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Abstract
In Part I of this thesis, we propose moment closure methods to simulate the chemical
kinetics of surface reactions. For systems with static disorder in the rate constants
and short-range correlation in the densities of reactants, we propose the half het-
erogeneous pair approximation (HHPA). Combining the intuitions of the mean-field
steady state (MFSS) method and the pair approximation (PA), we consider repre-
sentative pairs of sites in a self-consistent bath of the average pairwise correlation.
Preaveraging over the static disorder in one site of each pair makes HHPA efficient
enough to simulate systems of several species and calibrate rate constants. For sys-
tems with long-range dynamic correlation, we propose the use of machine learning
(ML) to construct system-specific moment closures. Using the lattice Lotka-Volterra
model (LLVM) as a model system, we trained feedforward neural networks (FFNNs)
on kinetic Monte Carlo (KMC) results at select values of rate constants and initial
conditions. The ML moment closure (MLMC) gave drastic improvements in the sim-
ulated dynamics and descriptions of the dynamical regimes throughout the parameter
space.

In Part II of this thesis, we propose new design principles to enhance the effi-
ciencies of organic light-emitting diodes (OLEDs). In particular, we are interested
in thermally activated delayed fluorescence (TADF) and triplet-triplet annihilation
(TTA), which convert the nonemissive triplet excitons into emissive singlet excitons.
First, we introduce a simple four-state model of TADF. The model predicts that it
is possible to realize adiabatic singlet (S1) and triplet (T1) states with fast T1 → S1
intersystem crossing (ISC) and S1 → S0 radiative decay. Using molecular dynamics
(MD) and the time-dependent density functional theory (TDDFT), we consider con-
formational variation as a means to sample the parameter space, and then we examine
the potential of direct optimization to maximize the TADF rate. Second, we inves-
tigate the role of ISC in enhancing the efficiencies of TTA upconverters. We present
computational evidence that the limit-breaking TTA efficiencies of certain annihila-
tors might be attributed to the T2 → S1 ISC. Furthermore, we propose strategies to
enhance this ISC and provide experimental support of enhanced efficiencies.
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Chapter 1

Introduction

Kinetic models are a useful tool to translate our knowledge of microscopic processes

into macroscopic observables or vice versa. However, there are a number of challenges

in the kinetic modeling of surface reactions, such as static disorder in the rate con-

stants and dynamic correlation in the densities of the reactants. In Part I of this

thesis, we propose methods to capture the effects of static disorder and dynamic cor-

relation in surface reactions. In this chapter, we develop the theoretical background

that is required to understand the works in Part I. Assuming Markovian processes

and an a priori knowledge of the rate constants, the chemical master equation (CME)

gives an exact treatment of the chemical kinetics. However, the computational costs

are intractable in most systems of practical relevance. While the kinetic Monte Carlo

(KMC) method provides a way to sample the desired outcomes, the computational

costs of these stochastic simulations can still be formidable. In this thesis, we consider

moment closure approximations as a hierarchical approach to obtain qualitative and

sometimes quantitative insight into the chemical kinetics.

1.1 Pathological Behaviors in Chemical Kinetics

Chemical kinetics of surface reactions can exhibit a wide range of pathological behav-

iors. Among the most dramatic examples are catalytic reactions that exhibit density

oscillations [1], hysteresis loops [2, 3], spatiotemporal patterns [4, 5], and chaos [6, 7].
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Horn and Jackson established that detailed balance precludes oscillations, bistabil-

ities, and other irregular dynamics in chemical reactions. [8]. It stands to reason

that these systems do not satisfy the necessary and sufficient conditions of detailed

balance [9, 10], and many assumptions that are taken to be granted in chemical ki-

netics do not apply. Notably, the steady states of surface reactions are not always an

equilibrium.

Even in mundane cases where the system exhibits a monotonic relaxation, the

rates of elementary reactions are sometimes not described by first-order or second-

order kinetics. According to the law of mass action, the rate of a unimolecular reaction

is
𝑑[𝐴]
𝑑𝑡

= −𝑘[𝐴] (1.1)

and the rate of a bimolecular reaction is

𝑑[𝐴]
𝑑𝑡

= −𝑘[𝐴][𝐵] (1.2)

where [𝐴] and [𝐵] are the densities of reactants 𝐴 and 𝐵, respectively; and 𝑘 is the

rate constant. Solving the first-order kinetics gives

[𝐴] = [𝐴]0𝑒−𝑘𝑡 (1.3)

and solving the second-order kinetics gives

[𝐴] = [𝐴]0
1 + 𝑘𝑡

(1.4)

where we have assumed [𝐵] = [𝐴]. However, many surface reactions exhibit a

stretched exponential kinetics [11–13].

[𝐴] = [𝐴]0 exp
(︃
− 𝑘0𝑡

1−ℎ

(1− ℎ)

)︃
(1.5)

where 𝑘0 and ℎ < 1 are parameters. This is not consistent with either first-order or

second-order kinetics. Instead, the stretched exponential is known to arise when a
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unimolecular reaction exhibits a time-dependent rate coefficient [14]

𝑑[𝐴]
𝑑𝑡

= −𝑘0

𝑡ℎ
[𝐴] (1.6)

Alternatively, enforcing a time-independent rate coefficient and calibrating the reac-

tion orders give noninteger reaction orders

𝑑[𝐴]
𝑑𝑡

= −𝑘[𝐴]𝛼[𝐵]𝛽 (1.7)

Due to the influence of Kopelman [15, 16], the appearance of stretched exponentials or

noninteger reaction orders often invokes the phrase “fractal kinetics” or “fractal-like

kinetics” in the chemical literature. We do not condone the abuse of this terminology,

since it implies that these pathological behaviors arise due to special geometries of

the surface. In truth, they can be traced to a number of distinct origins. [17, 18].

Figure 1-1: (a) Simulated kinetics of a unimolecular reaction with static disorder.
The amount of static disorder 𝜎 is in units of 𝑘𝐵𝑇 . The time has been normalized
with respect to the point when the ensemble-average density ⟨𝑦⟩ reaches 90 % of its
initial value. (c) Ensemble-average rates as functions of ensemble-average densities.

First, many surfaces are expected to exhibit static disorder, site-to-site variations

in the rate constants due to defects in the crystal lattice or the amorphous structure of

the surface. In systems with significant amounts of static disorder, employing a single-

valued rate constant per elementary step is insufficient [19, 20], and static disorder

can have a nontrivial effect on the chemical kinetics [21–24]. To demonstrate the
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effects of static disorder, we consider the chemical kinetics of a unimolecular reaction

𝑑𝑦𝑘
𝑑𝑡

= −𝑘𝑦𝑘 (1.8)

where the rate constants 𝑘 have a log-normal distribution

𝜌(𝑘)𝑑𝑘 = 1
(2𝜋𝜎2)1/2 exp

[︃
−(log 𝑘 − 𝜇)2

2𝜎2

]︃
𝑑𝑘

𝑘
(1.9)

Since we can remove the mean 𝜇 by rescaling the time, the standard deviation 𝜎 is

the tunable parameter. We are interested in the ensemble-average kinetics

⟨𝑦(𝑡)⟩ =
∫︁
𝑦𝑘(𝑡)𝜌(𝑘)𝑑𝑘 (1.10)

Solutions that correspond to a few values of 𝜎 are shown in Figure 1-1a. Normalizing

the time with respect to the point when ⟨𝑦⟩ reaches 90 % of its initial value, we

can see that the kinetics become nonexponential as the amount of static disorder

increases. This implies that this reaction is no longer described by first-order kinetics

at the macroscopic level, even though it is unimolecular at the microscopic level. The

ensemble-average rate is nonlinear in the ensemble-average density

⟨𝑘𝑦⟩ ≈ 𝑘eff⟨𝑦⟩𝑛 (1.11)

where 𝑘eff and 𝑛 are the effective rate constant and reaction order, respectively. As

shown in Figure 1-1b, the effective reaction orders are unrecognizable as a unimolec-

ular reaction, and they are noninteger in the presence of static disorder.

Second, surface reactions often exhibit spatial correlation, interdependence in the

probabilities of finding reactants next to each other. Indeed, the law of mass action

assumes perfect mixing of the reactants [25]. It is going to break down in the pres-

ence of spatial correlation. The nature of the correlation might be lateral interaction

or dynamic correlation. Lateral interaction refers to attractive and repulsive inter-

actions between adsorbates. Hence, it is thermodynamic in origin. It implies that
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the activation energies and hence the rate coefficients are not constants but they can

depend on the global surface coverages [3, 26], as well as the occupation of nearby

sites [27, 28]. While capturing the effects of lateral interaction is an important issue

in many systems, it is beyond the scope of this thesis.

Figure 1-2: Stochastic simulation of (a) two-species and (b) one-species bimolecular
reaction on a lattice. This is the same systems as the heterodimer and the homodimer
formations in Section A.1.

Dynamic correlation arises due to a combination of bimolecular reactions and slow

diffusion. Hence, it is kinetic in origin. The extent to which dynamic correlation can

impact the system is quite shocking. In fact, one of the simplest examples gives the

most dramatic results. Consider a two-species bimolecular reaction on the lattice

𝑂 → 𝐴 (1.12)

𝑂 → 𝐵 (1.13)

𝐴+𝐵 → 𝑂 +𝑂 (1.14)

where 𝑂 is a vacancy; and 𝐴 and 𝐵 are the two reactants. We are not including any

static disorder or lateral interaction, and the reactants are immobile on the lattice.

As shown in Figure 1-2a, stochastic simulation of this system shows that species 𝐴

and 𝐵 arrange themselves into monospecific islands that extend over several sites in
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diameter. Hence, the reaction rate is not proportional to the surface coverages of 𝐴

and 𝐵, but it is proportional to the circumferences of the islands. These spatiotem-

poral patterns are quite insensitive to the incorporation of desorption and diffusion

into the model [18].

Even when there are no apparent spatiotemporal patterns, annihilation of the

reactants in pairs reduce the probabilities of finding reactants next to each other in

unexpected ways. As a more mundane example, consider a one-species bimolecular

reaction on the lattice

* → 𝐴 (1.15)

𝐴+ 𝐴→ *+ * (1.16)

As shown in Figure 1-2b, this system gives rise to an altnernating array of vacancies

and 𝐴 molecules. Recently, Temel et al. demonstrated this effect in a realistic model

of CO oxidation [29]. With the present understanding of chemical kinetics, the effects

of dynamic correlation are quite unpredictable unless explicit configurations of the

lattice are considered.

1.2 Chemical Master Equation

There is a duality in what various authors mean by the chemical master equation

(CME). On the one hand, there are homogeneous systems, such as solutions and

colloids, where the reactants and the products are assumed to be well mixed. In this

case, the numbers of molecules are sufficient to define the state of the system, and

the positions of the molecules are not explicit variables [30–34]. For a simple system

of two species, the state of the system can be written as

Ψ = (𝑛𝐴, 𝑛𝐵) (1.17)

where 𝑛𝐴 and 𝑛𝐵 are the numbers of 𝐴 and 𝐵 molecules, respectively.

On the other hand, there are heterogeneous systems, such as surfaces and inter-
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faces, where the reactants and the products are not well mixed due to slow diffusion

or lateral interactions. Mapping the system on to a lattice, the state of the system is

defined by the configurations of the lattice [27, 35, 36]. Hence, not only the numbers

of molecules, but also their positions are explicit variables. For a two-species system

on a 2× 2 lattice, the states of the system include

Ψ ∈

⎧⎪⎨⎪⎩· · · ,
𝐴

𝐵
, · · · ,

𝐴 𝐵

𝐴
, · · ·

⎫⎪⎬⎪⎭ (1.18)

More generally, the state of the system can be written as

Ψ =
𝜓1 𝜓2

𝜓3 𝜓4

(1.19)

where 𝜓𝑖 is the occupant of site 𝑖, which might be a vacancy, 𝐴, or 𝐵.

In this thesis, we focus on heterogeneous systems. However, we continue to elab-

orate on homogeneous systems and the differences inbetween, because the theories

and the terminologies in the two communities are related, which can be a source of

miscommunication. In particular, it is worth noting that heterogeneous systems can

be reformulated as a special case of homogeneous systems by treating members of the

same species at different sites as distinct species. For example, Equation 1.19 can be

rearranged to take the form

Ψ = (𝑛𝐴1 , 𝑛𝐵1 , 𝑛𝐴2 , 𝑛𝐵2 , 𝑛𝐴3 , 𝑛𝐵3 , 𝑛𝐴4 , 𝑛𝐵4) (1.20)

where 𝑛𝐴𝑖
= 1 if the occupant of site 𝑖 is an 𝐴 molecule, and 0 otherwise. Likewise,

the microscopic processes that take place at different positions are treated as distinct

processes. It stands to reason that any statement that is valid in homogeneous systems

should have a counterpart in heterogeneous systems, though it is sometimes unclear

whether such statements retain not only their mathematical validity, but also their

physical interpretation.
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In both the homogeneous and the heterogeneous systems, CME takes the form

𝑑𝑝Ψ

𝑑𝑡
= +

∑︁
Φ
𝑘Φ→Ψ𝑝Φ −

∑︁
Φ
𝑘Ψ→Φ𝑝Ψ (1.21)

where 𝑝Ψ denotes the probability of finding the system in state Ψ; and 𝑘Φ→Ψ is the

sum of the rate constants of the elementary steps, if any, that would take the system

in state Φ to state Ψ. Hence, CME is a system of ordinary differential equations

(ODEs) that propagates the probabilities of all possible states of the system.

Provided that the state-to-state transitions are Markovian and the rate constants

of the elementary steps are known a priori, CME gives an exact description of the

chemical kinetics. In particular, CME can give an exact treatment of both static dis-

order and dynamic correlation. Unfortunately, the computational costs of CME scale

exponentially. In homogeneous systems, the dimensionality scales as the number of

molecules raised to the number of species. In heterogeneous systems, the dimension-

ality scales as the number of species raised to the number of molecules (sites). Solving

CME is intractable in all but the smallest systems.

1.3 Kinetic Monte Carlo

One way to extract details about the solution of CME involves stochastic sampling of

trajectories through the state space. This method is called the stochastic simulation

algorithm (SSA) in homogeneous systems [30] and the kinetic Monte Carlo (KMC)

method in heterogeneous systems [27]. In principle, it is possible to approach the

exact solution by averaging over a vast number of trajectories. In practice, we perform

enough simulations to converge the desired outcome, such as the surface coverage or

the reaction rate, to the desired precision. For a pedagogical introduction to KMC,

see References [28, 37].

Broadly, the KMC algorithms can be classified into the rejection-free KMC and

the rejection KMC. Both algorithms require an initial state as the starting point, and

each step begins with the cataloging of possible reactions. The rejection-free KMC
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computes the total rate of transition

𝑅 =
∑︁
𝑟

𝑘𝑟 (1.22)

where 𝑘𝑟 is the rate constant of possible reaction 𝑟. Then, one of the possible reactions

is chosen with a probability 𝑘𝑟/𝑅, and the time step is drawn out of a Poisson dis-

tribution with the mean 𝑅−1. Depending on the source, this algorithm is also called

the residence-time algorithm, the 𝑛-fold way, or the Bortz-Kalos-Lebowitz (BKL) al-

gorithm [38]. For readers who are more familiar with SSA, it is worth noting that

the rejection-free KMC uses the same time step as the Gillespie algorithm [30].

The rejection KMC chooses one of the possible reactions with a uniform probabil-

ity. Then, the reaction is accepted with a probability 𝑘𝑟/𝑘0, where 𝑘0 is the highest

rate constant in the system, and the time step is drawn out of a Poisson distribution

with the mean (𝑁𝑘0)−1. Note that there is a chance that the reaction is rejected

and nothing happens in a time step, which counteracts the uniform choice of possible

reactions and the shorter time steps. Depending on the source, this algorithm is also

called the “standard” algorithm. The two algorithms have been proven to give equiv-

alent results [39], so the choice is a matter of the application and the computational

resources. On the one hand, each step of the rejection KMC is cheaper than each step

of the rejection-free KMC, since it is often possible to estimate 𝑘0 without considering

the rate constants of all possible reactions. On the other hand, the time steps are

shorter, since we have 𝑁𝑘0 > 𝑅.

Since the explicit configurations of the lattice are considered, KMC can give an

exact treatment of static disorder and spatial correlation. However, there are a couple

of caveats. The computational costs can be formidable in systems with a separation of

time scales, which might be due to quasi-equilibrium or fast diffusion [40]. A number

of approaches to mitigate the problem have been proposed. One approach involves

weighting the transition probabilities or rescaling the rates to reduce the number of

steps that are spent on the quasi-equilibrium processes [41, 42]. Another popular

approach is 𝜏 -leaping [40], which reduces the number of rate calculations by allowing

37



multiple reactions to take place in one extended time step. In addition, there are

active efforts to parallelize KMC [43–46].

More importantly, the size of the lattice and the number of trajectories that are

required to converge the stochastic simulations make it impractical to use KMC in cal-

ibrating rate constants or finding critical points. Indeed, sampling enough trajectories

to draw a qualitative conclusion is one matter; sampling enough trajectories to attain

quantitative precision at many points in the parameter space can be problematic even

when the system does not exhibit any separation of time scales.

1.4 Moment Closure Approximation

Since the desired outcome in chemical kinetics is often an ensemble average, such

as the surface coverage or the reaction rate, we are motivated to write the kinetic

equations in the occupation probabilities of 𝑛-site clusters (𝑛-site probabilities)

[𝑋] ≡ [𝑋𝑖] =
∑︁
Ψ
𝛿𝜓𝑖,𝑋𝑝Ψ (1.23)

[𝑋𝑌 ] ≡ [𝑋𝑖𝑌𝑗] =
∑︁
Ψ
𝛿𝜓𝑖,𝑋𝛿𝜓𝑗 ,𝑌 𝑝Ψ (1.24)

[𝑋𝑌 𝑍] ≡ [𝑋𝑖𝑌𝑗𝑍𝑘] =
∑︁
Ψ
𝛿𝜓𝑖,𝑋𝛿𝜓𝑗 ,𝑌 𝛿𝜓𝑘,𝑍𝑝Ψ (1.25)

where 𝑖, 𝑗, and 𝑘 are a string of adjacent sites on the lattice; and 𝛿𝜓𝑖,𝑋 = 1 if the

occupant of site 𝑖 is 𝜓𝑖 = 𝑋 and 0 otherwise.

These 𝑛-site probabilities are special cases of moments. In chemistry, the use of

the term moment is more common in homogeneous systems, where the moments are

defined as

⟨𝑛𝑋⟩ =
∑︁
Ψ
𝑛Ψ
𝑋𝑝Ψ (1.26)

⟨𝑛𝑋𝑛𝑌 ⟩ =
∑︁
Ψ
𝑛Ψ
𝑋𝑛

Ψ
𝑌 𝑝Ψ (1.27)

⟨𝑛𝑋𝑛𝑌 𝑛𝑍⟩ =
∑︁
Ψ
𝑛Ψ
𝑋𝑛

Ψ
𝑌 𝑛

Ψ
𝑍𝑝Ψ (1.28)
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where 𝑛Ψ
𝑋 gives the number of 𝑋 molecules in state Ψ. Indeed, we have 𝛿𝜓𝑖,𝑋 = 𝑛𝑋𝑖

as discussed in Section 1.2. However, the 𝑛-site probabilities are a strict subset of

the 𝑛th-order moments, since the 𝑛-site probabilities only consider strings of adjacent

sites on the lattice, whereas the 𝑛th-order moments consider all possible combinations

of species.

The kinetic equations of one-site clusters are

𝑑[𝑋]
𝑑𝑡

= +
∑︁
𝐴

𝑘𝐴→𝑋 [𝐴] +𝑁
∑︁
𝑌 𝐴𝐵

𝑘𝐴𝐵→𝑋𝑌 [𝐴𝐵]

−
∑︁
𝐴

𝑘𝑋→𝐴[𝑋]−𝑁
∑︁
𝑌 𝐴𝐵

𝑘𝑋𝑌→𝐴𝐵[𝑋𝑌 ] (1.29)

where 𝑘𝐴𝐵→𝑋𝑌 is the rate constant of the elementary step, 𝐴+𝐵 → 𝑋+𝑌 , if it exists;

and 𝑁 is the number of nearest neighbors. For example, the first term describes the

unimolecular reaction of the 𝐴 to produce a 𝑋 at its position, and the last term

describes the bimolecular reaction of the 𝑋 and a neighboring 𝑌 to produce a 𝐴 and

a 𝐵 at their respective positions.

Observe that the equations are not closed. Unless the elementary steps consist of

unimolecular reactions only, the equations of 𝑛-site clusters are going to depend on in-

formation about (𝑛+ 1)-site clusters. In order to create a closed system of equations,

we need a prescription to approximate the higher-order moments using only infor-

mation about the lower-order moments – hence, a moment closure approximation.

The simplest and the most popular closure is the mean-field (MF) approximation,

[𝑋𝑌 ] = [𝑋][𝑌 ], which neglects any correlation that might exist between the sites.

To capture the effects of correlation, we need the kinetic equations of at least

39



two-site clusters

𝑑[𝑋𝑌 ]
𝑑𝑡

= +
∑︁
𝐵𝐶

𝑘𝐵𝐶→𝑋𝑌 [𝐵𝐶]

+ (𝑁 − 1)
∑︁
𝑊𝐴𝐵

𝑘𝐴𝐵→𝑊𝑋 [𝐴𝐵𝑌 ] + (𝑁 − 1)
∑︁
𝐶𝐷𝑍

𝑘𝐶𝐷→𝑌 𝑍 [𝑋𝐶𝐷]

−
∑︁
𝐵𝐶

𝑘𝑋𝑌→𝐵𝐶 [𝑋𝑌 ]

− (𝑁 − 1)
∑︁
𝑊𝐴𝐵

𝑘𝑊𝑋→𝐴𝐵[𝑊𝑋𝑌 ]− (𝑁 − 1)
∑︁
𝐶𝐷𝑍

𝑘𝑌 𝑍→𝐶𝐷[𝑋𝑌 𝑍] (1.30)

For example, the first term describes the reaction of the 𝐵𝐶 pair to produce a 𝑋𝑌

pair at its position, and the last term describes the reaction of the 𝑌 in the 𝑋𝑌 pair

and a neighboring 𝑍 to produce a 𝐶 (making a 𝑋𝐶 pair) and a 𝐷 at their respective

positions. We have treated unimolecular reactions as special cases of bimolecular

reactions where one of the reactants is a spectator.

Now, we need to approximate the three-site probabilities in terms of the two-site

probabilities. Using the definition of conditional probability, we can write

[𝑋𝑌 𝑍] ≈ [𝑋𝑌 ][𝑌 𝑍]
[𝑌 ] (1.31)

Known as the pair approximation (PA), this formula has been invented by indepen-

dent workers in chemistry [47, 48], population biology [49, 50], and epidemiology

[51].

In principle, the closed system of equations would become more accurate as higher-

order moments are used as the basis of the moment closure approximation. Formally,

one can interpret MF and PA as special cases of product approximations [52, 53],

so it should be possible to generalize PA to 𝑛-site probabilities. Examples of these

attempts include the triple approximation [54], the approximate master equations

[55, 56], and the cluster mean-field approximation [35]. However, the derivation and

the computation of the kinetic equations become challenging, as the geometries of

the higher-order clusters are complicated, and the number of moments scales expo-

nentially with the order.
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A subset of the readers might be more familiar with stochastic closures, such as

the normal [57, 58], Poisson [59], and log-normal closures [60], which are often used

in homogeneous systems. The physical and mathematical arguments behind these

closures are quite different, since the moments in homogeneous systems are expected

numbers of molecules (∈ R), as opposed to occupation probabilities (∈ [0, 1]). In

short, stochastic closures assume that the numbers of molecules have a certin prob-

ability distribution. Applying stochastic closures to heterogeneous systems entails

contradictions: we are considering a probability distribution of probabilities, and

the distributions are defined on R, as opposed to [0, 1]. Although it can be carried

out with suitable adjustments, our experience indicates that stochastic closures en-

counter instabilities and unphysical values in heterogeneous systems that exhibit a

strong spatial correlation.

Nonetheless, it is worth noting that the equations of 𝑛th moments in homogeneous

systems are analogous to the equations of 𝑛-site clusters in heteogeneous systems.

Only, the site indices and the number of nearest neighbors do not appear, and the

ordering of species in the moments does not matter. Schnoerr et al. have a pedagogial

paper on moment closure approximations in homogeneous systems [34]. Interested

readers should refer to their work.

Next, we turn our attention to static disorder. Equations 1.29 and 1.30 neglect the

effects of static disorder altogether, since the rate of an elementary step is described

by the same rate constant throughout the lattice. This is a common practice to

reduce the theoretical and the computational complexity. However, recent studies

have demonstrated that static disorder can have a nontrivial effect on the chemical

kinetics [19, 21, 23, 24]. To capture the effects of static disorder, we cannot drop the

site indices in Equation 1.23, and the kinetic equation of one-site clusters becomes

𝑑[𝑋𝑖]
𝑑𝑡

= +
∑︁
𝐴

𝑘𝐴𝑖→𝑋𝑖
[𝐴𝑖] +

∑︁
𝑌 𝐴𝐵

∑︁
𝑗

𝑘𝐴𝑖𝐵𝑗→𝑋𝑖𝑌𝑗
[𝐴𝑖𝐵𝑗]

−
∑︁
𝐴

𝑘𝑋𝑖→𝐴𝑖
[𝑋𝑖]−

∑︁
𝑌 𝐴𝐵

∑︁
𝑗

𝑘𝑋𝑖𝑌𝑗→𝐴𝑖𝐵𝑗
[𝑋𝑖𝑌𝑗] (1.32)

where 𝑋𝑖 denotes species 𝑋 at site 𝑖; 𝑗 runs over the nearest neighbors of site 𝑖; and
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𝑘𝐴𝑖𝐵𝑗→𝑋𝑖𝑌𝑗
is the rate constant of the elementary step, 𝐴+𝐵 → 𝑋 + 𝑌 , with species

𝐴 at site 𝑖 and species 𝐵 at site 𝑗, or zero if such step does not exist.

Equation 1.32 makes explicit treatment of the static disorder in the neighboring

sites, so a large number of sites should be sampled to converge the average over the

static disorder. These quench mean-field (QMF) approaches are useful in simulating

quenched networks, such as single-atom catalysts on amorphous supports [21, 23]

and the spread of infectious diseases [61–65]. However, it would be desirable to avoid

sampling a large number of sites without sacrificing the ability to describe static

disorder, since the tasks of calibrating rate constants or finding critical points require

many iterations of these simulations. In this regard, previous works in our group have

proposed an efficient strategy to capture the effects of static disorder: the mean-field

steady state (MFSS) method, which considers a collection of representative sites in a

self-consistent bath of the average environment [20, 22].

To our knowledge, static disorder and dynamic correlation have not been exam-

ined together in chemistry, though there have been attempts at related problems in

epidemiology [66] and network theory [67].

1.5 Structure of Part I

The remainder of Part I is organized as follows:

In Chapter 2, we propose the half heterogeneous pair approximation (HHPA) to

describe the effects of static disorder and dynamic correlation together. Combin-

ing the intuitions of MFSS and PA, we consider representative pairs of sites in a

self-consistent bath of the average pairwise correlation. Preaveraging over the static

disorder in one site of each pair makes HHPA efficient enough to simulate systems of

several species and calibrate rate constants. We apply HHPA to simulate the chemi-

cal kinetics of methanol oxidation on the rutile TiO2(110) surface. In analyzing the

results, we elucidate the role of static disorder in reproducing the stretched exponen-

tials in the observed kinetics and the importance of dynamic correlation in calibrating

the model parameters.
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In Chapter 3, we show that machine learning (ML) can be used to construct

accurate moment closures in chemical kinetics, using the lattice Lotka-Volterra model

(LLVM) as a model system. We trained feedforward neural networks (FFNN) on

KMC results at select values of rate constants and initial conditions. Given the same

level of input as PA, the ML moment closure (MLMC) gives accurate predictions of

the instantaneous three-site probabilities. Further, we explore the potential of MLMC

to improve the simulated dynamics and descriptions of the dynamical regimes.

In Chapter 4, we summarize the key results of Part I and discuss future directions.
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Chapter 2

Heterogeneous Pair Approximation

of Methanol Oxidation

We propose a novel method to simulate the chemical kinetics of methanol oxidation

on the rutile TiO2(110) surface. Such a method must be able to capture the effects

of static disorder (site-to-site variations in the rate constants), as well as dynamic

correlation (interdependent probabilities of finding reactants next to each other).

Combining the intuitions of the mean-field steady state (MFSS) method and the pair

approximation (PA), we consider representative pairs of sites in a self-consistent bath

of the average pairwise correlation. Preaveraging over the static disorder in one site of

each pair makes this half heterogeneous pair approximation (HHPA) efficient enough

to simulate systems of several species and calibrate rate constants. According to the

simulated kinetics, static disorder in the hole transfer steps suffices to reproduce the

stretched exponentials in the observed kinetics. The dominant hole scavengers are

found to be temperature-dependent: the methoxy anion at 80 K and the methanol

molecule at 180 K. Moreover, two distinct subpopulations of 5-coordinate titanium

(Ti5c) sites emerge, a high-activity group and a low-activity group, even though no

such division exists in the rate constants. Since the division is quite insensitive to the

details of static disorder, the emergence of the two groups might play a significant

role in a variety of photocatalytic processes on TiO2.
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2.1 Introduction

Methanol reforming is a chemical reaction that converts methanol and water into car-

bon dioxide and hydrogen gas, which has promising applications in fuel cells [68–71].

The reaction can be photocatalyzed on a TiO2 surface [72–74], where the first step

is the oxidation of methanol to formaldehyde [73]. As both a practical reaction and

a model system to emulate the decomposition of organic pollutants, the photocat-

alytic dissociation of methanol on the rutile TiO2(110) surface has been a subject

of extensive research in both experimental [75–78] and theoretical [79–82] studies.

Nonetheless, some aspects of the reaction mechanism remain enigmatic.

While it has been established that photogenerated holes play a central role in

methanol oxidation [83–85], the identity of the hole scavenger continues to be debated.

On the basis of density functional theory (DFT) and Bader charge analysis, it has

been proposed that the cleavage of the OH bond is thermally activated, and the

methoxy anion traps a hole to break the CH bond [79, 81]. Meanwhile, Migani

and Blancafort used spin-polarized DFT to show that an exciton can be localized

in the TiO2 lattice underneath a methanol molecule [80]. The hole can migrate up

to the methanol molecule in a proton-coupled electron transfer (PCET), whence the

methoxy radical can either reduce to a methoxy anion or proceed to a formaldehyde

radical anion. However, the precise role of photogenerated holes in the cleavage of

the OH bond continues to be questioned [82].

Another mystery, the fraction of undissociated methanol decays as a stretched

exponential of the irradiation time [75–77, 86], which is a signature of fractal kinetics

[15, 16]. Fractal kinetics is a term that encompasses a wide range of pathological be-

haviors that arise in heterogeneous systems, which might be intrinsic to the reaction

mechanism or due to the geometry of the interface [18]. Indeed, a couple of explana-

tions have been proposed on the origin of the stretched exponentials [76, 77, 86]. On

the one hand, methanol oxidation involves multiple, reversible steps [76, 79, 87]. Such

a reaction network can give rise to an overall kinetics that is nonexponential. On the

other hand, charge transport on the rutile TiO2(110) surface is disordered [12, 88]. As
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the reactants on the most active sites are consumed, the effective rate coefficient might

diminish over time. Feng et al. have measured the kinetics of methanol oxidation

at multiple surface coverages and temperatures [77], but there is not a mathematical

and mechanistic model that helps to support either of the explanations.

Indeed, we are not aware of attempts to answer these questions via kinetic mod-

eling. This could be attributed to a couple of challenges. The first challenge is static

disorder. For practical applications, the relevant surface is not the stoichiometric

TiO2, but rather the reduced TiO2−𝑥 [89]. The nonstoichiometry entails surface and

subsurface oxygen vacancies, which affect the electronic structure in their vicinity

and the chemistry at the surface [90–92]. There would be site-to-site variations in

the rate constants, and using a single-valued rate constant per elementary step might

not be sufficient to describe the disordered kinetics. The second challenge is dynamic

correlation. On the one hand, STM images show that the products of methanol oxi-

dation tend to remain next to each other [75, 77, 87]. The uncorrelated products of

probabilities, [CH3O−][H] and [CH2O·−][H], are going to underestimate the rate of the

reverse reaction. On the other hand, the diffusion of the formaldehyde at tempera-

tures & 215 K inhibit the reverse reaction [87, 93]. Hence, the relative positions of the

reactants and the products should be taken into account. In the chemical literature,

the effects of static disorder have been analyzed in the contexts of grafted single-atom

catalysts [19, 21, 23, 24], quantum dot solids [94], and organic light-emitting diodes

(OLED) [22], as well as dynamic correlation in the contexts of metal and metal oxide

surfaces [29, 35, 48]. To our knowledge, static disorder and dynamic correlation have

not been examined together in chemistry, though there have been attempts at related

problems in epidemiology [66] and network theory [67].

In this chapter, we propose a novel method to simulate the chemical kinetics

of methanol oxidation on TiO2. Combining the intuitions of the mean-field steady

state (MFSS) method [20, 22] and the pair approximation (PA) [48–51], we take

representative pairs of sites and place them in a self-consistent bath of the average

pairwise correlation. Then, we preverage over the static disorder in one site of each

pair, which gives a considerable reduction in the computational costs. This half
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heterogeneous pair approximation (HHPA) is efficient enough to simulate systems of

several species and calibrate rate constants. We demonstrate these capabilities using

the experimental data of Feng et al [77].

Comparison of mechanistic models points to an alternative route to thermal ac-

tivation that can break the OH bond. In fact, the identity of the dominant hole

scavenger is found to be temperature-dependent – the methoxy anion at 80 K and

the methanol molecule at 180 K. The simulated kinetics appear to be insensitive to

the details of charge transport inside the TiO2 lattice, and static disorder in the hole

transfer to the methanol molecule and the methoxy anion suffices to reproduce the

stretched exponentials in the observed kinetics. Remarkably, the static disorder gives

rise to bimodal distributions in the coverages and the rates, even though the rate

constants have a unimodal distribution. This implies that two groups of 5-coordinate

titanium (Ti5c) sites emerge with innate and disparate activities. Hence, there are

not only two pathways that are active at different temperatures, but also two groups

of Ti5c sites that have different activities. Since the division appears to be quite in-

sensitive to the type of static disorder and persist over a range of temperatures, the

emergence of the two groups might play a significant role in a variety of photocatalytic

processes on TiO2.

2.2 Theory

2.2.1 Mathematical Methods

A sure way to capture the effects of static disorder and dynamic correlation is kinetic

Monte Carlo (KMC) method [27, 30, 37]. However, the size of the lattice and the

number of trajectories that are required to converge the stochastic simulation often

make it impractical to calibrate rate constants using KMC. Besides, the desired out-

comes of chemical kinetics simulations are often ensemble average quantities, such as

surface coverages and reaction rates. Therefore, it makes sense to write the kinetic

equations in the occupation probabilities of 𝑛-site clusters (𝑛-site probabilities).
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The kinetic equations of one-site clusters are given by

𝑑[𝑋𝑖]
𝑑𝑡

= +
∑︁
𝐴

𝑘𝐴𝑖→𝑋𝑖
[𝐴𝑖] +

∑︁
𝑌 𝐴𝐵

∑︁
𝑗

𝑘𝐴𝑖𝐵𝑗→𝑋𝑖𝑌𝑗
[𝐴𝑖𝐵𝑗]

−
∑︁
𝐴

𝑘𝑋𝑖→𝐴𝑖
[𝑋𝑖]−

∑︁
𝑌 𝐴𝐵

∑︁
𝑗

𝑘𝑋𝑖𝑌𝑗→𝐴𝑖𝐵𝑗
[𝑋𝑖𝑌𝑗] (2.1)

where 𝑋𝑖 denotes species 𝑋 at site 𝑖; 𝑗 runs over the nearest neighbors of site 𝑖; and

𝑘𝐴𝑖𝐵𝑗→𝑋𝑖𝑌𝑗
is the rate constant of the elementary step, 𝐴+𝐵 → 𝑋 + 𝑌 , with species

𝐴 at site 𝑖 and species 𝐵 at site 𝑗, or zero if such step does not exist. For example, the

first term describes the unimolecular reaction of the 𝐴 to produce a 𝑋 at its position,

and the last term describes the bimolecular reaction of the 𝑋 and a neighboring 𝑌

to produce a 𝐴 and a 𝐵 at their respective positions. On a uniform surface, the sites

would have the same rate constants and occupation probabilities, so the indices could

be dropped. On a nonuniform surface, the indices are required to capture the effects

of static disorder.

Theise equations are not closed, since two-site probabilities are required to describe

bimolecular reactions. In general, the kinetic equations of 𝑛-site clusters depend on

the (𝑛+ 1)-site clusters. These 𝑛-site probabilities are special cases of moments, and

we need a moment closure to approximate the higher-order moments using what we

know about the lower-order moments. The simplest approximation is the mean-field

(MF) approximation, [𝑋𝑖𝑌𝑗] ≈ [𝑋𝑖][𝑌𝑗], which treats the occupation of neighboring

sites as independent, or uncorrelated.

To capture the effects of correlation, we need the kinetic equations of at least

two-site clusters

𝑑[𝑋𝑖𝑌𝑗]
𝑑𝑡

= +
∑︁
𝐵𝐶

𝑘𝐵𝑖𝐶𝑗→𝑋𝑖𝑌𝑗
[𝐵𝑖𝐶𝑗]

+
∑︁
𝑊𝐴𝐵

∑︁
ℎ

𝑘𝐴ℎ𝐵𝑖→𝑊ℎ𝑋𝑖
[𝐴ℎ𝐵𝑖𝑌𝑗] +

∑︁
𝐶𝐷𝑍

∑︁
𝑘

𝑘𝐶𝑗𝐷𝑘→𝑌𝑗𝑍𝑘
[𝑋𝑖𝐶𝑗𝐷𝑘]

−
∑︁
𝐵𝐶

𝑘𝑋𝑖𝑌𝑗→𝐵𝑖𝐶𝑗
[𝑋𝑖𝑌𝑗]

−
∑︁
𝑊𝐴𝐵

∑︁
ℎ

𝑘𝑊ℎ𝑋𝑖→𝐴ℎ𝐵𝑖
[𝑊ℎ𝑋𝑖𝑌𝑗]−

∑︁
𝐶𝐷𝑍

∑︁
𝑘

𝑘𝑌𝑗𝑍𝑘→𝐶𝑗𝐷𝑘
[𝑋𝑖𝑌𝑗𝑍𝑘] (2.2)
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where ℎ runs over the nearest neighbors of 𝑖 that are not 𝑗; and 𝑘 runs over the nearest

neighbors of 𝑗 that are not 𝑖. For example, the first term describes the reaction of

the 𝐵𝐶 pair to produce a 𝑋𝑌 pair at its position, and the last term describes the

reaction of the 𝑌 in the 𝑋𝑌 pair and a neighboring 𝑍 to produce a 𝐶 (making a 𝑋𝐶

pair) and a 𝐷 at their respective positions. We have treated unimolecular reactions

as special cases of bimolecular reactions where one of the reactants is a spectator.

Now, we need to approximate the three-site probabilities in terms of the two-site

probabilities. Using the definition of conditional probability, we can write

[𝑋𝑖𝑌𝑗𝑍𝑘] ≈
[𝑋𝑖𝑌𝑗][𝑌𝑗𝑍𝑘]

[𝑌𝑗]
(2.3)

Known as PA, this formula has been invented by independent workers in chemistry

[48], population biology [49, 50], and epidemiology [51].

Some readers might be more familiar with stochastic closures, such as the normal

[57], Poisson [58], and log-normal [59, 60] closures. However, stochastic closures are

derived using physical and mathematical arguments that are more relevant to homo-

geneous systems (solutions and colloids), where the moments are expected numbers of

molecules ∈ R, as opposed to heterogeneous systems (surfaces and solids), where the

moments are occupation probabilities of sites ∈ [0, 1]. Moreover, stochastic closures

are prone to instabilities and unphysical values even in their native systems [34]. PA

is robust once we assign an appropriate value to the removable discontinuity at zero.

Thus, we do not further consider stochastic closures.

Next, we turn our attention to static disorder. Equations 2.1 and 2.2 make explicit

treatments of the static disorder in the neighboring sites, so a large number of sites

should be sampled to converge the average over the static disorder. These quench

mean-field (QMF) approaches are useful in simulating quenched networks, such as

single-atom catalysts on amorphous supports [21, 23] and the spread of infectious

diseases [61–65]. In the present context, we expect that it would be more useful to

replace the neighboring sites with a bath that reflects the average environment. Then,

only a small number of representative sites would need to be treated in an explicit
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manner, and a weighted average over these sites could be used to update the bath in

a self-consistent manner. In other words, we want to replace

[𝐵𝑗]→ ⟨[𝐵]⟩ = 1
𝑀

𝑀∑︁
𝑖=1

[𝐵𝑖] =
∫︁
𝑘
[𝐵(𝑘)]𝜌(𝑘)𝑑𝑘 ≈

∑︁
𝑘

𝑤𝑘[𝐵𝑘] (2.4)

where 𝑀 is the number of sites on the lattice; 𝜌(𝑘) is the distribution of the rate

constants; and 𝑤𝑘 is a discretization of 𝜌(𝑘)𝑑𝑘. Thus, we transform a sum over the

sites of the lattice to an integral over the rate constants, which can be approximated

as a weighted sum over some representative sites.

To simplify the transformation, we need a few assumptions. First, we assume

that the static disorder can be represented as a one-dimensional distribution. If

the effects of the static disorder are embodied in the height of a barrier, then the

rates of the forward and the reverse reactions that cross this barrier are going to be

modulated together. If the effects of the static disorder are embodied in the stability

of a reactant, then the rate constants of the reactions that consume this reactant

are going to be modulated together. Second, we assume that the static disorder

is site-by-site. For unimolecular reactions, this means that the rate constants at

sites 𝑖 and 𝑗 are independent. For bimolecular reactions, we assume that one of the

reactants or the products dictates the reactivity, so the site that starts with the the

reactant or ends with the product determines the rate constant. Hence, we write

𝑘𝐴𝑖𝐵𝑗→𝑋𝑖𝑋𝑗
→ 𝑘𝐴𝑖𝐵→𝑋𝑖𝑌 or 𝑘𝐵𝑗𝐴→𝑌𝑗𝑋 .

Figure 2-1 gives graphical representations of the heterogeneous mean-field (HMF)

approximation and HHPA. The HMF equations are

𝑑[𝑋𝑖]
𝑑𝑡

= +
∑︁
𝐴

𝑘𝐴𝑖→𝑋𝑖
[𝐴𝑖] +

∑︁
𝑌 𝐴𝐵

𝑁𝑋𝑌 𝑘𝐴𝑖𝐵→𝑋𝑖𝑌 [𝐴𝑖]⟨[𝐵]⟩+
∑︁
𝑌 𝐴𝐵

𝑁𝑋𝑌 ⟨𝑘𝐵𝐴→𝑌 𝑋 [𝐵]⟩[𝐴𝑖]

−
∑︁
𝐴

𝑘𝑋𝑖→𝐴𝑖
[𝑋𝑖]−

∑︁
𝑌 𝐴𝐵

𝑁𝑋𝑌 𝑘𝑋𝑖𝑌→𝐴𝑖𝐵[𝑋𝑖]⟨[𝑌 ]⟩ −
∑︁
𝑌 𝐴𝐵

𝑁𝑋𝑌 ⟨𝑘𝑌 𝑋→𝐵𝐴[𝑌 ]⟩[𝑋𝑖]

(2.5)

where 𝑁𝑋𝑌 is the number of nearest neighbors. The subscripts in 𝑁𝑋𝑌 are required

to accommodate the anisotropy of the lattice, if any exists. In essence, we have taken
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Figure 2-1: Schematics of HMF and HHPA.

the neighbors of the main site and replaced them with the ensemble average site. The

mean-field steady state (MFSS) method can be obtained by setting the left hand side

of the HMF equations to zero and solving to obtain the steady state probabilities

[20, 22].

Terms of the form, ⟨𝑘𝐵𝐴→𝑌 𝑋 [𝐵]⟩, appear in the equations. These are not the

same as ⟨𝑘𝐵𝐴→𝑌 𝑋⟩⟨[𝐵]⟩. The average of the product combines the effects of the static

disorder on the rate constants and the effects of the rate constants on the occupation

probabilities to give the effective rate. However, the product of the averages erases

the dependence of the occupation probabilities on the rate constants.

As the MF part of its name indicates, HMF neglects the dynamic correlation of

the main site with the neighboring sites. It replaces the neighboring sites with the

ensemble average site that has no connection to the main site. Hence, the rates reflect

neither the unlikelihood of finding reactants next to each other nor the likelihood of

finding products next to each other due to the finite diffusivity of the adsorbates. To

recover the effects of dynamic correlation, we need to write the kinetic equations in

terms of higher-order clusters.

Naively, we might take the kinetic equation of two-site clusters and replace the
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neighboring site terms with conditional averages, such as

[𝐴𝑙𝐵𝑖]→ ⟨[𝐵𝑖𝐴]⟩ =
∑︁
𝑘

𝑤𝑘[𝐵𝑖𝐴𝑘] (2.6)

which gives the probability of finding species 𝐵 at site 𝑖 along with species 𝐴 at a

generic neighboring site. Similar methods have been successful in epidemiology [66]

and network theory [67]. Unfortunately, the same approach is unlikely to be useful

in chemical kinetics. The presence of two indices 𝑖 and 𝑗 in the main pair means

that the number of equations is quadratic. If 𝑀 sites with distinct rate constants

are required to describe the distribution of rate constants at the one-site level, then

𝑀(𝑀+1)/2 pairs are required at the two-site level. For a system of 𝑆 species, the full

heterogeneous pair approximation would contain 𝑆2𝑀(𝑀+1)/2 variables. This might

not be a problem in systems of two to three species, such as the susceptible-infected-

recovered (SIR) model [95] or the voter model [96]. However, chemists are often

interested in systems containing multiple reactants, intermediates, and products.

To reduce the computational costs, we take advantage of the assumption that the

static disorder is site-by-site. We preaverage over the static disorder in one of the main

sites and change the variables, [𝑋𝑖𝑌𝑗] → [𝑋𝑖𝑌 ]. Averaging over the static disorder

does not amount to erasing dynamic correlation. The variables, [𝑋𝑖𝑌 ], are conditional

averages in Equation 2.6, which consider the simultaneous occupation probabilities

of site 𝑖 and its generic neighbor. Hence, the effects of site 𝑖 on its neighboring sites

and vice versa are treated in an average sense. As a point of contrast, HMF reduces

to uniform MF on a uniform surface, whereas HHPA reduces to uniform PA.
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The HHPA equations are

𝑑[𝑋𝑖𝑌 ]
𝑑𝑡

= +
∑︁
𝐵𝐶

𝑘𝐵𝑖𝐶→𝑋𝑖𝑌 [𝐵𝑖𝐶]

+
∑︁
𝐵𝐶

⟨𝑘𝐶𝐵→𝑌 𝑋 [𝐶𝐵]⟩
⟨[𝐶𝐵]⟩ [𝐵𝑖𝐶]

+
∑︁
𝑊𝐴𝐵

𝑁𝑊𝑋𝑌 𝑘𝐵𝑖𝐴→𝑋𝑖𝑊
[𝐵𝑖𝐴][𝐵𝑖𝑌 ]

[𝐵𝑖]

+
∑︁
𝑊𝐴𝐵

𝑁𝑊𝑋𝑌
⟨𝑘𝐴𝐵→𝑊𝑋 [𝐴𝐵]⟩
⟨[𝐴𝐵]⟩

[𝐵𝑖𝐴][𝐵𝑖𝑌 ]
[𝐵𝑖]

+
∑︁
𝐶𝐷𝑍

𝑁𝑋𝑌 𝑍

⟨
𝑘𝐶𝐷→𝑌 𝑍

[𝐶𝑋][𝐶𝐷]
[𝐶]

⟩
[𝑋𝑖𝐶]
⟨[𝐶𝑋]⟩

+
∑︁
𝐶𝐷𝑍

𝑁𝑋𝑌 𝑍
⟨𝑘𝐷𝐶→𝑍𝑌 [𝐷𝐶]⟩
⟨[𝐷𝐶]⟩

⟨
[𝐶𝑋][𝐶𝐷]

[𝐶]

⟩
[𝑋𝑖𝐶]
⟨[𝐶𝑋]⟩

− (𝐴𝐵𝐶𝐷 ↔ 𝑊𝑋𝑌 𝑍) (2.7)

where 𝑁𝑊𝑋𝑌 and 𝑁𝑋𝑌 𝑍 are the numbers of nearest neighbors that are not one of

the main sites; and the notation (𝐴𝐵𝐶𝐷 ↔ 𝑊𝑋𝑌 𝑍) replicates the previous terms

with the roles of the reactants and products exchanged. Namely, we have written

down terms that produce an 𝑋𝑖𝑌 pair and gathered terms that consume an 𝑋𝑖𝑌 pair

in (𝐴𝐵𝐶𝐷 ↔ 𝑊𝑋𝑌 𝑍). In the first and third terms, the reactions are centered on

site 𝑖, so the rates are described using the explicit rate constants, such as 𝑘𝐵𝑖𝐶→𝑋𝑖𝑌 .

In the second and fourth terms, the reactions involve site 𝑖 but are centered on the

neighboring site, so the rates are described using the effective rate coefficients, such

as ⟨𝑘𝐴𝐵→𝑊𝑋 [𝐴𝐵]⟩/⟨[𝐴𝐵]⟩. The fifth and sixth terms are formulated to preserve the

equality, ⟨[𝑋𝑌 ]⟩ = ⟨[𝑌 𝑋]⟩, provided that the initial conditions satisfy it.

The assumption that the static disorder is site-by-site might break down in systems

where point defects are not the dominant type of defects, or if the rate of reaction

has intrinsic dependence on multiple sites. Even in systems where the site-by-site

assumption holds, the preaveraged neighbor might not be sufficient to capture the

effect of the neighboring sites on site 𝑖, if pairs with extreme values of rate constants

on both sites have an important role on the kinetics. However, the same weaknesses

also affect HMF. In Appendix A.1, we compare the performances of HMF and HHPA
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on a number of simple model systems, and HHPA gives qualitative improvements

over HMF in every case. Although PA is not satisfactory in systems with significant

long-range correlation, it can exhibit semiquantitative accuracy in systems with only

short-range correlation. Therefore, we expect HHPA to give a reasonable description

of methanol oxidation on TiO2.

We have implemented the above methods in a C code that computes the rates

and the Jacobian of a user-input reaction mechanism using a choice of uniform MF,

uniform PA, HMF, and HHPA. The code is available on GitHub (https://github.com/

changhae-kim/hmca).

2.2.2 Mechanistic Model

For the purposes of simulating methanol oxidation, the rutile TiO2(110) surface can

be regarded as a rectangular lattice with alternating rows of 5-coordinate titanium

sites (Ti5c) and bridging oxygen sites (Ob) [89, 97]. The nonstoichiometry of the

reduced TiO2−𝑥 implies that 9–10 % of the Ob sites are replaced with bridging oxygen

vacancies (Ov) [77]. Methanol can adsorb on one of the two positions: the Ti5c sites,

where molecular adsorption is favored, and the Ov sites, where dissociative adsorption

is favored [98–101]. The active sites in the photocatalytic dissociation of methanol

appear to be the Ti5c sites [75, 76], and Feng et al. only counted the adsorbates on

the Ti5c sites [77]. Therefore, we do not consider Ov sites in our model.

Figure 2-2 illustrates a mechanistic model of methanol oxidation. The model

includes most reactions that have been proposed to take place during the irradiation

of methanol on TiO2, along with their reverse reactions [78–81, 93]. However, we do

not consider the cross-coupling of methanol and formaldehyde, which has been shown

to be negligible at coverages . 0.15 monolayer (ML) [102].

Along the bottom of Figure 2-2, the steps in blue represent the cleavage of the

OH bond and the CH bond in the methanol molecule and the methoxy anion, re-

spectively. The reactions do not involve photogenerated holes. For these thermally

activated steps, a multitude of DFT studies have established the expected values of

the activation energies. The OH bond cleavage is endothermic by 0.01–0.08 eV, and
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Figure 2-2: Mechanistic model of methanol oxidation on TiO2. The expected values
of the activation energies are based on a number of DFT studies [78–81, 93].

both the forward and the reverse reactions should be accessible, with the forward

barrier of 0.17–0.32 eV and the reverse barrier of 0.03–0.25 eV [79–81]. In contrast,

the CH bond cleavage is much more endothermic, and only the reverse reaction might

be accessible, with the barrier of 0.54–0.97 eV [79, 81].

Along the top of Figure 2-2, the steps in red represent the cleavage of the OH bond

and the CH bond in the methanol “cation” and the methoxy radical, respectively.

Notice that the reactants have trapped a hole in some capacity. For these hole-

activated steps, the feasibilities and the activation energies are debated. Indeed, it

is uncertain whether the methanol molecule would trap a hole on itself. Given the

mechanistic resolution of chemical kinetics, our model does not distinguish between

a hole trapping at the methanol molecule and a hole trapping at a nearby position

in the TiO2 lattice. The reactant CH3OH+ might not be a methanol cation per se,

but a methanol molecule with an exciton or a hole in the TiO2 lattice underneath.

According to computational studies that managed to place an exciton [80] or a hole

[78] underneath the methanol molecule, the OH bond cleavage becomes exothermic,

and the forward barrier decreases to 0.09–0.11 eV. Meanwhile, there is no dispute

that the methoxy anion would trap a hole. Studies have found that the CH bond

cleavage should be almost barrierless [78, 80], or it might have a modest activation

energy of 0.21 eV [81].
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The reactants of the thermally activated steps and the hole-activated steps can

interchange via charge transfer, which are the vertical steps in Figure 2-2. Finally,

the formaldehyde can diffuse along the Ti5c rows with the activation energy ∼ 0.5 eV

[93], which prevents the recomposition of methanol [87].

According to the mechanistic model, the methanol molecule has a number of routes

to the formaldehyde radical anion. Since the cleavage of the CH bond in the methanol

anion should be inaccessible [79], we can dismiss the themally activated pathway:

CH3OH → CH3O− → CH2O·−. Bader charge analysis indicated that the methanol

molecule is unlikely to trap a hole [81, 82]. Shen and Henderson irradiated surfaces

covered in methanol and methoxy, respectively, and found that the photocatalytic

dissociation of methoxy is an order of magnitude faster than that of methanol at

100–120 K [103]. These results have motivated a pathway where the cleavage of the

OH bond is thermally activated and then the methoxy anion traps a hole to break

the CH bond: CH3OH→ CH3O− → CH3O· → CH2O·− [79, 81]. Meanwhile, Migani

and Blancafort found that an exciton can be localized in the TiO2 lattice underneath

a methanol molecule [80]. Using scanning tunneling microscopy (STM), Tan et al.

found that the direct injection of a hole into the TiO2 surface can initiate one-step

conversions of methanol to methoxy, methoxy to formaldehyde, and methanol to

formaldehyde [78]. These results have motivated an alternative pathway where the

hole mediates the cleavage of the OH bond and the CH bond: CH3OH→ CH3OH+ →

CH3O· → CH2O·− [78, 80]. However, Jin et al. have proposed that the holes might

only contribute vibrational energy in the cleavage of the OH bond [82].

In our model, the presence of CH3OH+ provides an alternative route to thermal

activation, where the cleavage of the OH bond proceeds with a different set of rate

constants. Again, CH3OH+ might be a methanol molecule with an exciton or a hole

trapped underneath. The actual charge transfer onto the methanol molecule might

be coupled to the OH bond cleavage. Even if the hole did not play a direct role in the

OH bond cleavage, the charge transfer should be immediate or concurrent if the hole

were just underneath the methanol molecule. Since the OH bond cleavage is expected

to be fast in any case, the kinetic analysis might not be able to distinguish these two
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cases. However, the hole-mediated cleavage of the OH bond is not reversible like the

thermally activated cleavage, and whether the hole enters the equation before or after

the OH bond cleavage makes a difference. Hence, we should be able to determine the

dynamical relevance of photogenerated holes in the cleavage of the OH bond.

2.2.3 Model Parameters

Feng et al. measured the kinetics of methanol oxidation at a number of surface cov-

erages between 0.01 ML and 0.11 ML and at the temperatures of 80 K and 180 K [77].

To calibrate the relevant parameters, we minimize the root mean square normalized

error (RMSNE) of the simulated kinetics. That is, the error at each point is nor-

malized to the uncertainty of the experimental data, which is a common practice in

regression.

We assume that the rate constants of the molecular steps obey the transition state

theory

𝑘𝑟(𝑇 ) = 𝑄𝑟
𝑘B𝑇

ℎ
𝑒−Δ𝐸‡

𝑟/𝑘B𝑇 (2.8)

where Δ𝐸‡
𝑟 is the activation energy and 𝑄𝑟 is the partition function. The expected

values of the activation energies are summarized in Figure 2-2. In principle, the

partition functions are temperature-dependent. However, we assume that they are

almost constant and require that their values are 10−2–102.

Meanwhile, we assume that the charge carrier dynamics take place at a faster

time scale than the molecular dynamics. This implies that the charge transfer steps

can be approximated as unimolecular reactions of the methanol and the methoxy

adsorbates, with an effective rate constant 𝑘𝑟 = 𝑘′
𝑟[ℎ+]. Since these effective rate

constants combine the effects of the charge carrier density and mobility, they might

not have a simple dependence on temperature. The mobility of the charge carriers

increases as the temperature increases, which in turn increases their recombination

[104]. Hence, we treat the effective rate constants of charge transfer at the two

temperature as independent parameters.

