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INTRODUCTION

The purpose of this paper is to study some notions of randomness

for infinite sequences of O's and l's.

We consider S = si s2 ... sn..., where si is either 0 or 1 with

equal probability; this probability being independent of the value

of the other elements of S. If such a sequence is obtained by choosing

0 or 1 at random, one can state properties, which will be verified,

with probability one, by some of the initial segments Sn of S. We

denote by Sn = s1 s2 ... sn the initial segment of length n of

S = sI s2 **. n... . For example: The limit of the relative

frequency of 1 in Sn is 1, when n increases indefinitely. Given

such a property or law, we can say that a sequence is random if it

has this property.

We shall restrict our attention on effectively testable properties,

and see under what conditions one can generate effectively (i.e. with

a program) sequences with some of these properties. Such sequences

will be called pseudo-random. We consider now some of those properties

in order to define random sequences.

a) The first point will be that a random sequence is unpredictable.

That is to say, given an initial segment of the sequence there is no

way to predict accurately what will follow. This notion has been

introduced by Von Mises, who defined:
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The probability of an event is the ultimate frequency of the

occurrence of this event, after an infinite number of independent

trials.

Upon this, he built up the definition of "kollektiv" or

random sequence. We will state precisely this notion, as well

as the formulations of Wald and Church, in the first chapter.

b) Second property: If a sequence is easy to describe; if it

contains some kind of pattern for example, then, it is not likely

to be random.

Kolmogorov formalized this idea and defined the descriptive

complexity for finite sequences. This complexity is then used

to define random infinite sequences.

c) The third property will use a completely different approach,

formulated by Martin-Lof. Indeed, if we want to speak of random

elements of a set S, we need to introduce a probability measure on S.

Random elements are then characterized by properties verified by a

subset of S of measure 1.

There we introduce a measure p on the set of infinite binary

sequences:

Q = [0,1) .

Which is the w-product of the equiprobable measure on (0,1). This

measure is defined for the Borel sets of the topology T, with basis:
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[x x2 ''' xnI set of infinite sequences beginning with x  x. ... n

where x, is either 0 or 1. Therefore to say that a property is verified

almost everflicz-4 of Cl (ivthtespect to p) is equivalent to say that

there is an opea set of asvitrtrtly small seasure including the set of

exceptions to this property. This will give us the definition of

sequeiaitl' t in the second chapter.

a ualt!*f1 study thetintewreLation of those concepts and consider

extensions of those definitions.
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CHAPTER I

VON MISES' DEFINITION

We first present the concepts of Von Mises about randomness,

then the related works of Wald and Church. We give three definitions

of random sequences or "Kollektivs".

Those definitions will lead us to those of gambling procedures

and to some interesting areas of research, as the study of Pseudo-randon

sequences.

1.1 Definition of a -Kollektiv

A Kollektiv is an infinite sequence

S = s s ... sn '.'

over a finite alphabet, such that:

1) Any element of the alphabet occurs in S with a certain

limiting frequency.

2) If we select an infinite set of indexes (placos)

I = (ii, i2' ''' n...), such that the decision as to

whether or not in : I depends only on the value of

(in, si, s2, ... , s , Si +1...); then each element

n n

occurs with the same limiting frequency in the subsequence:

S = s s. ... s. ...
I i 2

1 2 n

We will in this paper consider sequences of O's and l's and the

case where the limiting frequency of 0 (or 1) is
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Definition Let X = [0,1) = set of finite binary sequences

A selector f is a 0-1 valued function defined on X.

A place Selection P is the mapping which associates to each

infinite sequence S = 1s s2 .. , the subsequence (which may be finite)

P f(S) = S s ... Si i .

where i  = the least i such that f(s1 s2 .. =il 1

i = the least i, bigger than in-1, such that f(sl S2... s il

Notation. Given a place selection Pf and an infinite sequence S.

We write P for Pf

P(S) for the subsequence selected by P on S

P(S n) for the subsequence selected on the first n digits of S.

# P(S n) for the number of elements selected

#0 P(Sn) (#1 P(Sn)) for the number of O's (l's) selected.

1.2 Definition of A.WALD [131

Wald noticed that one ought to put certain restrictions on that

definition, since:

Given an increasing sequence of integers (n i), the process

which extracts from

S = 1s 2 ... sn .

the subsequence S' = s sn ... sn1 2 m

is a place selection.
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But if we consider all possible sequences (n.), for any S with

an infinite number of O's or l's there will be one (n.} such that

S = 1 identically (or S = 0)
n. n.

Therefore no sequence would be a "kollektiv".

To avoid this, WALD proposed:

Definition: Consider a countable set of places selection including

that one which selects every place; a sequence will be a "kollektiv" if:

For all places selection selecting an infinite number of places

the limiting frequence of the number of O's (or l's) is 2

1.3 Definition of Church [11

We can remark that, in order for a system of place selection

to be applicable, we ought to be able to reproduce each place

selection indefinitely.

It is equivalent to say, by Church's thesis, that the selectors

of those place selections are recursive function of X. Formally

Given a one-one recursive encoding t of X in [0,1,2,....

a place selection Pf is effective, iff the function f(t(-)) is a

recursive function.

Definition. A sequence S will be a "kollektiv" (in the sense of Church)

iff for all effective places selections, the limiting frequency of the

number of O's (or l's) is 2

Note that there is a countable number of places selections, and

thus, this definition is consistent with that of WALD.
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1.4 Definition of Gambling Algorithms

For defining random sequences we shall use an equivalent notion.

