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ABSTRACT

Theoretical investigation of short length- and time-scale transport phe-
nomena in semiconductor devices necessitates a full dynamical analysis. Un-
der the assumption of semiclassical behavior, the Boltzmann transport equa-
tion (BTE) is useful in describing transport in semiconductors. An efficient
numerical method for solving the BTE has been developed using a basis-
function expansion of the distribution function’s velocity dependence. This
spectral method is ten te one-hundred times faster than the conventional
Monte Carlo method, for equivalent accuracy.

The spectral method is developed through a hierarchical sequence of nu-
merical calculations. Initial calculations deal with solution of the BTE by
means of conventional numerical methods. These methods are applied to
simple systems, possessing two space-velocity variables. A spectral method
is then developed for solution of the BTE in the case of three space-velocity
variables. Lastly, the spectral method is extended to systems that have four
or more space-velocity variables.

Issues pertaining to computational efficiency, numerical errors, and future
modifications and applications of the spectral method are also addressed.

Thesis Supervisor: Alan L. McWhorter
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

In recent decades, the rapid evolution of semiconductor technology has
resulted in extremely small device geometries. This trend towards smaller
and smalier geometries derives from the importance of increasing electrical
speed and integration density. Conventional and novel device design have
benefited from advancements in semiconductor technology. For example, ad-
vancements in photolithography, molecular-beam epitaxy, and organometal-
lic chemical-vapor deposition [1,2], have stimulated research in bipolar junc-
tion transistor and metal-oxide-semiconductor field-effect transistor design,
and have aided in the development of novel devices, such as the high electron
mobility transistor and the permeable-base transistor (3,4].

Increasingly sophisticated simulation techniques must be devised to de-
scribe device behavior. These techniques have to portray nonequilibrium
phenomena that vary rapidly in space and time. lncorporation of compli-
cated collision processes is also essential. In addition, simulation techniques
should be efficient—a proper balance between computational effort and so-
lution accuracy must be realized.

With the above requirements in mind, the simulation technique proposed
in this work is based upon the Boltzmann transport equation (BTE) [5].
Solution of the BTE permits evaluation of numerous macroscopic quantities,
such as carrier concentration, mean carrier velocity, and mean carrier kinetic
energy. The BTE formalism provides a reasonably accurate description of
transport in many semiconductor devices of current interest.
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1.1 Basic Physics

1.1.1 Transport

The BTE is predicated on the assumption that charge carriers behave
quasi-classically. The conditions under which the “quasi-classical assump-
tion” is justified are readily determined through a detailed quantum-mechanical
annlysis [6].! Fortunately, the outcome of this analysis is easily implemented:
the classical mass of each carrier is replaced with an effective mass m*. Classi-
cai laws of motion and quantities such as momentum,’? p= m*v, and kinetic
energy, € = m'v?/2, remain unchanged.®* As a final note, the concept of
phase space is also valid in the quasi-classical regime. The six-dimensional
phase-space domain (r,p) is viewed as a well-defined continuum.*

Transport in semiconductor devices involves two classical phenomena:
drift and diffusion. Drift effects arise from macroscopic eiectric fields and
result in a net carrier flux. Diffusion effects are a consequence of random
thermal motion; thus, inhomogeneities in carrier concentration will also re-
sult in a net carrier flux. Both these effects are incorporated in the BTE.

Collisions must also be considered. The important collision processes in

! A discussion concerning the validity of the quasi-classical assumption will be given later
in Section 1.1.3.

2The vector p = m®p is in reality a quasi momentum called crystal momentum, which
is 2 quantum number asszociated with each carrier state. Crystal momentum and carrier
momentum have similar properties, for example, dp/dt = F where where F is the force on
the carrier, but the two quantities are different in other respects (see footnote 14).

3Carriers are assumed located near the minimum of a single, spherical, parabolic band.
The assumption is used throughout this work and is made golely for purposes of simplifi-
cation. However, the numerical solution procedure that will be proposed can be used to
simulate multivalley systems with aspherical, nonparabolic bands.

4The charge carriers cannot be represented 2s idealized pointe in phase space. Uncer-
tainty smearing “broadens” phase-space coordinates: Ar > a and Ap ~ h/Ar, where a i3 the
lattice constant. The point-in-phase-space description can be recovered, however, if spatial
and momentum scales are considered large in comparison with Ar and Ap respectively.

12




semiconductors are:
s phonon scattering,’
o crystal-defect scattering,
e carrier-carrier scattering, and
¢ ionized and neutral impurity scattering.

This work is primarily concerned with collisions engendered by lattice vibra-
tions, that is, phonon scattering.® The theory of carrier-phonon scattering
is quite involved and is based on a quantum-mechanical treatment of the
carrier-phonon interaction [6] (see also Appendix E). In brief, the scattering
process is described by a perturbation of the potential “seen™ by the charge
carriers. Time-dependent perturbation theory is then used to calculate a
scattering-probability-rate function S(v,v'). The quantity S(v,0')d>v'dt gives
the probability that a carrier is scattered from an initial velocity v to a final
velocity within (v',v' + dv') during the infinitesimal time interval dt. The
scattering-probability-rate function inciudes contributions from interactions
which absorb a single phonon and those which emit a single phonon.