To describe the effects of static disorder, we apply a Boltzmann factor to the
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effective rate constants of hole transfer to the methanol molecule and the methoxy

anion

𝑘𝑖𝑟(𝑇 ) = 𝑘0
𝑟(𝑇 )𝑒−Δ𝐸𝑖/𝑘B𝑇 (2.9)

where Δ𝐸𝑖 represents the site-to-site variation in the trap energies. Indeed, we con-

jecture that the disparate abilities of sites to transfer a hole to the adsorbates arise

due to hole trapping and detrapping. Given the 3.03 eV band gap of the rutile TiO2

[105, 106], it is dubious whether the deep trap states in the middle of the band gap

can participate in the photochemistry, so we focus on the shallow trap states that

contribute to the band gap narrowing. Thus, we expect that Δ𝐸𝑖 would have a Pois-

son distribution, associated with the Urbach tail at the band edge of a disordered

semiconductor [107]

𝜌(Δ𝐸) ∝ 𝑒−Δ𝐸/𝐸U ,Δ𝐸 > 0 (2.10)

where 𝐸U is the Urbach energy that controls the amount of static disorder. Since the

static disorder affects the trap energies on the TiO2 side only, we do not apply the

Boltzmann factor in the back transfer of the hole to the lattice.

Overall, the mechanistic model has 27 parameters: 4 charge transfer rate constants

at 80 K; 4 charge transfer rate constants at 180 K; 9 activation energies; 9 partition

functions; and the Urbach energy.

One of the most undesirable outcomes in regression is overfitting. If a model is

given too many degrees of freedom, then it starts fitting to irrelevant information, such

as the noise in the experimental data. In a mechanistic model, the parameters have

an intuitive interpretation due to the topology of the model, so overfitting would

yield values that are inconsistent with the interpretation. Fortunately, our goal is

not to find unknown values in the dark. Our model has an extensive collection of

expected values, so it should not be difficult to detect signs of overfitting. It would

give substantial confidence in the mechanistic model if a fit were obtained with the

parameters in reasonable ranges.
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2.3 Results and Discussion

2.3.1 Simulated Kinetics

Figure 2-3: Time-dependent dissociation fractions in (a) MF, RMSNE = 0.781; (b)
PA, RMSNE = 0.795; (c) HMF, RMSNE = 0.542; and (d) HHPA, RMSNE = 0.589.

Figure 2-3a,b shows the simulated kinetics in uniform MF and PA, respectively.

RMSNEs are 0.781 in MF and 0.795 in PA, which means that the simulated kinetics

tend to be within a standard deviation of the experimental kinetics. However, a visual

inspection reveals a number of issues. In the short time, the simulated kinetics in

both MF and PA exhibit a transient at 180 K, where the dissociation fraction jumps,

switches to a concave growth, and then switches back to a convex growth. There is

no evidence of such behavior in the STM images or the time-dependent two-photon

photoemission (2PPE) spectra [75, 76, 86]. In the long time, the simulated kinetics in

MF reach a steady state, and the simulated kinetics in PA also reach a steady state
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at 180 K. Again, these are inconsistent with the observed kinetics, which slow down

but do not reach a steady state after hours of irradiation [75, 76, 86].

Figure 2-3c,d shows the simulated kinetics in HMF and HHPA, respectively. RM-

SNEs have decreased to 0.542 in HMF and 0.589 in HHPA, and the simulated kinetics

are now in good agreement with the experimental kinetics. In the short time, the

transient at 180 K is suppressed to a point that it is inconspicuous. In the long time,

the simulated kinetics slow down but do not reach a steady state in the simulation

time, as desired. The improvements can be rationalized as follows. Due to the static

disorder, there are sites with disparate rates of hole transfer. As the reactants on the

most active sites are consumed, more and more inactive sites come to dominate the

kinetics. Hence, the simulated kinetics in HMF and HHPA behave like a sum of mul-

tiple kinetics. On the one hand, there are the fast components that exhibit a rapid

growth in the short time, so the transient must be suppressed to avoid overshooting

the experimental kinetics. On the other hand, there are the slow components that

make up the tail in the long time.

Even though the MF methods attain RMSNEs that are somewhat smaller than

the PA methods, we emphasize that MF is not as faithful to the physical reality as

PA, since the products of methanol oxidation tend to remain next to each other. To

demonstrate that MF and PA simulate somewhat different realities, we entered the

parameters that were calibrated using the MF methods into the PA methods and vice

versa. In essence, entering the MF parameters into PA stretches the dynamics to the

right, and entering the PA parameters into MF shrinks the dynamics to the left. The

details can be found in Appendix A.2.

Comparing the simulated kinetics in the uniform and the heterogeneous methods,

we propose that static disorder might be required to reproduce the observed kinetics.

As discussed in Section 2.1, there have been a couple of explanations on the origin

of the stretched exponentials in the observed kinetics. One explanation was that

multiple, reversible steps give rise to an overall kinetics that is nonexponential, and

the other explanation was that static disorder in the rate constants gives rise to an

effective rate coefficient that diminishes over time. While it is true that the uniform
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methods predict nonexponential kinetics, they do not resemble the stretched expo-

nentials in the observed kinetics [75, 76, 86]. In particular, the short time behavior at

180 K containsa transient that is not observed in experiments. Meanwhile, assuming

a simple distribution of trap energies is sufficient to give a good fit to the experimental

kinetics and a suppression of the transient. Thus, the simulations seem to suggest

that the static disorder in the hole transfer gives rise to the stretched exponentials.

It is also noteworthy that the simulated kinetics appear to be insensitive to the

details of charge transport inside the TiO2 lattice. As discussed in Section 2.2.3, we

have assumed that the charge carrier dynamics take place at a faster time scale than

the molecular dynamics and treated the charge transfer steps as unimolecular reac-

tions of the methanol and the methoxy adsorbates with an effective rate constant.

Thus, the simulations are oblivious to what the charge carriers are doing inside the

TiO2 lattice, except that the photogenerated holes favor certain sites over others.

Furthermore, the static disorder in the charge transport is embodied in the Urbach

energy, which is a shared parameter across different surface coverages and temper-

atures. Feng et al. have proposed that the differences in the observed kinetics at

different surface coverages might be attributed to the adsorbates scattering the pho-

togenerated holes [77]. We do not find evidence of such sophisticated interactions.

Instead, the competitive inhibition due to the consumption of Ob sites appears to be

sufficient to capture the coverage-dependence.

Since the role of photogenerated holes in the cleavage of the OH bond is con-

troversial, we also considered a modified model where the methanol cation has been

removed. We provide the details in Appendix A.3 and discuss the key results here.

Using the modified model, we are unable to obtain RMSNE < 1 in uniform MF or PA,

and the short time behavior again contains the transient at 180 K. HMF and HHPA

also find higher RMSNEs of 0.910 and 0.981, respectively. As shown in Figure A-5c,d,

the primary source of error appears to be the short time behavior at 180 K. The sim-

ulated kinetics at 180 K exhibit significant divergence at different surface coverages,

whereas the experimental kinetics are almost on top of each other. Thus, including

an alternative route to the OH bond cleavage entails a significant improvement in the
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simulated kinetics, and the hole-activated cleavage of the OH bond appears to play

an important role in methanol oxidation.

2.3.2 Rates and Rate Constants

Figure 2-4: Time-averaged coverages and rates at (a) 80 K and (b) 180 K in HHPA.
The sizes of the boxes and the arrows relate to the magnitudes of the coverages and
the rates, respectively. The units of the coverages and the rates are ML and ML s−1,
respectively. The plus-minus values are the spreads in the coverages and the rates due
to the static disorder, not uncertainties. The colors indicate different distributions:
blue indicates a unimodal distribution, whereas orange, yellow, and green indicate
bimodal distributions with different weights. For details, refer to Figure 2-5.

Figure 2-4a,b summarize the time-averaged coverages (occupation probabilities)

and rates at 80 K and 180 K, respectively. These are rates and not rate constants.

Furthermore, we note that the plus-minus values indicate the spreads in the coverages
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and the rates due to the static disorder, not uncertainties.

The fastest steps at both temperatures are the thermally activated cleavage and

reformation of the OH bond. Since the interconversion is orders of magnitude faster

than any of the other steps, it gives rise to a quasi-equilibrium between the methanol

molecule and the methoxy anion. Of course, fast is relative, and the interconversion

is slow enough at 80 K to allow the methanol and the methoxy adsorbates to appear

as distinct species in STM images. Meanwhile, the interconversion takes place at a

monolayer per millisecond at 180 K. In fact, the transient in the simulated kinetics

might be attributed to the rapid equilibration.

The dominant pathways of the forward reaction involve a hole transfer to the

methoxy anion at 80 K and the methanol molecule at 180 K. In each case, the rates of

the subsequent steps are almost equal to the rate of the hole transfer, which implies

that the forward reaction almost always goes to completion once the hole transfer

takes place. Hence, the hole transfer to the methoxy anion at 80 K and the methanol

molecule at 180 K are the rate-limiting steps at the respective temperatures. In

particular, it follows that the methanol molecule is the dominant hole scavenger at

180 K. Even though the thermally activated cleavage of the OH bond is orders of

magnitude faster, the methoxy anion reverts to the methanol molecule, except in

a fraction of cases when the methoxy anion traps a hole. Thus, the hole-activated

cleavage of the OH bond, which is slower but takes the reaction to completion, has

the potential to determine the overall kinetics.

The dominant pathway of the reverse reaction is thermally activated at both

temperatures. Since the methoxy anion is in quasi-equilibrium with the methanol

molecule, the thermally activated reformation of the CH bond is the rate-limiting

step. Meanwhile, the diffusion of the formaldehyde is significant at 180 K, and it

appears to outcompete the reverse reaction.

Our identification of the dominant hole scavengers is so far consistent with the ex-

perimental results of Shen and Henderson [103]. On the one hand, their experiments

were conducted at 100–120 K only. On the other hand, Shen and Henderson con-

sidered surfaces covered in only one of methanol or methoxy, which gives a measure
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of the rate constants rather than the rates. As shown in Figure 2-4, the methanol

molecule is expected to be at least an order of magnitude more abundant than the

methoxy anion. Thus, an accurate comparison would require taking the relative abun-

dances into account. In fact, the reversibility of the thermally activated OH bond

cleavage appears to explain why coadsorbed oxygen was required to prepare methoxy

in the experiments [103, 108]. Thermal heating alone would not be effective at pro-

ducing high yields of methoxy adsorbates, since the methoxy anion would revert to

the methanol molecule in the absence of coadsorbates to harvest the hydrogen.

It is also important to note that the rate-limiting steps entail some ambiguities in

interpreting the mechanistic model. As mentioned earlier, almost every time a hole

transfer to the methanol molecule takes place, it is converted to the methoxy radical

and then the formaldehyde. This implies that the overall kinetics of the dissociation

fraction would be unaffected even if we replaced the two-step process (CH3OH+ℎ+ →

CH3OH+ → CH3O· + H+) with the one-step process (CH3OH + ℎ+ → CH3O· + H+).

In fact, the same can be said about the hole-activated cleavage of the CH bond

(CH3O− + ℎ+ → CH3O· → CH2O·− + H+). This is a well-known property of a rate-

limiting step: The final product is produced at the same rate as the rate-limiting

step, as if it were the final step. Hence, this kinetic analysis is unable to ascertain

whether the charge transfer and the proton transfer occur in a sequential or concerted

manner during the hole-activated cleavage of the OH and CH bonds.

To establish the upper and the lower bounds on the calibrated parameters, we

performed sensitivity analysis by perturbing each of the parameters and recording

the response of RMSNE. We provide the details in Appendix A.4 and discuss the key

results here. In the end, there are 9 parameters that have a well-defined optimum:

the activation energies and the partition functions of the rate-limiting steps and the

quasi-equilibrium steps, as well as the Urbach energy, which measures the amount

of static disorder. The fast steps that follow a rate-limiting step do not matter as

long as the rate constants are greater than the rate-limiting step, and the slow steps

that compete with a rate-limiting step or a fast step do not matter as long as the

rate constant is smaller than the relevant step. Thus, we can construct a compact
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model, where we set most of the rate constants to zero or a large value. Again, we

provide the details in Appendix A.5. The compact model gives RMSNEs on par with

the original model, and the calibrated parameters tend to be within a narrow range

of the parameter space, suggesting that the 9 parameters have an optimum not only

when perturbed one at a time, but also in the multidimensional parameter space.

Interestingly, the effective rate constant of the hole transfer to the methoxy anion

must be at least an order of magnitude smaller at 180 K than it is at 80 K, as shown

in Table A.1. The non-Arrhenius behavior is not an artifact of the mechanistic model

containing a back-transfer step. As discussed above, the rate constants of the back-

transfer steps can be set to zero with no consequence on RMSNE, so the back transfer

is not effective at counteracting the hole transfer. The non-Arrhenius behavior is also

not an artifact of the mechanistic model containing the methanol cation. As shown

in Table A.2, the modified model with no hole transfer to the methanol molecule also

predicts that the effective rate constant of the hole transfer to the methoxy anion is

orders of magnitude smaller at 180 K than it is at 80 K. Hence, the non-Arrhenius

behavior appears to be intrinsic to the physics of the hole transfer.

We can make sense of the non-Arrhenius behavior using the expression of the

effective rate constant

𝑘𝑟(𝑇 ) ∝ [ℎ+(𝑇 )]𝑒−Δ𝐸𝑟/𝑘B𝑇 (2.11)

where Δ𝐸𝑟 is the activation energy; and [ℎ+(𝑇 )] is the quasi-steady-state density

of photogenerated holes at temperature 𝑇 . As discussed in Section 2.2, the charge

carrier recombination increases as the temperature increases, so the hole density is a

decreasing function of the temperature. While the Boltzmann factor is an increas-

ing function of the temperature, it remains at ≈ 1 if the activation energy is small

enough. Indeed, computational studies have reported that it is easy to trap a hole

at the methoxy adsorbate, and the hole transfer to the methoxy anion is downhill

[78, 81]. Then, the hole transfer might have a small barrier. It is plausible that the

“effective” rate constant of the hole transfer to the methoxy anion can decrease as

the temperature increases.
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Furthermore, taking the ratios of the effective rate constants at two temperatures

gives

exp
[︂
(Δ𝐸I −Δ𝐸II)

(︂ 1
𝑘B𝑇1

− 1
𝑘B𝑇2

)︂]︂
= 𝑘I(𝑇1)/𝑘I(𝑇2)
𝑘II(𝑇1)/𝑘II(𝑇2)

(2.12)

Substituting I = [CH3OH → CH3OH+], II = [CH3O− → CH3O·], 𝑇1 = 80 K, and

𝑇2 = 180 K, we deduce that Δ𝐸CH3OH→CH3OH+ −Δ𝐸CH3O−→CH3O· & 0.2 eV. Inciden-

tally, this value coincides with the 𝐺𝑊 results of Jin et al., which identified 3.91 eV

and 3.70 eV as the excited states where the hole has a significant density on the

methanol and the methoxy adsorbates, respectively [82]. While this is not sufficient

evidence to conclude whether the methanol molecule can trap a hole as a methanol

cation, it is important to remember that chemical kinetics might not always proceed

according to the energetics. Per molecule, the hole transfer to the methanol molecule

is slower than the hole transfer to the methoxy anion at both temperatures. However,

the relative abundance of the methanol molecule and the slowdown of the hole trans-

fer to the methoxy anion appear to enable the methanol molecule to be the dominant

hole scavenger at 180 K.

2.3.3 Distributions of Coverages and Rates

In Section 2.3.2, we noted spreads in the coverages (occupation probabilities) and

the rates due to the static disorder. As discussed in Section 2.2.3, only the effective

rate constants of the hole transfer to the methanol molecule and the methoxy anion

were assumed to differ site to site. Since the static disorder is contained in the hole

transfer, the effects of the static disorder must be propagating throughout the reaction

network. We have used colors to indicate the types of observed distributions in Figure

2-4.

Since the trap energies had a unimodal distribution, one might expect the cover-

ages and the rates to also exhibit a unimodal dsitribution. Indeed, most of the cover-

ages and the rates (blue in Figure 2-4) exhibit a unimodal distribution, as shown in

Figure 2-5a. Remarkably, the coverages of the methanol molecule and the methoxy

anion at 80 K (orange in Figure 2-4a) exhibit a bimodal distribution, as shown in Fig-
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ure 2-5b. The sites with high and low coverages are divided into distinct groups, and

the two groups appear to contain similar fractions of sites. Moreover, the sites with

high and low coverages of the methanol molecule also have high and low coverages

of the methoxy anion, respectively, as shown in Figure 2-5c. The correlation of the

coverages might be attributed to the quasi-equilibrium of the methanol molecule and

the methoxy anion.

The coverages of the methanol molecule and the methoxy anion at 180 K (yellow

in Figure 2-4b) continue to exhibit a bimodal distribution, as shown in Figure 2-5d.

Sites with low coverages are a majority, and sites with high coverages are a minority.

The coverage of the formaldehyde at 180 K (green in Figure 2-4b) also exhibits a

bimodal distribution, as shown in Figure 2-5e. For the formaldehyde, the weights

are the opposite of the methanol molecule and the methoxy anion. Indeed, the sites

with high and low coverages of the formaldehyde have low and high coverages of the

methanol molecule, respectively, as shown in Figure 2-5f.

The bimodal distributions are not results of time-averaging. As shown in Figure

2-6a,b, the coverages of the methanol molecule and the methoxy anion exhibit bi-

modal distributions at each point in time regardless of the temperature. The case of

the formaldehyde at 180 K can be deceptive, since Figure 2-6c shows only a pixel-thin

curve. However, this is due to the narrow spread in the coverage of the formaldehyde

(see the 𝑥-scale of Figure 2-5e). At each point in time, the distribution resembles Fig-

ure 2-5e. We provide a complete collection of the time-averaged and time-dependent

distributions in Figures A-21–A-29. Furthermore, the corresponding coverages and

rates in the modified model and the compact model also exhibit bimodal distributions,

as shown in Figures A-30–A-49.

Effectively, two subpopulations of Ti5c sites have emerged on the TiO2 surface. On

the high-activity sites, the hole transfer to the methanol molecule and the methoxy

anion is rapid, so the reactants undergo rapid oxidation to the formaldehyde. On the

low-activity sites, the hole transfer is slow, so the methanol molecule and the methoxy

anion remain in quasi-equilibrium, with slow oxidation to the formaldehyde. Hence,

the high-activity sites end up with low coverages of the methanol molecule, and vice

69



Figure
2-6:

T
im

e-dependent
distributions

ofthe
coverages

and
tim

e-averaged
coverages

as
a

function
ofthe

trap
energy:

(a,d)
m

ethanolm
olecule

at
80K

;(b,e)
m

ethanolm
olecule

at
180K

;and
(c,f)

form
aldehyde

at
180K

.
T

he
dotted

curves
m

ark
the

coverages
ofthe

site
w

ith
Δ
𝐸
𝑖 =

0,or
𝑘
𝑖𝑟 =

𝑘
0𝑟 .

70



versa. The two groups of Ti5c sites are not distinct in a discrete sense. They represent

ranges on a continuum of rate constants, which might be attributed to continuous

variables, such as the distances and the orientations of nearby defects. When the

sites are not catalyzing a reaction, there might not be an obvious difference in the

coordination or the structure. Indeed, the variations in the trap energies are within a

few multiples of the Urbach energy ∼ 30 meV, as shown in Table A.1. Then, it makes

sense that the weight of the high-activity group increases at 180 K. A significant

fraction of sites that are inactive at 80 K (𝑘B𝑇 ∼ 6.9 meV) can turn active at 180 K

(𝑘B𝑇 ∼ 15.5 meV). At high enough temperatures, the low-activity group might be

unpopulated altogether.

The peculiar part is that there are so few sites in the transition zone. A continuous

change in the rate constants appears to give an abrupt change in the rates, akin to

a dynamical transition or a bifurcation in the reaction network. Since a significant

fraction of the sites have Δ𝐸𝑖 ∼ 𝑘B𝑇 , it is not a surprise that a distinct high-activity

group should emerge. In Figure 2-5, we have marked the expected coverage of a

site with Δ𝐸𝑖 = 0, or 𝑘𝑖𝑟 = 𝑘0
𝑟 , which coincides with the high-activity group, as

expected. Curiously, it follows that a wide range of sites with Δ𝐸𝑖 ≫ 𝑘B𝑇 are ending

up with similar coverages and give rise to the low-activity group. This is due to the

limits on the coverages. As shown in Figures 2-6d,e, sites with only a few Urbach

energies of trap energy are already so inactive that they retain the initial coverage of

the methanol molecule. Likewise, the diffusion of the formaldehyde at 180 K enables

some coverage of the formaldehyde even on the inactive sites, as shown in Figure 2-6f.

Thus, we expect that most types of static disorder with a long tail of trap energies

that extends into Δ𝐸𝑖 ≫ 𝑘B𝑇 would yield a distinct low-activity group.

To establish the robustness of the division, we examined the normal, Poisson

(𝑘 = 2), and hyperbolic secant distributions, in addition to the Poisson (𝑘 = 0)

distribution of trap energies. We provide the details in Appendix A.7. The key result

is that the division appears to be quite insensitive to the type of static disorder. Only

the normal distribution predicts a significant reduction of the division in all of the

coverages. However, the normal distribution evokes the deep trap states, which are
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unlikely to participate in the photochemistry, which leads us to favor the Poisson

distribution. In any case, the robustness of the division suggests that the emergence

of the high-activity and the low-activity groups might be a staple feature in a variety

of photocatalytic processes on TiO2.

2.4 Conclusion

We have described a novel method to simulate the chemical kinetics of methanol oxi-

dation on TiO2. Combining the intuitions of MFSS and PA, HHPA can describe the

effects of static disorder and dynamic correlation together. Furthermore, preaverag-

ing over the static disorder in one site of each pair makes HHPA efficient enough to

simulate systems of several species and calibrate rate constants.

The simulated kinetics indicate that the dominant hole scavengers are temperature-

dependent: the methoxy anion at 80 K and the methanol molecule at 180 K. Even

though the thermally activated cleavage of the OH bond is orders of magnitude faster,

the methoxy anion tends to revert to the methanol molecule before it traps a hole.

Thus, the hole-activated cleavage of the OH bond, which is slower but takes the

reaction to completion, determines the overall kinetics at 180 K. Meanwhile, static

disorder in the hole transfer steps appears to explain the stretched exponentials in

the observed kinetics. Remarkably, two groups of Ti5c sites emerge with innate and

disparate activities, even though no such division exists in the underlying rate con-

stants. Since the division appears to be quite insensitive to the type of static disorder

and persist over a range of temperatures, the emergence of two groups might play a

significant role in a variety of photocatalytic processes on TiO2.

Furthermore, it is worth noting the role of dynamic correlation. While dynamic

correlation did not appear to reduce the ability of HMF to reproduce the observed

kinetics, HMF might be doing so with incorrect values of the parameters. Entering

the parameters that were calibrated using the MF methods into the PA methods and

vice versa resulted in simulated kinetics with qualitative deviations. Although HHPA

can exhibit semiquantitative accuracy in systems with only short-range correlation,
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such as methanol oxidation on TiO2, its performance on a number of simple model

systems revealed that PA is not satisfactory in systems with significant long-range

correlation. In Chapter 3, we propose a scheme to overcome the weaknesses of simple

moment closures in systems with significant long-range correlation.

On the basis of these results, we propose a number of directions that require

attention in the future. Concerning TiO2 and methanol oxidation in particular, it

would be of both practical and theoretical interest to determine whether the high-

activity sites and the low-activity sites retain their activities when the surface is

cleaned and a new layer of adsorbates is deposited. Furthermore, there are few

systematic studies of the chemical kinetics over ranges of temperatures, coverages,

and defect densities that would help identify the mechanistic regimes that might

exist. Concerning chemical kinetics in general, it might be worthwhile to identify and

classify systems where a combination of static disorder and dynamic correlations has

nontrivial effects on chemical kinetics.
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Chapter 3

Machine Learning Dynamic

Correlation in Lattice

Lotka-Volterra Model

Lattice models are a useful tool to simulate the chemical kinetics of surface reactions.

Since it is expensive to propagate the probabilities of the entire lattice configurations,

it is practical to consider the occupation probabilities of a typical site or a cluster

of sites instead. This amounts to a moment closure approximation of the chemical

master equation. Unfortunately, simple moment closures, such as the mean-field

(MF) and the pair approximation (PA), exhibit weaknesses in systems with significant

long-range correlation. In this chapter, we show that machine learning (ML) can be

used to construct accurate moment closures in chemical kinetics, using the lattice

Lotka-Volterra model (LLVM) as a model system. We trained feedforward neural

networks (FFNNs) on kinetic Monte Carlo (KMC) results at select values of rate

constants and initial conditions. Given the same level of input as PA, the ML moment

closure (MLMC) gave accurate predictions of the instantaneous three-site occupation

probabilities. Solving the kinetic equations in conjunction with MLMC gave drastic

improvements in the simulated dynamics and descriptions of the dynamical regimes

throughout the parameter space. In this way, MLMC is a promising tool to interpolate

KMC simulations or construct pretrained closures that would enable researchers to
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extract useful insight at a fraction of the computational costs.

3.1 Introduction

Machine learning (ML) is an important tool in computational chemistry. On the one

hand, it has been used to accelerate the discovery of drugs and materials by deducing

the electronic properties of molecules [110–114], reactivities of organic compounds

[115–117], and secondary structures of proteins [118–120] using just the topologies

of the molecules. On the other hand, it has been used to improve simulations by

replacing the approximate right hand sides, such as density functionals [121, 122],

electron densities [123, 124], and force fields [125–128], with ML models. Meanwhile,

there have been a few applications of ML in chemical kinetics [36, 129, 130]. We

believe that ML might provide a way to improve the solution of the chemical master

equation (CME).

There is a duality in what various authors mean by CME. First, there are homo-

geneous systems where the state of the system is defined by the numbers of molecules

[30–34] and the positions of the molecules are not explicit variables. Second, there

are heterogeneous systems, where the state of the system is defined by the configu-

ration of a lattice [27, 35, 36]. Hence, not only the numbers of molecules, but also

their positions are explicit variables. In both cases, CME is a system of ordinary

differential equations (ODEs) that propagates the probabilities of all possible states

of the system, and the computational costs are exponential. Only, the homogeneous

case scales as the number of molecules raised to the number of species, whereas the

heterogeneous case scales as the number of species raised to the number of molecules.

In this thesis, we focus on heterogeneous systems. Nonetheless, the mathematical

commonalities imply that results that hold in heterogeneous systems might be also

meaningful in homogeneous systems and vice versa.

Since the shear size of the state space often makes it impractical to solve the

full CME, moment closure approximations have been considered an affordable ap-

proach to extract qualitative insight. The kinetic equations are written in terms of
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𝑛-species subsystems (homogeneous case) or 𝑛-site clusters (heterogeneous case), and

the higher-order moments, which describe the interactions of the 𝑛th order moments

with the rest of the system, are approximated using a moment closure. In homoge-

neous systems, the most popular closures are stochastic closures, such as the normal

[57, 58], Poisson [59], and log-normal closures [60]. Recently, Smadbeck and Kaznessis

proposed an alternative scheme that computes the higher-order moments and their

probability distribution by maximizing the information entropy [33]. In heterogeneous

systems, the most popular closures are the mean-field (MF) approximation and the

pair approximation (PA) [47–51]. There have been attempts to go to higher-order

moments, such as the triple approximation [54], the approximate master equations

[55, 56], and the cluster mean-field approximation [35]. In principle, moment closure

approximations become more accurate as higher-order moments are used as the basis.

However, an increase in the order is accompanied by a steep rise in the computational

costs.

Recently, Ernst et al. demonstrated that moment closures based on deep Boltz-

mann machines (DBMs) can obtain accurate dynamics of the Lotka-Volterra model

on the lattice [36]. In analogy to the empirical construction of density functionals, we

believe that ML could provide a breakthrough in overcoming the complexity-accuracy

trade-off of moment closure approximations, provided that it can be formulated in a

way that is intuitive and accessible to the chemical community.

In this chapter, we show that a simple ML architecture can be used to construct

an accurate moment closure in chemical kinetics. Our choice of feedforward neural

networks (FFNNs) has both theoretical and practical relevance. On the theoretical

side, FFNNs are the simplest neural networks. They are oblivious of time, nor do

they have memory of the previous inputs and outputs. Indeed, they are functions

that approximate the instantaneous values of the higher-order moments using the

instantaneous values of the lower-order moments. On the practical side, FFNNs are

fast to train and evaluate. They might scale better to larger numbers of species and

higher orders of moments. Moreover, FFNNs are already available in popular software

libraries, such as TensorFlow [131] and scikit-learn [132]. Hence, it is an architecture
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with which many chemists are already familiar.

The remainder of this chapter is organized as follows: We begin by reviewing

the origin of moment closure approximations. Then, we introduce the lattice Lotka-

Volterra model (LLVM) and use it as the model system to demonstrate the strengths

and weaknesses of MF and PA. Next, we train FFNNs to estimate the instantaneous

three-site occupation probabilities, using the results of kinetic Monte Carlo (KMC)

simulations at select values of rate constants and initial conditions. At the same level

of input as PA, the ML moment closure (MLMC) can reduce the absolute and relative

errors in the three-site probabilities by an order of magnitude. Furthermore, MLMC

gives drastic improvements in the simulated dynamics and improved descriptions of

the dynamical regimes throughout the parameter space of the model system.

3.2 Theory

3.2.1 Chemical Master Equation and Moment Closure

Consider a chemical reaction on a lattice. The molecules can adsorb on a vacant

site, desorb, diffuse to a neighboring site, or react with another molecule. Let 𝑝Ψ

denote the probability of finding the lattice in configuration Ψ. The chemical master

equation (CME) is given by

𝑑𝑝Ψ

𝑑𝑡
= +

∑︁
Φ
𝑘Φ→Ψ𝑝Φ −

∑︁
Φ
𝑘Ψ→Φ𝑝Ψ (3.1)

where 𝑘Ψ→Φ is the sum of the rate constants of the elementary steps, if any, that

would take a lattice in configuration Ψ to configuration Φ. Concrete examples of

these terms can be found in Appendix B.1. Assuming Markovian processes and an a

priori knowledge of the rate constants, CME gives an exact treatment of both static

disorder (site-to-site variations that are reflected in the rate constants, 𝑘Ψ→Φ) [20, 22]

and dynamic correlation (segregation and self-organization of reactants that manifest

on the explicit lattice configurations, Ψ) [15, 16, 18]. In the present investigation, we

assume no static disorder and consider dynamic correlation only. Unfortunately, the
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dimensionality of CME scales as 𝑆𝐿, where 𝑆 is the number of species and 𝐿 is the

number of sites on the lattice, making CME intractable in many systems of practical

relevance.

In princple, the kinetic Monto Carlo (KMC) [27, 30, 37] can recover the static

disorder and dynamic correlation. A stochastic simulation of the lattice amounts to

sampling a trajectory through the configuration space. By averaging over multiple

simulations, one can approach the full CME results. However, the computational

costs of the simulations can be formidable, especially if rapid equilibrium or diffusion

is involved [27, 37, 40].

Since the desired outcome in chemical kinetics is often an ensemble average, such

as the surface coverage or the reaction rate, we are motivated to rewrite the kinetic

equations in the occupation probabilities of 𝑛-site clusters (𝑛-site probabilities)

[𝑋] ≡ [𝑋𝑖] =
∑︁
Ψ
𝛿𝜓𝑖,𝑋𝑝Ψ (3.2)

[𝑋𝑌 ] ≡ [𝑋𝑖𝑌𝑗] =
∑︁
Ψ
𝛿𝜓𝑖,𝑋𝛿𝜓𝑗 ,𝑌 𝑝Ψ (3.3)

[𝑋𝑌 𝑍] ≡ [𝑋𝑖𝑌𝑗𝑍𝑘] =
∑︁
Ψ
𝛿𝜓𝑖,𝑋𝛿𝜓𝑗 ,𝑌 𝛿𝜓𝑘,𝑍𝑝Ψ (3.4)

where 𝑖, 𝑗, and 𝑘 are a string of adjacent sites on the lattice; and 𝛿𝜓𝑖,𝑋 = 1 if the

occupant of site 𝑖 is 𝜓𝑖 = 𝑋 and 0 otherwise. These 𝑛-site probabilities are special

cases of moments.

The kinetic equations of one-site clusters are given by

𝑑[𝑋]
𝑑𝑡

= +
∑︁
𝑅

𝑘𝑅→𝑋 [𝑅] +𝑁
∑︁
𝑌 𝑅𝑆

𝑘𝑅𝑆→𝑋𝑌 [𝑅𝑆]

−
∑︁
𝑅

𝑘𝑋→𝑅[𝑋]−𝑁
∑︁
𝑌 𝑅𝑆

𝑘𝑋𝑌→𝑅𝑆[𝑋𝑌 ] (3.5)

where 𝑘𝑅𝑆→𝑋𝑌 is the rate constant of the elementary step, 𝑅+𝑆 → 𝑋+𝑌 , if it exists;

and 𝑁 is the number of nearest neighbors. For example, the first term describes the

unimolecular reaction of the 𝑅 to produce an 𝑋 at its position, and the last term

describes the bimolecular reaction of the 𝑋 and a neighboring 𝑌 to produce an 𝑅
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and an 𝑆 at their respective positions.

Observe that the equations are not closed. Unless the elementary steps consist of

unimolecular reactions only, the equations of 𝑛-site clusters are going to depend on in-

formation about (𝑛+ 1)-site clusters. In order to create a closed system of equations,

we need a prescription to approximate the higher-order moments using only infor-

mation about the lower-order moments – hence, a moment closure approximation.

The simplest and the most popular closure is the mean-field (MF) approximation,

[𝑋𝑌 ] = [𝑋][𝑌 ], which neglects any correlation that might exist between the sites.

The next simplest closure, which incorporates some site-to-site correlation, is the

pair approximation (PA). Consider the kinetic equations of two-site clusters

𝑑[𝑋𝑌 ]
𝑑𝑡

= +
∑︁
𝑅𝑆

𝑘𝑅𝑆→𝑋𝑌 [𝑅𝑆]

+ (𝑁 − 1)
∑︁
𝑊𝑄𝑅

𝑘𝑄𝑅→𝑊𝑋 [𝑄𝑅𝑌 ] + (𝑁 − 1)
∑︁
𝑆𝑇𝑍

𝑘𝑆𝑇→𝑌 𝑍 [𝑋𝑆𝑇 ]

−
∑︁
𝑅𝑆

𝑘𝑋𝑌→𝑅𝑆[𝑋𝑌 ]

− (𝑁 − 1)
∑︁
𝑊𝑄𝑅

𝑘𝑊𝑋→𝑄𝑅[𝑊𝑋𝑌 ]− (𝑁 − 1)
∑︁
𝑆𝑇𝑍

𝑘𝑌 𝑍→𝑆𝑇 [𝑋𝑌 𝑍] (3.6)

For example, the first term describes the reaction of the 𝑅𝑆 pair to produce an 𝑋𝑌

pair in their positions, and the last term describes the reaction of the 𝑌 in the 𝑋𝑌

pair and a neighboring 𝑍 to produce an 𝑆 (making an 𝑋𝑆 pair) and a 𝑇 at their

respective positions. We have treated unimolecular reactions as a special case of

bimolecular reactions where one of the participants is a spectator.

With the two-site probabilities, [𝑋𝑌 ], as the variables, the kinetic equations now

depend on the three-site probabilities, [𝑋𝑌 𝑍]. PA estimates the three-site probabil-

ities using the definition of conditional probability

[𝑋𝑌 𝑍] = [𝑋𝑌 ][𝑌 𝑍]
[𝑌 ] (3.7)

Due to its simple rationale, PA has been invented many times by independent workers

in chemistry [47, 48], population biology [49, 50], and epidemiology [51].

80



In principle, the closed system of equations would become more accurate as higher-

order moments are used as the basis of the moment closure approximation. Formally,

one can interpret MF and PA as special cases of product approximations [52, 53],

so it should be possible to generalize PA to 𝑛-site probabilities. Examples of these

attempts include the triple approximation [54], the approximate master equations

[55, 56], and the cluster mean-field approximation [35]. However, the derivation and

the computation of the kinetic equations become challenging, as the geometries of

the higher-order clusters are complicated, and the number of moments grows with

the order as 𝑆𝑛.

A subset of the readers might be more familiar with stochastic closures, such as

the normal [57, 58], Poisson [59], and log-normal closures [60], which are often used

in homogeneous systems. The physical and mathematical arguments behind these

closures are quite different, since the moments in the homogeneous case are expected

numbers of molecules (∈ R), as opposed to occupation probabilities (∈ [0, 1]). In

short, stochastic closures assume that the numbers of molecules have a certin prob-

ability distribution. Applying stochastic closures to heterogeneous systems entails

contradictions: we are considering a probability distribution of probabilities, and the

distributions are defined on R, as opposed to [0, 1]. Although it can be carried out

with suitable adjustments, our experience indicates that stochastic closures encounter

instabilities and unphysical values in heterogeneous systems that exhibit a strong spa-

tial correlation, such as LLVM. PA is robust as long as the removable discontinuity

at zero is assigned an appropriate value. Thus, we focus on PA.

Nonetheless, it is worth noting that the equations of 𝑛th moments in homogeneous

systems are analogous to the equations of 𝑛-site clusters in heteogeneous systems.

Only, the number of nearest neighbors does not appear, and the ordering of species

in the moments does not matter in the homogeneous case. If ML can be used to

construct accurate moment closures in heterogeneous systems, then there is a chance

that a similar procedure could be used to construct accurate moment closures in

homogeneous systems. Schnoerr et al. have a pedagogial paper on moment closure

approximations in homogeneous systems [34]. Interested readers should refer to their

81



work.

3.2.2 Model System

The Lotka-Volterra model is a classic model system in which the activities of com-

peting components lead to the emergence of oscillations. Originally, it was devised to

describe autocatalytic chemical reactions [133], but its application has been extended

to biological systems [134–136], where it had another intuitive interpretation. Our

implementation of LLVM is given by

𝑂 + 𝐴
𝑘1−→ 𝐴+ 𝐴 (3.8)

𝐴+𝐵
𝑘2−→ 𝐵 +𝐵 (3.9)

𝐵
𝑘3−→ 𝑂 (3.10)

where one often interprets 𝑂 as the vacancy, 𝐴 as the prey, and 𝐵 as the predator.

The kinetic equations at the levels of one-site and two-site clusters can be found in

Appendix B.2. To our knowledge, there is no chemical reaction that follows this

mechanism per se. However, it can be regarded as a coarse-grain approximation. In

Appendix B.3, we discuss how the NO + CO reaction on the Pt(100)-(1× 1) surface

[3] might be coarse-grained on to LLVM.

Variations in LLVM have been a subject of interest in the physics community

[137–139]. They are known to display a number of features that are insensitive to

the implementation [140]. In particular, the collective activities of the prey and the

predator give rise to spatiotemporal patterns [141], along with density oscillations

[142] that average out in the thermodynamic limit [138, 139]. Some of the spatiotem-

poral patterns in our implementation are shown in Figure 3-1. It is interesting to see

traveling wave patterns emerge. First, 𝐴 grows into islands (Figure 3-1a,b). As the

islands of 𝐴 expand, 𝐵 begins to grow (Figure 3-1c) and then proceeds to overrun the

islands (Figure 3-1d,e). The cycle resets as 𝐵 gives way to 𝑂 (Figure 3-1f). We em-

phasize that the individual molecules are immobile in our implementation, but their

formation and consumption as a collective give rise to the apparent pursuit-evasion
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behavior.

Self-organization of reactants is not uncommon in surface reactions. Even the

benign 𝐴+ 𝐵 → 𝐴𝐵 ↑ model is known to result in monospecific islands of 𝐴 and 𝐵

[15, 16, 18], and numerous real-world examples can be found in heterogeneous catalysis

[1]. Indeed, the NO + CO/Pt(100) reaction is one of them. Similar to LLVM, the

NO + CO reaction gives rise to spatiotemporal patterns, and the dephasing of local

oscillations [3, 143] leads to the damping of global oscillations [144]. The types of

correlations in LLVM are quite relevant to chemical systems.

Figure 3-2: Time-dependent coverages in MF (dotted lines), PA (dashed lines), and
KMC (solid lines). (a) The rate constants were (𝑘1, 𝑘2, 𝑘3) = (0.4, 0.5, 0.2), and the
initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.7, 0.1, 0.2). (b) The rate constants and
the initial conditions were (0.2, 0.7, 0.1) and (0.2, 0.4, 0.4), respectively. Clearly, PA
provides significant but not satisfactory improvement over MF in both cases.

In Figure 3-2, we demonstrate the strengths and weaknesses of PA on LLVM.

Although PA (dashed lines) does give a noticeable improvement over MF (dotted

lines), it still looks too much like MF as opposed to KMC (solid lines). In the

oscillatory regime (Figure 3-2a), PA underestimates the amplitude and period. In

the nonoscillatory regime, where [𝐴] and [𝐵] go to zero (Figure 3-2b), PA can still

predict damped oscillations. Moreover, the steady-state coverages are mispredicted.

The source of the error is the long-range correlation. Because PA only knows about

the short-range (two-site) correlation, it is not able to anticipate the formation of

islands or traveling waves that span a large number of sites. That is, not without

information about the mechanism and the nature of the correlation built into the
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approximation.

3.2.3 Machine Learning Moment Closure

Figure 3-3: Self-crossings of the time-dependent one-site, two-site, and three-site
probabilities. The curve was obtained as an average over 20 KMC simulations on a
1000×1000 lattice. (a) On the 2D plot, the self-crossings on the 𝑥𝑦-plane are indicated
by crosses, and the coordinates and the standard deviations are provided on the upper
left. (b) On the 3D plot, the self-crossings on the 𝑥𝑦-plane are indicated by bold dots,
and the vertical dotted lines are visual aids. The rate constants were (𝑘1, 𝑘2, 𝑘3) =
(0.5, 0.3, 0.1), and the initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.2, 0.6, 0.2).

The goal of MLMC is a smarter closure that still takes low-order moments as

the input but uses mechanism-specific information to give a more accurate output.

However, what is the lowest order at which the moments can be expect to be predictive

of the correlation? For the case of LLVM, Figure 3-3 gives some insight. Since the

system is undergoing nonequilibrium dynamics, it is not possible in priciple to write

the 𝑛-site probabilities as functions of the 𝑘-site probabilities (𝑘 < 𝑛). Indeed, Figure

3-3a shows that it is not plausible to write the two-site probability, [𝐵𝐵], as a function

of the one-site probability, [𝐵]. Due to the oscillatory nature of the dynamics, the

system returns to the same value of [𝐵] multiple times, and it is clear that the

relationship between [𝐵] and [𝐵𝐵] is not one-to-one. Hence, there is no function such

that [𝐵𝐵] = 𝑓([𝐵]).

On the other hand, there are far fewer points where the system returns to the same
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values of [𝐵] and [𝐵𝐵] at the same time. These appear as self-crossings of the curve in

Figure 3-3a. Of course, there are still differences in the three-site probability, [𝐵𝐵𝐵],

each time the curve crosses itself, so it is not possible to write [𝐵𝐵𝐵] = 𝑓([𝐵], [𝐵𝐵])

in strict terms. However, the numbers on the upper left of Figure 3-3a and the

three-dimensional plot in Figure 3-3b indicate that the differences are small. In many

cases, they are on the same order of magnitude as the statistical noise in the KMC

simulations, and they can be negligible if the curve crosses itself with minimal time for

the correlation to evolve. Similar results were obtained using other initial conditions

and reference species (Figures B-1–B-3). Therefore, we conjecture that the three-site

probabilities can be written to a good approximation as functions of the two-site

probabilities. A viable ML model of the three-site probabilities could be constructed

using no more than the two-site probabilities as the input.

3.2.4 Computational Details

The stochastic simulations were performed using rejection-free KMC [27, 37] with

periodic boundary conditions. Unless otherwise mentioned, the KMC coverages in

the figures were obtained as averages over ten simulations on a 500×500 lattice. The

kinetic equations were integrated using the variable coefficient multistep backward

differentiation formula (BDF) method [145–147] as implemented in the GNU Scientific

Library 2.5 [148]. Unless otherwise mentioned, the equations were integrated using

relative and absolute tolerances of 10−5 and 10−10, respectively.

For the training data, we used the outcomes of KMC simulations at select values

of rate constants and initial conditions. We ran the simulation only once at each com-

bination of parameters. First, the the initial conditions were fixed at ([𝑂], [𝐴], [𝐵]) =

(0.4, 0.3, 0.3), and the rate constants were varied in 𝑘1, 𝑘2, 𝑘3 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

The simulations were performed on a 200× 200 lattice. At intervals of 0.1 unit time

up to 200.0 unit time, we sampled the lattice configurations and counted the two- and

three-site clusters, considering the symmetries, [𝑋𝑌 ] = [𝑌 𝑋] and [𝑋𝑌 𝑍] = [𝑍𝑌 𝑋].

Then, we chose seven combinations of rate constants that gave distinct dynamics,

as shown in Table B.1. For each combination, the initial conditions were varied in
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[𝑂], [𝐴], [𝐵] ∈ {0.1, 0.2, ..., 0.9} with the constraint [𝑂] + [𝐴] + [𝐵] = 1.0. This time,

the simulations were performed on a 500 × 500 lattice, and the configurations were

sampled at intervals of 0.1 unit time up to 500.0 unit time. The 125 + 7× 36 = 377

simulations yielded a total of 1 171 229 data points.

We found it useful to apply a log transform 𝑦′ = log 𝑦 to both the two-site probabil-

ities, [𝑋𝑌 ], and the three-site probabilities, [𝑋𝑌 𝑍], so that the ML models minimize

the relative error, as opposed to the absolute error. Bounding the relative error en-

sures that the reaction rates and hence the dynamics would remain accurate when

one or more of the probabilities are small. In applying the log transform, we took

the data points containing zero-valued two-site probabilities and made three copies

where the zero-valued two-site probabilities have been replaced with small values

𝛿 = 10−𝑝

2 · 5002 (3.11)

where 𝑝 = 1, 2, and 3, respectively. The denominator, 2 · 5002, is the total number of

two-site clusters on a 500×500 lattice, so the small values correspond to 1/10, 1/100,

and 1/1000 of the smallest nonzero two-site probability that can be represented on the

lattice. We removed the original zero-containing data points and inserted the modified

data points. Meanwhile, the zero-valued three-site probabilities were replaced with

PA estimates, using the nonzero two-site probabilities and the small values put in

place of the zero-valued two-site probabilities. Even though the replacement might

reduce the accuracy of the ML models in themselves, we found that it improves the

robustness of the chemical kinetic simulations, as one or more of the probabilities

approach zero. The treatment of the zeros increased the number of data points to

1 232 155. Finally, we standardized the input and output data with the mean 𝜇 = 0

and standard deviation 𝜎 = 1.

The ML models were constructed and trained using TensorFlow 1.13 [131]. We

trained a separate FFNN for each of the six three-site probabilities that appear in

the kinetic equations. The FFNNs shared a simple architecture: 6 → 100 → 100 →

75 → 50 → 25 → 12 → 1 units on each layer, which were fully connected and had
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a rectified linear unit (ReLU) activation, except the linear input and output. As a

means of regularization, the data were shuffled and split into six sets, one of which

was set aside as the test set, and the other five sets were utilized in a fivefold cross-

validation (CV). At each cycle of the CV, a FFNN was trained by stochastic gradient

descent (SGD) on the mean squared error (in the log space) via the Adam optimizer

[149]. The SGD used a batch size of 10 000 and stopped at 150 iterations. At the

end of the cycles, the FFNN that yielded the smallest loss on the test set was chosen

as the final model. In addition to the CV, no further regularization methods were

employed.

3.3 Results and Discussion

As detailed in Section 3.2.4, we trained FFNNs to predict the three-site probabilities

in terms of the distinct two-site probabilities

[𝑋𝑌 𝑍] = 𝑓([𝑂𝑂], [𝑂𝐴], [𝑂𝐵], [𝐴𝐴], [𝐴𝐵], [𝐵𝐵]). (3.12)

Figure 3-4 demonstrates the accuracy of MLMC. Based on the spreads of the training

sets and the test set, there does not appear to have been serious over-fitting. Moreover,

there are qualitative improvements compared to PA (Figure 3-5). Not only is the off-

diagonal spread of the data points narrower in general, but also the spread is narrower

towards the smaller values in particular. This means that the absolute error decreased

along with the predicted quantities. Hence, MLMC has bounded the relative error,

as desired. For a quantitative evaluation, we computed two types of root mean-

squared-error (RMSE) on the test set: the root-mean-squared absolute error and the

root-mean-squared relative error. The values are shown on the upper left of Figures

3-4a-f and 3-5a-f. Indeed, MLMC gives an order-of-magnitude improvement over PA

in both criteria.

Remarkably, the kinetic equations (Equation 3.6) employing MLMC can be inte-

grated using a standard ODE solver [145–148]. The numerical integrability is non-
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trivial in a number of ways. Even though our FFNNs should be continuous functions,

there are a number of pathological properties that can make numerical integration dif-

ficult, such as wild oscillations and jaggedness. Moreover, while the FFNNs have been

encoded with the symmetries, [𝑋𝑌 ] = [𝑌 𝑋] and [𝑋𝑌 𝑍] = [𝑍𝑌 𝑋], they have not

been encoded with the laws of probability, such as the equality, ∑︀𝑍 [𝑋𝑌 𝑍] = [𝑋𝑌 ],

and the inequality, [𝑋𝑌 𝑍] ≤ [𝑋𝑌 ]. Indeed, numerical integration can be problematic

if the inequality is violated, because overestimation of the three-site probabilities and

hence the reaction rates can cause the two-site probabilities to overshoot zero and

take negative values. The replacement of zero-valued probabilities in the training

data with PA estimates helps mitigate the problem by guiding the FFNNs to go to

zero as the probabilities go to zero.

Here, we note that it was our choice of methodology not to encode the laws

of probability in the ML models. There are a variety of ways to impose equality

and inequality constraints on neural networks [150, 151]. Employing some of these

methods might be the topic of future investigation.

Figure 3-6 shows some of the dynamics that were obtained using MLMC. Ad-

ditional examples are shown in Figure B-6. Overall, MLMC gives qualitative im-

provements over PA. In the oscillatory regime, MLMC gives accurate predictions of

the amplitude and period (Figures 3-6a and B-6a), though it can underestimate the

damping (Figure B-6b). The transition to the nonoscillatory regime also appears to

be predicted with good accuracy (Figures 3-6b and B-6c,d). A challenging situation

is when one or both of [𝐴] and [𝐵] are near zero. The minority species has a chance to

recover or vanish altogether. In the recovering case, KMC has difficulties converging

on the dynamics, because the dynamics hinges on a small number of seed molecules.

Since the accuracy of MLMC is limited by KMC, MLMC also gives erratic dynamics

(Figure 3-6c). Nonetheless, it is an improvement over the PA prediction of periodic

oscillations. In the vanishing case, MLMC can capture the depletion of a species

(Figures 3-6d and B-6e), but sometimes it predicts fictitious recovery with erratic

oscillations (Figure B-6f). We suspect that the replacement of zero-valued probabil-

ities in the training data with PA estimates might be contributing to the fictitious
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Figure 3-6: Time-dependent coverages in PA (dashed lines), ML (dashed-dotted
lines), and KMC (solid lines). (a) The rate constants were (𝑘1, 𝑘2, 𝑘3) = (0.5, 0.6, 0.2),
and the initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.8, 0.1, 0.1). (b) The rate constants
and the initial conditions were (0.2, 0.3, 0.4) and (0.8, 0.1, 0.1), respectively. (c) The
rate constants and the initial conditions were (0.8, 0.4, 0.1) and (0.2, 0.1, 0.7), re-
spectively. (d) The rate constants and the initial conditions were (0.2, 0.7, 0.1) and
(0.2, 0.4, 0.4), respectively. In general, MLMC gives both qualitative and quantitative
improvements over PA.
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dynamics. Hence, there might be some trade-off between accuracy and robustness in

our treatment of the zero-valued probabilities.

Figure 3-7: Contour maps of the nonlinear oscillation amplitudes in (a) MF, (b) PA,
(c) ML, and (d) KMC. Given the nonlinear oscillation of the coverages, the amplitude
was defined as the average crest-trough and trough-crest separation over the first two
cycles (or three if resolvable). The rate constants were normalized to 𝑘1 = 1.0, and
the initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.5, 0.3, 0.2).

For a comprehensive overview of the method performances, we conducted a sys-

tematic survey of the rate constant space by fixing one of the rate constants (𝑘1 = 1.0)

and varying the remaining rate constants (𝑘2, 𝑘3 ∈ [0.1, 10.0]). Figures 3-7, B-7, and

B-8 map the nonlinear oscillation amplitudes, frequencies, and damping ratios, re-

spectively. Due to the time-consuming nature of KMC simulations, the plots of the

KMC data are sparser than the others. Indeed, the 500 × 500 lattice simulations to

create Figure 3-7d took 5 h per simulation. To make the plot at the same resolution

as the other methods, KMC would have taken 50 000 h of CPU time, disregarding
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repetitions to average out stochastic noise. Using MLMC, we could complete the

task in 600 h of central processing unit (CPU) time: 500 h of KMC to prepare the

data, 60 h of training, and 40 h of MLMC simulation.

Again, MLMC (Figure 3-7c) has qualitative resemblance to KMC (Figure 3-7d),

whereas PA (Figure 3-7b) has more in common with MF (Figure 3-7a). MLMC

predicts the accurate position of the lower boundary on the oscillatory regime (𝑘2 &

𝑘3) and an approximate position of the upper boundary (𝑘2 . 5𝑘3). Note a triangular

region on the center left, where MLMC predicts oscillations in contrast to KMC. The

dynamics in this region corresponds to the fictitious recovery discussed earlier (Figure

B-6f). Because the fictitious oscillations are slow and sustained, the triangular region

is almost invisible in the frequency plot (Figure B-7) and highlighted in the damping

ratio plot (Figure B-8). We expect that more training data in that part of the

parameter space would have mitigated the erroneous dynamics.

We emphasize that MLMC has not been trained to predict the dynamics. The

FFNNs were optimized to predict the instantaneous three-site probabilities using the

instantaneous two-site probabilities. On the one hand, it is not surprising that ac-

curate estimates of the three-site probabilities could improve the dynamics. On the

other hand, it is not obvious that using the best estimates of the three-site probabili-

ties at each instant would yield the best estimate of the overall dynamics. MLMC has

conceptual similarities to proposals of ML differential equations, where a ML model

is trained on time-dependent data to extract the right hand side of the underlying

equation [152–154]. The kinetic equations in terms of moments can be regarded as

a special case, where the linear terms are known and the nonlinear terms have well

known properties. In the future, it would be interesting to investigate training the

FFNNs to output values that yield the best estimate of the dynamics, rather than

the best estimate of instantaneous values.

Even though MLMC needs KMC data to be trained, we have shown that MLMC

can be applied to rate constants and initial conditions to which it has not been ex-

posed. The internal transferability suggests two practical applications of MLMC. In

the short term, MLMC could be used to interpolate KMC simulations. Often, one
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needs to run numerous simulations in a small region of the parameter space in order

to obtain a phase diagram, locate a critical point, or fit rate constants. Considerable

savings in computational costs can result if a select subset of the simulations were per-

formed using KMC, and the gaps were filled using MLMC. In the long term, one can

imagine pretrained closures that are aimed at classes of reaction mechanisms. Similar

to the density functional theory (DFT), pretrained closures can help researchers ex-

tract useful insight about typical systems of interest at a fraction of the computational

cost of KMC.

Of course, the application of MLMC to realistic models of chemical systems must

surmount a couple of challenges. An intrinsic weakness of MLMC is that its accuracy

depends on the quantity and quality of the training data. The noise in the KMC

data can reduce the accuracy of MLMC, unless multiple simulations or large lattices

are used to average out the stochastic fluctuations. In this work, the noise was

problematic when the probabilities were near zero. The problem is expected to be

more severe in realistic systems, where the rate constants can be on different orders

of magnitude. On the one hand, the disparate time scales can slow down the KMC

simulations, making it impractical to run multiple simulations or use large lattices.

On the other hand, many of the probabilities are going to be comparable to or smaller

than the inverse of the lattice size (the maximum precision of a KMC simulation).

Indeed, another weakness of MLMC is our treatment of the vanishing probabilities.

We have replaced the zero-valued three-site probabilities with PA estimates, which

makes a specific assumption about the nature of the correlation. In principle, it is

possible that the system retains a strong correlation even as the probabilities approach

zero, and our approach would mispredict the correlation and hence the dynamics. A

smarter scheme to handle the zero and near-zero probabilities might be required.

The previous point suggests a potential solution to the challenges. We conjec-

ture that the correlation in many systems might have a limiting behavior as the rate

constants grow more extreme. It is unlikely that a new type of correlation would be

created once the rate constants are more than an order of magnitude apart. This

might enable training the ML models on moderate combinations of rate constants,
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where the probabilities are nonzero and the KMC simulations are affordable, whence

we can extrapolate the correlation to more extreme combinations. In any case, we

believe that the potential applications of MLMC warrant further research and devel-

opment of the methodology.

3.4 Conclusion

We have explored the application of ML to derive moment closures in chemical kinet-

ics. As demonstrated by the case of LLVM, PA exhibits weaknesses in systems with

strong long-range correlation. In order to capture the long-range correlation at the

same level of input as PA, we trained FFNNs to predict the instantaneous three-site

probabilities using the instantaneous two-site probabilities. MLMC reduced the ab-

solute and the relative errors in the three-site probabilities by an order of magnitude.

Furthermore, MLMC gave drastic improvements in the simulated dynamics. The

amplitude and the period in the oscillatory regime could be predicted to good accu-

racies, and the dynamical transitions to the nonoscillatory regime could be located to

a reasonable precision. Based on these outcomes, we propose that MLMC could be

used to interpolate KMC simulations or construct pretrained closures to avoid KMC

in certain systems.

