
MIT/LCS/TM- 15

AN EXPANSION OF THE DATA STRUCTURING

CAPABILITIES OF PAL

St ephen N. Zilles

October 1970

AN EXPANSION OF THE DATA STRUCTURING

CAPABILITIES OF PAL

Stephen N. Zilles

MAC Technical Memorandum 15

October 1970

(This report was reproduced from an S . M. Thesis, MIT,
Department of Electrical Engineering, June 1970)

Massachusetts Institute of Technology

PROJECT MAC

545 Main Street
Cambridge 02139

ACKNOWLEDGEMENT

The work described in this thesis was in part supported by
Project MAC .and I am grateful for their financial assistance.

I wish to thank. my thesis advisor, Professor John Wozencraft
for his help in identifying important problems, his criticism
of weak arguments, his helpful suggestions, and his encourage
ment. I also wish to thank Professor Arthur Evans for helpful
comments and suggestions. Discussions with Bob Thomas and
D. Austin Henderson helped clarify some of the ideas presented
herein and I greatfully acknowledge their intelligent criticism.

My thanks also go to Miss Betsy Rutter who had the patience to
struggle through a mound of cryptic handwriting and produce
this typed manuscript.

Finally, I wish to thank my wife, Connie, not only for her
editorial assistance but also for the encouragement, faith and
understanding which made it possible to complete this work.

3

Stephen N. Zilles
Waltham, Mass.
June, 1970

CONTENTS

ACKNOWLEDGEMENT 3

I.

II.

INTRODUCTION

A Design Principle
Background
Overview

AN ALTERNATIVE TO AUTOMATICALLY DEFAULTING
TO LVALUES

The Implications of the Change to Location

6

7
8
9

12

Generation in PAL 22
Alternatives for Passing Arguments 28
Modifications to the L-PAL Gedanken ~valuator 31
Other Alternatives for Handling Assignment 33

III. REPRESENTING DATA STRUCTURES BY FUNCTIONS OVER
SYMBOLIC DOMAINS 41

Representing Data without a · Natural Ordering 41
The Properties a Data Structuring Facility

Should Possess 44
Landin's Structure Definition 46
The S-PAL Representation of Data Structures 50
Atoms 54
The Special Properties of Data Functions 58
Universal Constructors 64

IV. THE FORMAL DEFINITION OF DATA FUNCTIONS 67

Simple Structure Definitions 67
Predicates for Types with Alternative Forms 71
A Representation for the Primitives MakeStr

and IsStr 77
A syntactic Abbreviation which Defines a

Constructor and Complex Predicate 84
Data Functions with a ·Mixed Domain 88
Structures with Explicitly Enclosed

Substructures 94

4

The Standardization Process
An Alternative to the Ordered Tuple as

the Constructor Argument

110

l22

V. A TYPE SYSTEM FOR STRUCTURES 130

Dynamic Versus Static Type Systems 132
A Type System Based on Predi~ates 135
The Syntax for Verifiers 141
Using Verifiers in The Constructor 148
The Problems Associated with Unrestricted

Verifiers 151
The S-PAL Solution 160

VI , CONCLUSIONS AND ANALYSIS 162

Treating Locations as Values 162
Functional Data Structures 164
A Type System Based on Predicate Functions 165
A Possible Implementation for Data Functions 167
Possible Modifications to S-PAL and

Future Directions 170

Appendix A. The Complete S-PAL Syntax 182

Appendix B. -The Gedanken Evaluator for S-PAL 184

Appendix c. The Standardizing Functions for
Typeless S-PAL 193

Appendix D. The Representation of S-pal
Data Functions 195

Rl:FERENCES 19 3

5

Chapter I

Introduction

PAL is a language designed for use as a tool to help

teach programming linguistics [8]. As such, it incorporates

generalizations of many of the features that are found in

most common programming languages. PAL also has a relatively

compact formal semantic definition. However, careful reading

of this definition clearly shows that it would be much more

readable if . the control items and abstract syntax could be

represented with a more sophisticated data definition facility.

One goal of this thesis is to present such a facility.

But, the objective is not just to present the formal

definition in a - readable format. More importa-ntly, we are

interested in investigating the suitability of the PAL formal

definit i on techniques for describing data structures. Ne

wil l show that it is possible to integrate a facility for

data structures into the L-PAL subset. The formalization of

this facility is analogous to the formalization of the existing

PAL definitional facilities.

Another objective of this thesis is to increase the

flexibility of PAL and to give the user more con t r ol over

the form and use of his data. The features we will add make

stronger representations of the data structure possible. In

6

7

particular, the introduction of type checking and tags in

a ll data structures makes it possible for the user to limit

the properties of the data structures and to enforce these

limitations. Finally, changes to the handling of locations

increase the users control over their creation.

~ Design Principle

The research presented in this thesis is only an initial

step toward a satisfactory facility for structuring data.

There are many problems, some of which are discussed in the

thesis, which we leave unsolved. 'I'he whole area of data

structures is .a bottomless pit where each ·foray raises as nany

problems as it ~olves. Because there are so many paths to

explore it is necessary to adopt criteria for deciding when

to terminate an exploration.

The criteria we have adopted are simplicity and generality.

We have attempted to stop when there is no obvious continuation

to the work and when the facilities we have proposed allow

the user to implement his own specialization. It seems both

futile and impractical to provide special solutions for every

possible viewpoint. Therefore, when there is no one solution

which is clearly preferable to al~ other solutions we have

tried to move back one step and to adopt a simple approach

which is general enough to implement the proposed solutions.

Unfortunately, we have not always -succeeded in applying

these criteria. We have proposed some additions that appear

t o be excessively complicated for the additional facilities

8

they provide. The area of types is perhaps where these criterea

have been most successfully applied. However., we have also .

avoided introducing many of the specializattons suggested

by other authors when they could be implemented within the

existing language framework.

Background

Most existing programming languages include some facilities

for building data structure. However, there is no uniform

agreement on a suitable set of functions to include. Standish[33)

has surveyed most of the. work prior to 1967. Hence, we will

only update that survey to the present. The relevant background

material can be devided into three categories.

1) The majority of the work has been in defining

suitable notations for describing the data structures.

Most of this work (Earley·[?], Hoare (11], Standish (33)}

has been g~neral purpose and language independent,

but some more formal descriptions (Laski[lSJ ,

Lucas[20]} of a particu~ar case occur. It is also

necessary to men,tiQn the existance of several

general purpose languages (POP-2(4], BASEL[l0,12] ,

ALGOL68[37] , AMBIT/G[5]) which have included powerful

facilities for data structuring .

2) A given description usually has many possible

representations. Several authors have discussed

the problem of representation in both ma c hine dependent

(Earley{ ?] , La urenc e [19] , Vigor [38]} and abstract

9

terms (Balzer[l], Park[26], Reynolds[30J).

3) A limited amount of work in the formalization

of the semantics of data structures has occur~ed.

Park(26] explored the formal properties of

assignment in data structure. The majority of the

other work has been incidental to the formalization

of the languages· (BASEL[l0,12], GEDANKEN[30],

ALGOL68[37]) in which the data structure facilities

are embedded.

In addition to this general background material, several

authors had a particularly strong influence on the form of

the S-PAL extensions. The syntax and content of the structure

definitions is drawn from the work by Landin[13,16,17] in

describing data structures. The representation is a generaliza

tion of the functional data structures of Reynolds[30]. The

approach was al~o influenced by the structural facilities

of COBOL[36] and _PL/I[27]. The type system is largely novel,

but the tags used in S-PAL also occur in the work by Standish[33] ,

and i n similar forms in Reynolds(31J and Morris{25].

The formal definition and the extensions themselves are

based on PAL. Because we must build on previous work we will

assume that the reader is familiar . with the PAL language and

its method of formal definition. In particular, chapters 2 and 3

of reference [40] should be sufficient background.

Overview

The extended language is called S-PAL for Structural PAL.

10

The extensions are ·presented both informally with examples

and through modifications to the formal definition of PAL.

Most of the formal definition of S-PAL is encoded in terms

of the R-PAL subset (i.e., assignment is not used). This wa;;

done because it did not ·appear to complicate the definitions

and served as a demonstration that the data structures

required only the R-PAL subset for their definition. Hence,

these additions could be combined with the L-PAL additions to

create an expanded L-PAL with .data structures.

Chapter II of this thesis begins our development with a

description of an extension to the handling of locations . The

current PAL approach is reviewed and an alternative approach

which treats . locations as another type of value is presented.

The consequences of this change and some alternative formulations

are discussed.

'l'he facilities for structuring data are described in

Chapters III and I.V. In Chapter III the concept of a data

function is introduced and some of its more important attributes

are described. The requirements ·of a suitable representation

for data structures are presented. Some alternative representa

tions are discussed and it is shown that the data functions

meet these requirements. The forma·1 definition of structure

definitions and how they are transformed into data functions

is given in Chapter I.V. The full capability of structure

definitions is developed in several steps, in which each step

adds facilities to those presented in the preceding step . The

chapter ends with a generalization of the a r gument list of a

function.

11

A novel approach to type checking systems is ciiscu ssen

i n Chapter V. The reasons for restricting the discuss i on to

dynamic type checking are presented and a type system based on

p redicate functions is formally defined . Some of t he c onse

que nces o f this approach are discussed.

The important ideas and conclusions o f t he pre c c uing

c hapters a r e summarized in Chapter VI. An approach to

i mplementing data functions and possible extensions of this

work are also presented and discussed.

Chapter II

An Alternative to Automatically Defaulting to Lvalues

Introduction

This Chapter presents an alternative method of handling

memory locations in PAL . The current PAL definition disting

uishes memory locations from the abstract objects (obs) which

may be contained in the memory locations. The memory locations

are called Lvalues and the objects are called Rvalues because

they are the values required by the left and right sides of an

a?signment statement.

It is obvious that an Lvalue is more general than an Rvalue

since the Rvalue may always be obtained if the Lvalue is known .

However, it is not in general possible to find the Lvalue in

which a particuiar Rvalue is contained. PAL currently holds

to a design decision which forces Lvalues ·wherever they are

reasonable to preserve the greatest generality.

The effect of this design decision has been to establish

contexts in which Lvalues or Rvalues. are required. It is

unreasonable to always require an Lvalue context since it may

be of no utility or even an inconvenience . For example, in

evaluating the expression X+3 , ·only the Rvalues of X and 3

are needed to compute their sum. Also it is not always reason

able to y ield a n Lvalue as a result. If the above sum occurred

12

13

in another sum, say y+(x+3), then there is no need to produce

~n Lvalue for x+3. Hence the natural result of a basic func--

~ion such as addition is an Rvalue.

It is to a certain extent a value judgement as to where

t h e generality of Lvalues should occur. The principle of

consistency is used to give an Lvalue context to anything

which might naturally occur on the left hand side of an

assignment statement. This includes both identifiers and

the components of a tuple. In this way almost everything

is updatable.

While the context of an expression determines what mode,

Rvalue or Lvalue, is required, the form of an expression

determines which mode actually results from the evaluation.

When the

transfer

contex~ual mode differs f r om the resulting

function is automatically inserted to give

mode a

the correct

c ontextual mode. The mode contexts are given in Table II.l

whi l e Table II.2 gives the modes resulting from the expressions.

Since Lvalues are used when variables are bound it is

possible for two variables to designate the same Lvalue. This

is called sharing. To make it possible to avoid sharing, the

operator"$" is used to extract the Rvalue from its single

argument. When$ is applied to an Rvalue the result is that

Rvalue. But when$ is applied to an Lvalue the Rvalue contained

in that Lvalue is the result. Note that when$ occurs in an

14

Table l; The current mode context table

R a R a R $ R L % <variable>

R aug L L { I L }7
R L R -> B B

test R ifso B ifnot B

test R ifnot B ifso B

if R do L while R do L

R ; B L := R

let <definition> in L

L where <definition>

valof L

(B)

res L

[B]

fn <bv part> . L

<variable> { , <variable> }~ = L
0

<variable> <pv part>= L

L

Table 2: Current table of resulting modes

R-type expressions

<quotation► <·n:umeric> <literal>

$ E E (X .E

E { I E }7 E

fn <bv part>

E := E

L-type expressions

a E

aug E

. E

EE <v~riable>

E % <variable> E valof E

The symbol R indicates that an Rvalue context occurs
and similarly L indicates an Lvalue context. B indicates that
there is no automatic conversion of values performed.

15

Lv a l ue context a new Lvalue is created to hold the resulting

Rva l ue so unsharing is accomplished .

An Alternative to Automatic Handling of Land Rvalues

The main t h esis of this chapter is that it is not

n ecessa r y alway s to force Lvalues to be created in certain

c ontexts . In f act, it is possible to leave the decision on

Lvalue c reation stri ctly to the user. This latter approach

has several advantages.

l) If Lvalues are not alwa y s forc ed then it

would be possible for identifiers to be b ound

to Rvalues. This has the advantages that less

storage space may be needed and that the valu e

of the variable will remain constant . Hence

it wi l l be possible for the compiler to optimize

r e ferences to that variable .

2) Since the value of variables bound to Rv alues

is fixed, it prov ides data integrity. The

vari able cannot be updated by assignment because

no l ocation is associated with the variable .

3) Allowing Rvalues as well as Lvalues as para

meters to functions gives greater control over

the possible effects of the function. It is not

16

possible to update an Rvalue parameter.

With ··the above advantages as motivation it . appears that

the natural way to put location_s under user control is to add

the locations to the set of basic obs. 'Io do this it is nec

essary to axiomiatize the desired properties of locations.

Ax II .1 'l'here exists a countable set of ' locations which are

distinct from all other obs.

These locations are distinct from each other and

by the countable property it is possible to assign to each

location an integer which identifies that location. In normal

terminology this integer is called an address.

The main use of a location is to hold a value. Therefore,

the remaining axioms are primarily concerned with the relation

ship of locations to other obs. The term ·memory is introduced

to represent the relation "location .a holds Rvalue s".

Because the computations we are interested in are of necessity

finite processes , memories are defined only on finite subsets

of the set of all locations .

Definition A memory is a finite set of (location , Rvalue)

pairs with the property that each first component is distinct

from every other first component in the memory.

The memory can be viewed as a finite function from a

subset of t he set of locations into the set of Rvalues. Since

17

every two pairs have distinct first components, a location

may "hold" only one Rvalue in any particular memory. Hence,

the function is well defined over the set of locations in t~e

memory.

Ax II.2 There is a function Contents such that ifµ is a

memory and a is a location in the memory then

Contents (µ,a)= µa

and is otherwise undefined.

This function is used to obtain the Rvalue currently

held in location a. It is undefined on locations not in the

memory for practical reasons. As noted above, memories are

finite because the computations of interest are finite. This

restriction to finiteness is analogous to the use of a

Turing machine storage tape. At any particular step in the

computation only a finite number of squares have actually been

scanned. Hence, even though the computation is unbounded and

may eventually use an infinite amount of tape, at any instant

it depends only on a finite amount of tape. Therefore , it can

not distinguish whether the tape was initially infinite or if

instead a new tape square is appended whenever the Turing

machine is about to use the last square of the current tape.

This latter approach more closely models a physical machine

and justifies the restriction to finite memories.

18

The contents of the tape squares which have not been scanned

are unimportant. They only become important when they are

about to be scanned. Hence, it is only necessary to initialize

them when they are appended to the tape. This justifies the

decision to define the Contents function only on the locations

in the memory. The question of initialization of memory loca

tion is delayed until the axiom for memory extension are

presented.

Since a memory may associate only one Rvalue with a

location it is necessary to provide a function which will

produce memories with_ the locations holding different Rvalues.

This function complements the contents function. Referential

transparency is preserved by creating a new memory instead

of modifying the old one.

Ax II.3 There exists a function Update such that if

µ is a memory

a* is a location

w is an Rvalue(i.e., not a location)

· Then v =Update(µ ,a* ,w) is a memory such that

Contents (v ,a)= [contents(µ ,a) if a 'I a 'll

lw if a=«*

This funct .:.on produces a new memory in which the location

19

a* holds a new Rvalue w. It is important to note that a

location is intentionally prohibited from holding another

location as its Rvalue. Or in other words, a location is

never an Rvalue. This is certainly not the only possible

way to treat locations. Many current languages which have the

concept of locations allow locations to hold other locations.

For example, this is the case in ALGOL 68 (37), BASEL (10,121,

and GEDANKEN (30]. The main reason for not allowing locations

as Rvalues is motivational. The memory location is a place

which holds a value. It is analogous to the piece of paper on

~hich a value can be written. Since it does not appear to

make much sense to talk about a piece of paper which holds

another piece of paper, the analogy leads to restricting loca

tions from hol4ing other locations. The implications and

alternatives to this choice will be discussed in greater detail

later in the Chapter.

The locations are metalinguistically distinct b y defini-

tion. However, it is possible to bind different names to a

single location, so · the user must be able to test when two names

are bound to the same location. For this purpose we will say

two locations a and~ are distinct if and only if •µ is a memory

and w
1

and w
2

are Rvalues such that

20

i) contents(µ,a)iw
1

and Contents (µ,$)¥w
2

ii) contents (Update (µ, s, w) , a ·) =Contents(µ, a)
1 .

and contents(Update (µ,a, w) , S) =Contents (~,, n
2

Hence, two locations are distinct when updating one loca-

tion does not affect the contents of the other locations.

Ax II.4 There exists a memoryµ with an empty domain.

Ax II.5 There exists a function Extend such that if IJ is

a memory

Extend (IJ) = (v, a*)

where

(ii) a* is distinct from every location in the domain{µ)

{iii)

if a= a*

These axioms introduce the concept of a memory extension.

The memory begins as an empty function .and through the use of

Extend the memory function is augmented with new locations

distinct from all the other location·s already in the memory.

Each new location is initialized to hold a special value

designated by#. The Extend function returns two values

(a 2- tuple) since both the new location and the new memory

21

are needed.

Actually, the above axioms are almost the same as the

axioms for memories in the current PAL de·fini tioh. The main

change was the introduction of . a specific .prohibit ion against

locations holding locations.. The - important changes to PAL

are made in the context rules which determined when Lvalues

will· be created • .. Giving locations the status of obs means

there is no loriger a need to restrict the -binding of identifiers

solely to locations. In consequence, the results of

. .

expressions which do .no.t _ prod:uce Lvalue results will not be

automatically converted to Lvalues. Since it is unreasonable

to do without Lvalues altogether, a new operater .!.2£ is

introduced to allow explicit creation of Lvalues. The operater

loc obtains a new location using Extend and puts the Rvalue

.which is its argument into the new location. The result is

the updated location. Since the argument ot loc must be an .·

Rvalue, an Rvalue context is forced. Therefore, an expression

such as loc(loc 3) creates two new locations each of which

holds a 3 since an automatic application of contents is used

to obtain the Rvalue 3 after the first application of _.Loe ·

The location resulting from the first application of _loc

becomes inaccessable because the contents function does not

pass on the Lvalue of its argument. Thus, 1.££ performs the

22

same function as $ performs in an Lvalue context. in the

current PAL.

While Lvalues. a·re not automatically created it is still

necessary and reasonable to insert automatic transfers from

Lvalues to Rvalues. For example,. the right hand side of an ·

assignment statement and the argument of .!2£ both require

an Rvalue. The relaxation of Lvalue contexts has produced.

more context:s which force neither Lor Rvalues. Therefore, the

operator,.lli is introduced to extract explicit Rvalues. The

argument of . .!!! may be eithe:r an Lvalue, or an Rvalue. If it

is an Rvalue the result of ill is that Rvalue • . If the .

argument is an Lvalue, the result is the Rvalue which is the

contents of that Lvalue.. The modified cont.ext and form rule~

are given in tables II.3 and II.4

The Implications of The Change to

Location Generation in PAL

One of the primary functions of locations beyond that of

allowing assignments is to allow several identifiers to share

the same location. Sharing means that ·an update to one

identifier changes the Rvalue associated with the identifiers

that share with .it. In the current ·PAL, sharing -occurs

naturally and the$ operator must be used to prevent sharing

23

Table 3: The new mode context table

R a R '3 R val R B % <variable >

R aug B B {
I B }i

R B R -> B I B

test R ifso B ifnot B

test R ifnot B ifso B

if R do B while R do B

goto R R; B L := R

let definition in B

B where definition

valof B res B
(B) [B]

fn <bv part> . B

<variable> {, <variable>}~ = B
0

<variable> <bv part>= B

Table 4: New table of resulting modes

R-type expressions

<quotation>

val E

<numeric>

E a E

<literal>

'3 E

E { , E }7 E aug E

fn <bv part> . E

E .- E

L-type expressions

loc E

B-type expressions

EE <variable>

E % <variable> E valof E

B

The symbol R indicates that an Rvalue context occurs
and similarly L indicates an Lvalue context and B indicates
tnat there is no automatic conversion of values . ·

24

from occurring. Because locations must be explicitly created

in S-PAL, sharing occurs only when a location is bound to the

identifiers.

The above statement is ~omewhat deceptive since sharing

is defined solely by the effect of an update operation. The

real reason that sharing does not occur unless identifiers

are bound to Lvalues is that updates are not possible to

variables which are bound to Rvalues. The update function

is only defined in Lvalues. Hence, it is reasonable to

introduce the term constant (or manifest constant[29)) for

identifiers which are bound to Rvalues and to reserve the ·

term variables for identifiers bound to Lvalues. Because

there are no Lvalue contexts, it is necessary to define what

happens when an' Rvalue occurs on the left hand side of an ...

assignment. This problem does not arise in the current PAL

because the Lvalue context always assures an Lvalue will occur

on the left hand side of an assignment. This means that the

assignment 3:=5 will have no effect because a new location is

created to hold 3 and the assignment changes its contents to

5. However, the location is inaccessable following the

assignment so no noticable effect occurs . There are

essentially two choices on what to do with Rvalues on the ~eft

of assignments . One action is to simulate the effect of

25

creating a new location, assigning to it and forgetting the

location. This form of assignment is nugatory on all constants

and constant identifiers. The other alternative is to raise

an error condition whenever an Rvalue is on the left of an

assignment. I feel the latter action is better since wit!

the generality of PAL it is very simple to· make horrible.

mistakes and any action which helps to find these mistakes

sooner is very useful.

Removing the automatic creation of Lvalues from PAL also

has an effect on the ccnstruction and augmentation of tuples.

Previously the range of a tuple was restricted solely to

Lvalues. This meant every component of a tuple could share

and was updatable. In S-PAL the range of a tupil.e is extended

to be any ob in the universe of discourse. · This means thc;lt it

is possible to create tuples whose components ~re all Rvalues

or even mixed Rvalues and Lvalues. Therefore, certain components

of a tuple may not be updatable.

The aug operation <:Ioes ·not modify _previously constructed

tuples since this would destroy referential transparancy.

Instead, aug produces a new tuple of length n+l whose· first n

components are the "same" as those of the previous tuple ~nd

the n+lst component -is the augmented component. To be complete

it is necessary to specify what is meant by 11 whose first n

components are the same as those of the previous tuple's".

26

This is simply solved in the current PAL by requiring _that all

components of a tuple be Lvalue~. Then the first n components

of the new tuple share with the corresponding components of

the old tuple. Hence, the components designate the "same"

values.

The same solution works for Lvalued components in S-PAL.

It is the Rvalued components which raise problems. An Lvalu€

or more explicitly a location is a very simple data object.

Two locations are equal if and only if they share. However,

Rvalues are_both simple, such as reals or integers, and canplex

such as tuples or functions. While equality is defined

naturally for simple Rvalues, the PAL programmer must define

what he means by equality for the complex Rvalues. There is

no built in definition of equality for functions or tuples.

one alternative for handling Rvalues in tuples is to

copy the Rvalue and use the copy in constructing the new tuple.

We choose to define a copy to be the "same" as the original if

and only if it produces the same result as the original under

every operation which is applicable to the original. In par

ticular, this definition requires that assignment to any subpart

of an Rvalue must affect the copy and the original in the same

way. This mean-s that the copy is made by copying the structure

only as far as locations or simple Rvalues. This is natural

27

since equality is defined for these simple values, so i f tr..e

structure connecting the values is identical, the copy and

the original must be the 11 same" .

