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I KnowWhat You Bought At Chipotle for $9.81
by Solving A Linear Inverse Problem

MICHAEL FLEDER,Massachusetts Institute of Technology, USA

DEVAVRAT SHAH,Massachusetts Institute of Technology, USA

We consider the question of identifying which set of products are purchased and at what prices in a given

transaction by observing only the total amount spent in the transaction, and nothing more. The ability to

solve such an inverse problem can lead to refined information about consumer spending by simply observing

anonymized credit card transactions data. Indeed, when considered in isolation, it is impossible to identify the

products purchased and their prices from a given transaction just based on the transaction total. However,

given a large number of transactions, there may be a hope.

As themain contribution of this work, we provide a robust estimation algorithm for decomposing transaction

totals into the underlying, individual product(s) purchased by utilizing a large corpus of transactions. Our

method recovers a (product prices) vector 𝑝 ∈ R𝑁
>0

of unknown dimension (number of products) 𝑁 as well as

matrix 𝐴 ∈ Z𝑀×𝑁≥0 simply from𝑀 observations (transaction totals) 𝑦 ∈ R𝑀
>0

such that 𝑦 = 𝐴𝑝 +[ with [ ∈ R𝑀
representing noise (taxes, discounts, etc.). We formally establish that our algorithm identifies 𝑁,𝐴 precisely

and 𝑝 approximately, as long as each product is purchased individually at least once, i.e.𝑀 ≥ 𝑁 and 𝐴 has

rank 𝑁 . Computationally, the algorithm runs in polynomial time (with respect to problem parameters), and

thus we provide a computationally efficient and statistically robust method for solving such inverse problems.

We apply the algorithm to a large corpus of anonymized consumer credit card transactions in the period

2016-2019, with data obtained from a commercial data vendor. The transactions are associated with spending

at Apple, Chipotle, Netflix, and Spotify. From just transactions data, our algorithm identifies (i) key price

points (without access to the listed prices), (ii) products purchased within a transaction, (iii) product launches,

and (iv) evidence of a new ‘secret’ product from Netflix - rumored to be in limited release.
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1 INTRODUCTION
Tracking granular consumer spending is of great interest to advertisers [2], hedge funds [14, 15]

banks [4], and others studying the retail economy. Advertisers like Google purchase transactions

data to measure in-store retail sales [2]. Similarly, retailers track competitors through such data

[22]. And hedge funds utilize transactions data in tracking public companies [13] and informing

investment and risk decisions [14]. The prevalence of transactions, primarily via credit and debit

cards, has led to anonymized consumer transactions data becoming widely available from a variety

of commercial data vendors [1, 14, 22].
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47:2 Michael Fleder and Devavrat Shah

Although transactions data details how much consumers spend in total at a given vendor; the

data does not reveal what consumers are buying. For example, a single transaction total at an Apple

store for $182.91 does not provide information on which products were purchased or at what prices.

In this work, we are interested in inferring the product(s) a consumer purchases, given knowledge

of only the transaction total (a single number). Inferring the products that constitute transaction

totals can lead to a wealth of insights. For example, such inference enables estimation of iPhone

unit sales at Apple or guacamole sales at Chipotle. Such unit-sales estimates would enable demand

estimation for elements upstream the supply chain, e.g. chipmakers for iPhones or food growers

for Chipotle.

Result 𝐴 𝑝 𝑁 Noise Reqirements

Ordinary Least Sq. Known Unknown Known Yes M≫ N

(Full Rank [18])

Compressed Sensing Known Unknown Known Yes M≫ ∥𝑝 ∥0
(RIP [6, 10])

This Work Unknown Unknown Unknown Yes M≫ ∥𝑝 ∥0
(Signature)

Table 1. Succinct comparison of ours with relevant prior works. Details in Related Work.

1.1 Problem Statement
Formally, we have access to 𝑀 separate, but not necessarily distinct, transaction totals 𝑦 ∈ R𝑀>0
associated with a given company. We assume the company has a finite number of 𝑁 products with

associated prices 𝑝 ∈ R𝑁>0. We treat both 𝑁 and 𝑝 as unknown: that is, an unknown number of

products with unknown prices. Each transaction total corresponds to the summation of prices

for the products purchased. In addition, we include an additive noise term [ to account for price

variations due to discounts, promotions, taxes, etc. Therefore, we have

𝑦 = 𝐴𝑝 + [. (1)

where the unknown matrix 𝐴 ∈ Z𝑀×𝑁≥0 represents the product decomposition for each transaction.

The goal is to identify the number of products 𝑁 , their associated prices 𝑝 , and the decomposition

of transactions 𝐴; all from observation of 𝑦 only.

1.2 Contributions

A novel inference algorithm. As the main contribution of this work, we develop a simple, iterative

and computationally efficient algorithm for inferring 𝑁,𝐴 and 𝑝 from 𝑦. The algorithm provably

recovers 𝑁,𝐴 precisely, and 𝑝 approximately, with approximation error dependent on the ℓ∞-norm
of noise [. Our algorithm succeeds if 𝐴 satisfies Condition 1 (see Section 3.1), which requires that

every product is purchased individually at least once. This requires that 𝑀 ≥ ∥𝑝 ∥0 = 𝑁 . It also

guarantees that 𝐴 has full column rank as required in traditional linear regression (or ordinary

least squares). However, Condition 1 does not necessarily require restricted iso-perimetry-like (RIP)

conditions which are common in literature on compressed sensing, cf. [6, 10].

The algorithm recovers prices that are distinct and not multiples of each other. Indeed, no

algorithm can distinguish if one or more products are sold at the same price (or as different integral
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multiples of the same value) without additional side information. Therefore, we require in Theorem

2 for such a condition to hold.

The algorithm as described in Section 2.1 requires solving𝑀 exact subset-sum problems which

is known to be NP-hard. However it admits a fully polynomial time (in problem parameters) imple-

mentation (see Section 2.3) based on approximate subset-sum that achieves similar performance

guarantees as established in Theorem 3.

In summary, we provide a simple, iterative and computationally efficient algorithm for solving

the system of linear equations without knowledge of 𝐴, 𝑝 or 𝑁 – unlike any prior works (see Table

1). This might be of interest in its own right.

Company Number of Distinct Date Our Findings

Transactions Trans. Totals Range

Netflix 2.6M 3,094 01/16-02/19 Secret Product

Ultra HD ($17.08)

Spotify 387K 527 09/17-09/18 Product Launch

Detected ($12.99)

Apple 197K 7,685 08/18-10/18 iPhone XS

Sales Volume

Chipotle 133K 2.8K 09/18-02/19 Decomposition Err

MAPE < 2%

Table 2. Dataset summary of anonymized transactions. The number of transactions is large compared to
the number of products offered:𝑀 ≫ ∥𝑝 ∥0. In addition to recovering product prices accurately, our method
reconstructs bill totals with minimal error.

Empirical validation. We apply the algorithm to anonymized consumer transactions data
1
based on

credit and debit card purchases at Netflix, Spotify, Apple and Chipotle. The details of the data in

terms of number of transactions, time range and unique totals are shown in Table 2. We measure

performance of the algorithm in terms of recovering (a) the number of key products 𝑁 , (b) their

corresponding prices 𝑝 , and (c) the decomposition (𝐴) of transaction totals into products purchased.