The next phase would be to demonstrate MLMC on realistic models of specific

chemical systems. Given the proposal of pretrained closures, it would be desirable to

construct MLMCs that are transferrable among similar reaction mechanisms. Further

development of the ML model design might be necessary, such as data transforms and

neural network architectures that enforce the laws of probability. Finally, it might be

interesting to incorporate the effects of static disorder. This would yield a method

that can capture both static disorder and dynamic correlation at a fraction of the

computational costs of KMC.
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Chapter 4

Conclusion

We summarize the key results of Part I and discuss future directions.

In Chapter 2, we developed and applied the half heterogeneous pair approxi-

mation (HHPA) to simulate the chemical kinetics of methanol oxidation on TiO2.

Combining the intuitions of the mean-field steady state (MFSS) method and the pair

approximation (PA), HHPA can describe the effects of static disorder and dynamic

correlation together. Furthermore, preaveraging over the static disorder in one site

of each pair makes HHPA efficient enough to simulate systems of several species and

calibrate rate constants. The simulated kinetics indicate that the identity of the dom-

inant hole scavengers is temperature-dependent: the methoxy anion at 80 K and the

methanol molecule at 180 K. Meanwhile, static disorder in the hole transfer steps ap-

pears to explain the stretched exponentials in the observed kinetics. In addition, two

groups of Ti5c sites emerge with innate and disparate activities, even though no such

division exists in the underlying rate constants. Since the division appears to be quite

insensitive to the type of static disorder and persist over a range of temperatures, the

emergence of two groups might play a significant role in a variety of photocatalytic

processes on TiO2.

In Chapter 3, we explored the application of machine learning (ML) to construct

accurate moment closures in chemical kinetics. To capture the long-range correlation

at the same level of input as PA, we trained feedforward neural networks (FFNNs)

to predict the instantaneous three-site probabilities using the instantaneous two-site
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probabilities. The ML moment closure (MLMC) reduced the absolute and the relative

errors in the three-site probabilities by an order of magnitude. Furthermore, MLMC

gave drastic improvements in the simulated dynamics. The amplitude and the period

in the oscillatory regime could be predicted to good accuracies, and the dynamical

transitions to the nonoscillatory regime could be located to a reasonable precision.

Based on these outcomes, we propose that MLMC could be used to interpolate kinetic

Monte Carlo (KMC) simulations or construct pretrained closures to avoid KMC in

certain systems.

There are a number of directions that require attention in the future. Concerning

the chemistry of surfaces and interfaces, it should be worthwhile to identify and

classify systems where static disorder and dynamic correlations have nontrivial effects

on the chemical kinetics. In particular, we want to understand the nature and the

origin of static disorder in these systems. Taking TiO2 as an example, it would be

of both practical and theoretical interest to determine whether the high-activity sites

and the low-activity sites retain their activities when the surface is cleaned and a new

layer of adsorbates is deposited. Furthermore, we need to investigate the chemical

kinetics over ranges of temperatures, coverages, and defect densities to identify the

mechanistic regimes that might exist.

Concerning the development of methods, we would like to demonstrate the bene-

fits of MLMC on realistic models of specific chemical systems. Given the proposal of

pretrained closures, it would be desirable to construct MLMCs that are transferrable

among similar reaction mechanisms. Further development of the ML model design

might be necessary, such as data transforms and neural network architectures that

enforce the laws of probability. Finally, it would be interesting to incorporate the

effects of static disorder into MLMC, whether in the framework of ML or in a math-

ematical method similar to HHPA. This would yield a method that can capture both

static disorder and dynamic correlation at a fraction of the computational cost of

KMC.
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Chapter 5

Introduction

In Part II of this thesis, we propose design principles to enhance the efficiencies of

organic light-emitting diodes (OLEDs). In this chapter, we develop the theoretical

background that is required to understand the works in Part II. We begin by introduc-

ing common types of OLEDs. In particular, we are interested in thermally activated

delayed fluorescence (TADF) and triplet-triplet annihilation (TTA), which are ap-

proaches to increase the efficiencies of OLEDs by converting the nonemissive triplet

excitons into emissive singlet excitons. Next, we describe the theoretical tools to cal-

culate the rates of transitions, such as fluorescence and intersystem crossing (ISC).

These rates provide insight into the dynamics of excitons inside organic semiconduc-

tors and suggest ways to improve their efficiencies. Finally, we give an introduction

to the Hartree-Fock (HF) method and the density functional theory (DFT), which

we use to calculate the electronic structures of molecules.

5.1 Organic Light-Emitting Diodes

Organic light-emitting diodes (OLEDs) are a promising solution in digital displays and

lighting applications. Since Tang and VanSlyke demonstrated the first OLED device

in 1987 [156], OLEDs have attracted widespread research and development (R&D)

efforts in both the academia and the industry. OLED displays exhibit supremacy in

energy efficiency, image quality, response time, and compactness over conventional
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technologies, such as liquid crystal displays (LCDs) [157–159]. In addition, OLEDs

are expected to help reduce global energy consumption [160, 161] and yield new

commercial products, such as transparent lighting panels and flexible displays [162,

163].

Figure 5-1: Schematics of (a) fluorescence, (b) phosphorescence, (c) TADF, and (d)
TTA.

A key issue in developing more efficient OLEDs is overcoming the disadvantageous

spin statistics. When electrons and holes are injected into the organic layer, they

recombine in one of the four possible spin states with equal likelihoods: one singlet

state and three triplet states. As shown in Figure 5-1a, the singlet excitons can emit

a photon and decay to the singlet ground state, whereas the radiative decay of the

triplet excitons is spin-forbidden, Most of the excitons are dissipated as heat, and

the external quantum efficiency (EQE) of fluorescent OLEDs cannot exceed 25 %. In

response, a number of approaches have been proposed to harvest the triplet excitons.

Baldo et al. introduced phosphorescent OLEDs (PhOLEDs), which activate the

otherwise forbidden transition between the triplet excited state and the singlet ground

state [164], as shown in Figure 5-1b. Using the strong spin-orbit coupling (SOC) in
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heavy metal complexes, the rate of phosphorescence can be brought into the useful

microsecond time scales [162, 165]. However, in spite of the commercial success of

red and green PhOLEDs, an efficient and stable blue PhOLED remains out of reach

[159, 166], and the rarity and the toxicity of heavy metals are also problematic.

Thermally activated delayed fluorescence (TADF) is an alternative approach that

involves converting the nonemissive triplet excitons into emissive singlet excitons

[167, 168]. In typical organic molecules, electron exchange stabilizes the first triplet

excited state (T1) with respect to the first singlet excited state (S1). However, if

the singlet-triplet (ST) energy gap is under a few 𝑘B𝑇 , thermal fluctuations can

drive the reverse intersystem crossing (RISC) of the T1 population into the S1 state,

as shown in Figure 5-1c. Modulation of the exchange energy is accomplished by

tuning the spatial overlap of the highest occupied molecular orbital (HOMO) and the

lowest unoccupied molecular orbital (LUMO). In the first metal-free TADF OLED,

Adachi et al. employed a donor-acceptor (DA) architecture to localize the HOMO

and the LUMO on orthogonal moieties, creating S1 and T1 states of charge transfer

(CT) character [169, 170]. Since then, a large number of TADF emitters have been

designed on the same principle [171–175],

Unfortunately, the spatial separation of the HOMO and the LUMO not only

reduces the ST gap, but also the TDM between the S1 state and the ground state

(S0), which reduces both the prompt and the delayed fluorescence rates. In addition,

according to El-Sayed’s rule [176], the identical CT characters of the S1 and the T1

states are expected to lead to a vanishing SOC and hence a vanishing RISC rate.

Therefore, the design principles of TADF OLEDs pose not only a practical problem,

but also a theoretical paradox that needs to be resolved.

As yet another alternative, triplet-triplet annihilation (TTA) provides an upcon-

version (UC) pathway that combines two low-energy triplet excitons to produce one

high-energy singlet exciton. When two triplets collide, the triplet-triplet (TT) pair

attains singlet, triplet, and quintet spin multiplicities in a 1:3:5 ratio, as shown in Fig-

ure 5-1d. However, the quintet states of organic molecules are too high in energy, so

the quintet TT pairs dissociate back into two triplets. Meanwhile, the higher triplet
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states decay to the T1 state. This gives 18 T1 → 1 S1 + 3 T1 + 5× 2 T1. Subtracting

triplets that appear on both sides of the equation, we get that the theoretical limit

on the efficiency of the TTA process is 20 % per triplet or 40 % per TT pair [177].

Interestingly, experimental studies have reported annihilators with TTA efficiencies

that appear to exceed this limit, such as 9,10-diphenylanthracene (DPA) [178] and

5,6,11,12-tetraphenyltetracene (rubrene) [179].

Since the low energy of the T1 excitons is conducive to the stability of the OLED

device, TTA is a promising solution in blue OLEDs. Furthermore, TTA is a promis-

ing approach to photon upconversion, with applications in photovoltaics [180–182],

photocatalysis [183–185], sensing [186, 187], bioimaging [188, 189], and controlled

drug release [190]. Identifying the mechanism of enhanced TTA efficiencies in DPA

and rubrene is imperative, as it could yield new design principles that impact a wide

range of applications.

5.2 Transition Rates

5.2.1 Fluorescence

The rate of fluorescence can be estimated using the Einstein coefficient [191]

𝑘F = 𝑒2𝜔10
2

2𝜋𝜀0𝑚𝑐3𝑓10 (5.1)

Even though its name suggests a classical origin, which is true in a historical sense, we

can also derive Equation 5.1 in the framework of first-order time-dependent pertur-

bation theory and quantization of the electromagnetic field. We provide the complete

derivation in Appendix C and summarize the key steps here.

We begin with the Hamiltonian of a particle in an electromagnetic field

𝐻̂ = 1
2𝑚 (p̂ + 𝑞A(r̂))2 + 𝑉 (r̂) (5.2)

where 𝑚 and 𝑞 are the mass and the charge of the particle, respectively; p̂ and r̂
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are the momentum and the position operators, respectively; 𝑉 is the (unperturbed)

potential energy; and A is the vector potential

A(r̂) =
∑︁
k,𝜖

(︃
~

2𝜀0𝜔k𝐿3

)︃1/2 (︁
𝑎̂k,𝜖𝑒

+𝑖k·r̂𝜖 + 𝑎̂†
k,𝜖𝑒

−𝑖k·r̂𝜖*
)︁

(5.3)

where k and 𝜖 are the wave number and the polarization vectors, respectively; 𝜔k is

the frequency corresponding to k; 𝐿 is the length of the cubic box enclosing the system

(for normalization); and 𝑎̂k,𝜖 and 𝑎̂†
k,𝜖 are the annihilation and the creation operators,

respectively. We divide the full Hamiltonian into the unperturbed Hamiltonian and

the first-order perturbation

𝐻̂(0) = 1
2𝑚 p̂2 + 𝑉 (r̂) (5.4)

𝐻̂(1) = 𝑞

𝑚
A(r̂) · p̂ (5.5)

To be precise, we are interested in emission, so we only need the part of the pertur-

bation corresponding to the creation of a photon

𝐻̂(+) =
∑︁
k,𝜖

𝑞

𝑚

(︃
~

2𝜀0𝜔k𝐿3

)︃1/2

𝑎̂†
k,𝜖𝑒

−𝑖k·r̂𝜖* · p̂ (5.6)

We calculate the transition amplitudes in the interaction picture

⟨S0, 𝑛k,𝜖 + 1|𝜓(𝑡)⟩

= 1
𝑖~

∫︁ 𝑡

0
⟨S0, 𝑛k,𝜖 + 1|𝐻(+)(𝑡′)|S1, 𝑛k,𝜖⟩ 𝑑𝑡′

= −𝑖𝑞𝜔10

(︂
𝑛k,𝜖 + 1

2𝜀0~𝜔k𝐿3

)︂1/2
𝜖* · ⟨S0|r̂|S1⟩

sin((𝜔k − 𝜔10)𝑡/2)
(𝜔k − 𝜔10)/2

𝑒𝑖(𝜔k−𝜔10)𝑡/2

(5.7)

where 𝜔10 = (𝐸S1 − 𝐸S0)/~; and ⟨S0|r̂|S1⟩ is the transition dipole moment (TDM).

Since we are interested in spontaneous emission, we assume 𝑛k,𝜖 = 0. Then, we obtain

the total S1 → S0 transition probability by summing over the wave number and the
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polarization vectors

| ⟨S0|𝜓(𝑡)⟩ |2 =
∑︁
k,𝜖
| ⟨S0, 𝑛k,𝜖 + 1|𝜓(𝑡)⟩ |2

= 𝑞2

2𝜀0~𝐿3

∑︁
k

𝜔10
2

𝜔k

(︃
sin((𝜔k − 𝜔10)𝑡/2)

(𝜔k − 𝜔10)/2

)︃2∑︁
𝜖

|𝜖* · ⟨S0|r̂|S1⟩ |2

= 𝑞2𝜔10
3

3𝜋𝜀0~𝑐3 | ⟨S0|r̂|S1⟩ |2𝑡 (5.8)

where 𝑐 is the speed of light. We rewrite this expression as

| ⟨S0|𝜓(𝑡)⟩ |2 = 𝑞2𝜔10
2

2𝜋𝜀0𝑚𝑐3𝑓10𝑡 (5.9)

using the definition of the oscillator strength

𝑓10 = 2𝑚𝜔10

3~ | ⟨S0|r̂|S1⟩ |2 (5.10)

As desired, the rate of emission is the same as the Einstein coefficient.

5.2.2 Intersystem Crossing

The rate of intersystem crossing (ISC) can be estimated using Fermi’s golden rule

𝑘𝑅→𝑃 = 2𝜋
~
|⟨𝑃 |𝐻̂SO|𝑅⟩|2𝜌𝑅→𝑃 (5.11)

where 𝑅 and 𝑃 are the initial (reactant) and the final (product) states, respectively;

⟨𝑃 |𝐻̂SO|𝑅⟩ is the spin-orbit coupling (SOC); and 𝜌𝑅→𝑃 is the Franck-Condon weighted

density of states (FCWD). One of the simplest ways to estimate the FCWD is Marcus

theory [192, 193]

𝜌𝑅→𝑃 = 1
(4𝜋𝜆M𝑘B𝑇 )1/2 exp

[︃
−(Δ𝐸𝑃−𝑅 + 𝜆M)2

4𝜆M𝑘B𝑇

]︃
(5.12)

108



The reorganization energy is defined as

𝜆M = 𝐸𝑃 (q𝑅)− 𝐸𝑃 (q𝑃 ) (5.13)

where 𝐸𝑃 (q𝑅) and 𝐸𝑃 (q𝑃 ) are the energies of the final state at the initial and the

final state minima, respectively.

A potent contribution that is missing in Marcus theory is the role of high-frequency,

quantum-mechanical vibrational modes. While tunneling is negligible in many sys-

tems, it might be the dominant contribution when the crossing point of the initial

and the final states is high enough in energy to prevent a classical passage. The

simplest way to capture the effects of high-frequency vibrational modes is Marcus-

Levich-Jortner (MLJ) theory [194]

𝜌𝑅→𝑃 = 1
(4𝜋𝜆M𝑘B𝑇 )1/2

∑︁
𝑛

𝑆𝑛

𝑛! 𝑒
−𝑆 exp

[︃
−(Δ𝐸𝑃−𝑅 + 𝜆M + 𝑛~𝜔)2

4𝜆M𝑘B𝑇

]︃
(5.14)

where 𝑆 is the effective Huang-Rhys factor and 𝜔 is the effective frequency. These

are obtained by mode-averaging

𝑆 =
∑︁
𝑣

𝑆𝑣 (5.15)

𝜔 = 1
𝑆

∑︁
𝑣

𝑆𝑣𝜔𝑣 (5.16)

For each vibrational mode 𝑣, the Huang-Rhys factor is defined as

𝑆𝑣 = 𝑘𝑣(𝑞𝑅,𝑣 − 𝑞𝑃,𝑣)2

2~𝜔𝑣
(5.17)

where 𝑘𝑣 is the spring constant of the mode; and 𝑞𝑅,𝑣 and 𝑞𝑃,𝑣 are the coordinates

of the initial and the final state minima along the mode, respectively. For simplicity,

we assume that the vibrational modes of the excited states are the same as the

ground state. Later on, we explain why it might not be meaingful to go beyond this

assumption. Using the harmonic approximation, we can rewrite 𝑞𝑃,𝑣 − 𝑞𝑅,𝑣 in terms
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of the gradients

𝑑𝐸𝑅
𝑑𝑞𝑣

= 𝑑𝐸𝑅
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣) + 𝑘𝑣(𝑞𝑣 − 𝑞0,𝑣) (5.18)

𝑑𝐸𝑃
𝑑𝑞𝑣

= 𝑑𝐸𝑃
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣) + 𝑘𝑣(𝑞𝑣 − 𝑞0,𝑣) (5.19)

where 𝑞0,𝑣 is some reference coordinate, which we choose to be the ground state

minimum. The Huang-Rhys factors become

𝑆𝑣 = 1
2𝑘𝑣~𝜔𝑣

(︃
𝑑𝐸𝑃
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣)−
𝑑𝐸𝑅
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣)
)︃2

(5.20)

In this manner, the rate in MLJ theory can be calculated with only a ground state

vibrational mode analysis on top of the requirements in Marcus theory.

Marcus and MLJ theories were formulated to describe the rates of CT reactions

[192–194]. Originally, Marcus theory was derived under the assumption that the

donor and the acceptor do not undergo structural changes, such as the Fe2+/Fe3+

redox reaction. Later, it was extended to describe the inner sphere reorganization

of the donor and the acceptor in addition to the outer sphere reorganization of the

solvent. Remarkably, Marcus and MLJ theories have been applied with some success

to describe nonradiative electronic transitions of a molecule [195–198]. In Marcus

theory, the potential energy surfaces (PESs) of the initial and the final states are ap-

proximated as identical harmonic oscillators whose minima are displaced by distance

𝑞𝑃 − 𝑞𝑅 and energy gap Δ𝐸𝑃−𝑅. Then, the crossing point of the initial and the final

state PESs is given by

Δ𝐸‡
𝑅→𝑃 = (Δ𝐸𝑃−𝑅 + 𝜆M)2

4𝜆M
(5.21)

Substituting Equations 5.12 and 5.21 into Equation 5.11, we verify that the rate

expression takes the familiar Arrhenius form

𝑘𝑅→𝑃 = 𝐴 exp
(︃
−Δ𝐸‡

𝑅→𝑃

𝑘B𝑇

)︃
(5.22)

For our purposes, Equation 5.21 embodies the most useful aspect of Marcus theory.
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Finding the minimum energy crossing points (MECPs) of electronic states is difficult.

It is much easier to optimize the geometries of the initial and the final states to obtain

Δ𝐸𝑃−𝑅 and 𝜆M.

There are a number of caveats in applying Marcus and MLJ theories to describe

electronic transitions. Marcus theory approximates the initial and the final state PESs

as identical harmonic oscillators. In general, PESs of molecules are not harmonic,

and the vibrational modes of the various electronic states are not going to be the

same. Moreover, Marcus and MLJ theories rely on the Condon approximation, which

assumes that the electronic couplings are independent of the nuclear coordinates.

As a result, the accuracies of Marcus and MLJ theories are going to depend on the

system [198], and the absolute values of the transition rates should be take with a

grain of salt. Nonetheless, Marcus and MLJ theories are useful to the extent that

they provide a qualitative insight into the photophysics of molecules.

5.3 Electronic Structure

5.3.1 Wave Function Methods

The starting point of electronic structure theory is the time-independent Schrödinger

equation

𝐻̂Ψ = 𝐸Ψ (5.23)

where Ψ is the wave function, 𝐸 is the total energy, and 𝐻̂ is the Hamiltonian

𝐻̂ =−
∑︁
𝐼

~2

2𝑀𝐼

∇𝐼
2 −

∑︁
𝑖

~2

2𝑚∇𝑖
2

+
∑︁
𝐼<𝐽

𝑍𝐼𝑍𝐽𝑒
2

4𝜋𝜀0|R𝐼 −R𝐽 |
−
∑︁
𝐼𝑖

𝑍𝐼𝑒
2

4𝜋𝜀0|R𝐼 − r𝑖|
+
∑︁
𝑖<𝑗

𝑒2

4𝜋𝜀0|r𝑖 − r𝑗|
(5.24)

where 𝑖 and 𝑗 run over the electrons; and 𝐼 and 𝐽 run over the nuclei. In the order

of their appearance, the terms in the Hamiltonain represent the kinetic energy of the

nuclei, the kinetic energy of the electrons, the nucleus-nucleus repulsion, the nucleus-

electron attraction, and the electron-electron repulsion.
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Since the nuclei are much heavier and slower than the electrons, it is common to

make the Born-Oppenheimer approximation [199], which assumes that the motions of

the nuclei and the electrons are separable. Then, we can fix the nuclear coordinates,

and the problem reduces to solving the electronic Hamiltonian

𝐻̂el = −
∑︁
𝑖

~2

2𝑚∇𝑖
2 −

∑︁
𝐼𝑖

𝑍𝐼𝑒
2

4𝜋𝜀0|R𝐼 − r𝑖|
+
∑︁
𝑖<𝑗

𝑒2

4𝜋𝜀0|r𝑖 − r𝑗|
(5.25)

where the nuclear coordinates enter as parameters. Assuming that the wave function

is normalized, the electronic energy can be found by

𝐸el =
∫︁

Ψ†(r𝑛)𝐻̂elΨ(r𝑛)𝑑r𝑛 (5.26)

and the total energy is given by

𝐸total = 𝐸el +
∑︁
𝐼<𝐽

𝑍𝐼𝑍𝐽𝑒
2

4𝜋𝜀0|R𝐼 −R𝐽 |
(5.27)

From the perspective of nuclear motion, this “total” energy is the potential energy as

a function of the nuclear coordinates, which is the starting point of ab initio molecular

dynamics (AIMD) [200].

In principle, the 𝑛-electron wave function that solves the electronic Hamiltonian

(Equation 5.25) is a generic function of the 3𝑛 electronic coordinates. In practice, this

is too complicated to solve, so we try to approximate the 𝑛-electron wave function

Ψ with a simpler function Φ. Requiring that Φ is normalized, we can optimize the

parameters of Φ in accordance with the variational principle

∫︁
Φ†(r𝑛)𝐻̂elΦ(r𝑛)𝑑r𝑛 ≥ 𝐸0 (5.28)

where 𝐸0 is the exact ground state energy.

The simplest approximation is the Hartree-Fock (HF) method. In essence, we want

to assume that the 𝑛-electron wave function is separable. However, we need to take

into account the Fermionic nature of electrons. The wave function is antisymmetric
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with respect to the interchange of two electrons

Ψ(r1, ..., r𝑖, ..., r𝑗, ..., r𝑛) = −Ψ(r1, ..., r𝑗, ..., r𝑖, ..., r𝑛) (5.29)

Hence, the 𝑛-electron wave function is approximated by a Slater determinant [201]

Φ(r𝑛) = 1√
𝑛!

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

𝜑1(r1) 𝜑1(r2) · · · 𝜑1(r𝑛)

𝜑2(r1) 𝜑2(r2) · · · 𝜑2(r𝑛)
... ... . . . ...

𝜑𝑛(r1) 𝜑𝑛(r2) · · · 𝜑𝑛(r𝑛)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

(5.30)

where 𝜑𝑖 are spin orbitals (molecular orbitals with spin). Physically, this amounts to

the assumption that the 𝑛 electrons reside in 𝑛 spin orbitals. Inserting Equation 5.30

into Equation 5.28 and minimizing with respect to 𝜑𝑖 gives the HF equations

𝑓(r1)𝜑𝑖(r1) = 𝜖𝑖𝜑𝑖(r1) (5.31)

where 𝑓(r1) is the Fock operator

𝑓(r1) = ℎ(r1) +
∑︁
𝑗

𝐽𝑗(r1)−
∑︁
𝑗

𝐾𝑗(r1) (5.32)

where we have defined the one-electron Hamiltonian ℎ, the Coulomb operator 𝐽𝑗, and

the exchange operator 𝐾𝑗 as

ℎ(r1) = − ~2

2𝑚∇1
2 +

∑︁
𝐼

𝑍𝐼𝑒
2

4𝜋𝜀0|R𝐼 − r1|
(5.33)

𝐽𝑗(r1) =
∫︁
|𝜑𝑗(r2)|2

𝑒2

4𝜋𝜀0|r1 − r2|
𝑑r2 (5.34)

𝐾𝑗(r1)𝜑𝑖(r1) =
[︃∫︁

𝜑*
𝑗(r2)𝜑𝑖(r2) 𝑒2

4𝜋𝜀0|r1 − r2|
𝑑r2

]︃
𝜑𝑗(r1) (5.35)

Instead of explicit electron-electron repulsion, each electron only feels the average

field of the other electrons. This is why HF is called the mean-field method or the

method of noninteracting electrons.

113



Again, it is convenient to approximate the spin orbitals with a simpler function.

We introduce a set of basis functions such that

𝜑𝑖 =
∑︁
𝜇

𝐶𝜇𝑖𝜒𝜇 (5.36)

A sensible choice of basis functions might be ones that resemble atomic orbitals. Due

to the ease of analytical integration, it is common to approximate the exponential

form of the atomic orbitals with a linear combination of gaussians [202]. Using this

change of bases, we arrive at the Hartree-Fock-Roothan equations

FC = SC𝜖 (5.37)

where we have defined the Fock matrix F and the overlap matrix S as

𝐹𝜇𝜈 = ⟨𝜒𝜇|𝑓 |𝜒𝜈⟩ =
∫︁
𝜒*
𝜇(r1)𝑓(r1)𝜒𝜈(r1)𝑑r1 (5.38)

𝑆𝜇𝜈 = ⟨𝜒𝜇|𝜒𝜈⟩ =
∫︁
𝜒*
𝜇(r1)𝜒𝜈(r1)𝑑r1 (5.39)

The problem of solving Equation 5.31 has been reduced to a generalized eigenvalue

problem. However, the evaluation of the Fock matrix F depends on the coefficients

C, so Equation 5.37 must be solved in an iterative manner. This is why HF is called

a self-consistent field (SCF) method.

It turns out that HF is poorish at predicting wave functions and energies. On the

one hand, the wave functions of some systems, such as transition metal compounds

and conical intersections, are not well described by a single Slater determinant. For-

tunately, this strong electron correlation is not important in most organic molecules

at their equilibrium geometries. On the other hand, the absence of explicit electron-

electron repulsion implies that HF cannot capture the tendencies of electrons to avoid

each other and reduce their energies. This weak electron correlation is present in all

many-electron systems.

One approach to capture electron correlation involves writing the wave function

as a linear combination of Slater determinants that correspond to different electronic
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configurations. Then, the coefficients of the configurations are minimized in accor-

dance with the variational principle (Equation 5.28). Since the HF determinant often

represents the ground state electronic configuration, it is common to write the other

determinants as excitations

Φ = 𝑐0Φ0 +
∑︁
𝑖𝑎

𝑐𝑎𝑖Φ𝑎
𝑖 +

∑︁
𝑖𝑗𝑎𝑏

𝑐𝑎𝑏𝑖𝑗 Φ𝑎𝑏
𝑖𝑗 + · · · (5.40)

where Φ0, Φ𝑎
𝑖 , and Φ𝑎𝑏

𝑖𝑗 are the HF, singly excited, and doubly excited determinants,

respectively. This approach is called configuration interaction (CI). As written, Equa-

tion 5.40 corresponds to the full CI (FCI). Due to the combinatorial number of terms,

FCI is intractable in all but the smallest systems.

There are a couple of ways to reduce the number of terms. One approach restricts

the excitations to a few frontier orbitals: the highest occupied orbitals and the lowest

unoccupied orbitals. This method is the complete active space (CAS)-CI. While CAS-

CI can be used to capture strong electron correlation, it is ineffective at capturing weak

electron correlation. Another approach truncates the excitations at some multiplicity.

For example, restricting to singly and doubly excited determinants gives the CI singles

and doubles (CISD). These truncated CI methods are effective at capturing weak

electron correlation. Unfortunately, CISD is still quite expensive, and it is impractical

in applications that involve large system sizes or large numbers of electronic structure

calculations.

5.3.2 Density Functional Theory

The theoretical foundation of the density functional theory (DFT) is the Hohenberg-

Kohn theorems [203]:

1. The external potential is a unique functional of the electron density. Since the

external potential determines the Hamiltonian, the many-electron ground state

is a unique functional of the electron density.

2. The energy functional has a minimum at the ground state density associated

115



with the external potential.

In essence, there exists a universal functional of the electron density that can give the

many-electron ground state of any molecule or material. Whereas the 𝑛-electron wave

function is a function of the 3𝑛 electronic coordinates, the electron density is always

a function of the 3 spatial coordinates. Hence, one might expect that employing the

electron density reduces the computational complexity. Unfortunately, the form of

this functional is unknown, nor is it obvious whether it has a closed form in the first

place. Nonetheless, people have tried to write down various approximations.

One of the challenges in constructing an accurate functional is the kinetic energy.

Today, practical implementations employ the Kohn-Sham density functional theory

(KS-DFT), which considers a fictitious system of noninteracting electrons that has

the same density as the actual system. The wave function is written as a single Slater

determinant (Equation 5.30). Then, the electron density is given by

𝜌(r) =
∑︁
𝑖

|𝜑𝑖(r)|2 (5.41)

The energy functional can be written as

𝐸[𝜌] = 𝑇𝑠[𝜑𝑛]− 𝑉ne[𝜌] + 𝐽 [𝜌] + 𝐸xc[𝜌] (5.42)

where we have defined the kinetic energy of the noninteracting system 𝑇𝑠, the nucleus-

electron attraction 𝑉ne, the Coulomb repulsion 𝐽 , and the exchange-correlation (XC)

energy 𝐸xc as

𝑇s[𝜑𝑛] = −
∑︁
𝑖

∫︁
𝜑*
𝑖 (r) ~

2

2𝑚∇
2𝜑𝑖(r)𝑑r (5.43)

𝑉ne[𝜌] =
∑︁
𝐼

∫︁ 𝑍𝐼𝑒
2

4𝜋𝜀0|R𝐼 − r|
𝜌(r)𝑑r (5.44)

𝐽 [𝜌] = 1
2

∫︁∫︁ 𝑒2

4𝜋𝜀0|r1 − r2|
𝜌(r1)𝜌(r2)𝑑r1𝑑r2 (5.45)

𝐸xc[𝜌] = 𝑇 [𝜌]− 𝑇𝑠[𝜑𝑛] + 𝑉ee[𝜌]− 𝐽 [𝜌] (5.46)
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In short, we have gathered the error inside the XC energy. Although it might seem

that we have only postponed the problem, the term that we need to approximate

is much smaller now, since 𝑇𝑠 and 𝐽 capture most of the kinetic energy and the

electron-electron repulsion, respectively.

Minimizing Equation 5.42 with respect to the orbitals 𝜑𝑖 gives the Kohn-Sham

equation [︃
− ~2

2𝑚∇
2 + 𝑣s(r)

]︃
𝜑𝑖(r) = 𝜖𝑖𝜑𝑖(r) (5.47)

where 𝑣s is the effective potential

𝑣s(r) =
∑︁
𝐼

𝑍𝐼𝑒
2

4𝜋𝜀0|R𝐼 − r|
+
∫︁ 𝑒2

4𝜋𝜀0|r− r′|
𝜌(r′)𝑑r′ + 𝛿𝐸xc

𝛿𝜌
(5.48)

Equation 5.47 can be solved using a self-consistent field method similar to HF. Hence,

KS-DFT can recover electron correlation at the computational costs of a mean-field

method, provided that we have a good approximation of the XC functional (the last

term in Equation 5.48). As a result, the design of XC functionals has attracted

widespread research and development (R&D) efforts, and a myriad of functionals

have been proposed [204, 205].

A useful extension of DFT is time-dependent density functional theory (TDDFT),

which enables the calculation of excited states. The theoretical foundation of TDDFT

is the Runge-Gross theorems [206], which are the time-dependent analogues of the

Hohenberg-Kohn theorems [203]. In principle, the excited states are obtained by

considering the response of the wave function to an electric field. In practice, this is

transformed into an eigenvalue problem [207, 208]

⎡⎢⎣A B

B† A†

⎤⎥⎦
⎡⎢⎣X

Y

⎤⎥⎦ = 𝜔

⎡⎢⎣−1 0

0 1

⎤⎥⎦
⎡⎢⎣X

Y

⎤⎥⎦ (5.49)

Written in this way, the TDDFT equation has the same form as the time-dependent

Hartree-Fock (TDHF). Interestingly, the CIS equation appears in an intact form inside
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the TDHF equation

AX = 𝜔X (5.50)

This analogy motivated the extraction of the A matrix in TDDFT, which gave rise to

the Tamm-Dancoff approximation (TDA) [209]. Of course, the TDA results should

be taken with a grain of salt, since the physical and mathematical arguments are

heuristic. However, TDA is effective at avoiding imaginary roots that sometimes

trouble the full TDDFT.

5.4 Structure of Part II

The remainder of Part II is organized as follows:

In Chapter 6, we introduce a simple quantum-mechanical model of thermally

activated delayed fluorescence (TADF), where the Hamiltonian is written in the basis

of four spin-mixed diabatic states representing pure charge transfer (CT) and local

excitation (LE) states. The model predicts that it is possible to realize lowest-lying

adiabatic singlet (S1) and triplet (T1) excited states with a small singlet-triplet (ST)

gap, differing CT/LE contributions, and appreciable LE component in the S1 state.

These characteristics can explain the coexistence of rapid T1 → S1 reverse intersystem

crossing and S1 → S0 radiative decay in some chromophores. We perform a Monte

Carlo sampling of the parameter space to determine which parameters are decisive

in TADF efficiency. This is followed by an ab initio exploration of the conformation

space of a model donor-acceptor (DA) system.

In Chapter 7, we take the idea of conformational dependence to the next step.

Given that the TADF rate of a molecule depends on its conformation, we hypothesize

that there exists a conformation that maximizes the TADF rate. To test this idea, we

use the time-dependent density functional theory (TDDFT) to simulate the TADF

rates of several TADF emitters while shifting their geometries toward higher TADF

rates in a select subspace of internal coordinates. We find that geometric changes in

this subspace can increase the TADF rate up to three orders of magnitude with respect

to the minimum energy conformation. Analyzing the maximum TADF conformation,
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we extract a number of structural motifs that might provide a useful handle on the

TADF rate of a DA system.

In Chapter 8, we work in collaboration with the group of Professor Marc A. Baldo

to investigate the role of intersystem crossing (ISC) in enhancing the observed effi-

ciencies of TTA upconverters. Experimental studies have reported molecules with

triplet-triplet annihilation (TTA) efficiencies that appear to exceed the theoretical

limit of 40 %. We present computational evidence that these limit-breaking TTA effi-

ciencies might be attributed to the T2 → S1 ISC. Furthermore, we propose strategies

to enhance this ISC and provide experimental support of enhanced efficiencies.

In Chapter 9, we summarize the key results of Part II and discuss future directions.
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Chapter 6

Simple Four-State Model of TADF

We introduce a simple quantum-mechanical model of thermally activated delayed flu-

orescence (TADF). The Hamiltonian is written in the basis of four spin-mixed diabatic

states that represent pure charge transfer (CT) and local excitations (LE). The model

predicts that it is possible to realize lowest-lying adiabatic singlet (S1) and triplet (T1)

excited states with a small singlet-triplet (ST) gap, differing CT/LE contributions,

and appreciable LE component in the S1 state. These characteristics can explain the

coexistence of rapid T1 → S1 reverse intersystem crossing (RISC) and S1 → S0 radia-

tive decay in some chromophores. Through the sampling of the parameter space and

statistical analysis of the data, we show which parameter combinations contribute

the most to the TADF efficiency. We also show that conformational fluctuations of a

single model donor-acceptor (DA) system sample a significant region of the parameter

space and can enhance the TADF rate by almost three orders of magnitude. This

study provides new guidelines for the optimization of TADF emitters by the means

of electronic structure and conformational engineering.

6.1 Introduction

Thermally activated delayed fluorescence (TADF) [167, 210] is believed to be one of

the most promising routes to increase the efficiency of organic light-emitting diode

(OLED) devices [168–170, 211–213]. Harvesting of normally nonemissive triplet ex-

121



citons is achieved through design of molecular emitters that can undergo an efficient

thermally activated intersystem crossing to a singlet manifold, followed by a radia-

tive relaxation to the ground state. To date, this idea has enabled a large num-

ber of metal-free organic emitters [163, 171–175, 214–218], and the technology is

becoming competitive with already commercially deployed phosphorescent OLEDs

[163, 173, 175, 218–220].

Figure 6-1: Comparison of electronic configurations and resulting energy diagrams in
(a) the two-state model and (b) the four-state model.

In an OLED device, 25 % of the generated excitons end up in the first excited

singlet state S1 and 75 % in the first excited triplet state T1. Due to electron exchange

interactions, the dark T1 state has lower energy than the bright S1 state (Figure 6-

1a). In the canonical model of TADF, the triplet exciton needs to be thermally

activated to become isoenergetic with the S1 state. Subsequently, spin-orbit coupling
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(SOC) can convert it into a singlet state, from which photon emission is a spin-

allowed process. This reverse intersystem crossing (RISC) mechanism is a thermally

activated process, so its efficiency critically depends on the energy barrier, i.e. the

singlet-triplet (ST) gap Δ𝐸ST. Additionally, the rate of transition depends on the

SOC between the relevant states ⟨S1|𝐻SO|T1⟩. This highlights that efficient RISC can

proceed, assuming small but nonvanishing SOC, only if S1 and T1 are energetically

close.

To date, there have been many ab initio studies of TADF emitters, initially focus-

ing on calculations of the ST gaps [221–227]. High-throughput screening approaches

have been proposed [228–230] to find new emitters with an effective trade-off between

small Δ𝐸ST and fast radiative decay. Further experimental [174, 231–233] studies

have shown that for many TADF molecules the lowest triplet state is not a charge

transfer (CT) but a local excitation (LE), which indicated that the understanding

of the TADF mechanism is incomplete and known design strategies are not optimal.

Since then, a number of theoretical works have analyzed the mixed CT/LE nature of

the excited states [197, 234–238], importance of vibronic effects [239–243], and influ-

ence of the interactions with the environment [244–247], including the importance of

static and dynamic disorder [248, 249]. Several recent review articles summarize the

computational and theoretical developments in the field [250–253].

In this chapter, we propose a new four-state model for TADF that generalizes

the canonical model by including both the CT and the LE states. We examine the

behavior of this model as a function of its microscopic parameters, i.e. the energy

gap and electronic couplings between the states. In Section 6.2, we begin by summa-

rizing the canonical two-state model and then introduce the four-state generalization.

Next, in Section 6.3, we perform a Monte Carlo sampling of the parameter space

to determine which parameters are decisive in TADF efficiency. This is followed by

an ab initio exploration of the conformation space of a model donor-acceptor (DA)

system. The study allows us to formulate new guidelines for the design of efficient

TADF materials.
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6.2 Theory

6.2.1 Two-State Model of TADF

The standard two-state model for TADF [170] can be described as an electron transfer

from the HOMO localized on the donor (D) moiety to the LUMO on the acceptor (A)

moiety. This picture gives rise to two isoenergetic spin-mixed charge-transfer states

CT1 and CT2

|CT1⟩ = 1√
2
|𝜑H(1)𝛼(1)𝜑L(2)𝛽(2)| (6.1)

|CT2⟩ = − 1√
2
|𝜑H(1)𝛽(1)𝜑L(2)𝛼(2)| (6.2)

The electronic coupling between these two states is known as the exchange integral

⟨CT1|𝐻̂|CT2⟩ = (𝜑H(𝐷)𝜑L(𝐴)|𝜑L(𝐷)𝜑H(𝐴)) = 𝐾HL (6.3)

and the corresponding eigenfunctions of the Hamiltonian are spin-pure states |1CT⟩ =
1√
2(|CT1⟩+ |CT2⟩) and |3CT⟩ = 1√

2(|CT1⟩−|CT2⟩). The energies of these states can

be written as

𝐸S1 = ℎH + ℎL + 𝐽HL +𝐾HL (6.4)

𝐸T1 = ℎH + ℎL + 𝐽HL −𝐾HL (6.5)

where ℎH and ℎL are the HOMO and the LUMO integrals, respectively; and 𝐽HL is

the Coulomb two-electron integral (𝜑H(𝐷)𝜑H(𝐷)|𝜑L(𝐴)𝜑L(𝐴)). From Equations 6.4

and 6.5 results that the ST gap is simply twice the exchange integral

Δ𝐸ST = 2𝐾HL (6.6)

which immediately suggests that minimizing the exchange integral by spatial separa-

tion of the HOMO and the LUMO is a reasonable design strategy for TADF emitters.

This design principle has been realized in many TADF emitters which are based
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on the DA architecture [163, 218]. The large dihedral angle between the donor and

the acceptor units causes spatial localization of the HOMO and the LUMO and

consequently small exchange integral 𝐾HL. Despite these early successes, it has been

realized that the two-state model has several deficiencies. First, a pure 1CT state

would have a very small oscillator strength, so efficient luminescence following efficient

RISC would not be possible. This is because there is a single variable (HOMO-

LUMO overlap) that governs both the oscillator strength and the ST gap. Efficient

TADF requires both large oscillator strength (large HOMO-LUMO overlap) and a

small singlet triplet gap (small HOMO-LUMO overlap). There is thus an inescapable

trade-off – one cannot have high oscillator strength and small gaps at the same time –

and so TADF rates are fundamentally limited to a theoretical maximum of ≈ 1 µs−1.

The second deficiency of the two-state model is that ISC between two states of the

same electronic character is very inefficient as the spin flip needs to be offset by a

change of the orbital angular momentum so that the total angular momentum is

conserved [176, 254]. This means that the SOC between two pure CT states vanishes

⟨1CT|𝐻̂SO|3𝐶𝑇 ⟩ = 0 and the intersystem crossing is impossible irrespective of how

small the energy gap is. Finally, it has been noticed that TADF efficiency does not

always correlate with the small ST gap [214]. Relatively high efficiencies have been

observed for emitters with large apparent gaps. Also, donor-acceptor-donor (DAD)

architectures have been shown to be more efficient compared to DA systems despite

having similar ST gaps [171, 213, 255]. Recently, several new approaches to the

design of TADF emitters [173, 256, 257] and increasing the efficiency of the devices

[219, 258, 259] have been proposed.

6.2.2 Four-State Model of TADF

In the two-state model, efficient TADF is limited because of the trade-off between

small ST gaps and large oscillator strengths due to the CT character of the states

involved. On the other hand, there is experimental evidence that a local triplet (3LE)

state that is energetically close to both CT states plays a role in RISC [174, 231–233].

In particular, it has been suggested that vibronic nonadiabatic effects are responsible
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for the interaction between CT and LE states and efficient RISC [239–241, 243, 254,

260–262]. Here we propose a model that generalizes the two-state model to include

also LE states. This model bypasses the need for nonadiabatic effects to explain

efficient TADF; however, it does not preclude this mechanism to be operational in

some cases.

As the starting point, we assume that the active space is composed of three or-

bitals. To focus the discussion, we assume that the HOMO and the LUMO + 1 are

localized on the donor, and the LUMO is localized on the acceptor (2 electrons in 3 or-

bitals); however, the model works for any three orbitals that can describe one-electron

CT and LE (e.g. the HOMO on donor; the HOMO− 1 and the LUMO on acceptor

– 4 electrons in 3 orbitals). Consideration of all possible single excitations within the

active space gives four electron configurations illustrated in the top panel of Figure

6-1b. These configurations correspond to the conceptual picture of excitations as the

electron transfer between spatially localized molecular orbitals.

Note that these states are diabatic states with a well-defined electronic character,

so they can be classified as charge-transfer (CT1 and CT2) or local (LE1 and LE2)

excitations, and that they are not eigenfunctions of the spin operator. For these

reasons, the Hamiltonian in the (|CT1⟩ , |CT2⟩ , |LE1⟩ , |LE2⟩) basis is not diagonal

and, to a good approximation (discussed in Appendix D.1), takes the following form

𝐻̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝐾CT 𝑡 𝐾X

𝐾CT 0 𝐾X 𝑡

𝑡 𝐾X Δ𝐸 𝐾LE

𝐾X 𝑡 𝐾LE Δ𝐸

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.7)

The parameters of the Hamiltonian are Δ𝐸, the energy gap between CT and LE

states, where the energy of the CT states is arbitrarily set to 0; the exchange integrals

𝐾CT = ⟨CT1|𝐻̂|CT2⟩ = (𝜑H(𝐷)𝜑L(𝐴)|𝜑L(𝐴)𝜑H(𝐷)) (6.8)

𝐾LE = ⟨LE1|𝐻̂|LE2⟩ = (𝜑H(𝐷)𝜑L+1(𝐷)|𝜑L+1(𝐷)𝜑H(𝐷)) (6.9)
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are a sum of a one-electron hopping integral and a two-electron integral

𝑡 = ⟨CT1|𝐻̂|LE1⟩ = 𝑡′ +𝐾 ′
X

= ⟨𝜑L(𝐴)|ℎ̂|𝜑L+1(𝐷)⟩+ (𝜑H(𝐷)𝜑H(𝐷)|𝜑L(𝐴)𝜑L+1(𝐷)) (6.10)

where ℎ̂ is the one-electron partof the Hamiltonian, and a two-electron integral

𝐾X = ⟨CT1|𝐻̂|LE2⟩ = (𝜑H(𝐷)𝜑L+1(𝐷)|𝜑L(𝐴)𝜑H(𝐷)) (6.11)

The Hamiltonian in Equation 6.7 can be block-diagonalized in the basis of diabatic

spin-pure states

⃒⃒⃒
1CT

⟩
= 1√

2
(|CT1⟩+ |CT2⟩) (6.12)⃒⃒⃒

3CT
⟩

= 1√
2

(|CT1⟩ − |CT2⟩) (6.13)⃒⃒⃒
1LE

⟩
= 1√

2
(|LE1⟩+ |LE2⟩) (6.14)⃒⃒⃒

3LE
⟩

= 1√
2

(|LE1⟩ − |LE2⟩) (6.15)

which leads to two 2× 2 Hamiltonians operating in the singlet and triplet subspaces

𝐻̂S =

⎛⎜⎝ 𝐾CT 𝑡+𝐾X

𝑡+𝐾X Δ𝐸 +𝐾LE

⎞⎟⎠ (6.16)

𝐻̂T =

⎛⎜⎝−𝐾CT 𝑡−𝐾X

𝑡−𝐾X Δ𝐸 −𝐾LE

⎞⎟⎠ (6.17)

Diagonalizing these Hamiltonians gives closed form expressions for the energies of the

adiabatic states 𝐸S1 , 𝐸S2 , 𝐸T1 , and 𝐸T2 , as well as for the coefficients of the eigenvec-

tors in the basis of spin-pure diabatic states (see Appendix D.2). In particular, the
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expression for the ST energy gap Δ𝐸ST is the following

Δ𝐸ST =𝐾LE +𝐾CT

−
√︃

1
4(Δ𝐸 +𝐾LE +𝐾CT)2 − (Δ𝐸 +𝐾LE)𝐾CT + (𝑡+𝐾X)2

+
√︃

1
4(Δ𝐸 −𝐾LE −𝐾CT)2 + (Δ𝐸 −𝐾LE)𝐾CT + (𝑡−𝐾X)2 (6.18)

which is significantly more complicated than simply twice the exchange integral within

the two-state model. The gap Δ𝐸ST depends on all the parameters of the model, and

it is clear that the design principle based on the minimization of the HOMO-LUMO

spatial overlap is not the only way to obtain a small ST gap. The first square root

in Equation 6.18 reduces the gap, while the second acts in the opposite direction, so

the final outcome depends on the interplay between Δ𝐸 and the different coupling

elements. While the exchange couplings and Δ𝐸 affect the energy separation between

CT and LE diabatic states, the mixing of these diabats is determined by |𝑡+𝐾X| and

|𝑡−𝐾X| for singlet and triplet manifolds, respectively. This means that CT and LE

states of different multiplicities have different mixing strengths, which will result in

dif ferent electronic characters of the respective energy states. Due to the different

contributions of CT and LE states, the SOC between the S1 and the T1 states could

be appreciable without the mediation of the T2 state via nonadiabatic coupling. The

efficiency of this direct pathway will depend on the relative signs and values of 𝑡

and 𝐾X, as well as values of Δ𝐸 and exchange integrals. Coupling of 1CT and 1LE

through the (𝑡+𝐾X) element also means that the S1 state is a mixture of the CT and

LE diabats rather than a pure CT state, which explains how TADF molecules can

have an appreciable dipole coupling to the ground state and be efficient light emitters

(see Figure 6-1b).

At this point, the four-state model explains why efficient TADF is possible in

organic molecules: In principle, the right electronic Hamiltonian can simultaneously

yield a small ST gap Δ𝐸ST together with qualitatively different contributions of LE

and CT states in the S1 and T1 adiabats, which enable efficient intersystem crossing,
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as well as a significant LE contribution in the S1 state, which enables high quantum

yields. This clearly demonstrates that the trade-off between minimizing the HOMO-

LUMO overlap for small ST gaps and maximizing it for efficient fluorescence is not a

physical limitation, but merely an artifact of the oversimplified two-state model. Our

result also highlights the role of both CT and LE diabatic states and demonstrates

that consideration of the lowest adiabatic states of each spin multiplicity can be

sufficient for efficient RISC.

While the model suggests that nonadiabatic coupling is not necessary for efficient

RISC, it does not preclude its relevance. It is plausible that coherent mixing of T1 and

T1 states enhances the RISC rate in the vicinity of conical intersections or avoided

crossings, where the T1 − T2 gap is very small. Another possibility for importance

of molecular vibrations is their contribution through non-Condon effects. Within the

Condon approximation, all the matrix elements in Equation 6.7 are constant and

independent of the molecular geometry. However, molecular vibrations can lead to

large variations in instantaneous couplings, effectively modulating both RISC and

fluorescence. In this case, the rates depend only on nuclear positions, but not mo-

menta, which is also consistent with the proposed conformational dependence [216]

of TADF efficiency. Nevertheless, it is important to stress that neither nonadiabatic

nor non-Condon effects are necessary for efficient TADF from the perspective of the

four-state model.

6.3 Results

6.3.1 Parameter Space Exploration

The four-state model depends on five parameters which determine the relative ener-

getics and character of the first two excited states within singlet and triplet manifolds.

We will focus on three quantities predicted by the model, which can be optimized to

boost the overall TADF efficiency. First, the ST gap Δ𝐸ST (Equation 6.18) needs

to be minimized to ensure a significant thermally induced population of vibrational
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states of the T1 electronic state, which are isoenergetic with the S1 state. Second, in

order to maximize the fluorescence rate, the transition dipole moment between S1 and

S0 states needs to be as large as possible. While this quantity cannot be calculated

within the four-state model without introducing the one-electron basis explicitly, we

note that quantum yield correlates with the LE character of the S1 state, which is

assumed to be bright. Therefore, we consider the quantity SLE
1 = |⟨1LE|S1⟩|2 as a

proxy for fluorescence efficiency. Finally, appreciable SOC is a prerequisite for fast

RISC even in the small Δ𝐸ST limit. The SO coupling cannot be directly calculated

from the model; however, according to El-Sayed’s rule it is only nonvanishing between

states with substantially different electronic character. Therefore, as the proxy for

efficient SO we use the unsigned difference between CT contributions in the S1 and

T1 states: ΔCT =
⃒⃒⃒
|⟨1CT|S1⟩|2 − |⟨3CT|T1⟩|2

⃒⃒⃒
.

The analytical expressions for Δ𝐸ST, SLE
1 , and ΔCT can be obtained directly

by diagonalizing the model Hamiltonians in Equations 6.16 and 6.17; however, their

dependence on the parameters is rather complicated (compare with states’ coefficients

in Appendix D.2). To better understand how manipulating different parameters can

lead to changes in the TADF efficiency, we performed a Monte Carlo sampling of

the parameter space. To this end, we made some a priori assumptions about the

relevant ranges of values (see Appendix D.3.1). We sampled random 106 points from

the parameter space and calculated the corresponding Δ𝐸ST, SLE
1 , and ΔCT values.

Histograms of these quantities are presented in Figure 6-2.

The distribution of ST gaps (Figure 6-2a) resembles a bell-shaped curve, which

reflects the complex dependence on several uniformly distributed parameters (see

Equation 6.18). The average of Δ𝐸ST is 1.25 eV, and the standard deviation is 1.10 eV.

This is in stark difference with the twostate model for which Δ𝐸ST = 2𝐾CT. An

interesting feature of the distribution is that there is a significant number of points

with Δ𝐸ST < 0. This appears as perhaps an unphysical result, because negative

ST gaps are normally not observed in practice. However, based on constrained DFT

calculations, Difley et al. have found exciplex systems that exhibit negative gaps

[263], which was explained by the kinetic exchange effect which stabilizes singlet
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states. Recently Olivier et al [248]. also reported negative Δ𝐸ST resulting from

stronger stabilization of the singlet state by the polarizable environment. Neither of

these mechanisms is operational in our four-state model, which could mean that we

are sampling the regions of the parameter space which are unphysical or exceedingly

difficult to realize in real molecules. Nevertheless, this is not a problem of the model

itself, and a general conclusion can still be drawn from these results. In particular, it

is clear that relatively many combinations of parameters can lead to small ST gaps,

which is beneficial for fast RISC in TADF molecules.

The distribution of SLE
1 (Figure 6-2b) shows that the first singlet excited state

is usually dominated by the CT character (SLE
1 < 0.5). This is the case for 75 %

of the sampled parameter vectors and corresponds well with the experimental ob-

servations about TADF emitters. Nevertheless, the figure shows also that there are

many parameter combinations which yield a significant component of the LE state

in S1, which should lead to appreciable fluorescence efficiency. Figure 6-2c illustrates

how likely it is to find parameters that lead to S1 and T1 states that differ in their

electronic character. The maximum of the distribution is at 0.4, and more often than

not these two states are appreciably different. This is again in line with many reports

on TADF emitters, where the lowest triplet state is found to have a substantial LE

component. This in turn opens up a possibility for significant SOC, which would be

otherwise prevented by El-Sayed’s rule.

To gain more insight into which parameters control TADF efficiency, we filtered the

data and retained only 17 706 out 106 solutions satisfying the criteria Δ𝐸ST < 0.1 eV,

SLE
1 > 0.25 eV, and ΔCT > 0.4, which are likely to represent efficient TADF emitters

(see Appendix D.3.2 for details). This filtering naturally selects parameter values

that are beneficial for TADF and rejects parameter values that are harmful. The

resulting distributions of parameters are shown in Figure 6-3. Figure 6-3a suggest

that the small energy offset between the CT and the LE states is beneficial for TADF;

however, the distribution is rather broad with a standard deviation of approximately

0.5 eV and either energetic ordering of states is possible. There is some preference

for smaller values of 𝐾CT (Figure 6-3b), but many solutions can be found even with
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relatively large CT exchange integrals. The distribution of LE exchange integrals

(Figure 6-3c) is also broad, with the mean 1 eV and standard deviation 0.4 eV. Figure

6-3d,e shows that both 𝑡 and 𝐾X have to be nonvanishing. In particular, the larger

the 𝐾X the more likely it is for the solutions to represent efficient TADF, and the

distribution of the hopping integrals t has a maximum at ±1 eV. While all the pa-

rameters were uncorrelated in the original set, filtering is expected to introduce some

correlations, and revealing them should provide guidelines for parameter combina-

tions that yield efficient TADF activity. First, we note that while the signs of 𝑡 and

𝐾X were random and uncorrelated in the original set, now all these parameters are of

the same sign; therefore, this condition appears as a prerequisite for efficient TADF.

Note that flipping the phase of either the 𝜑L or the 𝜑L+1 orbital will change the sign

of both parameters, so only nontrivial changes in the orbital shape can influence the

relative sign. Based on the above observations, the most critical design parameters

for fast TADF are the magnitude and relative sign of 𝑡 and 𝐾X. The fact that two

heretofore unrecognized parameters are more important than 𝐾CT, which had been

previously thought to dominate TADF rates, suggests that some previous design ef-

forts may have succeeded partly by serendipity. For example, rotation of a dihedral

angle will typically change 𝐾CT (which was thought to be most important) and also

the magnitude and sign of 𝑡 and 𝐾X (which are typically even more important).

To extract more nuanced correlations, we performed a principal component anal-

ysis (PCA) of the covariance matrix. The detailed analysis is in Appendix D.3.3,

but the main conclusion is that small values of 𝑡 − 𝐾X and to a lesser extent mod-

erately negative Δ𝐸 − 𝐾LE are necessary for efficient TADF activity. The analysis

of analytical solutions of the four-state model sheds some light on the importance of

𝑡−𝐾X and Δ𝐸 −𝐾LE. The energy of the S1 state is stabilized by |𝑡+𝐾X| while T1

is stabilized by |𝑡−𝐾X|, so small values of the latter parameter lead to shrinking of

the ST gap, which is always beneficial for TADF efficiency. Small |𝑡−𝐾X| also favors

stronger LE character of the T1 state relative to S1 and consequently leads to larger

ΔCT values. The energies of the 3LE and 3CT states are Δ𝐸 − 𝐾LE and −𝐾CT,

respectively. Therefore, for LE to be the dominant component in T1, the condition

134



Δ𝐸 − 𝐾LE < −𝐾CT must hold. At the same time, the energy gap between these

states cannot be too large to allow effective mixing, which explains why moderately

negative values of Δ𝐸−𝐾LE are beneficial for efficient TADF. By a similar argument,

appreciable SLE
1 and efficient fluorescence requires that Δ𝐸 +𝐾LE is not much larger

than 𝐾CT on the scale of the coupling element 𝑡 + 𝐾X. This suggests that, contrary

to the prediction of the conventional two-state model, minimization of 𝐾CT is not

necessarily the best strategy for maximizing TADF efficiency.