If the structure is identical up to the locations it

cannot be modified by any subsequent operations. Updates can

only affect the cnntents of a location, and the copy and

original Rvalue share.the same locations. Therefore, it is

unnecessary to copy the Rvalues in the first place . This

facilitates implementing S-PAL since much less than a full copy

is needed to perform the aug operation . The new tuple is

constructed by copying only the map between then integers of

the original and their associated values and extending it to

include the new value as the n+lth component. Thus, a one

level copy suffices to duplicate the original tuple.

Because the tuple is copied before being augmented , it

is impossible to modify a tuple occuring as an Rvalue in

another tuple. This is consistent with the treatmen t of

other constants. It also means that it is impossible to put

loops into data structures without using an assignment operation.

This is because no previously defined object can refer to the

newly constructed tuple unless the new tuple is assigned to

that object.

28

Alternatives for Passing Arguments

Distinguishing between variable and constant bindings

makes possible a number of different ways of passing arguments

and handling formal parameters. Whether an argument will be

modified or not can be controlled by either the calling or

the called function. When constant arguments are used, the

called function can not produce side effects by assigning to

the formal .parameters. Within ·the called function , the formal

parameters may be either bound to the argument or to a location

which holds th~ argument. In the former case assignments to

the parameter are impossible since it is bound to an Rvalue and

updates are riot allowed. In the latter case, the formal para

meter is more like a local variable which is initialized to

t h e Rvalue of the argument. In this case assignments only

chang e the local value and have no affect on the argument.

I f the passed argument is an Lvalue more alternatives

a re p ossible. If the formal parameter is bound to a new loca

tion containing the argument as in the second case above , t h e

called function cannot distinguish between Lvalues and Rvalues

arguments . I n either case the affects of the formal parameter

are local t o the f unc tion ~ This corresponds t o the ALGOL f o rm

of "call by value. "

29

If update$ to formal parameters are to be forbidden

as in the first case above, the formal parameter may be bound

to val of the passed argument. Then no matter whether an L

or Rvalue was passed the binding is always to the Rvalue.

This way guarantees that the arguments to a function will

remain constant for the duration of the function invocation.

The final alternative is to bind the formal parameter to

the argument just as it was passed. Then if an Lvalue was

passed, side effects through updates are possible. This

corresponds to what is called "call by reference" by Strachey[35]

There is a slight difference, however, because the caller

has control of whether an Lvalue is passed. Therefore call by

reference becomes a cooperative effort between the calling ahd

the called function.

The handling of free variables is another aspect of functions

that is discussed by Strachey. The value of a function definition

is a Aclosure. The Aclosure contains all the information

necessary to evaluate the function. This consists of the text

of the function and the values to associate with any free

variables in the function. There are a variety of ways of

handling free variables, two of which are used in CPL[2).

The values for the free variables in the A-closure form the

free variable list. In CPL and other languages a free variable

30

list is built when the A-closure is made and the identifiers

associated with the free variables are bound to the values on

the free variable list. This is, they are bound to offset

in the free variable list. If the function is defined with

the operater "=" the Lvalues of the associated values are put

into the free variable list. Alternatively if the operator

"=" is used the Rvalues of the free variables are used to build

the free variable list.

In PAL the identifiers are not bound to the values in

the free variable list, but instead the free variable list con

sists of all the free identifiers and their bindings when the

function was defined. When a PAL function is invoked the

values of the free variables are obtained by searching for the

identifier in the free variable list and using the value that

identifier is bound to. Since the current PAL only allows

Lvalues in bindings, all definitions have the same affect as "="

definitions in CPL. However, in S-PAL Rvalues may also occur,

so definitions fall somewhere in between the

definitions of CPL.

and "= ..

It is difficult to create"=" type definitions in S-PAL.

Even using val ·will not help because the argument of .Y!.!

is not evaluated until the function is invoked and the current

value of the argument will be used. The only way to achieve

31

the affect of Rvalues on the free variable list in S-PAL is

to define the function in an environment where all the free

variables are already bound to Rvalues.

Modifications ..!:e_ the L-PAL Gedanken· Evaluator

Relatively few modifications are necessary to make Lvalues

objects in L-PAL. The main change is to remove the Lvalue

contexts as has been already noted. The Lvalua contexts are

forced in only two places in the gendankenmachine, namely, in

the Extendtuple function and the ApplyAclosure function.

These are the only places where any form of binding occurs

in the gendankenevaluator. These functions are simplfied by

removing the test for Lvalues and the associated invocation of

NewLval to build an Lvalue if none was present. See appendix

B for the modification.

The above modifications remove all uses of NewLval but

it is used in the new definition for loc. Similarly a definition

for val replaces the$ operator. The two new steps in Transform

are

replacing

x eq 'loc'

x eq •·val'

I x eq '$'

+ NewLval(A)

+ Stepcontrol (A)

+ Stei:c:ontrol (A)

32

Note that since the action for loc occurs below the R context

forcing, NewLval will always be acting on an Rvalue.

The final change is not as clean as the preceding changes.

In the current PAL all basic functions have an Rvalue context.

This is reflected in Applybasic which automatically extracts

the Rvalue before applying the basic function. This is not

possible in S-PAL since there are basic functions such as Isloc

which require that automatic applications of val be inhibited.

There are two possible solutions to the problem. The first

solution is to allow basic functions to take both Lvalues and

Rvalues as arguments. This would make basic functions more

like user defined functions which no longer have context rules.

However, this solution seems to· introduce a certain amount

of inefficiency in any implementation since every basic func

tion using Rvalues would first have to check its arguments. If

they were Lvalues it would have to extract the contents. This

suggests an alternative solution which distinguishes two

classes of basic functions. The first class of functions always

takes Rvalue arguments so transfers are .automatically performed.

The second class of basic function tests its arguments so

transfer functions are not needed and should not be inserted.

This solution allows a compiler for PAL to insert transfer

functions wherever they are allowed and needed. It can be

affected by modifying the Applybasic function to b e;

33

def Applybasic (C,S,E,D,M)=

let x = IsRfcn(t s) Rval(M,2nd S) -
2nd S

in r C,Push[apply(t s)x,r2 s, E , D,M

The main disadvantage to the second solution is that the

function Applybasic is relatively more complex. It now must test

which type of basic function is to be applied. Of course,

it is the possibility of making this test which allows the

automatic insertion of a transfer function.

Other Alternatives for Handling Assignment

The literature is filled with a number of different

proposals for formally defining the affect of assignment

[3,4,12,26,34,39]. Some of the proposals are based on

locations, while others either ignore the concept or modify

it so it is unrecognizable. This section explores a subset

of possible alternatives to S-PAL and discusses the differences .

Syntactic Conveniences

In S-PAL a location i s never created without the explicit

use of the loc operator. On the other hand in the current PAL

a location is automatically created by defining a name . For

example, the phrase

let X=2 in M

34

creates a new location, puts the value 2 into it, and binds

it to the name X. In S-PAL this phrase would bind the name x

directly to the value 2. If the user desires a variable which

can be updated he must insert a loc operator as in

· let X=loc 2 in N

Thus, it is syntactically easier to define "variables" in

the current PAL than it is in S-PAL.

This distinction is more clearly seen in the equivalent

lambda expressions. The first phrase is equivalent to

{AX.M)2 while the second is (AX.N) (loc2). currently in PAL

the argument of a A expression is forced to an Lvalue so the

desired location is created. But without forcing an Lvalue

the binding of X will be to the constant 2.

There is an alternative solution to the problem which is

found in CPL. Instead of associating an Lvalue context with

the argument of a A expression the right hand side of an"="

sign is desugared with the loc. That is"~ X=2 in M"

becomes (AX.M) (loc2).

If this were the only form for defining a binding then

sharing and constants could not be obtained. Therefore, it is

necessary to introduce a second definitional operator, such as

the " ""' used in CPL, which does not force the creation of a

location but just binds the name to the value (R or L) on the
;

35

right hand side of the definition.

The above alternative was not chosen _primarily for

pedagogical reasons. There is a great value in making locat i on

creation explicit. Since they alone have side effects, pointing

out their occurrences makes it easier to debug the programs

and restricts unnecessary uses of locations. Also , having only

one form of definition reduces the complexity of the language.

Should Locations be Able to Hold Other Locations?

In many languages where locations exist in the language

it is possible for locations to be the values of other

locations. This is specifically prohibited in PAL in part for

reasons given earlier in the chapter. However, it is useful

to explore the .other alternatives.

The reason given most often for allowing locations to

hold locations is that of generality. The language design.er

can find no reason why locations must be excluded from the set

of Rvalues so they are allowed in the name of generality. ,

However, generality is a vague concept in many applications.

Often generality means allowing an object to appear anywhere

it makes sense. Obviously all contexts do not make sense.

For example, the sum of two strings of letters does not usually

make sense. However , if the letters are assigned numeric

36

values then, the sum might occur in some coding scheme. The

problem is that what makes sense is a value judgement on the

part of the language designer. It is my belief that locations

holding other locations does not make sense . The main reason

for this was given earlier in the Chapter using the analogy

between a storage location and a piece of paper.

This analogy can be extended somewhat further to show a

reasonable alternative to locations within locations. While

a piece of paper cannot really hold another piece of paper

it can hold a reference to another piece of paper. For example ,

a manuscript may hold the statement " for further discussion

see page 257". This is a reference to another page and is a

proper value for a page to hold. Hence by analogy a location

should be allowed to hold a reference to another location.

This is in fact possible in S-PAL or even. the current PAL for

that matter. ln the PAL definition only the locations themselv es

are available to the user not their names. This allows greater

freedom in choosing a particular implementation of the memory.

If a programmer wishes to refer to a location he must give it

a name . He can do this by binding the location to an identifier,

but identifiers can not be the values of locations.

The other way a location is made accessable is by being

a component of a tuple . It is possible to view the tuple a s

a generalization of the idea of pointers as found in PL/1[27}.

37

While a pointer can only identify a single memory location the

tuple can designate many distinct memory locations. Each

component of the tuple can be a different location. The- pointer

corresponds to a 1-tuple. References to other locations can

be implemented by assigning to the location a 1-tuple whose only

component is the location being referenced. Thus , t he tuple is

also a means for "naming " locations.

It may appear that it is awkward to evaluate a tuple to

be able to use the referenced location. However, this is really

a problem inherent with references. Consider the following

small excerpt of code for a language which allows locations

to hold locations.

let X = loc 2 in

X:= loc 3;

X:= 5

When the block is entered, Xis bound to a location holding

the value 2 . The first assignment changes the value held by

the location X to another location which holds the value 3.

Now does the second assignment modify the contents of the

location X or does it modify the contents of the location

refered to by location X? Because assignment requires an

Lvalue and Xis bound to an Lvalue it is natural to do the

least amount of work necessary and update the contents of

location x. This is what happens in most languages with this

probelm. Therefore, to update the referenced location it is

38

necessary to write the second assignment statement as

"val X: = 5". Then the Lvalue which is the contents of X i ~

updated. Using tuples in PAL the program becomes

~ X=loc 2 in

X: = nil aug loc 3;

X 1: = -~

It is easy to see that except for the inconvenience of

creating a 1-tuple there is little difference between the two

languages. They both have the problem of distinguishing which

location is to be updated.

An analogous problem occurs in defining equality for

locations. In S-PAL two locations are equal if and only if

they share. This corresponds to equality defined by the .5

predicate in LISP. However for arithmetic operations , it is

desirable to define ·two locations holding the same value as

being equal. This. corresponds to the equal predicate in ·LISP .

The distinction between these two definitions is discussed at

some length in .Park (26]. The S-PAL definition was choosen

because locations are values in S-PAL and the polymorphic

operator"=" is defined over all other values. The affect of

equal can be a chieved by using val to extract the contents

before equality is tested. However, the need for two. approaches

is inh erent in the concept of location .

39

Dynamic variation of Bindings

S-PAL like GEDANKEN, CPL and other languages requires

that once a variable is bound to -an object that binding is

fixed for the duration of the execution. However, BASEL[l0 ,12]

allows the programmer to vary the bindings of variables

dynamically. The reason for this appears to be connected

with the concept of "type" found in BASEL. Both variables and

locations may have associated types. A typed location may

hold any value which is consistent with the type. A typed

variable may be bound to any object which is consistent with

the type. Suppose Xis a variable which can either be a ioca

tion of an integer (loc int) or a location of a real (12£
..

real}. Then, at any time X may be bound to a .!.2.£ ill or a

loc real but not both. That is, if Xis a .!.2.£ l.!ll, then the

assignment X: = 3.141 will fail . If both types of values

should be assignable to X, then X should be of type J:.2.£ union

(int, real} and in that case Xis bound to a location which

can hold either integers or reals.(union lists alternative forms)

Then either X:=2 or X: = 2.7 is a legal assignment. Allowing

variable bindings makes the distinction between locations and

binding a little more obvious. These topics are discussed

again in context of types in Chapter v.

40 ·

The most obvious affect of this alternative is to increase

the amount of confusion a computer must handle. It becomes

difficult to insert type validity tests for variables if

the binding is unknown. Since it is in general impossible to

predict program flow, it is necessary to assume the worst

and test for the type of object to which the variable is

bound. This is unnecessary if -bindings are fixed since

the type is determined when the variable is defined and

bound.

Variable bindings also affect how the processing of free

variables is done. In BASEL the free variable list is built

from the values currently bound to free variables. Hence,

any future rebindings will not affect the values of the free

variables when the function is applied. However, in PAL

where the free variable list is kept by name, a rebinding

would affect the value obtained in future function invoca_tions.

Chapter III

Representing Data Structures _£Y

Functions over Symbolic Domains

The only tool for building data structures in the current

PAL is the tuple. The major properties of the tuple were

discussed in the previous chapter in connection with locations .

The tuple is a perfectly general device for building and

referencing collections of data. Therefore , any new technique

for data structuring will not expand the capabilities of the

language. However, the tuple is a "natural 11 representation

primarily for data which has some order to it. That is,

there is a natural integer index associated with each data

element. This data may be a vector of points, a string of

characters, etc.

Representing~ without~ Natural Ordering

When the data is without a natural ordering, as. is the

case in a number of data collections , the tuple is a much less

attractive form of representation. Consider for example the

representation of the control items in the gedanken interpreter

for PAL. It is possible to represent these elements as tuples

but it is awkward because many conventions must be introduced.

41

42

For example, the control item for a A-closure has three compon

ents which can be succinctly described in the notation of

Landin's [13] structure definition as

A >.-closure has

a bound_variable_part

and a >.-body

and an environment.

When this is translated into a 1:.uple representation., it is

necessary to establish conventions such as the first component

will be the bound_variable_part, the second component will be

the >. -body, ·etc. Furthermore, it is necessary to be able

to recognize the type of the control item so an additional

convention is required to store the type information. Thus ,

a >. closure might be represented (as ·it is in R-PAL) by the

following set of definitions

def Is >. closux:e X =

Istuple X -+X 1 eq' >.' I false

and BV X = X, 1 2

and Body X = X 3

and Env X = X 4

The structure definition is simpler because only the

necessary information is supplied. Irrelavent information s uch

as the order of the components is not nee~ed. Thus, tne t uple

•

43

definition suffers from overspecificity: it is necessary to

stipulate conventions which are not strictly required to define

the structure.

Obviously, this is only one of a number of possible

representations in terms of t'uples. Other representations

may be used to make the processing of the data structure easier.

For example,, in the abstract syntax of PAL [40] the structure

type is represented as the last component of the tuple.

Another variation is used in the representation of control

items in G~DANJ<EN [30]. However, in all these representations

in terms of · tuples or vectors, the definitions have more struc

ture than is needed.

Difficulties with Tuple Representations .2! 12!,l! Structures

One of the most unnatural aspects of tuple representations

of data structures is the handling of the structure type infor

mation. This is most often represented by a tag which is stored

in a standard location in the structure and identifies ,the type

or class of the structure. Since it is part of the tuple it

becomes necessary to program around it for -various actio~s on

the tuple. For example, the tag is the final component in

the PAL abstract syntax structures. Hence it must be removed

and replaced whenever the tuple is augmented.

44

Another unnatural aspect of using tuples is that thei

have too many properties. It is impossible to restrict action

on a data structure only to operations applicable to · that

data structure. Since it looks like a tuple, it can be manipu

lated as a tuple as well as the data structure it represents.

This leads to confusing programs. It also inhibits optimiza-

tion which depends on the structure since all the tuple properties

must be preserved whether or not they will be used. The tuple

gives a weak representation of the data structure. It has the

properties of the data structure and also its own tuple pro

perties. To have more control it is necessary to have a strong

representation. That is, a representati~n which has only the

properties of the data structure and no others.

The Properties~ Data Structuring Facility Should Possess

The above discussion indicates a set of properties _which

a data structuring extension should have to be more natural

and convenient.

1) The representation of the data structure

should be strong to allow opti~al storage

and to reduce confusion.

2) The type of a data structure should be

easily accessable and independent of the

data in the structure.

45

3) It should be possible to access the data

using its natural identifier.

In addition to the above properties the data structuring

capability should be convenient to use. This means that the

syntax should be relatively simple, not too verbose and in

general natural to read and write. It should also, if possible,

provide documentation on the attributes and form of the data

structure.

The facility should also provide a number of differ~nt

ways to build data structures. In some problems it is impossible

to predict the form of the data structure and it must be possible

to construct it dynamically. This type of data structure is

available in languages like LISP [21],. ALGOL68[37] and is

discussed in a number of papers, in particular tpat of Hoare [11).

The dynamic form is perfectly general but there is a r~al cost

associated with constructing and storing the data structure . .

For some problems , such as payroll management, it is

possible to define a fixed format for the data. In this case

the relationship of data items is not varied during the processing.

Therefore, it is possible to optimize the storage and processipg

of such data structures. COBO~ [36] is .typical of languages

which provide this sta-tic data structuring capability. Obviously

these two forms are extremes and a general purpose facility

46

should allow a wide range of possibilities between these forms.

Landin's Structure Definition

A modified form of Landin '.s structure definition was

chosen as the basis for the data structuring facility which we

shall discuss. There were two reasons for this. First it

satisfies many of the above goals. Secondly since many of the

ideas of PAL were derived from tandin•s ISWIM[l7], it appeared

that the .structure definition syntax would fit in w.ell with th<::'

rest of the PAL syntax. It is not yet clear how well the

actual formalization of Land.in's syntax meets such goals as

simplicity and ·naturalness. Only actual use will be able to

resolve th~se questions.

What features are needed in a fac~lity for structuring

data? This question is discussed at some length in Landin [13,16].

Only the conclusions will be reproduced here . If you have

a data structure it must be possible to recover the individual

data items which make up the · structure. Therefore, there

must be a set of selectors which can be used to extract the

data items. Conversely given a set ·of data items it must be

possible to build a data structure whose components are that

set. Thus a constructor which takes sets of data items into

data structures is required.

47

Finally when processing a data structure it must be possible

to distinguish between alternative forms of that structure.

For example, a component of a structure might itself be one

of several data structures or primitive values. Which form

occurs can be determined using a set of predicates for the

alternative types. Each predicate is a function on the universe

of discourse which yields true whenever its argument is

of the specified type. Therefore, the structure definition

must provide at least enough information to define

1) a set of selectors

2) a constructor

3) a predicate

An Additional Property of Landin's Structure Definitions

Actually Landin's definitions provide slightly more

information than we have discussed thus far. Our earlier

definition of a AClosure provided only enough information

to define the selectors and the predicate. A more complete

definition of AClosure would be

A AClosure has

a bound variable_part which is a variable

and a Abody which is a Aexpression

and an environment which is an environment.

The difference is that now each component also has a type

associated with it. This makes it 'possible to check the type

of each component before the data structure is constructed.

This makes it possible to provide a stronger representa•tion

than is possible without the type information. It prevents

48

unexpected data from occuring in the structure. If any data

item is allowed as a structure component it is impossible

to restrict the properties of the data.

The addition of type information for the components

complicates the description of the structure defini tion.

Further discussion of the problem involved is therefore delayed

until Chapter V.

Other Formalizations for Data Structures

Data structures have been formalized by several methods .

A good commentary on previous formalizations is given in

Standish [33]. He presents a method which is similar

to Landin's structure definition but has a more concise

syntax. In recent work Vigor [38] proposed a definition

which included the selectors, constructor, and predicate, and

also added some -functions to force different modes of

evaluation (applicators) and to change representations

(designators). Similarly , Burstall and Popplestone [4] add

an inverse (destructor) to the constructor which produces

the components of the object.

Another approach to formalizing data structures is to

represent them as graphs. These graphs have nodes which

represent the structures and the edges of the graphs represent

the relationships between the structured objects. AMBIT/ G(S]

and VERS[7] are typical of languages which use this approach.

In the case of VERS the graphical form must be converted

into a machine representation by using a set o f primi t ives

for manipulating the structure . The primitive s are ma chine

49

independent and are derived from operations for constructing

and manipulating the graph. Efficiency is obtained by

substituting different machine oriented definitions for the

primitive operations. That is, a single primitive may have

a different implementation for each structure type. This

makes it possible to tailor_ the primitive action to the

manner in which the data will be used. This idea of

defining "code" to implement a particular instance of a

primitive is also present in the work of Laurence [19].

Machine independence still exists since it is only

necessary to redefine the primitives for the new machine.

The structures are· coded in terms of the primitives so

they are unchanged.

Unfortunately, the primitives that are used in VERS

seem to force a particular form of implementation. It

appears that all data structures must be created and linked

dynamically at run time. This makes it impossible to

group several substructures into a single major structure

with fixed links and then use the fact that the link

relationships are fixed to optimize references to components

of the substructures. This type of optimization is seen

in PL/I and COBOL where components of substructures can

be given fixed offsets from the address of the major structure.

One advantage of the structure definition is the lack of

commitment to any particular implementation.

50

The S-PAL Representation of~ Structures

The formalization of data structures should be chosen

to maximize implementation independence. That is, formaliza

tion which unnecessarily restrict the implementation should

Le avoided. If this were the only requirement on the

formalization, then the only way to avoid introducing extraneous

restrictions would be to axiomatize the desired properties .

However, it does not seem possible at this time to develop

a meaningful set of axioms which fully characterize a datastructure.

Axiomatization also makes it difficult to build on previou s

definitional work. There is a definite pedogogical advantage

in defining new features in terms of the existing language

structure. This reduces the amount of work needed to relate

the new features to the rest of the language. Part of the

design philosophy of PAL was to develop the language in

several " logical bootstrap" operations. In each step the

new features were formalized in terms of the language defined

in the previous step .

We have chosen to formalize data structures in S-PAL in

terms o f a specific R-PAL representation. Although this is

more restrictive than is theoreti cally necessary, we believ e

the pedogoical advantages outweigh t he other costs. A structure

definition is basically a description of a labelled node i n a

directed graph with label ed ges . He nc e t he choi ce of syntax

has already restricted the set of possible representations.

The representation which will be use d was chosen because i t

51

appears to add very few additional constraints to implementing

the structure definitions.

The process of formalizing data structures in terms

of the chosen representation can be divided into four parts.

1~ Defining a syntax in which it is convenient

for the user to define, create and manipulate his

data structures (the concrete syntax)

2) Defining an abstract representation for the

information contained in the above syntax (the

abstract syntax)

3) Describing the translation of the syntactic

information into a representation of the data

structure (the interpretation of the parse or

the standardization process)

4) Presenting the properties of the chosen

representation (semantic clarification)

The approach to part 1 has already been discussed. We continue

the description with an informal discussion of part 4 because

it is basic to the other parts of the formalization process.

A Functional Data Structure Representation

In Landin's approach, data structures are treated

as a new class of constructed objects. The predicates

and selectors are functions whose domain includes these

52

objects. In particular a selector returns a component of

the data structure as its value. In S-PAL data structures

are instead represented by a special class of functions

called data functions. These functions are defined over

the set of selectors for the data. structure. A component

is obtained by applying the· data function to the selector.

To make the distinction between the two forms of

representation clear, consider the functionality {i.e.,

domain and range) of the traditional [4,13,33] form

predicate e objects-+ truthvalue

selector e data structure-+ component

constructor e set of components-+ data structure

In the S-PAL representation the functionality is

constructor e set of data components-+ data functions

data function e selectors-+ data components

predic_ate £ objects -+ truth value

This approach of using functions for representing data is

not original. It is used in Gedanken[30] and by Park[26J and

Balzer[l]. However this formulation differs in several

aspects from their approaches.