Notation: Given an infinite sequence S, S can be considered as

the characteristic function of a subset

of (1, 2....} i.e. n E s = 1

We shall often write S for F, and not distinguish between them.

Definitions: A gambling procedure is a total function gIEX, S) of

one integer and one set variable such that:

g(x, S) = Y(x, S - (x))

for some total recursive Y with range in (0,1,2}.

These may be called F (future)-algorithms, for emphasis.

A P(past)-algorithm is as above with

g(x, S) = T (x, S (0,l,...,x-1)).

Definition:

y(g, S, x) = 1(y x I g(y, S) # 2

= number of guesses up to x by g about S.

k(g, S, x) = 1(y s: x I g(y, S) = s )
y

= number of good guesses up to x

Cf. H. Rogers Theory of recursive functions and effective computability.
Chapter 15.
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k(g, S, x)

cC(g, S, x) =

y(g, S, x)

We call a(g, S, x) the accuracy of g on S at x.

a(g, S) = lim a(g, S, x) if such a limit exists
X 4 O

Definition: A procedure g is applicable to S iff lim y(g, S, x) = + C

A procedure g has a blag for S iff

_im a(g, S, x) > 2

Having defined gambling procedures, we shall show the equivalence,

within our subject,of place selections and P-algorithms.

Given a P algorithm.P, we define:

P0  the place selection which selects s whenever P(n, S) = 0,

and does not select otherwise.

P will do the same thing for P(n, S) = 1

Theorem

Given a sequence S if there exists a E-algorithm, P, applicable to S

such that either

1) CL(P, S, x) has no limit when x - + c

or 2) lim a (P, S, x) A

then there exists a place selection Q such that either
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#0 Q (Sn)

#Q (Sn)

#1 Q (Sn)

4; Q (Sn)

two conditions

S, X) I
2

4 9 En

S, x) <2

1
2

26
2

are equivalent to either

If the second case is true, we may use a

P'(S, x) = 1 . P(S, x) if P(S, X) # 2

P'(S, x) = P(S, x) = 2 otherwise.

Then for P'

jl a(P' S, x) > 2

So we can restrict our attention to case a). That is:

(SE > 0) (12 x) [a(P, S, x) > 6 +E ]

Considering now Po and Pi We have

y(P, S, n) -# PO(Sn) + # Pl(Sn)

urn
n 4 m

n

lism
n -4 M

or

Proof:

a)

or b)

The

lim

lim

first

a (P,

a (P,

we may use a P algorithm P'

if P(S, X) A 2

otherwise.
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k(P, S, n) = #0 PO (Sn) + #1 P1 (Sn

40 P0(Sn)Let ao0 (n) = 0 0

(I(P, S, n) =

#4 P1 (Sn

%0(n). 4 P0 (Se) + yI(N).A P1 (Sn)

# PO (S) + 4 P (S

In order to prove this theorem, we have to consider two cases:

Case 1): P guesses a finite number N of, say, O's. Then for

large n such that:

C(P, S, n) > 1 +E

1 N
tl(Sn) > ( 1+a ) (1 + pl (Sn

N

P I (Sn)

As N/# P1 (S ) can be made arbitrarily small:

(3E > 0) [al (Sn) > 1+ (i. o)]

Case 2: P guesses an infinite number of O's and l's.

Then CL(P, S, n) > 1 + = x(n) > 1
2 2 +E

or c0(n) > + [

Then since

(qn) [a (P, S, n) > +E ]

one of a, or a0 is infinitely often bigger than + .

Q.E.D.
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Let us now consider random sequences

Definition (Church)

A sequence S is random iff for any P-algorithm P

lim (X (P, S, x) =

X 4

Notation:. We shall write "random (VM)" for random in the sense

of Von Mises (Version of Church).

1.4.1. Discussion

The first obvious remark is that a periodic or ultimately periodic

sequence like

S = 001001001 ......

will not be a random sequence. Moreover, there is no way to predict

accurately a random (VM) sequence.

We have the important property, using the measure pt defined in the

introduction over n = (0,1}.

Theorem (Church)

iS I S is random (VM)} = 1

That is, a sequence S is random almost surely. In order to

prove this theorem we shall use another theorem (optional sampling

Theorem)
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Theorem (Doob) [141

Given a place selection P such that:

P(S) is an infinite sequence, almost surely.

Let P(S) = S' = s , s ... s'1' S2 n

then P : S -- P(S) is a measure preserving transformation. That is:

if A is a Borel set on 0, then

(A) is also a Borel set and p(\.) = p[P 1 ()I

Proof:

Consider the set 7 of sequences S's such that:

(1) (H P applicable to S) I [lim C (P, S, x) = -1r ' 2

We shall prove that 7 has measure 0. We know, by what is above, that (1)

is equivalent to:

(5 P applicable to S) lim a (P, S, x) >

Then N = U U F where = (S ('{ x) a (P, S, x) > +
P m P,m P,m

Since there is a countable number of P's.

(V P) (V m) [IPLIp( M)= 01 m - 0

Assume for some P and m: > 0. Then from P we extract P and P

(See Theorem above)
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0l= (S I S E , the subsequence PO x) has a frequency of

O's > +1 )
2 m

1= (S I S E 5, the subsequence P (S ) has a frequency of

l's + )
2 m

y' = 70 L) 1*

Assume p (O) >0

0. 1,Let = (S j the frequency of zero's > 2 (i. o

(V S E O P0 (s) E

But applying the strong law of large numbers, we have

= 0

-1
±[P- (F:,;)] 0

and 0 c 
P   N) 0 =(E

Therefore p(r) = 0 Q.E.D.

Remark: In the proof of this theorem we use only the fact that

there is a countable number of places selections.

