
GraphBLAS and GraphChallenge
Advance Network Frontiers
Jeremy Kepner, David A. Bader, Tim Davis, Roger Pearce, and Michael M. Wolf | SIAM News

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Figure 1. Graph/matrix duality as depicted via a breadth-first search from starting point Alice to
neighbors Bob and Carl and its adjacency matrix multiplication equivalent. Here, A(i,j)>0 implies
an edge between vertices i and j. Figure courtesy of Jeremy Kepner.

Many factors inspire interest in
networks and graphs. The Internet is

just as important to modern-day civilization
as land, sea, air, and space; it connects
billions of humans and is heading towards
trillions of devices. Deep neural networks
(DNNs)—which are also graphs—are key
to artificial intelligence, and biological
networks underpin life on Earth. In
addition, graph algorithms have served as
a foundation of computer science since
its inception [3]. One can represent and
operate on graphs in many different ways.
A particularly attractive approach exploits
the well-known duality between a graph
as a collection of vertices and edges and
its representation as a sparse adjacency
matrix.

Graph Algorithms in the Language
of Linear Algebra, which was published
by SIAM in 2011 [6], provides an applied
mathematical introduction to graphs by
addressing the foundations of graph/
matrix duality (see Figure 1). This
fundamental connection between the
core operations of graph algorithms and
matrix mathematics is quite powerful and
represents a primary viewpoint for DNNs.
Yet despite its widespread use in graph
analysis, basic graph/matrix duality is still
only a starting point. For instance, the
final chapter of Graph Algorithms in the
Language of Linear Algebra posed several
fundamental questions about the analysis
of large graphs in ontology/data modeling;
time evolution (or streaming); detection
theory (or graph modeling in general); and
algorithm scaling [6]. These questions—
along with the emergence of important
applications in privacy, health, and cyber
contexts—set the stage for the subsequent
decade of work.

Since 2011, researchers have written
thousands of papers that explore the
aforementioned topics from a graph/
matrix perspective. Interestingly, previous
prototyping efforts that began in the mid-
2000s recognized that existing computer
architectures were not a good match
for a variety of graph and sparse matrix
problems [10]. The prototypes introduced
several innovations: high-bandwidth
three-dimensional networks, cacheless
memory, accelerator-based processors,
custom low-power circuits, and—perhaps
most importantly—a sparse matrix-based
graph instruction set. Today, many of these
innovations are present in commercially
available systems like Cerebras,
Graphcore, Lucata, and NVIDIA.

The challenges associated with graph
algorithm scaling led multiple scientists to
identify the need for an abstraction layer
that would allow algorithm specialists to
write high-performance, matrix-based

graph algorithms that hardware specialists
could then design to without having to
manage the complexities of every type of
graph algorithm. With this philosophy in
mind, a number of researchers (including
two Turing Award winners) came together
and proposed the idea that “the state of
the art in constructing a large collection
of graph algorithms in terms of linear
algebraic operations is mature enough
to support the emergence of a standard
set of primitive building blocks” [8].
The centerpiece of this abstraction
is the extension of traditional matrix
multiplication to semirings

C=AB=A⊕.⊗B
where A, B, and C are (usually

sparse) matrices over a semiring with
corresponding scalar addition ⊕ and
scalar multiplication ⊗. Particularly
interesting combinations include standard
matrices over real or complex numbers
(+.x), tropical algebras (max.+) that are

LLSC News
October 03, 2022Lincoln Laboratory Supercomputing Center

A: I×J→V
where I={1,...,M}, J={1,...,N}, and V is

complex. In an associative array, I and J
are now any strict totally ordered set (e.g.,
a set of strings) and V is a semiring [7].
This concept was first implemented in the
D4M software system, which links matrix
mathematics and databases. It is now
present in a number of database systems
that utilize GraphBLAS as their underlying
mathematical engine [2].

Time-evolving or streaming
graphs have become one of the most
important problems in graph analysis,
and GraphBLAS has a natural way of
addressing streaming graphs with diverse
data via edge (or incidence) matrices (see
Figure 2). Traditional adjacency matrices
are limited in the types of graphs that
they can represent. Adjacency matrices
typically represent directed weighted
graphs—which are a very important class
of problems—but real data tend to be
much more dynamic and diverse, with
multiple edges and hyper-edges (edges
that are connected to multiple vertices).
In an edge matrix representation, one
can easily adjust for this type of graph
by simply adding rows to the end of the
matrix. Furthermore, researchers can
compute the corresponding adjacency
matrix via

A= Eout
TEin

where T denotes the matrix
transpose.

Ultimately, the aforementioned
capabilities—enabled by GraphBLAS

important for neural networks, and set
operations (∪.∩)

 that form the foundation of relational
databases like SQL. One can build
countless graph algorithms with these
combinations of operations, and the
Graph Basic Linear Algebra Subprograms
(GraphBLAS) mathematical specification,
C specification, and high-performance
implementation subsequently emerged
[1, 4, 5]. These programs are now part
of some of the world’s most popular
mathematical software environments.