The functional approach is a natural generalization

of the tuple. In the tuple the constructor is aug, the

selectors are integers and the predicate is tstuple. To

get data functions we extend the domain {selector set) to

symbolic names so the components of a data structure may

have descriptive selectors. The constructor will build a

53

more general class of functions and a whole set of distinct

predicates will be created.

Data Functions Provide Flexihilit;y
. ((

The reason for choosing a functional representation

is the flexibility it gives to program construction. The

program can be written with functions representing the data.

Then when the algorithm is clear the functions defining the

data structures can be written in a form best suited to the

way the data is used. For example a sequence of elements can

be represented as either a list or an array depending on

how the . data will be referenced and manipulated, The important

point is that it is possible to change the representation

whithout changing the algorithm.

The user may choose to use the functional representation

created by the translation of the structure definition

or he may define his own function to represent the structure.

In the latter case it is possible to choose the representation

to suit the problem. For example, it is possible to

define the values of a subset of the components in terms of

the values of the other components. Then it is necessary to

store only the independent components in the environment of

the function. The dependent components can be calculated

from the stored values. This is a way to save storage when

the components are related and it illustrates one of the

possible ways a data structure can be varied within a

functional representation.

54

Consider for example a collection of data indexed by

the integers from 1 to Nin which the values on the odd

integers are the squares of the values on the even integers.

If we assume that there is a function Evendata which holds

the values of the function for even integers , then the

whole collection can be represented by

def Datacoll X =

Odd X + [Evendata((X-1) / 2)]**2

I Evendata(X/2)

Thus, only the even values need be stored. The functional

form of representation makes · i .t easy to replace

the data with an algorithm which calculates the

data.

Atoms

The intege~s make very good selectors. They can be

computed, they are ordered and their meaning does not vary

from occurrance to occurrance. To extend the domain of data

functions, it is desirable to use symbolic selectors with

properties similar to the integers. There is no strong

argument for being able to compute symbolic selectors and

we have noted earlier that an ordering of symbolic selectors

is not important. Therefore, the only property of an integer

which is important for symbolic selectors is the invariance

of its interpretation . For example, the numeral 2 alway s

designates the integer 2. The designated value does not

depend on the context of the designation ; in other words

it is a constant.

~ - - - - - - -"-== - - - - -- - - --

55

The idea of invariance is important because a data function

is given only the value of the selector to use in selecting

a component of the represented structure. If the same

selector designation specified different values in different

contexts then applying a data function to what appeared to

be the same selector could produce different results depending

on the context in which it occured. Therefore, it should be

possible to designate a symbolic value in a manner which does

not depend on the context of the designation. An example

of such a designation is the character string constant

found in PAL and many other languages.

Although a string constant satisfies the invariance

property it is not completely suitable for use as a selector.

The reason for this is that strings have too many properties.

The only property a symbolic selector must have is that it

must be possible- to test any two symbolic selectors for

equality. This property is used in the data function to

identify which component is being selected. However, character

s trings have many additional properties such as the ability

to be concatenated, decomposed, etc. This means that

any representation of character strings must preserve these

properties. on the other hand if equality is the only

property required of symbolic selectors it should be possible

to use an encoded representation. · For example, they might

be represented by a type code (tag) and an integer identifying

the selector. This representation uses much less space than

a full character string and is much ea9ier to manipulate on

more computers.

56

To take advantage of the simpler representation require

ments of the symbolic selectors, a new class of objects called

atoms is introduced. Axiomatically their properties are

AxIII.l) The class of atoms is distinguishable from

all other objects in the universe of discourse .

AxIII.2) Any two atoms are either testably equal

or distinct.

AxIII.3)- There are no other properties .

Because atoms are normally represented in an encoded form it

is necessary to specify how the correspondance between the

external designation _and the encoded internal representation

is establish~d. To preserve invariance this correspondance

should be 1-1 and should depend only on the external designation.

In most implementations this is accomplished by encoding the

atom by a type code and the address of a copy of the external

designation. Therefore, the character string for the

external designation need be stored only once . If this copy

of the external designation is unique , then any occurance of

the atom in its external form can be uniquely converted

into the internal representation. Conversely, each occurance

of the internal representation uniquely identifies the

external designation. Therefore, the correspondance is 1-1.

Alternative Definitions of Atoms ------ ------ --
The atoms defined here differ from ~he atoms defined

in both LISP[21] and GEQ__~~N[30]. In GED~KEN the atoms

a re objects without an external designation . They only have

an i nte rnal representation which c ons i sts of a type code and

57

a1, integer value. There is a primitive operation which

generates new atoms whose identifying integer is distinct

from those of all previously generated atoms. In this case

the representation of the atom has no significance other

than to distinguish different atoms.

To use these atoms for selectors it is necessary to

g ive them identifiers which can be used as external designators.

'I'his is accomplished by binding names to the atoms used

a s selectors. However, this approach does not provide

invariance of selectors. It is possible to bind the same name

to two different atoms in different contexts. Therefore, it

is possible to have two atoms with the same designation which

are not equal. In addition, this approach does not allow atoms

to be output on a printer or a removable storage device because

there is no external designation. This also means that an

atom cannot be referenced by name in another program using

the same data base.

In LISP there are both named and generated (unnamed)

a toms. But these atoms have too many properties for our

purposes. Each LISP atom also represents a value . The value i s

stored with other descriptive information in a property list

which is attached to the atom. This is a list of attribute

and value pairs. The only LISP attribute that an S-PAL

atom has is its external designation or print name. This is

determined by the 1-1 correspondance between atom values and

names . so there is no need to have a property list. Although

S-PAL atoms are more primitive than LISP atoms , it is possible

58

to define an S-PAL data structure which represents the LISP

atom if the additional properties are needed.

In LISP all names are atoms so there is no problem with

syntactically distinguishing the atoms. However, in PAL

names which are not atom names already exist . In fact, since

S-PAL atoms do not have associated values, non-atomic names

are necessary to identify locations and other objects.

Because selectors will be used fairly frequently it is

desirable to have a convenient and easy syntax for atoms.

This is another reason why character strings were not used

as selectors. Quotes are too cumbersome, especially for

short names. Several different schemes were proposed of

which the best appeared to be to use strings of two or more

capital letters or numerals with at least one capital letter.

This seemed more convenient than using a special marker such

as the quote in a character strlng. It does, however, mean

that names which were previously available for variable

identifiers are no longer usable for that purpose . Thus,

existing PAL programs may be invalidated.

The Special Properties of Data Functions

Why is it necessary to identify a special class of func

tions to represent data? The main reason is that an unrestricted

f unction has too many properties so that it is possible to

build an efficient representation and so that some basic

questions about the function are decidable.

An example of an undecidable question for general functions

is what is the domain of definition of the functi on . Howeve r

--------~----

59

all data functions have finite domains. In the case of tuples

it is possible to find the entire domain with the Order function.

This allows the user to write algorithms which process every

element of a tuple by sequencing through the domain of the

tuple. This property is ~lso necessary for symbolic domains .

I'or example, a user might test two instances of a data structure

for equality by applying the two functions to each of the

possible selectors and comparing the results. Obviously he

must know the selector set to do this.

The Order function is applied to a tuple to get the domain

information~ However, it is as we noted above impossible to

extract that information from an arbitrary function. Therefore ,

it seems more natural, foll0wing the approach used by Reynolds[30],

to require a data function to produce its domain when it is

asked.

It is not feasible to predict every question which might

be asked about a function so we will restrict our attention to

questions which appear to be useful for manipulating data

structures. This relatively small set of questions can be

encoded by a set of special selectors which are recognized by

all data functions. These special selectors will be designated

by built in atomic __!ceywords (e.g., domain) . These are built

in constants just like~ or false.

60

This leads to a natural definition of a data function. A

data function is any function whose domain includes the set of

special selectors and which gives correct information about t h e

function when applied to those selectors. Note that this defin

ition makes it impossible to decide if an arbitrary function

is a data function. However, t~is is less important t~an the

fact that a user may define his own data functions if he so

chooses . He need only check for the special selectors and

produce the correct results . Such user defined functions will

be operationally indistinguishable from the functions produced

by structure definitions.

The Selector Set - -------------- -
The result of applying a data function to the special

selector domain is a tuple consisting of all the selectors

in the domain of the data function. Because there is no way

to compute the· selectors from a smaller amount of information

it is not possible to produce an abbreviated form of the domain

informatfon such as that given by the Order function. The only

complete specification is the set of atoms themselves. The

special s_electors are not included in the tuple produced in

response to domain because all data functions are assumed to

be defined on these selectors.

61

Predicates

The predicates are functions which extract a different

type of information from the data functions . Since the

predicate will most often be used in a functional context it

is unreasonable to replace the predicate with a selector.

However, it is reasonable to require the function to produce

information which the predicate· can use in deciding if its

argument is of the correct type. Defining the type of an object

is a very complex subject. The most natural definition of two

objects having the same type is that they can not be distinguished

(except for values) within the language. This definition is,

however, impossible to implement. Therefore, S-PAL .has left

the decision on type equivalence .up to the user. But we

provide facilities which the user can use to build a type

predicate.

One way to type a data object is to attach to every instance

of the data object a tag which identifies that object. Hence,

a primitive definition of type equivalence is that two objects

are the same type if they have the same tag. This means that

_it is possible to have two data structures which would be oper

ationally equivalent, but are not considered equal because the

tags differ. The loss of this equivalence capability is a small

price to pay for the simplification it provides in handling

types (see Reynolds[31], Morris[25]). The tag can be viewed

62

as a characterization of the data structure in a single

symbol.

It should be noted that the tag is often in£ufficient to

characterise the structure fully. For example, a user may

want to consider two arrays to be of the same type if a·na only

if they have the same dimensions and bounds. This means that

it is necessary to use the domain information to fully validate

the type. Another approach to type equivalence is that two

structures are equivalent when they are constructed by the same

constructor function. However, both of the alternatives imply

that the tag information is identical.

Because the tag appears to be the most primitive form of

type information it is the sole attribute that will be tested

by the predicates which are automatically generated by the

translation of the structure definitions. If the user wants

to define more complex type tests he can program them. The

predicate function extracts the tag information by applying

the data function to the special selector tag. The result is

the atom which was used to tag the structure. This can then

be compared against the tag expected by the predicate and the

result of this comparison is the result of the predicate.

The Constructor and Cons·tructed Obje·cts

Since the data structures ar~ represented by data functions

63

in S-PAL the constructors are function producing functions. A

constructor function is automatically generated for each struc

ture definition. It takes as its only argument a tuple whose

components are the components of the data structure. The order

o f t h e components in the tuple determines the sele c t or with

which they are associated. The selectors are ordered by the

order in which they occured in the definition. The selectors

and tuple components are then paired in their order of occurrence.

The result of applying the constructor is a function which will

produce the appropriate component of its argument when it is

applied to a selector in its domain.

There is a special selector constructor which will produce

the constructor of a data function. As we noted above this is

useful when defining the type of an object. However, there is

a more important reason for including this as a special selector.

In some applications it may be necessary to change a component

of a structure. If the component is an Lvalue there is no

problem. If, however, the component is an Rvalue it cannot

be replaced by assignment. Therefore, the only alternative is

to build a new copy of the structure with the component replaced.

This is only possible if the constructor which was used

to build the original function is available. If it can be

determined solely from the data function , then it is possible

64

to write a general purpose update function. This function

would take a data function, a selector, and a value as arguments :

and would return an updated data function . The result could

lie computed by constructing the tuple of components of the data

function using the selector set. Then the appropriate component

could be replaced with the new value. Finally a new copy of

the data function is produced by applying the constructor

obtained from the original data function to the new tuple of

components. This function is used in Chapter V and justifies

the inclusion of the constructor selector .

Universal Constructors

If one of the major uses of constructors were in rebuilding

data functions, it might be simpler to have a universal constructor

function which took as an argument the type of function to be

constructed as well as the components to use . This univ ersal

function would look up the type and build the data function

corresponding to that type from the components. This way t h e

special constructor selector would not be needed because tag

would provide the required information. This approach is

developed in greater detail in the formal definition of GEDANKEN.

There are, however, several disadvantages t o this approach .

F i rst if atomic types are used it is necessary to search t he

entire lis.t of all defined types to find the in f o rmation for

constructing a representation o f a particular t ype. Th is

65

could be very inefficient although hashing techniques might help.

Also because there is a need to keep this list of defin ed t ypes ,

-:iynamic declarations of new types are more costly since each

new definition makes the list larger . Another problem is that

the atomic tag may not uniquely identify the type of the structure .

It might be necessary also to include the selector set in the

arguments to the universal constructor.

Thus, it appears that a universal constructor is only

practical if the argument which specifies the form of the structure

contains all the information necessary to build the data object.

This approach was used by Standish[33]. He defined data descrip

tors which are Rvalues which encode the description of the structure.

Then to build a structure there is a constructor which takes

a set of values- and a descriptor and produces the constructed

object. However, it appears that it is better to build the

constructors directly since in that case it is possible t6 optimize

them for the particular data structure they are building. The

S-PAL constructor is analogous to Standish's descriptor because

it must contain all the information necessary to build the

constructed object.

We complete the informal description of the desiderata

for the data functions with a few comments on two of the special

modifiers Standish introduced into his descriptor definition.

These modifiers are used to attach additional attributes to the

66

structures. The predicate modifier makes it possible to add an

additional predicate function ta _ the predicate generated aut,)

matically. The generated predicate then yields~ if and only

if the structural properties are satisfied (e.g., correct tag)

and the modifying predicate is also satisfied. This appears

to be strictly unnecessary since it is always possible to include

the generated predicate in a user defined predicate which has

the additional tests.

The constructor modifier is a function which is invoked

after each construction and can be used to initialize values i n

the constructed object. For example, it can be used to close

a ring of pointers which can not be done with a purely functional

description. Like the predicate modifier this effect can be

achieved by including the constructor in a function which uses

the constructor, then performs the initialization on ~he result.

Because these modifiers can be easily programmed in S-PAL they

will not be included in the structure definitions defined in the

next chapter. They are primarily useful abbreviations.

67

Chapter IV

The Formal Definition of~ Functions

~imple ~tructure Definitions

Landin [13,161 used an informal syntax for structure

definitions and for naming the various functions the definition

produced. Selectors and predicates received explicit names

while the constructor name was derived from the predicate name.

A sl_ightly different approach is used in S-PAL. The selector

names are all explicit in the definition and are given as atoms.

The definition for Aclosure would be written as

(1)

def LAMBDA_CLOSURE which has

BND VAR_..,PART

~ LAMBDA_BODY

~ ENVIRONMENT

This definition is intended to define a constructed object or

data structure of type LAMBDA_CLOSURE. "LAMBDA_CLOSURE" is

an atom and would be the result of applying an instance of the

data function to the special selector tag. The names fbr the

predicate and constructor are derived from the type by using the

prefixes "Is" and "Make" respectively. For example the above

definition would yield the two functions IsLAMBDA CLOSURE and ·

MakeLAMBDA CLOSURE.

68

The eventual goal of the above definition is to define two

functions, the constructor and the predicate. It would be

possible to write this in the form

def Is~DA_CLOSURE =
(2)

and MakeLAMBDA_CLOSURE =

where the ellipsis represent function definitions. However,

we have chosen to use the structure definitions as syntactic

sugaring for the al;>ove forms. Therefore, it will be necessary

to define an abstract syntax for structure definitions and to

expand the standardizing section of the gedanken interpreter

to convert the abstract structure definitions into the desugared

form.

The Syntax for Simple Definitions

Since the results of a structure defini,tion is to be

definitions like phrase (2), it i ,s natural to extend the class

of <basic d~finitions>(D3 in the abbreviated syntax). Hence,

D3 becomes

D3:: = NAME{,NAME}~=E I NAME V=E
0

(D) [D] I s

Where S stands for <narned-structur.e >. The elementary structure

definition syntax is

<named-structure>: : =ATOM which has <anonymous-structu r€· ,

(3) <anonymous-structure>::= {<selector> also }7 <selecto r ··

I only <selector>

<selector>::=Atom

l

,-\

69

In abbreviated form this becomes

S::= ATOM which has Sl

Sl::= {s2 also}~ S2 I only S2

S2::= ATOM

The interpretation of the syntax is as follows. The <named

structure> gives a tag to a collection of components given b y

the <anonymous structure>. We shall see that the , anonymous

structure>can occur elsewhere in the syntax, so it must be a

recognizable syntactic entity. Therefore , it consists of either

two or more components separated by also or a single component

prefixed by· only. Each component is a selector specification

which is an atom.

The abstract syntax for the above concrete syntax will be

represented pictorially and by R-PAL programs following the

method established in wozencraft and Evans [40]. Figure l

shows the graphical abstract syntax for (3). The abstract

syntax tree for definition (1) is given in figure 2.

The Primitives for Defining the Constructor and Predicate

The next step in the processing is to build a stand~rdizen

definition like definition (2). The details of this process

are delayed until later in the chapter. The expected form is

a simulataneous definition whose righthand side defines

functions representing the constructor and predicate. These

two functions are defined by two new primitive functions,

70

s Sl Sl

which has also also

A Sl S2

figure IV.l Abstract syntax for simple structure
definitions

which has

LAMBDA CLOSURE

also

BND VAR PART ENVIRONMENT

LAMBDA BODY

figure IV.2 Typical abstract syntax tree for a
simple structure definition

S2

A

--
71

MakeStr and IsStr. These constructor and predicate building

functions take the tag and selector set information and produce

functions with these parameters as "own" variables. These

functions are then bound to the constructor and predicate n,3.mes

when the definition is evaluated. The standardized tree fo~

definition (1) is shown in figure 3.

The functions MakeStr and IsStr could be defined in terms

of R-PAL in a manner similar to that used by Standish [33] to

define a constructor given a description of the structure.

'l'he main reason this is not done is that defining the constructor

and predicate in terms of a primitive function allows more

flexibility in the implementation and hence greater efficiency.

Before describing a representation of these functions, it is

useful to expand the syntax of structure definitions.

Predicates~ Types with Alternative Forms

It is often the case that a particular structural type

will occur in several different forms. For example, following

McCarthy [22] we can define the abstract syntax _of a term in

an expression as

(4)

def TERM which

is (SUM which has

ADDEND

~ AUGEND)

MakeLAMBDA CLOSURE IsLAMBDA CLOSURE

IsStr

LAMBDA .CLOSURE LAMBDA CLOSURE

BND VAR PART I ENVIRONMENT

LAMBDA BODY

nil

figure IV . 3 The standardized form of the syntax tree for definition (1).
It is composed of a simultaneous definition of the constructor
and predicate which re·sult from the application of MakeStr and
IsStr respectively.

....,
N

73 .

else is (PROD which~

MPLIER

ll!2 MPCAND)

else IsCONSTANT

else IsVARIABLE

In this definition a TERM can have four structural variants.

It can be one of the two constructed objects SUM or -PROD or

it can satisfy one of the previously defined predicates

IsVARIABLE or IsCONSTANT.

The Differences Between Predicate~ Structure Definitions

There are several important facts to notice about this

definition in contrast to the previous definition. First the

definition begins with which* instead of which~- The phrase

which designates that the type being defined is not a constructed

object, but instead defines a class of constructed or elementary

objects. That is, there is no way to construct a TERM. It is

only possible to construct the two variant forms SUM and PROD.

Therefore, there is no constructor associated with a whi.ch

definition. Only the predicate which recognizes members of the

class TERM is defined.

The various alternatives in ·the class TERM are separated

by the connective .!!ill· These alternatives may be constructed

objects such as SUM, or elementary or previously defined

*The is following which is a noise word which improved readability .

74

objects such as IsVARIABLE. If an alternative is a constructed

object, a constructor and a subpredicate must be defined.

This is indicated by the which has which designates that the

type to its left is a constructed object. Thus the phrase

SUM which ,h!!

ADDEND

&!Q AUGEND

defines a constructor and predicate just as if it appeared

alone in a definition. The parentheses are necessary to make

clear the scope of the alternatives.

Thus, we see that the two forms of structure definitions

have different purposes. The which has form defines both a

constructor and a predicate from the set of component selectors.

The which form defines a new class predicate from the set of

predicates which are alternative forms of the class members .

We note in passing that it was necessary to use also and else

instead of the more natural and and _QE used by Landin because

and and or already have meanings in PAL.

The Syntax for Predicate Definitions

To add predicates to the syntax it is necessary to modify

D3 once again.

75

D3::=NAME{,NAME}
00

=E I NAME V = E
0

I [E 1 I (E) I s I P

where P represents a <named predicate >. The syntax for simple

predicates is analogous to that for simple structures .

<named-predicate>::=ATOM which <anonymous-predicate>

<anonymous-predieate>::=<predicate designator>{~

<predicate designators>} 00

(5) or in . abbreviated form:

P::= ATOM which Pl

Pl::= P3 {else P3} 00

- 0

P 3: : = P 2 I is c s >

0

The corresponding abstract syntax is given in figure 4, and

figure 5 is th~ abstract syntax tree for definition (4) .

The interpretation is that a <named predicate> defines a class

from an <anonymous-predicate> which is a list of alternative

<predicate-designator>s or predicates from <named-structure>s.

The standardized form of definition (4) is more ~omplex

than that of definition (1). The problem is that not only is

a predicate being defined but so are two constructed objects ·

and their associated constructors and p.redicates. Therefore,

the lefthand side of the simultaneous definition has become a

tree of functions. This form is similar to that which occurs

. 76

p P.]

which else

...
A Pl P3 n

P3

s

1'3

R2

figure IV.4 Abstract syntax for predicates

which

else

IsVARIABLE

which has IsCONSTANT

SUM PROO

also also ·

ADDEND AUGENO MPLIER MPCANO

figure IV.S Typical abstract syntax tree for predicate

77

when definitions are nested . in the current PAL. The standardized

form of (4) is given in figure 6.

A Representation!£!: the Primitives MakeStr and IsStr

It is now time to describe the primitives for building

the constructor and predicate. This will be done by showing

a representation for the data function in terms of an R-PAL

program and indicating how the constructor (predicate) for that

data function is built. An R-PAL representation is used to show

data structures are basically applicative. The previous chapter

gives a set. of properties the representation must have.

1) It must provide a type indicator such as a tag

2) It must be able to generate the .selector set

3) It must provide its own constructor

4) It must be able to produce the data component

corresponding to each selector

These constraints can be satisfied_ by ·using a f~nction which has

available as own variabtes the selectors and the type,_ and stores

the data components in a tuple. A component is selected by

searching for the selector in the selector list and finding the

index of the component in the data tuple.

This is certainly not the only possible representation of

a data function. There are many other possible representations.

The reason this approach was chosen is that it takes advantage

IsStr

IsVARIABLE

IsPROD IsCONSTANT

~ MakeSUM IsSUM HakePROD

IsStr IsStr

SUM SUM . nil PROD . PROD

ADDEND

AUGEND

MPLIER

MPCAND

false

figure IV.6 · The standardized tree for definition(4). An extra selector
indicated by false has been added to indicate the selector
set is fixed. This will be explained under mixed domains
later in the Chapter.

nil

79

of the powerful data representation properties of tuples

and has very little extra complexity. Furthermore, the conver-

sion of a selector to a tuple index can be speeded up by

hashing the atom name to get a tuple index. The particular

hashing scheme may depend on the data structure to get a 1-1

correspondence between atoms and tuple indices.

The Predicate Building Function IsStr

A predicate is defined from two sets of data. First

there is the tag by means of which the data function describes

itself. Secondly, there is the list of predicates for alter

native types which define a complex predicate. The function

IsStr takes these two arguments and returns a predicate function.

This predicate function tests the validity of its argument

by first applying the set of alternative predicates. If any of

these yield~ then the predicate function yields~•

If none of the predicates yield~ then the tag of the argu

ment is compared against the tag built into the predicate.

In this case the result of the predicate is the result of that

comparison. The R-PAL representation of IsStr is given in

figure 7.

Throughout this thesis, definitions and representations

will be written to emphasise their structure rather than to

80

def IsStr (Name,Predicates) =

{ fn y. [Istuple Predicates - >

(Q (Order Predicates)
where rec . Q k =

k !S, 0 -> false
I Q (k-1) or Predicates k y)

Predicates y]

or (y tag 5 Name)

figure IV.7 The representation of IsStr. This function
returns the function of y which makes up
the body of IsStr. The arguments of IsStr
become "own" variables for the predicate
function.

81

provide efficient implementations. For example, testing for

nil tuples might speed up the function but it would only

complicate the program unnecessarily. For this reason many of

the function definitions will not be optimal . Any implemen

tation could of course recognize these special cues and

simplify the resulting functions.