6.3.2 Conformation Space Exploration

In order to apply the design principles from the four-state model, it would be ideal

to explore the parameter space of Δ𝐸, 𝑡, 𝐾X, 𝐾CT, and 𝐾LE in candidate TADF

molecules. However, this is challenging for two reasons. First, the parametrization of

the four-state Hamiltonian from ab initio calculations requires explicit construction of

the diabatic states (CT1, CT2, LE1, and LE2) and accurate evaluation of the related

energies and couplings. Although the latter could be achieved through methods such

as constrained DFT [264–267] or ΔSCF [268, 269], how to define the relevant states in

these frameworks is not straightforward. Second, optimization in the chemical space

is difficult due to its discreteness. While carrying out such optimization would be part

of the long-term goal that leads to new emitters, we choose at this point to explore

parameter space by varying the conformation of a single DA system (i.e. the distance

and relative orientation between the donor and the acceptor moieties), which has the

practical benefit of being continuous.

Our model system is based on a DA exciplex with a TPA (triphenylamine) donor

and a TRZ (2,4,6-triphenyl-1,3,5-triazine) acceptor, both of which are common moi-

eties in TADF design [163, 172, 212, 229, 270]. The exciplex is known to possess

intermolecular CT excited states and great conformational flexibility [175]. The low-

est excited states have a dominant CT character due to the fact that LE states are

high-lying excited states in a typical exciplex. Meanwhile, according to the four-state

model, we want the T1 and S1 states of the exciplex to have a mixed CT/LE char-

acter. Therefore, we make two modifications to the TPA/TRZ exciplex. First, we
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link an extra donor CZ (carbazole) to the TRZ group to form CZ-TRZ. CZ-TRZ is

a well-known fluorophore and has been used as a parent compound for several high-

efficiency deep-blue TADF materials [217, 220]. Using CZ-TRZ as the acceptor in the

exciplex introduces low-lying excited states with LE character, while excited states

with CT character are due to excitations between TRZ and TPA moieties. Second,

we add chlorine groups to TPA to form TPA-Cl. This further tunes the energetics

of the CT excites states so that lowest CT and LE states are close enough, which

corresponds to a small Δ𝐸 parameter in the four-state model. The final structures

of TPA-Cl (donor) and CZ-TRZ (acceptor) are shown in Figure 6-4.

Figure 6-4: Structures of TPA-Cl (donor) and CZ-TRZ (acceptor).

Arbitrary conformations were generated as snapshots of molecular dynamics (MD)

simulations, using the OPLS-aa force field [271]. In order to obtain exhaustive sam-

pling of the conformation space, we found it necessary to modify the van der Waals

parameters for the monomers. Further details can be found in Appendix D.4. As

a result, the conformational space we explore is significantly different than the ther-

mally accessible conformation space. To be clear, this is intentional: the aim of the

calculations is to ascertain whether some configuration (which may or may not be

thermally accessible for this donor and acceptor) could display dramatically acceler-

ated TADF. If so, this observation would provide strong evidence that the four-state
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model is actually relevant for TADF in real molecules. The excited states in the se-

lected conformations were computed in the framework of TDDFT, using the B3LYP

exchange-correlation functional [272–277] and the 6-31+G* basis set [278–280]. It is

well-known [208, 281] that standard hybrid functionals, such as B3LYP, give inade-

quate descriptions of CT states. Although the use of optimally tuned range-separated

hybrids [224, 225] has been found to be a practical solution that works well for TADF

emitters, the goal was not to make quantitative predictions about individual con-

formers, which may or may not be possible to synthesize in the laboratory but to

show that the TADF rate of a given system can undergo substantial improvements as

parameters like 𝑡 and 𝐾X vary with conformation. Hence, it was desirable to choose a

functional that could reproduce qualitative trends at a minimal computational cost.

Given the TDDFT results, the rate of prompt fluorescence was estimated using

the Einstein coefficient [191]

𝑘F = 𝑒2𝜔10
2

2𝜋𝜀0𝑚𝑐3𝑓10 (6.19)

where 𝑒 and 𝑚 are the electron charge and mass, respectively; 𝑐 is the speed of

light; and 𝜔10 and 𝑓10 are the S1 − S0 transition frequency and oscillator strength,

respectively. The TADF rate was estimated using the formula [215]

𝑘TADF = 𝑘F[S1]
[S1] + [T1]

= 𝑘F

1 +𝐾
(6.20)

𝐾 ≡ [T1]
[S1]

= 3 exp
(︃

Δ𝐸ST

𝑘B𝑇

)︃
(6.21)

where 𝑘B is the Boltzmann constant and the temperature 𝑇 was taken to be 298 K.

The last formula assumes that the excited state populations have thermalized and

that only the S1 and the T1 states are populated to a significant extent. Since TADF

time scales are on the order of microseconds, the first assumption would hold, provided

that there exists an efficient ISC pathway. Meanwhile, the second assumption should

be valid in most conformations of interest. Among the conformers that exhibited

the largest oscillator strengths (> 10−3) and the smallest Δ𝐸ST (< 100 meV), the T2

state was almost always higher in energy than the S1 state. If the T2 state were lower
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in energy than the S1 state, then the T2 state should be included in the denominator,

and such cases can be found in Appendix D.6. However, the correction was neglected

in the main discussion, because taking the T2 state into consideration did not alter

the statistics in a meaningful way. In general, the formula provides an upper bound

to the TADF rate, since RISC might not be fast enough to replenish the S1 state.

Figure 6-5: (a) Histogram of the TADF lifetimes. The TADF lifetime at the DFT
optimized geometry is marked as “opt.” (b) Scatter plot of the condensed phase
against the gas phase TADF lifetimes. The solid black line has a unit slope (𝑦 = 𝑥).
(c) Scatter plot of the S1 − S0 oscillator strength against Δ𝐸ST.

The results have been summarized in Figure 6-5, and the numerical output on

the most relevant conformers has been provided in Appendix D.6. Figure 6-5a is a
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histogram of the TADF lifetimes. It is clear that the DFT optimized geometry is not

the optimal conformation in terms of TADF. Since there was a selection bias toward

high TADF rates, the distribution is skewed, but a significant number of conforma-

tions were found to exhibit higher TADF rates than the DFT optimized geometry.

A TADF lifetime as short as 2.0 µs (oscillator strength of 1.4× 10−2 and Δ𝐸ST of

0.02 eV), an 800-fold improvement over the DFT optimized geometry, has been ob-

tained. Condensed phase effects were gauged at the level of linear-response conductor-

like polarizable continuum model (LR-CPCM) [282, 283], the details of which have

been provided in Appendix D.7. Figure 6-5b is a scatterplot of the condensed phase

against the gas phase TADF rates. While LR-CPCM tended to stabilize the S1 state,

decrease Δ𝐸ST, and increase the oscillator strength, the effects were insufficient to

induce qualitative changes in the TADF rates. Hence, the remainder of the discussion

will proceed based on the gas phase results. Finally, Figure 6-5c is a scatterplot of the

oscillator strength against the Δ𝐸ST, testing the fundamental trade-off predicted by

the two-state model, in which a single variable (HOMO-LUMO overlap) determines

both quantities. The correlation between the two variables is weaker than would

be expected based on the conventional two-state model [170]. The distribution may

suggest an upper bound on the oscillator strength that can be achieved at a given

Δ𝐸ST for this exciplex, but if so the slope is quite steep, allowing a sizable oscillator

strength to coexist with a small Δ𝐸ST. This is fairly strong evidence that, by inducing

large conformational changes, one can influence TADF through factors beyond the

simple electron-hole overlap term that dominates the two-state model. One obvious

explanation for this is that different conformations are probing variations in 𝑡 −𝐾X

by varying the relative phase of these contributions.

For two of the conformers that exhibited high TADF rates (𝜏TADF < 10 µs), the

dominant pairs of natural transition orbitals (NTOs) [284] in the S1 and the T1 states

have been visualized in Figure 6-6. Notice that the second conformer exhibits a linear

conformation, with the donor moiety next to the TRZ group of the acceptor moiety,

as opposed to a stacked conformation that would be expected in the equilibrium

geometry. In both conformers, the spatial separation of the hole and the particle
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Figure 6-6: (a,c) Hole and (b,d) particle orbitals of the S1 state. The insets are the
corresponding NTOs of the T1 state.
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orbitals is consistent with the strong CT character of the S1 and the T1 excitations,

but parts of the hole orbitals, as well as the particle orbital in the second conformer,

can be seen delocalized onto the opposite moiety, which indicates also a non-negligible

LE contribution. As a result, a substantial oscillator strength could be obtained,

even when the donor and the acceptor molecules were not in a stacked conformation.

Further note the differences between the NTOs of the S1 and the T1 states, which

are most obvious in the delocalized lobes of the hole and the particle orbitals. In

particular, the T1 excitation appears to have a stronger LE character than the S1

excitation. Again, this is consistent with the predictions of the four-state model,

where differential mixing of CT and LE states is possible in the singlet and triplet

manifolds. We suspect that the differences between the S1 and the T1 states for this

dimer would be even more pronounced in reality and that their apparent similarity is

due to the abovementioned shortcoming of the B3LYP functional favoring CT states.

Other conformers also exhibited varying degrees of CT/LE mixture in the S1 and

the T1 states, and more examples have been provided in Appendix D.8 (Figures D-3

and D-4). A more detailed comparison of the S1 and the T1 states based on the

Kohn-Sham orbitals can also be found in Appendix D.8.

All in all, a more sophisticated computational method or an experiment could

reveal most of the found conformers to be poor TADF emitters. For the purposes

of this study, however, it sufficed to show that a large oscillator strength, a small

Δ𝐸ST, and a substantial SOC can coexist in the framework of a reasonable density

functional. A priori, it should be no easier to optimize a set of properties in the DFT

world than it is in the real world. The in silico discovery of efficient TADF via SOC

should motivate a search for such systems in vitro.

6.4 Discussion

Turning to the ensemble statistics of the conformers, the most obvious feature is the

order-of-magnitude variations in the oscillator strengths and the energy gaps, indi-

cating strong non-Condon effects in the context of the four-state model. Although
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the conformations may be unrealistic as equilibrium geometries, they are realistic as

snapshots in time. Further assuming the validity of the Born-Oppenheimer approx-

imation, the TADF rates based on the TDDFT results are just the instantaneous

rates at the corresponding times along the trajectory. Hence, the results support the

proposition that the instantaneous TADF rate of a system can be maximized at some

nonequilibrium geometry. There might even exist a system where most accessible

conformations have a higher TADF rate than that of the equilibrium geometry. The

existence of such a system would help explain the experimental account of Ward and

collaborators [255] that TADF in a DAD system diminished when the motion of the

donor and the acceptor moieties was hindered. Indeed, constraining the geometry

would be detrimental if thermal motion gave access to an ensemble of conformations

with higher TADF rates. On the other hand, it would also be possible to harness the

conformational dependence by freezing an emitter in the conformation or the range

of conformations that maximizes the rate. Such a design strategy becomes viable in

light of the four-state model’s implication that the rates depend only on the nuclear

positions and not on the momenta.

Of course, there are some questions that must be answered before conformational

variation can lead to the improvement of real TADF emitters. First, there is the

theoretical problem of determining the structural features that facilitate TADF. In the

model system, there did not appear to be a particular distance, torsion, or orientation

that could be conclusively associated with high TADF rates. Perhaps it was to

be expected, considering the intricate interplay of several variables in the four-state

model. Then, there is the experimental problem of synthesizing molecules in a specific

conformation. While there have been efforts to tune the conformation of TADF

emitters using steric hindrance [217, 255], there does not appear to be an established

method or guideline to date. Nevertheless, conformational variation introduces a

new dimension over which TADF emitters can be optimized. Further theoretical and

experimental efforts should be directed to elucidating the structural features that

facilitate TADF and the synthetic techniques of enforcing these structures on real

molecular systems.
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6.5 Conclusions

We have proposed a simple four-state model which explains the key prerequisites of

efficient TADF in organic DA systems. The four spin-mixed diabatic states consti-

tute the conceptual basis to discuss the electronic structure of TADF emitters. We

show that the resulting adiabatic T1 and S1 excited states can have the necessary

characteristics to ensure efficient TADF. These characteristics are a small ST gap,

different electronic characters of S1 and T1, and a significant LE component in S1.

The first two conditions enable fast reverse intersystem crossing, while the last one

enables appreciable quantum yields. The model suggests that nonadiabatic effects

are not necessary for efficient TADF; however, it does not rule out their contribution

completely.

Monte Carlo sampling reveals that the conditions for efficient TADF are relatively

easy to satisfy in the parameter space; however, it does not mean that it is equally

easy to realize them in real molecular systems. The statistical analysis of the data

filtered for TADF activity reveals that a close mutual alignment of some pairs of

parameters of the model is a prerequisite for TADF, while their magnitude fine-tunes

its efficiency. This observation provides new design principles for optimization of

organic emitters, which should aim at satisfying the parameter alignment criteria.

Establishing the structure-property relationships between different molecular ar-

chitectures and model parameters should be the next step in the exploration of the

four-state model, which would lead eventually to the exploration of the chemical

space. The most straightforward way to achieve this is to parametrize the four-state

Hamiltonian based on ab initio calculations or experimental data. This would allow

correlations between different molecular designs and model parameters to be extracted

and eventually guide the development of new emitters with improved efficiencies. The

optimal parametrization strategy and its exploitation will be a subject of further inves-

tigations. In the meantime, by the means of combined MD and TDDFT simulations

for model exciplex systems, we showed that significant increase of the TADF effi-

ciency can be also obtained by exploration of the conformation space. This supports
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the vibronic mechanism for TADF, in which the non-Condon effects modulate the in-

stantaneous TADF rates and maximize them for some nonequilibrium conformations.

Additionally, our study suggests that optimization of condensed-phase molecular con-

formations, e.g. through controlled exploitation of steric hindrance or application of

pressure, may be a practical design strategy for improved OLED materials.
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Chapter 7

Maximizing TADF via

Conformational Optimization

We investigate a new strategy to enhance thermally activated delayed fluorescence

(TADF) in organic light-emitting diodes (OLEDs). Given that the TADF rate of a

molecule depends on its conformation, we hypothesize that there exists a conforma-

tion that maximizes the TADF rate. To test this idea, we use the time-dependent

density functional theory (TDDFT) to simulate the TADF rates of several TADF

emitters while shifting their geometries toward higher TADF rates in a select sub-

space of internal coordinates. We find that geometric changes in this subspace can

increase the TADF rate up to three orders of magnitude with respect to the mini-

mum energy conformation, and the simulated TADF rate can even be brought into

the submicrosecond time scales under the right conditions. Furthermore, the TADF

rate enhancement can be maintained with a conformational energy that might be

within the reach of modern synthetic chemistry. Analyzing the maximum TADF

conformation, we extract a number of structural motifs that might provide a use-

ful handle on the TADF rate of a donor-acceptor (DA) system. The incorporation of

conformational engineering into the TADF technology could usher in a new paradigm

of OLEDs.
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7.1 Introduction

Organic light-emitting diodes (OLEDs) are a promising solution in digital displays and

lighting applications. Since Tang and VanSlyke demonstrated the first OLED device

in 1987 [156], OLEDs have attracted widespread research and development (R&D)

efforts in both the academia and the industry. OLED displays exhibit supremacy in

energy efficiency, image quality, response time, and compactness over conventional

technologies, such as liquid crystal displays (LCDs) [157–159]. In addition, OLEDs

are expected to help reduce global energy consumption [160, 161] and yield new

commercial products, such as transparent lighting panels and flexible displays [162,

163].

A key issue in developing more efficient OLEDs is overcoming the disadvantageous

spin statistics. When electrons and holes are injected into the organic layer, they

recombine in one of the four possible spin states with equal likelihoods: one singlet

state and three triplet states. Whereas the singlet excitons can emit a photon and

decay to the likewise singlet ground state, radiative decay of the triplet excitons is

spin-forbidden. Most of the excitons are dissipated as heat, and the external quantum

efficiency (EQE) of fluorescent OLEDs cannot exceed 25 %. As a way to harvest the

triplet excitons, Baldo et al. introduced phosphorescent OLEDs (PhOLEDs), which

activate the otherwise forbidden transition between the triplet excited state and the

singlet ground state [164]. Using the strong spin-orbit coupling (SOC) in heavy metal

complexes, the rate of phosphorescence can be brought into the useful microsecond

time scales [162, 165]. However, in spite of the commercial success of red and green

PhOLEDs, an efficient and stable blue PhOLED remains out of reach [159, 166], and

the rarity and the toxicity of heavy metals are also problematic.

Thermally activated delayed fluorescence (TADF) is an alternative approach that

involves converting the nonemissive triplet excitons into emissive singlet excitons [167,

168]. In typical organic molecules, electron exchange stabilizes the first triplet excited

state (T1) with respect to the first singlet excited state (S1). However, if the singlet-

triplet (ST) energy gap is under a few 𝑘B𝑇 , thermal fluctuations can drive the reverse
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intersystem crossing (RISC) of the T1 population into the S1 state. Modulation of

the exchange energy can be accomplished by tuning the spatial overlap of the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO). In the first metal-free TADF OLED, Adachi et al. employed a donor-

acceptor (DA) architecture to localize the HOMO and the LUMO on orthogonal

moieties, creating S1 and T1 states of charge transfer (CT) character [169, 170]. Since

then, a large number of TADF emitters have been designed on the same principle [171–

175], and high-throughput screening approaches with the aid of machine learning

techniques have been employed to give extensive surveys of the relevant chemical

space [228, 286]. As a culmination of the R&D efforts, the efficiencies of TADF

OLEDs are becoming competitive with commercial PhOLEDs [220, 287–289].

Unfortunately, the spatial separation of the HOMO and the LUMO also diminishes

the transition dipole moment (TDM) between the S1 state and the ground state

(S0). A decrease in the TDM entails a decrease in both the prompt and the delayed

fluorescence rates. The trade-off between a small ST gap and a large TDM is manifest

even in the outcomes of high-throughput screening studies [228, 286]. In addition,

according to El-Sayed’s rule [176], the identical CT characters of the S1 and the T1

states are expected to lead to a vanishing SOC and hence a vanishing RISC rate.

However, the trade-off might not be an intrinsic limitation of TADF but an artifact

of the design principles based on an oversimplified model. Indeed, recent studies have

demonstrated that the T1 state of many TADF molecules has significant contributions

of local excitation (LE) [174, 290, 291] and that higher triplet states might also have

an important role in the RISC step [240, 241, 290]. The two-state model of TADF

does not provide the requisite insight to guide the development of trend-breaking

emitters.

In Chapter 6, a four-state model of TADF was proposed that might provide a way

to overcome the trade-off. According to the four-state model, the ST gap contains

additional terms that can counter the effects of electron exchange, enabling the co-

existence of a small ST gap and a large TDM in the same molecule. Furthermore,

the adiabatic S1 and T1 wave functions contain different fractions of diabatic CT and
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LE wave functions, enabling the coexistence of a vanishing ST gap and a nonvan-

ishing SOC. Although the mathematical forms of the S1 and T1 energies and wave

functions do not render themselves to straightforward interpretation, exploring the

conformation space of TADF emitters has been proposed as a practical approach to

discovering new design principles. Using molecular dynamics (MD) to sample the

conformation space and the time-dependent density functional theory (TDDFT) to

simulate the electronic excitations, we showed that a DA complex can achieve up to

an 800-fold enhancement of the TADF rate with respect to the minimum energy con-

formation. Indeed, a number of theoretical studies have shown that the conformation

of a molecule can modulate the excitation energies and state-to-state couplings that

contribute to the TADF rate [244, 292, 293]. It would be reasonable to believe that

the TADF rate has a strong dependence on the conformation.

In this chapter, we take the idea of conformational dependence to the next step

and examine the potential of direct optimization to maximize the TADF rate. Using

a number of known TADF emitters, we show that the TADF rate can be enhanced

up to three orders of magnitude and can even be brought into the submicrosecond

time scales via suitable changes of conformation. The maximum TADF conformation

is free of thermal fluctuations that plague MD snapshot geometries, and one can

extract specific hints, as well as general principles that can boost the performance of

TADF OLEDs. Furthermore, we find that taking a small subset of the conformational

variables suffices to gain substantial control over the TADF rate, and the relevant

variables seem to overlap with degrees of freedom (DOFs) that might be tunable via

steric hindrance or mechanical strain. Hence, conformational optimization appears

to herald a new paradigm of TADF OLEDs.

7.2 Theory

The TADF rate was estimated using the formulation of Adachi et al [215]. First, the

rate of TADF is understood to mean the quasi-steady-state rate at which the excited
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states are depopulated via fluorescence

𝑘TADF ≡
𝑘F[S1]

[S1] + [T1] + [T2]
(7.1)

where we have assumed that internal conversion (IC) is fast enough that only the

S1, T1, and T2 states have significant populations. In our experience, omission of

the T2 state can lead to an overestimation of the TADF rate when the T2 energy

is below the S1 energy. Assuming that the forward and reverse intersystem crossing

(ISC and RISC) are fast compared to the radiative and nonradiative decay processes,

the formula reduces to

𝑘TADF = 𝑘F

1 +𝐾1 +𝐾2
(7.2)

where 𝐾𝑛 is the equilibrium constant between the S1 state and the T𝑛 state

𝐾𝑛 = 3 exp
(︃

Δ𝐸S1−T𝑛

𝑘𝐵𝑇

)︃
(7.3)

The fluorescence rate is estimated by the Einstein coefficients [191]

𝑘F = 𝑒2𝜔10
2

2𝜋𝜖0𝑚𝑒𝑐3𝑓10 (7.4)

where 𝑒 and 𝑚𝑒 are the electron charge and mass, respectively; 𝑐 is the speed of light;

and 𝜔10 and 𝑓10 are the S1 → S0 energy gap and oscillator strength, respectively. In

the final objective function, we added a penalty to damp the increase in the conforma-

tional energy (the DFT energy with respect to the energy minimum) and byproduct

features that might arise in the optimization

Φ = 𝑘TADF − ΛΔ𝐸DFT (7.5)

where Λ is a tunable parameter and Δ𝐸DFT is the change in the DFT energy with

respect to the minimum energy conformation. We chose the tunable parameter to be

on the order Λ ∼ 1 µs−1𝐸h
−1.

We need to emphasize a couple of points regarding the objective function. First,
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Equation 7.2 attempts to describe a single conformer of definite geometry. There are

theories that enable the inclusion of geometric relaxation (or reorganization) [192, 193]

and vibrational effects [194] in estimating the rates of RISC and fluorescence, and

these would be the proper way to describe a dynamical ensemble of conformers [247,

294, 295]. However, the TADF rate maximization is a geometry optimization where

we maximize the TADF rate instead of minimizing the energy, which necessitates the

evaluation of the TADF rate at a definite geometry. Hence, consideration of nuclear

dynamics is incompatible with the present investigation.

Second, Equation 7.2 represents an upper bound on the TADF rate. In the real

universe, nonradiative decay and a finite RISC rate would entail a slowdown in ad-

dition to the fluorescence rate and the thermodynamic cap on the S1 population.

Nonetheless, the formula appeals to our purposes in a number of ways. In the first

place, we are only interested in good TADF emitters, where TADF dominates over

nonradiative decay, so it makes sense to compute the TADF rate by itself and verify

after the fact that TADF proceeds on a feasible time scale. Moreover, Brédas et al.

calculated the RISC rates of several TADF emitters and found that RISC rates on

the microsecond time scale are not uncommon [290]. We expect that RISC would

not be a severe bottleneck in most cases and that the formula would provide a tight

upper bound on the TADF rate. Indeed, we found that the RISC only makes quanti-

tative corrections and does not alter the qualitative trends in our model systems. The

computational details and numerical results have been provided in Appendix E.2.

The electronic structure calculations were performed using the B3LYP exchange-

correlation functional [272–277] and the 6-31+G* basis set [278–280, 296], as imple-

mented in the Q-Chem 5.1 software package [297]. The geometries were visualized in

Avogadro 1.2.0 [298], and the natural transition orbitals (NTOs) [284] were visualized

in MacMolPlt 7.7 [299]. Standard hybrid functionals are known to underestimate the

excitation energy and overestimate the CT character of CT-like states [208, 281]. We

are also neglecting the dielectric environment, which is known to stabilize the CT-like

states [247], and the dielectric stabilization is not, in principle, equivalent to the CT

error [294]. However, our objective was not to make quantitative predictions of TADF
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rates but to extract qualitative trends that can guide the design of TADF emitters.

Since analytical derivatives of the TDM are not available, the TADF rate maximiza-

tion entails much higher computational costs than the usual energy minimization.

Thus, it was desirable to use a functional that can reproduce the qualitative trends

at minimal costs.

To establish that conformational dependence is not an artifact of B3LYP, the

electronic structures at the key geometries were recalculated using PBE0 [300–302],

M06-2X [303], and LRC-𝜔*PBE [304–306]. The asterisk indicates ionization potential-

electron affinity(IPEA)-tuning of the range-separation parameter, which we did at

the minimum energy conformation in vacuum. Solvent effects were examined in the

cases of M06-2X and LRC-𝜔*PBE, using the integral equation formalism polarizable

continuum model (IEF-PCM) [307–309] and first order, perturbative state-specific

(ptSS) [283] treatment of the excited states. We used the dielectric constant and

optical dielectric constant of toluene at room temperature: 𝜀 = 2.379 and 𝜀∞ = 2.232

[310].

The TADF rate maximization was performed using a variation of the Nelder-

Mead simplex method [311, 312]. Since there are multiple versions of the method, we

have outlined our algorithm in Appendix E.1. The geometries of the molecules were

represented in the 𝑍-matrix coordinates. We have included the 𝑍-matrices of the

model systems at the key geometries in Appendix E.5. To reduce the computational

costs and contain the geometric changes in the meaningful regions of the confor-

mation space, a subset of the bond lengths, bond angles, and dihedral angles were

chosen to be varied, while the others were constrained to the values at the minimum

energy conformation. Since peripheral hydrogens should not have strong effects on

the electronic structure and aromatic ring systems should be resistant to distortions,

we chose the geometries of the single bonds that connect the aromatic ring systems

as the variables. For a complete range of motion, six DOFs are required per bond:

one bond length, two bond angles, and three dihedral angles. Hence, the number

of variables in each of the model systems could be reduced to 30 or fewer Z-matrix

coordinates. To assess the extent to which our choices of variables were justified, a
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constrained energy minimization was performed at the end of the TADF rate maxi-

mization, where we relaxed the bond lengths and angles that had been fixed in the

TADF rate maximization.

7.3 Results and Discussion

Figure 7-1: Structures of DCzTrz, Cz2BP, Ac-MPM, and SpiroAC-TRZ. The donor
and acceptor groups are indicated in red and blue, respectively. Shown in green are
the single bonds whose geometries were varied in the TADF rate maximization.

As model systems, we chose a number of TADF emitters that have been re-

ported to exhibit high EQE in blue: DCzTrz [287], Cz2BP [313], Ac-MPM [314], and

SpiroAC-TRZ [289]. The skeletal structures of the model systems are shown in Figure

7-1. We are going to examine the case of DCzTrz in detail and use the other emitters

to assess the extent to which the results can be generalized.

7.3.1 DCzTrz

Table 7.1 summarizes the energetics of DCzTrz at the maximum TADF geometries

with various energy penalties. Between the energy minimum (Λ = ∞) and the
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Λ Δ𝐸DFT EE (eV) 𝑘TADF
(µs−1𝐸h

−1) (kJ mol−1) S1 / T1 / T2 𝑓10 (µs−1)
∞ 0 2.84 / 2.71 / 2.74 0.017 0.0094
8.0 211 2.86 / 2.83 / 2.93 0.026 0.88
4.0 278 2.94 / 2.91 / 3.00 0.029 1.06
2.0 409 2.86 / 2.84 / 2.95 0.026 1.08
0.0 594 2.79 / 2.77 / 2.90 0.028 1.07

Table 7.1: Conformational energies, excitation energies, oscillator strengths, and
TADF rates of DCzTrz at the maximum TADF geometries with various energy penal-
ties. The case of Λ =∞ corresponds to the energy minimum, and the case of Λ = 0
corresponds to the TADF maximum with no energy penalty.

TADF maximum with no energy penalty (Λ = 0), the TADF rate increases over

two orders of magnitude from 9.4 ms−1 to 1.07 µs−1. Moreover, the enhancement

is not a result of trade-off between a small ST gap and a large TDM: the S1-T1

gap decreases from 0.13 eV to 0.02 eV, and 𝑓10 increases from 0.017 to 0.028. The

simultaneous improvement of what are supposed to be contraindicated properties

confirms that conformational optimization has achieved more than modulation of

the HOMO-LUMO overlap. Although the conformational energy also undergoes a

gigantic increase of 594 kJ mol−1, the results with energy penalty reveal that much of

the energy is irrelevant to improving the TADF rate. Using Λ = 4.0 µs−1𝐸h
−1, the

conformational energy can be halved with negligible loss in the TADF rate. Using

Λ = 8.0 µs−1𝐸h
−1, further damping to 211 kJ mol−1 is possible with less than 20 % loss

of the TADF rate enhancement. The stability of the TADF rate against an energy

penalty affirms that the maximum TADF conformation is not an absurdity, but its

essential features are those that one may hope to reproduce using suitable techniques

in the real universe.

Figure 7-2a shows the minimum energy conformation with arrows indicating the

DOFs that participate in the TADF rate maximization. It is obvious that the TADF

maximum in Figure 7-2b is a strained conformation. The carbazole (Cz, donor)

groups have popped above and below the plane of the 2,4,6-triphenyl-1,3,5-triazine

(Trz, acceptor) group by −33.4∘ (left) and 3.7∘ (right), respectively. To be precise,

two of the phenyl rings have twisted with respect to the triazine ring, so the Trz group
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is no longer planar, so these angles are with respect to the phenyl ring that bridges

the Cz groups to the rest of the Trz group. Also, the Cz groups have rotated to

become more orthogonal to the Trz group. The Cz groups are 92.7∘ (left) and 79.8∘

(right) to the Trz group, respectively, in contrast to 57.3∘ (left) and 56.5∘ (right) at

the energy minimum. Increasing the dihedral angle between the donor and acceptor

moieties is a known strategy to reduce the HOMO-LUMO overlap and hence the ST

gap [217, 315, 316]. The fact that the same motif appears at the TADF maximum of

DCzTrz is an encouraging sign that useful design principles can be extracted.

Indeed, a strange feature comes to attention. After popping above and below the

plane of the Trz group, the Cz groups tilt back toward the Trz group, as shown in

Figure 7-2c. The lower and upper CCz-NCz-CTrz angles at each Cz group differ by 17.7∘

(left) and −19.5∘ (right), respectively, whereas the CCz-NCz-CTrz angles at the energy

minimum are the same 125.7± 0.2∘. Though the differences in the angles change to

23.8∘ (left) and −6.5∘ (right), the gooseneck persists even with an energy penalty of

Λ = 8.0 µs−1𝐸h
−1. Hence, the gooseneck cannot be a side product of the optimization

but a feature relevant to TADF. Though the physical intuition is unclear, it might be

associated with the additional terms in the four-state model. or the dissimilar forms

of the integrands in the exchange integral ⟨𝑟12
−1⟩ and the transition dipole integral

⟨𝑟1⟩. After all, the ST gap and the TDM should depend not only on the overlap but

also on the orientation of the HOMO and the LUMO.

Meanwhile, the twist in the Trz group tends to dissipate with energy penalty. As

shown in Figure 7-2d, the phenyl rings return to a more coplanar arrangement to the

triazine ring in what appears to be a concerted manner. However, the planarity of the

Trz group remains quite disturbed even with an energy penalty of Λ = 8.0 µs−1𝐸h
−1.

The phenyl rings to the front center and the back left are 30.2∘ and 30.6∘ to the

triazine ring, respectively, which are 41.6∘ and 61.3∘ in the absence of energy penalty.

We conjecture that the twist in the Trz group controls the distribution of the LUMO

so that it gets neither too close to nor too far away from to the HOMO. Comparing

the dominant NTO pairs of the S1 state at the energy minimum (Figure 7-2e) and the

TADF maximum (Figure 7-2f), the distribution of the S1 hole is indeed impacted.
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The NTOs of the T1 state are similar (Figure E-4). This would also explain why

the twist appears to unroll in a concerted manner as energy penalties are imposed.

Overall, the twist in the Trz group appears to help enhance the TADF rate, but a

balance must be struck with the conformational energy.

7.3.2 Other Model Systems

Λ Δ𝐸DFT EE (eV) 𝑘TADF
(µs−1𝐸h

−1) (kJ mol−1) S1 / T1 / T2 𝑓10 (µs−1)

Cz2BP

inf 0 2.99 / 2.67 / 2.78 0.345 1.9× 10−4

8.0 162 2.67 / 2.63 / 2.64 0.061 0.66
4.0 181 2.66 / 2.62 / 2.62 0.062 0.69
0.0 193 2.64 / 2.60 / 2.61 0.060 0.69

Ac-MPM

inf 0 2.47 / 2.46 / 2.47 3.4× 10−5 0.0012
8.0 51 2.51 / 2.49 / 2.49 0.036 0.59
4.0 365 2.54 / 2.51 / 2.67 0.022 0.58
0.0 420 2.55 / 2.52 / 2.61 0.028 0.63

SpiroAC-TRZ

inf 0 2.41 / 2.41 / 2.66 7.9× 10−6 4.2× 10−4

8.0 104 2.56 / 2.54 / 2.75 0.012 0.49
4.0 294 2.48 / 2.46 / 2.75 0.017 0.50
0.0 475 2.50 / 2.48 / 2.67 0.019 0.61

Table 7.2: Conformational energies, excitation energies, oscillator strengths, and
TADF rates of Cz2BP, Ac-MPM, and SpiroAC-TRZ at the maximum TADF ge-
ometries with various energy penalties. The case of Λ =∞ corresponds to the energy
minimum, and the case of Λ = 0 corresponds to the TADF maximum with no energy
penalty.

Table 7.2 summarizes the energetics of Cz2BP, Ac-MPM, and SpiroAC-TRZ. The

TADF rates start in the millisecond time scale at the energy minimum and end in the

microsecond time scale at the TADF maximum, suggesting that TADF rate enhance-

ments over two to three orders of magnitude might be typical in the conformational

optimization of TADF emitters. Cz2BP undergoes the largest enhancement in the

TADF rate, a factor of 3000. However, the improvement is a result of trade-off be-

tween a small ST gap and a large TDM: both the S1-T1 gap and 𝑓10 decrease from

0.32 eV to 0.04 eV and from 0.345 to 0.060, respectively. The cases of Ac-MPM and

SpiroAC-TRZ might be more complicated. Whereas the increases in the S1-T1 gaps

of 0.02 eV are comparable to the uncertainty, the increases in the 𝑓10 of Ac-MPM

156



and SpiroAC-TRZ span three orders of magnitude from 3.4× 10−5 to 0.028 and from

7.9× 10−6 to 0.019, respectively. The disproportionate trade-off suggests that confor-

mational optimization might have had a nontrivial impact on the electronic structure.

In any case, simultaneous improvement of the ST gap and the TDM might be a rare

occurrence, which might also explain why DCzTrz was the only model system whose

TADF rate reached the submicrosecond regime.

Notice that the minimum energy conformations of Ac-MPM and SpiroAC-TRZ

have a tiny ST gap. In particular, the ST gap of SpiroAC-TRZ is near vanishing.

The two-state model would suggest that the SOC must vanish, since both the S1 and

T1 states must be CT states [176]. Surprisingly, the RISC step does not appear to

be the most severe bottleneck. The 𝑓10 and SOC are 7.9× 10−6 and 0.0063 cm−1,

respectively, which correspond to a fluorescence rate of 2.0 ms−1 and a RISC rate of

2.9 ms−1 (Table E.1). This makes sense in light of the four-state model. The S1 and

T1 states contain different fractions of the diabatic CT and LE states, and the electron

exchange favors the S1 state as the more CT-like state. Hence, the fluorescence step

can end up slower than the RISC step.

In each of the model systems, a suitable energy penalty can reduce the confor-

mational energy with minimal loss in the TADF rate. Even with no energy penalty,

the TADF maximum of Cz2BP has a conformational energy of 194 kJ mol−1, less

than half of the other model systems. With an energy penalty of Λ = 8.0 µs−1𝐸h
−1,

Ac-MPM and SpiroAC-TRZ reduce their conformational energies to 53 kJ mol−1 and

102 kJ mol−1, respectively, while retaining more than 90 % and 80 % of the TADF

rates. Though these conformational energies might seem daunting, synthetic chemists

have created and stabilized molecules with strain energies over 300 kJ mol−1 [317, 318].

For certain TADF emitters, the maximum TADF conformation might be synthesiz-

able using suitable modifications in the real universe.

Figure 7-3 shows the geometries of Cz2BP, Ac-MPM, and SpiroAC-TRZ at the

TADF maximum with no energy penalty (Λ = 0). The maximum TADF geometries

with energy penalties and a detailed discussion of their relations to the energetics

can be found in Appendix E.3. Here, we summarize the key results. First, the
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dihedral angles between the donor and acceptor groups increase in Cz2BP (Figure

7-3a), while they decrease in Ac-MPM (Figure 7-3b) and SpiroAC-TRZ (Figure 7-

3c). The dihedral angle changes are consistent with the outcome that both the ST

gap and the TDM decrease in Cz2BP and increase in Ac-MPM and SpiroAC-TRZ.

Second, SpiroAC-TRZ is the only model system that does not develop a gooseneck.

The donor groups of Cz2BP (Figure 7-3d) and Ac-MPM (Figure 7-3e) both pop above

and below the plane of the acceptor group and then tilt back toward the acceptor

group. Third, the acceptor groups of Cz2BP and Ac-MPM become twisted, albeit

in different ways from both DCzTrz and each other. In Cz2BP, the phenyl rings

become more orthogonal to each other. In Ac-MPM, one of the phenyl rings twists

out of plane, while the other maintains a moderate angle to the pyrimidine ring.

The gooseneck and the twist in the acceptor group tend to persist even with energy

penalties.

Remarkably, three out of the four model systems developed a gooseneck at the DA

bond and a twist in the acceptor group. We suspect that these motifs might provide

a useful handle on the TADF rate in general DA systems. Unfortunately, there is

a need for theoretical intuition and experimental evidence at this point. In spite of

abundant efforts to manipulate the DA dihedral angles [217, 315, 316], we are not

aware of prior studies that have considered out-of-plane displacement of the donor

and the acceptor moieties. As discussed earlier, the gooseneck might be associated

with the mathematical forms of the integrals that enter the TADF rate, but it is

unclear which integrals are affected in what way.

The twist in the acceptor group is also obscure. While it is not hard to rationalize

how the twist might change the distribution of the LUMO, it is not always clear

why a particular distribution should be more conducive to TADF than another, nor

does there appear to be a pattern in how the acceptor groups become distorted. For

example, Ac-MPM appears to push the LUMO toward just one of the donor groups,

while Cz2BP remains much more symmetric. The dominant NTO pairs of the S1

and T1 states can be found in Appendix E.4. Perhaps, the absence of a trend is due

to the small number of model systems. The twist might not be a single motif but a
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collection of motifs that concern specific families of emitters.

On the other hand, the lack of physical intuition attests to the true value of confor-

mational optimization: discovery of design principles that do not render themselves

to deduction.

7.3.3 Choice of Density Functional

To assess the functional dependence of the results, we took the maximum TADF

geometries optimized using B3LYP and recalculated the electronic structures using

PBE0, M06-2X, and LRC-𝜔*PBE. To our surprise, the generalized gradient approxi-

mation (GGA) global hybrid, the meta-GGA global hybrid, and the range-separated

hybrid (RSH) exhibited similar patterns. Since tuned RSHs have been shown to be

effective at predicting the excited-state properties of TADF emitters [224, 294], we

focus on LRC-𝜔*PBE as the primary subject of comparison. The complete set of

results can be found in Appendix E.2.

Λ Δ𝐸DFT EE (eV) 𝑘TADF
(µs−1𝐸h

−1) (kJ mol−1) S1 / T1 / T2 𝑓10 (µs−1)

DCzTRZ
(vacuum)

inf 0 3.39 / 3.07 / 3.14 0.0310 1.5× 10−5

8.0 202 3.49 / 3.27 / 3.29 0.0133 2.8× 10−4

4.0 267 3.49 / 3.26 / 3.27 0.0018 2.4× 10−5

2.0 394 3.37 / 3.15 / 3.20 3.5× 10−4 7.1× 10−6

0.0 573 3.33 / 2.93 / 3.11 3.9× 10−4 1.1× 10−8

DCzTRZ
(toluene)

inf 0 3.30 / 3.07 / 3.08 0.0312 3.1× 10−4

8.0 199 3.37 / 3.27 / 3.27 0.0146 0.024
4.0 262 3.39 / 3.27 / 3.27 0.0021 0.0019
2.0 389 3.28 / 3.14 / 3.21 4.2× 10−4 2.5× 10−4

0.0 568 3.24 / 2.93 / 3.12 3.4× 10−4 2.7× 10−7

Ac-MPM
(toluene)

inf 0 3.04 / 3.09 / 3.06 5.0× 10−5 0.0073
8.0 48 2.97 / 2.98 / 3.07 0.031 3.8
4.0 341 3.02 / 2.89 / 3.02 0.034 0.026
0.0 393 3.08 / 2.82 / 3.08 0.0059 3.4× 10−5

Table 7.3: Conformational energies, excitation energies, oscillator strengths, and
TADF rates of DCzTrz and Ac-MPM recomputed with LRC-𝜔*PBE/IEF-PCM at
the maximum TADF geometries optimized with B3LYP. The case of Λ = ∞ corre-
sponds to the energy minimum, and the case of Λ = 0 corresponds to the TADF
maximum with no energy penalty.

Table 7.3 summarizes the LRC-𝜔*PBE energetics of DCzTrz at the B3LYP ge-
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ometries. Interestingly, the TADF rates in LRC-𝜔*PBE seem to increase with the

energy penalty at small values of Λ. The TADF rate reduces to 0.011 s−1 at the

geometry optimized with no energy penalty (Λ = 0), which is smaller than 15 s−1 at

the energy minimum. On the other hand, the maximum TADF rate is 280 s−1 at the

geometry optimized with Λ = 8.0 µs−1𝐸h
−1, which is an order of magnitude greater.

A toluene-like environment stabilizes the S1 state by 0.1–0.2 eV, increasing the maxi-

mum TADF rate to 24 ms−1 at the geometry optimized with Λ = 8.0 µs−1𝐸h
−1, which

is now two orders of magnitude greater than 0.31 ms−1 at the energy minimum. The

other molecules exhibit similar trends, as shown in Tables E.4 and E.6.

Remarkably, LRC-𝜔*PBE predicts much more favorable TADF properties in Ac-

MPM and SpiroAC-TRZ. Table 7.3 shows the energetics of Ac-MPM in a toluene-

like environment as computed using LRC-𝜔*PBE/IEF-PCM. Notice that Ac-MPM

exhibits a simultaneous improvement of the ST gap and TDM and a TADF rate in

the submicrosecond time scales at the geometry optimized with Λ = 8.0 µs−1𝐸h
−1.

As shown in Table E.6, SpiroAC-TRZ also exhibits a simultaneous improvement at

Λ = 4.0 µs−1𝐸h
−1, though the TADF rate is the greatest at Λ = 8.0 µs−1𝐸h

−1. The

TADF rates of Ac-MPM and SpiroAC-TRZ are 3.8 µs−1 and 2.9 µs−1 at the respective

geometries optimized with Λ = 8.0 µs−1𝐸h
−1. Again, we emphasize that we have not

reoptimized the geometries using LRC-𝜔*PBE/IEF-PCM. It stands to reason that

we could have gotten even more drastic enhancements if we had.

Hence, various functionals corroborate the enhancement of TADF rates in the

B3LYP geometries, provided that the objective function contained sufficient energy

penalty. We suspect that the TADF rate maximization had a propensity to exploit

the quirks of the B3LYP universe and that the energy penalty helped the optimizer

to remain in the safe region of the conformation space. The existence of such quirks is

not surprising, since B3LYP is just an approximation to the exact density functional.

However, B3LYP is not special in this regard. In fact, we might have encountered

the same issue even if we had optimized the geometries using a different functional.

Suppose that we had done the TADF rate maximization using LRC-𝜔*PBE/IEF-

PCM. We would have obtained drastic enhancements only to have those results be
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brought into question by the other functionals. For practical purposes, it would make

sense to perform the TADF rate maximization using an inexpensive method and

verify the improvements using more sophisticated methods.

We recapitulate the noteworthy commonalities in the energetics predicted by

B3LYP and the other functionals. First, there exists a conformation where the TADF

rate is orders of magnitude greater than at the minimum energy conformation. More-

over, the maximum TADF conformation in B3LYP and in the other functionals cannot

be too far apart, considering that a moderate energy penalty is sufficient to arrive at a

geometry that exhibits TADF rate enhancement in all of the functionals. These obser-

vations reaffirm that the maximum TADF conformation not only exists but also can

be determined to a reasonable precision. Second, one or more of the model systems

exhibit a simultaneous improvement of the ST gap and TDM. These are DCzTrz

in B3LYP and PBE0 and Ac-MPM and SpiroAC-TRZ in M06-2X/IEF-PCM and

LRC-𝜔*PBE/IEF-PCM. When a simultaneous improvement of the ST gap and TDM

occurs, the maximum TADF rate can be impressive. The TADF rate of DCzTrz in

B3LYP and the TADF rates of Ac-MPM and SpiroAC-TRZ in M06-2X/IEF-PCM

and LRC-𝜔*PBE/IEF-PCM reach the submicrosecond time scales. It is possible but

difficult to think that the simultaneous improvement is just a quirk in each of the

functionals, given that the last two methods predicted simultaneous improvement in

geometries optimized using a different functional. The results cast a serious doubt on

the conventional wisdom that the trade-off is an inherent property of TADF emitters.

7.3.4 Choice of Conformational Variables

So far, we have assumed that the variables in the TADF rate maximization corre-

sponded to the most flexible DOFs in the model systems. While the assumption

does not affect the existence of conformations that maximize the TADF rate, it does

affect the extent to which we can expect the maximum TADF conformation to be

reproducible in the real universe. If our choice of conformational variables were ap-

propriate, then the changes in the geometry and the consequent changes in the TADF

rate would be minimal even if we relaxed the complementary DOFs. Hence, we took
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the maximum TADF geometries and performed a constrained energy minimization

to relax the hydrogen atoms and the aromatic ring systems, which had been fixed in

the TADF rate maximization.

Figure 7-4: (a) TADF rates and (b) DFT energies of DCzTrz, Cz2BP, Ac-MPM, and
SpiroAC-TRZ at the energy minimum, at the TADF maximum (Λ = 0), and after
the relaxation of the hydrogen atoms and the aromatic ring systems. (c) Geometry
of DCzTrz after the relaxation of the hydrogen atoms and the aromatic ring systems.

Figure 7-4 summarizes the energetics of the maximum TADF geometries before

and after the constrained energy minimization. The effects of the relaxation depend

on the system. For example, DCzTrz undergoes an order-of-magnitude decrease in

the TADF rate from 1.07 µs−1 to 0.14 µs−1, and a noticeable decrease in the DFT

energy from 594 kJ mol−1 to 472 kJ mol−1, as shown in Figures 7-4a,b, respectively. It

appears that our choice of variables included too many rigid DOFs or the geometric

changes might have been severe enough to obscure the distinction of flexible and

rigid DOFs. Figure 7-2c reveals that the constrained energy minimization causes

distortions in the phenyl and the triazine rings that tend to restore the planarity of

the Trz group. These changes agree with the conjecture that the twist in the acceptor

group imparts a considerable strain on DCzTrz. Also, it makes sense that unrolling

the twist in the acceptor group in an unconcerted manner would be detrimental to
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the TADF rate, since the distortion controls the distribution of the LUMO.

With the exception of DCzTrz, the TADF rate enhancement is quite stable against

the relaxation of the hydrogen atoms and the aromatic ring systems. Cz2BP shows

minimal changes in both the TADF rate and the DFT energy, meaning that our

choice of variables captured both the most flexible DOFs and the DOFs that are

the most relevant to the TADF rate. In the cases of Ac-MPM and SpiroAC-TRZ,

the conformational energies are halved, but the TADF rates remain at 0.52 µs−1 and

0.49 µs−1, respectively. The geometries of Cz2BP, Ac-MPM, and SpiroAC-TRZ after

the constrained energy minimization have been provided in Section E.3. In addition to

affirming our choice of variables, the stability of the TADF rate suggests a substantial

overlap between the most flexible DOFs and the DOFs that determine the TADF

rate in the model systems. The outcome is consistent with our proposition that the

essential features of the maximum TADF conformation might be synthesizable using

suitable modifications in the real universe.

How to synthesize the maximum TADF conformers is beyond the scope of this

work, but we can suggest some basic examples. The textbook chemist’s approach

would be to attach bulky groups that constrain the rotation of certain bonds – the

same approach has been used to modulate the donor-acceptor dihedral angles in

TADF emitters [217, 315, 316]. We can also imagine placing the organic layer under

mechanical stress or pressure to crowd the molecules together. In the first place, it is

not necessary to have every OLED molecule in the maximum TADF conformation.

For most practical purposes, it would suffice to increase the population of molecules

that have a higher TADF rate than the equilibrium ensemble of the original emitter.

We expect that a myriad of techniques in enzyme design might prove applicable to

the conformational engineering of TADF OLEDs.

7.4 Conclusion

To demonstrate the potential of conformational optimization to assist the develop-

ment of trend-breaking TADF OLEDs, we studied direct maximization of the TADF
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rate in the conformation spaces of several TADF emitters. As desired, one of the

model systems (DCzTrz) achieved a simultaneous improvement of the ST gap and

the TDM, and its simulated TADF rate could be brought into the submicrosecond

time scales. Even model systems that exhibited trade-off between a small ST gap and

a large TDM were found to undergo TADF rate enhancements by two to three orders

of magnitude. The conformational energy required to maximize the TADF rate can

be as small as 193 kJ mol−1 even in the absence of energy penalty (Cz2BP), and the

conformational energy can be as small as 51 kJ mol−1 with minimal loss in the TADF

rate enhancement (Ac-MPM). Furthermore, the maximum TADF conformations of

the model systems shared a number of structural motifs, such as the gooseneck at

the DA bond and the concerted rotation of the aromatic rings in the acceptor group.

Although the physical intuition behind these motifs remains obscure, the opacity it-

self demonstrates the true value of conformational optimization: discovery of design

principles that do not render themselves to deduction.

The conformational dependence of the TADF rate motivates the incorporation of

conformational engineering into the TADF technology. Based on the results of TADF

rate maximization with energy penalties and constrained energy minimization, the

maximum TADF conformation of certain molecules, or another conformation that

contains its essential features, might be synthesizable, given the high levels of strain

that are within the reach of modern synthetic chemistry. Since the minimum energy

conformation is not the best geometry in terms of the TADF rate, it would be desirable

to manipulate the conformation in a way that enhances the TADF rate. Although

the proposition might seem unorthodox in physical or organic chemistry, changing

the properties of a molecule by changing its conformation is a standard in fields such

as enzyme design. In the future, we hope to connect conformational optimization

with experimental efforts and demonstrate that the electronic structures of TADF

emitters can be improved in the real universe.

165



7.5 Acknowledgements

Reprinted with permission from Ref. [319]. Copyright 2021 American Chemical

Society. This work was supported by the U.S. Department of Energy Office of Basic

Energy Sciences (DE-FG02-07ER46474).

7.6 Supplementary Information

The Supplementary Information is available in Appendix E: our version of the Nelder-

Mead simplex method; calculation of the RISC rate and evaluation of its effects on

the TADF rate; recalculation of the electronic structures using PBE0, M06-2X, LRC-

𝜔*PBE, M06-2X/IEF-PCM and LRC-𝜔*PBE/IEF-PCM; geometries of Cz2BP, Ac-

MPM, and SpiroAC-TRZ at the TADF maximum with various energy penalties and

after the relaxation of DOFs that had been fixed in the TADF rate maximization;

NTO pairs of DCzTrz, Cz2BP, Ac-MPM, and SpiroAC-TRZ in the S1 and T1 states;
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166



Chapter 8

Enhancing TTA Upconversion via

High-Level Intersystem Crossing

Experimental studies have reported molecules with triplet-triplet annihilation (TTA)

efficiencies that appear to exceed the theoretical limit of 40 %. We present computa-

tional evidence that these limit-breaking TTA efficiencies might be attributed to the

T2 → S1 intersystem crossing (ISC). Furthermore, we propose strategies to enhance

this ISC and provide experimental support of enhanced efficiencies.

8.1 Introduction

Triplet-triplet annihilation (TTA) provides an upconversion (UC) pathway that com-

bines two low-energy triplet excitons to produce one high-energy singlet exciton. It

is a promising approach to photon upconversion, with applications in photovoltaics

[180–182], photocatalysis [183–185], sensing [186, 187], bioimaging [188, 189], and

controlled drug release [190]. In addition, TTA is a promising solution for organic

light-emitting diodes (OLEDs) in the blue region, since the low energy of the triplets

is conducive to the device stability [320–322].

When two triplets collide, the triplet-triplet (TT) pair attains singlet, triplet, and

quintet spin multiplicities in a 1:3:5 ratio, as shown in Figure 8-1. However, the

quintet states of organic molecules are too high in energy, so the quintet TT pairs
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Figure 8-1: Schematic of TTA with T2 → S1 ISC.

dissociate back into two triplets. Meanwhile, the higher triplet states decay to the T1

state. This gives 18 T1 → 1 S1 + 3 T1 + 5× 2 T1. Subtracting triplets that appear on

both sides of the equation, we get that the theoretical limit on the TTA efficiency is

20 % per triplet or 40 % per TT pair [177]. Interestingly, experimental studies have

reported annihilators with efficiencies that appear to exceed this limit, such as 9,10-

diphenylanthracene (DPA) [178] and 5,6,11,12-tetraphenyltetracene (rubrene) [179].

A number of mechanisms have been proposed. First, the T2 state might be higher

in energy than twice the T1 energy [177]. Then, the triplet TT pair might dissociate

like the quintet TT pair. For example, the TTA efficiencies of perylene derivatives

have been shown to depend on the T2 energy [323, 324]. Second, the T2 exciton might

undergo ISC to the S1 state [177]. This does not increase the efficiency of TTA per se,

but it increases the observed efficiency. Indeed, experimental studies found evidence

of T2 → S1 ISC in rubrene [325]. In addition, second-order perturbation terms [326]

and intermolecular factors [325] have been proposed to be relevant.

8.2 Theory

To determine whether the T2 state is higher in energy than twice the T1 energy, we

calculated the excited states of DPA, rubrene, and their parent molecules using time-

dependent density functional theory (TDDFT) with the B3LYP exchange-correlation

functional [272–277] and the 6-31G* basis set [278, 279, 335, 336] as implemented

in the Q-Chem 5.1 software package [297]. The excitation energies are summarized
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Molecule B3LYP / 6-31G* Experiment
S1 T1 T2 S1 T1 T2

Anthracene 3.28 1.80 3.30 3.3 [327] 1.85 [327, 328] 3.25 [327, 329]
DPA 3.16 1.73 3.27 3.14 [330] 1.77 [328]

Tetracene 2.49 1.12 2.51 2.6 [327] 1.26 [327] 2.55 [327, 329]
Rubrene 2.19 0.95 2.33 2.35 [331] 1.15 [332, 333]
DPBF 2.93 1.52 3.10 2.98 [334] 1.48 [333]

Table 8.1: Computational and experimental excitation energies. The computational
values correspond to vertical excitation at the S0 geometry. The experimental values
represents combinations of UV-Vis absorption [327, 330, 331, 334] emission [327],
signlet-triplet absorption using oxygen perturbation [328], triplet-triplet absorption
[329], and energy transfer [332, 333].

in Table 8.1, along with the values in the experimental literature [327–334]. Since

the computational values correspond to vertical excitation, whereas the experimental

values represent combinations of various techniques, a direct comparison might not

be appropriate, and there might be reorganization energies of 0.1–0.2 eV [195, 196].

Nonetheless, the computational values appear to be good proxies of the experimental

values. Only, TDDFT underestimates the T1 energies of tetracene and rubrene by

0.2 eV. We could not find the T2 energies of DPA and rubrene in the experimental

literature, but we extrapolate using anthracene and tetracene that TDDFT predicts

accurate T2 energies.

The results in Table 8.1 indicate that the T2 state is not higher than twice the

T1 energy in these molecules. Even in tetracene and rubrene, the T2 state should be

about twice the T1 energy, considering the 0.2 eV underestimation of the T1 energy in

TDDFT. Hence, there is no energetic reason that the triplet TT pair must dissociate

into two triplets.

Meanwhile, the S1 state is 0.1 eV lower than the T2 state in DPA and rubrene. If

the T2 − S1 spin-orbit coupling (SOC) were strong enough, then a significant portion

of the T2 exciton might undergo ISC to the S1 state rather than internal conversion

(IC) to the T1 state.

We calculated the T2 → S1 ISC rates in the frameworks of Marcus theory [192, 337]

and Marcus-Levich-Jortner (MLJ) theory [194]. We provide the details in Supplemen-

tary Section F.1. As shown in Figure 8-2a, the T2 − S1 SOC is 7 and 60 times stronger
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Figure 8-2: (a) T2 − S1 SOC; (b) T2 → S1 ISC rates; and (c) NTO pairs of the S1
and the T2 states in DPA and their eigenvalues.
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in DPA and rubrene than anthracene and tetracene, respectively. Together with ad-

justments of the S1 and the T2 energies, this gives T2 → S1 ISC rates that are 102

and 104 times higher, respectively, as shown in Figure 8-2b. The absolute values of

these rates should be taken with caution, since they rely on the harmonic approxima-

tion and the Franck-Condon (FC) approximation. However, the order-of-magnitude

enhancements in the ISC rates might explain the observed TTA efficiencies of DPA

and rubrene.

