG(X)

REG(X)
EPAIR(X)

REG(s1l)
WORD(s1)

REG(s1)
WORD(s1)

APPENDIX II:

This section contains a rough first description of the

MIML and OMML BNF.

65

MIML: Machine Independent Macro Language

(PROG) ::= (DECLARATION) * (MACRO) * end
A program is a series of declarations followed by a series of macros.

(DECLARATION) ::= dcl (DCL)

(DCL) ::= externaltable (NUM) NUM (.IDN)*

| manifest (NUM) IDN (.IDN)*

The user declares any external tables he might want to reference, tells
what type it is, how many fields it has, and optionally gives names by
which he can refer to the fields. He also declares any manifest constants,
giving type numbers for them. Variables are automatically allocated and
need not be declared.

(MACRO) ::= macro IDN (NUM) IDN (,IDH}*{{(ATI)(;(ATI‘))*)}'I(M'DEF)

(ATT) ::= commutative | inverse : IDN
A macro consists of a macro name followed by its number in the macro
definition table, followed by any arguments, followed by amy attributes,
and finally followed by the macro definition.

(MDEF) ::= IDN | .IDN {IDN (,IDH)*}-I

|(PRIHITIVE) (; (PRIMITIVE) y* | (LOGIC)

(PRIMITIVE) ::= IDN {(ARG) (,{ARGR*]-I

(ARG) ::= IDN | . {+ NUM '-NUM] l=NﬂH
A macro definition can specify that OMML text be inserted, that a
system function (,IDN) be applied, that 2 primitive be expanded, or
that logic be executed.

(LOGIC) ::= (ST) | [(ST) T

(ST) ::= if (BOOL) do (LOGIC) | (COMMAND)

(BOOL) ::= IDN | (VAL) S (VAL) | .IDN {(IDN (, IDNY*))

(VALY ::= (VAR) ' NUM | (VAL) -z‘ (VAL)

(VAR) ::= {mrt] IDN} (IDN) . IDN | IDN

(COMMAND) ::= ,IDN (IDN (,IDN) *)] IDN (IDN (,IDN) *)

]break'(‘.’ﬂl) ~ (VAL)

OMML:

OBJECT MACHINE MACRO LANGUAGE
(PROG) ::= (DECL)"(REGDECL) (MEMDECL) (INSTDEF) (PRIMDEF) END
(DECL) ::= manifest (NUM) (LENGTH:NUM) IDN (,IDN)*
(REGDECL) ::= (CLASS DECL)*(REGREL)"(PATHDECL)*
(CLASSDECL) ::= rclass IDN : IDN (,IDN)
(REGREL) ::= rrelation IDN {((ATT) (;(ATT))*)} '(IDN:IDN)*
(ATT) ::= stored: IDN
(PATHDECL) ::= rpath IDN — IDN : IDN IDN (,IDN)"
(MEMDECL) ::= (STOREDEC)™(M-PATH)* (DATAMAP)™
(STOREDEC) ::= mem IDN {NUM IDN (,NUM IDN)*(, (M-ATT))}
(M-ATT) ::= addressable I boundary ot [picture = {NUM IDN}+
(M-PATH) ::= m-path IDN ({frommem | tomem} : (INSTR)”
(DATAMAP) ::= map IDN (NUM) to IDN {(allign : IDN)}‘l
(INSTDEF) ::= 1IDN : (STATEDEF)™
(STATEDEF) ::= from IDN (IDN), IDN(IDN) emit (INST)* result IDN(IDN)
(PRIMDEF) ::= IDN IDN (,IDN)*(PRIMBODY)*

(PRIMBODY) ::= (PRIMDEF) | (INSTR) | (STATEDEF)™

&7

BIBLIOGRAPHY

(1) Cheatham, T., "Course Notes on Compiling," Applied Math 295,
Harvard University.

(2) Strachy, C., "Fundamental Concepts in Programming Languages,"
Programming Research Group, Oxford University, England,

(3) Graham, R.M,, Programming Systems (to be published)

(4) Graham, Malek, Miller, P,, Murphy, Sussman, "LPS--A Language
Processing System'", ProgLing Memo no. 1, Massachusetts
Institute of Technology.

(5) Horwitz, Karp, Miller, R., Winograd, "Index Register Allocation,"
JACM, January 1966,

(6) Orgass, R,J,, and Waite, W,H,, "A Base for a Mobile Programming
System'", Comm. ACM, September 1969.

(7) Waite, W,H,, "A Language Independent Macro Processor', Comm ACM,
July 1967,

(8) Strong, J., et al,, "The Problem of Programming Communication
with Changing Machines: A Proposed Solution'", Comm ACM,
August 1958.

(9) Steel, T,B,, Jr., "A First Version of UNCOL", Proceedings WJCC 1961,
pp- 371' 378.