The theorem would be true also for a larger definition of

random sequences. e. g. using r.e. gambling procedures where g(x, S)

divergent is interpreted as a no guess answer.
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We know that the characteristic function of a recursive set is

not random (VM), since this characteristic function is recursive.

This is also true for the characteristic function of a recursively

enumerable set (or its complement).

Fact: The characteristic function of a r.e set is not random (VM).

Proof: If this set is infinite, we use a recursive function enumerating

it without repetition, to construct a guessing algorithm.

Remark: By the same method; if the set, or its complement includes

an infinite r.e set, then it is not random (VM).

This leads us to the question: how non-recursive a sequence S

has to be in order to be random?

We shall use the Kleene hierarchy of sets.

The Kleene hierarchy classifies the "arithmetical" sets in

classes 7n, T n 0, 1, 2,... defined as follows:

7 is the class of all sets A of the form:

A = ((a 1 ,...,am ) ( l 2 P(a,...,am, X 1 ''''n

where P(a1 ,...,a x... 'Xn) is a recursive predicate, the Q2k+1 are

existential quantifiers and the Q2k are universal quantifiers.

n is the class of all sets A as above except that the Q2k+l are

universal quantifiers and the Q2k are existential quantifiers.
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Summarizing some basic properties of this hierarchy of sets

(see Rogers):

(1) 10 = TO =1 n 41 = the collection of all recursive sets;

(2) A n A n, all n;

(3) 'n cEn+ n C rn+1' :n C n+1 and Tn c n+1 all n;

(4) ' d n and (:7n for n > 0h nn 'n

(5) " U T C 7n+1 "n+l for n > 0 and containment

is proper.

Then we have

Theorem (Loveland [61): There exists recursively random sets properly in

Ai = 7 nT for i = 2, 3...

1.4.2. Critique of this Definition

From the point of view of gambling it may be that a particular

sequence is guessed accurately by a P algorithm, but there is

no effective way to find this good gambling procedure.

The notion of "accurately guessing" is also artificial.

may be that we have, for a sequence S, a procedure which will be

accurate infinitely often, but this procedure may be also very

inaccurate most of the time.
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For a random sequence and a given P algorithm it may also be that

the accuracy goes to - from above. This does not correspond to
2

the intuitive idea of a random sequence. More precisely, we will

state a theorem proved by J. Ville [12] (in a slightly different form).

Theorem (Ville [121): There exists a sequence S randon in the sense

of Church, such that:

In any initial segment of S, the number of O's is not greater

than the number of l's.

1.5 Areas of Research

1) We can use a wider class of gambling procedures Kruse [151 studied

this extension in its set theoretic aspect. Given a set and a

probability measure on this set, we can define arbitrarily random

elements as long as we keep the condition that almost surely any

element is random.

In a more restricted point of view, we may consider gambling

procedures in the arithmetical hierarchy.

2) We will in 1.5.1 present some remarks about the general F-procedures

as defined above.

3) One cannot effectively construct random sequences in the sense of

Von Mises. But if we impose a bound on the time necessary to guess

elements of a sequence, we can define and (effectively) construct

sequences which will look random to all "fast" gambling procedures.

We investigate this in 1.5.2.
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1.5.1 F-Algorithms

Recall that a F-algorithm is a function F(x, S) such that

F(x,S) = y (x, S - (x)) where 'y is a general recursive function

of one integer and one set variable, ranging in (0,1,2).

Our motivation for considering F-algorithms can be explained

as follows:

D. Loveland [5], made the remark that there are selection rules,

practically applicable, which are not place selections. On this

basis he built an extension of the Von Mises theory of random sequences.

Our extension of P-algorithms to F-algorithms follows the same pattern.

A P-algorithm, applied to a sequence S, is analogous to a process

of extrapolation. For example, if we consider Sn: s1 s2 ... sn as

the history of S up to time n, we want to predict what will occur next.

On the other hand, a F-algorithm is analogous to a process of

interpolation. Then, if we consider a sequence S we want to predict

the value of sn. For this purpose, we can ask a finite number of

questions about other elements of S.

In the next section, we will compare F and P-algorithms. Our

results are inconclusive. We will state a few results and remarks.

The first point is that Doob's theorem (optional sampling theorem)

no longer applies to extended place selections.

Definition: A F-place selection is a place selection with the difference

that the selector f is a function of a set variable and an integer:
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f(S, x) = T(S -(x), x)

where T is general recursive.

We have

Fact: There exist F-place selections which modify the distribution.

We define a selector f:

f(S' 1) 0 if s 2 1
f(S, 1)=

1 otherwise

f(S, n) = 1 for n = 2, 3,

We see that with probability 3/4, the first element selected

will be 1.

However, it is certainly possible to define random sequences

with respect to F-algorithms as in Section 1.4. This class of

random sequences will certainly be included in the class of random

(VM) sequences. In some special cases, we can decide whether the

containment is proper.

Theorem: If we consider gambling procedures with outputs in (0,1),

that is guessing at each argument, then: there are sequences which

are random with respect to P-algorithms but not for F-algorithms.

Proof: We know already

(W S t h ) Ot P P) [ ( , S)

Where P is the set of P-algorithms
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Considering such a sequence S = s1 s2...sn..., and defining

S' = s s ... S' ...
12 n

s =s

s' If (9 y < x) (y + 2= x) Then s'
x -y

else s

A F-algorithm may thus ask the value of s x+2 and gives this value

as output. If will be always right. Assuming there exists a

P-algorithm with a bias on S' i.e.