In addition, we discuss the implications of accurate inference in terms of detecting product launches

and hidden / non-advertised product offerings.

For (a) and (b), it is easy to verify full recovery (or not) of all products for Netflix, since Netflix

has few product offerings. As shown in Table 4, we recover all the published offerings by Netflix.

In addition, we identify two additional ‘hidden’ offerings which seem to agree with limited-release

products [23]. Table 4 shows a median error in the recovered prices of less than 0.2% (or, less

than 4 cents). Accurate recovery of the number of products and their prices implies that that

each transaction total is accurately modeled in terms of identifying the product(s) purchased, i.e.

performance in terms of (c). For Chipotle, which offers a larger and more complex set of offerings,

we reconstruct transaction totals within MAPE of 1.2% using 12 key product prices only!

Our findings enable a plethora of insights into time-varying company product catalogues. For

example, for Spotify and Apple, we utilize our methods to automatically detect product launches.

Specifically, we automatically detect a new Spotify product offering at a new price - starting in the

1
We utilized anonymized debit and credit card transactions data provided by alternative data company Second Measure

[22] for the purpose of conducting this work. Table 2 provides dataset details.
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47:4 Michael Fleder and Devavrat Shah

month of April 2018, which matches the reported fact [20]. Similarly, for Apple our method detects

the launch of the iPhone XS Max in September 2018 from anonymized transaction totals only.

Collectively, these experiments verify that our method is able to recover product prices as well

as decompose transaction totals accurately across different types of businesses: from Netflix and

Spotify with few offerings, to Chipotle and Apple with extremely complex product offerings. Indeed,

our method is likely to have more impactful consequences such as that represented by Table 3

which is the estimated sales volume by price range at Chipotle.

Price Range Estimated Sales Example Products

$1.5 - $4 15.6% chips, drinks, guacamole

$9-$11 79.1% $9.74 chicken burrito, steak bowl

$11-$20 5% double steak bowl

Table 3. Inferred sales at Chipotle by product-price range using transaction data. See Section 4.6.

1.3 Related Work
Methodologically, this work is about finding 𝑝 in the linear system equations (1) by observing 𝑦

without any knowledge of 𝑁 or 𝐴.

Classically, ordinary least squares or linear regression accurately estimates 𝑝 as (𝐴𝑇𝐴)−1𝐴𝑇𝑦 as

long as 𝐴 has full column rank and we observe 𝐴. For example, [18] is one of the earliest results

to provide nearly complete characterization for when such an approach works. This approach

requires𝑀 ≫ 𝑁 for good recovery of 𝑝 . Of course, such an approach requires knowledge of 𝐴 and

hence is not applicable in our setting.

A modern take on the question and closer to our setting is popularized as compressed sensing
cf. [3, 5, 6, 10]. In compressed sensing, 𝑝 is assumed to be sparse but we do not know which

components are non-zero. Let ∥𝑝 ∥0 = |{𝑖 : 𝑝𝑖 ≠ 0, 𝑖 ∈ [𝑁 ]}| denote2 the sparsity of 𝑝 . Then, as long
as 𝐴 is designed carefully (specifically, satisfies conditions like the Restricted Isometry Property

(RIP)) and is known, then 𝑝 can be recovered with 𝑀 ≫ ∥𝑝 ∥0. Again, such approaches require

carefully designed 𝐴 as well as knowledge of it, neither of which hold in our setting.

In summary, methodologically, we advance the state-of-the-art for solving “inverse problems”

like Eq. (1) when𝐴, 𝑝, and 𝑁 (dimension of 𝑝) are all unknown, and 𝑝 is dense. Our method requires

only simple conditions to be satisfied for inversion to succeed. Furthermore, our approach is robust

to noisy data.

It is worth remarking that consumer transactions data has emerged as an important “alternative

data” source utilized for asset pricing in recent years cf. [9, 17, 24]. Transactions data is now broadly

available from commercial data vendors [12, 22]. For example, this work utilized data obtained

from [22].

2 ALGORITHM: INFERRING 𝑁, 𝑝,𝐴

2.1 Description
We start with a narrative description of the algorithm. Subsequently, we present a more detailed,

pseudocode version. The algorithm outputs estimators 𝑝 for 𝑝, �̂� = ∥𝑝 ∥0 for 𝑁 , and 𝐴 for 𝐴. The

estimates are such that 𝑦 ≈ 𝐴𝑝 . In addition to 𝑦, the algorithm takes as input parameter 𝛿 > 0 as

proxy for ∥[∥∞, and 𝑘 ∈ Z>0 that constrains repeats of a product within a single transaction.

2
We use the notation [𝑥 ] = {1, . . . , 𝑥 }.
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◦ Input: transaction totals 𝑦 ∈ R𝑀>0; error tolerance 𝛿 > 0; and 𝑘 ∈ Z>0 constraining repeats of a
product in a single transaction.

◦ Reduce 𝑦 to distinct values; sort from smallest to largest:

𝑏 = (𝑏1, . . . , 𝑏𝑀 ) ← sorted

(
{𝑦1, . . . , 𝑦𝑀 }

)
.

◦ Let 𝑝 denote the inferred, ordered set of product prices. Initialize 𝑝 ← {𝑏1}; set 𝐴1,1 = 1 and 𝐴 to

be a 1 × 1 matrix. Going forward, we will increase the dimension of 𝐴, but all the entries in the

first row other than 𝐴1,1 will be set to 0 in that case.

◦ Repeat the following for each 𝑏𝑖 ∈ 𝑏 for 𝑖 ≥ 2. Let 𝑝 = (𝑝ℓ ) be the current estimate of 𝑝 and

𝐴 ∈ Z(𝑖−1)×|𝑝 |≥0 be current estimate of 𝐴. Find 𝐽 (𝑖) = (𝑎1, . . . , 𝑎 |𝑝 |) ∈ [𝑘] |𝑝 | as a solution to

minimize
1

(1 +∑
ℓ 𝑎ℓ )

�����
( ∑

ℓ≤ |𝑝 |
𝑎ℓ𝑝ℓ

)
− 𝑏𝑖

����� over 𝑎ℓ ∈ {0, . . . , 𝑘}, ℓ ≤ |𝑝 | (2)

We consider two cases:

· |𝑏𝑖 − 𝐽 (𝑖)𝑇𝑝 | ≤ 𝛿 · ( |𝐽 (𝑖) |1 + 1): add 𝑖th row,𝐴𝑖 , to𝐴 of length |𝑝 | with𝐴𝑖 equal to 𝐽 (𝑖) in the |𝑝 |
positions. That is, the 𝑖th total can be decomposed amongst the product prices in 𝑝 recovered

thus far; and we record the decomposition in 𝐴.

· Otherwise, 𝑏𝑖 is not well approximated by any combination of product prices found thus far.

Hence it must be a product price not yet encountered, and needs to be added to 𝑝: augment

𝑝 ← 𝑝 ∪ {𝑏𝑖 }; increase the number of columns in 𝐴 by adding an all zeros column to the

existing 𝐴 of length 𝑖 − 1; and then add as the 𝑖th row 𝐴𝑖 , a vector with all 0s but a single 1 in

the |𝑝 | position.
◦ Output: after iteration through all entries in 𝑏, output 𝑝 , 𝐴 and �̂� = ∥𝑝 ∥0.
The ‘pseudo-code’ description algorithm is given below.