Many innovations in graph
processing occurred during this time,
inspiring new venues to highlight these
developments. MIT, DARPA, Amazon,
IEEE, and SIAM collaborated to establish
GraphChallenge, which consists of
several hundred data sets and well-
defined mathematical graph problems in
the areas of triangle counting, clustering
of streaming graphs, and sparse DNNs.
Since its debut in 2017, GraphChallenge
has seen an abundance of submissions
— contestants have even integrated parts
of their work into a wide range of research
programs and system procurements.

GraphChallenge has revealed
that due to resulting improvements in
graph analysis systems, many graph
problems are now fundamentally bound
by computer memory bandwidth (as
opposed to processor speed or memory
latency) [9]. It has also provided clear
targets for those who are trying to
advance computing systems scaling
for the solution of graph problems.
Additionally, innovations to improve the
performance of graph algorithms have fed
back into sparse linear algebra libraries to
benefit scientific computing applications
like Kokkos Kernels [11].

Questions in ontology/data modeling
pertain to the way in which researchers
handle more diverse data. The data that
we want to manage with graphs involve
more than just simple vertices and edges;
they often include a large variety of very
diverse metadata that are stored in SQL
and NoSQL databases. Unsurprisingly,
many folks in the database community
have also been working on graph
databases. To mathematically encompass
these concepts, we must generalize the
idea of a matrix into something called an
associative array. For example, one can
view a matrix as a mapping

GraphBLAS and GraphChallenge Advance Network Frontiers (continued)

along with other graph innovations that
are highlighted by GraphChallenge—have
yielded new tools for tackling some of the
most difficult and important problems in
health data, privacy-preserving analytics,
cybersecurity, and DNNs.

References
[1] Buluç, A., Mattson, T., McMillan, S., Moreira, J., & Yang, C.

(2017). Design of the GraphBLAS API for C. In 2017 IEEE international
parallel and distributed processing symposium workshops (IPDPSW).
Lake Buena Vista, FL: IEEE.

[2] Cailliau, P., Davis, T., Gadepally, V., Kepner, J., Lipman, R.,
Lovitz, J., & Ouaknine, K. (2019). RedisGraph GraphBLAS enabled
graph database. In 2019 IEEE international parallel and distributed
processing symposium workshops (IPDPSW). Rio de Janeiro, Brazil:
IEEE.

[3] Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C.
(2022). Introduction to algorithms (4th ed). Cambridge, MA: MIT Press.

[4] Davis, T.A. (2019). Algorithm 1000: SuiteSparse:GraphBLAS:
Graph algorithms in the language of sparse linear algebra. ACM
Transact. Math. Software, 45(4), 1-25.

[5] Kepner, J., Aaltonen, P., Bader, D., Buluç, A., Franchetti,
F., Gilbert, J., … Moreira, J. (2016). Mathematical foundations of the
GraphBLAS. In 2016 IEEE high performance extreme computing
conference (HPEC). Waltham, MA: IEEE.

[6] Kepner, J., & Gilbert, J. (Eds.) (2011). Graph algorithms in the
language of linear algebra. Philadelphia, PA: Society for Industrial and
Applied Mathematics.

[7] Kepner, J., & Jananthan, H. (2018). Mathematics of big
data: Spreadsheets, databases, matrices, and graphs. In MIT Lincoln
Laboratory Series. Cambridge, MA: MIT Press.

[8] Mattson, T., Bader, D., Berry, J., Buluç, A., Dongarra,
J., Faloutsos, C., … Yoo, A. (2013). Standards for graph algorithm
primitives. In 2013 IEEE high performance extreme computing
conference (HPEC). Waltham, MA: IEEE.

[9] Samsi, S., Kepner, J., Gadepally, V., Hurley, M., Jones, M.,
Kao, E., … Monticciolo, P. (2020). GraphChallenge.org triangle counting
performance. In 2020 IEEE high performance extreme computing
conference (HPEC). Waltham, MA: IEEE.

[10] Song, W.S., Kepner, J., Nguyen, H.T., Kramer, J.I., Gleyzer,
V., Mann, J.R., … Mullen, J. (2010). 3-D graph processor. Presented at
the fourteenth annual high performance embedded computing workshop
(HPEC 2010). Lexington, MA: MIT Lincoln Laboratory.

[11] Trott, C., Berger-Vergiat, L., Poliakof, D., Rajamanickam,
S., Lebrun-Grandie, D., Madsen, J., … Womeldorff, G. (2021). The
Kokkos EcoSystem: Comprehensive performance portability for high
performance computing. Comput. Sci. Eng., 23(5), 10-18.

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-
15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

Figure 2. Streaming multi-hyper-edge graph. Edge (or incidence) matrices assign a row to
each edge and naturally handle the dynamic addition of identical edges (multi-edges) and
edges that connect more than two vertices (hyper-edges). Eout(e,i)>0 and Ein(e, j)>0 imply
an edge e between vertex i and vertex j. Figure courtesy of Jeremy Kepner.