L(P, S', x) = k(PS'x) >I+ (i.o), for some p c N

Here, with our restriction, y(P, S', x) = x.

k(P,S'x) > 1
soc(P,S',x) 2 p

n
Let R = range [f(n)], where f(n) = n+2

Then (V x 0 R) [s = s']n x

Ther are less than log x elements in R smaller than x,

Since y + 2! x 2 < x = y < log x.

So if we apply the same algorithm to S, it will have

k(P,S,x) k(P,S,x) - log x
a(P,S~x) =

x x

2 p x

I + I (i.o)
2 2p

which is in contradiction with equation (1) Q.E.D.
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To conclude this section, we give, without proof, a theorem of

Loveland, stated in [51 in a different and more general form:

Theorem (Loveland):

Ther exists a random (VM)sequence S and a F-algorithm, F, such that

r(F,S) = 1.

1.5.2. Pseudo-Random Sequences

A recursive sequence of O's and l's is obviously not random, in

the sense of Church. Nevertheless we would like to construct sequences

which would be very difficult to predict.

To measure this difficulty, we will use the complexity theory as

introduced by Blum:

Let P.R. be the set of partial recursive functions, R being the

set of recursive functions.

Definition: For a Godel numbering (cP ) of P.R., a sequence

40' l'''' *n'... of functions in P.R., is a measure of complexity iff:

1) dom = dom cp.1 1

2) /\ (x, y)[ (x) = y] is a recursive predicate.

Definition: Given a function g r R. f in R. is g-computable iff

(9 9 = f) [§i(x) g(x) except in a finite number of points].
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We want now to introduce a measure of the complexity of a

P-algorithm P(S,x), which can be considered as a function recursive

in the set S.

P(S,x) = Cp (x) for some i

S S
We define for a function cp (:), a relativized measure f as a function

recursively enumerable in S, withithe properties:

1) (VS) [domain (f ) = 'domain (cp )]

2) A (i,x,y) [§ (x) = y] is a predicate recursive in S.

The complexity of P(S,x) is noted TT(S,x). r(S,x) may represent the number

of steps necessary for a universal Turing machine, with an oracle on S,

to compute P(S,x).

Definition: Given g in R, a P-algorithm P is g-computable on S if

rr(S,x) ! g(x) for all but a finite number of x's.

Definition: Given g in R, an infinite sequence S is random at level g,

if any P-algorithm g-computable on S guesses r with a limit accuracy

Our aim is to generate recursive sequences random at level g.

Since a sequence S is recursive.

0q i ) Wi()

Obviously if S is random at level g then the function f(x)

is not g-computable. The reverse is not true and was proved by A.

and J. McCrieght.

Theorem (Meyer): (V g E R) (V d E R) (

(Vi) [cp = C (x) > g(x) a.e.

(V x) (C(x) = 1 * (V y) (x < y

0.1 valued C 4 R)

and

s x + d(x) * C(y) = 0))I

s

Meyer
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Informally this means that there exist recursive sequences,

difficult to compute,with an arbitrarily small frequency of l's.

In order to construct a pseudo-random sequence, we could use

an extension of a procedure by Levin, Minsky, and Silver.

This procedure given a countable set of P-algorithms yields a

sequence which is random with respect to this set, and recursive

in an enumerating function of that sequence.

We present a different construction, which yields a recursive

sequence random at level g and which allows us to control the

variations of accuracy.

Theorem: For any g E R, and any positive computable function 6_(x)

with (x) = 0 and lim x a.(x) = + c, one can construct a sequence

S such that x .:

1) S is random at level g.

2) If we let y(P,S,x) = 1(y t x P(S, y) A 2 TT(S, y) < g(y)}

k'(P,S,x) = Ify < x I P(S, y) = s & T(S, y) < g(y)!

a'(P,S,x) = k'(P,S,x)/y'(P,S,x)

Then [ -,(y) < '(P,S,x) < +1(y), with y = y'(P,S,x)] (a.e.)

Proof: We use a diagonal argument developed by McCreight.

By definition a P-algorithm P(S,x) can be written as pg5(x) - P(S,x)

for some i.
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S S
To each cp. (x) we associate the measure (x), as above.

i. £

Consider the list (cp }. This is not an enumeration of the P-algorithms,

but all P-algorithms are in this list.

Assign to each element in the list an initial weight w0 (i) = 1/(i+i).

This weight may be changed at some stages. We define S in stages. At

stage x, S is defined and we compute sx.

Stage x

Define I = {i : x (x) !; g(x)} where a (x) g(x) means

that cp (x) did not use the oracle for y ; x and that a (x) ; g(x).

Let Ax

B(x) = (i E I Cp (x) = 1)

W = W(i) W
a iEA(x)

Let G(x) = .4

Two cases

a) If wa wb

2)

b) If wa s wb 1)

2)

7b irB(x)
W(i)

multiply all weights in A(x) by 1-q(x)

and all weights in B(x) by 1 + 9(x)

set s = 1x

multiply all weights in A(x) by 1 + g(x)

and all weights in B(x) by 1 - O(x)

set s = 0
x

END.
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To show this algorithm gives us the desired result; we define for

a P-algorithm P, and its complexity

Property Q(n):

(g x) [y'(P,S,x) = n and a'(P,S,x) > (n)]

Consider a P-algorithm P(S,x) = cp (x). Assume it has property Q(n).

Then at stage x

w(i) = C w0 i

m p
with C = n (1-9(x )) 1 (1+9(yi))

i=l i=l

where

m + p = n and + (x)

and

{x ) are the points z: P(S,z) s z

{y.} are the points z: P(S,z) = sz

Then C 2 (1-9(x))n (1+9(n)n+(n)n

But (1-9(n) )n (1+9 (n))n+n F (n) " +co when n . +o

As x ! n, If P(S,x) has property Q infinitely often, then C can be

made arbitrarily large.