The Constructor Building Function MakeStr

It is natural to assume the argument to the constructor

will be a tuple of components. In this case this t~ple can be

used as the tuple which represents the data . The selector

decoding consists of finding the index of the selector in a

tuple of selectors in the proper order. The selected component

is generated by applying the argument tuple to this index.

~ .

The special -selectors -(tag, domain, constructor) are handled

by tests for their . occurrance before the selector is decoded .

The dec~ding procedure and constructor builder are giv en in

figure~-

Since the MakeStr function produces a function producin g

function, it is easier to see how it works from a picture of t h e

environment of each function. In figure 9 there is a repr e

sentation of what happens when MakeStr is applied to an argument

tuple consisting of a tag (argl) and a selector set (arg2).

82

5!!!_ Decode (y,Sel) = D (Order Sel)
Where !:!£ D k =·

k !SO-> 0 I y ~(Selk) -> k ID (k-1)

def MakeStr (Tag,Sel) = Constructor

where f!_£ Constructor (Tuple)=
fn y. y !Stag-> Tag

I y !S domain-> Sel
I y !S constructor-> Constructor
I (let k = Decode (y,Sel) in

k !.9. 0 -> undef I Tuple k) }

figure IV.8 The representation of MakeStr. This
is a function producing function which
produces the function Constructor.
When Constructor is applied to a tuple
it returns the function of y which
represents the data. The tag and selectors
are "own11 to the function Constructor
and these plus the data tuple are "own"
to the data function. The result of the
data function is the special atom undef
if the selector is not defined.

83

The constructor is created in step 1) and this is used

in · step 2) to build an instance of a data function

Stack

1) ~-: --------------_:>~ MakeStr A- closure n > Arg tuple 7"'
arg] arg2 / bv A -body environment

2)

. I I I
Tag Sel MakeStr envl

Constructor A-closure

bv A-body environment

I I
~uple Constructor

Constructor Tag argl Sel arg2

-+---~► data function A -closure

~
bv · A -body environment

/ J
y data

Tuple

figure IV.9 The environment of the constructor and
data function

84

The result of this application is the constructor which is a

AClosure with an environment containing the tag, the selector

set and a self reference. Wh~n this constructor is applied to

a tuple of data components, the result is a function of one

argument (a selector). The AClosure for this data function

has the data tuple, the selector set, the tag and the construc

tor in its environment.

From this figure it is possible to see that the data tuple,

selectors, tag and constructor are like own variables to the

data function. Since the environment of every data function

instance points to the environment of the constructor, it is

necessary to store only one copy of the selector and tag

information. The constructor is defined recursively so that

it is also defined in the environment with the tag and selectors.

Thus, the information used by the special selectors is stored

as effi ciently as possible.

The Decode function returns a zero value if the argument

to the data function is not in the selector set. When the data

function finds a zero result ·it returns a special atom undef

to indic~te that its argument (the selector) was not in the

domain of the data function.

A Syntactic Abbreviation which Defines a Constructor and

Comple·x Predicate

So far the syntax defined allows simple data structures

85

to be constructed. We begin extending this facility by intro

ducing an abbreviation for a special case of the predicate

definition. Consider the definition

def LIST which is

(6) (HEAD .2.!.!.2 TAIL)

~ IsNIL

In this definition there are two alternatives exactly one of

which is a constructed object. However, the constructed

object is without a name of its own and is indicated only by

the <anonymous-structure> HEAD also TAIL. If a list of

alternatives f6r a predicate definition includes exactly one

constructed object, the name (tag) for that constructed object

may be elided. In such a case the tag of the constructed

object will be taken from the predicate name. For the above

definition (6) the tag of the constructed object will be "LIST"

and the constructor for it will be "MakeLIST."

Syntactically, this is facilitated by changing the syn

tactic rule for <11amed predicate> as given in (5) and by adding

another rule

<named predicate>::=ATOM which <anonymous predicate>

ATOM which <structured predicate>

<structured predicate>: :=l..!(<anonyrnous structure>)

{.!!.!! <predicate designator>}7

86

or, in abbreviated form

P:: =ATOM which Pl I ATOM which P2

P2: ::is(S1) {else P3}7

Since a <named predicate> with an <anonymous structure ~ as the

sole alternative would be exactly equivalent to a <named struc

ture>, it appeared to be . less confusing if additional predicate

alternatives were required. The~efore, at least one <predicate

designator> must appear after the <anonymous structure> .

The new abstract syntax is given in figure 10. Note that the

node tag for "ATOM which P2" has been changed to "is/has"

to make it possible to distinguish the two forms of P when they

are encountered. This information is used in the standardization

process.

The abstract syntax tree for definition (6) is given in

figure 11. Note that else is used to designate both Pl and

P2 and only by examining the form of the syntactic variable

preceeding the first~ are they distinguished. This

double use of else is possible because the two forms of Pare

distinguished. The processed form given in figure 12 defines

only a predicate and a constructor but the predicate builder h as

a one tuple with the single predicate IsNIL as an argument.

87

p p

is/has else

A P2

figure IV.10 Abstract syntax for abbreviated
predicate-constructor

is/has

LIST

also IsNIL

HEAD TAIL

figure IV.11 Abstract syntax tree for definition (6)

MakeLIST IsLIST

-MakeStr

LIST

HEAD

TAIL

IsStr

LIST

false IsNIL

figure IV.12 The standardization tree for · definition (6)

. 88

Data Functions with a Mixed Domain* - ----- - - ..-....---- ----
A careful reader may have noticed that in the standardized

form of the above defunctions an extra. selector, false, was

always appended to the selector set argument of MakeStr.

This argument is needed to allow for data functions defined

with both atomic and integer selectors. These are refered to

as mixed domain data functions_.

As an example of such a data structure we borrow an

example from Standish[33]. Suppose we wish to represent

a molecule. Before we can do so we must have a representation

for a chemical atom. For molecule building there are three

properties we require of our chemical atoms . They must have

a name, a valence and a set of bonds to other atoms. The

number of bonds depends on the valence. Hence, it will vary

from· atom to atom. At the risk of great confusion we will

call the data structure for the chemical atom, ATOM

def ATOM which~

(8) NAME also VALENCE .!.!.!£ tuple

* Mixing integer and atomic selectors appears to complicate
the representation of data functions, perhaps unnecessarily.
The solution given here is presented only for completeness;
a discussion of how this problem can be evaded occurs in the
conclusions. This section is logically independent of t he
others and car. be omitted on first reading.

89

We have used the keyword tuple to indicate that an

indefinite number of integer indexed compon~nts will be part

of an instance of the data function for atoms.

The Syntax for Mixed Domain Selectors

The syntax for mixed domains is created by modifying the

<anonymous structure> syntax (3).

"" <anonymous-structure>::={<selector> ~} 1 <selector'

or in abbreviation

{<selector> also} ; tuple

only <selector>

Sl::={S2 also}7s2 l{s2 also}~ tuple I only S2

The reader may notice that a tuple may occur without any

symbolic selector being specified. Because it is a reserved

word no syntactic ambiguity occurs in this case. The abstract

syntax for the modified FUle is given graphically in figure 13.

Figures 14 and 15 give the abstract syntax tree and the

standardized tree for definition (8).

The Reason Why~ Integer Selectors Follow the

Atomic Selectors

As we noted above different chemical atoms have different

numbers of bonds depending on the valence. Therefore, it must be

possible to construct data structures where the extent of the tuple

part is variable. As the use of tuple suggests, the tuple part

is variable in extent and the integer selectors associated with

Sl ·
1

also

90

Sl tuple
n

also

figure IV.13 Abstract syntax for mixed and singular
definitions

which

ATOM
also

NAME tuple
VALENCE

figure IV.14 Abstract syntax tree for definition (8)

MakeStr IsStr

MakeATOM IsATOM ATOM ATOM nil

VALENCE

figure IV.15 Standardized tree for definition (8)

-

91

any instance of a mixed domain data function range from 1 1:0

the order of the tuple part. Of course, the tuple part may also

be nil.

It is no accident that the tuple part of a structure follows

the symbolically selected parts. The components of the tuple

part are included in the tuple of data on which the structure

is defined. Since the number of tuple components may vary,

it is necessary to have a way of identifying the tuple part

components. There are always a fixed number of components

with atomic selectors and these must always be present.

Therefore, the simplest way to identify the tuple components

is to put them after the ordered set of symbolically selected

components. Then the length of the argument to the constructor

defines the length of the tuple part.

For example, consider the construction of a typical chemi

cal atom, say carbon . The carbon atom has a valence of 4 so

four bonds, represented by pointers, are required. A typical

construction using definition (8) might be

MakeATOM('CARBON',4,ptrl,ptr2,ptr3,ptr4)

where ptri represents a link to another chemical atom. The

bond pointers would be selected by 1,2,3 and 4.

Putting the tuple last is convenient for a second reason.

It makes it possible to augment structures just as tuples are

augmented. For example, it might be desirable to construct

vnly the symbolic part of an atom initially and to add the

bonds later. This can be done by defining a function which

first extracts the components of the existing structure and

puts them into a tuple. The new component is added using aug

and finally a new copy of the structure is constructed (see

figure 17). Since the tuple part is last, the added component

becomes the last component of the tuple part.

~ Alternative Mixed Domain Definition

The S-PAL approach is certainly not the only way of de

fining a mixed domain data structure. Another alternative is

given by Standish (33]. He chose to allow the user to refer

to a component either by its selector name or by the ordinal

for its position in the data structure definition. Therefore,

a component might have two selectors. If a user wanted only

the integer selector, the component was defined by a place

holder and the selector name was omitted. The place holder

he used was the type specification for the component. He did

not, however, allow for augmenting a dat~ structure. Instead

he provided families of data structures where each structure

had a different number of components.

The main advantage to a non-augmentable set of selectors

is that it is possible to specify distinct type information

-
' . ,

for each component in the definition. When an indefinite

number of components may occur it is only possible to speci:y

a type which every component must have. This question will be

treated in more detail in chapter v. It would be possible to

include a fixed set of integer selectors in S-PAL data functions

by allowing integers as well as atoms as <selector>s. However ,

this point will not be persued.

The Extension of MakeStr ~ Allow Mixed Domains

It is now possible to interpret the truth value which was

appended to the selector set. If this value is false, then

the data function is of fixed sized wi th atomic selectors.

If the value is~. then the data function has a variable

tuple part and different instances may have different size .

Unfortunately, this simple extension makes the function

MakeStr much more complex. It is now necessary to have the

data function representation recognize two different types

of selectors. The atomic selectors are sti ll looked up in

. the selector list while the tuple representing the data is

applied to the integer selectors directly. The variable

components are selected by adding the length of the fixed

(atomic) part to the selector value. Since only the atomic

selectors are stored in the constructor, it is necessary to

94

build the full selector sets when the special selector doma:.n

is given. This is done in the auxilliary function Buildset .

The new form of MakeStr is given in figure 16.

An aug-like Operator for.™ Functions

Because the mixed domain data functions may grow in size

it should be possible to write a function which will augment

the tuple part. This function will produce a new augmented

data function just as aug produces a new tuple. This is

. necessary to avoid side effects _when the original structure is

used. That _is, augmenting the structure should not affect

other uses of that structure.

The function AuG in figure 17 uses two of the special

selectors. It first decomposes the current data function into

its components using the auxiliary function Destroy. The tuple

of components is then augmented and the CQnstructor is appli~d

to the augmented tuple to give the augmented data function.

The function Destroy is implemented as a primitive in some

languages such as POP-2 [4]. It is called a destructor and

produces the tuple which was originally used to construct the

function.

Structures~ Explicitly Enclosed Substructures

The structure facilities defined so far provide for con

strue.ting on,e level structures. If a multilevel structure such

.,_,. ...,.

95

def MakeStr (Tag,Sel) =

let n = Order Sel - 2 in Constructor
where rec Constructor (t) = --- -- .

[fn y. IsATOM y ->

y !S. tag-> Tag
y !S. domain-> Buildset (Sel,t)

y !S. constructor-> Constructor
{ let k = Decode(y,Sel) in

k !S. 0 -> undef I t k:}

Sel (Order Sel) -> t (n+y) I undef 1

def Buildset (Sel,t) = R (Order t - Order Sel + 1)
where rec [R k = k !S. O -> Q (Order Sel - 1)

I Aug (R (k-1)) k
and Q m = m !S. 0 - > nil

I Aug (Q (m-1)) (Sel ·m)]

figure IV.16 MakeStr function for mixed domains. This
MakeStr is almost identical to the
previous one except .for the non-atomic
selectors which are used to select the
tuple part. Buildset has two recursive
searchs. O builds the tuple of atomic
selectors and this is augmented by R to
include the integer selectors.

96

def AuG (Struc~ure,Object) =

Istuple Structure-> Aug Structure Object
I £.(Aug [Destroy Struct~re] Object)

where f • Structure constructor

def Destroy (Structure) s

let A= Structure domain in Q (Order A)

where!:!£ Q k • k 5 O -> nil
I Aug (Q(k-1)] [Structure(A k)]

figure IV.17 A function for augmenting data functions

97

As a binary tree is desired, it is necessary to use a multistep

construction. This can be done by first constructing all l)wer

levels of the structure and then constructing the next higher

level using the previously constructed structures as argume11ts

to the constructor for the higher level . Alternatively , the

construction can be done from the top down using loc ' s and

updating pointers to the lower levels when they are constructed.

In general , there are no bounds on the size or complexity of

such a structure. It can grow: dynamically at run time. It

is also impossible to predict the storage requirements for

such a structure at compile (translate) time .

~ Different Approach

This section presents an alternative method for defining

multilevel structures. This technique, which might be called

static structuring, is useful when the substructures have a

fixed relationship to the major structure and this relationship

is known at compile time. If each substructure has a well

defined position in the structure, is of a known type, and is

always present, then it is possible to predict the storage

requirements for the structure with its substructures. It is

also possible to use such techniques as contiguous storage to

reduce the need for pointers within the structure. This in

turn makes references to parts of the structure simpler. When

the user provides the static or fixed structuring information,

98

the compiler can use this to optimize resource usage for th3t

structure type.

If the main idea of static structures is that all of the

information should occur together, why not represent it by

a single structure with many components? This certainly could

be done but it would inhibit one of the main uses for data

structures. One of the reasons for grouping data into a

structure is that the components all have some relation to

each other which the user finds convenient to make explicit

by grouping them and giving the grouping a name. If he is forced

to use a large structure with all the components at the same

level, he is unable to group subsets of these components.

This grouping of subsets is important because he may wish to

specify operations on subsets without having to list all the

members of the subset.

Reducing Naming Conflicts

When a large data structure such as a binery tree is cr,~ated

dynamically there is no problem in refering to a subpart of the

structure. If the anchor node of the structure is known, then

any substructure can be accessed by applying the data function

for the anchor node to a string of selectors which indicate

a path to the desired substructure. Therefore, any such sub-

99

structure is referenced by an anchor data function and string

of selectors. This is a computed reference.

In the case of statically defined substructures, it is

also possible to use a computed reference to access substructures.

However, as we shall see when some additional properties of static

structures are presented, it is convenient to have a name for

the static substructures. Since the names of structures are

derived from the tag, this creates a problem of possible name

conflicts in structures with similar substructures. Two

substructures may have the same tag because the data they contain

is related. For example, one such substructure may contain a

subset of the information contained in another. However,

it must be clear which is intended in any particular use

because their actual structure may differ.

This problem can be solved by qualifying the name of the

substructure with the names of all the structures and substruc-

tures in which it is embedded. This produces a tag or name

which identifies the substructure as belonging to a particular

place in .a particular structure. This name is formed by

concatenating all the names in the path to the substructure.

This is analogous to a compile time evaluation of a computed

reference to that substructure. However, the qualified name,

since it is defined at compile time, may be used as a bound

100

variable which is not possible with computed references.

This becomes important in defining constructors and predica--es.

~ Example of .! Static Structure and .lli ~

The utility of static . substructures may become more apparen t

f rom a simple example. Consider a typical payroll file which

might have a structure or record consisting of an identification

substructure, an address substructure, a salary substructure and

a year to date substructure. Each of these substructures has

a different function, but is always present for every employee.

Now consider a typical weekly update operation. A set of

time records which have the time worked by each employee will

be used to find the employee's record, update it, and produce

a paycheck record. The time record will typically have an

identification substructure and an hours worked substructure.

The identification substructure would probably contain a subset

of the payroll identification substructure. For example, it

might contain an id number and a name while the payroll identi

fication substructure might also haye the social security

number.

In practice, the identification substructures would be

used to find the payroll record corresponding to the update

record. For example, the search program would compare the i d

number of the identification substructure in the current payro l l

101

structure with the id number if the identification substructure

of the update structure. Since the element names are identical

~hey are only distinguishable by the structure in which they

occur. Thus, a comparison can only be written with the

qualified names.

A second point to notice is that all the substructures

of the payroll record are used when the structure is updated.

The identification substructure is used to find the correct

record . The salary substructure is used to compute the amount

to be paid. The year to date field is updated and copied

into the paycheck information and the address is used to

mail the paycheck. The substructure groupings correspond to

different operations performed on the payroll record, but

they are all accessed in the update process.

Optimizing such data accesses is particularly important

on computer systems with multilevel stores (e.g., paging

systems). In this case there is usually a large cost associated

with a reference to data which is not currently in the top

level store. Therefore, techniques, such as contiguous storage,

which keep a structure with frequently accessed substructures

on a single page increase the operating efficiency of the

programs which process the structure.

102

Properties which Make Static .!22 Dynamic Substructures

compatible

Before presenting the syntax for substructure definiticns

it is necessary to discuss several proper-ties a substructure

facility should have. First, from an operational point of

view it should not matter whether a substructure was declared

statically or was dynamically inserted at run time . For example ,

a subEoutine should not be able to distinguish whether an argu

ment is a static or dynamic substructure or even if it is a

substructure at all. In either case, the argument should appear

to be a structured Rvalue. This makes it possible to use the

static substructures as if they were defined independently as

major structures . That is not embedded in another structure.

If substructures are to be truly independent of the major

structure in which they are embedded it must also be possible

to construct the substructures and use th~ results of these

constructions to build the major structure. For example, it

should be possible to build an hours substructure and an

identification substructure and combind these into a time

structure. This capability is needed when various components

of a structure are computed or constructed in different sub

routines.

This is made possible by defining a subconstructor for each

s ubstructure in the structure definition. The name of this

103

subconstructor is qualified by the name of the major structure

and substructures in which it is embedded. This makes it

possible to specify which of several substructures with the

same simple name is to constructed. This is also one reason

why the name of a constructor is derived from the structure

definition rather than letting the user bind his own name to

the constructor.

It is also possible to construct a major structure and

all its substructures in a single operation. The argument to

the constructor is still a tuple of components but when a

component corresponds to a substructure in the major structure,

that component can be a tuple of components for the substructure.

The components of the substructure might also be tuples of

components for lower level substructures. If the constructor

for a structure finds a tuple of components where it expects

a substructure, then the constructor for that substructure is

used to build a constructed object from the tuple. This process

is recursive, hence it may occur to any depth. With this de

finition it is possible to mix previously constructed substruc

tures with implicitly constructed ones.

An S-PAL Definition of the. Payroll Update Structure

The following is one possible definition of the update

structure mentioned above

(10)

104

def TIME which has

(ID which has

ID_NO ~ NAME)

also

(HOURS which fil

WORKED~ SICK .!.!.!2 VAC)

This definition defines a major structure which will be

tagged by TIME and two substructures with tags TIME.ID and

TIME.HOURS. As we noted above, the qualification of the sub

structure tags makes it possible to distingui·sh substructures

with the same unqualified name. This property is ·used in the

predicates for these substructures which will only yield true

for a structure with the correct fully qualified tag.

However, the unqualified name of a substructure is used

for the selector name of the coiqporient of the major structure

corresponding to the substructure. For example, the ID_NO com

ponent is accessed by TIME ID ID_NO. This first produces the

substructure TIME.ID from which the component ID_NO is .selected .

An Alternative Notation for Functional. Application

Sometimes it is more convenient to list the selectors i n

reverse order to indicate you want the ID_NO component of the

I D c omponent of TIME • . Therefore, an alternate notation for

functional application is provided. This expands the current

- -

105

notation for functional application and has lower precedence.

R::= R2 of R I Rl

Rl::= Rl R2 R2

(ll) R2::= NUMERIC QUOTATION TRUTHVALUE

NAME I nil I (E) [E] I ATOM

For example, "ID_ NO of ID of TIME" is equivalent to " ID NO

of TIME ID" which is equivalent to "TIME ID ID NO." However,

parentheses are needed to say "(ID of TIME) ID_NO" .

The Syntax for Static Substructures

The syntactic extension for substructures is tri vial.

All of the actual work is done in the standardizing routines.

We also include here the change which allows subpredicates.

<selector>::= ATOM I (<named structure>)

<predicate designator>::=<rand> I is(<named structure>)

I ~ (<named predicate>)

(12t or in abbreviated form

S 2 : : = ATOM I (S)

P3::= R2 I is(S) I is(P)

The interpretation of the expanded <Selector> is that the

<named structure> is defined as a substructure and the name

becomes the selector for that component. The tag of the sub

structure and the name of its constructor are qualified by the

names of all statically containing structures.

106

The interpretation of the .subpredicate <named predicate>

is much simpler. It defines an ad~itional disjunctive predicate.

Basically it allows a subset of the alternatives in a disjur:ct i v e

predicate to be given a name of their own. There is no

constructor or tag to be concerned with, so the name of the

subpredicate is not qualified by the predicate name. The

c omplete abstract syntax for the structure definitions is

given in figure 18.

The abstract syntax tree for definition (10) given in

figure 19 is not too much more complex than that given for the

previous definition. Basically it shows the nesting relation

ship of the substructures. It is the standardized version of

definition (10) which shows ~he addition~l complexity of sub

structures. This tree, given in figure 20, is in the form of

a complex simultaneous definition similar to that which occurs

in the standardization of definitions connected by and. Thus,

the constructors and predicates for the structure and all

c ontained substructures are defined simultaneously.

This is not the only alternative. It would also be pos!.,;ib:..-

to define the structure in a context where the subs,tructures

were already defined . From the viewpoint of simplicity of

specification of the standardization process , this is not a

good choice because it means inverting the tree structure and

s

which has

A Sl

Sl

also

. . .

Pl

else

Sl

also

S2

P3 n

107

p

which

A Pl

S2.
1

P2

else

Sl

also

. . .

p

is/has

A

52
tuple

n

P3

R2

S2

A

P3

s

P2

S2

s

P3

p

figure IV.18 The complete abstract syntax for structure

defin~tions. The syntactic categories which

are not defined by nodes are

A which represents an atom

and R2 which represents a function or

more explicitly a predicate.

108

which has

TIME

iµ.so

which has which has

ID HOURS

also also

ID NO WORKED VAC

SICK

figure IV.19 The abstract syntax for definition (10}

- - -

IsStr

MakeTIME IsTIME
TIME

HOURS

MakeStr IsStr

MakeTIME.HOURS IsTIME.HOURS
TIME.ID

NAME

TIME . ID

figure IV.20 The standardized form of de finition (10)

MakeStr IsStr

alse

SICK VAC

nil

I-'
0
\0

110

defining the lowest nodes first. And if the substructure

definitions are local to the structure definition, much like

own variables, then the names of the constructors for these

substructures are not known outside the primary constructor .

Hence, it is not possible to construct the substructures

independently. This approach can be useful , however , when it

i s desirable to keep substructures anonymous.

The Standardization Process

Throughout the development of the syntax for structure

definitions, we have shown the standardized form of the exampl es.

This emphasises the function of standardization which is to

extract the information presented by the abstract syntax tree

and to convert it into a set of calls to the constructor and

predicate builders. This process is sometimes called interpreting

the parse. It also builds definitions for the names of the

constructors and predicates. The purpose of this section is

to introduce the method used in standardizing the abstract

s yntax tree. The complete standardization for structure de.

finitions without component types is given in Appendix C.

Extending the Concepts of Definition Standardization

There is a very strong sirn~larity between the standardization

of definitions (D) in current PAL and the S-PAL structure s t a n

dardization . This was done intentionally to avoid introducing

too many new techniques. We have already remarked on t h e

111

similarity between substructures and simultaneous d efinitions .

