
GraphBLAS and GraphChallenge  
Advance Network Frontiers
Jeremy Kepner, David A. Bader, Tim Davis, Roger Pearce, and Michael M. Wolf | SIAM News 

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

Figure 1. Graph/matrix duality as depicted via a breadth-first search from starting point Alice to 
neighbors Bob and Carl and its adjacency matrix multiplication equivalent. Here, A(i,j)>0 implies 
an edge between vertices i and j. Figure courtesy of Jeremy Kepner.

Many factors inspire interest in 
networks and graphs. The Internet is 

just as important to modern-day civilization 
as land, sea, air, and space; it connects 
billions of humans and is heading towards 
trillions of devices. Deep neural networks 
(DNNs)—which are also graphs—are key 
to artificial intelligence, and biological 
networks underpin life on Earth. In 
addition, graph algorithms have served as 
a foundation of computer science since 
its inception [3]. One can represent and 
operate on graphs in many different ways. 
A particularly attractive approach exploits 
the well-known duality between a graph 
as a collection of vertices and edges and 
its representation as a sparse adjacency 
matrix.

Graph Algorithms in the Language 
of Linear Algebra, which was published 
by SIAM in 2011 [6], provides an applied 
mathematical introduction to graphs by 
addressing the foundations of graph/
matrix duality (see Figure 1). This 
fundamental connection between the 
core operations of graph algorithms and 
matrix mathematics is quite powerful and 
represents a primary viewpoint for DNNs. 
Yet despite its widespread use in graph 
analysis, basic graph/matrix duality is still 
only a starting point. For instance, the 
final chapter of Graph Algorithms in the 
Language of Linear Algebra posed several 
fundamental questions about the analysis 
of large graphs in ontology/data modeling; 
time evolution (or streaming); detection 
theory (or graph modeling in general); and 
algorithm scaling [6]. These questions—
along with the emergence of important 
applications in privacy, health, and cyber 
contexts—set the stage for the subsequent 
decade of work.

Since 2011, researchers have written 
thousands of papers that explore the 
aforementioned topics from a graph/
matrix perspective. Interestingly, previous 
prototyping efforts that began in the mid-
2000s recognized that existing computer 
architectures were not a good match 
for a variety of graph and sparse matrix 
problems [10]. The prototypes introduced 
several innovations: high-bandwidth 
three-dimensional networks, cacheless 
memory, accelerator-based processors, 
custom low-power circuits, and—perhaps 
most importantly—a sparse matrix-based 
graph instruction set. Today, many of these 
innovations are present in commercially 
available systems like Cerebras, 
Graphcore, Lucata, and NVIDIA.

The challenges associated with graph 
algorithm scaling led multiple scientists to 
identify the need for an abstraction layer 
that would allow algorithm specialists to 
write high-performance, matrix-based 

graph algorithms that hardware specialists 
could then design to without having to 
manage the complexities of every type of 
graph algorithm. With this philosophy in 
mind, a number of researchers (including 
two Turing Award winners) came together 
and proposed the idea that “the state of 
the art in constructing a large collection 
of graph algorithms in terms of linear 
algebraic operations is mature enough 
to support the emergence of a standard 
set of primitive building blocks” [8]. 
The centerpiece of this abstraction 
is the extension of traditional matrix 
multiplication to semirings

C=AB=A⊕.⊗B
where A, B, and C are (usually 

sparse) matrices over a semiring with 
corresponding scalar addition ⊕ and 
scalar multiplication ⊗. Particularly 
interesting combinations include standard 
matrices over real or complex numbers 
(+.x), tropical algebras (max.+) that are 
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A: I×J→V
where I={1,...,M}, J={1,...,N}, and V is 

complex. In an associative array, I and J 
are now any strict totally ordered set (e.g., 
a set of strings) and V is a semiring [7]. 
This concept was first implemented in the 
D4M software system, which links matrix 
mathematics and databases. It is now 
present in a number of database systems 
that utilize GraphBLAS as their underlying 
mathematical engine [2].

Time-evolving or streaming 
graphs have become one of the most 
important problems in graph analysis, 
and GraphBLAS has a natural way of 
addressing streaming graphs with diverse 
data via edge (or incidence) matrices (see 
Figure 2). Traditional adjacency matrices 
are limited in the types of graphs that 
they can represent. Adjacency matrices 
typically represent directed weighted 
graphs—which are a very important class 
of problems—but real data tend to be 
much more dynamic and diverse, with 
multiple edges and hyper-edges (edges 
that are connected to multiple vertices). 
In an edge matrix representation, one 
can easily adjust for this type of graph 
by simply adding rows to the end of the 
matrix. Furthermore, researchers can 
compute the corresponding adjacency 
matrix via

A= Eout
TEin

where T denotes the matrix 
transpose.

Ultimately, the aforementioned 
capabilities—enabled by GraphBLAS 

important for neural networks, and set 
operations (∪.∩)

 that form the foundation of relational 
databases like SQL. One can build 
countless graph algorithms with these 
combinations of operations, and the 
Graph Basic Linear Algebra Subprograms 
(GraphBLAS) mathematical specification, 
C specification, and high-performance 
implementation subsequently emerged 
[1, 4, 5]. These programs are now part 
of some of the world’s most popular 
mathematical software environments.

Many innovations in graph 
processing occurred during this time, 
inspiring new venues to highlight these 
developments. MIT, DARPA, Amazon, 
IEEE, and SIAM collaborated to establish 
GraphChallenge, which consists of 
several hundred data sets and well-
defined mathematical graph problems in 
the areas of triangle counting, clustering 
of streaming graphs, and sparse DNNs. 
Since its debut in 2017, GraphChallenge 
has seen an abundance of submissions 
— contestants have even integrated parts 
of their work into a wide range of research 
programs and system procurements.

GraphChallenge has revealed 
that due to resulting improvements in 
graph analysis systems, many graph 
problems are now fundamentally bound 
by computer memory bandwidth (as 
opposed to processor speed or memory 
latency) [9]. It has also provided clear 
targets for those who are trying to 
advance computing systems scaling 
for the solution of graph problems. 
Additionally, innovations to improve the 
performance of graph algorithms have fed 
back into sparse linear algebra libraries to 
benefit scientific computing applications 
like Kokkos Kernels [11].

Questions in ontology/data modeling 
pertain to the way in which researchers 
handle more diverse data. The data that 
we want to manage with graphs involve 
more than just simple vertices and edges; 
they often include a large variety of very 
diverse metadata that are stored in SQL 
and NoSQL databases. Unsurprisingly, 
many folks in the database community 
have also been working on graph 
databases. To mathematically encompass 
these concepts, we must generalize the 
idea of a matrix into something called an 
associative array. For example, one can 
view a matrix as a mapping
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along with other graph innovations that 
are highlighted by GraphChallenge—have 
yielded new tools for tackling some of the 
most difficult and important problems in 
health data, privacy-preserving analytics, 
cybersecurity, and DNNs.
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Figure 2. Streaming multi-hyper-edge graph. Edge (or incidence) matrices assign a row to 
each edge and naturally handle the dynamic addition of identical edges (multi-edges) and 
edges that connect more than two vertices (hyper-edges). Eout(e,i)>0 and Ein(e, j)>0 imply 
an edge e between vertex i and vertex j. Figure courtesy of Jeremy Kepner.