Initially 7 w0(i) < + m, and at any stage this sum cannot

i=1

increase. Therefore this sum will remain finite, for all i.



Assaune

'(P,S,x) ! (y) (io) y - 'PSx

Thou from F, w can deduce another P-algorithm P, with the

same complexity on S, such that

P X) x + () (L.O.) y y (P',S,x)

Which in a contradiction.

Moreover if P is g-comutable on S then t(,S) • 2

S is random at level g.

1Q. D.

ri...

29

Thus any -algoritha has property Q at most a finite number

of times.

We have also proved:

(P,S,x) < I+ (y) (a...) y - Y'(P,S,x)
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CHAPTER II

SEQUENTIAL TESTS

2.1 Purposes and Definitions

As we saw in the preceding chapter, the definition of random

sequences using a countable number of place selections (or equivalently

gambling procedures) presents some inconsistencies with the intuitive

notion of randomness. See, for example the remark of Ville.

So let us look back at probability theory. Consider a random

sequence as illustrated by an indefinite repetition of independent

events, with a finite number of possible outcomes (e.g. 0 or 1).

Extending the notion of probability for a finite number of possible

events, we defined in the introduction a probability measure p over the

set of infinite sequences of O's and l's:

C = (0,1)W.

We characterize random elements in this set by the properties

they have almost surely. So, with Martin Lof [81, we will say,

informally:

Definition: A sequence w g 0 is random if it satisfies all "almost

surely" type theorem of probability theory.
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For example, a sequence random in the sense of Wald, will obey

the strong law of large numbers, (which is of first order) but not the

law of the iterated logarithm (which is of second order).

In order to make precise this notion, we look at what we call

"almost surely" type theorems.

An "almost surely" type theorem is a property verified by a subset

of measure 1 of Q. Examples: Strong law of large number: The limiting

frequency of the number of l's in a sequence w E 0, is almost surely .

Law of the iterated logarithm: Let n (w) be the sum of the n first digits

of the sequence W. Then

lim (resp 1 m ) n = + 1 (resp. -1) almost surelyn - res cor %1) 0gr~on

For such a theorem, then, we can say that the set of all sequences

violating the law has measure zero. By definition this means that to

every > 0 there exists an open U covering this set such that

<

For x E (0,11, let [x] denotes the set of all infinite sequences

beginning with x. Then, instead ofIA, we may consider the set

*
U = (x x] I) c (0,1)

Note that, conversely

U = U (x]
xrU
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If and only if t is open. We say that 'U is generated by U. Furtlr,

U has the property that it contains all possible extensions of any

of its elements (sequentiality); y being an extension of x (in symbol y z x)

if the string y begins with x. In other words, U may be regarded as the

critical region of a sequential test on the level E . The definition

of a null set may hence be stated in statistical terms as follows: For

every E> 0, there exists a sequential test on that level which rejects

all sequences of the set.

In order to be able to construct effectively these tests we will

impose some more restrictions. That is for a given sequential test:

1) the U's are recursively enumerable.

2) given m, one can effectively enumerate Um such that

[ j [x]] < 2-m
xEUm

*
Definition 2.1.1. Let X = (0,11

A subset U of N X X is a sequential test if

1) U is recursively enumerable.

2) Its intersections Um = (x g X1 (m,x) E U) are sequential.

That is,

(V x E Um) (Vy Y X) Ix y r Um

3) We have X - U 0  U 1 U 2 °

4) And '|dm the open generated by Um; verifies

p [m] < 2-m.
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From each sequential test U in N X X, one obtains immediately

a sequential test ('O,U1,...) in 0. The relation between 1lu and U

is reversible. We shall consider then as synonyms.

All effective tests from probability theory of the space j (with

are sequential tests in this sense.

The main property of this definition is that we can define a test

which will include all tests of the type defined above.

p )

Definition 2.1.2 A sequential test U is called universal if there

exists, to each sequential test V an integer C z 0 such that:

V c Um (m - 1,2,...)

2.2. Properties

Theorem (Martin-Lof) 2,2.1

There exist universal sequential tests.

Sketch of the proof: We define a Godel numering of the set of all

sequential tests: U(0), U (2) m,... and we define U universal

by its intersections:

U= lj U
i=0 m+i

Definition 2.2.2. A sequence is random in this definition (we shall write

random (ML)) if it doesn't belong to n m, for 'U universal.
m-1



34

We will call this set the universal constructive null set. This set

is the union of the null sets: n'., for all sequential tests 9

Since the universal constructive null set has measure zero,

we have:

Fact: Almost all sequences are random (ML).

We shall first study the position of some random (ML) sequences

in the arithmetical hierarchy, then relate this definition to the

notion of Kollektiv.

Theorem 2.2.3: The characteric function of a recursively enumerable

set (or its complement) is not random (ML).

Proof: Let A be this set and h a recursive function enumerating A

without repetitions. We assume A infinite.

Let hn = (n first elements of A enumerated by h}.

n= (S hn c S)

We have

1) I( n] !< 2-n, since n coordinates are fixed

2) the corresponding Un is sequential and

3) Un+l z Un for all n

4) Since h is recursive, U is also recursive.

Then if A or its complement is r.e., its characteristic function CA will

not be random (ML).
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Corollary: CA is random (ML) implies that A And its complement intersect

every infinite r.e. set.