1~is will be developed in greater detail below.

The structure standardization is added to the definition

standardizer D. There are three new a l ternativ es , a s t ructure

definition (NS), a predicate definition (NP), and a combined

or abbreviated predicate and structure definition (NB). These

routines are applied to standardized versions of the c omponen t s

of the corresponding abstract syntactic node just as AD is

applied to standardized versions of the components of the " a nd "

node. In fact, the routines NS, NP and NB are used recursively

for substructures the same way Dis used for subdefinitions.

A Pictoral Representation of the Standardizing Process

To help explain the action of the standardizing routines ,

we will use . a·pictoral representation of the transformations

being performed. These .only indicate the steps of the standar

dization process and do not always correspond exactly to the

operation of the standardizing functions. The major difference

is that some structures shown as a single object are actually

handled as separate components in the functions since i t was

simpler to remember implicitly theconnections between the parts.

Standardizing Definitions without Sublevels

The major portion of the standardizer is needed to handle

substructures. A simple structure such as definiti on (1) is

112

converted to standard from relatively directly. The first

3tep is to collect the set of selectors into a tuple. This is

performed by the unnamed structure processing function (US).

Figure 21 shows the result of US for a set of atomic selectors.

If the tuple option was present the final component would be

true.

The next step is to build a simple definition for the

constructor . and predicate. This is separated into the two

steps shown in figure 22. The first step is to create the

names of the two functions from the tag of the structure.

This is done using the metafunction "QualN" which concatenates

the string which is its first argument with the string or atom

which is its second argument. If the second argument is an

atom it is converted to the printable representation of the

atom before concatenating.

The second step is performed in the function simpleNS

and consists of building argument lists for MakeStr and IsStr .

The function SimpleNS actually constructs combinations wherein

MakeStr and IsStr are applied to their arguments, but to save

space this is represented by the nodes MakeStr and IsStr in

the pictoral form.

A n

113

false

figure IV.21 Simple selector processing. The final
component is false to indicate the tuple
part was not present in the a bstract
syntax tree.

which has

~
A

T

A n which

MakeA IsA
A

~
SimpleNS Al

MakeStr IsStr

A A nil

T

figure IV.22 Standardization of name structures
without substructures

T
A n

114

The processing for the simple forms of named predicates

(NP) and combined predicate and structure (NB) is very similar

to the simple structure case. The only major difference is in

NB. In this function the last argument to Simple NS, the

list of alternative predicates, is not nil but consists of

the predicates from the <structured predicate>(P2).

Standardizing Definitions with Sublevels

This brings us to the standardization of definitions

with substructures. This process would be just like the

processing of simultaneous definitions except for two properties

of the structure definitions. First, requiring ·qualified

names for the substructures means that the name prefixes

constructed for statically enclosing structures must be made

available to the embedded substructures so they can build the

appropriate qualified name. Therefore, the name prefix, which

may be nil, is passed as an extra argument to all the struct11re

standardizing funct~ons.

The functions which process unnamed objects (US, UP, AP)

merely pass the prefix on unchanged. However, the functions

which process named structures (NS, NB) need a modified prefix ..

For these functions the prefix is augmented with the name of

the structure (substructure) being processed . Note that the

named predicate processing function (NP) does not requi r e a

115

qualified name, so the prefix is not changed. Actually two

names are provided to the routines for named objects (NS, NI,

NB). The first is the unqualified name which is used in the

context of selection and the second is the quali fied name.

The second reason why processing of substructures differs

from simultaneous definitions is that information collection

is being done concurrently with the definition of the construc

tors and predicates for the substructures. That is , the

unqualified names of the substructures also serve as selector

names for the components of the enclosing structure. Therefore ,

it is convenient to build two tuples of information for

substructures and subpredicates. The first tuple consists

of the selector set and the second tuple consists of the tree

of simultaneous definitions of substructures below the anonymous

structure currently being processed.

Processing Each component Definition

Since a substructure has the same syntax as a major structure

the processing function Sub is introduced to mimic that part

of D which deals solely with structure or predicate definitions .

Since Sub may be invoked from either a predicate o= a structure

definition and in general different information is needed,

its result is a 3-tuple. The first component is the unqualified

name of the substructure or subpredicate processed by Sub.

116

This is used for the selector name. The second component :i.s

the name of the predicate for the substructure or subpredicate .

It is used in constructing predicates and will be used in t h e

type system introduced in Chapter v. The final component

is the simultaneous definition for the substructures below the

current one. This process is represented pictorially in figure

23. Only a single level is shown because of space considera

tions . The label "Subs" is introduced to give a name to the

3-.tuple. Note that the prefix for name qualification is used.

Combining Individual Component Definitions

Using the analogy with the standardizing of simultaneous

definitions the next step would be to combine .the definition,

of all the substructured components of the c;urrent substruct·1re

into a single simultaneous definition. However, this must b~

done in two steps because the component definitions must be

s eparated from the other in£ormation produced by Sub.

Since we want to collect both the selector set and the

set of all structures defined at lower levels, two tuples of

i n formation are constructed . The function Split is used to

call Sub for each component and to put the resulting information

in the correct tuple . Since Sub always returns a 3-tuple , the

s elect or for the curren·t component is obtained from the first

117

which

A

T ~ub(prefix)

subs

A Isprefix.A

Makeprefix.A Isprefix.A

MakeStr

prefix.A

IsStr

prefix.A nil

T

figure IV.23 The result of processing substructures.
The transformation is performed by Sub
and uses the name prefix which is
indicated as an argument to Sub. This
prefix is used to qualify the constructor
and predicate names as shown.

· 118

component of the Sub result and the lower definitions, if any ,

from the third component. The third component may be nil :.n

which case nothing is added to the tuple of definitions.

This process is shown as the first transformation in

figure 24. For simplicity, it is assumed that Sub was already

invoked and the results are shown schematically. Lis used

to represent the lefthand side of a definition and R represents

the righthand side. Both Land R may be complex trees. Also

prefixes are omitted to reduce the size of the diagram. The

processing for a predicate would build a tuple of predicates

instead of a tuple of selectors.

The next step is unique to substructures and consists of

determining the value of the final component of the selector

set. If the tuple option was present in the abstract syntax

this would have been recognized by Sub and a true selector

would have been returned . Therefore, if the final component

is not true the tuple option must be absent and a false valu•:!

is appended to the selector set.

The final step is to build the simultaneous def i n i t i on f er

t he subobjects and to combine the selector set (predicate set)

with the simultaneous definitions. This is performed b y t h e

routine Combine. It first checks to see if any s ubstructu res

(subpredicates) were defined at a lower l eve l a n <l i f not, it

-

119

Split

also ==>
Al

A2

A3

A2

subs subs

A4 IsA4

L2 R2 L4 R4

L2 R2 L4 R4

~ Combine

<

false

figure IV.24 Standardization of a structure with
substructures. The components A1 and A2
of the also node should also be 3-tup ies
but since the other two components are nil
they are depicted as single atoms for
simplicity .

120

simply makes the selector tuple an SV node and returns it. If

there are subdefinitions they are.put ·into standard form by

AD and the two pieces of information are returned as an SS

node. This is shown in the final ste~ of figure 24.

Assembling the collected Information and Defining the

Constructor and Predicate

. .
Thus far we have only defined the packet of information

necessary to build a predicate and/or constructor. This in

formation forms one of the arguments of - the named object

processing routines (NS, ND, NB). If the packet of information

is a simple· SV node then the processing is as above for

simple structures. However, when the argument is an SS node,

it is necessary to build a simple object using the first

tuple in the SS node and then combine this simple object

into a simultaneous definition with the definition of the

enclosed substructures. This process is shown pictorially

in figure 25.

This completes the description of the standardizing

process. While only structures were treated in detail, the

processing for predicates and combined predicates and structures

is similar so they will ;not be described further. The most

important point to notice is the conc~rrent operation of two

processes. One is collecting information fo r and building

·-

A

MakeA

121

NS

>

n

MakeA

MakeStr IsStr

A nil

T

which has

A

MakeStr

A

A n

L R

T

~ SimpleNS

IsStr

A nil

figure IV.25 Standardization of named structures with
substructures.

122

predicates and/or structures. The other process is collecting

t~e definitions of all enclosed structures and predicates and

building a single simultaneous definition .

An Alternative to the Ordered Tuple~ the

Constructor Argument

I n structures with a large number of arguments it is

o f t en d ifficult to remember the exact sequence in which the

a r g umen ts t o the constructor must be specified. In fact , it i s

unreasonable to force any particular order on the components

of a structure. Therefore, an alternative method for specifying

the arguments to a constructor by name is presented. The

constructor function as it has been defined up to now takes

as an argument a tuple of objects which are assumed to corres

pond (in order) to the tuple of selectors owned by the constructor.

If t h e re are extra arguments and the constructor allows a tu1,le

pa r t then t h e extra arguments form t h e t up l e part . Th e only

reason for assuming an order to the components in the argument

tuple is that it is necessary to know which object corresponds

to which selector. The order restriction can be remov ed if

there is another way to effect this correspondence .

The most natural way to build the correspondence, giv e n

that a set of selectors exists , is to match t h e obj e cts to

t he s elect o rs b y name . Thi s means that it mus t b e poss ible ~o

123

attach a name to each object being sent to the constructor.

This is done with a new object called a "name qualified val..1e"

(nqv) . This object has two parts. It has a name which in

the case of data structures will be an atom _and it has a

value which could be any object. This new object can be repre

sented by a 2-tuple with a special tag, say nqv. The first

~omponent is an object and the second component is the name

which qualifies the object.

A New Class of Objects

These new objects can now be used to build the corres

pondence between components and arguments. Obviously if the

name of an ngv is a selector then the associated object is

to be the component corresponding to that selector. An error

occurs when the same name is used as a qualifier more than once

in the same argument tuple. It is also an error if the name

of t he _ggy is not in the selector set of the constructor.

These name qualified values will most often c:,ccur as

components of tuples, so they should occupy approximately the

same position in the syntax heirarchy as a tuple component .

This suggests the following syntax:

T2::= T3 at T3 I T3

T3: :=

where the first T3 is an expression which produces a value and

124

the second is an expression which produces a name. Notice

there is no need to restrict names to being atoms.

A Formalization .21. ~ Matching Procedure for Normal Values

In the syntax we have just defined there is nothing which

prohibits named and unnamed values within the same tuple.

•rherefore, it is necessary to extend the matching procedure

given above to handle mixed argument tuples. There are several

possible extensions. The function Canonical in figure 26

was chosen because it seems to be one of the most flexible

ones. It has two arguments, the set of selectors and the

argument tuple and it produces a tuple in canonical order for

that selector set. That is, it produces the tuple the user

would have had to write if he hadn't used named values.

Basically it performs a two step process. The first step

is to find the indices of the named components. Each name is

checked against the selector set and if the name is found the

index of the named component is put in a tuple at the .position

of that name in the selector set. That is, this tuple of n a me

indices is sorted into the order of the selectors. Since

this is basically a sorting process it is easier to describe

in L-PAL although it could be written in R-PAL. The indices

of the unnamed components are collected in a second tuple in

125

def Buildvec (n,v) = S(l,nil)

where rec S (m,t) = m ~ n - > t I S[m+l,Aug t (loc_ v)]

def Cstepl (u,Sel) =

let ·Chk = Buildvec(Order u,0)

and Nam= Buildvec(Order Sel-1,nil)

in [Chk,Nam,Q(l,nil),u]

where rec Q(k,Un) =

k > Order u -> Un

I !stag (u k) 'nqv' -> Q[k+l,Sort(Un,k)]

I Q[k+l,Aug Un k]

where Sort(Unn,m) =

[let n = Decode(u m 2,Sel) in

n ~ 0 £!:: Chk n ~ 1 -> undef

I (Chk n := l; Nam n : = k; Unn)]

def Cstep2 (Chk,Nam,Un,u) = R (1,1,nil)

where~ R(i,j,t) =

i ~ Order Chk -> t

I Chk i ~ 0 -> R[i+l,j+l,Aug t (u (Un j))]

R[i+l,j,Aug t (u (Nam i) 1)]

def Canonical (u,Sel) = Cstep2(Cstepl(u,Sel))

figure IV.26 The function which builds a canoical tuple .
Since the named values may occur in any
order, L-PAL is used to sort the indices
of the named components in Cstepl. The
sorted indices in Nam are used in Cstep2
to select the appropriate name qualified
value for the named components indicated
by l's in the Chk vector.

126

the order in which they occur. The tuple Chk is used to

remember which components of the canonical tuple were given

by name. There is a 1 in positions corresponding to the nanied

components.

The second step uses the two index tuples and the Chk

tuple to assemble the canonical tuple. By using Chk it can

tell which index tuple to use in selecting the next component

of the canonical tuple. Since the named component indices are

sorted and the unnamed indices are in their original order,

this procedure has the affect of distributing the unnamed

components into the spaces between the named components.

Thus, a user need only name those components whose relative

position he does not recall.

Only the indices of the components are manipulated in

L-PAL to avoid losing any loc's which may be in the data tuple.

This approach preserves the components as they were written

since Aug in S-PAL does not force any mode changes. Therefore,

all loc's will remain• locs and all Rvalues will also be unch an ged -
in the canonical tuple •

. Additional ~ for Named Values

Obviously this scheme could also be used in normal func tion

invocations. • ·The names wouid then correspond to the formal

parame ters of the function . This wou ld be v ery c onvenient f or

127

functions with a large number of arguments.

This name qualified value has a strong resemblance to 1:he

keyword parameters which are used in some macro s y stems a nd

in variou s command languages. This leads to t h e idea o f

defau l t v alues associated with the parameters or selectors .

In the case of data functions, default values could be speci f i e d

in a second tuple which was in 1-1 correspondance with the

se l ector set. The default value would only be used wh en the

canonical argument tuple was too short to match all the

selectors. However, further consideration o f this proposal i s

beyond the scope of this thesis.

Another use for named values that we can see is t o resc i nd

the rule which prohibits unused names in the argument list.

If instead these values are just ignored , it is possible to

implement the concept of "by name" assignment found in PL/ I

and COBOL. A "by name" assignment is a component b y componen t

assignment between two structures whose formats differ. Only

those components whose qualified name is the same in both

structures are ch anged . This could be mimicked with a by name

construction which first destroys the righthand structure and

attaches the appropriate selector name to each component.

Then the left hand structure could be constructed from these

named components .

128

This short section has only explored some of the possibili ti e s

for named values. Unfortunately time prevents a more thorough

study .

Modifying MakeStr ~ Allow Named Values

It is very simple to modify MakeStr to allow named values

in the argument list. The current form of the constructor

produced by MakeStr expects the argument tuple to be in

canonical order. Therefore, it suffices to invoke Canonical

in the argument to the existing constructor. The modified

form of MakeStr is given in figure 27.

129

def MakeStr (Tag,Sel} =

let n = Order Sel - 2

in Constructor

where rec Constructor (u) =
fn y. IsATOM y ->

y ~tag-> Tag

y ~domain-> Buildset(Sel,t)

y ~constructor-> Constructor

[let k = Decode(y,Sel) in

k ~ 0 ->undef I t k 1
Sel(Order Sel) -> t(n+y) I undef

where t = Canonical(u,Sel)

figure IV.27 The MakeStr function has two embedded
functions which produce functions. The
first is the Constructor which is produced
on applying MakeStr. The second is an
anonymous function in a single variable y
which is produced when the Constructor is
applied. It has as "own" values the
canonical form of the constructors argument
tuple. Only the last line of the MakeStr
definition is new in this figure.

Chaoter V

A~ System for Structures

One of the major goals of this thesis is to define a

system in which it is possible to build strong representations

of data structures. This means that it must be possible to

restrict the range of values which may be assumed by the com

ponents of a data structure. If any object may be substituted

for a componant, extra or irrelevant properties could creep

into the representation.

For example, consider the structure definition for an

algebraic term given in Chapter IV (IV(4)). In this case a

term is _either a constant or a variable, or it is one of two

constructed objects, a sum or a proauct. If the components of

the sum or product could be any two objects in the univers~ of

discourse, then it would be impossible to say much about the

structure of terms beyond the ract that they have two components.

In fact, the components of a sum or product are not free to be

any object, but must be other instances of terms. This makes

it possible to attach a . very ·definite structure to a term. It

represents the top node of a binary tree whose leaves are

variables or constants and whose other nonterminal nodes are

binary sums or products.

From this example it . is easy to see . that it is necess ary

to verify or validate the compcnen ts of a con $tru c t ed object

130 _

131

. before constructing it. Since a data structure will in genE?ral

be a collection of constructed objects which are linked toget

her in a specific way, a strong representation is possible cnly

if the structure is validated as it is being built. The extent

to which validation is performed determines the strength of the

r _epresentation.

Other Reasons for~ Verification

There are two other reasons for verifying the type of

components. Both of these reasons are related to optimization .

If the type of an object is known or is at least restricted to

some range of types, then the fact that the excluded cases

will not occur can be used to improve the efficiency of a

program using that object.

This type of optimization comes in two forms. The first

form might be called applicative optimization because it deals

with function application. Most functions have limited

domains of applicability. For example, in PAL the operator

"+" is not defined on tuples or functions . Th~refore, it is

necessary to test the operands of a function before applying

it to determine if it is a legal application . If it is

known that the operands are already restricted to a range

within the legal domain of the function this validity test

can be omitted . Hence a single test at construction time can

132

replace many tests which would have occured when the componen t

was used.

The second f orm of optimization is storage optimizatior .

In most computers it is necessary to allocate storage space

to hold values. In S-PAL the Rvalues are held in~- If

nothing is known about the range of values which might be

stored in a loc, then it is impossible to pre-allocate storage.

However , if the range of values is limi~ed to a set of types

with similar storage requirements, it is possible to pre-allocate

storage for the loc and merely to assign the value to the

existing storage. In this way storage is allocated on l y once

ins.tead of on every use. Both forms of optimization use the

type information to compute something only once instead of

many times because its value is known not to change.

Dynamic Versus Static~ Systems

There are two extremes in type checking systems . Some

languages require· that all type information be available a t

compile time and all type checking is done at that time.

Examples of this type of language are PL/ I , COBOL and FORTRAN.

More recently languages which have no compile time type infor

mation have been developed. These languages rely on r un time

type checking to validate operations. PAL and APL are exa mpl e s

o f this approach. The former kind o f t ype check i ,19 is called

133

static type checking, while the latter is called dynamic type

checking.

As with many absolute distinctions, there are languages

which are neither totally static nor totally dynamic . Typical

of this class are ALGOL68 and BASEL. These languages have

extensive facilities for static type checking, but allow thei

user to have dynamic types if he chooses. In these languages

the range over which a dynamic type can vary is normally

limited in any particular use. However, this is no restriction

on what types may be in the range. There are language facilities

for testing which of the possible types actually occur.

In the case of BASEL and ALGOL68 the type testing facility

makes it . possible to generate type test free compiled code even

for the identifiers with dynamic types . The basic idea is to

define a conditional statement which is conditional on a type

test rather ·than on logical or arithmetic test. For example ,

in BASEL there is a statement of the form

when identifer is type then statement! else statement2 end

This is interpreted as follows. First the value of the

"identifier" is tested against the "type". If the type matches,

then "statementl" is executed~ otherwise, "statement2" is

executed. However, the difference here is that for the duration

of "statementl" (which could be a group of statements) the type

134

of "identifier" is known to be "type". Hence, the generated

code for "statement" can be free of type tests on "identifie·r ".

If "statement2" is executed then nothing is known about the

type except that it is not "type". It may be the case that

" statement2" is another when statement .

Why are both dynamic and static type systems necessary?

Even though static type systems allow greater optimization of

the generated code they do so at the cost of flexibility. The

static type systems perform early binding on the range of values

on identifier may denote. There are cases, such as data

structures like TERM (IV(4)), where an object may have one of

several alternative forms. It is therefore necessary to be

able to determine for each instance which form actually

pccurs. That is, the binding of the type must be delayed

until run time. This implies that some form of dynamic type

checking is necessary.

The Simplicity of Dynamic~ Checking

There is a second reason for the popularity of dynamic

type checking. It is in general a much simpler task than static

type checking. With dynamic type _checking the value to be

v alidated is known. Therefore, type checking is just a

question of set membership. With static type checking the

- --

135

particular value is unknown and only the ranqe o I <1 t t ,- i In, t,. <

the value may have are known. Therefore, it is ll<'l·ess,1ry It>

test if the set of objects whose attributes are known 1s

contained in the set of objects that arc valid. This vhdrn/1. s

..l que stion of se t membership into a question oJ SL'l contd i nn c nt

The se t c on t ainmen t question i s in general mud1 more

difficult to answe r. For e xample , consider t. he con text f n·e

languages. rt is possible to decide if a word w is in an

arbi t rary con tex t f ree language , but it is undecidable whe th•.:r·

an arbitrary r egular set is contained in a contex t f r ee language .

Thus, the s et containmen t problem is seen to be more difficult

then the set membership problem, and a stat ic type s y s t em

will need careful speci f ication of the range of values in a type

class .

A~ System Based on Predicates

The type systems presented in this chapter is suitable

only for dynamic t ype checking. The primary reason for this

is that static type systems are much more difficult to construct.

In fact, even the limited goal of a dynamic type system is not

particularly simple to achieve as we will see below.

Verifiers in Structure Definition

As we noted in Chapter IV, Landin included more than the

136

selector set in his structure definitions. He also included

type information with every component selector. That information

was primarily descriptive. It tells the reader what to exp,?ct

as a value for th~t component. For example, the declaratiot

of ">.-closure" has three components.

A . >. -closure has

a bound variable part which is a variable

(1) and a >.-body which is an >.-expression

and an environment which is an environment

The phrases beginning "which is" describe the type of the

component. Notice the similarity with the prediGates of S-PAL.

When we consider constructing such objects it is easy to

see that the type information can be used to verify that the

intended components are indeed of the correct form. The type

checking can be done dynamically when the components are

presented to the constructor. In this case, type checking

consists of testing the objects in the constructor argument

for the properties required of the corresponding component.

This can be done in general by a predicate function which

tests the required properties and returns true or false. If

the results of all the component tests are true, then the

argument is suitable and the construction is done. If any

component test fails, then the construction is aborted.

·- -

137

The Concept of ~ in S-PAL

The above discussion leads to a natural definition of

type in S- PAL. A~ is a predicate, usually called a

verifier. As used here a predicate means a funct i on o f one

argument which is defined over the universe o f discourse and

which for every object yields a value true or false. Those

values for which it yields~ are said to have the type

it defines.

This is a very general concept of type. It includes

tests for the simple built in types such as integer, real and

character using the built in predicates ISINTEGER, IsREAL and

IsCHAR. Hence, it includes the normal concept of primitive

type. It is also possible to perform complex tests which define

such types as "binary trees of depth less than or equal ton".

Such a predicate would have to know the representation of

the tree and could scan the tree to check the depth condition .

The major problem with defining types this way is that it is

too general. This will be discussed in greater detail in the

sequel.

The Syntax for Verifiers

While it might be possible to restrict the verifiers to

previously defined S-PAL predicates, there are times when

this is inconvenient. In fact, there are times when the

138

type must be defined simultaneously with its use. For example,

consider the definition of LIST (IV(6)).

(2)

def~ LIST which

is(HEAD which IsLIST else IsATOM

~ TAIL which IsLIST else IsATOMj

else IsNIL

In this definition both the HEAD and the TAIL component

have the same verifier. It is an unnamed predicate which

yields true for any ATOM or alternatively for another instance

of LIST. Because rec was used, the instance of IsLIST in the .-
verifier definition refers . to the predicate IsLIST defined

by the standardization of the LIST definition. However, the

predicate IsLIST o~ly checks the tag of a structure for equality

with "LIST" (See Chapter III}. It does not make tests on

the components which would cause itself to be invoked again .

Hence, the recursion always terminates after one step. IsLI ST

will also yield true if the argument is nil since IsNIL is

given as an alternative type for a LIST.

This definition of LIST was written with an explicit~

This is consistent with the general PAL philosophy which requires

~ to be written for all recursive functions. However , in

S-PAL it was decided not to use~ in structure definitions ,

but rather to assume an implicit use of~ in all structu re

139

definitions. It should be emphasized that the implicit use o f

rec was not done to make it more convenient to define self

referential structures .