Algorithm 1 Estimating 𝑁, 𝑝 and 𝐴.

Input: 𝑦, 𝛿, 𝑘 ⊲ 𝑦 ∈ R𝑀>0, 𝛿 ∈ R>0, 𝑘 ∈ Z>0
𝑏 ← sorted

(
{𝑦1, . . . , 𝑦𝑀 }

)
⊲ sorted, distinct bill totals, from smallest to largest

Let 𝜎 : [𝑀] → [𝑀] denote the permutation induced by this sorting, i.e. 𝑏𝑖 = 𝑦𝜎 (𝑖) .
𝑝 ← {𝑏1} ⊲ inferred product prices

𝐴𝜎 (1) ← (1, 0, 0, . . . )
for 𝑖 = 2 to |𝑏 | do
Let 𝐽 (𝑖) = (𝑎1, . . . , 𝑎 |𝑝 |) ∈ [𝑘] |𝑝 | be a minimizer of the optimization problem

minimize
1

(1 +∑
ℓ 𝑎ℓ )

�����
( ∑

ℓ≤ |𝑝 |
𝑎ℓ𝑝ℓ

)
− 𝑏𝑖

����� over 𝑎ℓ ∈ {0, . . . , 𝑘}, ℓ ≤ |𝑝 |

if |𝑏𝑖 − 𝐽 (𝑖)𝑇𝑝 | > 𝛿 · ( |𝐽 (𝑖) |1 + 1) then
𝑝 ← 𝑝 ∪ {𝑏𝑖 }, 𝐴𝜎 (𝑖) equals the row vector with all 0s but a single 1 in the |𝑝 | position.

else
𝐴𝜎 (𝑖) equals 𝐽 (𝑖) in the first |𝑝 | positions, and 0s otherwise.

end if
end for
return 𝑝 , 𝐴.
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47:6 Michael Fleder and Devavrat Shah

2.2 Parameters 𝑘, 𝛿
The parameter 𝛿 is a proxy for the noise tolerance in the form of the ℓ∞ norm of noise vector [. In

particular, 𝛿 captures price-variations from regional taxes, promotions, etc. The parameter 𝑘 ≥ 1 is

to bound the number of times the same product can be repeated in a transaction. In effect, 𝑘 allows

for distinct products with prices that are multiple of each other as long as the multiple is larger

than 𝑘 . It also captures the ‘prior’ information about how often the same product might repeat

within the same transaction.

2.3 Polynomial Time Implementation
The algorithm described above requires sorting𝑀 elements which takes 𝑂 (𝑀 log𝑀) time. Then,

iterating over the sorted values, the most expensive step per iteration is solving the optimization

problem in Eq. (2). The exact problem is the classical subset-sum problem (see below for precise

description) which is known to be NP-hard. However, as described in the algorithm, we only need to

solve Eq. (2) with an approximation guarantee to make decisions in decomposing a given transaction

total. As it turns out, the subset-sum problem has a fully polynomial time approximation algorithm.

We shall argue that such an approximation algorithm is sufficient to obtain the decomposition as

per the description in Section 2.1.

Subset-sum problem. Consider a set of 𝑁 positive integers 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 }. Given an integer

𝑡 , the question is whether there exists a subset 𝑆 ′ ⊂ [𝑁 ] so that

∑
𝑖∈𝑆′ 𝑥𝑖 = 𝑡 . A simple, exhaustive

search algorithm is to compute the summation of all possible 2
𝑁
subsets of 𝑆 and verify whether

any of them is equal to 𝑡 or not. Clearly, this is computationally expensive. Indeed, this problem is

known to be NP-hard, cf. see [8, 16].

Approximate Subset-sum algorithm. As it turns out, Subset-sum has a simple approximation

algorithm (again, see textbooks like [8, 16] for details). To that end, consider approximate error

tolerance Y > 0. We wish to answer whether there exists a set 𝑆 ′ ⊂ [𝑁 ] such that (1 − Y)𝑡 ≤∑
𝑖∈𝑆′ 𝑥𝑖 ≤ 𝑡 . There is a deterministic algorithm with computational cost 𝑁 2

log 𝑡/Y that provides
the answer to this question.

The algorithm works as follows (also refer to [8, 16] for details). Initially, we start with candidate

set 𝐿 = {0}. Without loss of generality, let 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑁 . Iteratively, we consider them in the

increasing order. In iteration 𝑖 = 1, . . . , 𝑁 do the following.

◦ (New Sums) Set 𝐿 = 𝐿 ∪ 𝐿 + 𝑥𝑖 , where 𝐿 + 𝑥𝑖 = {𝑧 + 𝑥𝑖 : 𝑧 ∈ 𝐿}.
◦ (Trim) Sort elements in 𝐿 in increasing order: 𝑧1, . . . , 𝑧𝑚 . Iteratively, for 𝑗 = 2, . . . ,𝑚 do the

following starting with last = 𝑧1 and 𝐿
′ = {𝑧1}.

• If 𝑧 𝑗 ≤ last, do nothing.

• Else, 𝐿′ = 𝐿′ ∪ {𝑧 𝑗 } and last = 𝑧 𝑗 .

◦ (Set) 𝐿 = {𝑧 : 𝑧 ∈ 𝐿′, 𝑧 ≤ 𝑡}.
At the end of the above iterations, consider 𝑡 = max{𝑧 ∈ 𝐿}. If 𝑡 ≥ (1 − Y/𝑁 )𝑡 then we have

found a subset (by tracking the corresponding subset of [𝑁 ]) that has a sum within (1 − Y)𝑡 and 𝑡 .
Otherwise, no such subset exists.

To see the correctness of the algorithm, we observe that if Y = 0, then we capture all possible
summations less than 𝑡 that are achievable by subsets of 𝑆 . It can be verified inductively that the

step of Trim across 𝑁 iterations removes an element from this collection only if there is another

element that is at least within (1 − Y/𝑁 )𝑁 present in the final outcome. And (1 − Y/𝑁 )𝑁 ≥ 1 − Y.
That is, if the set of all possible summations produced by the above does not contain anything

within [(1 − Y)𝑡, 𝑡], then there is no such subset; on the other hand, if there is a summation within

that range, then it must correspond to a such a subset.
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Computational cost of approximate algorithm.While the computation cost of the exhaustive

algorithm is 2
𝑁
, the cost of the approximation algorithm scales as 𝑁 times the maximum size of

set 𝐿 in any iteration. The elements in 𝐿 are non-negative and no larger than 𝑡 . Further, the ratio of

any two elements is at least 1 − Y/𝑁 or (1 − Y/𝑁 )−1. That is, the maximum number of elements

is at most 𝑁 log 𝑡/Y. Hence, the total computation cost is 𝑂 (𝑁 2
log 𝑡/Y). That is, we have a fully

polynomial time approximation algorithm.