The SOC enhancement in DPA can be explained in terms of the excitation char-

acters. According to El-Sayed’s rule, the SOC of two states is nonzero only if they

have different characters [176]. We conjecture that increasing the character difference

might increase the SOC. See the natural transition orbital (NTO) pairs [284] of the

S1 and the T2 states of DPA in Figure 8-2c. The orbitals on the anthracene core

is identical to anthracene. However, the S1 hole and particle delocalize on to the

phenyl rings, whereas the T2 exciton shows no such delocalization. This increases the

S1 − T2 character difference. If our conjecture is correct, then we should be able to

further enhance the SOC by pulling S1 on to the phenyl rings.

We substituted the electron-withdrawing (EW) amide and the electron-donating

(ED) amine groups at the 4′ and 4′′ positions of DPA, as shown in Figure 8-3a. These

do not appear to affect the delocalization of the T2 exciton, but the amine group

pulls the the S1 hole on to the phenyl rings, as shown in Figure 8-3b. As expected,

the T2 − S1 SOC and ISC rate have increased, as shown in Figure 8-3c,d. Meanwhile,

the amide group reduces the SOC and the ISC rate, though there is no visible effect

on the delocalization. These results support that the enhanced SOC in DPA are due

to the differences in the excitation characters. Moreover, they suggest a more potent

annihilator – 4′, 4′′-diamino-9, 10-diphenylanthracene (Diamine).

As shown in Figure F-2, the qualitative trends in the T2 − S1 SOC and ISC

rates are corroborated by a wide range of density functionals. Interestingly, rubrene

appears to have a different mechanism that enhances the T2 − S1 SOC. The analysis

of rubrene will be the topic of a separate study.

Another popular way to increase the SOC in organic molecules is using heavy
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Figure 8-3: (a) Structures of the DPA and the DPBF derivatives; (b) S1 holes of the
DPA derivatives; (c) T2 − S1 SOC; and (d) T2 → S1 ISC rates.
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atoms. In this approach, the heavy atom should be near the core of the molecule to

ensure excitation densities on the heavy atom. A well-known annihilator that satis-

fies this criterion is 1,3-diphenylisobenzofuran (DPBF). We substituted the oxygen

in DPBF with a sulfur, as shown in Figure 8-3a. This 1,3-diphenylisobenzothiophene

(DPBTP) exhibits a 6-fold enhancement in the T2 − S1 SOC and a 30-fold enhance-

ment in the T2 → S1 ISC rate. In particular, the T2 → S1 ISC rate is predicted to

enter the picosecond timescales.

8.3 Experiment

To verify the enhancement in the proposed molecules, we characterized the TTA ef-

ficiencies of Diamine, DPBTP, and their parent molecules. Photon upconversion in

these systems is realized by introducing a triplet sensitizer, a molecule with rapid

S1 → T1 ISC, which generates and transfers a triplet to the annihilators upon pho-

toexcitation, as shown in Figure 8-4a [180, 338, 339]. Based on the triplet energies of

the candidates, platinum(II) octaethylporphyrin (PtOEP) was chosen as the sensitizer

in DPA and Diamine, and platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP)

in DPBF and DPBTP. The photon upconverters are thin films of annihilator:0.5 wt.%

sensitizer:10 wt.% polystyrene. We provide the details in Supplementary Section F.2.

As shown in Figure 8-4b, upconverted emissions are obvious when the PtOEP and

the PtTPBP-sensitized upconverters are excited at 𝜆 = 532 nm and 𝜆 = 635 nm,

respectively.

We extracted the TTA efficiency by measuring the efficiencies of the other pro-

cesses in Figure 8-4a. The efficiency of upconversion (𝜑UC) is

𝜑UC = 1
2𝜑ISC × 𝜑DET × 𝜑TTA × (1− 𝜑BT)× 𝜑PL (8.1)

where 𝜑ISC is the ISC efficiency of the sensitizer, 𝜑DET is the efficiency of triplet

transfer to the annihilator, 𝜑TTA is the TTA efficiency of the annihilator, 𝜑BT is the

singlet back transfer from the annihilator, and 𝜑PL is the photoluminescence quantum
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Figure 8-4: (a) Schematic of photon upconversion. (b) Upconverted PL spectra of
DPA:PtOEP, Diamine:PtOEP, DPBF:PtTPBP, and DPBTP:PtTPBP. Inset: molec-
ular structures of the sensitizers. The PtOEP-sensitized and the PtTPBP-sensitized
upconverters were excited at 532 nm and 635 nm, respectively. A 532 nm notch filter
and a 635 nm shortpass filter were applied to exclude the laser signal in the respective
systems. (c) Plots of the upconverted PL intensity against the incident intensity.
The numbers indicate the power laws. The absence of the linear regime in DPBTP
indicates that the measured TTA efficiency is an underestimate of the optimal per-
formance. (d) Plots of the observed TTA efficiency against the predicted T2 → S1
ISC rate.
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yield (PLQY) of the annhilator film. The factor of 1/2 reflects the convention of

defining 𝜑TTA = 100 % when 2 T1 → 1 S1.

Since no singlet emission is observed in PtOEP and PtTPBP, we assume 𝜑ISC =

100 %, We measured 𝜑UC and 𝜑PL with an integrating sphere via de Mello’s method

[340]. Next, 𝜑DET was estimated by

𝜑DET = 1− 𝜑PL(𝜆sen)
𝜑PL,sen

(8.2)

where 𝜑PL,sen is the PLQY of the sensitizer and 𝜑PL(𝜆sen) is the PLQY of the up-

converter at the wavelength of the sensitizer emission. In a similar manner, 𝜑BT was

determined by

𝜑BT = 1− 𝜑PL

𝜑PL,ann
(8.3)

where 𝜑PL,ann is the PLQY of the annihilator and 𝜑PL is the PLQY of the upconverter

at the wavelength of the annihilator emission. Due to the inhomogeneities of the films,

we measured multiple spots on each sample and took the average of the calculated

𝜑TTA at every point. The results are summarized in Tables 8.2.

The intensity of upconverted PL due to TTA is known to exhibit a transition

from quadratic to linear dependence as the incident intensity increases, where 𝜑TTA is

optimized in the linear regime [341]. We provide the details in Supplementary Section

F.3. As shown in Figure 8-4c, we were able to increase the excitation intensity until

all but one of the upconverters attained a power law of 1. The exception, DPBTP,

attains a minimum power law of 1.56, which implies that the measured 𝜑TTA is an

underestimate of the optimal performance. Also, the devices have not undergone

extensive optimization, so we focus on the relative values of 𝜑TTA.

As shown in Figure 8-4d, increasing the T2 → S1 ISC rate does not always increase

𝜑TTA. In particular, 𝜑TTA is smaller in Diamine than DPA. Indeed, 𝜑TTA represents

a competition of multiple channels. On the one hand, TTA competes with the non-

radiative decay of the T1 exciton. Modifications to increase the desirable T2 → S1

SOC also increase the undesirable T1 → S0 SOC, as shown in Figure F-3. In partic-

ular, the T1 → S0 ISC rate is only 3 times higher in DPA than anthracene, whereas
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it is 300 times higher in Diamine than DPA. Hence, we can rationalize why 𝜑TTA

increases from anthracene to DPA, but not from DPA to Diamine.

On the other hand, the T2 − S1 ISC competes with the decay of the T2 exciton.

Again, these do not affect the efficiency of TTA per se, but they affect the “external”

efficiency that we measure. Though ab initio calculation of IC rates is challenging

[342–344], experimental values in related systems range in the picosecond [345–348]

to nanosecond [349] timescales. On the order of tens to hundreds of picoseconds, the

T2 → S1 ISC might be one of the fastest photophysical processes in DPBTP. Hence,

the 𝜑TTA enhancement from DPBF to DPBTP makes sense given the scales of the

T2 → S1 ISC rates.

8.4 Conclusion

Our results demonstrate the potential importance of the T2 → S1 ISC in TTA UC.

The energies of the S1, T1, and T2 states are not sufficient to explain the limit-breaking

TTA efficiencies in DPA and rubrene. Instead, there appears to be a correlation

between the T2 → S1 ISC rate and 𝜑TTA. Of course, a higher T2 → S1 ISC rate does

not guarantee a higher 𝜑TTA due to competition with the non-radiative decay of the

T1 and the T2 excitons. We expect that these competing channels can be suppressed

by optimizing the fabrication process and the choices of functional groups. Tuning

the T2 → S1 ISC rate might provide a strategy to systematic improvement of TTA

materials.
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8.6 Supplementary Information

The Supplementary Information is available in Appendix F: calculation of ISC rates in

the frameworks of Marcus theory and MLJ theory; fabrication of photon upconverters;

dependence of the upconverted PL intensity on the incident intensity.
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Chapter 9

Conclusion

We summarize the key results of Part II and discuss future directions.

In Chapter 6, we proposed a simple four-state model which explains the key pre-

requisites of efficient thermally activated delayed fluorescence (TADF) in organic

donor-acceptor systems. The four spin-mixed diabatic states representing pure charge

transfer (CT) and local excitations (LE) constitute the conceptual basis to discuss

the electronic structure of TADF emitters. We show that the resulting lowest-lying

adiabatic triplet (T1) and singlet (S1) excited states can have the necessary charac-

teristics to ensure efficient TADF: a small singlet-triplet (ST) gap, different electronic

character of S1 and T1, and a significant LE component in S1.

Monte Carlo sampling reveals that the conditions for efficient TADF are relatively

easy to satisfy in the parameter space. The statistical analysis of the data filtered for

TADF activity reveals that a close mutual alignment of some pairs of parameters of the

model is a prerequisite for TADF, while their magnitude fine-tunes its efficiency. This

observation provides new design principles for optimization of organic emitters, which

should aim at satisfying the parameter alignment criteria. In addition, by the means

of combined molecular dynamics (MD) and time-dependent density functional theory

(TDDFT) simulations for model exciplex systems, we showed that significant increase

of TADF efficiency can be also obtained by exploration of the conformation space.

This supports the vibronic mechanism for TADF, in which the non-Condon effects

modulate the instantaneous TADF rates and maximize them for some nonequilibrium
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conformations.

In Chapter 7, we studied direct maximization of the TADF rate in the conforma-

tion spaces of several TADF emitters. As desired, one of the model systems (DCzTrz)

achieved a simultaneous improvement of the ST gap and the transition dipole moment

(TDM), and its simulated TADF rate could be brought into the submicrosecond time

scales. Even model systems that exhibited trade-off between a small ST gap and a

large TDM were found to undergo TADF rate enhancements by two to three orders

of magnitude. The conformational energy required to maximize the TADF rate can

be as small as 193 kJ mol−1 even in the absence of energy penalty (Cz2BP), and the

conformational energy can be as small as 51 kJ mol−1 with minimal loss in the TADF

rate enhancement (Ac-MPM). Furthermore, the maximum TADF conformations of

the model systems shared a number of structural motifs, such as the gooseneck at

the donor-acceptor (DA) bond and the concerted rotation of the aromatic rings in

the acceptor group. Although the physical intuition behind these motifs remains ob-

scure, the opacity itself demonstrates the true value of conformational optimization:

discovery of design principles that do not render themselves to deduction.

The conformational dependence of the TADF rate motivates the incorporation of

conformational engineering into the TADF technology. Based on the results of TADF

rate maximization with energy penalties and constrained energy minimization, the

maximum TADF conformation of certain molecules, or another conformation that

contains its essential features, might be synthesizable, given the high levels of strain

that are within the reach of modern synthetic chemistry. Since the minimum energy

conformation is not the best geometry in terms of the TADF rate, it would be desirable

to manipulate the conformation in a way that enhances the TADF rate. Although

the proposition might seem unorthodox in physical or organic chemistry, changing

the properties of a molecule by changing its conformation is a standard in fields such

as enzyme design. In the future, we hope to connect conformational optimization

with experimental efforts and demonstrate that the electronic structures of TADF

emitters can be improved in the real universe.

In Chapter 8, we worked in collaboration with the group of Professor Marc A.
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Baldo to investigate the role of intersystem crossing (ISC) in enhancing the observed

efficiency of triplet-triplet annihilation (TTA). Our results demonstrate the potential

importance of T2 → S1 ISC in TTA upconversion (UC). The energies of the S1, T1,

and T2 states are not sufficient to explain the limit-breaking TTA efficiencies in DPA

and rubrene. Instead, there appears to be a correlation between the T2 → S1 ISC rate

and 𝜑TTA. Of course, a higher T2 → S1 ISC rate does not guarantee a higher 𝜑TTA due

to competition with the non-radiative decay of the T1 and T2 excitons. We expect

that these competing channels can be suppressed by optimizing the fabrication process

and the choices of functional groups. Tuning the T2 → S1 ISC rate might provide a

strategy to systematic improvement of TTA materials.

Based on these results, there are a couple of directions that require attention.

First, we aim to find more ways to tune the T2 − S1 SOC and the rate of T2 → S1

ISC. In particular, rubrene appears to have a different mechanism that enhances

the T2 − S1 SOC than DPA (differential delocalization of the S1 and the T2 states)

and DPBF (heavy atoms). Second, we want to explain the slow rate of T2 → T1

internal conversion (IC). The rate of T2 → T1 IC must be quite slow to enable the

enhancement of observed TTA efficiencies via T2 → S1 ISC. Exploring the electronic

structures of the T1 and the T2 states in the vicinity of their minimum energy crossing

point (MECP) might provide an explanation to the longevity of the T2 state and

suggest ways to further reduce the rate of T2 → T1 IC.

181



182



Appendix A

Supplementary Information:

Heterogeneous Pair Approximation

of Methanol Oxidation

A.1 HMF and HHPA on Simple Model Systems

We compare the performances of HMF and HHPA on a number of simple model

systems. In each model system, we assign one of the rate constants to a log-normal

distribution of values, or a normal distribution of activation energies

𝜌(𝑘) ∝ 1
𝑘

exp
(︃
−(log 𝑘 − 𝜇)2

2𝜎2

)︃
(A.1)

where 𝜇 controls the position of the maximum; and 𝜎 controls the spread. We varied

the mean and the spread of the rate constant, while the other rate constants were set

to 1. Note that the mean of the log-normal distribution is

⟨𝑘⟩ = exp
(︃
𝜇+ 𝜎2

2

)︃
(A.2)

which we took into account when choosing the value of 𝜇.

183



The first model system is a homodimer formation

𝑂𝑖 −→ 𝐴𝑖 (A.3)

𝐴𝑖 + 𝐴𝑗
𝑘𝑖−→ 𝑂𝑖 +𝑂𝑗 (A.4)

where we can interpret 𝑂 as a vacancy and 𝐴 as a monomer.

The second model system is a heterodimer formation

𝑂𝑖 −→ 𝐴𝑖 (A.5)

𝑂𝑖 −→ 𝐵𝑖 (A.6)

𝐴𝑖 +𝐵𝑗
𝑘𝑖−→ 𝑂𝑖 +𝑂𝑗 (A.7)

where we can interpret 𝑂 as a vacancy; and 𝐴 and 𝐵 as monomers.

The third model system is a self-assembly

𝑂𝑖 + 𝐴𝑗
𝑘𝑖−→ 𝐴𝑖 + 𝐴𝑗 (A.8)

𝐴𝑖 −→ 𝑂𝑖 (A.9)

where we can interpret 𝑂 as a vacancy and 𝐴 as a monomer.

The fourth model system is a catalysis

𝑂𝑖 −→ 𝐵𝑖 (A.10)

𝐵𝑖 + 𝐴𝑗
𝑘𝑖−→ 𝑂𝑖 + 𝐴𝑗 (A.11)

where we can interpret 𝑂 as a vacancy; 𝐴 as a catalyst; and 𝐵 as a substrate.

In each model system, the bimolecular step correlates the probabilities of finding

reactants (and products) next to each other. Even in the absence of static disorder,

spatiotemporal patterns can emerge on the lattice. In the homodimer formation

(Figure A-2a), the annihilation of 𝐴𝐴 pairs leaves alternating arrays of 𝐴𝑂𝐴𝑂. In

the heterodimer formation (Figure A-2b), the annihilation of 𝐴𝐵 pairs gives rise to

monospecific islands of 𝐴 and 𝐵. In the self-assembly (Figure A-2c), the deposition of
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Figure A-1: Snapshots of KMC simulations on a 100 × 100 lattice: (a) homodimer
formation at 𝑘 = 10; (b) heterodimer formation at 𝑘 = 1; (c) self-assembly at 𝑘 = 1;
and (d) catalysis at 𝑘 = 1 and [𝐴] = 0.1. There was no static disorder in the
rate constants, and these are spatial correlations that are inherent to the reaction
mechanism.
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Figure A-2: Steady state coverages in HMF (crosses and dotted lines), HHPA (empty
circles and dashed lines), and KMC (solid circles and solid lines): (a) homodimer
formation; (b) heterodimer formation; (c) self-assembly; and (d) catalysis. The KMC
coverages are averages of 20 or more simulations on independent 200× 200 lattices.
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𝐴 on top of existing clusters gives rise to snowflakes. In the catalysis (Figure A-2d),

the annihilation of 𝐵 next to 𝐴 leaves 𝑂 only in the vicinity of 𝐴. Since PA captures

correlation upto and including pairs of sites, we expect that it would be accurate in

systems with only short-range correlation, such as the homodimer formation and the

catalysis, but become less accurate in systems with significant long-range correlation,

such as the heterodimer formation and the self-assembly.

We compared the steady state coverages of the reactants in KMC, HMF, and

HHPA. In the homodimer formation (Figure A-2a) and the catalysis (Figure A-2d),

HHPA gives a semiquantitative approximation of the KMC coverages. In the het-

erodimer formation (Figure A-2b) and the self-assembly (Figure A-2c), HHPA gives

results that are closer to HMF than KMC. These results are as expected given the

nature of the correlation in these systems. Nonetheless, HHPA captures the qualita-

tive behavior of the heterodimer formation (Figure A-2b). In the limit of high rate

constant, the coverage asymptotes at a finite value, instead of vanishing altogether.

Indeed, species 𝐴 and 𝐵 can coexist on the lattice if they can remain segregated.

This kind of correlation cannot be described in HMF, but it can be recovered to some

extent in HHPA. On a similar note, HMF also predicts a vanishing coverage in the

catalysis (Figure A-2d). The coverage should asymptote at a finite value, since only

the substrates in the vicinity of the catalysts can be annihilated. HHPA captures this

short-range correlation and gives a qualitative improvement over HMF.

Samples of the time-dependent coverages are shown in Figure A-3. Mostly, the

time-dependent coverages exhibit the same trends as the steady state coverages. In

the homodimer formation (Figure A-3a) and the catalysis (Figure A-3d), HHPA gives

a semiquantitative approximation of the KMC coverages. In the heterodimer forma-

tion (Figure A-3b) and the self-assembly (Figure A-3c), HHPA gives results that are

closer to HMF than KMC. Only, HHPA does not capture the overshoot transient

in the homodimer formation (Figure A-3a). The discrepancies between HHPA and

KMC might be attributed to the missing long-range correlation in HHPA.

It is clear that methanol oxidation on TiO2 would have significant short-range,

but negligible long-range correlation. The longest-range correlation arises when two
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Figure A-3: Time-dependent coverages in HMF (crosses and dotted lines), HHPA
(empty circles and dashed lines), and KMC (solid circles and solid lines): (a) homod-
imer formation at ⟨𝑘⟩ = 3 and 𝜎 = 1; (b) heterodimer formation at ⟨𝑘⟩ = 1 and
𝜎 = 2; (c) self-assembly at ⟨𝑘⟩ = 2 and 𝜎 = 3; and (d) catalysis at ⟨𝑘⟩ = 2 and
𝜎 = 2. These time-dependent coverages are single trajectories on a 200× 200 lattice,
and they have not been averaged like the steady state coverages in Figure A-2.
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methanol molecules are neighboring the same Ob site. If one of the methanol molecules

deposits a hydrogen on the Ob site, then the other methanol molecule cannot remove

more than one hydrogen. This appears to have more in common with the alternating

arrays of 𝐴𝑂𝐴𝑂 in the homodimer formation than the monospecific islands of 𝐴 and

𝐵 in the heterodimer formation. Therefore, we expect HHPA to give a reasonable

description of methanol oxidation on TiO2.

A.2 Cross-Examination of Calibrated Parameters

Figure A-4: Cross-examination of the calibrated parameters: (a) entering the MF
parameters into PA, RMSNE = 0.753; (b) entering the PA parameters into MF,
RMSNE = 6.587; (c) entering the HMF parameters into HHPA, RMSNE = 2.346;
and (d) entering the HHPA parameters into HMF, RMSNE = 0.637.
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Even though the MF methods attain root mean square normalized errors (RM-

SNEs) that are somewhat smaller than the PA methods, we emphasize that MF is

not as faithful to the physical reality as PA, since the products of the methanol oxi-

dation tend to remain next to each other. To demonstrate that MF and PA simulate

somewhat different realities, we entered the parameters that were calibrated in HMF

into HHPA and vice versa. As shown in Figure A-4a,b, respectively, entering the MF

parameters into PA stretches the dynamics to the right, and entering the PA parame-

ters into MF shrinks the dynamics to the left. Figure A-4c,d show similar patterns in

HMF and HHPA. These trends make sense, since MF would underestimate the rate

of the reverse reaction in the simulations and thus overestimate the rate constants in

the regression. Interestingly, the simulated kinetics at 80 K tend to be impacted more

than the simulated kinetics at 180 K. The errors in MF might be reduced at 180 K,

as the diffusion of formaldehyde erases much of the correlation.

A.3 Modified Model

The modified model eliminates the steps going into and out of CH3OH+ in the original

model (Figure 2-2). This reduces the number of parameters to 19: 2 charge transfer

rate constants at 80 K; 2 charge transfer rate constants at 180 K; 7 activation energies;

7 partition functions; and the Urbach energy.

Figure A-5a,b show the simulated kinetics in uniform MF and PA, respectively.

RMSNEs are 1.443 in MF and 1.381 in PA, which means that the simulated kinet-

ics tend to be outside a standard deviation of the experimental kinetics. Using the

modified model, we are unable to obtain RMSNE < 1 in uniform MF or PA. Visual

inspection reveals serious issues in the simulated kinetics. In addition to the short

time transient and the long time behavior that are also problematic in the origi-

nal model, the simulated kinetics at 180 K exhibit significant divergence at different

surface coverages, whereas the experimental kinetics are almost on top of each other.

Figure A-5c,d show the simulated kinetics in HMF and HHPA, respectively. RM-

SNEs are 0.910 in HMF and 0.981 in HHPA, which are again higher than the original
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Figure A-5: Time-dependent dissociation fractions in the modified model with (a)
MF, RMSNE = 1.443; (b) PA, RMSNE = 1.381; (c) HMF, RMSNE = 0.910; and (d)
HHPA, RMSNE = 0.981.
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model. The primary source of error appears to be the short time behavior at 180 K.

Albeit not as severe as uniform MF and PA, the simulated kinetics at 180 K exhibit

significant divergence at different surface coverages. Nonetheless, HMF and HHPA

suppress the transient at 180 K, and the simulated kinetics resemble stretched expo-

nentials, which slow down but do not reach a steady state in the simulation time.

Figure A-6: Cross-examination of the calibrated parameters in the modified model:
(a) entering the MF parameters into PA, RMSNE = 3.384; (b) entering the PA
parameters into MF, RMSNE = 1.681; (c) entering the HMF parameters into HHPA,
RMSNE = 2.471; and (d) entering the HHPA parameters into HMF, RMSNE =
1.025.

Figure A-6 shows the cross-examination of the calibrated parameters. Like the

original model, entering the MF parameters into PA stretches the dynamics to the

right, and entering the PA parameters into MF shrinks the dynamics to the left.

Again, the simulated kinetics at 80 K tend to be impacted more than the simulated

kinetics at 180 K.
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On the one hand, most of the observations that we made in the original model are

reiterated in the modified model. This shows that our findings, such as the relevance of

static disorder in reproducing the observed kinetic and the differences of the simulated

realities in the MF and the PA methods, do not depend on an elementary step whose

feasibility is controversial. On the other hand, the quality of the fit in the modified

model is much worse than the original model. Thus, including an alternative route

to the OH bond cleavage entails a significant improvement in the simulated kinetics,

and the hole-activated cleavage of the OH bond appears to play an important role in

methanol oxidation.

A.4 Sensitivity Analysis

A.4.1 Original Model

The minimization of RMSNE appears to have multiple solutions. For the most part,

the multiplicity can be attributed to parameters that do not have a well-defined

optimum and do not matter as long as they are greater than or smaller than a certain

value. Since the solutions give activation energies and partition functions that are

within the expected value ranges, we have no means to identify the true answer.

Thus, we use the solution with the smallest RMSNE as a starting point.

To establish the upper and the lower bounds on the calibrated parameters, we

perturbed each of the parameters and recorded the response of RMSNE. The graphs

of RMSNE in HMF are shown in Figures A-7–A-9, and the graphs of RMSNE in

HHPA are shown in Figures A-10–A-12. There is no qualitative difference between

HMF and HHPA. For most parameters, the perturbation causes RMSNE to increase

on one side or both sides, as the parameter takes more and more undesirable values.

In the cases of the formaldehyde diffusion (Figure A-10i,j) and the thermally activated

reformation of the OH bond (Figure A-12g,h), RMSNE stops increasing at a finite

value as the activation energies increases or the partition function decreases. This

makes sense since the forward reaction embodies the primary features of methanol
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oxidation, and the reverse reaction and the diffusion are secondary.

Reaction Parameter HMF HHPA
Forward Reverse Forward Reverse

CH3OH 𝑘0(80 K) (s−1) . 10−5 - . 10−5 -

 CH3OH+ 𝑘0(180 K) (s−1) ≈ 10−2.1 . 108 ≈ 10−2.3 . 1010

CH3O− 𝑘0(80 K) (s−1) ≈ 102.5 . 1010 ≈ 10−0.2 . 106


 CH3O· 𝑘0(180 K) (s−1) . 10−2 . 1010 . 10−2 . 105

CH2O·− + Ti5c 𝑄 & 10−2 & 10−1

→ Ti5c + CH2O·− Δ𝐸‡ (eV) . 0.6 . 0.6
CH3OH+ + Ob 𝑄 & 10−10 - & 10−10 -

 CH3O· + H+ Δ𝐸‡ (eV) . 0.5 - . 0.5 & 0.0

CH3O· + Ob 𝑄 & 10−12 . 1016 & 10−9 . 1015


 CH2O·− + H+ Δ𝐸‡ (eV) . 0.2 & 0.2 . 0.2 & 0.1
CH3OH + Ob 𝑄 ≈ 100.6 ≈ 101.7 ≈ 10−1.5 ≈ 101.6


 CH3O− + H+ Δ𝐸‡ (eV) ≈ 0.25 ≈ 0.17 ≈ 0.18 ≈ 0.17
CH3O− + Ob 𝑄 . 1033 ≈ 10−2.0 . 1030 ≈ 10−0.1


 CH2O·− + H+ Δ𝐸‡ (eV) & 0.7 ≈ 0.49 & 0.6 ≈ 0.55
Urbach energy 𝐸U (meV) ≈ 32 ≈ 28

Table A.1: Calibrated parameters.

Table A.1 summarizes the results of the sensitivity analysis. The activation ener-

gies and the partition functions are bounded in a way such that the bounds on the

rate constants are unambiguous. If the activation energy is less than a certain value,

then the partition function is greater than a certain value, and vice versa. There are

a few parameters that do not have a bound in a reasonable range. Given that these

parameters seem to have no consequence on the simulated kinetics, we suspect that

the corresponding rate constants are bounded above in principle. To make sense of

why the parameters are bounded as they are, we must cross-examine the rates of the

reactions in Figure 2-4.

The dominant pathway of the forward reaction involves a hole transfer to the

methoxy anion at 80 K and the methanol molecule at 180 K. In each case, the rates of

the subsequent steps are almost equal to the rate of the hole transfer, which implies

that the forward reaction almost always goes to completion once the hole transfer
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takes place. Hence, the hole transfer to the methoxy anion at 80K and the methanol

molecule at 180K are the rate-limiting steps at the respective temperatures. It makes

sense that the rate constants of these steps have a well-defined optimum. Meanwhile,

the subsequent hole-activated cleavages of the OH and the CH bonds do not matter

as long as they are fast enough, so the rate constants are only bounded below. Since

the quasi-equilibrium connects the methanol molecule and the methoxy anion into a

single reservoir, the thermally activated cleavage of the CH bond and the hole transfer

to the methanol molecule at 80 K and the methoxy anion at 180 K are competing with

the rate-limiting steps at the respective temperatures. Because the competing steps

must be slow enough to avoid altering the overall kinetics, the rate constants are only

bounded above.

The dominant pathway of the reverse reaction is thermally activated at both

temperatures. Since the reformation of the CH bond is the rate-limiting step, the

rate constant has a well-defined optimum. On the other hand, the hole-activated

pathway is competing with the thermally activated pathway, so the hole-activated

reformation of the OH and the CH bonds and the back transfer of hole must be

slow enough. As a result, the rate constants of these steps are only bounded above.

Meanwhile, the diffusion of formaldehyde is significant at 180 K, and it might inhibit

the reverse reaction. However, the rate constant is only bounded below, because it

does not matter as long as the diffusion starts at some point between 80 K and 180 K

and it is fast enough to outcompete the reverse reaction.

We now return to the thermally activated cleavage and reformation of the OH

bond. It makes sense that the relative values of the activation energies and the

partition functions have a well-defined optimum, since the rate-limiting steps depend

on the methanol molecule at 80 K and the methoxy anion at 180 K. However, it is

not obvious that the absolute values should have a well-defined optimum. In steady

state kinetics, only the equilibrium constant and not the individual rate constants

matter in a quasi-equilibrium step. In time-dependent kinetics, this is not true any

more, because rapid equilibration can manifest as a transient. Indeed, the simulated

kinetics in uniform MF and PA had an obvious transient at 180 K, and the simulated
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kinetics in HMF and HHPA also had a transient, however inconspicous. On top of

the lower bound which is needed to maintain the quasi-equilibrium, there must be

an upper bound on the rate constants to suppress the transient. Furthermore, the

interactions between the hole transfer steps and the thermally activated cleavage of

the OH bond might help restrict the activation energies and the partition functions

in the multidimensional space.

To verify that the 9 parameters have an optimum not only when perturbed one at

a time, but also in the multidimensional parameter space, we constructed the compact

model using just the 9 parameters. We continue this discussion in Section A.5.

A.4.2 Modified Model

Reaction Parameter HMF HHPA
Forward Reverse Forward Reverse

CH3O− 𝑘0(80 K) (s−1) ≈ 105.5 . 107 ≈ 103.6 . 108


 CH3O· 𝑘0(180 K) (s−1) ≈ 101.6 . 1010 ≈ 10−0.6 . 109

CH2O·− + Ti5c 𝑄 - -
→ Ti5c + CH2O·− Δ𝐸‡ (eV) - -

CH3O· + Ob 𝑄 & 10−7 . 1014 & 10−11 . 1016


 CH2O·− + H+ Δ𝐸‡ (eV) . 0.2 & 0.2 . 0.2 & 0.1
CH3OH + Ob 𝑄 ≈ 101.2 ≈ 101.5 ≈ 10−0.7 ≈ 101.7


 CH3O− + H+ Δ𝐸‡ (eV) ≈ 0.22 ≈ 0.12 ≈ 0.19 ≈ 0.11
CH3O− + Ob 𝑄 . 1036 . 10−3 . 1029 . 10−7


 CH2O·− + H+ Δ𝐸‡ (eV) & 0.5 & 0.6 & 0.6 & 0.5
Urbach energy 𝐸U (meV) ≈ 37 ≈ 33

Table A.2: Calibrated parameters in the modified model.

The graphs of RMSNE in HMF are shown in Figures A-13 and A-14, and the

graphs of RMSNE in HHPA are shown in Figures A-15 and A-16. Table A.2 summa-

rizes the results of sensitivity analysis on the modified model.
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Reaction Parameter Forward Reverse
CH3OH 𝑘0(80 K) (s−1) 0 0

 CH3OH+ 𝑘0(180 K) (s−1) parameter 0

CH3O− 𝑘0(80 K) (s−1) parameter 0

 CH3O· 𝑘0(180 K) (s−1) 0 0

CH2O·− + Ti5c 𝑄 1
→ Ti5c + CH2O·− Δ𝐸‡ (eV) 0.5

CH3OH+ + Ob 𝑄 1 0

 CH3O· + H+ Δ𝐸‡ (eV) 0.1 -

CH3O· + Ob 𝑄 1 0

 CH2O·− + H+ Δ𝐸‡ (eV) 0.0 -

CH3OH + Ob 𝑄 parameter parameter

 CH3O− + H+ Δ𝐸‡ (eV) parameter parameter

CH3O− + Ob 𝑄 0 parameter

 CH2O·− + H+ Δ𝐸‡ (eV) - parameter
Urbach energy 𝐸U (meV) parameter

Table A.3: Construction of the compact model.

A.5 Compact Model

We constructed a compact model using only the 9 parameters that give a well-defined

optimum when they are perturbed. The activation energies and the partition func-

tions of the fast steps ensuing the rate-limiting steps and the diffusion of the formalde-

hyde were fixed at reasonable values, and the rate constants of the other steps were

set to zero. Table A.3 summarizes the free and the fixed parameters.

As shown in Figure A-17, the compact model can attain RMSNEs on par with

the original model. Although the transient in the simulated kinetics at 180 K appears

to return in Figure A-17a,b, it is not as prominant as the transient in the uniform

methods, and there are other solutions with similar RMSNEs that have negligible

transients, as shown in Figure A-17c,d. Table A.4 summarizes the calibrated param-

eters and their deviations when we limit to solutions with RMSNE < 0.55 in HMF

and RMSNE < 0.60 in HHPA. Considering the uncertainties in the density functional

theory (DFT) estimates of the parameters, the parameters converge to a narrow range

207



Figure A-17: Time-dependent dissociation fractions in the compact model with (a)
HMF, RMSNE = 0.526; (b) HHPA, RMSNE = 0.581; (c) HMF, RMSNE = 0.541;
and (d) HHPA, RMSNE = 0.595.

Reaction Parameter HMF HHPA
CH3OH→ CH3OH+ 𝑘0(180 K) (s−1) 10−2.12±0.03 10−2.26±0.02

CH3O− → CH3O· 𝑘0(80 K) (s−1) 100.4±0.8 101±2

CH3OH + Ob 𝑄 10−1±1 10−1.4±0.2

→ CH3O− + H+ Δ𝐸‡ (eV) 0.22± 0.01 0.180± 0.003
CH3OH + Ob 𝑄 101.3±0.7 100.6±0.5

← CH3O− + H+ Δ𝐸‡ (eV) 0.20± 0.02 0.14± 0.03
CH3O− + Ob 𝑄 10±2 10±1

← CH2O·− + H+ Δ𝐸‡ (eV) 0.55± 0.06 0.56± 0.04
Urbach energy 𝐸U (meV) 32.2± 0.6 27.9± 0.5

Table A.4: Calibrated parameters in the compact model.
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of values. Indeed, the 9 parameters appear to have a well-defined optimum in the

multidimensional space.

We observe that the activation energies tend to be on the smaller end of the

DFT estimates. The activation energy of the OH bond cleavage is 0.22 eV in HMF

and 0.180 eV in HHPA, compared to the DFT estimates of 0.17–0.32 eV [79–81]. The

activation energy of the CH bond reformation is 0.55 eV in HMF and 0.56 eV in HHPA,

compared to the DFT estimates of 0.54–0.97 eV [79, 81]. Meanwhile, the activation

energy of the OH bond reformation is 0.02 eV and 0.04 eV smaller than the OH bond

cleavage in HMF and HHPA, respectively, inside the DFT estimate of 0.01–0.08 eV

[79–81]. In spite of concerns about the underestimation of the barrier heights in

some of the DFT studies [78, 81], the outcomes of the chemical kinetics appear to

corroborate their results.

We were unable to find a reference on the Urbach energy in the reduced TiO2−x.

However, the Urbach energy of rutile TiO2 nanoparticles has been reported to be

53 meV [350], and the band edge of the stoichiometric TiO2 is known to be almost

vertical at temperatures < 200 K [351]. We expect the Urbach energy of the reduced

TiO2−x to be somewhere between these limits. Thus, the Urbach energy of 32 meV

in HMF and 28 meV in HHPA might be reasonable.

It is also worth noting that many of the parameters have nonoverlapping values

in HMF and HHPA. In the hole transfer to the methanol molecule at 180 K, the

HMF value of 𝑘0 is somewhat greater than the HHPA value of 𝑘0. Nonetheless,

the ensemble average rate constants might be similar, since the Urbach energy is also

greater in HMF. In the thermally activated cleavage and reformation of the OH bond,

the activation energies in HMF are greater than those in HHPA. While the partition

functions should counteract the differences at 180 K, the activation energies would

dominate at 80 K, making the rate constants smaller in HMF. These results resonate

the fact that MF and PA simulate somewhat different realities.
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A.6 Distributions of Coverages and Rates

This section presents a complete collection of the time-averaged and the time-dependent

distributions in the original, modified, and compact models.
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Figure A-20: Time-averaged 2D distributions of the coverages at 80 K in HHPA.
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Figure A-26: Time-averaged 2D distributions of the coverages at 180 K in HHPA.
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Figure A-32: Time-averaged 2D distributions of the coverages at 80 K in the modified
model with HHPA.
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Figure A-37: Time-averaged 2D distributions of the coverages at 180 K in the modified
model with HHPA.
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Figure A-42: Time-averaged 2D distributions of the coverages at 80 K in the compact
model with HHPA.
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Figure A-47: Time-averaged 2D distributions of the coverages at 180 K in the compact
model with HHPA.
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A.7 Distributions of Trap Energies

To establish the robustness of the high-activity and the low-activity groups, we con-

sidered the normal, Poisson (𝑘 = 2), and hyperbolic secant distributions in addition

to the Poisson (𝑘 = 0) distribution of trap energies. The normal and the hyperbolic

secant distributions are common in the physical sciences, and the Poisson (𝑘 = 2)

distribution gives a smooth cutoff at Δ𝐸𝑖, while retaining the exponential tail of the

Poisson (𝑘 = 0) distribution. Unfortunately, it was cumbersome to employ HHPA

with the normal and the hyperbolic secant distributions. Due to a significant fraction

of sites that have much smaller trap energies and much greater rate constants than

the mean, the kinetic equations were quite stiff, and the computational costs were

considerable even with the preaveraging. For consistency across the types of static

disorder, we use HMF in this section.

Distribution PDF Disorder 90 % CI
Poisson (𝑘 = 0) 𝜌(𝑥) ∝ 𝑒−𝑥/𝜆, 𝑥 > 0 𝜆 ≈ 32 meV 𝑥 < 2.303𝜆 ≈ 73 meV

normal 𝜌(𝑥) ∝ exp
[︁
− 𝑥2

2𝜎2

]︁
𝜎 ≈ 25 meV |𝑥| < 1.645𝜎 ≈ 42 meV

Poisson (𝑘 = 2) 𝜌(𝑥) ∝ 𝑥2𝑒−𝑥/𝜆, 𝑥 > 0 𝜆 ≈ 16 meV 𝑥 < 5.322𝜆 ≈ 84 meV
hyperbolic secant 𝜌(𝑥) ∝ sech

[︁
𝑥
𝜎

]︁
𝜎 ≈ 19 meV |𝑥| < 2.542𝜎 ≈ 49 meV

Table A.5: Calibrated amounts of static disorder.

Figure A-50 shows the simulated kinetics in HMF with different distributions of

trap energies. There are no significant differences in the overall kinetics. We note

that the ranges of variations in the rate constants remain quite consistent across the

types of static disorder, as shown in Table A.5. For example, the Poisson (𝑘 = 0)

distribution predicts that 90 % of sites have trap energies within 2.303𝜆 ≈ 73 meV,

and the normal distribution predicts that 90 % of sites have trap energies within

2 × 1.645𝜎 ≈ 84 meV. Hence, the overall kinetics might not be as sensitive to the

type of static disorder as it is to the amount of static disorder.

For reference, we begin by comparing the distributions of the coverages in HMF

to those in HHPA with the Poisson (𝑘 = 0) distribution of trap states. Overall,

the HMF results capture the qualitative trends in the HHPA results with minor
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Figure A-50: Time-dependent dissociation fractions in HMF with (a) the Poisson
(𝑘 = 0) disorder, RMSNE = 0.542; (b) the normal disorder, RMSNE = 0.576; (c) the
Poisson (𝑘 = 2) disorder, RMSNE = 0.548; and (d) the hyperbolic secant disorder,
RMSNE = 0.556.
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deviations. Whereas HHPA predicts that the coverages of the methanol molecule

and the methoxy anion have almost identical distributions, HMF predicts that the

division is not as pronounced in the methoxy anion at 80 K, as shown in Figure A-

51b,d. In addition, the methoxy anion at 80 K (Figure A-51d) and the methanol

molecule and the methoxy anion at 180 K (Figure A-52b,d) have the position of the

high-activity group offset with respect to the position of 𝑘𝑖𝑟 = 𝑘0
𝑟 . These deviations

can be explained in terms of the dynamic correlation. When the OH bond breaks

in HHPA, the coverage of the hydrogen is concentrated on the neighboring Ob sites.

When the OH bond breaks in HMF, the coverage of the hydrogen is distributed on

all of the Ob sites. Once the most active sites have reacted, the next sites in HMF

do not have pristine Ob sites on which to deposit the hydrogen. Hence, a majority

of the sites are not as active as their rate constants indicate, and the distributions of

the coverages shift to the right. We keep these deviations in mind as we examine the

other types of disorder.

The normal distribution of trap states gives a significant reduction of the division.

As shown in Figure A-53b, there are two peaks in the coverage of the methanol

molecule at 80 K, but the division of the high-activity and the low-activity groups is

rather indistinct. The other coverages do not show any sign of division, as shown in

Figures A-53d, A-54b, A-54d, and A-54f.

Interestingly, the Poission (𝑘 = 2) distribution enhances the division in the cover-

age of the methanol molecule at 80 K, as shown in Figure A-55b, while reducing the

division in the other coverages. Nonetheless, the coverage of the methoxy anion at

80 K and the formaldehyde at 180 K retain a distinct shoulder, as shown in Figures

A-55d and A-56f. The coverages of the methanol molecule and the methoxy anion at

180 K also retain a shoulder, as shown in Figures A-56b,d.

Finally, the hyperbolic secant distribution exhibits an intermediate behavior of

the normal and the Poission (𝑘 = 2) distributions. It enhances the division in the

coverage of the methanol molecule at 80 K, as shown in Figure A-57b. Among the

other coverages, the coverage of the formaldehyde at 180 K retains a distinct shoulder,

as shown in Figure A-58f.
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Overall, the high-activity and the low-activity groups can be observed with various

types of disorder, albeit with various extents of division. Based on the comparison of

the HMF and the HHPA results, there is a chance that the shoulders in the distri-

butions could have been distinct groups if we had employed HHPA. The emergence

of the groups appears to be quite insensitive, even though the strength of the divi-

sion depends on the type of static disorder. Only the normal distribution predicts

a significant reduction of the division in all of the coverages. We suspect that the

short Gaussian tail of the normal distribution does not give enough sites with trap

energies≫ 𝑘B𝑇 , so the low-activity group fails to manifest on the distributions of the

coverages.

The remainder of this section presents a complete collection of the time-averaged

distributions in HMF with the Poisson (𝑘 = 0), normal, Poisson (𝑘 = 2), and hyper-

bolic secand distributions of trap energies.
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Appendix B

Supplementary Information:

Machine Learning Dynamic

Correlation in Lattice

Lotka-Volterra Model

B.1 Concrete Examples of Chemical Master Equa-

tion

The chemical master equation (CME) of even simple model systems might be cumber-

some to write down. For example, consider the lattice Lotka-Volterra model (LLVM)

on a 2 × 2 lattice. There are already 32×2 = 81 possible configurations. Here, we

examine just a couple of them.
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For example, the probability of configuration
𝐴 𝐵

𝑂 𝐵
obeys

𝑃̇ (
𝐴 𝐵

𝑂 𝐵
) = + 𝑘𝐴𝐵→𝐵𝐵𝑃 (

𝐴 𝐴

𝑂 𝐵
) + 𝑘𝐴𝐵→𝐵𝐵𝑃 (

𝐴 𝐵

𝑂 𝐴
) + 𝑘𝐵→𝑂𝑃 (

𝐴 𝐵

𝐵 𝐵
)

− 𝑘𝑂𝐴→𝐴𝐴𝑃 (
𝐴 𝐵

𝑂 𝐵
)− 𝑘𝐴𝐵→𝐵𝐵𝑃 (

𝐴 𝐵

𝑂 𝐵
)− 2𝑘𝐵→𝑂𝑃 (

𝐴 𝐵

𝑂 𝐵
)

(B.1)

where 𝑘𝐴𝐵→𝐵𝐵 is the rate constant of the elementary step, 𝐴+𝐵 → 𝐵+𝐵, for exam-

ple. The additive terms run over the configurations that can transform into
𝐴 𝐵

𝑂 𝐵

in an elementary step. Meanwhile, the subractive terms run over the elementary steps

that can take place on
𝐴 𝐵

𝑂 𝐵
.

Here is another example:

𝑃̇ (
𝐴 𝐴

𝑂 𝐵
) = + 𝑘𝑂𝐴→𝐴𝐴𝑃 (

𝑂 𝐴

𝑂 𝐵
) + 𝑘𝑂𝐴→𝐴𝐴𝑃 (

𝐴 𝑂

𝑂 𝐵
) + 𝑘𝐵→𝑂𝑃 (

𝐴 𝐴

𝐵 𝐵
)

− 𝑘𝑂𝐴→𝐴𝐴𝑃 (
𝐴 𝐴

𝑂 𝐵
)− 𝑘𝐴𝐵→𝐵𝐵𝑃 (

𝐴 𝐴

𝑂 𝐵
)− 𝑘𝐵→𝑂𝑃 (

𝐴 𝐴

𝑂 𝐵
)

(B.2)
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B.2 Kinetic Equations of Lattice Lotka-Volterra

Model

The kinetic equations of one-site clusters are

𝑑[𝑂]
𝑑𝑡

= + 𝑘𝐵→𝑂[𝐵]−𝑁𝑘𝑂𝐴→𝐴𝐴[𝑂𝐴] (B.3)

𝑑[𝐴]
𝑑𝑡

= +𝑁𝑘𝑂𝐴→𝐴𝐴[𝑂𝐴]−𝑁𝑘𝐴𝐵→𝐵𝐵[𝐴𝐵] (B.4)

𝑑[𝐵]
𝑑𝑡

= +𝑁𝑘𝐴𝐵→𝐵𝐵[𝐴𝐵]− 𝑘𝐵→𝑂[𝐵] (B.5)

where 𝑘𝐴𝐵→𝐵𝐵 is the rate constant of the elementary step, 𝐴 + 𝐵 → 𝐵 + 𝐵, for

example; and 𝑁 is the number of nearest neighbors.

The kinetic equations of two-site clusters are

𝑑[𝑂𝑂]
𝑑𝑡

= + 2𝑘𝐵→𝑂[𝑂𝐵]− 2(𝑁 − 1)𝑘𝑂𝐴→𝐴𝐴[𝑂𝑂𝐴] (B.6)

𝑑[𝑂𝐴]
𝑑𝑡

= + 𝑘𝐵→𝑂[𝐴𝐵] + (𝑁 − 1)𝑘𝑂𝐴→𝐴𝐴[𝑂𝑂𝐴]

− 𝑘𝑂𝐴→𝐴𝐴[𝑂𝐴]− (𝑁 − 1)𝑘𝑂𝐴→𝐴𝐴[𝐴𝑂𝐴]− (𝑁 − 1)𝑘𝐴𝐵→𝐵𝐵[𝑂𝐴𝐵] (B.7)
𝑑[𝑂𝐵]
𝑑𝑡

= + 𝑘𝐵→𝑂[𝐵𝐵] + (𝑁 − 1)𝑘𝐴𝐵→𝐵𝐵[𝑂𝐴𝐵]

− 𝑘𝐵→𝑂[𝑂𝐵]− (𝑁 − 1)𝑘𝑂𝐴→𝐴𝐴[𝐴𝑂𝐵] (B.8)
𝑑[𝐴𝐴]
𝑑𝑡

= + 2𝑘𝑂𝐴→𝐴𝐴[𝑂𝐴] + 2(𝑁 − 1)𝑘𝑂𝐴→𝐴𝐴[𝐴𝑂𝐴]

− 2(𝑁 − 1)𝑘𝐴𝐵→𝐵𝐵[𝐴𝐴𝐵] (B.9)
𝑑[𝐴𝐵]
𝑑𝑡

= + (𝑁 − 1)𝑘𝑂𝐴→𝐴𝐴[𝐴𝑂𝐵] + (𝑁 − 1)𝑘𝐴𝐵→𝐵𝐵[𝐴𝐴𝐵]

− 𝑘𝐵→𝑂[𝐴𝐵]− 𝑘𝐴𝐵→𝐵𝐵[𝐴𝐵]− (𝑁 − 1)𝑘𝐴𝐵→𝐵𝐵[𝐵𝐴𝐵] (B.10)
𝑑[𝐵𝐵]
𝑑𝑡

= + 2𝑘𝐴𝐵→𝐵𝐵[𝐴𝐵] + 2(𝑁 − 1)𝑘𝐴𝐵→𝐵𝐵[𝐵𝐴𝐵]− 2𝑘𝐵→𝑂[𝐵𝐵] (B.11)

257



B.3 NO+CO / Pt(110)-(1×1)

Here, we discuss how the NO + CO reaction on the Pt(100)-(1× 1) surface might be

coarse-grained on to LLVM. We base our coarse-graining scheme on the theoretical

and experimental results of Imbihl et al. [1, 3, 143] The mechanism of the NO + CO

reaction has been proposed to be

CO(g) + *� CO(ad) (B.12)

NO(g) + *� NO(ad) (B.13)

NO(ad) + * → N(ad) + O(ad) (B.14)

2N(ad)→ N2(g) + 2* (B.15)

CO(ad) + O(ad)→ CO2(g) + 2* (B.16)

where * is a vacancy. Since N is not a strong adsorbant to Pt(100), we assume that

it forms N2 and desorbs as soon as it appears on the surface.

Combining Eq. (B.14), (B.15), and (B.16) reveals the auotocatalytic nature of

the reaction

NO(ad) + CO(ad) + * → CO2(g) + 1
2N2(g) + 3* (B.17)

The vacancy on the reactant side is needed to initiate the dissociation of NO. Notice

that more vacancies are produced at the end of the reaction. On a surface that is

covered in a mixed NO/CO adlayer, the vacancies would undergo explosive growth,

starting with a few vacancies as seeds. Coarse-graining the lattice so that the minimal

unit is a cluster of sites, the explosive growth of vacancies can be written as

NO/CO + * → *+ * (B.18)

When the surface has an abundance of vacancies, the dissociation of NO is no

longer the rate-limiting step. Combining Eq. (B.13), (B.14), and(B.15) gives

NO(g) + 2* → O(ad) + 1
2N2(g) + * (B.19)
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However, the formation of an O adlayer is inhibited by its reaction with CO. In

a neighborhood that is rich in O (in addition to vacancies), the inhibition can be

suppressed to some extent. The excess of O excludes CO, reducing the likelihood that

individual O atoms would react with CO and enabling O and NO to accumulate. In

the coarse-graining scheme, the formation of the O adlayer can be written as

O + * → O + O (B.20)

Hereinafter, the surface undergoes a gradual restoration of the mixed NO/CO

adlayer. Combining Equations (B.12) and (B.16) gives

CO(g) + O(ad) + * → CO2(g) + 2* (B.21)

The above chemical equation may appear to represent an explosive growth of vacan-

cies. However, the excess of O continues to exclude CO, and the new vacancies are

occupied by NO, which then cannot dissociate due to the shortage of vacancies. Once

enough O in the neighborhood has been replaced by NO, CO can begin to accumulate

along with NO, which cannot react with CO by itself. In the coarse-graining scheme,

the restoration of the NO/CO adlayer can be written as

O→ NO/CO (B.22)

Together, Equations (B.18), (B.20), and (B.22) give LLVM.

B.4 Supplementary Figures and Tables

The following are the supplementary figures and tables that are referenced in Chapter

3.
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Figure B-1: Self-crossings of the time-dependent one-site, two-site, and three-site
probabilities. The curve was obtained as an average over 20 KMC simulations on a
1000 × 1000 lattice. On the 2D plots in panels (a) and (c), the self-crossings on the
𝑥𝑦-plane are indicated by crosses, and the coordinates and the standard deviations are
provided on the upper left. On the 3D plots in panels (b) and (d), the self-crossings
on the 𝑥𝑦-plane are indicated by bold dots, and the vertical dotted lines are visual
aids. The rate constants were (𝑘1, 𝑘2, 𝑘3) = (0.5, 0.3, 0.1). For the plots in panels (a)
and (b), the initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.2, 0.6, 0.2). For the plots in
panels (c) and (d), the initial conditions were (0.2, 0.2, 0.6).
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Figure B-2: Self-crossings of the time-dependent one-site, two-site, and three-site
probabilities. The curve was obtained as an average over 20 KMC simulations on a
1000×1000 lattice. (a) On the 2D plot, the self-crossings on the 𝑥𝑦-plane are indicated
by crosses, and the coordinates and the standard deviations are provided on the upper
left. (b) On the 3D plot, the self-crossings on the 𝑥𝑦-plane are indicated by bold dots,
and the vertical dotted lines are visual aids. The rate constants were (𝑘1, 𝑘2, 𝑘3) =
(0.5, 0.3, 0.1), and the initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.2, 0.2, 0.6).
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Figure B-3: Two-curve crossings of the time-dependent one-site, two-site, and three-
site probabilities. The curves were obtained as averages over 20 KMC simulations on
a 1000× 1000 lattice. On the 2D plots in panels (a) and (c), the crossings of the two
curves on the 𝑥𝑦-plane are indicated by crosses, and the coordinates and the standard
deviations are provided on the upper left. On the 3D plots in panels (b) and (d), the
crossings of the two curves on the 𝑥𝑦-plane are indicated by bold dots, and the vertical
dotted lines are visual aids. The rate constants were (𝑘1, 𝑘2, 𝑘3) = (0.5, 0.3, 0.1),
and the solid and the dashed curves had the initial conditions of ([𝑂], [𝐴], [𝐵]) =
(0.2, 0.6, 0.2) and (0.2, 0.2, 0.6), respectively.
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Figure B-7: Contour maps of the nonlinear oscillation frequencies in (a) MF, (b) PA,
(c) ML, and (d) KMC. Given the nonlinear oscillation of the coverages, the frequency
was defined as the inverse of the average crest-crest and trough-trough separation
over the first two cycles (or three if resolvable). The rate constants were normalized
to 𝑘1 = 1.0, and the initial conditions were ([𝑂], [𝐴], [𝐵]) = (0.5, 0.3, 0.2).

267



Figure B-8: Contour maps of the nonlinear oscillation damping ratios in (a) MF,
(b) PA, (c) ML, and (d) KMC. Given the nonlinear oscillation of the coverages,
the amplitude was defined as the crest-trough (and trough-crest) separation, and
the damping ratio was define as the average ratio of consecutive crest-trough (and
trough-crest) amplitudes over the first two cycles (or three if resolvable). The rate
constants were normalized to 𝑘1 = 1.0, and the initial conditions were ([𝑂], [𝐴], [𝐵]) =
(0.5, 0.3, 0.2).
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Appendix C

Supplementary Information:

Introduction to Part II

C.1 Rate of Fluorescence

We begin with the Hamiltonian of a particle in an electromagnetic field

𝐻̂ = 1
2𝑚 (p̂ + 𝑞A(r̂))2 + 𝑉 (r̂) (C.1)

where 𝑚 and 𝑞 are the mass and the charge of the particle, respectively; p̂ and r̂

are the momentum and the position operators, respectively; 𝑉 is the (unperturbed)

potential energy; and A is the vector potential

A(r̂) =
∑︁
k,𝜖

(︃
~

2𝜀0𝜔k𝐿3

)︃1/2 (︁
𝑎̂k,𝜖𝑒

+𝑖k·r̂𝜖 + 𝑎̂†
k,𝜖𝑒

−𝑖k·r̂𝜖*
)︁

(C.2)

where k and 𝜖 are the wave number and the polarization vectors, respectively; 𝜔k is

the frequency corresponding to k; 𝐿 is the length of the cubic box enclosing the system

(for normalization); and 𝑎̂k,𝜖 and 𝑎̂†
k,𝜖 are the annihilation and the creation operators,

respectively. We divide the full Hamiltonian into the unperturbed Hamiltonian and
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the first-order perturbation

𝐻̂(0) = 1
2𝑚 p̂2 + 𝑉 (r̂) (C.3)

𝐻̂(1) = 𝑞

𝑚
A(r̂) · p̂ (C.4)

To be precise, we are interested in emission, so we only need the part of the pertur-

bation corresponding to the creation of a photon

𝐻̂(+) =
∑︁
k,𝜖

𝑞

𝑚

(︃
~

2𝜀0𝜔k𝐿3

)︃1/2

𝑎̂†
k,𝜖𝑒

−𝑖k·r̂𝜖* · p̂ (C.5)

We calculate the transition amplitudes in the interaction picture

⟨S0, 𝑛k,𝜖 + 1|𝜓(𝑡)⟩ = 1
𝑖~

∫︁ 𝑡

0
⟨S0, 𝑛k,𝜖 + 1|𝐻(+)(𝑡′)|S1, 𝑛k,𝜖⟩ 𝑑𝑡′ (C.6)

On evaluating the matrix element, it is obvious that only the term corresponding to

wave number k and polarization 𝜖 survives.