The reason rec is implicit in a structu re definition is

that it is a simple solution to the problem of needing to use

a single predicate definition in two different places . When

a structure contains a substructure (or subpredicate), the

predicate associated with that substructure becomes the

verifier for the component represented by the substructure.

However, that predicate must also be given an external name so

that it is accessable to the user. Since these two uses of

the predicate definition occur at different places in the

standardized tree, the same copy of the predicate construction

cannot be used in both places.

This problem admits to two solutions. First, two copies

of the predicate definition could be made. Then one copy

would become an argument to MakeStr for the definition of th~

enclosing structure and the second copy would be bound to the

subpredicate's external name . However this solution has two

disadvantages . The process of copying the definition is messy

to specify formally and it involves unnecessary replication of

information.

A much better solution is to give a name to the predicate

140

and to use that name to refer to the predicate from both

places in the standardized tree. This name can be an arbit:cary

local name for the predicate which is only defined on the

righthand side of the simultaneous definition for the whole

structure. This name would never be accessable to the user,

but would be used in place of the predicate construction in

the argument to MakeStr and in the definition of the external

name.

Unfortunately the process of defining such local names

greatly complicates the already complex standardization process.

Furthermore, at the cost of making every . structure definition

implicitly recursive it is possible to use the external name

of the pr~icate instead. This name must be defined anyway

and with the implicit~ it can be used in the MakeStr argument

to identify the verifier. Therefore, the simpler solution to

the problem was chosen. This solution does not require any

changes in the standardization process except those required

to build the tuple o.f verifiers for the constructor to use .

Without the use of~ the external name used in the verifier

tuple would be undefined or would refer to some previously

defined name.

This problem is not just restricted to substructures. It

also occurs when subpredicates are defined in e i ther structures

141

or as alternatives in predicate definitions . There f ore , tris

solution is also needed with the typeless structures define1 i n

Chapter IV.

. 'The Syntax for Verifiers

Because types are restricted to structure de f init ions,

the syntactic additions are very simple. The definition o f

<selector> is extended to include a verifier, as is the tuple

option on the <annonymous structure>.

00

<anonymous structure>::={ <selector>.!l!,Q} 1 <selector>

00 I { <selector> also} 0 tuple <anonymou s

predicate >

only <Selector>

<selector >::= <atom>

(<named structure>)

<named predicate>

or in the abbreviated form

Sl: := {S2 ~ }7 S2 I {S2 also }~ tuple Pl I only S2

S 2 : : = ATOM I (S) P

The <anonymous predicate > in ~he tuple option i s the

verifier for every component of the tuple part. The <named .

structure > is still interpreted as a substructure definition

but in addition , the predicate it defines becomes the v erifier.

The <named predicate > form will be more common . It defines

both the selector and the verifier . The unqual i fi ed name of

142

the < named predicate> is the sele.ctor and the predicate it

defines is the verifier.

A new interpretation is given to the ATOM occuring alone .

This defines the selector name as before. However, it is also

used as the base on which the name of a predicate is construct ed

by prefixing "Is". It is assumed that a predicate of that

name has been previously defined. For example, if the user

wished to build the TIME structure (IV(l0)) without qualifying

the substructures he might use

(4)

def ID which has

ID_NO which IsINTEGER

also NAME which IsCHAR

def HOURS which has

WORKED which ISREAL

also SICK which ISREAL

also VAC which ISREAL

to define the substructures and then define TIME by

(5) def · TIME whic~ has ·ID also HOURS

In this case the verifiers for ID and HOURS are the pred ica t e s

IsID and . IsHOURS defined in (4).

This new syntactic extension requires only a small change

to the abstract syntax. It allows S2 to be rewritten as Pas

well as ATOM ands. The abstract syntax ,tree for the definiti o n

- --

143 ·

of ID given in (4) is shown in figure 1. The changes requiced

in the standardizing process are a little more complex as c.in

be seen from the standardized tree for ID which is given in

figure 2.

There are two things which increase the work of the

standardizing routines. The primary addition is to use the

tuple of predicates returned by Split as the verifiers for

the corresponding selectors also returned by Split. These two

tuples are combined with the tag name to form a 3-tuple which

is the argument to . the extended version of MakeStr described

below.

The other addition is slightly more complex. The problem

which it solves arises because not all predicates are given

names. In particular, predicates defined solely as verifiers

remain anonymous. This is a result of a design decision to

avoid proliferating names when they had no apparent use.

This means that the MakeStr function cannot reference the

verifier by name as described above for substructures, but

instead must use the predicate construction directly. It also

means that the generation of names in such standardizing

functions as NS, NP and NB must be controlled.

The solution to this problem is to identify the contexts

in which names are and are not generated. Then an additional

144

which has

ID

also

which which

ID NO IsINTEGER NAME IsCHAR

figure V.l Abstract syntax tree for the structure
ID in definition (4)

Rec ·

MakeID IsID IsStr

10--r

figure V.2 The standardized tree for the structure ID
in definition (4)

145

argument can be added to the standardizing routines to can~y

the context information. Before specifying the contexts it is

necessary to define several terms carefully. We will use the

term abbreviated definition for the definition which defines

both a constructor and a complex predicate. An example of an

abbreviated definition is the definition of LIST given above (2).

We will say that a definition is immediately contained

in another definition if there is a path in the abstract syntax

tree connecting the two structure, predicate or abbreviated

definitions and if there is no other structure, predicate or

abbreviated.definition on that path. For example, the definition

of ID in Chapter IV.(10) is immediately contained in the

definition of TIME. We will use the term contained when we

only require that there is a path between the two definitions

in the abstract syntax tree.

The contexts for name generation can be described as

follows.

1) A structure, predicate or abbreviated definition

which is not contained in any other structure, predi

cate or abbreviated definition is said to be in a

type 1 context . In this case the unqualified tag

name is used as . the base name for generating the construc

tor and predicate names. In the above examples (4)

146

and (5) the structure definitions for ID, HOURS and .

TIME are all in a type 1 context.

2) A structure, predicate or abbreviated detinitjon

which is immediately contained in a type l predicate

definition or another type 2 predicate definition,

is said to be in a type 2 context. In this case

the unqualified tag name is also used as the base

for the function names. However, the name of the

predicate is also used as an argument to IsStr in

defining the predicate for the immediately containing

predicate definition. The definitions of SUM and PROD

in example (4) of chapter IV are structure definitions

in a type 2 context.

3) A structure or abbreviated definition which is

immediately contained in a type 1, 2 or 3 structure

or .abbreviated definition is said to be in a type 3

context. As we noted in Chapter IV, the name base

of such a def1nition is made by qualifying the tag

name with the tag names of all the structures in

which it is contained. This qualified name is then

used to define the external 'names of the predicate

and constructor. The name of the predicate is •a1so

147

used to represent the verifier for the corresponding

component of the immediately containing structure.

In the definition for TIME in Chapter IV, example (10),

the structure definitions for ID and HOURS are in

a type 3 context.

4) A definition is said to have a type 4 context

if it is either

or

a) a predicate definition which is immediately

contained in a type l, 2 or 3 structure defini

tion, (i.e., it is a verifier definition)

b) a predicate, structure or abbreviated

definition contained in a type 4 definition.

In either case, no name is · created for the object

being .defined. Instead the constructed predicate is

used directly as the verifier for the corresponding

component of the immediately containing structure.

The predicate "HEAD which IsLIST else IsATOM'' in the

definition of LIST in example (2) is in a type 4

context.

The context information is passed from level to level as

the abstract syntax tree is standardized. It begins with a type 1

context and the argument is modified in US , OP and AP to establish

148

the correct context for the components of these anonymous

objects. The information packet (selector, predicate and lower

level definitions) is built in NP, NS and NB which use the

context information to decide whether an external name is

defined. These routines also decide whether the predicate

component of the information packet .is the name of the predicate

or the result of applying IsStr. Other than this the processing

is basically the same as that described in Chapter IV. The

complete gedanken interpreter for S-PAL with typed components

is given in Appendix B.

Using verifiers in~ constructor

one of the main adyantages to defining types by predicates

is the simplicity qf the validation process in the constructor.

· 1t is performed by applying each component predicate in the

verifier tuple to the corresponding component of the data

tuple • . The results of the individual verifications are andej

together to produce the combined result. If the result is

false, the const.ructor returns the special value undef. Otherwise,

the constructor produces a data function defined on the components

of the argument tuple.

The version of MakeStr with verification is given in figure 3 .

It uses an auxilliary function Verify to validate the components

149

def Verify (V,t) = Q{l,~)

where rec [Q{k,Tv) =
k ~ Order V -> Isnil (V k) ->Tv

R(k,Tv,V k}

I Q(k+l,Tv & V k (t k}}

and R(m,Tv,Vr) = m > Order t -> Tv

def MakeStr (Tag,Sel,Ver) =

let n = Order Sel -2

in Constructor

I R(m+l,Tv & Vr (t m),Vr)]

where rec Constructor (u) =

not Verify(Ver,t) -> undef

I {fn y. IsATOM y ->

y ~tag-> Tag

y ~domain-> Buildset(Sel,t)

y ~constructor-> Constructor

[let k = Decode(y,Sel) in

k ~ 0 -> undef I t k]

Sel(Order Sel) -> t(n+y} I undef l

where t = Canonical(u,Sel)

figure V.3 The Makestr function which verifies the
component values. The only change is to
make the result of the constructor conditional
on the verification of its argument. If the
argument is not verified then the result is
undef, otherwise is is a data function as
before. The argument is put in canonical
form before the verification.

150

of the canonical form of the data tuple. The only complica1: ion

in verify is the processing of the tuple part of a mixed donrain

structure when it is present. If the final component of the.

verifier tuple is nil then no tuple part exists so the truth

value is returned. If, however, the final component of the

varifier tuple is not nil then it is the verifier for all the

components of the tuple part. In this case the tuple verifier

is applied to every component of the tuple part and the results

of these applications are combined with the results o f the s ym

bolic part to give the function result.

Because a tuple has a variable number of components it

is not possible .to speci~y individual types for more than a

fixed initial segment of the tuple. Therefore, it is necessary

to define the types of the components in a manner which will

allow arbitrary extensions of the tuple. One way t o do t h is

is to provide a function which given the index of a compon e nt,

would produce the verifier for that component. This would

allow a wide variety of mixed types in a tuple. For example ,

it would be possible to describe a tuple in which the e ven

components were real numbers and the odd components were their

character representations.

However, this approach to types is p robably more powerful

that i s really needed. In general, fancy combina t ions of types

151

do not occur in tuples. This is particularly true when the

data functions are included since most mixed type structures are

easier to define in terms of symbolic selectors. Therefore .

we chose to limit the types of tuple components to a single

verifier which validates every component. This is consistent ·

with most other programming languages. If the user wants

to mix types, he can use a verifier which will accept several

alternatives or he can use the verifier IsANY which always

returns true. This latter verifier allows him to construct

tuple parts which are like the unverified tuples of the current

PAL system.

This completes the description of the representation for

data functions. The -canplete set of programs is collected

together in Appendix D. While there are a large number of aux

illiary functions used in defining MakeStr most of them are used

only during the construction of data functions or for the

special selectors. Therefore, a simple data reference is

reaso~ably efficient.

The Problems Associated with Unrestricted Verifiers

Even though we have restr i cted S-PAL to d ynamic types,

there are a number of problems which arise in checking types.

The most obvious of these is the handling of ..1.2.£!. All other

objects have a fixed Rvalue. Thus, it is sufficient to test

152

that Rvalue at construction time to verify that the compone:,t

it occurs in is correct. However, the Rvalue associated wi i:h

a loc can be changed by an assignment statement. This mean~;

that verifying the appropriateness of the Rvalue contained in

the loc at construction time is insufficient to insure the

validity of that component at later times.

There are two solutions to this problem. One solution is

to make the problem disappear by treating all. locs as a single

indistinguishable type. In this case .the verifier would only

check whether or not the component was a -12£. Because the con

structor binds the data function to its components, a component

which is a .12£ will ~emain a loc forever. Hence, the verifi

cation is valid at all times after the construction.

The other solution is to attach a type predicate to the

location. This predicate would be used to verify the validi~y

of any assignment. Then as long as this predicate is at least

as restrictive as the verifier for the canponent whose value is

the loc, all valid assignments will also satisfy the verifier.

Hence, this construction is also valid at all later times. The

properties of these solutions are developed in detail below.

Treating all locs ..!.! ~Single~ Class

Certainly the locs form a type class b ecause they are obs -. -
and there is a predicate IsLOC which distinguishes them.

153

However , the idea of this solution is to prevent locs f rom occuring

except where a loc was explicitly indicated in the structure

definition . That is, a loc containing a real number would not

be a valid component for a verifier which requires a real

number. This solves the validation problem b y prev enting al l

updates when an Rvalue typed object is required b y the veri fier.

Conversely if a loc is allowed as a possible value o f a componen t

then no other type checking is performed on that component.

There f ore , the value of the loc may have any type except loc.

This means that the only way to build a structure with a

strong representation is to. build it solely from Rvalues. This

would appear to prevent updates to structures with a strong

representation. Actually, it is possible to perform a limited

form of updates and still have proper validity checking. It is

possible to decanpose the structure into a tuple, update a

component, and rebuild the structure from the updated tuple

using the constructor obtained from the original structure. I f

the structure was the value of a loc then the updated copy

can be made accessable by assigning it to that loc. Because

the same constructor was used to build the new structure the

updated component must satisfy the same verifier as the original

component. Hence, the strength of the representation is

unchanged.

. 154

The generalized update operator Update is given in figure 4.

· The auxilliary function Index is used much like Decode (See

Chapter IV) to get the index of the component of the data

tuple to replace. If the value is zero then no such component

exists and no -update is done. Otherwise, the function Insert

is used to decompose the data function and replace the component

to be updated. The constructor obtained from the original

structure is used to construct a new data function on the

updated tuple. Note that all the components of the new data

function, except the updated component, share with the components

of the old data function. Hence, this function acts much like

the function AuG. (Chapter IV, figure 17)

Thus, we see that this solution is practical and even

allows most of the operations that one would want to perform

on a data structure. The only real problem occurs when the

structure to be updated is referenced as an Rvalue in some

other structure. In this case there is no way to update the

structure and preserve _the sharing . .

Shaped Locations

The alternative to limiting type checking on locs is to

make the 1.2.£! check the values being assigned to them. This

can be done by attaching to each loc a predicate which is used

to test whether or not an assignment is valid. If the value

being assigned satisfies the predicate , the assignment

' 155

def Update (D,s,v) =

let C = D constructor

and i = Index(s,D domain)

in i ~ 0 -> D· I C(Insert(D,i , v))

def Index (s,t)

where rec

= R(Order t)
R k =

k ~o ->

s ~ t

R(k-1)

0

k -> k

def Insert (D,i,v) =
let A= D domain in Q(l,nil)

where rec Q(k,t) =

k SE. Order A-> t

k ~ i -> Q(k+l,Aug t v)

Q[k+l,Aug t (D (A k))]

figure V.4 The Rvalue update function .
The Index function yields the index of the
data tuple component to replace. The
Insert function decomposes the data structure
into its components replacing the component
to be updated . This new data tuple is then
used to construct the new data function
returned as the result of Update.

156

is valid. Otherwise, the value is rejected and the assignmim t

is aborted and an error message is given. This action is

similar to what happens when an operator such as"+" is applied

to a data object, such as a character string, for which no

result is defined. This also produces a run time type error.

The locs with attached predicates will be called shaped lees

because only values of the correct type (shape) can be assigned

to them.

The only problem with this solution to the validation

problem is that it is necessary to insure that the predicate

attached to the shaped loc defines a type class contained

within the type class defined by the verifier the loc must

satisfy. There are two solutions to this problemr each has

a different disadvantage.

It is possible to ensure _that the predicates of compone~t

locs are consistent with the verifiers f or these components o y

creating the locs as the structure is built. These created

locs would receive the verifier as their attached predicate .

Therefore, only legal assignments would be allowed. In gene r al ,

a new loc would be created for every component of the data

tuple which is a loc. Then the Rvalue of each original .12.£

wouid be assigned to the corresponding new loc. The assignment

and hence the construction would only be done if and only if

-

157

the Rvalue was of the correct type.

This has the advantage that it is not necessary to insure

that the domain of the original shaped loc is contained

within the domain o f the verifier. The only requirement is

t .hat the current Rvalue be within the domain of the verifier.

However, it has the disadvantage that it is impossible to create

data structures which share locs.

If the sharing of locs is to be allowed a different

solution is needed. In this case it becomes necessary to be

able to decide when the predicate on an existing location

defines a type class that is contained in the type class of a

verifier. As we have already remarked, this problem is in

general undecidable. Thus, 12.£ brings us back to the set

containment problem we sought to avoid with a dynamic type

checking system. However, this seems to be the only reasonab le

solution to the problem of shaped locs in structures.

Why Restrict Shaped locs to Structures?

If we allow shaped locations in structures then why not

allow them anywhere in S-PAL. There is certainly no reason

to restrict them solely to structure definitions. In most

places in the language the problem of checking set containment

doesn ' t even arise. It also has the advantage that it makes

assignment more like the other operations in the language.

158

Since 11 +11 will raise an error when its arguments are misma t c h ed,

it is reasonable to expect the assignment operation to fai.l

when its type constraints are not met.

There is some question as to what objects should b e giv e n

types. Should they be restricted to locs and the components o f

structures or should they also be definable for other l inguistic

features such as names. In most languages it is possible t o

give type restrictions to formal parameters which are really

only dummy names. They are bound to values only when the

procedure in which they occur is called. At that time t he

type conditions could be verified and the calling argument

rejected if the type test failed. In BASEL, which allows

variable bindings, all names can be given types which will be

verified when the name is bound.

The main problem with typed names is tha t the set contain

ment problem occurs again. Since a name may be bound to a

location, it ia necessary to ensure that the type of the

location is consistent with the type o f the name. · This i s ,

in particular; a problem with parameter names in procedu r e c e.13..s .

In any case it is not too difficutt to visualize s yntax for

t yped names which is similar to .the S-PAL predicate syntax.

I n addition the loc operator would have to be extended t v make

it possible to create shaped locs. Thus, we s ee t h a t ver y

little extra work is required t o e xtend t h e t ype ra c i l ity t o

__ .,..---

159

the whole language once it is defined for locs in structures.

Function Types

The locs are not the only obs which cause problems in

the type system. Functions are also difficult to handle.

When a function is a component of a data structure, it is

necessary to verify that the domain and range of the function

are valid. This is, of course, undecidable in general.

One way to solve this problem is to embed the component

function within a checking function. This checking function

first tests its arguments to see if they conform to the

types allowed by the verifier. If they do, they are passed

on to the component function. When it returns, the checking

function makes sure the result is in the correct range and

if so returns it. The operation of embedding the component

function in a checking function is called projection by

Reynolds [3~. The problem with this approach is that while

it guarantees that nothing outside the domain and range will
.v .,·

work , it does not ensure that the component _· within the proje(:ted
I

domain and range.

An alternative to the projection function is to require

every function to have a description of its range and domain in

terms of a very simple language. For example, the language of

regular expressions might be appropriate. Then the domain and

160

range condition could be evaluated by checking these descript i ons .

The language must be simple for otherwise it is impossible to

test for the equality of two different descriptions .

The S-PAL Solution

The problems discussed above are just some of t h e more

obvious complications that result when types are defined b y

unrestricted predicates. For example, it is undecidable when

two alternatives in a predicate definition define intersecting

type classes. Therefore, it would appear that the appropria t e

solution to the p ·roblems defined above would be to define

restrictions on the predicates which would make questions

such as set containment answerable. This would make it

possible to solve the problem of strong representations which

included locs by ·using shaped locs.

Unfortunately the design of such a type system is b eyon d

the scope of this thesis. Some steps in this direction can be

found in the work of Morris [25], Reynolds (31], Jorrand f 12J

and van Wijngaarden [37]. But designing a t ype s y s t em wh i ch

provides for static type checking, but is not t o o restrictive,

is stil l an open problem. Therefore, we choose to allow the

u ser the ability to use any predicate as his veri f ier .

Th is makes it possible for him to sol ve t h e a b o v e problems .

He can ensure strong representat i ons by p u tt ing a c~ s t f or loc

161

in the predicate for every component. If the component should

be a loc, this predicate would check to make sure the componen t

is a loc. If the component should be an Rvalue the predicate

would check to make sure that a loc did not occur. The problem

of checking functions is more difficult.

One solution is to make every function which could be

assigned to a component provide descriptive information when a

special argument is given. This is analogous to the information

provided by the data functions when they are applied to a specia l

selector. This information could be used in the predicate to

accept or reject the function.

These solutions are not as pleasing as a suitably restricted

type system and shaped locs. In particular, they put most of

the work in doing type checking on the user. However, allowing

the unrestricted predicates provides the generality needed to

define different type constraints. This seems to be the best

solution when no particular type system is accepted by everyone.

Chapter VI

Conclusions and Analysis

The preceding chapters have presented a data structuring

faci l ity for PAL. This facility makes it possible to describe

the nodes of a data structure in a natural vay. It provides

a wide range of possibilities for connecting and referencing

these node$ • . In particular, it makes PAL more flexible and

gives the user greater control over the form and processing

of hi s data . In this chapter we summarize the salient and

novel aspects of S-PAL, we discuss a possible implementation

and we also discuss possibie directions for extending this work .

Treating Locations~ Values

Locations or Lvalues should be obs . . It does not seem

useful to isolate the loc from the other values in the system.

It shares many properties with other values. For exampl e, it

can b e the result of a function , used as an argumen t t o a

function , used in an expression , etc . It also has some special

proper t i e.s whic h other obs do not have. For exampl e , the

value of the left hand side of an assignment statement must be

a loc. However, addition is only defined f o r i nteg e r or r eal

v alues . Thus, other v alu es hav e specia l properti e ~ too.

162

163

Another reason which is given for the special treatment of

loc is that there are no location constants. However, then! is

at least one very reasonable interpretation for a location

constant. In BCPL [29] and other languages there is the con

cept of a global variable. In BCPL this is a variable which

is located in a vector which is external to every block of t he

program. This variable can be . referenced from any block by

declaring the name to be global to that block. Then any refer

ence to that name will refer to the unique copy in the external

vector no matter what names are defined in the environment of

the block. This is similar to the EXTERNAL variable of PL/I.

These variables are often the only way for separately compil~d

procedures to share values.

The natural way to implement this feature in S-PAL is t'o

introduce location constants. A location constant is a name

for a particular location which always designates the same

location no matter in what environment it is used. That is,

two location constants designate the same location when and

only when their representations in the concrete syntax are

identical. They can be viewed as locs with explicit addresses.

Because they always designate a unique location, they serve

exactly the same purpose as the global variable in BCPL.

164

Perhaps the most important argument in favor of making locs

a class of obs is the flexibility it adds to the language.

It gives tbe user control over how the names he defines will

be used. He can prevent the misuse of the assignment operation

by binding nam~s to Rvalues and building structures with fixed

links. He need only use a loc when he wants to be able to

modify a value. we conclude that the benifits of treating lees

as obs outweigh any disadvantages.

Functional Data Structures

There is a very definite need to be able to describe the

structure of a data element in terms of mnemonic component names

and without forcing an ordering on the components. In S-PAL ·

this facility is provided by the introduction of data functions.

This represents an extension of the ideas of the PAL tuple and

the functional data structures of GEDAN~N. In particular,

the domains of the data functions were extended to include

symbolic selectors in the form of atoms. These atoms, like

integers, are constants . with a fixed value which is indepeud1:.mt

of· the environment in which they are used . Therefore, the

data functions can be saved on a secondary storage device and

used by other programs.

We have defined a particular syntax for defining a constructor.

and predicate for a data structure . This makes it easy to

165

define a set of data functions and it documents their forma1 . .

However, we do not restrict t~e class of data functions to t he

results of the constructors produced from the structure

definitions. We intentionally defined the class of data functions

as those functions which produce the correct information when

applied to the special selectors tag~ domain and constructor.

Therefore, if the user cannot express his data elements in

terms of a structure 'definition he can always write his own

data function.

The special selectors were chosen as a useful set of attri

butes that every data structure should make accessible. We

have given examples which show how these attributes are used.

However, we do not claim that these attributes are necessary

or sufficient for characterizing data structures. Our only

claim is that the attributes we chose appear to be present i n

every data structure and making them available makes it possible

to define very general operators on the class of data functions .