Using approximate subset-sum for our problem. The key step of the Algorithm in Section

2.1, in iteration 𝑖 compares whether there exists subset 𝐽 (𝑖) of prices discovered thus far that is

within additive error of 𝛿 ( |𝐽 (𝑖) | + 1) of 𝑏𝑖 or not. That is, we are looking for multiplicative error

of 𝛿 ( |𝐽 (𝑖) | + 1)/𝑏𝑖 . We will utilize Y = 𝛿 ( |𝑝 | + 1)/𝑏𝑖 in iteration 𝑖 for approximate subset-sum

instead of exact subset-sum. As we shall argue in Theorem 3, such an algorithm (with approximate

subset-sum) results in the same outcome as the exact subset-sum. Naturally, the computation cost

scales inversely with 1/𝛿 and proportionately to max𝑖 𝑏𝑖 .

In summary, the approximate subset-sum method may produce a solution to Eq. (2) as less than

𝛿 ( |𝐽 (𝑖) | + 1) in iteration 𝑖 if there exists any 𝐽 (𝑖) = (𝑎1, . . . , 𝑎 |𝑝 |) ∈ [𝑘] |𝑝 | such that |∑ℓ 𝑎ℓ𝑝ℓ −𝑏𝑖 | ≤
𝛿 ( |𝐽 (𝑖) | +1) +𝛿 ( |𝑝 | +1). And in the Algorithm of Section 2.1, using such an approximate subset-sum

routine may result in a decision as if |∑ℓ 𝑎ℓ𝑝ℓ − 𝑏𝑖 | ≤ 𝛿 ( |𝐽 (𝑖) | + 1).
On the other hand, if for any 𝐽 (𝑖) = (𝑎1, . . . , 𝑎 |𝑝 |) ∈ [𝑘] |𝑝 | , we had |

∑
ℓ 𝑎ℓ𝑝ℓ − 𝑏𝑖 | > 𝛿 ( |𝐽 (𝑖) | +

1) + 𝛿 ( |𝑝 | + 1), then the Algorithm of Section 2.1 using such an approximate subset-sum routine

will declare |∑ℓ 𝑎ℓ𝑝ℓ − 𝑏𝑖 | > 𝛿 ( |𝐽 (𝑖) | + 1) and result in adding a new price element to 𝑝 .

Using approximate subset-sum, somefine print. It is worth remarking that the actual numbers

are not integers in our setting while the subset-sum described above is for integers. To that end, note

that ours has strictly positive, rational numbers. Further, since we are interested in approximation

within additive error of 𝛿 , we shall assume that each value is integral multiple of 𝛿 . That is, in effect,

we convert the question to the setting of integers.

Finally, while the approximate subset-sum as stated above attempts to find a subset whose

summation is within [(1− Y)𝑡, 𝑡] for a given target 𝑡 , i.e. only one-sided error, it can be converted to

two sided error by setting the target to (1 + Y)𝑡 and approximation error to 1 − (1 − Y)/(1 + Y) ≈ 2Y.

3 MAIN RESULT
3.1 Guarantee
Here we state the result regarding correctness and robustness of algorithm. To that end, we assume

that the underlying data satisfies the constraint that every product is purchased alone at least once.

This is formalized as follows.

Condition 1 (Signature Condition). Given matrix 𝐴 ∈ R𝑀×𝑁 , 𝐴 satisfies the Signature Con-
dition if for each 𝑖 ∈ [𝑁 ], there exists 𝑗 (𝑖) ∈ [𝑀] such that 𝐴 𝑗 (𝑖)𝑖 = 1 and 𝐴 𝑗 (𝑖)𝑖′ = 0 for all
𝑖 ′ ≠ 𝑖 .

Now we state the main result. We shall assume that 𝑘 = 1 in the algorithm, i.e. each product

is repeated at most once. The proof naturally extends for 𝑘 ≥ 1 (and with 𝐴 non-negative and

integer-valued).

Theorem 2. Let 𝐴 ∈ {0, 1}𝑀×𝑁 satisfy Condition 1. Let 𝑝 ∈ R𝑁>0, where for any 𝑆1, 𝑆2 ⊂ [𝑁 ], with
𝑆1 ≠ 𝑆2 ����� ∑

𝑖∈𝑆1
𝑝𝑖 −

∑
𝑖′∈𝑆2

𝑝𝑖′

����� > 2𝛿𝑁 (3)
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for some given 𝛿 > 0. Let 𝑦 = 𝐴𝑝 + [ with ∥[∥∞ < 𝛿 . Then, with input 𝑦, 𝛿 and 𝑘 = 1, the algorithm
described in Section 2.1 recovers 𝑝 and 𝐴 so that ∥𝑝 − 𝑝 ∥∞ ≤ 𝛿 and 𝐴 = 𝐴.

As discussed earlier, the algorithm described in Section 2.1 requires solving the exact subset-sum

problem which is computationally hard. In Section 2.3, we described its variation based on the

approximate subset-sum algorithm. In particular, the approximate subset-sum algorithm produces

an answer to Eq. (2) within additive error of 𝛿 ( |𝑝 |+1). Belowwe state the result about the correctness

of such an algorithm, similar to Theorem 2 above.

Theorem 3. Let 𝑁 ≥ 4 and 𝐴 ∈ {0, 1}𝑀×𝑁 satisfy Condition 1. Let 𝑝 ∈ R𝑁>0, where for any
𝑆1, 𝑆2 ⊂ [𝑁 ], with 𝑆1 ≠ 𝑆2 ����� ∑

𝑖∈𝑆1
𝑝𝑖 −

∑
𝑖′∈𝑆2

𝑝𝑖′

����� > 4𝛿 (𝑁 + 1) (4)

for some given 𝛿 > 0. Let 𝑦 = 𝐴𝑝 + [ with ∥[∥∞ < 𝛿 . Then, with input 𝑦, 𝛿 and 𝑘 = 1, the algorithm
using approximate subset-sum described in Section 2.3 recovers 𝑝 and 𝐴 so that ∥𝑝 − 𝑝 ∥∞ ≤ 𝛿 and
𝐴 = 𝐴.

3.2 Need for conditions
The Signature condition 1 effectively states that each product is purchased alone, at least once. This

is natural, and guarantees the full column rank of 𝐴 that is needed to solve the linear equation.

To understand the condition in Eq. (3), suppose 𝛿 = 0, i.e. there is no noise in the data. In that

case, Eq. (3) would indicate a difference in the summation of any two distinct subsets of product

prices – indeed, if that were not the case, no algorithm could recover 𝐴 uniquely. For example,

distinguishing between products is impossible if one or more products are sold at the same price

(or as different integral multiples of the same value) without additional side information. In that

sense, our algorithm recovers 𝐴 and 𝑝 in a robust manner under the ‘quantitative’ version of the

necessary recovery condition as described in Eq. (3).

We note that our method may still yield insights even if Condition (3) is violated. For example, if

multiple products are identically priced, our algorithm simply groups those products together to be

treated as a single item.