⟨S0, 𝑛k,𝜖 + 1|𝜓(𝑡)⟩

= 𝑞

𝑖𝑚

(︂ 1
2𝜀0~𝜔k𝐿3

)︂1/2
⟨𝑛k,𝜖 + 1|𝑎†

k,𝜖|𝑛k,𝜖⟩ 𝜖* · ⟨S0|𝑒−𝑖k·r̂p̂|S1⟩
∫︁ 𝑡

0
𝑒𝑖(𝜔k−𝜔10)𝑡′𝑑𝑡′

(C.7)

The first matrix element is given by the normalization of the creation operator

⟨𝑛k,𝜖 + 1|𝑎̂†
k,𝜖|𝑛k,𝜖⟩ = (𝑛k,𝜖 + 1)1/2 (C.8)

In the second matrix element, we can assume k · r̂ ≈ 0, since the length scales of

molecules are much smaller than the wavelength of visible light. Using the canonical

commutation relation, the second matrix element becomes

⟨S0|p̂|S1⟩ = 𝑚

𝑖~
⟨S0|[r̂, 𝐻̂(0)]|S1⟩ = 𝑖𝑚𝜔10 ⟨S0|r̂|S1⟩ (C.9)
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where we have used ~𝜔10 = 𝐸S1 −𝐸S0 ; and ⟨S0|r̂|S1⟩ is the transition dipole moment

(TDM). The last integral evaluates to

∫︁ 𝑡

0
𝑒𝑖(𝜔k−𝜔10)𝑡′𝑑𝑡′ = −𝑖 sin((𝜔k − 𝜔10)𝑡/2)

(𝜔k − 𝜔10)/2
𝑒𝑖(𝜔k−𝜔10)𝑡/2 (C.10)

Therefore, the transition amplitudes are

⟨S0, 𝑛k,𝜖 + 1|𝜓(𝑡)⟩

= −𝑖𝑞𝜔10

(︂
𝑛k,𝜖 + 1

2𝜀0~𝜔k𝐿3

)︂1/2
𝜖* · ⟨S0|r̂|S1⟩

sin((𝜔k − 𝜔10)𝑡/2)
(𝜔k − 𝜔10)/2

𝑒𝑖(𝜔k−𝜔10)𝑡/2

(C.11)

Since we are interested in spontaneous emission, we assume 𝑛k,𝜖 = 0.

We obtain the total S1 → S0 transition probability by summing over the wave

number and the polarization vectors

| ⟨S0|𝜓(𝑡)⟩ |2 =
∑︁
k,𝜖
| ⟨S0, 𝑛k,𝜖 + 1|𝜓(𝑡)⟩ |2

= 𝑞2

2𝜀0~𝐿3

∑︁
k

𝜔10
2

𝜔k

(︃
sin((𝜔k − 𝜔10)𝑡/2)

(𝜔k − 𝜔10)/2

)︃2∑︁
𝜖

|𝜖* · ⟨S0|r̂|S1⟩ |2 (C.12)

Since the polarization spans the plane perpendicular to the wave number, the sum

over the polarizations reduces to

∑︁
𝜖

|𝜖* · ⟨S0|r̂|S1⟩ |2 = |n× ⟨S0|r̂|S1⟩ |2 (C.13)

where n is a unit vector parallel to the wave number. We replace the sum over the

wave numbers with an integral

∑︁
k
→
(︂
𝐿

2𝜋

)︂3 ∫︁
𝑑k (C.14)
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Now, the transition probability is

| ⟨S0|𝜓(𝑡)⟩ |2 = 𝑞2

16𝜋3𝜀0~

∫︁ 𝜔10
2

𝜔k

(︃
sin((𝜔k − 𝜔10)𝑡/2)

(𝜔k − 𝜔10)/2

)︃2

|n× ⟨S0|r̂|S1⟩ |2𝑑k (C.15)

It is the convenient to evaluate this integral in spherical coordinates with the 𝑧-axis

along the TDM ∫︁
𝑑k =

∫︁ ∞

0
𝑘2𝑑𝑘

∫︁ 𝜋

0
sin 𝜃𝑑𝜃

∫︁ 2𝜋

0
𝑑𝜑 (C.16)

Further, we make a change of variables 𝜔 = 𝑘𝑐, where 𝑐 is the speed of light. Now,

the transition probability is

| ⟨S0|𝜓(𝑡)⟩ |2 = 𝑞2𝜔10
2

8𝜋2𝜀0~𝑐3 | ⟨S0|r̂|S1⟩ |2
∫︁ ∞

0

(︃
sin((𝜔 − 𝜔10)𝑡/2)

(𝜔 − 𝜔10)/2

)︃2

𝜔𝑑𝜔
∫︁ 𝜋

0
sin3 𝜃𝑑𝜃

(C.17)

In the radial integral, we make a change of variables 𝑥 = (𝜔 − 𝜔10)𝑡/2

∫︁ ∞

0

(︃
sin((𝜔 − 𝜔10)𝑡/2)

(𝜔 − 𝜔10)/2

)︃2

𝜔𝑑𝜔 = 2𝑡
∫︁ +∞

−𝜔10𝑡/2

(︂sin 𝑥
𝑥

)︂2 (︂
𝜔10 + 2𝑥

𝑡

)︂
𝑑𝑥 (C.18)

For interactions of molecules with visible light, we can assume 𝜔10𝑡≫ 1. The radial

integral reduces to

(𝐶.18) ≈ 2𝜔10𝑡
∫︁ +∞

−∞

(︂sin 𝑥
𝑥

)︂2
𝑑𝑥 = 2𝜋𝜔10𝑡 (C.19)

Meanwhile, the angular integral is

∫︁ 𝜋

0
sin3 𝜃𝑑𝜃 = 4

3 (C.20)

Therefore, the total transition probaility is

| ⟨S0|𝜓(𝑡)⟩ |2 = 𝑞2𝜔10
3

3𝜋𝜀0~𝑐3 | ⟨S0|r̂|S1⟩ |2𝑡 (C.21)
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We rewrite this expression as

| ⟨S0|𝜓(𝑡)⟩ |2 = 𝑞2𝜔10
2

2𝜋𝜀0𝑚𝑐3𝑓10𝑡 (C.22)

using the definition of the oscillator strength

𝑓10 = 2𝑚𝜔10

3~ | ⟨S0|r̂|S1⟩ |2 (C.23)

As desired, the rate of fluorescence is the same as the Einstein coefficient [191]

𝑘F = 𝑞2𝜔10
2

2𝜋𝜀0𝑚𝑐3𝑓10 (C.24)
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Appendix D

Supplementary Information:

Simple Four-State Model of TADF

D.1 Approximations Behind the Four-State Hamil-

tonian

First, we consider the donor-acceptor system to be isolated; therefore, not interacting

with other molecules in the environment. Next, we assume that there are only four

excited diabatic states participating in the reverse intersystem crossing and fluores-

cence. These states can be effectively described by three orbitals localized on either

donor or acceptor moieties. The conceptually simplest way to think about these

states is to treat them as single electron configurations, which means that they result

from some mean-field electronic structure approximation. Due to orthogonalization

tails, the orbitals cannot be completely localized on the donor or acceptor. Assuming

that such states can still be classified as charge transfer and local excitations, one

obtains the four-state Hamiltonian (Equation 6.7) with coupling elements given by

Equations 6.8-6.11. However, the form of the Hamiltonian in Equation 6.7 is not lim-

ited to the mean-field approximation, and the diabatic basis states can be treated as

correlated many-body states. Such diabatic many-body representation would mean

that the states are not necessarily strictly orthogonal and that, in addition to the
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Hamiltonian, the system’s description requires also an overlap matrix. We assume

in the model that the off-diagonal overlaps can be neglected, so the expressions for

coupling elements (Equations 6.8-6.11) still hold. In principle, there might be also

some correlation effects that would break the symmetry between ⟨CT1|𝐻̂|LE1⟩ and

⟨CT2|𝐻̂|LE2⟩, as well as ⟨CT1|𝐻̂|LE2⟩ and ⟨CT2|𝐻̂|LE1⟩ coupling elements. In

any case, we are assuming that these couplings do not change by flipping the spin of

electrons in the excited orbitals.

D.2 Eigenvalues and Eigenvectors of the Four-State

Hamiltonian

Eigenvalues:

𝐸S1 = 1
2(Δ𝐸 +𝐾LE +𝐾CT)

−
√︃

1
4(Δ𝐸 +𝐾LE +𝐾CT)2 − (Δ𝐸 +𝐾LE)𝐾CT + (𝑡+𝐾X)2 (D.1)

𝐸S2 = 1
2(Δ𝐸 +𝐾LE +𝐾CT)

+
√︃

1
4(Δ𝐸 +𝐾LE +𝐾CT)2 − (Δ𝐸 +𝐾LE)𝐾CT + (𝑡+𝐾X)2 (D.2)

𝐸T1 = 1
2(Δ𝐸 −𝐾LE −𝐾CT)

−
√︃

1
4(Δ𝐸 −𝐾LE −𝐾CT)2 + (Δ𝐸 −𝐾LE)𝐾CT + (𝑡−𝐾X)2 (D.3)

𝐸T1 = 1
2(Δ𝐸 −𝐾LE −𝐾CT)

+
√︃

1
4(Δ𝐸 −𝐾LE −𝐾CT)2 + (Δ𝐸 −𝐾LE)𝐾CT + (𝑡−𝐾X)2 (D.4)

Eigenvectors (unnormalized) in the basis of spin-pure diabatic states:
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|S1⟩ = (𝑡+𝐾X)
⃒⃒⃒
1LE

⟩
+
⎡⎣− 1

2(Δ𝐸 +𝐾LE −𝐾CT)

−
√︃

1
4(Δ𝐸 +𝐾LE +𝐾CT)2 − (Δ𝐸 +𝐾LE)𝐾CT + (𝑡+𝐾X)2

⎤⎦ ⃒⃒⃒1CT
⟩

(D.5)

|S2⟩ = (𝑡+𝐾X)
⃒⃒⃒
1LE

⟩
+
⎡⎣− 1

2(Δ𝐸 +𝐾LE −𝐾CT)

+
√︃

1
4(Δ𝐸 +𝐾LE +𝐾CT)2 − (Δ𝐸 +𝐾LE)𝐾CT + (𝑡+𝐾X)2

⎤⎦ ⃒⃒⃒1CT
⟩

(D.6)

|T1⟩ = (𝑡−𝐾X)
⃒⃒⃒
1LE

⟩
+
⎡⎣− 1

2(Δ𝐸 −𝐾LE +𝐾CT)

−
√︃

1
4(Δ𝐸 −𝐾LE −𝐾CT)2 + (Δ𝐸 −𝐾LE)𝐾CT + (𝑡−𝐾X)2

⎤⎦ ⃒⃒⃒1CT
⟩

(D.7)

|T2⟩ = (𝑡−𝐾X)
⃒⃒⃒
1LE

⟩
+
⎡⎣− 1

2(Δ𝐸 −𝐾LE +𝐾CT)

+
√︃

1
4(Δ𝐸 −𝐾LE −𝐾CT)2 + (Δ𝐸 −𝐾LE)𝐾CT + (𝑡−𝐾X)2

⎤⎦ ⃒⃒⃒1CT
⟩

(D.8)

D.3 Monte Carlo Sampling of the Parameter Space

D.3.1 Sampling Ranges

To sample the parameter space of the four-state Hamiltonian, we made some arbitrary

choices about the relevant ranges of parameters. Typically, the HOMO→ LUMO

transition would be a CT state and Δ𝐸 > 0; however, we do not preclude a situation

where the energy of the mixed LE is lower than CT and allow for either sign of

Δ𝐸. The different character of the CT and LE states is directly reflected in the

exchange couplings which we fix to have positive values such that 𝐾CT < 𝐾LE. The

distinction between a CT and LE state needs to be somewhat arbitrary, and we choose

𝐾 = 0.25 eV as the cutoff value for the CT/LE classification. The couplings 𝑡 and

𝐾X can have either sign which is to some extent arbitrary. Changing the phase of

𝜑L or 𝜑L+1 will flip the sign of both 𝑡 and 𝐾X simultaneously without changing the
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other parameters, so only the relative sign matters for the model. We expect the

average absolute value of 𝑡 to be larger than 𝐾X since it is a sum of a one-electron

hopping integral and an exchange-like twoelectron integral, while 𝐾X consists of only

the latter. Based on these considerations we drew the Hamiltonian parameters from

uniform distributions over the following ranges: Δ𝐸 ∈ [−2, 2]eV; 𝐾CT ∈ [0, 0.25]eV;

𝐾LE ∈ [0.25, 2]eV; 𝑡 ∈ [−2, 2]eV; 𝐾S ∈ [−1, 1]eV.

D.3.2 Data Filtering

We have set arbitrary cutoff values to keep only those combinations of parameters

that lead to small singlet-triplet gaps, appreciable LE component in the S1 state,

and significant difference in the electronic character of S1 and T1. Typically, the

reported TADF emitters have singlet-triplet gaps up to 200 meV, and computational

studies suggest that SLE
1 and ΔCT on the order of 10 % may be sufficient for TADF

activity [236]. For this study we apply more stringent criteria, namely Δ𝐸ST < 0.1 eV,

SLE
1 > 0.25, and ΔCT > 0.4, where the latter two values approximately correspond

to maxima in Figure 6-2b and Figure 6-2c.

D.3.3 Principal Component Analysis

The Principal Component Analysis (PCA) was performed on a covariance matrix of

the parameter vectors in the filtered set. The original parameters of the four-state

model were replaced by their combinations which appear directly in the singlet and

triplet Hamiltonians, i.e.

𝑥1 = Δ𝐸 +𝐾LE (D.9)

𝑥2 = Δ𝐸 −𝐾LE (D.10)

𝑥3 = 𝐾CT (D.11)

𝑥4 = 𝑡+𝐾X (D.12)

𝑥5 = 𝑡−𝐾X (D.13)
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The resulting principal components 𝑐𝑖 had the following coefficient in the original

basis (coefficients smaller than 0.005 have been suppressed)

𝑐1 = 0.990𝑥4 + 0.143𝑥5 (D.14)

𝑐2 = 0.959𝑥1 + 0.282𝑥2 (D.15)

𝑐3 = 0.282𝑥1 − 0.959𝑥2 + 0.010𝑥5 (D.16)

𝑐4 = 0.010𝑥2 − 0.143𝑥4 + 0.990𝑥5 (D.17)

𝑐5 = 1.000𝑥3 (D.18)

and the following singular values: 𝜆1 = 255.29, 𝜆2 = 109.78, 𝜆3 = 55.04, 𝜆4 = 34.60,

and 𝜆5 = 9.33, which account for 0.799, 0.148, 0.037, 0.015, and 0.001 of the total

variance, respectively.

Figure D-1: Distributions of 𝑡+𝐾X and Δ𝐸 +𝐾LE after filtering the data.

The principal components with the smallest singular values contribute the most

to the satisfaction of the filtering criterion, so they represent the combinations of

parameters that are prerequisites for TADF. The variability within the filtered set

is explained the most by principal components with the largest singular values, so

these combinations are responsible for fine-tuning of the TADF efficiency. The prin-

cipal component with the smallest singular value and negligible contribution to the

variance is 𝐾CT. It reflects the fact that the exchange integral is in general small for

CT states and efficient solutions can be found in the entire sampled range. The next

component accounts for only 1.5 % of the variance and is dominated by the 𝑡 −𝐾X
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combination, which means that along with 𝐾CT this parameter determines whether

TADF is possible at all. Indeed, the histogram in Figure D-1a reveals that the distri-

bution of this parameter is strongly peaked around 0.00 eV with standard deviation

0.38 eV. The next smallest principal component accounts for 3.7 % of the variance and

is dominated by the Δ𝐸−𝐾LE combination. Figure D-1b shows that the distribution

of this parameter, which has a mean value −1.00 eV and standard deviation 0.46 eV.

It also appears that 𝐾LE has to be larger than Δ𝐸 as there are almost no solutions

where the opposite is true, and the distribution is noticeably negatively skewed. The

remaining two principal components correspond mostly to Δ𝐸 + 𝐾LE and 𝑡 + 𝐾X

combinations, where the latter accounts for as much as 80 % of the variance, so it is

the main source of variation in the filtered data.

This analysis of the importance of parameters is somewhat biased by the judicious

but arbitrary choice of distribution ranges from which the parameters were sampled.

Therefore, the analysis was repeated on normalized original parameters (z-scores):

𝑧𝑖 = 𝑥𝑖−𝜇𝑖

𝜎𝑖
to remove the initial bias introduced by different variances of original

parameters. The resulting principal components are the following (coefficients smaller

than 0.005 have been suppressed):

𝑐1 = 0.707𝑡+ 0.707𝐾X (D.19)

𝑐2 = 0.705Δ𝐸 + 0.704𝐾LE + 0.083𝐾CT (D.20)

𝑐3 = −0.041Δ𝐸 − 0.076𝐾LE + 0.996𝐾CT (D.21)

𝑐4 = −0.708Δ𝐸 + 0.706𝐾LE + 0.024𝐾CT (D.22)

𝑐5 = 0.707𝑡− 0.707𝐾X (D.23)

with the following singular values 𝜆̃1 = 186.334, 𝜆̃2 = 164.883, 𝜆̃3 = 132.840, 𝜆̃4 =

91.023, and 𝜆̃5 = 26.298, accounting for 0.392, 0.307, 0.199, 0.094, and 0.008 of the

total variance, respectively.

The compositions of principal components are essentially the same as in the non-

standardized case, but the scaling of data changes the explained variance ratios so

that 𝑡 − 𝐾X accounts for the least of the variance (0.8 %), followed by Δ𝐸 − 𝐾LE
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(9.4 %), 𝐾CT (19.9 %), Δ𝐸 − 𝐾LE (30.7 %), and 𝑡 + 𝐾X (39.2 %). Therefore, if all

the parameters are treated on an equal footing, clearly small values of 𝑡+𝐾X and to

lesser extent moderately negative Δ𝐸 −𝐾LE are necessary for TADF.

D.4 Molecular Dynamics

Ground state geometry optimization was carried out in the framework of density

functional theory (DFT), using the B3LYP exchange-correlation functional [272–277]

and the 6-31+G* basis set [278–280] as implemented in the Q-Chem 4.4 software

package [297]. The CHELPG [352] charges were computed at the same level of theory.

The Cartesian coordinates of the optimized geometry and the CHELPG charges have

been provided in Table D.1.

Atom 𝑥 (Å) 𝑦 (Å) 𝑧 (Å) CHELPG Atom Type Description

N -0.1771724 0.1308221 -0.0536515 -0.7177610 opls_641 1,3,5-triazine N

C -0.2907067 0.0594104 -0.0577637 0.7412900 opls_642 1,3,5-triazine C

N -0.2951423 -0.0747524 -0.0593212 -0.7370840 opls_641 1,3,5-triazine N

C -0.1764402 -0.1372672 -0.0562627 0.8040150 opls_642 1,3,5-triazine C

N -0.0581012 -0.0741559 -0.0516787 -0.7356020 opls_641 1,3,5-triazine N

C -0.0632419 0.0599753 -0.0505072 0.7320700 opls_642 1,3,5-triazine C

C 0.0650247 0.1344654 -0.0446425 -0.0582920 opls_145B biphenyl C1

C 0.0655603 0.2748075 -0.0376595 -0.1251780 opls_145 benzene C

C 0.1861568 0.3446213 -0.0320655 -0.1262380 opls_145 benzene C

C 0.3076415 0.2753331 -0.0336096 -0.0920130 opls_145 benzene C

C 0.1874834 0.0655030 -0.0459690 -0.0744690 opls_145 benzene C

C 0.3079171 0.1356214 -0.0406489 -0.1281280 opls_145 benzene C

H 0.4020596 0.0813016 -0.0421523 0.1148450 opls_146 benzene H

H 0.1868097 -0.0428006 -0.0513049 0.1075690 opls_146 benzene H

H 0.1853611 0.4531580 -0.0264337 0.1204580 opls_146 benzene H

H 0.4015845 0.3298761 -0.0293961 0.1156810 opls_146 benzene H

H -0.0290245 0.3278108 -0.0364674 0.1357560 opls_146 benzene H

C -0.1759534 -0.2855269 -0.0574480 -0.1276070 opls_145B biphenyl C1

C -0.2965241 -0.3575297 -0.0615792 -0.1110500 opls_145 benzene C

C -0.2962860 -0.4967235 -0.0614839 -0.1966050 opls_145 benzene C

C -0.1748988 -0.5670871 -0.0586419 0.4028990 opls_918 N,N-dimethylaniline C(NH2)

C -0.0540563 -0.4958734 -0.0554877 -0.2577960 opls_145 benzene C

C -0.0548582 -0.3566982 -0.0541884 -0.1166240 opls_145 benzene C

H -0.3903387 -0.3032020 -0.0635794 0.1332380 opls_146 benzene H

H -0.3900079 -0.5515554 -0.0619349 0.1355560 opls_146 benzene H

H 0.0400378 -0.5500398 -0.0555464 0.1535730 opls_146 benzene H
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H 0.0385533 -0.3016960 -0.0519984 0.1464590 opls_146 benzene H

C -0.4194147 0.1333345 -0.0601076 -0.0559090 opls_145B biphenyl C1

C -0.4207058 0.2738567 -0.0619985 -0.0843540 opls_145 benzene C

C -0.5416996 0.3431940 -0.0637009 -0.1321960 opls_145 benzene C

C -0.6628331 0.2732251 -0.0633679 -0.0905420 opls_145 benzene C

C -0.6623286 0.1333685 -0.0615400 -0.1288670 opls_145 benzene C

C -0.5414982 0.0637343 -0.0600341 -0.1128430 opls_145 benzene C

H -0.5402709 -0.0446840 -0.0586540 0.1252090 opls_146 benzene H

H -0.7570711 0.3274058 -0.0645889 0.1152140 opls_146 benzene H

H -0.7561528 0.0785045 -0.0612874 0.1197590 opls_146 benzene H

H -0.3263898 0.3273574 -0.0621695 0.1131400 opls_146 benzene H

H -0.5415096 0.4518743 -0.0652907 0.1187370 opls_146 benzene H

N -0.1743323 -0.7087744 -0.0587923 -0.3621580 opls_587 indole N1

C -0.1100683 -0.7906475 0.0352199 0.2739950 opls_594 indole C8

C -0.1339998 -0.9264327 0.0018879 -0.0149390 opls_595 indole C9

C -0.2158921 -0.9266986 -0.1176433 -0.0119650 opls_595 indole C9

C -0.3120495 -0.7559178 -0.2661347 -0.2717900 opls_593 indole C7

C -0.3638388 -0.8591149 -0.3444576 -0.0788970 opls_592 indole C6

C -0.3431816 -0.9941730 -0.3108205 -0.2075590 opls_591 indole C5

C -0.2689765 -1.0284647 -0.1979432 -0.1527430 opls_590 indole C4

C -0.0813888 -1.0278192 0.0829722 -0.1582400 opls_590 indole C4

C -0.0068041 -0.9930365 0.1954527 -0.1963340 opls_591 indole C5

C 0.0147864 -0.8578391 0.2278818 -0.0957790 opls_592 indole C6

C -0.0365160 -0.7550062 0.1487574 -0.2900690 opls_593 indole C7

C -0.2390061 -0.7910665 -0.1521262 0.2533390 opls_594 indole C8

H -0.0989574 -1.1323350 0.0587324 0.1423740 opls_599 indole H4

H 0.0346372 -1.0707802 0.2590432 0.1355690 opls_600 indole H5

H 0.0724471 -0.8325453 0.3164712 0.1257360 opls_601 indole H6

H -0.0199339 -0.6510878 0.1753063 0.1599650 opls_602 indole H7

H -0.3276138 -0.6521202 -0.2937596 0.1424250 opls_602 indole H7

H -0.4210393 -0.8342520 -0.4334683 0.1193510 opls_601 indole H6

H -0.3849812 -1.0721943 -0.3738366 0.1356040 opls_600 indole H5

H -0.2520441 -1.1328719 -0.1728020 0.1420160 opls_599 indole H4

H -0.3629621 0.0623256 0.2920560 0.1482280 opls_146 benzene H

H -0.4094327 0.3049320 0.2826535 0.1569120 opls_146 benzene H

H -0.1951850 -0.2894448 0.3104549 0.1619210 opls_146 benzene H

H -0.3824010 -0.4515855 0.3092251 0.1226910 opls_146 benzene H

H 0.0251872 0.0312985 0.3065705 0.1697260 opls_146 benzene H

H 0.2586801 -0.0490898 0.3186254 0.1404710 opls_146 benzene H

C -0.3074025 0.1300405 0.3561811 -0.2318230 opls_145 benzene C

C -0.2835773 -0.2701037 0.3704517 -0.2903400 opls_145 benzene C

C -0.3340177 0.2668022 0.3507469 -0.1453770 opls_145 benzene C

C -0.3887857 -0.3615989 0.3695699 -0.0740760 opls_145 benzene C

C 0.0506771 -0.0492222 0.3747772 -0.3003650 opls_145 benzene C

C 0.1824429 -0.0943736 0.3812176 -0.0952270 opls_145 benzene C
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C -0.2611513 0.3542177 0.4314462 0.0789740 opls_263 chlorobenzene C(Cl)

C 0.2150726 -0.1994313 0.4670469 0.0526910 opls_263 chlorobenzene C(Cl)

C -0.5032591 -0.3354795 0.4449634 0.0606780 opls_263 chlorobenzene C(Cl)

C -0.2094671 0.0792910 0.4431227 0.3887900 opls_918 N,N-dimethylaniline C(NH2)

C -0.2908085 -0.1530699 0.4477933 0.4007680 opls_918 N,N-dimethylaniline C(NH2)

C -0.0490429 -0.1070993 0.4549987 0.4285840 opls_918 N,N-dimethylaniline C(NH2)

N -0.1831153 -0.0602986 0.4489654 -0.4642580 opls_902 tertiary amine N

Cl -0.2933720 0.5270910 0.4239583 -0.1396110 opls_264 chlorobenzene Cl

Cl 0.3810083 -0.2575846 0.4745096 -0.1365380 opls_264 chlorobenzene Cl

Cl -0.6369042 -0.4499010 0.4429752 -0.1369440 opls_264 chlorobenzene Cl

C 0.1173806 -0.2589631 0.5469530 -0.0757120 opls_145 benzene C

C -0.1627541 0.3060616 0.5178761 -0.1060680 opls_145 benzene C

C -0.5128685 -0.2194098 0.5218289 -0.1019440 opls_145 benzene C

C -0.0138597 -0.2121586 0.5413605 -0.3212080 opls_145 benzene C

C -0.4065416 -0.1292215 0.5237448 -0.2987640 opls_145 benzene C

C -0.1378692 0.1689937 0.5241048 -0.2932570 opls_145 benzene C

H 0.1436894 -0.3401015 0.6140856 0.1336590 opls_146 benzene H

H -0.6019486 -0.2002259 0.5808083 0.1401700 opls_146 benzene H

H -0.1069738 0.3746853 0.5808106 0.1393450 opls_146 benzene H

H -0.0897067 -0.2575724 0.6043950 0.1609010 opls_146 benzene H

H -0.4134755 -0.0394764 0.5844489 0.1550840 opls_146 benzene H

H -0.0621588 0.1312941 0.5921804 0.1557080 opls_146 benzene H

Table D.1: Cartesian coordinates of the optimized geometry, CHELPG charges, and atom type assignments.

The molecular dynamics (MD) simulations were carried out using the OPLS-aa

force field [271] as implemented in the GROMACS 5.1.2 software package [353]. Since

not every atom could be assigned to the exact atom type, assignments were made to

best describe the chemical environment of each atom. The atom type assignments

can be found in Table D.1. The equilibrium bond lengths, bond angles, and dihedral

angles were parametrized to the DFT optimized geometry, and the default charges

were replaced with the CHELPG charges. Periodic boundary conditions were enforced

so that the complex was 1.0 nm from the walls of the cubic box at the beginning of

the simulation. Although an NVT ensemble was used, a separate equilibration stage

was deemed unnecessary, since the focus was not on the thermodynamics. The Nose-

Hoover thermostat [354–356] was set at 300 K during regular MD runs and at 400 K

during runs with modified Lennard-Jones parameters.

Since the initial results of TDDFT suggested that the oscillator strength, rather
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than Δ𝐸ST, was the limiting factor of the TADF rate, many of the MD simulations had

the Lennard-Jones parameters of the OPLS-aa force field modified to push the donor

and the acceptor moieties closer together and increase the HOMO-LUMO overlap.

The Lennard-Jones potential has the form:

𝑉LJ(𝑟) = 4𝜀
[︃(︂
𝜎

𝑟

)︂12
−
(︂
𝜎

𝑟

)︂6
]︃

(D.24)

where 𝜀 and 𝜎 are atom-specific parameters that control the depth and the position

of the potential well, respectively. Keeping the 𝜀-parameter of each atom at 1.5 times

the default value, the 𝜎-parameters were scaled down by a number of different factors.

Unless otherwise mentioned, snapshots were taken at rather short intervals of

0.1 ps, but they were sampled at longer intervals for TDDFT calculations. After the

initial sampling, the temporal correlation between snapshots was used to select the

intervals on which to focus the search. Whenever a simulation exhibited a transition

between a large oscillator strength and a small Δ𝐸ST or an extended period of either,

the more frames in that part of the simulation were submitted to TDDFT, with the

hope that the trajectory would encounter a conformation of both a large oscillator

strength and a small Δ𝐸ST.

D.5 Rate of Thermally Activated Delayed Fluo-

rescence

Equation 6.20 assumes that the excited state populations have thermalized and that

only the S1 and the T1 states are populated to a significant extent. On the other

hand, if the T2 state were lower in energy than the S1 state, then the T2 state should

be included in the denominator [215]. The formula becomes

𝑘TADF = 𝑘F[S1]
[S1] + [T1] + [T2]

= 𝑘F

1 +𝐾1 +𝐾2
(D.25)

𝐾1 ≡
[T1]
[S1]

= 3 exp
(︃

Δ𝐸S1−T1

𝑘B𝑇

)︃
(D.26)
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𝐾2 ≡
[T2]
[S1]

= 3 exp
(︃

Δ𝐸S1−T2

𝑘B𝑇

)︃
(D.27)

However, the correction was neglected in Chapter 6, because taking the T2 state into

consideration neither entailed an order-of-magnitude correction to a TADF rate nor

altered the statistics in a meaningful way. Examples can be found in the following

section.

D.6 Time-Dependent Density Functional Theory

The excited states in the selected conformations were computed in the framework of

time-dependent density functional theory (TDDFT), using the same level of theory as

geometry optimization. In the first MD simulation, which used the default Lennard-

Jones parameters, some twenty conformations were sampled. The TDDFT results

and the estimated rates have been provided in Table D.2. The TADF rate could

already be seen undergoing order-of-magnitude fluctuations. The shortest TADF

lifetime to be obtained at this point was 13 µs (oscillator strength of 1.1× 10−3 and

Δ𝐸ST of 0.01 eV), to be contrasted with the DFT optimized geometry, which was

estimated to have a TADF lifetime of 1.6 ms (oscillator strength of 1.8× 10−5 and

Δ𝐸ST of 0.02 eV). Since Δ𝐸ST < 𝑘𝐵𝑇 = 25.7 meV was not difficult to obtain in the

model system, it was decided that the oscillator strength, rather than Δ𝐸ST, was the

limiting factor of the TADF rate.

In the MD simulations with modified Lennard-Jones parameters, the 𝜀-parameter

of each atom was kept at 1.5 times the default value, while the 𝜎-parameter was

scaled down by a number of different values (see Section D.4). Over a thousand

conformations have been sampled. As such, only the conformations with the fastest

TADF in each simulation have been listed in Tables D.3–D.7.
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Frame T1 (eV) T2 (eV) Tn < S1 S1 (eV) 𝑓10 𝜏F (µs) 𝜏TADF (µs)a 𝜏TADF (µs)b

401 2.64 2.66 2 2.66 1.1× 10−3 2.8 1.3× 101 1.4× 101

0 2.77 2.83 1 2.78 1.8× 10−3 1.7 1.5× 101 1.6× 101

800 2.68 2.74 1 2.70 7.9× 10−4 3.7 2.5× 101 2.6× 101

201 2.80 2.89 1 2.81 5.5× 10−4 6.1 3.1× 101 4.4× 101

300 2.61 2.63 1 2.62 4.8× 10−4 6.0 3.3× 101 3.4× 101

400 2.84 2.93 1 2.85 6.4× 10−4 4.2 4.0× 101 5.3× 101

200 2.90 2.92 1 2.92 6.1× 10−4 4.6 4.9× 101 6.0× 101

202 2.82 2.86 1 2.85 7.7× 10−4 3.3 6.7× 101 1.2× 102

901 2.94 2.95 2 2.99 3.1× 10−4 8.9 8.2× 101 1.0× 102

2 2.87 2.91 1 2.90 9.5× 10−5 2.6× 101 1.3× 102 2.1× 102

601 3.05 3.05 1 3.05 4.0× 10−4 6.7 2.9× 103 2.9× 103

701 2.81 2.90 3 2.94 5.2× 10−4 4.9 3.2× 103 3.2× 103

301 2.88 3.00 3 3.02 5.1× 10−4 4.7 5.0× 103 5.1× 103

100 2.92 3.02 4 3.07 3.9× 10−3 6.0× 10−1 9.4× 103 1.4× 104

500 2.93 2.95 4 3.15 1.3× 10−3 1.9 1.9× 104 1.9× 104

101 2.87 3.03 3 3.08 8.2× 10−5 3.2× 101 2.9× 104 3.0× 104

102 2.81 2.92 3 2.96 1.1× 10−2 1.9× 10−1 5.6× 104 5.6× 104

501 2.69 2.97 2 2.99 6.4× 10−4 3.8 1.1× 105 1.2× 105

600 2.87 2.92 5 3.10 2.7× 10−3 1.0 4.0× 105 4.0× 105

1 2.61 2.89 3 2.92 1.6× 10−4 1.6× 101 9.7× 105 9.7× 105

700 2.72 2.96 2 2.97 4.8× 10−5 4.6× 101 1.0× 106 1.5× 106

801 3.00 3.01 5 3.23 1.7× 10−4 1.5× 101 1.7× 106 1.7× 106

900 2.76 2.95 3 3.03 4.4× 10−4 5.0 6.6× 107 7.4× 107

optc 2.86 2.91 4 3.25 1.8× 10−5 1.8× 102 1.6× 103 2.2× 103

a The TADF lifetime according to Equation 6.20.
b The TADF lifetime according to Equation D.25.
c The DFT-optimized geometry.

Table D.2: TDDFT results on the MD simulation with the default Lennard-Jones
parameters. Here, the snapshots were taken at 1 ps intervals. Except for the DFT-
optimized geometry, the conformations have been sorted in the order of increasing
TADF lifetime.

Frame T1 (eV) T2 (eV) Tn < S1 S1 (eV) 𝑓10 𝜏F (µs) 𝜏TADF (µs)a 𝜏TADF (µs)b

0 2.49 2.55 1 2.53 8.4× 10−3 4.3× 10−1 6.1 6.6
20 2.53 2.54 1 2.53 1.7× 10−3 2.2 1.0× 101 1.5× 101

8 2.58 2.66 1 2.60 2.7× 10−3 1.3 1.2× 101 1.2× 101

160 2.54 2.67 1 2.55 1.2× 10−3 3.0 1.6× 101 1.6× 101

12 2.57 2.65 1 2.58 1.4× 10−3 3.0 1.7× 101 1.7× 101

2 2.43 2.47 2 2.49 4.6× 10−3 8.1× 10−1 2.4× 101 3.0× 101

4 2.19 2.28 1 2.21 8.6× 10−4 5.5 3.6× 101 3.6× 101

110 2.17 2.57 1 2.17 4.8× 10−4 1.0× 101 4.4× 101 4.4× 101

a The TADF lifetime according to Equation 6.20.
b The TADF lifetime according to Equation D.25.

Table D.3: TDDFT results on the MD simulation with modified Lennard-Jones pa-
rameters. The 𝜎-parameter of each atom was set to 0.9 times the default value.
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Frame T1 (eV) T2 (eV) Tn < S1 S1 (eV) 𝑓10 𝜏F (µs) 𝜏TADF (µs)a 𝜏TADF (µs)b

51 2.38 2.75 1 2.41 9.9× 10−3 4.0× 10−1 3.6 3.6
81 2.60 2.67 1 2.63 7.3× 10−3 4.6× 10−1 5.0 5.3
90 2.11 2.52 1 2.12 3.6× 10−3 1.4 1.0× 101 1.0× 101

150 2.52 2.59 1 2.57 5.0× 10−3 7.0× 10−1 1.3× 101 1.4× 101

53 2.65 2.68 2 2.69 3.4× 10−3 9.3× 10−1 1.4× 101 1.8× 101

92 2.68 2.74 2 2.77 2.2× 10−2 1.4× 10−1 1.4× 101 1.5× 101

65 2.57 2.82 1 2.66 2.2× 10−2 1.5× 10−1 1.4× 101 1.4× 101

88 2.27 2.45 1 2.28 1.6× 10−3 2.8 1.6× 101 1.6× 101

a The TADF lifetime according to Equation 6.20.
b The TADF lifetime according to Equation D.25.

Table D.4: TDDFT results on the MD simulation with modified Lennard-Jones pa-
rameters. The 𝜎-parameter of each atom was set to 0.8 times the default value.

Frame T1 (eV) T2 (eV) Tn < S1 S1 (eV) 𝑓10 𝜏F (µs) 𝜏TADF (µs)a 𝜏TADF (µs)b

212 2.38 2.40 1 2.40 7.4× 10−3 5.4× 10−1 3.7 5.2
165 2.47 2.73 1 2.48 3.7× 10−3 1.0 5.0 5.0
191 2.57 2.63 1 2.58 4.0× 10−3 8.7× 10−1 5.4 5.8
10 2.31 2.42 1 2.36 1.2× 10−2 3.5× 10−1 8.2 8.3

213 2.67 2.69 2 2.74 1.7× 10−2 1.8× 10−1 8.2 1.2× 101

214 2.32 2.52 1 2.42 4.1× 10−2 9.7× 10−2 9.2 9.2
163 2.66 2.72 1 2.67 2.1× 10−3 1.6 9.9 1.1× 101

190 2.44 2.60 1 2.46 2.5× 10−3 1.6 1.0× 101 1.0× 101

a The TADF lifetime according to Equation 6.20.
b The TADF lifetime according to Equation D.25.

Table D.5: TDDFT results on the MD simulation with modified Lennard-Jones pa-
rameters. The 𝜎-parameter of each atom was set to 0.75 times the default value.

Frame T1 (eV) T2 (eV) Tn < S1 S1 (eV) 𝑓10 𝜏F (µs) 𝜏TADF (µs)a 𝜏TADF (µs)b

438 2.41 2.43 2 2.43 9.6× 10−3 4.1× 10−1 2.7 4.1
363 2.07 2.44 1 2.10 1.8× 10−2 2.9× 10−1 2.8 2.8
368 1.96 2.22 1 2.00 2.6× 10−2 2.2× 10−1 3.1 3.1
366 2.23 2.59 1 2.24 9.0× 10−3 5.1× 10−1 3.4 3.4
173 2.36 2.42 1 2.39 1.2× 10−2 3.5× 10−1 3.5 3.8
361 2.16 2.38 1 2.22 4.1× 10−2 1.1× 10−1 3.6 3.6
185 2.19 2.42 1 2.24 1.7× 10−2 2.8× 10−1 5.2 5.2
171 2.56 2.60 1 2.59 6.2× 10−3 5.5× 10−1 5.5 6.6
749 2.46 2.53 1 2.48 1.4× 10−2 2.8× 10−1 2.0 2.1
800 2.48 2.51 1 2.51 2.4× 10−2 1.5× 10−1 2.1 2.6
819 2.21 2.47 1 2.25 1.9× 10−2 2.4× 10−1 3.2 3.2
657 2.21 2.37 1 2.22 1.0× 10−2 4.6× 10−1 3.3 3.3
315 2.35 2.41 1 2.40 2.1× 10−2 1.9× 10−1 3.7 4.1
666 2.30 2.55 1 2.32 9.5× 10−3 4.5× 10−1 3.8 3.8
219 2.40 2.48 1 2.42 5.1× 10−3 7.8× 10−1 4.4 4.5
801 2.25 2.42 1 2.30 2.1× 10−2 2.1× 10−1 4.4 4.4

a The TADF lifetime according to Equation 6.20.
b The TADF lifetime according to Equation D.25.

Table D.6: TDDFT results on the MD simulation with modified Lennard-Jones pa-
rameters. The 𝜎-parameter of each atom was set to 0.7 times the default value.
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Frame T1 (eV) T2 (eV) Tn < S1 S1 (eV) 𝑓10 𝜏F (µs) 𝜏TADF (µs)a 𝜏TADF (µs)b

155 1.94 2.20 1 2.04 2.0× 10−2 2.8× 10−1 4.2× 101 4.2× 101

115 2.02 2.33 1 2.06 1.1× 10−3 4.8 8.4× 101 8.4× 101

195 1.92 2.10 1 2.06 1.4× 10−2 3.9× 10−1 3.5× 102 3.5× 102

125 2.12 2.17 3 2.28 1.9× 10−2 2.3× 10−1 3.9× 102 4.4× 102

455 1.51 1.65 1 1.58 1.0× 10−3 9.2 4.1× 102 4.1× 102

305 1.55 1.85 1 1.71 2.9× 10−2 2.7× 10−1 5.0× 102 5.0× 102

185 1.15 1.18 2 1.23 1.7× 10−3 8.7 7.8× 102 9.6× 102

6 1.95 2.11 2 2.12 1.3× 10−2 3.8× 10−1 7.9× 102 7.9× 102

a The TADF lifetime according to Equation 6.20.
b The TADF lifetime according to Equation D.25.

Table D.7: TDDFT results on the MD simulation with modified Lennard-Jones pa-
rameters. The 𝜎-parameter of each atom was set to 0.7 times the default value.
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D.7 Polarizable Continuum Model

Figure D-2: Scatter plots of the condensed phase against the gas phase (a) S1 excita-
tion energy, (b) T1 excitation energy, (c) Δ𝐸ST, and (d) S1 − S0 oscillator strength.
The black lines have unit slope (𝑥 = 𝑦).

The condensed phase effects were examined at the level of linear-response conductor-

like polarizable continuum model (LR-CPCM) [282, 283]. On the same set of confor-

mations as the gas phase calculations, TDDFT/LR-CPCM calculations were carried

out, assuming a dielectric constant of 3.0, which is quite common in the OLED matrix

materials [245]. The results have been summarized in Figure S5. While LR-CPCM

tended to stabilize the S1 and the T1 states, decrease Δ𝐸ST, and increase the oscillator
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strength, it was not enough to induce qualitative changes in the statistics.
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D.8 Natural Transition Orbitals

Figure D-3: (a) Hole and (b) particle orbitals of the S1 state. The inset are the
corresponding NTOs of the T1 state.

Figure D-4: (a) Hole and (b) particle orbitals of the S1 state. The insets are the
corresponding NTOs of the T1 state.

The conformers in Figure 6-6 correspond to frames 438 and 819 in Table D.6.

Here, two more representative conformations are examined. With the ISO value fixed

at 0.02, the dominant NTO pairs in the S1 and the T1 excited states have been

visualized in Figure D-3 and D-4.
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D.9 Analysis of the Orbital Transitions

Figure D-5: Kohn-Sham orbitals: (a,e) HOMO− 1, (b,d) HOMO, (c,f) LUMO, and
(d,h) LUMO + 1.

Among the conformers that exhibited the highest TADF rates (𝜏TADF < 10 µs),

the average HOMO→ LUMO transition amplitude was 0.99 in the S1 excitation

and 0.94 in the T1 excitation. The secondary contributions often came from the

HOMO→ LUMO + 1 and the HOMO− 1→ LUMO transitions, with the HOMO

→ LUMO + 1 transition being more important in the S1 excitation and vice versa in

the T1 excitation. Figure D-5 depicts the relevant KS orbitals of the same conformers
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as in Figure 6-6. The slight delocalization of the HOMO in the first conformer should

not be a surprise, since the KS orbitals have been optimized in the adiabatic repre-

sentation. With that said, the HOMO and the HOMO− 1 of the second conformer

are localized on the donor moiety and the CZ group, respectively. In either case, the

HOMO− 1→ LUMO transition increases the LE character of the excitation, since

the bulk of the HOMO− 1 resides on the carbazole group of the acceptor moiety. On

the other hand, the HOMO→ LUMO + 1 transition contributes more CT character.

With cancellation between the delocalization of the HOMO and the CT contribution

of the HOMO→ LUMO + 1 transition, the HOMO→ LUMO transition amplitude

should provide a reasonable relative measure of the CT/LE character.

On the other end of the spectrum, among the conformers that exhibited low TADF

rates (𝜏TADF > 1 ms), the transitions became much more complicated, making detailed

interpretation difficult. Fortunately, the KS orbitals HOMO− 1 through LUMO + 1

retained their characteristics throughout the conformation space, so some insight

could be extracted in terms of the HOMO→ LUMO transition. In the S1 excitation,

the HOMO→ LUMO transition still dominated, although the average transition am-

plitude was reduced to 0.94. Meanwhile, the T1 excitation contained varying amounts

of the HOMO→ LUMO transition. In fact, some conformations exhibited negligible

HOMO→ LUMO transition in their T1 excitation. In such cases, there had been a

switch in the energy ordering of the CT-like and the LE-like triplet states, and some

higher triplet state could be found with a dominant HOMO→ LUMO transition. Due

to the decreased CT character in the S1 and the T1 states, more than 80 % of these

conformers had an oscillator strength > 10−3, but they also had a Δ𝐸ST > 100 meV.

The change in the limiting factor of TADF from the oscillator strength to the Δ𝐸ST

highlights that the S1 and the T1 states should contain some LE character, but no

more than a small fraction.
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Appendix E

Supplementary Information:

Maximizing TADF via

Conformational Optimization

E.1 Variation of Nelder-Mead Simplex Method

We want to maximize the TADF rate of a molecule in a subspace of the 𝑍-matrix

coordinates. Let x0 be the vector of the 𝑛 coordinates at the initial geometry.

1. Initialization Prepare 𝑛 + 1 geometries x0,x1, ...,x𝑛, where x𝑖>0 are generated

by displacing the 𝑖th coordinate of x0. We displaced the bond lengths by 0.05 Å

and the bond and the dihedral angles by 5.0∘. The geometries correspond to the

vertices of a 𝑛-simplex. Calculate the electronic structure at each geometry, and

evaluate the TADF rate.

2. Termination Compute the center of the simplex x𝑐. If every coordinate at every

vertex is within some tolerance, then the maximization has converged. We required

the bond lengths to be within 0.005 Å and the bond and dihetral angles to be within

0.5∘ of the corresponding value at the center.

3. Reflection, Expansion, and Contraction Sort the vertices in the order of

295



descending TADF rate. Let x𝑛 denote the worst vertex. Compute the center of

the facet x𝑜 consisting of the first 𝑛 vertices. Sample candidate vertices on the line

x0 + 𝛼(x𝑛 − x𝑜). We chose four points: 𝛼 = −0.5,+0.5,+1.0,+2.0. Calculate the

electronic structure at each geometry, and evaluate the TADF rate.

4. Shrink Sort the candidate vertices in the order of descending TADF rate. Let x′
𝑛

denote the best candidate vertex. If x′
𝑛 has a higher TADF rate than x𝑛−1, then

replace x𝑛 with x′
𝑛 and return to step 2. Otherwise, replace x𝑖>0 with (x𝑖>0+x0)/2,

calculate the electronic structure at each geometry, evaluate the TADF rate, and

return to step 2.

A notable feature of the above algorithm is that the function evaluations cor-

responding to Reflection, Expansion, and Contraction are performed in parallel,

whereas they are performed in series in the original algorithm of Nelder and Mead

[312]. The parallel algorithm does not make the most efficient use of the CPU time,

since the serial algorithm would use heuristics to avoid function evaluations at one or

more of the candidate vertices. However, knowing the TADF rate of every candidate

vertex might help convergence as the differences in the TADF rates approach the

uncertainty of the electronic structure method. Moreover, even though the CPU time

might increase, the wall time can be reduced by assigning each electronic structure

calculation to a separate set of CPU cores. Depending on the number of molecules to

optimize and the real world time constraints, either the serial or parallel algorithm

might be more useful than the other.

E.2 Rate of Reverse Intersystem Crossing

The rate of reverse intersystem crossing (RISC) was estimated using Fermi’s golden

rule

𝑘T𝑛→S1 = 2𝜋
~
|⟨S1|𝐻̂SO|T𝑛⟩|2𝜌T𝑛→S1 (E.1)
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where 𝜌T𝑛→S1 is the Franck-Condon weighted density of states (FCWD). One of the

simplest ways to estimate the FCWD is Marcus theory [192, 193]

𝜌T𝑛→S1 = 1
(4𝜋𝜆M𝑘B𝑇 )1/2 exp

[︃
−(Δ𝐸S1−T𝑛 + 𝜆M)2

4𝜆M𝑘B𝑇

]︃
(E.2)

where 𝜆M is the Marcus reorganization energy. Since conformational optimization

considers a single conformer of a definite geometry, it is incompatible with geometric

relaxation. Hence, we just used a typical value of the reorganization energy 𝜆M =

0.2 eV [195, 196, 290]. We expected that the simplified approach would give accuracies

to the correct order of magnitude, which would suffice to assess the extent to which

a finite RISC rate slows down TADF.

Since Equation 7.2 represents the limit of fast RISC, we consider the opposite

limit of slow RISC, i.e. 𝑘RISC ≪ 𝑘F + 𝑘ISC. Assuming that internal conversion (IC) is

fast enough that only the S1, T1, and T2 states remain populated after a transient,

the kinetic equation of the S1 state becomes

𝑑[S1]
𝑑𝑡

= −𝑘F[S1]− 𝑘S1→T1 [S1] + 𝑘T1→S1 [T1]− 𝑘S1→T2 [S1] + 𝑘T2→S1 [T2] (E.3)

Furthermore, assume that IC maintains a quasi-equilibrium between the triplet states

with the equilibrium cosntant

𝐾12 = exp
(︃

Δ𝐸T1−T2

𝑘B𝑇

)︃
(E.4)

Then, the equation simplifies to

𝑑[S1]
𝑑𝑡

= −𝑘F[S1]− 𝑘ISC[S1] + 𝑘RISC[T1] (E.5)

where 𝑘ISC = 𝑘S1→T1 + 𝑘S1→T2 and 𝑘RISC = 𝑘T1→S1 + 𝑘T2→S1𝐾12. Using the steady

state approximation, we extract the quasi-steady-state population of the S1 state

[S1]
[T1]

= 𝑘RISC

𝑘F + 𝑘ISC
(E.6)
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Returning to the definition of the TADF rate, we rearrange the expression

𝑘TADF ≡
𝑘F[S1]

[S1] + [T1] + [T2]
=
[︃

1
𝑘F

+ 1 +𝐾12

𝑘F
· [T1]

[S1]

]︃−1

(E.7)

Substituting Equation E.6 and rearranging, we get

𝑘TADF =
[︃

1
𝑘F

+ 1 +𝐾12

𝑘F
· 𝑘ISC

𝑘RISC
+ 1 +𝐾12

𝑘RISC

]︃−1

(E.8)

Detailed balance among the S1, T1, and T2 states implies that 𝑘ISC/𝑘RISC = 𝐾1. The

TADF rate becomes

𝑘TADF =
[︃

1 +𝐾1 +𝐾2

𝑘F
+ 1 +𝐾12

𝑘T1→S1 + 𝑘T2→S1𝐾12

]︃−1

(E.9)

where we have also used 𝐾12 = 𝐾2/𝐾1 and 𝑘RISC = 𝑘T1→S1 +𝑘T2→S1𝐾21. Interestingly,

Equation 7.2 appears in an intact form inside Equation E.9, and the RISC correction

is additive to the reciprocal of the idealized TADF rate. For the assumption of fast

RISC to be valid, the RISC rate only needs to be fast compared to the idealized

TADF rate, which is much easier than fast compared to the fluorescence rate.

Table E.1 summarizes the energetics of the model systems at the maximum TADF

geometries with various energy penalties. The electronic structures were calculated

using the B3LYP exchange-correlation functional [272–277] and the 6-31+G* basis

set [278–280, 296], and the spin-orbit coupling (SOC) matrix elements were computed

using the one-electron Breit-Pauli Hamiltonian as implemented in the Q-Chem 5.1

software package [297]. Among the optimized geometries, the RISC correction en-

tails upto 42 % decrease in the TADF rate. Although 42 % might seem like a large

change, the RISC correction is insignificant compared to the orders-of-magnitude en-

hancement in the TADF rate between the energy minimum and the TADF maximum.

Besides, the RISC correction is less than 5 % in most cases, and one of the DCzTrz

geometries continue to exhibit a TADF rate in the submicrosecond time scales. The

RISC correction might be important in a quantitative prediction of the TADF rate,

but it does not alter the qualitative outcomes of conformational optimization.
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It is remarkable that the RISC rate increases along with the idealized TADF

rate, even though the TADF rate maximization did not consider the RISC rate in

an explicit manner. The simultaneous enhancement of the RISC rate makes sense,

given the parallel between the idealized TADF rate and the RISC rate: a high RISC

rate requires a small singlet-triplet (ST) gap and a large SOC matrix element, which

are expected to be contraindicated functions of the HOMO-LUMO overlap. Changes

to the HOMO and the LUMO that increase the transition dipole moment (TDM)

are likely to also increase the SOC matrix element, though the increases need not be

proportional. Indeed, the TDMs of Ac-MPM and SpiroAC-TRZ increase by factors

of 1000 and 2000, whereas the SOC matrix elements increase by factors of 15 and

25, respectively. On the other extreme, the RISC step appears even less likely to

be the bottleneck in the TADF process as the ST gap becomes smaller. As shown

by the minimum energy conformations of Ac-MPM and SpiroAC-TRZ, the T1 → S1

RISC rate alone is enough to overtake the prompt fluorescence rate in the regime of

vanishing ST gap.

Finally, as Brédas et al. have pointed out [290], the T2 state appears to make

an important contribution to the total RISC rate in some systems. In the cases of

DCzTrz and SpiroAC-TRZ, the T2 → S1 RISC rates are orders of magnitude greater

than the respective T1 → S1 RISC rates. Even if the T2 state is higher in energy

than the T1 and the S1 states, the T2 contributions to the total RISC rate can be

significant.

Tables E.2–E.4 summarize the energetics of the model systems, recomputed with

PBE0 [300–302], M06-2X [303], and LRC-𝜔*PBE [304–306]. Tables E.5 and E.6 are

the outcomes of M06-2X and LRC-𝜔*PBE with integral equation formalism polar-

izable continuum model (IEF-PCM) [307–309] and first order, perturbative state-

specific (ptSS) [283] treatment of the excited states. We used the dielectric constant

and the optical dielectric constant of toluene at 25 ∘C: 𝜀 = 2.379 and 𝜀∞ = 2.232

[310]. Remember that we have not reoptimized the geometries and just recalculated

the electronic structures.

It is remarkable that various functionals exhibit such similar behaviors. For max-
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imum TADF geometries with little or no energy penalties, the functionals predict

that the TADF rate would be similar to or even worse than the the minimum

energy geometry. For maximum TADF geometries with sufficient energy penalties

(Λ ≥ 4.0 µs−1𝐸h
−1), the functionals agree with B3LYP that the TADF rate could be

orders of magnitude greater than the minimum energy geometry. It would seem that

the TADF rate maximization tended to exploit some quirk of the B3LYP functional,

but the imposition of energy penalties mitigated the issue.

It is also remarkable that the functionals predict a simultaneous improvement of

the ST gap and TDM. The simulataneous improvement is not observed in M06-2X

and LRC-𝜔*PBE without solvent models, but it is observed in M06-2X/IEF-PCM

and LRC-𝜔*PBE/IEF-PCM with a toluene-like environment. In the latter case, the

maximized TADF rates of Ac-MPM and SpiroAC-TRZ are quite impressive, as they

are well within the submicrosecond time scales.

Finally, the functionals predict the RISC correction to be even less important than

B3LYP did. With a few excpetions, the RISC corrections are less than 10 % of the

TADF rates. The finite rate of RISC does not seem to overturn the qualitative trends

of conformational optimization.
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E.3 Geometries of Cz2BP, Ac-MPM, and SpiroAC-

TRZ

The 3D images of the geometries were generated in Avogadro 1.2.0 [298].

The maximum TADF geometries of Cz2BP have been illustrated in Figure E-

1. Figure E-1a shows the minimum energy conformation with arrows indicating the

degrees of freedom (DOFs) that are the most active in the TADF rate maximiza-

tion. Going to the maximum TADF conformation in Figure E-1b, the carbazole (Cz,

donor) and the phenyl groups in the benzophenone (BP, acceptor) group have ro-

tated to increase the dihedral angles between the adjacent aromatic ring systems.

The adjacent aromatic units are 73.7∘ (left), 57.2∘ (center), and 71.5∘ (right) to each

other, respectively, in contrast to 52.6∘ (left), 52.9∘ (center), and 52.8∘ (right) at the

energy minimum. While the increase in the DA dihedral angle is consistent with the

decreases in the ST gap and the TDM, the benefit of increasing the dihedral angle

between the phenyl rings in the acceptor group is not clear.

Meanwhile, the Cz and the phenyl groups also tilt in the direction of the carboxyl

group so the overall molecule looks less bent in the maximum TADF rate conforma-

tion. In particular, the Cz group ends up with a gooseneck, as shown in Figure E-1c.

The differences in the CCz-NCz-CPh angles at each carbazole group are 18.3∘ (left) and

15.7∘ (right), respectively, whereas the CCz-NCz-CPh angles in the minimum energy

conformation are the same 125.8± 0.1∘. As shown in Figure E-1d, the gooseneck

persists even with an energy penalty of Λ = 8.0 µs−1𝐸h
−1, retaining 17.1∘ (left) and

14.5∘ (right) differences in the CCz-NCz-CPh angles. Figure E-1e shows the geometry

after the hydrogen atoms and the aromatic ring systems have been relaxed. Visually,

the relaxation of the aromatic units seems to somewhat undo the overall twist.