A~ System Based .2!! Predicate Functions

A type system is a necessary part of any data structuring

facility which provides for strong representations of the data.

This is perhaps the weakest aspect of S-PAL because the type

system we chose does not allow static type checking. In fact,

due to its generality, the relationship of two arbitrary type

166

classes is undecidable. However, the novel approach of defining

a type class by an unrestricted predicate funct ion provides

the user with a very flexible concept of type. He can define

very restrictive type classes by writing very complex programs

which test a wide variety of conditions. Alternatively, he can

use the predicates created by structure definitions or the built-in

primitive predicates when only the general range of values of

an object is important.

The predicates defined by structure or predicate definitions

are very elementary. They will accept any data function which

returns the correct tag or which satisfies the alternatives

of a predicate definition. This definition of type was chosen

because it seems to be the simplest condition which defines

a set of data functions of the same type. The user may use the

other information provided by the special selectors to define

more restrictive type sets.

One of the main uses for the type information is to

distinguish several alternative data structures which might

occur in a particular context. In most cases, each of the

different data structures is processed in a different way. In

the current PAL the proper processing code is selected by using

a sequence of conditional expressions. This is inefficient

since it requires_ that. a sequence of tests be made to fi nd t h e

- ---

167

correct processing code.

It is more efficient to use the type value to select the

correct code directly. Since the tag is a single value which

represents all the type information, it is possible to use it

to determine which one of a set of expressions is to be used

in processing the data structure. Each possible tag value

would be associated with an expression which would process the

data structure with that tag. Then the multiway choice would

be evaluated by executing the expression whose associated

tag matched the tag of the data structure .

This is a generalization of the conditional expression

which removes the need for sequentially testing the type to

find the right expression to use. It , therefore, can be imple

mented by techniques , such as hashing, which make it possible

to choose the processing expression with only one type test .

This facility can be generalized to allow multiway choices on

any value, not just tags. It is similar to the~ expression

in ALGOL 68 or in a statement form to the switchon statement

in BCPL. The ability to use this ·feature is one of the main

reasons that tags are values in S-PAL and are included in e v ery

data function.

A Possible Implementation for Data Functions

It would be unreasonable to propose an extension f or data

168

structures without giving some thought to the implementation

of those structures. Since data structures in S-PAL are repre

sented by functions, it would seem natural to implement them

as functions. In fact, in the general case there is no other

alternative. However, the data functions created in structure

definitions, let us call these SDDF's, . have many more properties

than an arbitrary data function. They are all represented by

variations on the same function which is produced by the con

structor created by MakeStr. In fact, the only parts of the

function which vary are the data tuple, the tag and selector

set.

This suggests that it is only necessary to store the varying

parts with each instance of the SDDF. A special type code

can be stored with the varying par~s to indicate that the

standard SDDF accessing function is to be used to access t h e

information. In fact, the tag and selector set only vary among

SDDFs with different types. They are constant f o r d iffer ent

instances of a single type of SDDF. Hence, every instance . of

a particular type SDDF could refer to the same tag and selector

set information .

Therefore, we propose that SDDFs be represented like t upl e s

with an extra component. In the current implementati oP o f PAL

a tuple is represented by a type code a n d a l i s t of p o inters

169

(addresses) to the component values. Hence , the SDDF woulJ

be represented by a type code identifying the value as an

SDDF, a zeroth component which is a pointer to the selector

set and tag, and a list of pointers to the components o f the

data tuple. This internal representation is just as efficient

as the current PAL representation for structures which cons~sts

of a tuple of data components with an extra component to hold

the tag.

This defines an internal representation which uses storage

efficiently. However, MakeStr is a complex function with several

auxilliary functions so it is not clear that the construction

and use of data functions are also efficient. Actual l y, most

of the complexity of MakeStr is in the construction of the

data function. The data tuple must be put in canonical form

· and verified. While these functions are necessary they are

used only once for every instance of a data structure . Note

also that with this representation the canonicalization can be

done by permuting the list of pointers in the data tuple . I t

is necessary to create a copy of the pointers to the values in

the argument tuple because that tuple cannot be modif i ed. Hence,

very little extra work is required to create the copy in the

canonical form.

170

In a _ reference,..to a created data structure only the Decode

function is used. This was specifically isolated so that tl1e

lookup processes for converting symbolic names to integers
I

could be done by hashing or if an associative memory is

available by associative lookup. In the cases where the data

function is applied to an atom directly, the decoding process

can be performed at translate (compile) time. Then the resulting

integer can be used to select the correct component of the SDDF

at run time. This conversion to a relative offset in the

SDDF tuple can save a lot of time if the selector is frequently

used.

Possible Modifications to S-PAL and Future Directions

In the preceding chapters we have compared S-PAL with

various aspects of other languages. These comparisons were

directed at language features that are in both S-PAL and the

other languages. In this section we wish to explore some of

the language features of these other languages which are not

in S-PAL. These are candidates for possible extension s or

modifications to· S-PAL.

Allocation and Initialization

One major deficiency in S-PAL is the lack of control over

the allocation of data. Since all data is no t used in the same

way, it is possible to perform more efficient s t o r age managemen t

- __,,_..-cc

171

if the . data is separated into classes with similar storage

utilization. For example, ALGOL 68 defines two classes of

storage. There is local storag~ which is allocated in a stack

and is released whenever the procedure in which the storage

was allocated -terminates. There is also global storage which

is allocated from an amorphous collection of storage called

the heap. As the name indicates values allocated in the

heap are retained as long as there is a reference to them.

Therefore, the heap must be garbage collected. It is obvious

that by having the user separate out the storage which can be

allocated with a stack discipline , the heap is exhausted less

frequently and, therefore, fewer garbage collects are needed .

PL/I has an even larger set of storage allocation classes .

It has both implicit stack storage (AUTOMATIC) and explicit

stack storage (CONTROLLED). It also has a set of classes called

areas. These are to the heap what named common is to blank

common . These named regions are all distinct and storage

can be allocated from anyone. One use for multiple areas would

be to have different storage control mechanisms. Storage

allocated in one area might have use counts while storage

allocated in another would be gar~age collected . Another

use for areas is to give a name to a data base that was allocated

in that area. It could then be saved with a single area I/0

statement. Areas provide a great deal of flexibility in the

172

storage allocation process.

Control over the allocation of storage could be added 1:o

S-PAL by providing a new argument to the constructor functic,n.

This argument would specify the space from which the data

function should be allocated. However, there are many problems

to solve. For example, is only the SDDF allocated in the

specified space or is it necessary to copy in the values it

points to. If so, how far does such a copy go. It also

might be convenient to add an extra special selector which

would produce the name of the space in which the data function

resides.

Initialization is almost always linked with allocation.

The reason is that it is impossible to initialize something before

it is allocated and it mus.t be done before the object is referenced.

However, there are times when it becomes necessary to delay

initialization. For example, when a ring structure is being

created it is only possible to initialize pointers to previou s l y

created nodes. Therefore, the ring can only be closed after

all the nodes are allocated.

The problem in S-PAL is that the only way to delay initiali

zation is to use a loc. For example, the above ring could be

closed by assigning a reference (1-tuple} to the last node to

a loc in the first node. This type of initi alization was on e

of the uses for Standish's constructor modifier . However, it

173

should be possible to close the ring with a permanen t , non- upda table

link. Therefore, we might include a new type of loc which a c t s

as a place holder for an unresolved value. This loc could b e

updated as above but the first update would replace t h e loc with

a permanent connection to the value which was assigned . This

might be called a one shot loc . This would allow delay initiali

zation to values that were not again updatable.

Load-Update Pairs and Implicit References

Ther~ is a basic and disturbing assymetry to S-PAL. It is

possible to · replace every reference which loads or uses a value

with a function which calculates the value. However, it is

not possible to replace the lefthand side of an assignment

with a function which decides how to store a value. To solve

this problem it is necessary to introduce a generalization of

the Lvalue. This is called a Load-Update Pair (LUP) b y Strache y[.3 5]

and an Implicit Reference by Reynolds[30].

The basic idea is to represent the Lvalue as a pair of

functions. One of these, the load function, is a function o f

no arguments and it produces the value contained in the

generalized Lvalue when it is used. The other function, the

update function, is a function of one argument and when it is

used it updates the value of generalized Lvalue with i t s argumen t .

It should be pointed out that both functions may perfo rm a l a rg e

174

amount of computation to produce or store a value. For example,

the update function might encode its argument before storinq

l t into the internal Lvalue and the load function would decc,de

it. This might pea way to save storage space.

A number of uses for a LUP are given in the paper by

Reynolds[30]. However, several obvious S-PAL uses are given here

for completeness. One very good use for LUPs would be to imple

ment the idea of shaped locs. Although the set containment

problem would not be solved, it is possible to build a verifier

into the update function. The update would only be completed

if the object being assigned satisfied the verifier.

The LUP also allows the implementation of the SUBSTR

pseudovariaple of PL/I. This allows assignment to an internal

segment of a string without affecting the surrounding part of

the string. It is a character for character replacement opera

tion. This could be i~plemented in S-PAL by a function of

three arguments, which, when applied to an Lvalue holding a

string (a tuple of characters) and two integers delimiting the

segment to be replaced, would produce an LUP. When the update

function of this LUP is invoked, it would check to make sure

the segment was of the correct size and would compute a new

string with its argument replacing the old segment and would

assign that to the Lva.lue. If the string was a tuple of lee s

of characters, then the update function would not need to compu t e

175

a new string but could instead replace each character of the

segment of the old string with the corresponding character)f

its argument.

computing Descriptors

.It should be possible to give several different structures

to the same set of data objects. This is useful when some

subroutine a user wishes to use requires a slightly different

format than the one in which the data is currently stored. If

this alternative format is not too different from the existing

.
format it should be possible to define the alternative structure

on the same data. For example one might want to define a tuple

which is composed of the even indexed components of another

tuple. This implies multiplying every index for the new tuple

by . two to get the old tuple index. This type of alternate

description is like that found in the DEFINED attribute of PL/I

and the REDEFINES verb of COBOL.

In some case~. the new description will be built on the

original data and in other cases the new description will be

phrased in terms of the existing structure. In the latter

case, it is possible to build some alternate descriptions by

embedding the original data function in a new function which

maps its selectors into the selector set of the original function.

176

This could be done in the tuple example above. Further research

is needed to decide if this will always suffice and how much

efficiency is lost this way.

There is one other way to compute new descriptions

or structures. This is the method used by Standish[33]. He

provided modifiers which customized existing structures for

particular uses. He also provided operators for combining

several different structures into a single structure.

Syntactic' Conveniences

There are several syntactic sugarings which might be

considered for extensions. TWo of these are trivial and one

is more complex. One useful sugaring would be a facility for

abbreviating long selector chains. One way to do this would

be to give a name to a chain of selectors and to use the name

instead of the chain. A second useful facility would be the

ability to embed constants in a structure definition. They would

be used to define components which never varied. That is , these

components would always be filled in by the constructor and

it would not be necessary to specify values for these components

in the argument tuple.

The third sugaring is actually the most useful. It is

often the case when large static structures are being defined

that the v arious substructures are identical in format to

- --

177

previously defined structures. Therefore, it would be nice

to be able to refer to those previous definitions to save copying

the whole definition into the n·ew structure. This function is

provided by the LIKE attribute in PL/I and COBOL.

Basically, the idea is to copy the text of the previous

definition into the place in the new definition. A textual

copy is used so that the names of the constructors and predicates

will be properly qualified for the new structure. This idea

can be extended to provide modifiers, like those of Standish,

which would make small modifications on the text as it is

substituted into the new definition. One might be able to

change the tag, the name of a selector, to fill in a constant

value, etc.

Parameterized Definitions

There is one special case of the LIKE attribute which is

worth separating out. This is the parameterized structure

definition. This concept was used by both Standish. {33] and

Reynolds[31]. It is used for structure definitions which

define a set of different data structure with very much the

same description. For example, the set ofn x m matrices forms

a parameterized set of data structures where the parameters

are the number of rows and the number of columns. It should

be possible to write one definition for a matrix and to fill

178

in the bounds at construction time.

It is important to note that this is not the same as c

tuple which can vary in size. The tuple may be augmented at

any time. Each member of a parameterized set has its parameters

fixed when it is constructed and they may not vary after that.

The values of these parameters complete the type information

for the data structure. B.ecause the parameter values are often

needed when the data structure is processed, Reynolds provides

dummy variables positions in his type checking predicates.

These dummy variables are set as part of the type verification.

They can then be used in the processing algorithm. This saves

an extra reference to the data structure to find the bounds

after the structure is verified.

Mixed Domain Data Functions

There is one feature of S-PAL which does not seem to be

worth the complications it introduces into the formal definition.

This feature is the capability of mixing symbolic and integer

selectors. Most languages do not provide this feat.· . .1 re. One

reason might be that it is very easy to get almost the same

effect by inserting an extra level in the structure at the point

where the tuple part would be_girl~ This · extra level would contain

the tuple part o f the one levei form. For example, the ~tructur.e

for chemical atoms given in Chapter IV (8) cou ·i.a bf.~ rewritten as
r

179

def ATOM which has

NAME which IsSTRING

also VALENCE which IsINTEGER

~ BOND which IsTUPLE

Then if Carbort was a~ATOM you would refer to the second bond

by c~rbon BOND 2 instead of Carbon 2 which would be used for

the definition in Chapter IV. Because the extra level does

not seem to be at all offensive, it is suggested that mixed

domain functions not be allowed.

This, however, is not all there is ~o the problem. While

the above example does not show it, \ it must be possible to have

substructures below a tuple level. Therefore, the syntax for

the tuple option must be modified to remove the symbolic

alternatives and to allow structure definitions within the

components of the tuple.

Where will the Future~

Almost all the languages which have a capability for struc

turing data have what might be called a middle level data struc

turing capability. It is not as low as the ma.chine dependent

bit oriented languages, but it is ,not quite at the level of

some of the other features of higher level languages. They can

be charactorized as being node oriented and algorithmically

connected. By this I mean that the user must allocate the

nodes of the structure individually and construct a whole

data base piece by piece.

This is still a relatively primitive facility. It should

be possible within the near future to free the user from

writing the algorithm which connects the nodes together. Instead,

he should be able to spe·cify (allocate) a set of nodes and for

this set of nodes provide a list of all the connections the

nodes should have. The machine would then make the connections

· given in the list in some optimal order and in parallel if

possible.

This is only a first step. Many of the information manage

ment systems now in development go beyond this simple level.

In these systems it is possible to specify data nodes and tbe

relationships that these nodes should have to other nodes.

The system then constructs a representation for those relation

ships and builds the data base with that representation.

The ultimate goal might be a system where the user speci fi e s

several sets of data, a ·set of attributes possessed by that

data, and a set of constraints or relations between the data

items. The system would take this information and build a

data base where the constraints .were satisfied. It is easy

to visualize all kinds of problems with thi~ appr oach. For

181

example, when does a set of constraints have a solu tion? When

is t h e solution unique? There is still much work to be dcne

in the field of data structures.

182

Appendix A. The Complete S-PAL Syntax

AbbreyJated s-pAL svntax

p : : = { def D } 7 E

E ::• let O In E I fn V. E El
El : : = E2 where 02 I E2
E2 ::= valof C I C

C ::= Cl; C Cl

•• = .. Q)

{NAME : } C2
0

Cl

C2 . . -. . - test B lfso C2 lfnot C2 I test B lfnot C2 lfso C2
I If B do Cl I unless B do Cl
I while B do Cl until B do Cl C3

C3 : : = T : • T goto R

T
Tl
T2
T3

B
Bl
B2
B3

: : .

••• . .
: : -
::• .. ., ..

Tl{, Tl}"'
Tl aug T2 °I
T3 at T3 I
B -> T3 BAR

T2
T3

T3

B or Bl
Bl & 82
not B3
ARLA

I Bl
I B2

I B3
I A·

dummy res T T

B

A ::• A+ Al I A - Al I + Al - Al Al
Al ::• Al* A2 I Al/ A2 I A2
A2 ::= A3 ** A2 I A3
A3 :: .. RI valR I locR A3iNAMER

.. -.. -
•• :a .. R2 of R I Rl

Rl R2 I R2
R
Rl
R2 NUMERIC I QUOTATION TRUTH VALUE

(E) I E

D ::a 01 within D j 01
01 : : • 02 { and 02 } "
D2 ::= rec 03 I 03
D 3 : : c: NAME { , NAME } ; = E I NAME V ., E

I CD> I o Is IP

V : : • V Vl Vl
Vl ::• NAME (NAME { , NAME } ;) ()

- - - -- - - ----- - - - ~ - - --- - - -

NAME

- - - ----- - - -- -

183

RL : : . gr ge eq ne ls le

s : : = ATOM which has Sl
Sl : : = { S2 a 1 so }f S2 I { S2 a 1 so } ~ tuple only S2
S2 : : = ATOM I (s) I p

p : : = ATOM which Pl ATOM which P2
Pl : : = P3 { e 1 se P3 } "'
P2 Is (Sl)

0
p3 }i : : = { else

P3 : : = ATOM I is (s) I Is (p)

II

184

Appendix ,!l. The Ge<lanken ~yaluator ~nr S - Phl.

Oe f i n i t i on s Concern in~ Lists

.itl t X = X 1

~ r X = X 2

and Push (x, s) = x, s

def 2d X = t (r x)

and r2 X = r (r x)

and r3 X = r (r (r X)}

and~ Prefix (x, y) =
'.·Ju 11 Y -) X

~Ju 11 X -) y
[t x, Prefix (r x, y)]

~ Tag n s = Au~ s n

and lstav. s n = n eq s (Or<lP.r s)

fill9. Sons= Orders 1

and Segment (x,i,j) = O{i,n.lJ_}
\•the re ~ o. < k, t > =

k ~r j -> t I 0(k+l,~u~ t (x k))

II Definitions Concerninr, >.-exprP.ssions

def ':,'J X = X 2

.Q.tl Bo".iy X = X 3

and Env X = X ~

~ I SA exp X =
tstuple X -> X 1 eq I A ' I falsP

.ar.lQ ls>.closure = Is>. exp

.2M Make>. :t 1 osu re X y = AUP.; X y

185

def rec l!>Okun (n, e) =
n eq e 1 -> e 2 I L0o~un (n, e 3)

J~ f I s 1 a he 1 x =
lstu'.')le x
-> Orri€"r x eq 4

-) X 4 f!Q I 6 I

I false
fa 1 s ~

def Tap;of x = x (Order x)

def. rec [)ecompos e (n, v, e) =
~ lsvariable n ·
..i.ll.Q n, v, e
ifoot

[Order v ne O.r<for n -> error I n 1 e
v,here rec o k s =

k ~r Orrler n -> s
I 0 (k+l) .necoMpos~ (n k, vk, s)l

// Definition of Makecontrol an rl subsirliary functinns

// The suhs irli ary functions for structurP. d~fi11itinns

Qtl Makes (q, s) =
Ta~ 'y 1 (MakeStr, Tap; ',' (o, s 1, s 2))

.fill.Q. MakeP (q, p) =
Ta!; 'y' (lsStr, Tai ',' (q, p))

.fil1Q SimpleMS (q, s, p) =
.Dtl., L h s = (o u a H l ' Make ' q , Gu a lt·J ' I s ' <1)
fillQ Ms = MakeS(q, s)
~ Is = ~1ackP(q, p) ·.l!.l

[Lhs 2, Ta~'=' (Lhs, Tag',' Ms, Is)]

.£.!ltl Sirnple~-lP (q, p) =
.ill Lhs = Qua 1 •1 ' Is' q
.£.!l.d Is = MakeP(q, r) l.!l

[Lhs, Ta!'; '=' (Lhs, Is)]

r:ief NS (x, n, q, c) =
c e q 4 - > (n , Make P (<1, n.ll) , n.ll)

I f3uildpack {x, n, Simple'IS(o, x 1, .o..ll))

fill.d. ~IP (X, n, Q, C) =
c eq 4 -> (n, MakeP(q, x 1), n..Ll)

I !3uil,foack (x, n, Sirnol~rJP(q, x 1))

186

aJll! M~ (x, n, Q, c) •
c eq 4 -> (n, t1akP.P(<1, x 1 2), !lll)

I Buil.~pack (x, n, Siniple~!S(q, x 1 1, x 1 2))

.2.!l!! ~IT (p) = Tap,; 'SubS' C.t..r.l,lli, p 1, n i 1)

.a.o.rl 8 u i 1 d r,a ck (x , n, · s) • Ta~ ' Suh S ' (n , s 1 , y)
where y = !star, x 'SV' - > s 2 I :\f)(s 2, x 2)

Jtl C:oribine Ca, d) =
r1 eq nl1 -> Ta~ •sv• (Au~ .!l.Ll a)

I Ta p; ' S S ' (a , A 11 ,.1)

-ief .a:£ us (x, Q, c) •
~ s,p,d • Split (x,n,c eq 4 -> 4 I ~)

ln. Cornhlne (Ar~, d)
where Ar~= s (0rrler s) -> Cs, ~,

I (Au~ s false, Au~~ nJ..l.)

.a.n.1 UP (x, q, c) • CoMbinP. Cr,, ri)
where s,p,d • Splft(x, q, c ~Q 1 -> 2fc eo 3 -> 4lc>

llll!1 AP (x, q, c) •
J.ils,r,,d • Sr,1 It Sr.~nu~nt(x,2,0rder x),n,c P<l 1 ->21c
a.O.d. w = US Cx 1, q, c)

ln. Comb I ne [Tag 'Pa Ir' (w 1, p), n 11
wbere 01 • tstag w •ss• -> Prr.fix(\, 2, ii) I ~

4.W! Sr> 1 it (X, q, C) • 0. (I ,.nil., !l.il, .nil.)
where~ QCk,s,p,d) •

.aa1

-

k ~r Order x -> (Ta~ 'T' s, Ta~ 1 T' ", d)
I[J..e.t m • Sub(x, Q, c) ln

o c k + 1 , Au~ s c 'l1 1 > , .'\ 11 ':! o c ,,, 2 > , n 1 >
~e n1 = m 3 eQ nil-> <1 I f \u~ r1 (.,, 3)]

Su'> (x, q, c) •
.l.il Type = lsta~ X .ln

Type 'which has' -> ~-IS [US (x .,
!Tl, C), :<] , ,.,, , cl -,

Type 'v,h i ch ' -> NP[UP(x ?. , 11'1, c) , x 1, n, cl
Type 'ts/has' -> NR[AP(x ? m, c},x 1, 11 , cl -,
Type 'tuple' -> MT[Ul"'(x 1, ,,, , 4)
TYP"! 'aton1' -> Ta~ 'Suh5' [x, f'lu~ 1 ~! ' I s' x, n i 1 J
Ta~ 'Suhs'[.all, x, .all]

b:b~ rP. m • C ls 3 -> X 1 I nua lP Q {x 1)

187

// The re111ainin1; definition standardizin:,: functions

def wn u v =
Tai,; '=' [v 1, Ta~ 1 Y 1 (a, u 2)]

where a= Ta9; '>-' Cu 1, v 2)

a.!1Q RD 1:/ =
Tag '=' {w 1, Ta~ 'y', C'Y*', ~)]

where a = Tap: '>.' (\ -1 1, H 2)
-•

and FD u V = 0. (Order u) V

v1here ~ Q k s =
k eq 1 -> Ta,!?; '=' (u, s)

IQ Ck-1) [Tap:'>.', (u k, s)J

ilQ. AD VJ = Q 1 n i 1 n i 1
where~ () k s t =

k -~r Order h' -> Ta~ I: I (s, Ta~ I t I

I 0 (k+l) [J\u .!; s (w k 1)] [Auu

.ru:..f. ~ D X =
.hl Type = lstap.; X

ln.
Tyne '=' -> X

Tyne 'within' -> ':ff' t D (x UJ , [n (x 2)]
Type 'rec' -> Rl1 [D (x 1)]
Type If f I -> FD (x 1) (x 2)
Type 'and' -> AD (() 1 n i 1

where J:!!£ Q k t =
k eq Order X -> t

I 0(k+l) J\u "- t er
Type 'which has' -> NS US(x 2,x 1,1),x
Type 'which' -> NP UP(x 2,n.ll,1),x
Type 'us/has' -> NB AP(x 2,x 1,1),x
error

t)

t (\·J

(x
1,x
1,x
1,x

k 2)]

k)))

1,1 3
1,1 7,

1,1 3

fil ~ s X •
iltl lsidentifif!r
1-w X

ffnot
.l.tl Type • tsta~
la

TypP. ' - > ' ->
Type 'test' ->
Type 'y ' ->
Type ',\ ' ->
Type ' 1 et' ->

Tyoe •w~ere' ->

188

X

X

Ta~ 'e '
Ta !P 'e '
Tap: .'y '

.Ta~ ' ,\ '
Ta~ 'y '

Ta~ t y '

[S (x 1), S (x ~),
[S Cx 1), S (x 2),
[S (x 1), 5 (x ?.)]
[>< 1, S (x 2)]
[Ta~ 1

.\' [\'i 1, 5 c x nl ,
1)] whP. CP, '!I .. r (X

[Tao: 1
.\

1 [w 1, S
v,>1 e re ,_., • f' c x

(X 1 H
2)]

Type -> (ht.
ln

n .. Sons x

Q 1 n i1
where llC. 0 k t=

k ~r n -> t
I 0. Ck+l) Ta~ 'y' (Ta." ' y '

[Au~, t],
'aug' [S(x 1), S(x 2)]
1 $ 1 [nil au~ S(x 1))
';' [S(x 1), S(x 2)]

s [>< '<])])
Type 'au~•
Type 1 $ 1

Type';'
Type':•'
{ll.U. lsta,:

ifnot Ta~

->
->
->
->

Tag
Ta.~
Ta .~

(X 1) 1 T 1

':•' [S(x 1), S(x 2)]
,llli Tag ' y ' [Ta -~ ' y ' [I /1. s s r "'.n * * I , S(x 1)], S(x 2)1

}
.iype
Type
Type

I ff' -)
'wh f 1 e' ->
'un ti 1 ' - >

Ta'! 1 tP [S (X 1) , S (X 2) , ' ri Uf11"1Y 1]

Ta~ 'w' [S . (x 1), S (x 2))
Ta.~ 'w' [w, S {x 2)

Type 'p:oto'
Type ':'

,vhere w = Ta<! '-v' ['not',~
->. S (x 1), 'i;oto'
-> CJ.JU. w ~ S Cx 2)

(x 1)))

.Ill
lsta~ w 1 6 ' -> Ta~ '6' Cw 1 a u~ x 1 ~ u~ ~

I error

.Qtl Combine (s, t) • Q 1 s
where~ Q kw=

k gr Order t -> w

Iv ?.)
Ta!'; '6' [Cx 1,) ,

\·1hg re = w, ' t1 ' J)

Q (k+l) {w au~ t k)

==--,- -

189

.illU.~ lx=
lltl lsid~ntifiP.r x
lu,Q X

ifnot
Ll..tl. Type = Is ta.~ x
..Lo.