3.3 Proof of Theorem 2
Without loss of generality, let the elements of 𝑝 be ordered such that 𝑝1 < · · · < 𝑝𝑁 . From Eq. (4),

we obtain the following implications: (i) For choice of 𝑆1 = {1} and 𝑆2 = ∅, it follows that 𝑝1 > 2𝛿 ;

and (ii) if 𝑁 ≥ 2, then for 1 ≤ 𝑖 < 𝑁 , 𝑝𝑖+1 > 𝑝𝑖 + 4𝛿 for choice of 𝑆1 = {𝑖} and 𝑆2 = {𝑖 + 1}. As a
consequence, we have that for 1 ≤ 𝑖 ≤ 𝑁 ,

𝑝𝑖 > (𝑖 − 1)4𝛿 + 2𝛿. (5)

Next, we shall argue inductively that it is feasible to find 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , so that |𝑝𝑖 − 𝑝𝑖 | ≤ 𝛿 . Now

since 𝐴 ∈ {0, 1}𝑀×𝑁 , for each 𝑗 ∈ [𝑀], 𝑦 𝑗 =
∑

𝑖∈𝑆 𝑗
𝑝𝑖 + [ 𝑗 , with 𝑆 𝑗 ⊆ [𝑁 ] and |[ 𝑗 | ≤ 𝛿 . From Eq. (5),

𝑝𝑖 > 2𝛿 ; and therefore if 𝑆 𝑗 ≠ ∅ then 𝑦 𝑗 > 𝛿 . We define

𝐽 1 B { 𝑗 ∈ [𝑀] : 𝑦 𝑗 > 𝛿}, 𝑗1 B argmin

𝑗 ∈𝐽 1
𝑦 𝑗 , and

𝐽 (1) B { 𝑗 ∈ 𝐽 1 : 𝑦 𝑗 = 𝑝1 + [ 𝑗 }.
We set 𝑝1 B 𝑦 𝑗1 , and 𝐴 𝑗1,1 B 1. To justify this, we argue that 𝑦 𝑗1 = 𝑝1 + [ 𝑗1 , and hence |𝑝1 − 𝑝1 | < 𝛿 .

By Condition 1, for each 𝑖 ∈ [𝑁 ], there exists some index 𝑗 (𝑖) ∈ [𝑀] such that |𝑦 𝑗 (𝑖) − 𝑝𝑖 | ≤ 𝛿 ;

and hence 𝑗 (𝑖) ∈ 𝐽 1 since 𝑦 𝑗 (𝑖) ≥ 𝑝𝑖 − 𝛿 > 𝛿 . Clearly 𝐽 (1) ≠ ∅. Effectively, we want to argue that
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𝑗1 ∈ 𝐽 (1). To that end, suppose otherwise. Then, there exists 𝑆 ⊂ [𝑁 ] such that 𝑆 ≠ ∅, 𝑆 ≠ {1} and
𝑦 𝑗1 =

∑
𝑖∈𝑆 𝑝𝑖 + [ 𝑗1 . Then

𝑦 𝑗1 >
∑
𝑖∈𝑆

𝑝𝑖 − 𝛿, since |[ 𝑗1 | < 𝛿,

> 𝑝1 + 2𝑁𝛿 − 𝛿, by Eq. (4),

≥ 𝑝1 + 𝛿, since𝑁 ≥ 1,

> 𝑦 𝑗 , for any 𝑗 ∈ 𝐽 (1) ⊂ 𝐽 1.

But this is a contradiction, since 𝑦 𝑗1 ≤ 𝑦 𝑗 for all 𝑗 ∈ 𝐽 1. Thus, 𝑗1 ∈ 𝐽 (1), 𝑆 = 1, and 𝑦 𝑗1 = 𝑝1 + [ 𝑗1 .

Thus, we have found 𝑝1 = 𝑦 𝑗1 such that |𝑝1 − 𝑝1 | < 𝛿 .

If 𝑁 ≥ 2, then for any 𝑗 ∈ 𝐽 1 with 𝑦 𝑗 =
∑

𝑖∈𝑆 𝑝𝑖 + [ 𝑗 such that 𝑆 ∩ {2, . . . , 𝑁 } ≠ ∅, with notation

𝑝 (𝑆) = ∑
𝑖∈𝑆 𝑝𝑖 ,

|𝑝1 − 𝑦 𝑗 | = |𝑝1 − 𝑦 𝑗 + 𝑝1 − 𝑝1 |,
= |𝑝1 − 𝑝 (𝑆) − [ 𝑗 + 𝑝1 − 𝑝1 |,
≥ |𝑝1 − 𝑝 (𝑆) | − |[ 𝑗 | − |𝑝1 − 𝑝1 |,
> 2𝑁𝛿 − 𝛿 − 𝛿,
> 2𝛿, (𝑁 ≥ 2).

And if 𝑆 = {1}, then |𝑝1 − 𝑦 𝑗 | < 2𝛿 . Therefore, we set

𝐽 2 ← 𝐽 1 − { 𝑗 ∈ 𝐽 1 : |𝑦 𝑗 − 𝑝1 | < 2𝛿}

Note, the above implies:

𝐴 𝑗,1 = 1 if |𝑝1 − 𝑦 𝑗 | < 2𝛿, for 𝑗 ∈ 𝐽 1.

Clearly

𝑗 ∈ 𝐽 2 ⇐⇒ 𝑗 ∈ [𝑀], 𝑦 𝑗 = 𝑝 (𝑆) + [ 𝑗 ,

such that 𝑆 ∩ {2, . . . , 𝑁 } ≠ 0.

Now suppose, inductively, we have found 𝑝1, . . . , 𝑝𝑛, 1 ≤ 𝑛 < 𝑁 so that |𝑝𝑖 −𝑝𝑖 | < 𝛿 for 1 ≤ 𝑖 ≤ 𝑛

and

𝑗 ∈ 𝐽𝑛+1 ⇐⇒ 𝑗 ∈ [𝑀], 𝑦 𝑗 = 𝑝 (𝑆) + [ 𝑗 ,

such that 𝑆 ∩ {𝑛 + 1, . . . , 𝑁 } ≠ ∅.

To establish the inductive step, (with 𝑝 (𝑆) = ∑
𝑖∈𝑆 𝑝𝑖 )

𝑝𝑛+1 B 𝑦 𝑗𝑛+1 where 𝑗𝑛+1 ∈ arg min

𝑗 ∈𝐽 𝑛+1
𝑦 𝑗 ,

𝐽𝑛+2 ← 𝐽𝑛+1 − { 𝑗 ∈ 𝐽𝑛+1 : |𝑦 𝑗 − 𝑝 (𝑆) | < ( |𝑆 | + 1)𝛿,
for some 𝑆 ⊂ [𝑛 + 1]}.

We shall argue that |𝑝𝑛+1 − 𝑝𝑛+1 | < 𝛿 by showing that 𝑦 𝑗𝑛+1 = 𝑝𝑛+1 + [ 𝑗𝑛+1 and establishing

𝑗 ∈ 𝐽𝑛+2 ⇐⇒ 𝑗 ∈ [𝑀], 𝑦 𝑗 = 𝑝 (𝑆) + [ 𝑗 ,

such that 𝑆 ∩ {𝑛 + 2, . . . , 𝑁 } ≠ ∅.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 47. Publication date: December 2020.