The maximum TADF geometries of Ac-MPM have been illustrated in Figure E-

2. Figure E-2a shows the minimum energy conformation with arrows indicating the

DOFs that are the most active in the TADF rate maximization. Unlike the cases of

DCzTrz and Cz2BP, the dihedral angles between the donor and the acceptor groups

decrease, consistent with the increases in the ST gap (albeit slight) and the TDM.
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The acridine (Ac) groups are 75.2∘ (left) and 74.8∘ (right) to the phenyl rings of the

2-methylpyrimidine (MPM, acceptor) group, respectively, in contrast to 90.0∘ (left)

and 90.4∘ (right) in the minimum energy conformation.

Nonetheless, familiar motifs appear in the maximum TADF rate conformation

(Figure E-2b). One of the Ac groups tilts towards MPM group in a sharp gooseneck,

as shown in Figure E-2c. The differences in the CAc-NAc-CPh angles at each acridine

group are 55.0∘ (left) and 7.9∘ (right), respectively, whereas the CAc-NAc-CPh angles

in the minimum energy conformation are the same 119.2± 0.2∘. In addition, the

MPM group twists in an asymmetric manner. One of the phenyl rings twists out of

plane. While the other phenyl ring also reorients itself, it maintains a moderate angle

to the plane of the pyrimidine ring. The phenyl rings are 48.4∘ (left) and 19.3∘ (right)

to the pyrimidine ring, respectively, in contrast to 18.7∘ (left) and 17.7∘ (right) in the

minimum energy conformation.

As shown in Figure E-2d, the twist in the acceptor group persists even with an

energy penalty of Λ = 8.0 µs−1𝐸h
−1, though the angles between the phenyl rings and

the pyrimidine ring change to 30.0∘ (left) and 17.2∘ (right), respectively. However,

the sharp gooseneck dissipates at some point between 4.0 µs−1𝐸h
−1 and 8.0 µs−1𝐸h

−1,

the differences in the CAc-NAc-CPh angles reduced to 5.0∘ (left) and 4.2∘ (right),

respectively. We conjecture that the gooseneck provides negligible benefit to TADF

in the case of Ac-MPM. Indeed, the twist in the acceptor group would skew the

distribution of the LUMO towards the Ac group on the right, so the Ac group on the

left would have limited impact on the TADF rate. Hence, it becomes favorable to

unroll the gooseneck under even moderate energy penalties.

As shown in Figure E-2e, relaxing the hydrogen atoms and the aromatic ring

systems puckers the Ac group on the left. In spite of the obvious disruption to the

structure, the TADF rate only decreases by 16 %, in line with the conjecture that

the Ac group on the right dominates the TADF process in the maximum TADF rate

conformation of Ac-MPM.

The maximum TADF geometries of SpiroAC-TRZ have been illustrated in Figure

E-3. Figure E-3a shows the minimum energy conformation with arrows indicating
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the DOFs that are the most active in the TADF rate maximization. Once again, the

dihedral angle between the donor group and the acceptor group decreases, consistent

with the increases in the ST gap (albeit slight) and the TDM. The adjacent aromatic

units are 83.9∘ and 62.2∘ to each other, respectively, in contrast to 90.1∘ and 90.0∘ in

the minimum energy conformation. Unlike any of the previous cases, the maximum

TADF rate conformation in Figure E-3b shows neither a gooseneck nor a twist in

the acceptor group. In fact, most of the distortion is contained in the wagging of

the phenyl groups in the plane of the Trz group. As shown in Figure E-3d, relaxing

the hydrogen atoms and the aromatic ring systems appears to restore the relative

positions of the atoms in the minimum energy conformation. Given that the effect

of the constrained energy minimization on the TADF rate is not severe, it must be

the case that the relaxation does not affect the orbital overlap. Indeed, the dihedral

angles between aromatic units have been constrained, and SpiroAC-TRZ does not

contain a goose neck. Distortions within aromatic ring systems would have minimal

effect on the orbital overlaps.

E.4 Natural Transition Orbitals

The 3D images of the natural transition orbitals (NTOs) [284] were generated in

MacMolPlt 7.7 [299].
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Figure E-4: NTO pairs of DCzTrz in (a) the S1 state and (b) the T1 state at the
energy minimum, Λ = ∞; and (c) the S1 state and (d) the T1 state at the TADF
maximum with no energy penalty, Λ = 0. The hole orbitals are shown in red and
orange, and the electron orbitals are shown in sky blue and indigo. ISO value: 0.025.
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Figure E-5: NTO pairs of Cz2BP in (a) the S1 state and (b) the T1 state at the
energy minimum, Λ = ∞; and (c) the S1 state and (d) the T1 state at the TADF
maximum with no energy penalty, Λ = 0. The hole orbitals are shown in red and
orange, and the electron orbitals are shown in sky blue and indigo. ISO value: 0.025.

Figure E-6: NTO pairs of Ac-MPM in (a) the S1 state and (b) the T1 state at the
energy minimum, Λ = ∞; and (c) the S1 state and (d) the T1 state at the TADF
maximum with no energy penalty, Λ = 0. The hole orbitals are shown in red and
orange, and the electron orbitals are shown in sky blue and indigo. ISO value: 0.025.
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Figure E-7: NTO pairs of SpiroAC-TRZ in (a) the S1 state and (b) the T1 state at
the energy minimum, Λ =∞; and (c) the S1 state and (d) the T1 state at the TADF
maximum with no energy penalty, Λ = 0. The hole orbitals are shown in red and
orange, and the electron orbitals are shown in sky blue and indigo. ISO value: 0.025.
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E.5 𝑍-Matrices

Tables E.7–E.28 show the 𝑍-matrices of the model systems at the energy minimum,

at the TADF maxima with various energy penalties, and after the relaxation of the

hydrogen atoms and the aromatic ring systems. Note that Q-Chem reorders the

𝑍-matrix during the constrained energy minimization.

C
C 1 1.39881
C 2 1.39425 1 120.16424
C 3 1.40529 2 120.33344 1 0.05219 C 41 1.40726 40 120.54922 39 359.65191
C 4 1.40538 3 119.18851 2 359.95385 C 42 1.39528 41 121.40346 40 0.34748
C 5 1.39442 4 120.32961 3 0.02562 C 43 1.39880 42 117.72197 41 0.21165
C 4 1.48313* 3 120.37194* 2 179.97438* C 9 1.48313* 8 118.15009* 7 180.02562*

N 7 1.34191 4 118.12045* 3 1.04697* C 45 1.40530 9 120.41287* 8 0.46503*

C 8 1.34180 7 116.19320 4 179.97438* C 46 1.39433 45 120.33164 9 179.97438*

N 9 1.34395 8 123.87602 7 0.15279 C 47 1.39877 46 120.16975 45 0.02562
C 10 1.33948 9 115.76541 8 359.79882 C 48 1.39863 47 119.81686 46 359.97438
N 11 1.33944 10 124.53015 9 0.03803 C 49 1.39441 48 120.16153 47 359.97438
C 11 1.48822* 10 117.70003* 9 180.02562* H 1 1.08713 2 120.08954 3 179.97438
C 13 1.40145 11 120.08922* 10 3.55655* H 2 1.08691 1 120.09233 3 179.97438
C 14 1.39772 13 120.10899 11 180.54975* H 3 1.08429 2 120.63089 1 180.02562
C 15 1.40041 14 120.13438 13 359.12975 H 5 1.08423 4 119.14092 3 180.02562
C 16 1.40041 15 119.75732 14 0.36550 H 6 1.08684 5 119.70222 4 180.02562
C 17 1.39763 16 120.17535 15 0.52083 H 14 1.08328 13 119.60739 18 -178.97627
N 17 1.42043* 16 119.84005* 15 179.97438* H 16 1.08513 15 120.13739 14 180.33415
C 19 1.40078 17 125.61232* 16 122.71268* H 18 1.08335 17 120.27300 16 178.51517
C 20 1.39884 19 129.44131 17 358.59290* H 21 1.08557 20 121.49918 19 1.06266
C 21 1.39526 20 117.71657 19 181.18901 H 22 1.08691 21 119.07827 20 180.02562
C 22 1.40729 21 121.40581 20 0.17108 H 23 1.08658 22 119.59854 21 180.02562
C 23 1.39379 22 120.54855 21 0.35645 H 24 1.08723 23 120.41591 22 179.42469
C 24 1.40103 23 119.18251 22 359.67902 H 27 1.08723 26 120.40812 25 359.13361
C 25 1.44891 24 133.61296 23 178.87145 H 28 1.08654 27 119.85378 26 179.90485
C 26 1.40095 25 133.59767 24 1.68791 H 29 1.08685 28 119.52324 27 180.49587
C 27 1.39372 26 119.17823 25 178.91015 H 30 1.08561 29 120.75101 28 180.51128
C 28 1.40722 27 120.55061 26 359.62121 H 34 1.08554 33 121.53615 32 0.80805
C 29 1.39519 28 121.40591 27 0.41068 H 35 1.08685 34 119.07160 33 180.09013
C 30 1.39882 29 117.72369 28 0.19095 H 36 1.08654 35 119.59660 34 180.12953
N 15 1.42021* 14 119.96093* 13 179.64405* H 37 1.08722 36 120.42035 35 179.37317
C 32 1.40113 15 125.95848* 14 122.96261* H 40 1.08723 39 120.40225 38 359.28562
C 33 1.39881 32 129.47780 15 358.32390* H 41 1.08658 40 119.85209 39 179.97438
C 34 1.39520 33 117.72493 32 181.18158 H 42 1.08690 41 119.52479 40 180.44541
C 35 1.40718 34 121.40971 33 0.18689 H 43 1.08550 42 120.77406 41 180.30187
C 36 1.39370 35 120.54803 34 0.41641 H 46 1.08430 45 119.05000 50 -179.97489
C 37 1.40094 36 119.17491 35 359.62614 H 47 1.08692 46 119.73749 45 180.02562
C 38 1.44896 37 133.57589 36 178.74217 H 48 1.08712 47 120.08957 46 180.02562
C 39 1.40108 38 133.61407 37 1.67108 H 49 1.08684 48 120.13668 47 179.97438
C 40 1.39378 39 119.17892 38 179.07456 H 50 1.08420 49 120.52043 48 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.7: 𝑍-matrix of DCzTrz at the energy minimum (Λ =∞).
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C
C 1 1.39881
C 2 1.39425 1 120.16424
C 3 1.40529 2 120.33344 1 0.05219 C 41 1.40726 40 120.54922 39 359.65191
C 4 1.40538 3 119.18851 2 359.95385 C 42 1.39528 41 121.40346 40 0.34748
C 5 1.39442 4 120.32961 3 0.02562 C 43 1.39880 42 117.72197 41 0.21165
C 4 1.55254* 3 123.01669* 2 188.11414* C 9 1.51545* 8 120.31769* 7 187.62982*

N 7 1.34191 4 125.74810* 3 22.70005* C 45 1.40530 9 118.82577* 8 8.44666*

C 8 1.34180 7 116.19320 4 185.88731* C 46 1.39433 45 120.33164 9 186.10948*

N 9 1.34395 8 123.87602 7 0.15279 C 47 1.39877 46 120.16975 45 0.02562
C 10 1.33948 9 115.76541 8 359.79882 C 48 1.39863 47 119.81686 46 359.97438
N 11 1.33944 10 124.53015 9 0.03803 C 49 1.39441 48 120.16153 47 359.97438
C 11 1.67136* 10 105.77128* 9 191.66687* H 1 1.08713 2 120.08954 3 179.97438
C 13 1.40145 11 122.86105* 10 -35.58294* H 2 1.08691 1 120.09233 3 179.97438
C 14 1.39772 13 120.10899 11 186.10056* H 3 1.08429 2 120.63089 1 180.02562
C 15 1.40041 14 120.13438 13 359.12975 H 5 1.08423 4 119.14092 3 180.02562
C 16 1.40041 15 119.75732 14 0.36550 H 6 1.08684 5 119.70222 4 180.02562
C 17 1.39763 16 120.17535 15 0.52083 H 14 1.08328 13 119.60739 18 -178.97627
N 17 1.54738* 16 112.25142* 15 150.89825* H 16 1.08513 15 120.13739 14 180.33415
C 19 1.40078 17 113.61400* 16 111.03754* H 18 1.08335 17 120.27300 16 178.51517
C 20 1.39884 19 129.44131 17 351.29158* H 21 1.08557 20 121.49918 19 1.06266
C 21 1.39526 20 117.71657 19 181.18901 H 22 1.08691 21 119.07827 20 180.02562
C 22 1.40729 21 121.40581 20 0.17108 H 23 1.08658 22 119.59854 21 180.02562
C 23 1.39379 22 120.54855 21 0.35645 H 24 1.08723 23 120.41591 22 179.42469
C 24 1.40103 23 119.18251 22 359.67902 H 27 1.08723 26 120.40812 25 359.13361
C 25 1.44891 24 133.61296 23 178.87145 H 28 1.08654 27 119.85378 26 179.90485
C 26 1.40095 25 133.59767 24 1.68791 H 29 1.08685 28 119.52324 27 180.49587
C 27 1.39372 26 119.17823 25 178.91015 H 30 1.08561 29 120.75101 28 180.51128
C 28 1.40722 27 120.55061 26 359.62121 H 34 1.08554 33 121.53615 32 0.80805
C 29 1.39519 28 121.40591 27 0.41068 H 35 1.08685 34 119.07160 33 180.09013
C 30 1.39882 29 117.72369 28 0.19095 H 36 1.08654 35 119.59660 34 180.12953
N 15 1.52703* 14 120.55488* 13 180.39188* H 37 1.08722 36 120.42035 35 179.37317
C 32 1.40113 15 127.53646* 14 119.81345* H 40 1.08723 39 120.40225 38 359.28562
C 33 1.39881 32 129.47780 15 338.24020* H 41 1.08658 40 119.85209 39 179.97438
C 34 1.39520 33 117.72493 32 181.18158 H 42 1.08690 41 119.52479 40 180.44541
C 35 1.40718 34 121.40971 33 0.18689 H 43 1.08550 42 120.77406 41 180.30187
C 36 1.39370 35 120.54803 34 0.41641 H 46 1.08430 45 119.05000 50 -179.97489
C 37 1.40094 36 119.17491 35 359.62614 H 47 1.08692 46 119.73749 45 180.02562
C 38 1.44896 37 133.57589 36 178.74217 H 48 1.08712 47 120.08957 46 180.02562
C 39 1.40108 38 133.61407 37 1.67108 H 49 1.08684 48 120.13668 47 179.97438
C 40 1.39378 39 119.17892 38 179.07456 H 50 1.08420 49 120.52043 48 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.8: 𝑍-matrix of DCzTrz at the TADF maximum with energy penalty (Λ =
8.0 µs−1𝐸h

−1).

317



C
C 1 1.39881
C 2 1.39425 1 120.16424
C 3 1.40529 2 120.33344 1 0.05219 C 41 1.40726 40 120.54922 39 359.65191
C 4 1.40538 3 119.18851 2 359.95385 C 42 1.39528 41 121.40346 40 0.34748
C 5 1.39442 4 120.32961 3 0.02562 C 43 1.39880 42 117.72197 41 0.21165
C 4 1.54033* 3 120.90286* 2 203.26320* C 9 1.54946* 8 126.01449* 7 184.13810*

N 7 1.34191 4 127.05008* 3 33.08534* C 45 1.40530 9 119.08048* 8 9.22708*

C 8 1.34180 7 116.19320 4 186.18443* C 46 1.39433 45 120.33164 9 185.67989*

N 9 1.34395 8 123.87602 7 0.15279 C 47 1.39877 46 120.16975 45 0.02562
C 10 1.33948 9 115.76541 8 359.79882 C 48 1.39863 47 119.81686 46 359.97438
N 11 1.33944 10 124.53015 9 0.03803 C 49 1.39441 48 120.16153 47 359.97438
C 11 1.63865* 10 104.46643* 9 192.70549* H 1 1.08713 2 120.08954 3 179.97438
C 13 1.40145 11 123.91052* 10 -54.10297* H 2 1.08691 1 120.09233 3 179.97438
C 14 1.39772 13 120.10899 11 185.98014* H 3 1.08429 2 120.63089 1 180.02562
C 15 1.40041 14 120.13438 13 359.12975 H 5 1.08423 4 119.14092 3 180.02562
C 16 1.40041 15 119.75732 14 0.36550 H 6 1.08684 5 119.70222 4 180.02562
C 17 1.39763 16 120.17535 15 0.52083 H 14 1.08328 13 119.60739 18 -178.97627
N 17 1.56185* 16 111.52353* 15 151.87254* H 16 1.08513 15 120.13739 14 180.33415
C 19 1.40078 17 109.10124* 16 109.76245* H 18 1.08335 17 120.27300 16 178.51517
C 20 1.39884 19 129.44131 17 352.60995* H 21 1.08557 20 121.49918 19 1.06266
C 21 1.39526 20 117.71657 19 181.18901 H 22 1.08691 21 119.07827 20 180.02562
C 22 1.40729 21 121.40581 20 0.17108 H 23 1.08658 22 119.59854 21 180.02562
C 23 1.39379 22 120.54855 21 0.35645 H 24 1.08723 23 120.41591 22 179.42469
C 24 1.40103 23 119.18251 22 359.67902 H 27 1.08723 26 120.40812 25 359.13361
C 25 1.44891 24 133.61296 23 178.87145 H 28 1.08654 27 119.85378 26 179.90485
C 26 1.40095 25 133.59767 24 1.68791 H 29 1.08685 28 119.52324 27 180.49587
C 27 1.39372 26 119.17823 25 178.91015 H 30 1.08561 29 120.75101 28 180.51128
C 28 1.40722 27 120.55061 26 359.62121 H 34 1.08554 33 121.53615 32 0.80805
C 29 1.39519 28 121.40591 27 0.41068 H 35 1.08685 34 119.07160 33 180.09013
C 30 1.39882 29 117.72369 28 0.19095 H 36 1.08654 35 119.59660 34 180.12953
N 15 1.53426* 14 115.57431* 13 182.04354* H 37 1.08722 36 120.42035 35 179.37317
C 32 1.40113 15 125.98606* 14 117.87548* H 40 1.08723 39 120.40225 38 359.28562
C 33 1.39881 32 129.47780 15 338.92970* H 41 1.08658 40 119.85209 39 179.97438
C 34 1.39520 33 117.72493 32 181.18158 H 42 1.08690 41 119.52479 40 180.44541
C 35 1.40718 34 121.40971 33 0.18689 H 43 1.08550 42 120.77406 41 180.30187
C 36 1.39370 35 120.54803 34 0.41641 H 46 1.08430 45 119.05000 50 -179.97489
C 37 1.40094 36 119.17491 35 359.62614 H 47 1.08692 46 119.73749 45 180.02562
C 38 1.44896 37 133.57589 36 178.74217 H 48 1.08712 47 120.08957 46 180.02562
C 39 1.40108 38 133.61407 37 1.67108 H 49 1.08684 48 120.13668 47 179.97438
C 40 1.39378 39 119.17892 38 179.07456 H 50 1.08420 49 120.52043 48 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.9: 𝑍-matrix of DCzTrz at the TADF maximum with energy penalty (Λ =
4.0 µs−1𝐸h

−1).
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C
C 1 1.39881
C 2 1.39425 1 120.16424
C 3 1.40529 2 120.33344 1 0.05219 C 41 1.40726 40 120.54922 39 359.65191
C 4 1.40538 3 119.18851 2 359.95385 C 42 1.39528 41 121.40346 40 0.34748
C 5 1.39442 4 120.32961 3 0.02562 C 43 1.39880 42 117.72197 41 0.21165
C 4 1.54711* 3 130.32246* 2 216.04060* C 9 1.44082* 8 130.39469* 7 185.92006*

N 7 1.34191 4 125.93354* 3 29.60538* C 45 1.40530 9 104.38526* 8 8.43189*

C 8 1.34180 7 116.19320 4 187.01069* C 46 1.39433 45 120.33164 9 188.28194*

N 9 1.34395 8 123.87602 7 0.15279 C 47 1.39877 46 120.16975 45 0.02562
C 10 1.33948 9 115.76541 8 359.79882 C 48 1.39863 47 119.81686 46 359.97438
N 11 1.33944 10 124.53015 9 0.03803 C 49 1.39441 48 120.16153 47 359.97438
C 11 1.67937* 10 100.40804* 9 191.87496* H 1 1.08713 2 120.08954 3 179.97438
C 13 1.40145 11 123.28155* 10 -52.66865* H 2 1.08691 1 120.09233 3 179.97438
C 14 1.39772 13 120.10899 11 186.79199* H 3 1.08429 2 120.63089 1 180.02562
C 15 1.40041 14 120.13438 13 359.12975 H 5 1.08423 4 119.14092 3 180.02562
C 16 1.40041 15 119.75732 14 0.36550 H 6 1.08684 5 119.70222 4 180.02562
C 17 1.39763 16 120.17535 15 0.52083 H 14 1.08328 13 119.60739 18 -178.97627
N 17 1.53919* 16 109.12161* 15 145.98502* H 16 1.08513 15 120.13739 14 180.33415
C 19 1.40078 17 115.10068* 16 110.02287* H 18 1.08335 17 120.27300 16 178.51517
C 20 1.39884 19 129.44131 17 353.40779* H 21 1.08557 20 121.49918 19 1.06266
C 21 1.39526 20 117.71657 19 181.18901 H 22 1.08691 21 119.07827 20 180.02562
C 22 1.40729 21 121.40581 20 0.17108 H 23 1.08658 22 119.59854 21 180.02562
C 23 1.39379 22 120.54855 21 0.35645 H 24 1.08723 23 120.41591 22 179.42469
C 24 1.40103 23 119.18251 22 359.67902 H 27 1.08723 26 120.40812 25 359.13361
C 25 1.44891 24 133.61296 23 178.87145 H 28 1.08654 27 119.85378 26 179.90485
C 26 1.40095 25 133.59767 24 1.68791 H 29 1.08685 28 119.52324 27 180.49587
C 27 1.39372 26 119.17823 25 178.91015 H 30 1.08561 29 120.75101 28 180.51128
C 28 1.40722 27 120.55061 26 359.62121 H 34 1.08554 33 121.53615 32 0.80805
C 29 1.39519 28 121.40591 27 0.41068 H 35 1.08685 34 119.07160 33 180.09013
C 30 1.39882 29 117.72369 28 0.19095 H 36 1.08654 35 119.59660 34 180.12953
N 15 1.53780* 14 116.90182* 13 183.59926* H 37 1.08722 36 120.42035 35 179.37317
C 32 1.40113 15 128.71968* 14 115.09179* H 40 1.08723 39 120.40225 38 359.28562
C 33 1.39881 32 129.47780 15 334.79222* H 41 1.08658 40 119.85209 39 179.97438
C 34 1.39520 33 117.72493 32 181.18158 H 42 1.08690 41 119.52479 40 180.44541
C 35 1.40718 34 121.40971 33 0.18689 H 43 1.08550 42 120.77406 41 180.30187
C 36 1.39370 35 120.54803 34 0.41641 H 46 1.08430 45 119.05000 50 -179.97489
C 37 1.40094 36 119.17491 35 359.62614 H 47 1.08692 46 119.73749 45 180.02562
C 38 1.44896 37 133.57589 36 178.74217 H 48 1.08712 47 120.08957 46 180.02562
C 39 1.40108 38 133.61407 37 1.67108 H 49 1.08684 48 120.13668 47 179.97438
C 40 1.39378 39 119.17892 38 179.07456 H 50 1.08420 49 120.52043 48 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.10: 𝑍-matrix of DCzTrz at the TADF maximum with energy penalty (Λ =
2.0 µs−1𝐸h

−1).
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C
C 1 1.39881
C 2 1.39425 1 120.16424
C 3 1.40529 2 120.33344 1 0.05219 C 41 1.40726 40 120.54922 39 359.65191
C 4 1.40538 3 119.18851 2 359.95385 C 42 1.39528 41 121.40346 40 0.34748
C 5 1.39442 4 120.32961 3 0.02562 C 43 1.39880 42 117.72197 41 0.21165
C 4 1.53739* 3 127.63667* 2 226.69667* C 9 1.32650* 8 130.03798* 7 184.96724*

N 7 1.34191 4 126.30255* 3 39.17326* C 45 1.40530 9 99.57363* 8 9.43006*

C 8 1.34180 7 116.19320 4 187.46366* C 46 1.39433 45 120.33164 9 187.96114*

N 9 1.34395 8 123.87602 7 0.15279 C 47 1.39877 46 120.16975 45 0.02562
C 10 1.33948 9 115.76541 8 359.79882 C 48 1.39863 47 119.81686 46 359.97438
N 11 1.33944 10 124.53015 9 0.03803 C 49 1.39441 48 120.16153 47 359.97438
C 11 1.64376* 10 99.62198* 9 184.92074* H 1 1.08713 2 120.08954 3 179.97438
C 13 1.40145 11 121.81041* 10 -40.14115* H 2 1.08691 1 120.09233 3 179.97438
C 14 1.39772 13 120.10899 11 187.84869* H 3 1.08429 2 120.63089 1 180.02562
C 15 1.40041 14 120.13438 13 359.12975 H 5 1.08423 4 119.14092 3 180.02562
C 16 1.40041 15 119.75732 14 0.36550 H 6 1.08684 5 119.70222 4 180.02562
C 17 1.39763 16 120.17535 15 0.52083 H 14 1.08328 13 119.60739 18 -178.97627
N 17 1.51043* 16 111.76928* 15 142.24754* H 16 1.08513 15 120.13739 14 180.33415
C 19 1.40078 17 115.61874* 16 111.91426* H 18 1.08335 17 120.27300 16 178.51517
C 20 1.39884 19 129.44131 17 352.85551* H 21 1.08557 20 121.49918 19 1.06266
C 21 1.39526 20 117.71657 19 181.18901 H 22 1.08691 21 119.07827 20 180.02562
C 22 1.40729 21 121.40581 20 0.17108 H 23 1.08658 22 119.59854 21 180.02562
C 23 1.39379 22 120.54855 21 0.35645 H 24 1.08723 23 120.41591 22 179.42469
C 24 1.40103 23 119.18251 22 359.67902 H 27 1.08723 26 120.40812 25 359.13361
C 25 1.44891 24 133.61296 23 178.87145 H 28 1.08654 27 119.85378 26 179.90485
C 26 1.40095 25 133.59767 24 1.68791 H 29 1.08685 28 119.52324 27 180.49587
C 27 1.39372 26 119.17823 25 178.91015 H 30 1.08561 29 120.75101 28 180.51128
C 28 1.40722 27 120.55061 26 359.62121 H 34 1.08554 33 121.53615 32 0.80805
C 29 1.39519 28 121.40591 27 0.41068 H 35 1.08685 34 119.07160 33 180.09013
C 30 1.39882 29 117.72369 28 0.19095 H 36 1.08654 35 119.59660 34 180.12953
N 15 1.53976* 14 112.36550* 13 184.77971* H 37 1.08722 36 120.42035 35 179.37317
C 32 1.40113 15 132.04926* 14 115.61344* H 40 1.08723 39 120.40225 38 359.28562
C 33 1.39881 32 129.47780 15 333.27152* H 41 1.08658 40 119.85209 39 179.97438
C 34 1.39520 33 117.72493 32 181.18158 H 42 1.08690 41 119.52479 40 180.44541
C 35 1.40718 34 121.40971 33 0.18689 H 43 1.08550 42 120.77406 41 180.30187
C 36 1.39370 35 120.54803 34 0.41641 H 46 1.08430 45 119.05000 50 -179.97489
C 37 1.40094 36 119.17491 35 359.62614 H 47 1.08692 46 119.73749 45 180.02562
C 38 1.44896 37 133.57589 36 178.74217 H 48 1.08712 47 120.08957 46 180.02562
C 39 1.40108 38 133.61407 37 1.67108 H 49 1.08684 48 120.13668 47 179.97438
C 40 1.39378 39 119.17892 38 179.07456 H 50 1.08420 49 120.52043 48 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.11: 𝑍-matrix of DCzTrz at the TADF maximum with energy penalty (Λ =
0.8 µs−1𝐸h

−1).
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C
C 1 1.39881
C 2 1.39425 1 120.16424
C 3 1.40529 2 120.33344 1 0.05219 C 41 1.40726 40 120.54922 39 359.65191
C 4 1.40538 3 119.18851 2 359.95385 C 42 1.39528 41 121.40346 40 0.34748
C 5 1.39442 4 120.32961 3 0.02562 C 43 1.39880 42 117.72197 41 0.21165
C 4 1.54804* 3 121.94919* 2 225.88712* C 9 1.35542* 8 138.93351* 7 183.91568*

N 7 1.34191 4 125.80883* 3 25.06701* C 45 1.40530 9 98.66481* 8 9.05117*

C 8 1.34180 7 116.19320 4 187.65876* C 46 1.39433 45 120.33164 9 188.22049*

N 9 1.34395 8 123.87602 7 0.15279 C 47 1.39877 46 120.16975 45 0.02562
C 10 1.33948 9 115.76541 8 359.79882 C 48 1.39863 47 119.81686 46 359.97438
N 11 1.33944 10 124.53015 9 0.03803 C 49 1.39441 48 120.16153 47 359.97438
C 11 1.68377* 10 98.08918* 9 192.76451* H 1 1.08713 2 120.08954 3 179.97438
C 13 1.40145 11 123.00369* 10 -47.05700* H 2 1.08691 1 120.09233 3 179.97438
C 14 1.39772 13 120.10899 11 187.90564* H 3 1.08429 2 120.63089 1 180.02562
C 15 1.40041 14 120.13438 13 359.12975 H 5 1.08423 4 119.14092 3 180.02562
C 16 1.40041 15 119.75732 14 0.36550 H 6 1.08684 5 119.70222 4 180.02562
C 17 1.39763 16 120.17535 15 0.52083 H 14 1.08328 13 119.60739 18 -178.97627
N 17 1.55824* 16 113.04495* 15 143.34604* H 16 1.08513 15 120.13739 14 180.33415
C 19 1.40078 17 116.70497* 16 109.81953* H 18 1.08335 17 120.27300 16 178.51517
C 20 1.39884 19 129.44131 17 351.89001* H 21 1.08557 20 121.49918 19 1.06266
C 21 1.39526 20 117.71657 19 181.18901 H 22 1.08691 21 119.07827 20 180.02562
C 22 1.40729 21 121.40581 20 0.17108 H 23 1.08658 22 119.59854 21 180.02562
C 23 1.39379 22 120.54855 21 0.35645 H 24 1.08723 23 120.41591 22 179.42469
C 24 1.40103 23 119.18251 22 359.67902 H 27 1.08723 26 120.40812 25 359.13361
C 25 1.44891 24 133.61296 23 178.87145 H 28 1.08654 27 119.85378 26 179.90485
C 26 1.40095 25 133.59767 24 1.68791 H 29 1.08685 28 119.52324 27 180.49587
C 27 1.39372 26 119.17823 25 178.91015 H 30 1.08561 29 120.75101 28 180.51128
C 28 1.40722 27 120.55061 26 359.62121 H 34 1.08554 33 121.53615 32 0.80805
C 29 1.39519 28 121.40591 27 0.41068 H 35 1.08685 34 119.07160 33 180.09013
C 30 1.39882 29 117.72369 28 0.19095 H 36 1.08654 35 119.59660 34 180.12953
N 15 1.54035* 14 112.75538* 13 183.54298* H 37 1.08722 36 120.42035 35 179.37317
C 32 1.40113 15 133.50170* 14 115.24717* H 40 1.08723 39 120.40225 38 359.28562
C 33 1.39881 32 129.47780 15 333.24938* H 41 1.08658 40 119.85209 39 179.97438
C 34 1.39520 33 117.72493 32 181.18158 H 42 1.08690 41 119.52479 40 180.44541
C 35 1.40718 34 121.40971 33 0.18689 H 43 1.08550 42 120.77406 41 180.30187
C 36 1.39370 35 120.54803 34 0.41641 H 46 1.08430 45 119.05000 50 -179.97489
C 37 1.40094 36 119.17491 35 359.62614 H 47 1.08692 46 119.73749 45 180.02562
C 38 1.44896 37 133.57589 36 178.74217 H 48 1.08712 47 120.08957 46 180.02562
C 39 1.40108 38 133.61407 37 1.67108 H 49 1.08684 48 120.13668 47 179.97438
C 40 1.39378 39 119.17892 38 179.07456 H 50 1.08420 49 120.52043 48 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.12: 𝑍-matrix of DCzTrz at the TADF maximum with no energy penalty
(Λ = 0).
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N
C 1 1.39715
C 2 1.40059 1 128.08763
H 3 1.08661 2 120.89219 1 6.22986 C 40 1.40776 38 121.49768 33 -0.19363
C 3 1.39404 2 118.01950 1 -174.79928 H 42 1.08669 40 119.47861 38 179.87531
H 5 1.08702 3 119.29731 2 -178.96277 C 42 1.39503 40 120.73377 38 -0.43570
C 5 1.40821 3 121.15761 2 1.73175 H 44 1.08746 42 120.34182 40 -179.41015
H 7 1.08664 5 119.62178 3 179.69452 C 44 1.40055 42 118.98874 40 0.16284
C 7 1.39322 5 120.53529 3 0.51213 C 36 1.40788 34 121.38328 32 -0.24697
H 9 1.08727 7 120.38059 5 178.38025 H 47 1.08662 36 119.51569 34 -179.78312
C 9 1.40204 7 119.34762 5 -1.00314 C 47 1.39441 36 120.72017 34 0.23228
C 1 1.40934 2 106.96002 3 174.75427 H 49 1.08742 47 120.31667 36 179.91844
C 12 1.40020 1 129.11246 2 177.88175 C 49 1.40128 47 119.33377 36 0.14530
H 13 1.08549 12 121.40933 1 -0.89885 C 27 1.68377 25 123.00369 22 -172.09436
C 13 1.39509 12 118.02510 1 178.91960 N 52 1.30812 27 130.37186 25 138.34722
H 15 1.08702 13 119.07912 12 -179.85155 N 52 1.33917 27 98.08918 25 -47.05700
C 15 1.40721 13 121.41803 12 0.15051 C 53 1.36622 52 110.55943 27 176.42112
H 17 1.08662 15 119.65233 13 -179.89989 N 55 1.31685 53 122.37831 52 -11.65370
C 17 1.39324 15 120.42436 13 0.31805 C 56 1.34588 55 124.68780 53 9.02535
H 19 1.08732 17 120.43921 15 179.55994 C 57 1.35542 56 138.93351 55 -176.08432
C 19 1.40120 17 119.11258 15 -0.10102 C 58 1.38990 57 137.54173 56 -165.19630
C 1 1.54035 2 133.50170 3 -26.75062 H 59 1.08384 58 120.85823 57 -6.81857
C 22 1.38612 1 123.45264 2 -53.48839 C 59 1.39655 58 116.81444 57 171.83610
H 23 1.08453 22 121.70607 1 -11.73523 H 61 1.08654 59 119.34839 58 -179.97582
C 22 1.40122 1 112.75538 2 115.24717 C 61 1.40349 59 121.18804 58 -1.25623
H 25 1.08315 22 120.04252 1 4.89140 H 63 1.08729 61 118.87945 59 -178.24461
C 25 1.39502 22 118.80625 1 -176.45702 C 63 1.40483 61 121.63628 59 1.59947
C 23 1.40373 22 115.99598 1 -177.28969 H 65 1.08792 63 119.52146 61 179.62340
C 28 1.39009 23 121.85589 22 -10.99868 C 65 1.39524 63 119.15931 61 0.72990
H 29 1.08623 28 119.94876 23 173.89023 H 67 1.07957 65 121.57635 63 -179.21725
N 28 1.55824 23 113.04495 22 143.34604 C 55 1.54804 53 111.80084 52 169.53991
C 31 1.38549 28 131.44943 23 -84.83705 C 69 1.40658 55 114.82150 53 50.14069
C 31 1.39249 28 116.70497 23 109.81953 H 70 1.08546 69 119.34690 55 -26.77523
C 32 1.39733 31 130.22670 28 12.21503 C 70 1.39965 69 120.14358 55 147.06989
H 34 1.08578 32 121.23334 31 -1.54333 H 72 1.08695 70 119.55619 69 -179.39527
C 34 1.39492 32 117.50912 31 178.39517 C 72 1.39769 70 120.07094 69 -5.31187
H 36 1.08694 34 119.14495 32 179.89710 H 74 1.08697 72 120.07336 70 -171.83935
C 33 1.39750 31 130.25039 28 -8.10999 C 74 1.40333 72 119.65564 70 7.69409
H 38 1.08633 33 121.39499 31 0.22764 H 76 1.08672 74 120.49182 72 176.61201
C 38 1.39591 33 117.49611 31 -179.57768 C 76 1.39203 74 119.16030 72 3.18384
H 40 1.08707 38 119.09589 33 179.85210 H 78 1.08834 76 118.90623 74 -178.38346

Table E.13: 𝑍-matrix of DCzTrz after the relaxation of the hydrogen atoms and the
aromatic ring systems
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C
C 1 1.40702
C 2 1.39528 1 121.41976
C 3 1.39880 2 117.72862 1 0.32396
C 4 1.41828 3 121.57666 2 358.87175 C 34 1.44897 33 133.48140 32 178.56871
C 1 1.39358 2 120.53453 3 0.49165 C 35 1.40084 34 133.47401 33 2.23639
C 5 1.44898 4 106.92382 3 181.89637 C 36 1.39360 35 119.15384 34 178.59739
C 7 1.40083 5 133.49249 4 181.16482 C 37 1.40700 36 120.52443 35 359.50984
C 8 1.39371 7 119.18480 5 178.57492 C 38 1.39527 37 121.42667 36 0.49654
C 9 1.40691 8 120.51336 7 359.52293 C 39 1.39887 38 117.73226 37 0.29911
C 10 1.39536 9 121.40126 8 0.49943 H 1 1.08653 2 119.60585 3 180.09595
C 11 1.39880 10 117.78429 9 0.28109 H 2 1.08683 1 119.51664 6 -179.30384
N 12 1.40257 11 129.52416 10 181.46160 H 3 1.08526 2 120.70564 1 180.77694
C 13 1.41654* 12 125.85864* 11 357.77120* H 6 1.08716 1 120.43948 2 179.20861
C 14 1.40458 13 120.26704* 12 126.58292* H 8 1.08717 7 120.39801 5 358.89829
C 15 1.39063 14 120.07901 13 179.16190* H 9 1.08652 8 119.86397 7 179.97438
C 16 1.40552 15 120.85450 14 2.00484 H 10 1.08691 9 119.51021 8 180.71322
C 17 1.40455 16 118.67759 15 358.33054 H 11 1.08530 10 120.70276 9 180.75962
C 18 1.39418 17 120.73164 16 359.86866 H 15 1.08573 14 119.52089 19 178.90871
C 17 1.49856* 16 118.23050* 15 181.96209* H 16 1.08569 15 120.42221 14 181.14493
O 20 1.22892 17 119.76853* 16 27.87786* H 18 1.08575 17 120.11789 16 182.64318
C 20 1.49834* 17 120.43467* 16 207.93748* H 19 1.08571 18 120.29449 17 182.70446
C 22 1.40564 20 118.22455* 17 207.11683* H 23 1.08569 22 118.71556 27 179.20878
C 23 1.39053 22 120.86830 20 181.98179* H 24 1.08572 23 120.38584 22 182.55906
C 24 1.40466 23 120.09228 22 1.94707 H 26 1.08568 25 119.57715 24 177.64791
C 25 1.40196 24 119.46666 23 359.49957 H 27 1.08573 26 119.06349 25 178.78661
C 26 1.39414 25 120.13386 24 358.77673 H 30 1.08528 29 121.51383 28 1.03633
N 25 1.41630* 24 120.28946* 23 179.24517* H 31 1.08690 30 119.08389 29 180.02562
C 28 1.40278 25 125.84628* 24 126.64966* H 32 1.08651 31 119.62354 30 180.09641
C 29 1.39881 28 129.53406 25 357.93284* H 33 1.08716 32 120.41659 31 179.19601
C 30 1.39540 29 117.78877 28 181.52004 H 36 1.08715 35 120.40432 34 358.91372
C 31 1.40688 30 121.40300 29 0.27912 H 37 1.08651 36 119.86334 35 179.91071
C 32 1.39369 31 120.50917 30 0.49056 H 38 1.08684 37 119.51523 36 180.69978
C 33 1.40084 32 119.18459 31 359.52181 H 39 1.08525 38 120.68850 37 180.78166
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.14: 𝑍-matrix of Cz2BP at the energy minimum (Λ =∞).
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C
C 1 1.40702
C 2 1.39528 1 121.41976
C 3 1.39880 2 117.72862 1 0.32396
C 4 1.41828 3 121.57666 2 358.87175 C 34 1.44897 33 133.48140 32 178.56871
C 1 1.39358 2 120.53453 3 0.49165 C 35 1.40084 34 133.47401 33 2.23639
C 5 1.44898 4 106.92382 3 181.89637 C 36 1.39360 35 119.15384 34 178.59739
C 7 1.40083 5 133.49249 4 181.16482 C 37 1.40700 36 120.52443 35 359.50984
C 8 1.39371 7 119.18480 5 178.57492 C 38 1.39527 37 121.42667 36 0.49654
C 9 1.40691 8 120.51336 7 359.52293 C 39 1.39887 38 117.73226 37 0.29911
C 10 1.39536 9 121.40126 8 0.49943 H 1 1.08653 2 119.60585 3 180.09595
C 11 1.39880 10 117.78429 9 0.28109 H 2 1.08683 1 119.51664 6 -179.30384
N 12 1.40257 11 129.52416 10 181.46160 H 3 1.08526 2 120.70564 1 180.77694
C 13 1.52498* 12 133.05604* 11 356.46919* H 6 1.08716 1 120.43948 2 179.20861
C 14 1.40458 13 122.39514* 12 112.68901* H 8 1.08717 7 120.39801 5 358.89829
C 15 1.39063 14 120.07901 13 171.80382* H 9 1.08652 8 119.86397 7 179.97438
C 16 1.40552 15 120.85450 14 2.00484 H 10 1.08691 9 119.51021 8 180.71322
C 17 1.40455 16 118.67759 15 358.33054 H 11 1.08530 10 120.70276 9 180.75962
C 18 1.39418 17 120.73164 16 359.86866 H 15 1.08573 14 119.52089 19 178.90871
C 17 1.59118* 16 104.29281* 15 187.83050* H 16 1.08569 15 120.42221 14 181.14493
O 20 1.22892 17 127.75694* 16 35.17061* H 18 1.08575 17 120.11789 16 182.64318
C 20 1.59317* 17 106.09812* 16 204.05523* H 19 1.08571 18 120.29449 17 182.70446
C 22 1.40564 20 105.62123* 17 208.49072* H 23 1.08569 22 118.71556 27 179.20878
C 23 1.39053 22 120.86830 20 187.96988* H 24 1.08572 23 120.38584 22 182.55906
C 24 1.40466 23 120.09228 22 1.94707 H 26 1.08568 25 119.57715 24 177.64791
C 25 1.40196 24 119.46666 23 359.49957 H 27 1.08573 26 119.06349 25 178.78661
C 26 1.39414 25 120.13386 24 358.77673 H 30 1.08528 29 121.51383 28 1.03633
N 25 1.51968* 24 123.46821* 23 178.37136* H 31 1.08690 30 119.08389 29 180.02562
C 28 1.40278 25 134.33802* 24 110.84007* H 32 1.08651 31 119.62354 30 180.09641
C 29 1.39881 28 129.53406 25 352.87971* H 33 1.08716 32 120.41659 31 179.19601
C 30 1.39540 29 117.78877 28 181.52004 H 36 1.08715 35 120.40432 34 358.91372
C 31 1.40688 30 121.40300 29 0.27912 H 37 1.08651 36 119.86334 35 179.91071
C 32 1.39369 31 120.50917 30 0.49056 H 38 1.08684 37 119.51523 36 180.69978
C 33 1.40084 32 119.18459 31 359.52181 H 39 1.08525 38 120.68850 37 180.78166
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.15: 𝑍-matrix of Cz2BP at the TADF maximum with energy penalty (Λ =
8.0 µs−1𝐸h

−1).
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C
C 1 1.40702
C 2 1.39528 1 121.41976
C 3 1.39880 2 117.72862 1 0.32396
C 4 1.41828 3 121.57666 2 358.87175 C 34 1.44897 33 133.48140 32 178.56871
C 1 1.39358 2 120.53453 3 0.49165 C 35 1.40084 34 133.47401 33 2.23639
C 5 1.44898 4 106.92382 3 181.89637 C 36 1.39360 35 119.15384 34 178.59739
C 7 1.40083 5 133.49249 4 181.16482 C 37 1.40700 36 120.52443 35 359.50984
C 8 1.39371 7 119.18480 5 178.57492 C 38 1.39527 37 121.42667 36 0.49654
C 9 1.40691 8 120.51336 7 359.52293 C 39 1.39887 38 117.73226 37 0.29911
C 10 1.39536 9 121.40126 8 0.49943 H 1 1.08653 2 119.60585 3 180.09595
C 11 1.39880 10 117.78429 9 0.28109 H 2 1.08683 1 119.51664 6 -179.30384
N 12 1.40257 11 129.52416 10 181.46160 H 3 1.08526 2 120.70564 1 180.77694
C 13 1.52984* 12 133.24419* 11 356.78070* H 6 1.08716 1 120.43948 2 179.20861
C 14 1.40458 13 121.88521* 12 113.29183* H 8 1.08717 7 120.39801 5 358.89829
C 15 1.39063 14 120.07901 13 172.20389* H 9 1.08652 8 119.86397 7 179.97438
C 16 1.40552 15 120.85450 14 2.00484 H 10 1.08691 9 119.51021 8 180.71322
C 17 1.40455 16 118.67759 15 358.33054 H 11 1.08530 10 120.70276 9 180.75962
C 18 1.39418 17 120.73164 16 359.86866 H 15 1.08573 14 119.52089 19 178.90871
C 17 1.60329* 16 102.71849* 15 187.37262* H 16 1.08569 15 120.42221 14 181.14493
O 20 1.22892 17 126.65875* 16 35.68912* H 18 1.08575 17 120.11789 16 182.64318
C 20 1.59325* 17 107.44506* 16 203.85027* H 19 1.08571 18 120.29449 17 182.70446
C 22 1.40564 20 103.32982* 17 209.01788* H 23 1.08569 22 118.71556 27 179.20878
C 23 1.39053 22 120.86830 20 188.26234* H 24 1.08572 23 120.38584 22 182.55906
C 24 1.40466 23 120.09228 22 1.94707 H 26 1.08568 25 119.57715 24 177.64791
C 25 1.40196 24 119.46666 23 359.49957 H 27 1.08573 26 119.06349 25 178.78661
C 26 1.39414 25 120.13386 24 358.77673 H 30 1.08528 29 121.51383 28 1.03633
N 25 1.52128* 24 123.56957* 23 178.71464* H 31 1.08690 30 119.08389 29 180.02562
C 28 1.40278 25 134.57269* 24 110.20700* H 32 1.08651 31 119.62354 30 180.09641
C 29 1.39881 28 129.53406 25 353.19649* H 33 1.08716 32 120.41659 31 179.19601
C 30 1.39540 29 117.78877 28 181.52004 H 36 1.08715 35 120.40432 34 358.91372
C 31 1.40688 30 121.40300 29 0.27912 H 37 1.08651 36 119.86334 35 179.91071
C 32 1.39369 31 120.50917 30 0.49056 H 38 1.08684 37 119.51523 36 180.69978
C 33 1.40084 32 119.18459 31 359.52181 H 39 1.08525 38 120.68850 37 180.78166
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.16: 𝑍-matrix of Cz2BP at the TADF maximum with energy penalty (Λ =
4.0 µs−1𝐸h

−1).
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C
C 1 1.40702
C 2 1.39528 1 121.41976
C 3 1.39880 2 117.72862 1 0.32396
C 4 1.41828 3 121.57666 2 358.87175 C 34 1.44897 33 133.48140 32 178.56871
C 1 1.39358 2 120.53453 3 0.49165 C 35 1.40084 34 133.47401 33 2.23639
C 5 1.44898 4 106.92382 3 181.89637 C 36 1.39360 35 119.15384 34 178.59739
C 7 1.40083 5 133.49249 4 181.16482 C 37 1.40700 36 120.52443 35 359.50984
C 8 1.39371 7 119.18480 5 178.57492 C 38 1.39527 37 121.42667 36 0.49654
C 9 1.40691 8 120.51336 7 359.52293 C 39 1.39887 38 117.73226 37 0.29911
C 10 1.39536 9 121.40126 8 0.49943 H 1 1.08653 2 119.60585 3 180.09595
C 11 1.39880 10 117.78429 9 0.28109 H 2 1.08683 1 119.51664 6 -179.30384
N 12 1.40257 11 129.52416 10 181.46160 H 3 1.08526 2 120.70564 1 180.77694
C 13 1.53387* 12 133.65481* 11 356.64144* H 6 1.08716 1 120.43948 2 179.20861
C 14 1.40458 13 122.33817* 12 112.71677* H 8 1.08717 7 120.39801 5 358.89829
C 15 1.39063 14 120.07901 13 171.83207* H 9 1.08652 8 119.86397 7 179.97438
C 16 1.40552 15 120.85450 14 2.00484 H 10 1.08691 9 119.51021 8 180.71322
C 17 1.40455 16 118.67759 15 358.33054 H 11 1.08530 10 120.70276 9 180.75962
C 18 1.39418 17 120.73164 16 359.86866 H 15 1.08573 14 119.52089 19 178.90871
C 17 1.59797* 16 101.37122* 15 187.60954* H 16 1.08569 15 120.42221 14 181.14493
O 20 1.22892 17 126.79618* 16 36.28006* H 18 1.08575 17 120.11789 16 182.64318
C 20 1.59503* 17 107.72494* 16 203.19350* H 19 1.08571 18 120.29449 17 182.70446
C 22 1.40564 20 103.14411* 17 208.97514* H 23 1.08569 22 118.71556 27 179.20878
C 23 1.39053 22 120.86830 20 188.69261* H 24 1.08572 23 120.38584 22 182.55906
C 24 1.40466 23 120.09228 22 1.94707 H 26 1.08568 25 119.57715 24 177.64791
C 25 1.40196 24 119.46666 23 359.49957 H 27 1.08573 26 119.06349 25 178.78661
C 26 1.39414 25 120.13386 24 358.77673 H 30 1.08528 29 121.51383 28 1.03633
N 25 1.52078* 24 123.44516* 23 179.40816* H 31 1.08690 30 119.08389 29 180.02562
C 28 1.40278 25 134.91195* 24 109.47571* H 32 1.08651 31 119.62354 30 180.09641
C 29 1.39881 28 129.53406 25 353.47814* H 33 1.08716 32 120.41659 31 179.19601
C 30 1.39540 29 117.78877 28 181.52004 H 36 1.08715 35 120.40432 34 358.91372
C 31 1.40688 30 121.40300 29 0.27912 H 37 1.08651 36 119.86334 35 179.91071
C 32 1.39369 31 120.50917 30 0.49056 H 38 1.08684 37 119.51523 36 180.69978
C 33 1.40084 32 119.18459 31 359.52181 H 39 1.08525 38 120.68850 37 180.78166
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.17: 𝑍-matrix of Cz2BP at the TADF maximum with no energy penalty
(Λ = 0).
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N
C 1 1.39467
C 2 1.40007 1 128.43849
H 3 1.08648 2 121.01022 1 1.20228
C 3 1.39415 2 117.88388 1 -178.80979 C 34 1.38583 32 134.75808 31 30.17071
H 5 1.08697 3 119.27817 2 -179.81656 H 35 1.08578 34 121.91596 32 -6.70568
C 1 1.40672 2 107.33630 3 177.95123 C 35 1.40010 34 117.11559 32 169.30457
C 7 1.40020 1 129.18183 2 178.99092 H 37 1.08564 35 120.31821 34 -176.42799
H 8 1.08550 7 121.48354 1 0.39734 C 37 1.40048 35 120.50703 34 0.50967
C 8 1.39504 7 117.93312 1 -179.57432 C 39 1.39848 37 121.62174 35 2.25902
H 10 1.08699 8 119.06799 7 -179.84472 H 40 1.08686 39 119.44551 37 179.25874
C 10 1.40736 8 121.43896 7 0.23061 C 40 1.39726 39 118.77815 37 -3.07417
H 12 1.08660 10 119.64422 8 -179.96272 H 42 1.08182 40 120.69312 39 -175.83788
C 12 1.39318 10 120.45216 8 0.20760 N 39 1.53387 37 115.85904 35 -172.95908
H 14 1.08729 12 120.45646 10 179.64437 C 44 1.39363 39 133.65481 37 -72.10270
C 14 1.40137 12 119.13279 10 -0.22740 C 45 1.39992 44 128.64143 39 -3.35856
C 5 1.40819 3 121.19535 2 0.50517 H 46 1.08653 45 121.05826 44 0.36681
H 17 1.08655 5 119.60927 3 179.88813 C 46 1.39428 45 117.85045 44 -179.45681
C 17 1.39327 5 120.56185 3 0.24361 H 48 1.08698 46 119.26486 45 -179.94844
H 19 1.08723 17 120.38633 5 179.36981 C 44 1.40438 39 118.60592 37 105.38481
C 19 1.40207 17 119.38429 5 -0.35695 C 50 1.40011 44 129.37268 39 0.76030
C 1 1.52078 2 134.91195 3 -6.52186 H 51 1.08541 50 121.49554 44 0.49755
C 22 1.39932 1 123.44516 2 109.47571 C 51 1.39496 50 117.90476 44 -179.40507
H 23 1.08718 22 119.32241 1 -1.44824 H 53 1.08699 51 119.05285 50 -179.89037
C 23 1.39613 22 119.28693 1 179.40816 C 53 1.40744 51 121.45671 50 0.21337
H 25 1.08083 23 120.75467 22 -178.36391 H 55 1.08658 53 119.63983 51 -179.95710
C 22 1.40154 1 115.48031 2 -71.26083 C 55 1.39320 53 120.45494 51 0.24104
H 27 1.08571 22 119.01719 1 0.01606 H 57 1.08729 55 120.45551 53 179.60875
C 27 1.39929 22 120.53530 1 -177.54372 C 57 1.40143 55 119.15336 53 -0.24812
H 29 1.08628 27 120.66318 22 175.52679 C 48 1.40816 46 121.21954 45 0.26876
C 29 1.38713 27 117.60677 22 -1.80432 H 60 1.08656 48 119.59809 46 179.93524
C 31 1.59503 29 133.40400 27 170.83099 C 60 1.39344 48 120.57493 46 0.14624
O 32 1.20478 31 124.09683 29 -155.76847 H 62 1.08725 60 120.38628 48 179.62986
C 32 1.59797 31 107.72495 29 36.87906 C 62 1.40193 60 119.35952 48 -0.23046