Type 't.' -> [J..tl u, v = x 1, L (x 2)
..Lo.
ilil I star, v · 1 6'
~ Ta~ 't.' Comh i ne [(u, v 1) .. v 2]
ifnot Tap; 1 6 1 (u, v)]

I Type 'w' -> [_kt u, v = L (x 1), L (x 2)
..Lo.
lltl lsta~ v 't.'
.llli Tae; 't:.' [v 1, Tag ' ' (u, V 2)]
ifnot Tar; 'w' Cu, v)]

Type ' . ' , -> (let u, v = L (x 1), L (x 2)

I Type 'B' ->

I Type '*' ->

ln
~ lsta'; u 1 6 1

ifso
.tell lstaa; v 16'
~ Tai'.': 1 6 1 [w, Tar:' ;' (u 2, v 2)

where "' = C o.,,b i r. e (u 1, v 1
ifnot Tat; 16 1 [u 1, Ta,:';' Cu 2, v)]

ifnot
..t!til lsta~ v 16'
1..£.s..Q Tar; 't.' [v 1, Ta~';' (u, v 2)]
ifnot Ta.-;';'{ u, v)l

[_hl w, u, v = L (x 1), L (x 2), !_ (x ~)

.in.
~ lstae u 't:.'
lb,Q
~ lstap v 16'
~ . Tatt 't:.' [s, Ta~ 'B' (w, u 2, v 2)

wheres= CcmbinP. (u 1, v) J
jfnot Ta .~ ' n' [u 1, Ta~ 's' (\,1, u 2, v)J

ifnot
.t..e.il lstae: v 't:.'
.i.lli TaP; 't:.' [v 1, Ta~ 's' Cw, u, v ?.}]
i fnot Ta .~ 's' Cw, u, v)]

[J..tl u = L (x 1)

lstai; u 't:.'
..Lo.
~
l..lli [x := u 2, 'If';

TaP,: ' ' (u 1, x)]
ifnot (x := u, '*';

x)
Type '>.' -> Tag '>.' { x 1, L {x 2))
Sons x eq 2 -> L (x 1), L (x 2), Tap;nf x
Sons eq 1 -> L (x 1), Ta~of x
error]

.ruu ~
.t.u.t.
lll,Q
jfnot
lil
l.D.

190

F (x, c) =
I s i <IP. n t i fie r x
Push (x, c)

Type II lsta~ x

Type ' I i - > [x : • F (x l , c) ; x 1
Type 'ti'-> Push c•ti•, Push[x 1, Pus ~' (r. [x ~, nil], c)].)
Type •e• -> (fil o = F (x 2, c), F (x ~, c)

~
.d.c.f

.l!l
F[x 1, Push ('13', 6)])

Ty p P. 1 w ' -) [h.t, o , S = n i 1 , (1 rl l F"lr,y
1

, C)

J..n
ill t = F [X 2, (';', 6)]

lo.
0 : = F (x 1, [t 6 I

1 (t, s)])]
Type I A I -> Push [').', (x 1, Suh-'.':), C

wh4: ce SubC = F (x 2, n i 1)]
Type I • I -> F (x , 1, Push [I • I

I I F (x

Sons X eq 2 -> F (x 2, F (x 1, Push
Sons X eq 1 -> F [x 1, Push (Tae"Fof
error]

~akecontrol P • F[L (SP), nil]
Contents (Memory, AddrP.ss) •
Look (Mernory 2)

where ~ Look f-1cm =

2, C)])

(ti'l~Of x,
x, C)]

//Found.

C)))

Address eq Mem 1 -> MP.n 2
Look (Mem 3) //Y..P!~r:, Lnnl.:Jn:r.

.i.O.d Update (Memory, Address, Value) =
Memory 1, (Address, ValuP., t1er.mry 2)

AW! Extend Memory=
lil Nextcell = 1 + M~mory 1
.ln
.Lc..t. NextMemory z rJextcell, ("Jextcell, nil, 1!emory :?)

.in.
MextMe~ory, Nextcell

£ill C, S, E, D, M • n J 1 , n i 1 , PE, M

.1tl Store X •
..hl m • a = Extend M
.l!l
M : . Update (m. a. X);
a

!ill Lval X =
l sa ddress X -> X I Store X

191

// State Transformations

Qtl Subprob~xit () =
C, S, E, P := 0 1, f'us~ [t S, r. 2], r, 3, r, ti, t-1

~ Evalconstant {) =
C, S := r C, Push [w, SJ

Hhe re w = v a 1 < t c >

~ Evalvaria~le (C, S, .F., D) =
C, S := r' C, Push [w, SJ

where w = lookup {t C, E)

.Qtl Evahexp () =
C, S := r C, Push [New>..closure, SJ

where ~1ew>..closure = ~~ake>..closur~ Ct C) F.

~ Evalcondltional {) =
C, S t= Ct S -> 2d C r2 C), r S

M Applybasic () =
C, S :• r .C, Push [w, r2 SJ
~-,here H = lslfcn{t S) -> afpply Ct S) C2rl Sl

I apply (t S) Rval [P1,2~ S)]

.iA.f Newlval {) =
.L=.t m, a= Extend M
.i.n
S, M := Newstack, r1ewMem

wher;e (News tack = Push [t s, Push c~, r2 S\J
il9.
NewMen = Update ["1, a, 2rl S)]

~ Ap~ly>..closure () =
.1.e.t Newenv = Decompose [bV (t S), 2<1 S, Env Ct S)J
.a.n!J, rJewdump = r C, r2 S, E, n
.Lo.
C, S, E, O :• Borly Ct S), ni l , ~-'cv,~nv, ~:e•.•idu11p

~ Assi~n () =
~ lsaddress Ct S)
jfnot C, S :• r C, Push (dumMy, r2 S)
.L.w [c, S, M := r C, Push (dummy, r2 S), ~rev,Mem

where NewMem = Uprlate cr1, t S, Rval (t.1, 2n S))]

ill Popstatk () •
C, S := r C, r S

192

hl Extendtuple () =
[C, S :• r C, Push O!ewtu'.)lP, r~ S)

WhP,.re ~!P.WtUI) 1 e. = Au": (t S) (2 ·i ~) 1

2.e..f. Ltoq() a:

S := Push [Content, (~, t S), 2d SJ

jtl Ste?control () =
r. := r C

def Makelabels () =
.lil o, P = SE, 2d C
a.W.f •,!ewdump = r3 C, $S, $E, $1"'
.aD.Q j , k = 1, 0 rdP- r (2 ci C)
.la.
wh j 1 e j 1 e k do

(J.tl Labelval = P(j+l), o, M~vH1ump, 1 .1 1

.in
o := P j, Labelval, $ o;
j := j+2

) ;
C, S, E, D : = t ·C r2 C), n i 1 , o, 'le~-1du:np

// Main Programs

.wu, Transform() •
.t.c.U. ~u 11 C
~ · Subprobexit ()
J foot

(JjU_ X • t C
.in

lsconstant x -> Evalconstan t ()
lsvariable x -> EvalvariahlP. ()
Is exp x -> EvalAexo ()
x eq ';' -> Poostack ()
x eq ' : •' -> Asst~n ()
lsaddress Ct S) -> LtoR ()
x eq 'e' -> Evalcondttional ()
x eq 'va 1 ' - > S t~pcon t ro 1 ()
x eQ 1 1oc 1 -> Nev,Lval ()
x eq 'au~• -> Extendtuple ()
X eq 1Y 1

- > I s>. c 1 os u re (t S)
- > ()pplyAclosu re ()
I Applybasic ()

lslabelval x -> Mak~labels()
error

193

4°0eociix ~.~standardizing functions fQ.r. Tvocless ~- 0 AL

def~ ox=
ltl Type= lsta~ x
lc.

Type '=-'
Type
Type
Type
Type

'within'
'rec'
'ff'
'an1'

-) X

- > \•!D t D (x Ul · t f1 (x 2)]
-> Ro t(') Cx UJ
-> FD (x 1) (x 2)
-> AD (f'\ 1 nil)

Hbere ~ n kt=
k eo Order x -> t

. I ,,(k+l) (Au~ t Cr (x k))]
Type 'which h~s•
Type 'which'
Type 'is/has'

-> ~stuscx 2,x 1), x 1, x 1] ~
- > NP tu P (x 2 , n i 1) , x 1 , x 1] ,
-> W3(,\P(x 2,x 1), x 1, .'(!"} 3

error

def Sir.ipleNS (m,x,p,1) =
kt_ Ms = Ta g ,.,- ' (Ma k e S t r , Ta -~ ' ·t ' (11; , x))
~ Is = Tag '1'' (lsStr, Tai,: •~' (i"!l,p))

l!l
lTan; '=' 1, Tav.' ' (Ms,ls)]

AC..d, Si mp 1 eM P (r.1, x, 1) •
.1-=..t. I s = Tag 'll ' { I s S t r, Tag 1 -~ ' (rn, x))

.iJl
lTaJ~ '=' t,1s]

NS (x, n, m) =
.at 1 = (QualN 'Make' m, Oua P J 1 Is 1 1111

ln. lstag x 'SS -> (n,1 2,Af"lSir.,pletJS(r,,x 1,nil,l),x 2])
I (n,1 2,Sirnple~!S(m, x, 1, n i l)

NP (x, n, m) •
.l.ll 1 =lOualN 'Is' ml

lo. lstaP.; x 'SS' -> (n,1,ADtSimnleMP(n,x 1,1),~: 21)
I (n, 1, SimplP.~JP(rn, x, 1))

NB (x, n, m) =
lil 1 = {Qua 1 N 'Make' rn, ·()ua p .1 'Is I r,i]

la. lsta~ x 'SS' -> (n, 1 2,A(')tSiripleNS(rn,x 1 1,x 1 2, 1), .x 21)
I {n,1 2, S l rnplerlS{m,x l,x 2,1))

.Q.il Segment { X, i , j) = () (i , n i 1)
where .t..e-'. o < k, t > =

k gr j -> ti n (k+l, Aup.; t (x k))

.a.w1 Combine (a, d) •
d eQ nil-> a I Tac,: 'SS' Ca, .-•,rd)

1 '34

ill ilk Sub (x, q) =
lU Type= lstag x
4WJ. m = Qua 1 N q (x 1)

1.n
Type 'which has' -> Ta ~ 'Su l->S 1 MSLUS(x 2 , --1), < l , 1'.11
Type 'which' -> Tag 'Subs' ~! Pt ll r(·x 2,<1) , :: 1 , nJ
Type 'is/has ' -> Tag 'SubS' NBl AP(x 2, •n) ,~ l , ni J
Type 'tuple' -> Ta?. 'SubS' l .t...c:..Y.e.,nil,nilJ
Type 'atom' -> Ta~ 'Su bS' tx, 0ua P ! ' Is' x,n ill
Tag 'SubS'· [nfl, ·x,ntlJ .

~ US (x, q) =
ltl s,p,d = Split (x 1 q)
lLl Combine (Tag •~• a, rl)

where a= s(Orrler s) -> s I Au~ s fals e

~ UP (x, q) =
Combine (Ta~ •~• n, d)
where s , P, d = Sr> 1 i t C x, q)

.an..i AP (x, q) =
.W. s,p,d = Spl it(Sei;ment(x,2,()rrler x), n)
~ w = US(x 1, a)
. ·1n lstaF, w 'SS' -> CofTlb i ne[Pr(~-, l,p),Pref ix (1·; ~--~>]

I Comb inet Pr(w, p t , ~] ·
where Pry= Ta~ 'pair' y

alJ.S1. Sp l it (x, q) = Q (1,ntl,nil,nil)
where .a.& o Ck,s,p,rl) •

--

k eq Orner x -> s,p,~
I [JJ:,t m = Sub(s k, q) 1n

0 (k+l,Au~ s (m 1),Aug p (m 2), ~l)
where DJ • m 3 eq nil · > .d lA u~ ~ (n 3)]

195

Appendix~- 'rhe Representation of S- PAL Data Functions

def Decode (y,Sel) = u (Order Sel)

where rec Uk=

k ~ 0 -> 0 I y ~(Selk) -> k ID (k-1)

def ~uildset (Sel,t) = ·R(Order t - Order Sel + 1)

where rec [R k = k eq 0 -> Q(Order Sel - 1)

I Aug [R(k-1)] k

and Q m = m ~ 0 -> nil

I Aug [Q(m-1)] [Sel m]]

~ Buildvec {n,v) = S (1,nil)

where rec S{m,t.) = m ~ n -> t I S[k+l,Aug t {12£. v)J

~ef Cstepl (u,Sel) =

let Chk = Buildvec (Order u, 0)

and Nam= Buildvec (Order Sel-1,nil)

in [Chk,Nam,Q f(l,nil) ,u]

where rec Q {k,Un) =

k gr Order u -> Un

I Istag (u k) 'nqv• -> .:l[k+l,Sort{Un,k)J

I Q[k+l,Aug Un k)

where Sort {Unn,rn) =

[let n = Oecode(u m "2,Sel) in

n ~ 0 or Chk n £.g_ 1 -> undef

I (thk n := l ; Nam n ~= m Unn)]

196

def Cstep2 (Chk,Nam,un,u) = R (1,1,nil

where rec R(i,j,t) =
i ~ Order Chk - > t

Chk i ~ 0 - > R(i+l,j~l,Aug t [u (Un j)])

I . R(i+l,j,l\.ug t [u (Nam i) 1))

def Canonical (u,Sel) = Cstep2(Cstepl(u,Sel))

def Verify (V,t) = Q {l,~)

where rec [Q (k,Tv) =

k ~ Order V -> Null (V k) - > Tv

I R(k,Tv,V k)

Q(k+l,Tv & V k (t k))

and R (m,Tv,Vr) = m gt Order t -> Tv

R{m+l,Tv & Vr (t m),Vr)

def MakeStr {Tag,Sel,Ver) =

let n = Order Sel - 2 -

- -

in Constructor

where rec Constructor (u) =

not Verify(Ver,t) -> undef

I fn y. IsA'l'UM y ->

-y ~ tag - > 'l'ag

I y ~q domain-~ Buildset lSel,t)

I y ~q constructor - ~constructor

I [let k = Decode(y,Sel) ~

k ~ 0 - ' undef I t k]

Sel(Order Sel) - > t(n+y) I undef

where t = Canonical(u,Sel)

197

def Test (Pred,v} = Q (Order Pred}

where rec Q k =
k ~ 0 - > false I Q (k-1} or Pred k v

def IsStr (Tag,Pred} =
fn y. [Istuple Pred -> Test(Pred,y)

I Pred y]

or y tag~ Tag

[]. 1

[2)

[3]

[4]

[SJ

[6)

[7]

[8)

[9]

198

REFERENCES

Balzer, R.M., "Dataless Programming," RAND Corpcraticn,
Memorandum RM-5290-ARPA, Santa Monica, Calif. 19 G7 .

. Barron, D. · W., et al, ''The Main Features of Cli'L, ' Corrp . J .
vol. 6, no. 2, 1963.

Burstall, R. M., "Semantics of Assignment," Machine
Intelligence~, American Elsevier, New York, N.Y. 1968.

Burstall R. M., and Popplestone, R. J., "Pop-2 Reference
Manual," Machine Intelligence~' American Elsevier, New
York, N.Y. 1968.

Christensen, C., ''An Example of the Manipulation of
Directed Graphs in the AMBIT/G Programming Language, ··
Interactive Systems for Experimental Applied Mathematics
Academic Press, New York , N.Y., 1968.

Church, A., The Calculi of Lambd,1 Conversion, Annals of
Mathematics Studies, No.6, Princeton, N. J . , Princeton
University Press, 1941.

Earley, J., "Toward an Understanding of Data . Structures, ··
Unpublished notes, University of California, Berkley, 1969 .

Evans, A., 11Pal - A Language Designed for Teaching Pro-·
gramming Linguistics," Proceedings ACM National Conference,
1968.

Evans , A., PAL - A Reference Man,1al and Primer , Department
of Electrical Engineering , Massachusetts Institute of
Technology, Cambridge, Mass., 1970.

[l ')] Hammer, M. M. and Jorrand, P., ''The Formal Definition

[l l]

[12a)

[12b]

of BASEL Part l; Introduction , " Computer .Associates, Inc. ,
Report CA-6908-1512, Wakefield, nass., 1969 .

Hoare, C. A. R., "Record Handling, " Symbol Manipula.tiop
Languages, Techniques, North Holland, Amsterdam, 1968 .

Jorrand, P., '·The Formal Definition of BASEL - Part ~· :
Compiler '' Computer Associates, Inc., Report CA-6908-1512 ,
Wakefield, Mass., 1969.

Jorrand P., "The Formal Definition of BASEL - Part 3 ;
Interpreter, " Computer Associates, Inc . , Report CA-6908-151 3
Wakefield, Mass., 1969.

ir

199

[13] Landin, P. J., "The Mechanical Evaluation of Expressions,··
Comp. J., vol. 6, no.- 4, pp. 308-32().

[14] Landin, P. J., 11A Correspondence Between ALGOL 60 ard
Church's Lambda Notation, 11 Comm. ACM. , vol. 8, no. 2,
pp. 89-101, vol. 8, no. 3, pp. 158-165, 1965.

[15]

[16]

Landin, P. J., "A Formal Description of ALGOL 60,"
Formal Language Description Langua~es f2!. Computer
~rogramming, North Holland, Amster am, 1966.

Landin, P. J., ,:A).-Calculus Approach, u Advances in
Programming and Non-Numerical Computation, Pergamon Press,
New York, N.Y., 1966.

[17] Landin, P. J., "The Next 700 Programming Languages,··
Comm. ACM, Vol. 9, No. 3, 1966.

[18] Laski, J., "The Morphology of Prex - An Essay in Meta
algorithrnics,11 Machine Intelligence 2, American Elsevier ,
New York, N.Y., 1968.

[19] Laurence, N., ';A Compiler Language for Data Structures, ''
Proceedings ACM National Conference, 1968.

[20] tucas, P., et al, ,:Method and Notation for the Formal
Definition of Programming Languages," IBM Vienna ·
Laboratory, Report TR 25.087, Vienna, Austria, 1968.

[21] McCar~hy, J., et al, LISP 1.5 Programmers Manual,
Cambridge, Mass., 1962 • .

[22] McCarthy, J., "Towards a Mathematical Science of Compu
tation," IFIP Munich Conference 1962, North Holland,
Amsterdam, 1963.

[23]

[24]

McCarthy, John, 11Definition of. New Data Types in ALGOL
ALGOL Bulletin No. 18, The Hague, The Netherlands,
pp. 45-46, 1964.

McCarthy, J., "A Formal Description of a Subset of ALGOL"
Formal Language Description Languaaes for Computer
Programming, North Holland, Amster am, 1966.

(25] Morris, J. H., "Lambda-Calculus Models of Programming
Languages," Ph.D. Thesis, MAC-TR-57, Project MAC,
Massachusetts Institute of Technology, Cambridge, Mass.
1968.

[26] Park, D., 11 Some Semantics for Data Structures, 1' Machine
Intelligence~, American Elsevier, New York, N.Y., 1968 .

200

[27] PL/I Language Specifications, IBM, Form Y3 3··6003-1,
Mechanicsburg, Penna., 1969.

[26]

[29]

[30a]

[30b]

[31]

· [32]

[33]

[34]

[3:i 1

(36]

(3 7]

(38]

[39]

Popplestone, R. J., "The Design Philosophy of POP-2 ,
Machine Intelligence ~-' American Elsevier , I-;et-; York,
N.Y., 1968.

Richards, M., "BCPL: A Tool for Cor.1piler Writing and
Systems Programming, 11 Spring Joint Computer Conference
1969, AFIPS Press, Montvale, New Jersey, 1969.

Reynolds, J.C., "GEDANKEN - A Simple Typeless Language
Based on the Principle of Completeness and the Reference
Concept," CACM, vol. 13, no. 5, pp. 308-319, 1970.

Reynolds, J.C., "GEDANKEN - A Simple Typeless Language
which Permits Functional Data Structures and Coroutines, "
ANL-7621, Argonne Nat. Lab., Argonne, Ill., 1969.

Reynolds, J. c., 11A Set Theoretic Approach to the Concept
of Type," Nato Conference, Rome Italy, 1969.

Ross, Douglas T., "A Generalized Technique for Symbol
Manipulation and Numerical Calculation, Comm. ACM,
vol. 4, no. 3, pp. 147-150, 1961.

Standish, T. A., "A Data Definition Facility for Programming
Languages," Ph.D. Thesis, Carnegie Institute of Technology,
Pittsburgh, Penna., 1967.

Strachey, c., "Towards a Formal Semantics," Formal
Lanfuage Descriptio~ Laniuages !2!:_ Computer Programmj.!!S_,
Nor h Holland, Amsterdai:n, 1966.

Strachey, c., "Fundamental Concepts in Programming
Languages," NATO Conference, Copenhagen, 1967.

USA Standard COBOL, United Stat~s of America Standards
Institute, Report X3.23-1968, New tork, N.Y., 1969.

van Wijngaarden, A., et al, Report 2!!_ the Algorithmic_
Languaae ALGOL 68, Mathematish Centrum, Report MR101,
Amster am, 1969.

Vigor, D. B., "Data Representation - The Key to Concep
tualisation," Machine Intelligence~, American Elsevier,
New York, N. Y., 1968 . .

Woodger, M., "The Description of Computing Processes:
Some Observations on Automatic Programming and ALGOL 60,"
Annual Review in Automatic Programming, vol. 3, Pergamon
Press, New York, N.Y., 1963. ·

,

'

:201

[~OJ Wozencraft, J.M., and Evans, A., Notes on Pro~rarnmi12S._
Linguistics, Departm~nt of Electrical EngTneering,
Massachusetts Institute of Technology, Cambridge, Mass.,
1969.