So there is no random (ML) sequences, in 'r and TTVn. We show

that there is one in A2 = 52 n T2 (in fact A2 - (71 U mi))

Theorem 2.2.4. There exists A2 sequences which are random (ML).

Proof: We construct a characteristic function recursive in a recursively

enumerable set. The sequence representing this characteristic function

will be random (ML).

Let U be a universal sequentail test, x and y binary strings.

We know that 4(U ) ;1

Define C as follows:

x E C (a n) (Y y) (length (y) = n xy E U1 ]

Note x E U1 = x E C

Since U1 is recursively enumerable

V = (x!(V y) [length(y) = n =, xy U] is also r.e.

x C (an) [x Vnn

So C is recursively enumerable. Moreover p(4) implies that

at least half of the sequences of length n are not in C.

Using an oracle for C, we now construct a sequence S, in stages.

stage 0 Assume 0 / C, Let S .= 0

stage n+1 Assume Sn 4 C, then Sn 1 or Sn 0 doesn't belong to Co.

If Sn 1 / C then Sn+1 n1 otherwise 5n+1 m Sn 0. END
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No initial segment. of the sequence S so constructed will be in C,.

and therefore cannot be in U1 so S , S is random (ML) Q.E.D.

Using the same method, we could prove the following theorem, given

without proof:

Theo-rem 2.2.5. There exists random (ML) sets properly in

A = Ti n ni for i = 2, 3, ...

Let us now investigate the relation between this definition of

randomness and that of Church.

Let'VM = (SI there exists a P-algorithm with a bias for S}. VM is

the set of sequences not random in the sense of Church.

Theorem 2.2.6. If a sequence is random (ML), then it is random (VM)

Proof: Given a P-algorithm P, we extract the two corresponding

places selections: P0 ' l, as in chapter I. We define the set of

finite strings (for m, n integers):

An q0 = (S' E X g S initial segment of S', such that:

1) # P0 (S) n.

2) #0 P0(S) /# P0 (S) > I+-
q,0 q,0

Let Cn be the open set of 0 generated by A n

1) We have

q,0

m=n

q,0

m
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where

rq,0 = (SI The first m places selected by PO contains a number

of 0's > ( + ).)

From Doob's theorem, if Sn is the initial segment of length m of S:

P 1( , 0
) = Pr m contains more than m ( + ) 0's}

Let X ±.+.¾) >

We

P
r

have

q,0

rm

If we consider

H(A)) =A

We have

p (r ,O)r m

Since > 1-H

or

So

m
} 2 . r" (m)

the entropy function for 1:2 1

log + (1-A) log 1-1

2 2mH

2m (H(A)-1)

(A) = > 0.

-m

n -n

P I } F 2-am 1-
r m- m m-n '1-2-OL
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Therefore

We have also

2)

3)

4)

P( } 2 - 2--n+1
r n 1- 2 -a

q,O q,O
An+ An (Vn)

q,O q,0
x F A (w y) [xy E A n .

q,0
A is r.e.
n

. where [x] is the smallest integer greater

than x.

Then Uq,0 is a sequential test in the sense of Martin-Lof.
n

q,l
We could, in the same manner, construct U n corresponding to P

and some q.

Now if a sequence S is not random (VM),

(a P, P-algorithm) (g q) [M[P,S,x] > + (i.o)]

which implies
q',i

(n q') (h n) [S no n

and hence S is not r andom (ML).

I where i is either 0 or 1 ,

Q. E. D.

Let
q,0
U
n

q,0
= A 1+n

[ a
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2.3. As a conclusion we can say that, some random (VM) sequences

are not random (ML). This was affirmed by Martin-Lof in a private

communication, here is a straight-forward proof:

The law of the iterated logarithm, as given above, may be

stated as a sequential test. Thus, all sequences which do not

obey this law will be in the null set of that test.

Therefore, a sequence which does not obey the law of the

iterated logarithm will not be random (ML).

But by Ville [121 theorem, one can construct a random (VM)

sequence, where the ratio of the number of l's to the number of O's,

is always not less than 1. This sequence will not follow the law

of the iterated logarithm and therefore will not be random (ML).
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CHAPTER III

DESCRIPTIVE COMPLEXITY

After this survey of gambling algorithms and measure theoretic

arguments, we shall take another point of view, related to the difficulty

of description of a random sequence.

We can note that, if binary strings of length n are classified according

to the number of O's in them, the strings in the largest class will have

[n/2] zero's. Thus, if we draw a string at random, it will have with a great

probability, approximately the same number of O's and l's. By the same

kind of combinatorial argument, a string of length n, chosen at random,

has a small probability to contain some kind of periodic pattern.

From those simple remarks, we can deduce another definition of

randomness:

One characteristic of a binary string, made entirely with l's (or O's)

or a repeating pattern, is their easy description. In fact, it is

sufficient to have the length of the string and the pattern in order to

reconstruct it.

Kolmogorov, in [101, formalized this idea. He gave a new definition

of the relative entropy H(xly), x being a binary string. This entropy will

measure the difficulty of description of the string x, given the information

y (e.g. its length). This will enable us to define random elements as those

with the largest entropy.
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But, we have to make clear that a description of some element x,

will make sense only if we make precise the means to reconstruct x from it.

We consider, in this chapter, a description of a binary string,

as a "program" for a specific Turing machine (with binary strings

as outputs).

Note that we restrict our attention to effective reconstruction;

but we might as well consider more powerful means (using Turing

machines with an oracle, for example).

Given a Turing Machine A, with two inputs, we define:

H A(xly) = Amin )x tp
A\XYJ-A(p,y)-x

p is the program for x, t(p) its length.