Table E.18: 𝑍-matrix of Cz2BP after the relaxation of the hydrogen atoms and the
aromatic ring systems
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C
C 1 1.50583
N 2 1.33850 1 117.65244
C 3 1.34777 2 117.53683 1 180.67270 C 47 1.41102 46 119.50875 43 -179.83838
C 4 1.39892 3 120.61082 2 0.41799 C 48 1.39122 47 121.04682 46 -0.04531
C 5 1.40148 4 118.04691 3 358.33898 C 49 1.39540 48 120.06786 47 0.02562
N 6 1.34435 5 120.55549 4 1.62323 C 50 1.39389 49 118.72214 48 0.03143
C 6 1.48802* 5 122.56083* 4 180.89240* H 1 1.09183 2 110.52815 3 358.89572
C 8 1.40558 6 121.90024* 5 19.05584* H 1 1.09596 2 110.21152 3 237.75877
C 9 1.39449 8 120.84388 6 179.53663* H 1 1.09643 2 110.19187 3 119.89113
C 10 1.39844 9 120.19424 8 0.05385 H 5 1.08254 4 120.95348 3 176.04645
C 11 1.39913 10 119.47151 9 359.93454 H 9 1.08583 8 120.47543 13 -178.20401
C 12 1.39339 11 120.28598 10 359.85119 H 10 1.08642 9 120.48286 8 180.73154
N 11 1.43526* 10 120.18493* 9 180.62019* H 12 1.08655 11 119.26092 10 180.02562
C 14 1.40881 11 119.03804* 10 89.30318* H 13 1.08450 12 120.47333 11 180.62790
C 15 1.41140 14 120.68266 11 180.23342* H 17 1.08648 16 118.84331 15 180.02562
C 16 1.40257 15 117.86250 14 179.88235 H 18 1.08639 17 120.30937 16 179.97438
C 17 1.39386 16 122.78512 15 0.04971 H 19 1.08707 18 120.64944 17 179.88956
C 18 1.39532 17 118.72603 16 0.05845 H 20 1.08329 19 119.12749 18 179.90649
C 19 1.39115 18 120.05390 17 359.92503 H 22 1.09518 21 111.14838 16 301.25129
C 16 1.53400 15 122.77663 14 359.87960 H 22 1.09524 21 111.11557 16 181.42759
C 21 1.55448 16 109.06563 15 239.34748 H 22 1.09541 21 110.68218 16 61.34003
C 21 1.55432 16 109.08608 15 120.20691 H 23 1.09534 21 111.10718 16 58.89841
C 21 1.53437 16 111.41054 15 359.76800 H 23 1.09540 21 110.68742 16 298.83261
C 24 1.41163 21 122.76259 16 0.39126 H 23 1.09535 21 111.12222 16 178.72351
C 25 1.41099 24 119.51131 21 179.83170 H 26 1.08348 25 119.74985 24 -179.99781
C 26 1.39124 25 121.06066 24 0.08325 H 27 1.08710 26 119.30079 25 179.97438
C 27 1.39543 26 120.05288 25 359.97438 H 28 1.08640 27 120.95898 26 179.97438
C 28 1.39398 27 118.72283 26 359.96278 H 29 1.08639 28 118.41477 27 180.02562
C 4 1.48749* 3 116.79359* 2 179.58587* H 31 1.08452 30 118.76935 35 -179.29891
C 30 1.40577 4 119.71610* 3 341.30782* H 32 1.08655 31 120.45969 30 179.57257
C 31 1.39350 30 120.76369 4 180.26535* H 34 1.08644 33 119.33823 32 180.78326
C 32 1.39900 31 120.29692 30 359.53888 H 35 1.08590 34 118.70349 33 181.45095
C 33 1.39851 32 119.47468 31 359.97355 H 39 1.08637 38 118.79129 37 180.02562
C 34 1.39437 33 120.18402 32 0.29666 H 40 1.08639 39 120.32407 38 179.97438
N 33 1.43519* 32 120.31726* 31 180.29743* H 41 1.08710 40 120.64008 39 179.97438
C 36 1.40820 33 119.15858* 32 269.89360* H 42 1.08344 41 119.15881 40 179.97438
C 37 1.41146 36 120.69701 33 180.13193* H 44 1.09533 43 111.11629 38 300.83187
C 38 1.40242 37 117.88065 36 179.97438 H 44 1.09539 43 111.14247 38 180.96782
C 39 1.39394 38 122.78422 37 0.03726 H 44 1.09543 43 110.67794 38 60.89850
C 40 1.39538 39 118.71530 38 359.97438 H 45 1.09526 43 111.13974 38 59.28773
C 41 1.39120 40 120.06452 39 359.97438 H 45 1.09543 43 110.68503 38 299.19004
C 38 1.53410 37 122.77223 36 359.89121 H 45 1.09525 43 111.13650 38 179.11870
C 43 1.55442 38 109.04047 37 239.86052 H 48 1.08339 47 119.80377 46 179.88065
C 43 1.55435 38 109.08347 37 120.72677 H 49 1.08707 48 119.29068 47 179.97438
C 43 1.53418 38 111.40551 37 0.26477 H 50 1.08640 49 120.95506 48 179.97438
C 46 1.41147 43 122.77468 38 -0.28109 H 51 1.08643 50 118.43815 49 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.19: 𝑍-matrix of Ac-MPM at the energy minimum (Λ =∞).
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C
C 1 1.50583
N 2 1.33850 1 117.65244
C 3 1.34777 2 117.53683 1 180.67270 C 47 1.41102 46 119.50875 43 -179.83838
C 4 1.39892 3 120.61082 2 0.41799 C 48 1.39122 47 121.04682 46 -0.04531
C 5 1.40148 4 118.04691 3 358.33898 C 49 1.39540 48 120.06786 47 0.02562
N 6 1.34435 5 120.55549 4 1.62323 C 50 1.39389 49 118.72214 48 0.03143
C 6 1.58773* 5 121.03757* 4 166.64874* H 1 1.09183 2 110.52815 3 358.89572
C 8 1.40558 6 124.72347* 5 2.92038* H 1 1.09596 2 110.21152 3 237.75877
C 9 1.39449 8 120.84388 6 185.77137* H 1 1.09643 2 110.19187 3 119.89113
C 10 1.39844 9 120.19424 8 0.05385 H 5 1.08254 4 120.95348 3 176.04645
C 11 1.39913 10 119.47151 9 359.93454 H 9 1.08583 8 120.47543 13 -178.20401
C 12 1.39339 11 120.28598 10 359.85119 H 10 1.08642 9 120.48286 8 180.73154
N 11 1.47465* 10 120.62338* 9 186.87893* H 12 1.08655 11 119.26092 10 180.02562
C 14 1.40881 11 120.85874* 10 93.65843* H 13 1.08450 12 120.47333 11 180.62790
C 15 1.41140 14 120.68266 11 190.85584* H 17 1.08648 16 118.84331 15 180.02562
C 16 1.40257 15 117.86250 14 179.88235 H 18 1.08639 17 120.30937 16 179.97438
C 17 1.39386 16 122.78512 15 0.04971 H 19 1.08707 18 120.64944 17 179.88956
C 18 1.39532 17 118.72603 16 0.05845 H 20 1.08329 19 119.12749 18 179.90649
C 19 1.39115 18 120.05390 17 359.92503 H 22 1.09518 21 111.14838 16 301.25129
C 16 1.53400 15 122.77663 14 359.87960 H 22 1.09524 21 111.11557 16 181.42759
C 21 1.55448 16 109.06563 15 239.34748 H 22 1.09541 21 110.68218 16 61.34003
C 21 1.55432 16 109.08608 15 120.20691 H 23 1.09534 21 111.10718 16 58.89841
C 21 1.53437 16 111.41054 15 359.76800 H 23 1.09540 21 110.68742 16 298.83261
C 24 1.41163 21 122.76259 16 0.39126 H 23 1.09535 21 111.12222 16 178.72351
C 25 1.41099 24 119.51131 21 179.83170 H 26 1.08348 25 119.74985 24 -179.99781
C 26 1.39124 25 121.06066 24 0.08325 H 27 1.08710 26 119.30079 25 179.97438
C 27 1.39543 26 120.05288 25 359.97438 H 28 1.08640 27 120.95898 26 179.97438
C 28 1.39398 27 118.72283 26 359.96278 H 29 1.08639 28 118.41477 27 180.02562
C 4 1.48160* 3 122.27281* 2 176.73015* H 31 1.08452 30 118.76935 35 -179.29891
C 30 1.40577 4 120.09702* 3 339.35727* H 32 1.08655 31 120.45969 30 179.57257
C 31 1.39350 30 120.76369 4 166.85606* H 34 1.08644 33 119.33823 32 180.78326
C 32 1.39900 31 120.29692 30 359.53888 H 35 1.08590 34 118.70349 33 181.45095
C 33 1.39851 32 119.47468 31 359.97355 H 39 1.08637 38 118.79129 37 180.02562
C 34 1.39437 33 120.18402 32 0.29666 H 40 1.08639 39 120.32407 38 179.97438
N 33 1.40817* 32 124.40266* 31 187.07618* H 41 1.08710 40 120.64008 39 179.97438
C 36 1.40820 33 116.63137* 32 274.09461* H 42 1.08344 41 119.15881 40 179.97438
C 37 1.41146 36 120.69701 33 183.00945* H 44 1.09533 43 111.11629 38 300.83187
C 38 1.40242 37 117.88065 36 179.97438 H 44 1.09539 43 111.14247 38 180.96782
C 39 1.39394 38 122.78422 37 0.03726 H 44 1.09543 43 110.67794 38 60.89850
C 40 1.39538 39 118.71530 38 359.97438 H 45 1.09526 43 111.13974 38 59.28773
C 41 1.39120 40 120.06452 39 359.97438 H 45 1.09543 43 110.68503 38 299.19004
C 38 1.53410 37 122.77223 36 359.89121 H 45 1.09525 43 111.13650 38 179.11870
C 43 1.55442 38 109.04047 37 239.86052 H 48 1.08339 47 119.80377 46 179.88065
C 43 1.55435 38 109.08347 37 120.72677 H 49 1.08707 48 119.29068 47 179.97438
C 43 1.53418 38 111.40551 37 0.26477 H 50 1.08640 49 120.95506 48 179.97438
C 46 1.41147 43 122.77468 38 -0.28109 H 51 1.08643 50 118.43815 49 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.20: 𝑍-matrix of Ac-MPM at the TADF maximum with energy penalty (Λ =
8.0 µs−1𝐸h

−1).
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C
C 1 1.50583
N 2 1.33850 1 117.65244
C 3 1.34777 2 117.53683 1 180.67270 C 47 1.41102 46 119.50875 43 -179.83838
C 4 1.39892 3 120.61082 2 0.41799 C 48 1.39122 47 121.04682 46 -0.04531
C 5 1.40148 4 118.04691 3 358.33898 C 49 1.39540 48 120.06786 47 0.02562
N 6 1.34435 5 120.55549 4 1.62323 C 50 1.39389 49 118.72214 48 0.03143
C 6 1.56286* 5 124.04279* 4 178.33480* H 1 1.09183 2 110.52815 3 358.89572
C 8 1.40558 6 123.50612* 5 6.07434* H 1 1.09596 2 110.21152 3 237.75877
C 9 1.39449 8 120.84388 6 184.40876* H 1 1.09643 2 110.19187 3 119.89113
C 10 1.39844 9 120.19424 8 0.05385 H 5 1.08254 4 120.95348 3 176.04645
C 11 1.39913 10 119.47151 9 359.93454 H 9 1.08583 8 120.47543 13 -178.20401
C 12 1.39339 11 120.28598 10 359.85119 H 10 1.08642 9 120.48286 8 180.73154
N 11 1.52472* 10 115.91129* 9 188.25346* H 12 1.08655 11 119.26092 10 180.02562
C 14 1.40881 11 113.53090* 10 96.71973* H 13 1.08450 12 120.47333 11 180.62790
C 15 1.41140 14 120.68266 11 186.06754* H 17 1.08648 16 118.84331 15 180.02562
C 16 1.40257 15 117.86250 14 179.88235 H 18 1.08639 17 120.30937 16 179.97438
C 17 1.39386 16 122.78512 15 0.04971 H 19 1.08707 18 120.64944 17 179.88956
C 18 1.39532 17 118.72603 16 0.05845 H 20 1.08329 19 119.12749 18 179.90649
C 19 1.39115 18 120.05390 17 359.92503 H 22 1.09518 21 111.14838 16 301.25129
C 16 1.53400 15 122.77663 14 359.87960 H 22 1.09524 21 111.11557 16 181.42759
C 21 1.55448 16 109.06563 15 239.34748 H 22 1.09541 21 110.68218 16 61.34003
C 21 1.55432 16 109.08608 15 120.20691 H 23 1.09534 21 111.10718 16 58.89841
C 21 1.53437 16 111.41054 15 359.76800 H 23 1.09540 21 110.68742 16 298.83261
C 24 1.41163 21 122.76259 16 0.39126 H 23 1.09535 21 111.12222 16 178.72351
C 25 1.41099 24 119.51131 21 179.83170 H 26 1.08348 25 119.74985 24 -179.99781
C 26 1.39124 25 121.06066 24 0.08325 H 27 1.08710 26 119.30079 25 179.97438
C 27 1.39543 26 120.05288 25 359.97438 H 28 1.08640 27 120.95898 26 179.97438
C 28 1.39398 27 118.72283 26 359.96278 H 29 1.08639 28 118.41477 27 180.02562
C 4 1.53670* 3 121.24252* 2 180.15153* H 31 1.08452 30 118.76935 35 -179.29891
C 30 1.40577 4 128.05927* 3 309.16618* H 32 1.08655 31 120.45969 30 179.57257
C 31 1.39350 30 120.76369 4 182.96308* H 34 1.08644 33 119.33823 32 180.78326
C 32 1.39900 31 120.29692 30 359.53888 H 35 1.08590 34 118.70349 33 181.45095
C 33 1.39851 32 119.47468 31 359.97355 H 39 1.08637 38 118.79129 37 180.02562
C 34 1.39437 33 120.18402 32 0.29666 H 40 1.08639 39 120.32407 38 179.97438
N 33 1.48910* 32 124.28356* 31 188.02574* H 41 1.08710 40 120.64008 39 179.97438
C 36 1.40820 33 90.81682* 32 277.91899* H 42 1.08344 41 119.15881 40 179.97438
C 37 1.41146 36 120.69701 33 188.91668* H 44 1.09533 43 111.11629 38 300.83187
C 38 1.40242 37 117.88065 36 179.97438 H 44 1.09539 43 111.14247 38 180.96782
C 39 1.39394 38 122.78422 37 0.03726 H 44 1.09543 43 110.67794 38 60.89850
C 40 1.39538 39 118.71530 38 359.97438 H 45 1.09526 43 111.13974 38 59.28773
C 41 1.39120 40 120.06452 39 359.97438 H 45 1.09543 43 110.68503 38 299.19004
C 38 1.53410 37 122.77223 36 359.89121 H 45 1.09525 43 111.13650 38 179.11870
C 43 1.55442 38 109.04047 37 239.86052 H 48 1.08339 47 119.80377 46 179.88065
C 43 1.55435 38 109.08347 37 120.72677 H 49 1.08707 48 119.29068 47 179.97438
C 43 1.53418 38 111.40551 37 0.26477 H 50 1.08640 49 120.95506 48 179.97438
C 46 1.41147 43 122.77468 38 -0.28109 H 51 1.08643 50 118.43815 49 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.21: 𝑍-matrix of Ac-MPM at the TADF maximum with energy penalty (Λ =
4.0 µs−1𝐸h

−1).
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C
C 1 1.50583
N 2 1.33850 1 117.65244
C 3 1.34777 2 117.53683 1 180.67270 C 47 1.41102 46 119.50875 43 -179.83838
C 4 1.39892 3 120.61082 2 0.41799 C 48 1.39122 47 121.04682 46 -0.04531
C 5 1.40148 4 118.04691 3 358.33898 C 49 1.39540 48 120.06786 47 0.02562
N 6 1.34435 5 120.55549 4 1.62323 C 50 1.39389 49 118.72214 48 0.03143
C 6 1.62393* 5 125.04929* 4 165.95375* H 1 1.09183 2 110.52815 3 358.89572
C 8 1.40558 6 127.44863* 5 -2.38961* H 1 1.09596 2 110.21152 3 237.75877
C 9 1.39449 8 120.84388 6 186.72320* H 1 1.09643 2 110.19187 3 119.89113
C 10 1.39844 9 120.19424 8 0.05385 H 5 1.08254 4 120.95348 3 176.04645
C 11 1.39913 10 119.47151 9 359.93454 H 9 1.08583 8 120.47543 13 -178.20401
C 12 1.39339 11 120.28598 10 359.85119 H 10 1.08642 9 120.48286 8 180.73154
N 11 1.55891* 10 118.00157* 9 190.37380* H 12 1.08655 11 119.26092 10 180.02562
C 14 1.40881 11 114.96625* 10 98.39991* H 13 1.08450 12 120.47333 11 180.62790
C 15 1.41140 14 120.68266 11 188.32512* H 17 1.08648 16 118.84331 15 180.02562
C 16 1.40257 15 117.86250 14 179.88235 H 18 1.08639 17 120.30937 16 179.97438
C 17 1.39386 16 122.78512 15 0.04971 H 19 1.08707 18 120.64944 17 179.88956
C 18 1.39532 17 118.72603 16 0.05845 H 20 1.08329 19 119.12749 18 179.90649
C 19 1.39115 18 120.05390 17 359.92503 H 22 1.09518 21 111.14838 16 301.25129
C 16 1.53400 15 122.77663 14 359.87960 H 22 1.09524 21 111.11557 16 181.42759
C 21 1.55448 16 109.06563 15 239.34748 H 22 1.09541 21 110.68218 16 61.34003
C 21 1.55432 16 109.08608 15 120.20691 H 23 1.09534 21 111.10718 16 58.89841
C 21 1.53437 16 111.41054 15 359.76800 H 23 1.09540 21 110.68742 16 298.83261
C 24 1.41163 21 122.76259 16 0.39126 H 23 1.09535 21 111.12222 16 178.72351
C 25 1.41099 24 119.51131 21 179.83170 H 26 1.08348 25 119.74985 24 -179.99781
C 26 1.39124 25 121.06066 24 0.08325 H 27 1.08710 26 119.30079 25 179.97438
C 27 1.39543 26 120.05288 25 359.97438 H 28 1.08640 27 120.95898 26 179.97438
C 28 1.39398 27 118.72283 26 359.96278 H 29 1.08639 28 118.41477 27 180.02562
C 4 1.49463* 3 119.33252* 2 182.48917* H 31 1.08452 30 118.76935 35 -179.29891
C 30 1.40577 4 132.45115* 3 308.63468* H 32 1.08655 31 120.45969 30 179.57257
C 31 1.39350 30 120.76369 4 182.38989* H 34 1.08644 33 119.33823 32 180.78326
C 32 1.39900 31 120.29692 30 359.53888 H 35 1.08590 34 118.70349 33 181.45095
C 33 1.39851 32 119.47468 31 359.97355 H 39 1.08637 38 118.79129 37 180.02562
C 34 1.39437 33 120.18402 32 0.29666 H 40 1.08639 39 120.32407 38 179.97438
N 33 1.52926* 32 123.30528* 31 187.49014* H 41 1.08710 40 120.64008 39 179.97438
C 36 1.40820 33 90.95333* 32 279.84399* H 42 1.08344 41 119.15881 40 179.97438
C 37 1.41146 36 120.69701 33 189.91067* H 44 1.09533 43 111.11629 38 300.83187
C 38 1.40242 37 117.88065 36 179.97438 H 44 1.09539 43 111.14247 38 180.96782
C 39 1.39394 38 122.78422 37 0.03726 H 44 1.09543 43 110.67794 38 60.89850
C 40 1.39538 39 118.71530 38 359.97438 H 45 1.09526 43 111.13974 38 59.28773
C 41 1.39120 40 120.06452 39 359.97438 H 45 1.09543 43 110.68503 38 299.19004
C 38 1.53410 37 122.77223 36 359.89121 H 45 1.09525 43 111.13650 38 179.11870
C 43 1.55442 38 109.04047 37 239.86052 H 48 1.08339 47 119.80377 46 179.88065
C 43 1.55435 38 109.08347 37 120.72677 H 49 1.08707 48 119.29068 47 179.97438
C 43 1.53418 38 111.40551 37 0.26477 H 50 1.08640 49 120.95506 48 179.97438
C 46 1.41147 43 122.77468 38 -0.28109 H 51 1.08643 50 118.43815 49 179.97438
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.22: 𝑍-matrix of Ac-MPM at the TADF maximum with no energy penalty
(Λ = 0).
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N
C 1 1.39492
C 1 1.40606 2 123.86563
C 2 1.41014 1 120.06970 3 176.76796 C 45 1.49463 44 119.33252 43 -177.51083
H 4 1.08446 2 119.46348 1 -0.59736 C 48 1.40109 45 132.45115 44 -51.36532
C 4 1.39104 2 120.82014 1 179.73867 H 49 1.08819 48 119.14962 45 -0.11540
H 6 1.08716 4 119.37775 2 -179.97600 C 49 1.39137 48 122.92650 45 -177.61011
C 6 1.39641 4 120.04190 2 0.26546 H 51 1.08678 49 118.82096 48 179.26608
H 8 1.08641 6 120.87055 4 -179.89703 C 51 1.39402 49 121.36525 48 -6.70756
C 8 1.39483 6 118.86485 4 0.36831 C 53 1.39837 51 117.00914 49 6.99678
H 10 1.08659 8 118.42861 6 179.75655 H 54 1.08503 53 120.09983 51 177.58479
C 10 1.40198 8 122.66206 6 -0.37475 C 54 1.39386 53 120.87110 51 -2.54281
C 3 1.41053 1 121.77466 2 -179.22538 H 56 1.08689 54 117.77377 53 -179.31256
H 13 1.08173 3 120.27071 1 0.51441 C 43 1.50532 42 117.04247 41 -178.37930
C 13 1.39226 3 121.05607 1 -179.14797 H 58 1.09173 43 110.39053 42 -178.88128
H 15 1.08718 13 119.06078 3 -179.81869 H 58 1.09607 43 110.32153 42 -57.71734
C 15 1.39433 13 120.32161 3 0.43428 H 58 1.09641 43 110.15633 42 60.25819
H 17 1.08642 15 121.02120 13 179.94722 N 53 1.52926 51 123.30528 49 -172.50986
C 17 1.39437 15 118.59709 13 0.27549 C 62 1.40745 53 123.82777 51 153.26124
H 19 1.08655 17 118.38210 15 179.36341 C 63 1.40226 62 122.38376 53 -32.67906
C 19 1.40139 17 122.70865 15 -0.22368 H 64 1.08442 63 120.11781 62 2.90016
C 12 1.53525 10 119.92979 8 179.80224 C 64 1.39461 63 119.68471 62 -176.72385
C 22 1.55437 12 108.91626 10 61.06124 H 66 1.08693 64 119.45179 63 -179.64103
H 23 1.09539 22 111.09687 12 -178.62200 C 66 1.39595 64 120.10564 63 0.06935
H 23 1.09548 22 110.73700 12 61.28365 H 68 1.08661 66 120.45728 64 -178.95848
H 23 1.09555 22 110.98833 12 -58.73843 C 68 1.39792 66 119.64646 64 2.38055
C 22 1.55463 12 108.90794 10 -57.80838 H 70 1.08466 68 118.60975 66 177.86466
H 27 1.09512 22 111.22484 12 178.69936 C 70 1.39989 68 121.46694 66 -0.99074
H 27 1.09515 22 111.10678 12 58.94291 C 62 1.51487 53 90.95333 51 -80.15601
H 27 1.09535 22 110.66369 12 -61.13313 C 73 1.40962 62 131.88412 53 6.79107
C 1 1.55891 2 120.93535 3 174.17348 H 74 1.07583 73 123.46927 62 0.18000
C 31 1.39045 1 120.90202 2 107.00982 C 74 1.39994 73 121.29412 62 -178.78308
H 32 1.08579 31 120.17590 1 -4.77128 H 76 1.08708 74 117.82284 73 -179.29101
C 31 1.39063 1 118.00157 2 -76.26487 C 76 1.38615 74 121.47328 73 2.04883
H 34 1.08529 31 120.16114 1 4.14856 H 78 1.08664 76 121.14059 74 179.18096
C 32 1.39552 31 118.99501 1 173.70503 C 78 1.39483 76 118.27227 74 -0.41964
H 36 1.08377 32 119.96267 31 179.15524 H 80 1.08355 78 118.46797 76 179.29834
C 34 1.39616 31 119.03268 1 -169.62620 C 80 1.39725 78 121.63178 76 -1.11616
H 38 1.08827 34 118.46941 31 176.64603 C 72 1.53176 70 124.67563 68 171.66243
C 38 1.40029 34 121.30539 31 -7.36039 C 83 1.53950 72 111.50064 70 17.84573
C 40 1.62393 38 127.44863 34 -173.27680 H 84 1.09403 83 110.99160 72 -175.29677
N 41 1.33847 40 114.25813 38 171.42509 H 84 1.09409 83 110.20597 72 -57.91606
C 42 1.34004 41 117.94743 40 -170.49978 H 84 1.09608 83 112.34529 72 62.95181
N 43 1.34098 42 125.30167 41 2.78534 C 83 1.56137 72 108.22008 70 -99.69020
C 44 1.34374 43 117.23561 42 -4.84949 H 88 1.09281 83 111.72145 72 -58.61578
C 41 1.39410 40 125.04929 38 -2.38961 H 88 1.09647 83 109.97681 72 61.71336
H 46 1.08481 41 121.19248 40 -6.80598 H 88 1.09655 83 109.86750 72 -178.88577

Table E.23: 𝑍-matrix of Ac-MPM after the relaxation of the hydrogen atoms and the
aromatic ring systems
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C
C 1 1.39864
C 2 1.39443 1 120.16574
C 3 1.40511 2 120.36404 1 0.02562
C 4 1.40517 3 119.15050 2 359.97438 C 42 1.40158 41 120.58139 40 359.97438
C 5 1.39446 4 120.35081 3 359.97438 C 43 1.40051 42 120.50910 41 -0.01063
C 4 1.48397* 3 120.41209* 2 180.02562* C 40 1.47063* 39 108.64466* 44 179.96928*

N 7 1.34295 4 117.98695* 3 0.24845* C 45 1.40777 40 108.62415* 39 0.02562*

C 8 1.34095 7 115.86057 4 179.86002* C 46 1.39054 45 120.59798 40 180.02562*

N 9 1.34093 8 124.28585 7 0.15796 C 47 1.40062 46 119.00287 45 359.97438
C 10 1.34317 9 115.83276 8 359.89831 C 48 1.40125 47 120.52755 46 359.97438
N 11 1.34192 10 123.98178 9 -0.04540 C 49 1.39825 48 120.55950 47 0.03294
C 11 1.48397* 10 118.00583* 9 180.02562* H 1 1.08713 2 120.10348 3 179.97438
C 13 1.40515 11 120.45847* 10 359.59226* H 2 1.08693 1 120.09391 3 180.02562
C 14 1.39448 13 120.35439 11 179.97438* H 3 1.08427 2 120.59577 1 180.02562
C 15 1.39867 14 120.16896 13 359.97438 H 5 1.08430 4 119.02626 3 179.97438
C 16 1.39868 15 119.79481 14 0.02562 H 6 1.08694 5 119.73537 4 180.02562
C 17 1.39438 16 120.17167 15 0.02562 H 14 1.08428 13 119.03859 18 179.95982
C 9 1.48607* 8 117.80484* 7 180.32489* H 15 1.08693 14 119.73768 13 179.97438
C 19 1.40442 9 120.43777* 8 359.63072* H 16 1.08713 15 120.09936 14 180.02562
C 20 1.39361 19 120.44951 9 179.64292* H 17 1.08694 16 120.08859 15 180.02562
C 21 1.39882 20 120.21264 19 359.97438 H 18 1.08428 17 120.62263 16 179.97438
C 22 1.39970 21 119.67264 20 0.15218 H 20 1.08418 19 119.09929 24 -179.99032
C 23 1.39353 22 120.16856 21 359.85828 H 21 1.08639 20 120.54881 19 180.13849
N 22 1.43589* 21 119.88295* 20 180.45092* H 23 1.08648 22 119.31321 21 179.97438
C 25 1.40845* 22 119.15861* 21 91.66166* H 24 1.08427 23 120.43211 22 180.12133
C 26 1.40940 25 120.78333* 22 181.82435* H 28 1.08664 27 118.40112 26 180.02562
C 27 1.40190 26 118.64931 25 180.26182* H 29 1.08626 28 120.33044 27 180.14617
C 28 1.39189 27 122.26296 26 359.76559 H 30 1.08710 29 120.53882 28 180.02562
C 29 1.39740 28 118.76420 27 359.97438 H 31 1.08354 30 119.21243 29 179.76689
C 30 1.39055 29 120.26866 28 0.20004 H 34 1.08358 33 119.76961 38 -179.94501
C 27 1.53331* 26 122.20037* 25 2.53202* H 35 1.08709 34 119.20891 33 179.97438
C 25 1.40831* 22 119.29754* 21 267.79859* H 36 1.08626 35 120.89328 34 179.97438
C 33 1.41195 25 120.09902* 22 358.19701* H 37 1.08669 36 119.32083 35 180.33624
C 34 1.39060 33 120.94302 25 180.13352* H 41 1.08750 40 120.85913 39 180.02562
C 35 1.39745 34 120.25391 33 0.10523 H 42 1.08715 41 119.71334 40 179.97438
C 36 1.39186 35 118.78061 34 359.78995 H 43 1.08705 42 119.74014 41 179.97438
C 37 1.40196 36 122.26388 35 0.05250 H 44 1.08743 43 120.37776 42 -179.99848
C 32 1.53844* 27 111.35488* 26 225.32217* H 47 1.08744 46 120.72099 45 179.97438
C 39 1.40745 32 111.13284* 27 242.74082* H 48 1.08708 47 119.73759 46 180.02562
C 40 1.39861 39 120.41622 32 179.97438* H 49 1.08711 48 119.71986 47 180.02562
C 41 1.39810 40 118.87226 39 0.02562 H 50 1.08755 49 120.25204 48 179.97980
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.24: 𝑍-matrix of SpiroAC-TRZ at the energy minimum (Λ =∞).
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C
C 1 1.39864
C 2 1.39443 1 120.16574
C 3 1.40511 2 120.36404 1 0.02562
C 4 1.40517 3 119.15050 2 359.97438 C 42 1.40158 41 120.58139 40 359.97438
C 5 1.39446 4 120.35081 3 359.97438 C 43 1.40051 42 120.50910 41 -0.01063
C 4 1.49978* 3 124.94879* 2 173.42101* C 40 1.48760* 39 107.69736* 44 189.99573*

N 7 1.34295 4 108.77141* 3 0.27177* C 45 1.40777 40 107.38631* 39 0.75640*

C 8 1.34095 7 115.86057 4 180.26046* C 46 1.39054 45 120.59798 40 180.78082*

N 9 1.34093 8 124.28585 7 0.15796 C 47 1.40062 46 119.00287 45 359.97438
C 10 1.34317 9 115.83276 8 359.89831 C 48 1.40125 47 120.52755 46 359.97438
N 11 1.34192 10 123.98178 9 -0.04540 C 49 1.39825 48 120.55950 47 0.03294
C 11 1.58946* 10 118.14211* 9 179.30103* H 1 1.08713 2 120.10348 3 179.97438
C 13 1.40515 11 120.84298* 10 372.87065* H 2 1.08693 1 120.09391 3 180.02562
C 14 1.39448 13 120.35439 11 167.44939* H 3 1.08427 2 120.59577 1 180.02562
C 15 1.39867 14 120.16896 13 359.97438 H 5 1.08430 4 119.02626 3 179.97438
C 16 1.39868 15 119.79481 14 0.02562 H 6 1.08694 5 119.73537 4 180.02562
C 17 1.39438 16 120.17167 15 0.02562 H 14 1.08428 13 119.03859 18 179.95982
C 9 1.58104* 8 122.52945* 7 182.48646* H 15 1.08693 14 119.73768 13 179.97438
C 19 1.40442 9 116.79138* 8 361.16568* H 16 1.08713 15 120.09936 14 180.02562
C 20 1.39361 19 120.44951 9 176.57457* H 17 1.08694 16 120.08859 15 180.02562
C 21 1.39882 20 120.21264 19 359.97438 H 18 1.08428 17 120.62263 16 179.97438
C 22 1.39970 21 119.67264 20 0.15218 H 20 1.08418 19 119.09929 24 -179.99032
C 23 1.39353 22 120.16856 21 359.85828 H 21 1.08639 20 120.54881 19 180.13849
N 22 1.39728* 21 121.04382* 20 185.09586* H 23 1.08648 22 119.31321 21 179.97438
C 25 1.42786* 22 114.89611* 21 94.81547* H 24 1.08427 23 120.43211 22 180.12133
C 26 1.40940 25 119.71894* 22 181.45209* H 28 1.08664 27 118.40112 26 180.02562
C 27 1.40190 26 118.64931 25 179.68903* H 29 1.08626 28 120.33044 27 180.14617
C 28 1.39189 27 122.26296 26 359.76559 H 30 1.08710 29 120.53882 28 180.02562
C 29 1.39740 28 118.76420 27 359.97438 H 31 1.08354 30 119.21243 29 179.76689
C 30 1.39055 29 120.26866 28 0.20004 H 34 1.08358 33 119.76961 38 -179.94501
C 27 1.53922* 26 119.94814* 25 5.69563* H 35 1.08709 34 119.20891 33 179.97438
C 25 1.43477* 22 121.02129* 21 275.12326* H 36 1.08626 35 120.89328 34 179.97438
C 33 1.41195 25 122.53828* 22 360.56800* H 37 1.08669 36 119.32083 35 180.33624
C 34 1.39060 33 120.94302 25 178.78098* H 41 1.08750 40 120.85913 39 180.02562
C 35 1.39745 34 120.25391 33 0.10523 H 42 1.08715 41 119.71334 40 179.97438
C 36 1.39186 35 118.78061 34 359.78995 H 43 1.08705 42 119.74014 41 179.97438
C 37 1.40196 36 122.26388 35 0.05250 H 44 1.08743 43 120.37776 42 -179.99848
C 32 1.51266* 27 107.26540* 26 222.26042* H 47 1.08744 46 120.72099 45 179.97438
C 39 1.40745 32 110.92204* 27 227.29839* H 48 1.08708 47 119.73759 46 180.02562
C 40 1.39861 39 120.41622 32 175.77397* H 49 1.08711 48 119.71986 47 180.02562
C 41 1.39810 40 118.87226 39 0.02562 H 50 1.08755 49 120.25204 48 179.97980
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.25: 𝑍-matrix of SpiroAC-TRZ at the TADF maximum with energy penalty
(Λ = 8.0 µs−1𝐸h

−1).
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C
C 1 1.39864
C 2 1.39443 1 120.16574
C 3 1.40511 2 120.36404 1 0.02562
C 4 1.40517 3 119.15050 2 359.97438 C 42 1.40158 41 120.58139 40 359.97438
C 5 1.39446 4 120.35081 3 359.97438 C 43 1.40051 42 120.50910 41 -0.01063
C 4 1.46986* 3 118.86981* 2 181.49791* C 40 1.44129* 39 109.00697* 44 176.22851*

N 7 1.34295 4 112.02339* 3 1.54776* C 45 1.40777 40 106.13967* 39 0.22415*

C 8 1.34095 7 115.86057 4 180.05888* C 46 1.39054 45 120.59798 40 181.07432*

N 9 1.34093 8 124.28585 7 0.15796 C 47 1.40062 46 119.00287 45 359.97438
C 10 1.34317 9 115.83276 8 359.89831 C 48 1.40125 47 120.52755 46 359.97438
N 11 1.34192 10 123.98178 9 -0.04540 C 49 1.39825 48 120.55950 47 0.03294
C 11 1.66172* 10 119.62692* 9 180.44673* H 1 1.08713 2 120.10348 3 179.97438
C 13 1.40515 11 123.23214* 10 359.40282* H 2 1.08693 1 120.09391 3 180.02562
C 14 1.39448 13 120.35439 11 179.64214* H 3 1.08427 2 120.59577 1 180.02562
C 15 1.39867 14 120.16896 13 359.97438 H 5 1.08430 4 119.02626 3 179.97438
C 16 1.39868 15 119.79481 14 0.02562 H 6 1.08694 5 119.73537 4 180.02562
C 17 1.39438 16 120.17167 15 0.02562 H 14 1.08428 13 119.03859 18 179.95982
C 9 1.51262* 8 116.29851* 7 181.09967* H 15 1.08693 14 119.73768 13 179.97438
C 19 1.40442 9 118.25573* 8 360.39622* H 16 1.08713 15 120.09936 14 180.02562
C 20 1.39361 19 120.44951 9 180.22357* H 17 1.08694 16 120.08859 15 180.02562
C 21 1.39882 20 120.21264 19 359.97438 H 18 1.08428 17 120.62263 16 179.97438
C 22 1.39970 21 119.67264 20 0.15218 H 20 1.08418 19 119.09929 24 -179.99032
C 23 1.39353 22 120.16856 21 359.85828 H 21 1.08639 20 120.54881 19 180.13849
N 22 1.33022* 21 117.27093* 20 185.06677* H 23 1.08648 22 119.31321 21 179.97438
C 25 1.42105* 22 122.74351* 21 96.43530* H 24 1.08427 23 120.43211 22 180.12133
C 26 1.40940 25 120.42310* 22 184.17002* H 28 1.08664 27 118.40112 26 180.02562
C 27 1.40190 26 118.64931 25 180.82942* H 29 1.08626 28 120.33044 27 180.14617
C 28 1.39189 27 122.26296 26 359.76559 H 30 1.08710 29 120.53882 28 180.02562
C 29 1.39740 28 118.76420 27 359.97438 H 31 1.08354 30 119.21243 29 179.76689
C 30 1.39055 29 120.26866 28 0.20004 H 34 1.08358 33 119.76961 38 -179.94501
C 27 1.54975* 26 123.65876* 25 2.19957* H 35 1.08709 34 119.20891 33 179.97438
C 25 1.41944* 22 118.67674* 21 274.26073* H 36 1.08626 35 120.89328 34 179.97438
C 33 1.41195 25 122.02268* 22 361.07643* H 37 1.08669 36 119.32083 35 180.33624
C 34 1.39060 33 120.94302 25 180.41148* H 41 1.08750 40 120.85913 39 180.02562
C 35 1.39745 34 120.25391 33 0.10523 H 42 1.08715 41 119.71334 40 179.97438
C 36 1.39186 35 118.78061 34 359.78995 H 43 1.08705 42 119.74014 41 179.97438
C 37 1.40196 36 122.26388 35 0.05250 H 44 1.08743 43 120.37776 42 -179.99848
C 32 1.60938* 27 100.02180* 26 222.74965* H 47 1.08744 46 120.72099 45 179.97438
C 39 1.40745 32 112.13108* 27 232.40907* H 48 1.08708 47 119.73759 46 180.02562
C 40 1.39861 39 120.41622 32 172.65959* H 49 1.08711 48 119.71986 47 180.02562
C 41 1.39810 40 118.87226 39 0.02562 H 50 1.08755 49 120.25204 48 179.97980
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.26: 𝑍-matrix of SpiroAC-TRZ at the TADF maximum with energy penalty
(Λ = 4.0 µs−1𝐸h

−1).
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C
C 1 1.39864
C 2 1.39443 1 120.16574
C 3 1.40511 2 120.36404 1 0.02562
C 4 1.40517 3 119.15050 2 359.97438 C 42 1.40158 41 120.58139 40 359.97438
C 5 1.39446 4 120.35081 3 359.97438 C 43 1.40051 42 120.50910 41 -0.01063
C 4 1.47554* 3 111.98727* 2 181.37311* C 40 1.44517* 39 108.45973* 44 183.12696*

N 7 1.34295 4 110.24980* 3 1.19506* C 45 1.40777 40 104.91216* 39 -0.59160*

C 8 1.34095 7 115.86057 4 180.05717* C 46 1.39054 45 120.59798 40 182.56593*

N 9 1.34093 8 124.28585 7 0.15796 C 47 1.40062 46 119.00287 45 359.97438
C 10 1.34317 9 115.83276 8 359.89831 C 48 1.40125 47 120.52755 46 359.97438
N 11 1.34192 10 123.98178 9 -0.04540 C 49 1.39825 48 120.55950 47 0.03294
C 11 1.66300* 10 120.93424* 9 180.35447* H 1 1.08713 2 120.10348 3 179.97438
C 13 1.40515 11 124.11850* 10 359.49472* H 2 1.08693 1 120.09391 3 180.02562
C 14 1.39448 13 120.35439 11 179.89436* H 3 1.08427 2 120.59577 1 180.02562
C 15 1.39867 14 120.16896 13 359.97438 H 5 1.08430 4 119.02626 3 179.97438
C 16 1.39868 15 119.79481 14 0.02562 H 6 1.08694 5 119.73537 4 180.02562
C 17 1.39438 16 120.17167 15 0.02562 H 14 1.08428 13 119.03859 18 179.95982
C 9 1.56142* 8 114.34246* 7 181.06750* H 15 1.08693 14 119.73768 13 179.97438
C 19 1.40442 9 116.94103* 8 360.76368* H 16 1.08713 15 120.09936 14 180.02562
C 20 1.39361 19 120.44951 9 179.87608* H 17 1.08694 16 120.08859 15 180.02562
C 21 1.39882 20 120.21264 19 359.97438 H 18 1.08428 17 120.62263 16 179.97438
C 22 1.39970 21 119.67264 20 0.15218 H 20 1.08418 19 119.09929 24 -179.99032
C 23 1.39353 22 120.16856 21 359.85828 H 21 1.08639 20 120.54881 19 180.13849
N 22 1.36424* 21 119.09386* 20 185.15793* H 23 1.08648 22 119.31321 21 179.97438
C 25 1.42155* 22 123.85158* 21 96.64759* H 24 1.08427 23 120.43211 22 180.12133
C 26 1.40940 25 120.17878* 22 183.92301* H 28 1.08664 27 118.40112 26 180.02562
C 27 1.40190 26 118.64931 25 180.19737* H 29 1.08626 28 120.33044 27 180.14617
C 28 1.39189 27 122.26296 26 359.76559 H 30 1.08710 29 120.53882 28 180.02562
C 29 1.39740 28 118.76420 27 359.97438 H 31 1.08354 30 119.21243 29 179.76689
C 30 1.39055 29 120.26866 28 0.20004 H 34 1.08358 33 119.76961 38 -179.94501
C 27 1.54636* 26 124.27689* 25 2.51236* H 35 1.08709 34 119.20891 33 179.97438
C 25 1.41821* 22 119.59668* 21 275.55572* H 36 1.08626 35 120.89328 34 179.97438
C 33 1.41195 25 122.43565* 22 360.93879* H 37 1.08669 36 119.32083 35 180.33624
C 34 1.39060 33 120.94302 25 179.81468* H 41 1.08750 40 120.85913 39 180.02562
C 35 1.39745 34 120.25391 33 0.10523 H 42 1.08715 41 119.71334 40 179.97438
C 36 1.39186 35 118.78061 34 359.78995 H 43 1.08705 42 119.74014 41 179.97438
C 37 1.40196 36 122.26388 35 0.05250 H 44 1.08743 43 120.37776 42 -179.99848
C 32 1.65550* 27 97.68815* 26 219.33790* H 47 1.08744 46 120.72099 45 179.97438
C 39 1.40745 32 111.98606* 27 225.06535* H 48 1.08708 47 119.73759 46 180.02562
C 40 1.39861 39 120.41622 32 173.05428* H 49 1.08711 48 119.71986 47 180.02562
C 41 1.39810 40 118.87226 39 0.02562 H 50 1.08755 49 120.25204 48 179.97980
* 𝑍-matrix coordinates that were chosen as variables in the TADF rate maximization.

Table E.27: 𝑍-matrix of SpiroAC-TRZ at the TADF maximum with no energy
penalty (Λ = 0).
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N
C 1 1.36424
C 2 1.40282 1 121.50867
H 3 1.08683 2 119.04460 1 -2.85476
C 3 1.39572 2 120.37391 1 176.08647 C 42 1.44517 40 133.05254 38 -179.27285
H 5 1.08541 3 120.95971 2 -179.56036 C 43 1.40109 42 129.17557 40 16.93548
C 5 1.39647 3 119.56328 2 -0.24994 H 44 1.08775 43 120.53838 42 -12.49670
C 7 1.40257 5 120.87229 3 0.99276 C 44 1.39849 43 119.15790 42 169.74197
H 8 1.08173 7 120.03060 5 179.94059 H 46 1.08719 44 119.87457 43 178.01097
C 8 1.39379 7 119.18353 5 0.28161 C 46 1.40050 44 120.30729 43 -2.72602
H 10 1.08679 8 120.66254 7 -179.43165 H 48 1.08730 46 119.80167 44 178.79374
C 1 1.41821 2 119.59668 3 97.72603 C 48 1.40228 46 120.53386 44 -2.41667
C 12 1.41557 1 125.79177 2 -178.46516 H 50 1.08727 48 119.95908 46 -176.86033
C 13 1.40520 12 122.54747 1 175.74373 C 50 1.39000 48 119.30294 46 -0.66100
H 14 1.08609 13 117.18512 12 -178.90174 C 7 1.56142 5 122.18538 3 -178.58008
C 14 1.38342 13 122.95496 12 4.31697 N 53 1.33856 7 114.34246 5 -179.64759
H 16 1.08584 14 121.41073 13 178.27902 N 53 1.34014 7 119.33362 5 0.89565
C 16 1.39360 14 116.48146 13 -0.10751 C 55 1.33044 53 115.32737 7 178.85780
H 18 1.08671 16 121.35447 14 178.71368 N 56 1.34112 55 124.49184 53 0.10657
C 18 1.38560 16 119.96574 14 -4.14850 C 57 1.33300 56 115.11477 55 0.28381
H 20 1.08751 18 116.54086 16 -177.01436 C 58 1.47554 57 123.69594 56 179.58234
C 1 1.42155 2 123.85158 3 -81.18211 C 59 1.39518 58 126.12386 57 2.23938
C 22 1.40887 1 118.75145 2 4.93037 H 60 1.08585 59 119.54809 58 -1.03588
H 23 1.08414 22 119.31195 1 -0.74919 C 60 1.39678 59 119.19866 58 178.69563
C 23 1.38819 22 120.90003 1 179.57028 H 62 1.08679 60 119.94071 59 -179.93415
H 25 1.08693 23 119.69170 22 179.82401 C 62 1.39846 60 119.94165 59 -0.11219
C 25 1.39637 23 119.41787 22 0.02276 H 64 1.08727 62 119.74224 60 -179.79482
H 27 1.08637 25 120.89368 23 179.42376 C 64 1.40230 62 120.42595 60 0.25201
C 27 1.39125 25 119.28133 23 -0.33138 H 66 1.08767 64 119.40856 62 179.78621
H 29 1.08484 27 117.89135 25 178.27800 C 66 1.39716 64 120.75541 62 -0.03680
C 29 1.40956 27 123.53932 25 0.04169 H 68 1.07301 66 120.20625 64 179.76333
C 13 1.47692 12 120.16292 1 -13.86355 C 56 1.66301 55 120.93424 53 -179.64553
C 32 1.47373 13 114.34423 12 -119.78432 C 70 1.39583 56 124.11850 55 -0.50528
C 33 1.40067 32 121.96391 13 55.54923 H 71 1.08690 70 119.41936 56 -0.05058
H 34 1.08843 33 119.73017 32 10.04678 C 71 1.39636 70 120.21958 56 179.89436
C 34 1.40136 33 121.14814 32 -170.93155 H 73 1.08686 71 119.55158 70 -179.98149
H 36 1.08714 34 119.75233 33 -178.14280 C 73 1.39741 71 120.18337 70 0.03111
C 36 1.39786 34 120.42619 33 2.99037 H 75 1.08706 73 120.12163 71 -179.99708
H 38 1.08711 36 120.03855 34 179.26135 C 75 1.39825 73 119.67097 71 0.00890
C 38 1.39906 36 120.20297 34 0.02928 H 77 1.08711 75 120.12302 73 179.98530
H 40 1.08734 38 120.48219 36 178.44057 C 77 1.39603 75 120.17494 73 -0.01384
C 40 1.39177 38 119.11562 36 -0.88343 H 79 1.08416 77 120.67450 75 179.98837

Table E.28: 𝑍-matrix of SpiroAC-TRZ after the relaxation of the hydrogen atoms
and the aromatic ring systems

337



338



Appendix F

Supplementary Information:

Enhancing TTA Upconversion via

High-Level Intersystem Crossing

F.1 Calculation of ISC Rates

We calculated the intersystem crossing (ISC) rates in the framework of Marcus theory

[192, 337]

𝑘𝑅→𝑃 = 2𝜋
~
|⟨𝑃 |𝐻̂SOC|𝑅⟩|2

1
(4𝜋𝜆M𝑘B𝑇 )1/2 exp

[︃
−(Δ𝐸𝑃−𝑅 + 𝜆M)2

4𝜆M𝑘B𝑇

]︃
(F.1)

where 𝑅 and 𝑃 are the initial (reactant) and the final (product) states, respectively;

⟨𝑃 |𝐻̂SOC|𝑅⟩ is the spin-orbit coupling (SOC); Δ𝐸𝑃−𝑅 is the minimum-to-minimum

energy; and 𝜆M is the reorganization energy. SOC can be obtained in TDDFT using

the Breit-Pauli Hamiltonian as implemented in the Q-Chem 5.1 software package

[297]. To obtain Δ𝐸𝑃−𝑅 and 𝜆M, the geometries of the initial and the final states

must be optimized. In the case of T1, we employed the Tamm-Dancoff approximation

(TDA) [209], because the full TDDFT ran into imaginary roots.

To capture the effects of tunneling, we also calculated the rates in Marcus-Levich-
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Jortner (MLJ) theory [194]

𝑘𝑅→𝑃 = 2𝜋
~
|⟨𝑃 |𝐻̂SOC|𝑅⟩|2

1
(4𝜋𝜆M𝑘B𝑇 )1/2

∑︁
𝑛

𝑆𝑛

𝑛! 𝑒
−𝑆 exp

[︃
−(Δ𝐸𝑃−𝑅 + 𝜆M + 𝑛~𝜔)2

4𝜆M𝑘B𝑇

]︃
(F.2)

where 𝑆 is the effective Huang-Rhys factor and 𝜔 is the effective frequency. These

are obtained by mode-averaging

𝑆 =
𝑆𝑣<10∑︁
𝑣

𝑆𝑣 (F.3)

𝜔 = 1
𝑆

𝑆𝑣<10∑︁
𝑣

𝑆𝑣𝜔𝑣 (F.4)

where we have enforced a cutoff of 𝑆𝑣 < 10 to remove modes with unreasonable

values of Huang-Rhys factors. For each vibrational mode 𝑣, the Huang-Rhys factor

is defined as

𝑆𝑣 = 𝑘𝑣(𝑞𝑃,𝑣 − 𝑞𝑅,𝑣)2

2~𝜔𝑣
(F.5)

where 𝑘𝑣 is the spring constant of the mode; and 𝑞𝑅,𝑣 and 𝑞𝑃,𝑣 are the coordinates of

the initial and the final state minima along the mode, respectively. For simplicity, we

assume that the vibrational modes of the excited states are the same as the ground

state. Using the harmonic approximation, we can rewrite 𝑞𝑃,𝑣 − 𝑞𝑅,𝑣 in terms of the

gradients

𝑑𝐸𝑅
𝑑𝑞𝑣

= 𝑑𝐸𝑅
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣) + 𝑘𝑣(𝑞𝑣 − 𝑞0,𝑣) (F.6)

𝑑𝐸𝑃
𝑑𝑞𝑣

= 𝑑𝐸𝑃
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣) + 𝑘𝑣(𝑞𝑣 − 𝑞0,𝑣) (F.7)

where 𝑞0,𝑣 is some reference coordinate, which we choose to be the ground state

minimum. The Huang-Rhys factors become

𝑆𝑣 = 1
2𝑘𝑣~𝜔𝑣

(︃
𝑑𝐸𝑃
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣)−
𝑑𝐸𝑅
𝑑𝑞𝑣

(𝑞𝑣 = 𝑞0,𝑣)
)︃2

(F.8)

Tables F.1 and F.2 summarize the values of Δ𝐸, 𝜆𝑀 , 𝑆, 𝜔, SOC, and ISC rates
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in the T2 → S1 and T1 → S0 transitions, respectively. The excited state energies in

Tables F.1 and F.2 are minimum-to-minimum energies, so they are not the same as

the vertical excitation energies in Table 8.1.

Molecule T2 S1 𝜆𝑀 𝑆
𝜔 SOC ISC Rate (s−1)

(eV) (eV) (eV) (rad s−1) (cm−1) Marcus MLJ
Anthracene 3.05 3.06 0.14 0.89 8256 3.27× 10−2 1.48× 105 6.13× 104

DPA 3.03 2.89 0.20 3.25 2274 2.33× 10−1 2.71× 107 7.41× 106

Diamide 3.02 2.82 0.24 5.75 1470 4.61× 10−2 1.04× 106 2.68× 105

Diamine 3.03 2.77 0.24 2.40 3403 8.37× 10−1 3.64× 108 1.79× 108

Tetracene 2.31 2.32 0.11 0.39 8057 2.81× 10−2 1.53× 105 1.03× 105

Rubrene 2.12 1.98 0.14 3.07 1352 1.56 1.68× 109 1.13× 109

Tetraamide 2.13 1.98 0.14 4.92 896 1.45 1.44× 109 9.00× 108

Tetraamine 2.11 1.93 0.12 3.32 1075 1.23 7.59× 108 1.03× 109

DPBF 2.89 2.70 0.14 6.94 1067 1.60 1.46× 109 9.86× 108

DPBTP 2.98 2.71 0.18 7.65 1168 9.95 3.80× 1010 3.91× 1010

Table F.1: T2 → S1 energetics in B3LYP/6-31G*. The excitation energies are
minimum-to-minium energies with the ground state minimum as the reference.

Molecule T1 𝜆𝑀 𝑆
𝜔 SOC ISC Rate (s−1)

(eV) (eV) (rad s−1) (cm−1) Marcus MLJ
Anthracene 1.44 0.28 1.60 7495 1.68× 10−2 2.63× 10−16 1.64× 102

DPA 1.38 0.28 4.30 2962 1.64× 10−1 9.18× 10−12 4.78× 102

Diamide 1.37 0.28 5.21 2547 1.01× 10−1 1.12× 10−11 1.36× 102

Diamine 1.37 0.28 1.75 7012 3.34× 10−1 5.84× 10−11 1.24× 105

Tetracene 0.72 0.22 1.93 7449 1.21× 10−2 1.29 2.07× 104

Rubrene 0.43 0.23 4.51 3135 3.17× 10−2 9.19× 104 3.29× 105

Tetraamide 0.45 0.23 4.05 3447 1.53× 10−1 1.54× 106 7.80× 106

Tetraamine 0.46 0.23 4.80 2811 2.06× 10−1 2.16× 106 1.53× 107

DPBF 1.15 0.25 9.26 2091 1.14 3.05× 10−5 6.58× 106

DPBTP 1.17 0.34 4.79 4895 1.27 1.23 1.17× 108

Table F.2: T1 → S0 energetics in B3LYP/6-31G*. The T1 energy is minimum-to-
minium energy with the ground state minimum as the reference.

Interestingly, substitution of the electron-withdrawing (EW) amide and the electron-

donating (ED) amine groups does not appear to have a significant effect on the

T2 → S1 SOC and ISC rate of rubrene. As shown in Figure F-1, the natural transi-

tion orbital (NTO) pairs [284] of rubrene do not have the same symmetries as DPA.

The S1 and the T2 orbitals localize or delocalize together, and the excitaton characters

do not differentiate on substitution of EW or ED groups. Instead, the enhancement
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Figure F-1: NTO pairs of S1 and T2 in rubrene and their eigenvalues.

342



of the T2 → S1 SOC and ISC rate might be associated with the twist in the tetracene

core of rubrene. Unfortunately, there does not appear to be an intuitive way to

modulate the twist.

In addition to B3LYP [272–277], we repeated the calculations of the T2 → S1 ISC

rates in PBE [300], PBE0 [301, 302], LRC-𝜔PBEh [305, 357], and M06-2X [303],

continuing to use the 6-31G* basis set [278, 279, 335, 336]. As shown in Figure F-

2, the qualitative trends in ISC are reproduced. The T2 − S1 SOC is stronger in

DPA and rubrene than anthracene and tetracene, respectively, which gives higher

T2 → S1 ISC rates. Substituting the electron-donating (ED) amine groups in DPA

and substituting the oxygen with sulfur in DPBF increase the T2 − S1 SOC and ISC

rates. The only exception is PBE, which reverses the trends in the DPA derivatives.

This might be attributed to the self-interaction error, especially since the SOC in the

DPA derivatives depends on orbital delocalization.

Figure F-3 shows the T1 → S0 SOC and ISC rates. The differences between Mar-

cus theory and MLJ theory indicate that tunneling might play a significant role in

the T1 → S0 ISC. In this case, we must use MLJ theory to obtain qualitative predic-

tions of the rates. Comparing Figures F-2 and F-3 suggests a correlation between the

T2 → S1 and the T1 → S0 ISC. A molecule with a higher T2 → S1 SOC and ISC rate

also tends to have a higher T1 → S0 SOC and ISC rate. In particular, the T1 → S0

ISC rate remains similar from anthracene to DPA, but it increases by orders of magni-

tude from DPA to Diamine. This might explain why 𝜑TTA increases from anthracene

to DPA, but does not improve from DPA to Diamine in our experiments.

F.2 Fabrication of Photon Upconverters

To exclude solvent effects on the candidates, upconversion thin films are fabricated

as follows: The sensitizers are mixed with the candidates at 0.5 wt.% in chloroform.

Polystyrene (PS) is added at 10 wt.% to improve the uniformity of the film, forming

an overall 20 mg mL−1 solution (10 mg mL−1 for DPA-Diamine due to limited solu-

bility). Next, the solution is spin-coated at 750 rpm for 90 s and annealed at 65 ∘C
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Figure F-2: (a) T2 − S1 SOC. (b) T2 → S1 ISC rates in Marcus theory. (c) T2 → S1
ISC rates in MLJ theory.
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Figure F-3: (a) T1 − S0 SOC. (b) T1 → S0 ISC rates in Marcus theory and MLJ
theory. (c) T1 → S0 ISC rates in MLJ theory only.
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for 5 min. The spin-coating and annealing process are repeated 3 times (6 times for

DPA-Diamine) to obtain thick upconversion films that give sufficient absorption from

the sensitizers for reliable measurements. Indeed, absorption spectra of PS:0.5 wt.%

sensitizer films show Q-band absorption of > 1 %, and upconverted emission is clearly

observed when exciting the PtOEP-sensitized and PtTPBP-sensitized upconversion

systems at 𝜆 = 532 nm and 𝜆 = 635 nm, respectively (Figure 8-4b-c).

F.3 Dependence of Upconverted PL Intensity on

Incident Intensity

Upconverted emission due to TTA has a distinct dependence ion incident intensity

[341], which can be understood from the triplet exciton dynamics in the candidates:

𝑑[T1]
𝑑𝑡

= 𝐺− 𝑘T[T1]− 𝑘TTA[T1]2 (F.9)

where [T1] is the triplet density; 𝐺 is the generation rate of triplet excitons, which

is proportional to the incident intensity; 𝑘T is the decay rate of T1; and 𝑘TTA is the

rate of TTA. At steady state, we have

𝐺 = 𝑘T[T1] + 𝑘TTA[T1]2 (F.10)

At low incident intensities where 𝑘T dominates triplet decay, the generation rate is

proportional to triplet density (𝐺 ∝ [T1]). Since upconverted PL depends quadrati-

cally on triplet density (UCPL ∝ [T1]2), the linear relationship between triplet den-

sity, and generation rate gives a quadratic relationship between the upconverted PL

and the incident intensity. As the incident intensity increases, 𝑘TTA dominates the

triplet decay, and the generation rate becomes quadratic in triplet density (𝐺 ∝ [T1]2),

which in turn gives a linear relationship between the upconverted PL and the incident

intensity. Therefore, the threshold intensity at which TTA reaches its maximal effi-

ciency is defined as the transition point from the quadratic to the linear dependence
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of the upconverted PL on the incident intensity.

All but one of the devices show a transition from a quadratic to a linear de-

pendence with increasing incident intensity (Figure 8-4c). This indicates that the

measured 𝜑TTA represent the optimal performances of the three devices but a subop-

timal performance of the fourth device containing DPBTP. Fortunately, this does not

affect our conclusions, since DPBTP appears to be the best annihilator in any case.
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