47:10 Michael Fleder and Devavrat Shah

To that end, let

𝑦 𝑗𝑛+1 = 𝑝 (𝑆) + [ 𝑗𝑛+1 , 𝑆 ⊂ [𝑁 ],
with 𝑆 ∩ {𝑛 + 1, . . . , 𝑁 } ≠ ∅, (Inductive Hypothesis),

𝐽 (𝑛 + 1) B { 𝑗 ∈ 𝐽𝑛+1 : 𝑦 𝑗 = 𝑝𝑛+1 + [ 𝑗 }.
We want to argue that 𝑗𝑛+1 ∈ 𝐽 (𝑛 + 1). Suppose otherwise: that 𝑆 ≠ {𝑛 + 1}, then

𝑦 𝑗𝑛+1 > 𝑝 (𝑆) − 𝛿,
= (𝑝 (𝑆) − 𝑝𝑛+1) + 𝑝𝑛+1 − 𝛿,
> 2𝛿 + 𝑝𝑛+1 − 𝛿, (6)

= 𝛿 + 𝑝𝑛+1,
> 𝑦 𝑗 for any 𝑗 ∈ 𝐽 (𝑛 + 1).

Where Eq. (6) follows from the fact that since 𝑆 ∩ {𝑛 + 1, . . . , 𝑁 } ≠ ∅ and 𝑆 ≠ {𝑛 + 1}, it must

be that 𝑝 (𝑆) ≥ min{𝑝1 + 𝑝𝑛+1, 𝑝𝑛+2}. In either case, using Eq. (4) and that 𝑁 ≥ 1, it follows that

𝑝 (𝑆) − 𝑝𝑛+1 > 2𝛿 . We note that due to the Condition 1 and inductive hypothesis about 𝐽𝑛+1, it
follows that 𝐽 (𝑛 + 1) ≠ ∅. But 𝑦 𝑗𝑛+1 is the minimal value of 𝑦 𝑗 for 𝑗 ∈ 𝐽𝑛+1. This is a contradiction.
Therefore 𝑆 = {𝑛 + 1}. That is, 𝑝𝑛+1 = 𝑦 𝑗𝑛+1 , satisfies |𝑝𝑛+1 − 𝑝𝑛+1 | < 𝛿 .

Now consider any set 𝑆 ⊂ {1, . . . , 𝑛 + 1} and any 𝑗 ∈ 𝐽𝑛+1 such that 𝑦 𝑗 =
∑

𝑖∈𝑆′ 𝑝𝑖 + [ 𝑗 with

𝑆 ′ ∩ {𝑛 + 2, . . . , 𝑁 } ≠ ∅. Using notation 𝑝 (𝑆) = ∑
𝑖∈𝑆 𝑝𝑖 we have

|𝑝 (𝑆) − 𝑦 𝑗 | = |𝑝 (𝑆) − 𝑦 𝑗 + 𝑝 (𝑆) − 𝑝 (𝑆) |,
= |𝑝 (𝑆) − 𝑝 (𝑆 ′) − [ 𝑗 + 𝑝 (𝑆) − 𝑝 (𝑆) |,
≥ |𝑝 (𝑆) − 𝑝 (𝑆 ′) | − |[ 𝑗 | − |𝑝 (𝑆) − 𝑝 (𝑆) |,
> 2𝑁𝛿 − (1 + |𝑆 |)𝛿,
≥ (|𝑆 | + 1)𝛿,

where we have used the fact that |𝑆 | + 1 ≤ 𝑁 . Therefore if

𝐽𝑛+2 ← 𝐽𝑛+1 −
{
𝑗 ∈ 𝐽𝑛+1 : |𝑦 𝑗 − 𝑝 (𝑆) | ≤ (|𝑆 | + 1)𝛿,

for some 𝑆 ⊂ [𝑛 + 1]
}
,

then it follows that

𝑗 ∈ 𝐽𝑛+2 ⇐⇒ 𝑗 ∈ [𝑀], 𝑦 𝑗 = 𝑝 (𝑆) + [ 𝑗

such that 𝑆 ∩ {𝑛 + 2, . . . , 𝑁 } ≠ ∅.

Also, 𝐴 𝑗,𝑖 = 1 for all 𝑗 ∈ 𝐽𝑛+1 and 𝑖 ∈ 𝑆 ⊂ [𝑛 + 1] such that |𝑦 𝑗 − 𝑝 (𝑆) | ≤ (|𝑆 | + 1)𝛿 .
This complete the induction step and establishes the desired result that we can recover 𝑝 so that

∥𝑝 − 𝑝 ∥∞ ≤ 𝛿 and recovery of 𝐴.

3.4 Proof of Theorem 3
The proof follows by arguing that the additional approximation error of 𝛿 ( |𝑝 | + 1) in the solution

to Eq. (2) does not change the decisions taken by the algorithm. We shall argue by induction over

the iteration of the algorithm for 𝑖 = 1, . . . , 𝑀 .

Initially, for 𝑖 = 1, trivially the algorithm sets 𝑝1 = 𝑏1 and as argued in the proof of Theorem 2,

we have |𝑝1 − 𝑝1 | ≤ 𝛿 . Inductively, suppose we have discovered 𝑛 ≥ 1 prices by processing up to

𝑖 ≥ 1 transaction totals such that the resulting estimate has ∥𝑝 − 𝑝 ∥∞ ≤ 𝛿 .
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Consider the 𝑖 + 1st transaction total, 𝑏𝑖+1. There are two possibilities: with |[𝑖+1 | ≤ 𝛿 , either (a)

𝑏𝑖+1 = 𝑝𝑛+1 + [𝑖+1, or (b) 𝑏𝑖+1 =
∑

𝑗 ∈𝑆𝑖+1 𝑝 𝑗 + [𝑖+1 for some 𝑆𝑖+1 ⊂ [𝑛].
In case (a), for any subset 𝑆 ⊂ [𝑛],

|𝑝 (𝑆) − 𝑏𝑖+1 | = |𝑝 (𝑆) − 𝑝𝑛+1 − [𝑖+1 |
≥ |𝑝 (𝑆) − 𝑝 (𝑆) + 𝑝 (𝑆) − 𝑝𝑛+1 | − |[𝑖+1 |
≥ |𝑝 (𝑆) − 𝑝𝑛+1 | − |𝑝 (𝑆) − 𝑝 (𝑆) | − 𝛿
(𝑖)
≥ 4𝛿𝑁 − |𝑆 |𝛿 − 𝛿
= (4𝑁 + 4 − 1 − |𝑆 |)𝛿, (7)

where (i) follows from the condition of Theorem 3. That is, the approximate subset-sum, with

additive error of at most 𝛿 ( |𝑝 | + 1) ≤ 𝑁𝛿 will declare any such 𝑆 to have |𝑝 (𝑆) − 𝑏𝑖+1 | ≥ (4𝑁 +
3 − |𝑆 |)𝛿 − 𝑁𝛿 which is at least 2𝑁𝛿 since |𝑆 | + 1 ≤ 𝑛 + 1 ≤ 𝑁 . That is, the Algorithm in Section

2.1, even with approximate subset-sum makes the correct decision in such scenarios in terms of

identifying the new element and setting 𝑝𝑛+1 = 𝑏𝑖+1.
In case (b), by definition |𝑏𝑖+1 − 𝑝 (𝑆𝑖+1) | ≤ 𝛿 (1 + |𝑆𝑖+1 |). Therefore, the approximate subset-sum

will find that there exists at least some subset 𝑆 ⊂ [𝑛] so that |𝑏𝑖+1−𝑝 (𝑆) | ≤ 𝛿 (1+ |𝑆 |)𝛿 +𝛿 ( |𝑝 | +1) ≤
(2𝑁 + 2)𝛿 . We want to argue that 𝑆 = 𝑆𝑖+1. Using an argument identical to Eq. (7), we conclude

that |𝑝 (𝑆) − 𝑏𝑖+1 | > (4𝑁 + 3 − |𝑆 |)𝛿 . That is, the approximate subset-sum will declare such an 𝑆 to

have |𝑝 (𝑆) − 𝑏𝑖+1 | > (4𝑁 + 3 − |𝑆 |)𝛿 − 𝛿 ( |𝑝 | + 1) ≥ (2𝑁 + 2)𝛿 . Thus, in case (b), the Algorithm in

Section 2.1 with approximate subset-sum will identify 𝑆𝑖+1 as the correct ‘decomposition’ for 𝑏𝑖+1
as desired.