Definition: The Kolmogorov Complexity (or descriptive complexit') of a

string x with respect to algorithm A is:

K (W) min

A(p)=x

If there exists a string p such that A(p) = x, otherwise K A '

The Kolmogorov conditional complexity of x given y, with respect

to A, is:

K (xly) = min AP
A A(p,y)=x

If such a p exists, otherwise KA(x1y)

There are several basic properties noted by Kolmogorov [91 which

apply to all two measures.
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Fact 1 There exists a universal algorithm B such that for an arbitrary

algorithm A and for x.

KB (x 1 t(x)) ; KA(xt (x)) + c

where c depends only on A and B.

Fact 2 If BI and B2 are two universal algorithms then there exists a

constant c, such that for all x:

K B1(xi (x)) - K x c

So two universal algorithms are equivalent up to a constant.

We shall hereafter refer to KU(xI g(x)) for an universal algorithm

U as K(xj I(x)).

Fact 3. There exists a constant c such that

K(xj t(x)) ! n+ c for all x

Fact 4 Less than 2r strings of length n satisfy

K(xI n) < r.

3.1 Definition of Random Seauences

Consequently, we are led to the definition: A finite string x will

be random if K(xI t(x)) is maximum for t(x) fixed.

We want to generalize this definition to infinite sequences of O's

and l's.
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First idea: a sequence will be random if all its initial

segments are random. And since the complexity is defined up to

an additive constant, we would have:

S, is random e (2 c) ('y n) [K(S nIn) > n-c

But such sequences, as shown by Martin Lof, do not exist. Indeed,

from probability theory, we know that a random sequence has almost

surely continuous sequences of O's or l's. It is clear that the

description of such segments of infinite sequences can be

substantially simplified.

More precisely

Theorem (Martin-Lof) [171): Let f be a real-valued function:

If 2-f(n) = + then
n=l

for all S E 0 ( n) [K(Snin) < n -f(n)].

Therefore if we want to have a consistent definition with the

fact that almost all sequences are random, we can have:

Definition I (Chaitin [81k

The set C of patternless or random infinite binary sequences is:

C = (SI (m n) K(SnI n) > n-f(n)}

where f(n) = 3 logn or any function such that

c -f(n)
= 2

n=1
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we will verify below that i(C )'- 1.

Definition IL (Martin-Lof):

The set R of random infinite binary sequences is

R = (S ( c) (7 n) [K(Sn I n) > n-cl

we will also show that p(R) - 1, and that R c C

3.2. Properties

We use the second definition. We will write "random in the sense

of definition II" as "random (K)".

Theorem 3.2.1

4SIS is random (K)) = 1.

Proof:

Let K be the complement of R in 0:

S E K v (c) (, n0) (v n t n0) [K(SnIn) n-cI

K (~ I ) n,c n,c -(S K(S In) ! n-c}
c n0 n4V

We know

p I c ]! 2-C p n n0 F 12cn,c n;-n 0 n,c
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Bnosc n2n nc P

p [U Bno4 2-c

Bnopc C Bn6+1,c C ''

[K] = 0

We prove now that definition I gives also a set of measure 1.

Theorem 3.2.2. Let f(n) be a function such that

C2 - < + ,Then for almost all S: (? n) [K(S In) > n-f(n)]
n=l

Proof Let (S ( n) [K(Sn In) s n-f(n)])

n0 n2no n
, I = (SIK(Sn n) < n-f(n)}

n

By Fact 4: (r) 2 -f(n)

2 -f(n)and 3 2  < + w implies by Borel.. Cantelli Lemma, that
n=l

p(7) = 0

To prove that a random (K) sequence is also random in the sense

of definition I, we use:

Theorem 3.2.3. (Martin-Lof) Given a function f(n). If 2- f (n)

n-l
and if given m,one can compute effectively N such that

2 (n) -m

n-N
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Then, for all random (K) sequences

(V n) [K(Snn) > n-f(n)]

The proof uses f(n) to construct a sequential test and uses

Theorem 3.2.4 below.

Theorem 3.2.4.

S is random (K) = S is random (ML).

Proof. Assume that for some universal sequential test:

S n m mm=1

This means (Y m) ( n0) ( n 2 n0) n mI

As 1) U is recursively enumerable

2) U contains less than 2n-m strings of length n.

We can describe an algorithm A generating S : Assume

given a program for generating the element of U, the number

n-rn
less than 2 . Given such data, A will enumerate U and

m

element. The program of A will therefore be of size:

'n-rn
Constant + log m + log 2 = n-m + log m + constant

1) a (V m) (* n) [KA(Sn n) s n-m + log m + cl

By Fact 2: K(S In) ! K (S n)-+ c'n. A n

(w m) (YV n) [K(S n In) dn n-m + log m + c''l

where c'' is a constant independent of S and n.

S E U . A is

m and a number z

outputs the zth

(I)
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Thus (V c) ( n) [K(S nn) < n-cl

o S is not random (K)

3.3 Definition of K as a Null Set of a Test

*
X = (0,1)

T= (x r X('V y g X) [K(xyle(xy)) ; *1(xy)-ml I

Then

1) Tm is sequential: x F Tm :* (V y C X) [xy C Tm

2) T 1 T2 ''' m .

3) = open in C2, generated by Tm: p() 2-

Let , is a null set.

Remark. The Tm above defines a sequential test in the sense of Martin-Lof

except for recursive enumerability.

What is the degree of uneffectiveness of T.

0
Theorem 3.3.1. T is 2

Proof. Let 7 = (xlK(xIg(x)) < Z(x)-m}

rm is a recursively enumerable set.

Tm = (x (Y y) [xy E mI)

or x E T m (V y) °°y E
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0
Therefore T and T are of the degree of 1T2'

m 2

Fact Using definition II we can see

S is random (K) c S 4 ()Cm.

0
We have therefore defined K as the null set of a test in r,-

Using the same method that in Chapter II. We can see:

Theorem 3.3.2. There are characteristic functions of sets in 63 which

are random (K).

0
That is an open problem whether T is properly in r2 Or equivalently,

since we know by Theorem 3.2.4 that M L c K: if this inclusion is proper.

By the precedings, we know that this notion of randomness is the

largest of the three in the sense that, its null set of non-random sequeices

includes the other two.

3.4. Pseudo-Random Sequences

Given a Turing Machine A, we defined the complexity of a string x,

as the minimal length of a program with which A will generate x.

We can, as in Chapter I, put a bound on the time necessary for A

to generate x. We shall present in this section a few remarks and a

theorem of McCreight (21, which may lead to interesting research.

Given a Turing machine A, with two inputs x,y, we define a

measure of the computation of A, with inputs x,y, we call this measure

Ct(x,y):
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1) Ca(x,y) is finite c the computation A(x,y) halts

2) a(x,y) = z is a recursive predicate.

We can take as example the number of steps of the computation A(x,y).

Definition 3.4.1. Given a recursive function g, the pseudo-complexity

of a string x = xI x2 ''' n

K'g (xjn) = min A(p)
A(p,n)=x

where A is a universal algorithm and

(V i ! n) [A(p, i) = x 1 x2...xi and rt[p, il s g(i)]

This definition is related to this of uniform complexity by Loveland (5].

We give a tentative

Definition. Given a recursive function g, a sequence S is random at level g, if

(i n) [K' (Sn In) > n-f(n)], where f(n) will be fixed further.

Rabin gives a construction of a 0.1 valued recursive function CP such that

(x) y g(x) (a.e.).

But with this property, the sequence

S = (P (1) 9 (2 ) ... (n)...

is not necessarily random at level g.

Assume that S has the property:

(En) [K' 9(Sn In) sg n-f(n)]
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Then, for arbitrarily large n, the string Sn = s s2...sn can be

described by a program p: 1(p) ; n -3 log n. We can construct

a pew program for S of the form a y P y p, where y is some

binary sequence which serves to separate a, P, p. a is the binary

encoding of the following instructions:

"Given input x, see if x-f(x) s; length of the string to

the right of the second y. If so simulate A(p,x) and

give the xth digit of the output as result. Otherwise

compute s according to the instructions given by p"

Let i be the Godel number of this program :log i = k-+n -f(n) where k

is a constant.

Let h(n) = n - f(n). The program cpi for the sequence S, will

have the property:

(x) s; g(x) on at least [h 1(log i-k)] inputs.

Let us now state a theorem by McCreight [2]

Theorem: (V E.> 0) (Vg E R) (q k E N) (q 0.1 valued c E R)( i E N)

[Co = c -. g (x) > g(x) for all but k +(l + g) log i values of x].

and moreover this c is effective given g,E.

Then we let f(n) = g'.n and construct the function c of the

theorem above with <
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If the sequence c(l), c(2),...,c(n),... were

there exists arbitrarily large i such that

logi-k
( = c and S 1 g on at least ,

ultimately larger than (1+E) log i + 6.

therefore random if we take f(n) = E.n

random, then

, wh i

This sequence is

We have:

ch is

Theorem. Given g, and (, y 0, one can effectively construct sequences

such that

(F n) [K' (S In) > (1-F &)n].

g nfl

Remark. It remains an open question whether the bound in McCrieght

theorem can be decreased to k + log i.

If that is so, then we would be able to construct sequences

such that

(a c) (q n) [K'g(SnIn) > n-c]

which would be a definition of pseudo-random sequences consistent

with the Kolmogorov definition.
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CONCLUSION

Each of these three definitions of randomness is in fact based

upon some set of statistical tests. We considered in this paper

only effective tests, i.e., usable with computer programs. We

could expand this theory to a more complete form by considering

tests arbitrarily high in the arithmetical hierarchy.

*
If we let 0 denote the recursive T-degree , we can define

a n-guessing algorithm as a total function g(x, S) of one integer

and one set variable.

g(x, s) = Y(x, S n (1, 2,...,x-1})

where T is recursive in the nth jump of 0:0 . A sequence S will

be random (VMn) if no n-guessing algorithm has a bias for it. Note

that Ville's result applies again: there are random (VMn) sequences

which do not follow the law of the iterated logarithm.

The definition of Chapters 2 and 3 zould also be generalized by

considering sequential tests as subsets of N X X recursively enumerable

in 0 (n), this will give us the definition of random (MLn) sequences;

and we can generalize the Kolmogorov complexity by using Turing machines

with an oracle for 0 (n), and hence define random (Kn) sequences.

Each of these extended definitions will yield a set of random

sequences of measure 1. The inclusion results hold also for these

(n)
definitions relativized to 0 . A random (Kn) sequence will be

random (MLn) and, in turn, a random (MLn) sequence will be random (VMn).

H. Rogers: Theory of recursive functions. Chapter 13.
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One other aspect of this paper, ahich could lead to interesting

developments, is the generation of pseudo-random sequences. Using

a measure of the complexity of a ;eat, we contruppkd sequences

which look randm, to all saipl rapdnane.s tqsts.

Those sequences could be useful for the generation of random

numbers with any distribution, with applic ain in various ields,

like simulation or coding theory.
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