This completes the induction step and proof of the Theorem 3.

4 EXPERIMENTS
4.1 Dataset
We utilize a dataset of consumer transactions provided by alternative data vendor Second Measure

[22]. The data consists of roughly 13.4 million anonymized consumer debit and credit card trans-

actions in the period from January 2016 through February 2019 (see Table 2) for four companies:

Netflix, Spotify, Chipotle, and Apple. Each data point contains only (i) the transaction total (ii) the

company name (iii) daily-resolution timestamp (iv) city in which the purchase was made. Table 2

suggests that the number of transactions is large compared to the number of products offered at

each company:𝑀 ≫ ∥𝑝 ∥0. We discuss the results on a per-company basis.

4.2 Pre-processing
We apply a simple pre-processing step to remove anomalies from the transaction data. Specifically,

after sorting all transactions for a given company, we remove a small percentile of the top and

bottom transactions as a robustness step. For example, with Netflix we see transaction totals ranging

from $.01 to $182.5; however, more than 94% of transactions lie within an $11 range. And we retain

this ‘majority’ range.

4.3 Netflix: Inferring Products and Prices
Data. The transactions data for Netflix spans the 38-month period from January 2016 through

February 2019 for Boston, Chicago, Los Angeles, New York, Philadelphia, Phoenix, San Francisco,

and Washington D.C. The data consists of 2.6 million separate transactions, translating to $29.5
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million in observed sales. Amongst them, there are 3094 distinct bill totals ranging from single-

penny transactions to $182.5. After the pre-processing described above, we are left with 1046 unique

totals.

Task. We wish to recover product prices, the number of products, and the transaction decomposi-

tions. We emphasize that the number of products 𝑁 is treated as unknown; and knowledge of 𝑁 is

used only in evaluating our method’s performance. We utilize the algorithm with 𝑘 = 1 and 𝛿 as 1%

of the transaction total.

Findings. Table 4 shows the inferred product prices. Specifically, we find 11 candidate products

and corresponding prices. Next, by hand, we match the first 9 of 11 inferred prices to actual Netflix

product prices. The results are shown in Table 4. To our knowledge, this is complete coverage of

Netflix’s advertised product prices in that period. The median error in inferred prices is less than

0.2% (or less than 4 cents!). Since product prices have changed over time, several of the products

appear at multiple price points.

For almost all inferred products we can associate clear, low-error matches in Netflix’s product

catalogue. However, we also find two additional products (and associated prices) that do not

correspond to publicly disclosed Netflix products (at least not in the time period of the data). The

inferred product with price $17.08 matches the rumored Ultra HD product of Netflix available

at $16.99 [23]. It seems that there might be another such product being offered at a higher price

around $18.45.

In summary, we recover the entire Netflix product price catalog accurately - from just transac-

tion totals. In addition, we recover hidden or unadvertised products - one rumored and another

completely unknown. This establishes the efficacy of our algorithm.

Actual Price Inferred Price Abs Error Product(s)

$7.99 $7.98 0.13% SB; DS

$8.99 $8.98 0.11% SB

$9.99 $9.97 0.20% SS; RS

$10.99 $10.93 0.55% SS

$11.99 $11.97 0.17% SP; DP

$12.99 $12.95 0.31% SS

$13.99 $14.00 0.07% SP

$14.99 $14.96 0.20% RP

$15.99 $15.99 0% SP

$16.99 $17.08 0.53% Rumored new product

- $18.45 - -

Table 4. Products and their prices found by our algorithm from transaction totals for Netflix. We hand match
inferred prices to Netflix’s published catalog / prices from [11, 19, 21, 23]. The key products are streaming
basic (SB), standard (SS), and premium (SP); DS and DP refer to DVD Standard (DS) and Premier (DP)
subscriptions; RS and RP refer to Netflix’s HD Blu-Ray Standard (RS) and Premier (RP) subscriptions. In
addition, we find two unmatched products: one at $17.08 which might be the rumored Ultra HD [23], another
at $18.45 is likely to be another such unknown product.
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4.4 Spotify: Product Launch Detection

Data. The transaction data for Spotify spans the period from September 2017 through September

2018. As shown in Table 2, the data includes 387, 000 transactions, of which 527 are unique totals.

This corresponds to $4.1M in observed revenue. The transactions range from 24 cents to $250. After

pre-processing, we are left with transactions in the range from $4.98 to $16.19.

Task. Given the success of the algorithm in identifying Netflix’s price catalogue, we next look to

utilize our method in detecting product launches. By repeatedly running our inference method

over short, rolling time windows, we hope to detect product launches and the associated prices

by examining changes in the inferred prices over time. In particular, on April 11th, 2018, a new

product was launched by Spotify at a price of $12.99 [20]. Again, we emphasize that the number of

products 𝑁 is always treated as unknown. Knowledge of 𝑁 is used only in evaluating our method’s

performance.

Findings. We run our algorithm on transactions associated with three-month sliding windows.

Table 5 details the results. We see a clear shift in inferred prices following the release of the $12.99

product, during the month of launch. Indeed, the new price is detected with small error (<8%) as

expected due to noise like variations in taxes, discounts, etc.

Window Top-Two Inferred Product Matches Error New Product

Sept’17-Nov’17 $10.64, $16.0 $9.99, $14.99 6.5%, 6.7% No

Oct’17-Dec’17 $10.73, $16.0 $9.99, $14.99 7.4%, 6.7% No

Nov’17-Jan’18 $10.73, $16.0 $9.99, $14.99 7.4%, 6.7% No

Dec’17-Feb’18 $10.61, $16.0 $9.99, $14.99 6.2%, 6.7% No

Jan’18-Mar’18 $10.65, $15.89 $9.99, $14.99 6.6%, 6% No

Feb’18-Apr’18 $13.99, $15.89 $12.99, $14.99 7.7%, 6% Yes

Mar’18-May’18 $14.03, $15.93 $12.99, $14.99 8.0%, 6.3% Yes

Apr’18-Jun’18 $14.11, $15.93 $12.99, $14.99 8.6%, 6.3% Yes

May’18-July’18 $13.61, $15.93 $12.99, $14.99 4.8%, 6.3% Yes

June’18-Aug’18 $13.93, $15.93 $12.99, $14.99 7.2%, 6.3% Yes

July’18-Sept’18 $13.97, $15.93 $12.99, $14.99 7.5%, 6.3% Yes

Table 5. The top two (most expensive) product prices inferred from transaction totals for the corresponding
three-month window are reported. Prices are as published by Spotify during the corresponding period. Our
method clearly detects the newly launched product on April 11th, 2018 priced at $12.99 [20].

4.5 Apple: iPhone Launch and Sales

Data.We examine data for Apple sales in New York, NY for the two month period from August

21st, 2018 through October 21st, 2018. The data covers the month before and after the release

of new iPhone products on September 21st, 2018. It consists of 197, 000 transactions, with 7, 685

unique transaction totals and corresponds to $6.2M in observed revenue. The transaction totals

range from $.01 to $18, 000, and after pre-processing, we are left with transaction totals in the range

of $100-$2083.87 with 2364 unique transaction totals.

Task. Similar to the work with detecting product launches at Spotify, we wish to detect the launch

of new iPhones in September 2018. The launch included: (i) release of a new iPhone XS at $999, and

(ii) the release of the iPhone XS Max priced at $1449. Pre-launch, Apple offered products priced
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Pre-Launch Post-Launch

Actual Product Range $974 ± $25 $999

Inferred Price $948 $959

Percent Error < 5.4% 4%

Estimated Sales Increase -na- 114.5%

Table 6. Inferring product prices and associated sales volume before and after the iPhone XS product launch
on September, 21st 2018. Pre-launch, a collection of products were in the range $974 ± $25 which matches an
inferred price of $948 with error < 5.4%. Post-launch, the price of the new (launched) iPhone XS is $999 which
then matches an inferred price of $959 with error < 4%. Using these inferred prices, we detect an increase in
sales volume for products priced around $999 by 114.5% indicating the impact of the launch of iPhone XS.

around $999. Therefore, we would expect to see an increase in estimated sales volume around that

$999 price post-launch. On the other hand, no iPhone products were priced around $1449. Hence,

we expect to also detect a new product price.

Findings. As described in Table 6, we estimate a 114.5% increase in inferred sales for products

priced around $999. As noted in Table 7, a new product priced within 1% (error) of the iPhone

XS Max appears in the inferred product prices. Thus, our algorithm, manages to detect product

launches even within Apple’s extremely complex product catalog.

Pre-Launch Post-Launch

Max Inferred Price $1208 $1434

Closest Product Price $1149 $1449

Error 5.1% 1.0%

Table 7. Preceding the launch, there are no iPhone products priced near $1449. Following the launch, the
top-inferred price changes to $1434 which is within 1% error of the price of the launched iPhone XS Max.

4.6 Chipotle: Revenue attribution and reconstruction error

Data.The transactions data for Chipotle in NewYork, NY covers the 6-month period from September

2018 through February 2019. The data consists of 133, 000 transactions, with 2800 unique transaction

totals and a corresponding $1.7M in revenue. The transaction totals range from $.03 to $552.54.

After pre-processing, we retain transactions in the range of $1.5-$20 and 1230 unique transaction

totals.

Task. Chipotle’s menu is too complex to analyze fully: even for bill totals under $20, there are a

large number of possible order combinations; and in addition, the menu contains multiple items

at the same price point. Nevertheless, we hope to gain insight into Chipotle sales with two goals.

First, we examine how well we are able to model the thousands of unique bill totals assuming just

a small number of product price-points. Second, we would like to determine if a relatively small

price range for products accounts for a large percentage of Chipotle revenue. We use 𝑘 = 2 and 𝛿

of 0.1% of each transaction total.

Findings. The inference algorithm identifies 12 price points within the Chipotle menu, from $1.5

to $18.65. Using these 12 products and associated prices, we examine how well each of the 1230

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 47. Publication date: December 2020.



I Know What You Bought At Chipotle for $9.81
by Solving A Linear Inverse Problem 47:15

distinct bill totals can be decomposed into combinations of these prices. We find that with mean-

absolute-percent error (MAPE) of 1.2%, all the transaction totals can be decomposed using just

these 12 products / prices.

Next, we decompose each transaction total into its inferred, constituent products. Given the

inferred decompositions, we examine the concentration of sales (in USD) by product price. Table

3 shows that a large majority of estimated sales concentrate in a narrow price range of $9-$11:

suggesting that a large fraction of Chipotle’s customers order items like the "chicken burrito" at

$9.74 [7].

To benchmark the performance of our algorithm, we compare it with a simple, randomized

algorithm. We consider the approach of randomly selecting 𝑋 transaction totals as individual

item prices; and then using these selected prices, we attempt to decompose all transaction totals

into sums of these prices (with the previously mentioned constraints). We repeat this random

selection-then-decomposition process 30 times and average the results. The resulting MAPE using

the randomized algorithm is 7.5%; and if we weight the results by frequency, we see a weighted

MAPE of 22.7%. That is, this randomized benchmark has a MAPE of 5-6x worse than our approach.

To understand if this is statistically significant, we construct a hypothesis test: after each randomized

trial, we compare the per-trial MAPE to our method. Let 𝜓 be the probability that our method

outperforms the randomized benchmark on a given trial. The null hypothesis is 𝜓 ≤ 0.5. The

alternative hypothesis is𝜓 > 0.5. We will reject the null hypothesis if we observe a 𝑝-value of less

than 10
−2
. On 30/30 trials (with both unweighted and weighted errors) our method outperforms the

randomized approach. We obtain a p-value of ( 1
2
)30 < 10

−9
. Thus we reject the null-hypothesis with

overwhelming statistical confidence. Similarly, the hypothesis test results are identical if we use a

train-test split of 4 months/2 months: (i) first infer a price menu from the train set (ii) approximate

totals in the test set and then (iii) run the randomized comparison on the test set - which, in fact,

provides advantage to the randomized method.

5 CONCLUSION
In this work we perform seemingly counterintuitive inference: given an anonymous consumer’s

transaction total (a single number), we estimate the number of products purchased along with the

associated prices. This boiled down to solving a system of linear equations with observing only

an aggregates vectors on one-side of the equation, and nothing on the other side. Specifically, we

estimate the unknown number of products 𝑁 , their associated prices 𝑝 ∈ R𝑁>0 and the transaction

decomposition given by matrix 𝐴 ∈ Z𝑀×𝑁≥0 all from observing only transaction totals 𝑦 ∈ R𝑀>0 such
that 𝑦 = 𝐴𝑝 + [ where [ represents the noise (e.g. taxes).

As the main contribution of this work we provide an iterative algorithm to recover 𝑁 , 𝑝 , and 𝐴

with𝑀 ≥ 𝑁 . We prove correctness of our algorithm under mild conditions. We apply our algorithm

to anonymized credit card transactions associated with consumer spending at Apple, Chipotle,

Netflix, and Spotify in the years 2016-2019. Using transactions data only, our algorithm recovers

the number of products and product prices accurately, decomposes transaction totals with small

error (MAPE < 2%), identifies product launches, and discovers a rumored ‘secret’ product of Netflix

in the market.

The success of our method suggests a future direction in understanding the limits of anonymiza-

tion. For example, under what conditions are consumer product choices irrecoverably obfuscated?

Retailers wishing to obfuscate units sales, limited trials, and other financial details, might consider

how simple bill totals shed light on their financials.
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