At this point, the fundamental processes that govern transport in semi-
conductors—drift, diffusion, and collisions—have been introduced and deriva-
tion of the BTE is now possible. The carrier ensemble is treated using sta-
tistical methods. The “state” of an individual carrier is defined by its phase-
space coordinates (r,p).” The “collective state” of the carrier ensemble, is
represented by the distribution function f(r,v,t). By definition, the quan-
tity f(r,v,t)d*rd%v is the average number of carriers at time ¢ with center of
mass within (r,r+dr) and velocity within (v,v+dv). Therefore, knowledge
of the distribution function permits evaluation of all relevant macroscopic
quantities that are associated with the carrier ensemble.

A typical carrier trajectory can be described as follows: the carrier moves
(in real space) with an initial velocity, it is accelerated by external fields,

5The phonon, is a quasi particle corresponding to the quantum of lattice vibration.

8Qrly intravalley scattering mechanisms are considered here, in keeping with the single-
valley assumption. Specifically, deformation-potential acoustic, nonpolar optic, and polar
optic phonon scattering will be modeled [7-10].

TFor convenience, the term “phase space” will apply to either velocity or momentum
representations.
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and then it is instantaneously scattered to another velocity state. With
this picture in mind, conservation of carriers in an infinitesimal phase-space
voluraz implies

of _

T, =-V,-(vf)—-V,-(Ff)+Cf, (L.1)

where F is the force due to external fields,® p is momentum, and C is a colli-
sion operator. Equation (1.1) is known as the Boltzmann transport equation
and is written in a form suitable for semiconductor device simulation. In
terms of velocity coordinates and an external electric field E(r,t), the BTE
becomes

of _

5 =

0.V, - v ey (1.2)

where ¢ is the charge of the carrier (negative for electrons). Equation (1.2),
neglecting the collision term for now, is a linear, first-order, partial differen-
tial equation. The BTE is defined on the seven-dimensional (r,,t) domain;
hence, it is generally very difficult to solve.

The collision term Cf can be calculated through use of the scattering-
probability-rate function S(v,v'). Application of local carrier conservation
in phase space yields the following formula®:

Cf= [ & f(r,9,9)5(',0) = A(2)1(r,0,0). (1.3)

Here,
Ao) = [ @' S(v,0), (1.4)

and is called the total scattering probability rate. The first term on the
right side of (1.3) refers to “in-scattering ”, since it describes scattering into
(r,v) from other phase-space points. Similarly, the second term refers to
“out-scattering”, since it describes scattering out from (r,v) to other phase-
space points. The BTE i3 therefore a linear integrodifferential equation upon
inclusion of the collision term.

8Here, F may represent the influence of electric as well as magnetic fields.

9All integrations are performed over the infinite velocity domain. Also, carriers are
assuined to obey nondegenerate statistics, and S(v, v’) is assumed to have nc implicit spatial
dependence.
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1.1.2 The BTE and Device Simulation

Device simulation using the BTE introduces a variety of complications.
The BTE must be made consistent with Poisson’s equation.’® Coupling is
achieved through the electric field term of Eq. (1.2) and the charge-density
term of Poisson’s equation.!! Unfortunately, the BTE-Poisson system is
inherently nonlinear; thus special solution methods are required.

One more complication relating to device simulation is the prescription
of boundary conditions. These conditions pertain to Poisson’s equation as
well as the BTE. Poisson’s equation usually requires Dirichlet, Neumann, or
mixed conditions along spatial boundaries [34]. These boundaries usually
correspond to device electrodes, free surfaces, or perhaps internal symmetry
regions. Unlike Poisson’s equation, boundary conditions for the BTE are
not frequently discussed and therefore will be elaborated upon here. The
boundary conditions are imposed throug! out the hyper-dimensional surface
that encloses the phase-space domain. The distribution function is expected
to vanish at “large-velocity” surfaces,

Jim f(7,v,t) = 0. (1.5)

Surfaces that include spatial boundaries involve various conditions. Two
more common ones are injective and reflective boundary conditions. The in-
jective bonndary condition requires specification of the distribution function
over an injecting surface,

f(rsv,t) = g(rs,9,t), v-#2, <O. (1.6)

Vectors r, and #, refer to spatial points on the injecting surface and their
corresponding outwardly directed unit normals, respectively. Injective con-
ditions are applied in connection with “free-flow” boundaries. The reflective
boundary condition requires that the distribution function possess even ve-
locity parity normal to the reflecting surface,

f(ra’”tn vm,t) = f("s; Otsy —VUna, t) (1.7)

10Frequencies of operation are assumed small enough to neglect electromagnetic effects.
Only quasi-electrostatic phenomena need be considered.

118olution of Poisson’s equation, V3¢ = —(gn+Q )¢, where n is the carrier concentration
and @y is the net charge density due to ionized impurities and other crystalline defects,
permits evaluation of the electric field, E= —V.4, while solution of the BTE permits
evaluation of the carrier density, n = f d3v f.

15
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where v;, = #, X (v X fi,) is the tangential component of v at position r and
v, = fi, - » is the normal component. Condition (1.7) can be modified for
partially reflecting situations. The boundary condition then becomes

f("'u Utss Unes t) = r(vn)f(fa’ ”tn —Vnes t) (18)

In the absence of any boundary carrier generation the reflection function
must obey 0 < T' < 1. The exact form of the reflection function I' depends
on the physical nature of the boundary.

The BTE-Poisson system is, in general, first-order time dependent so
that an initial condition is necessary. Solution of time-independent systems
through steady-state evolution of a pseudo-transient!? also requires an initial
condition. Mathematically, the initial condition can be expressed

f(r,0,t,) = h(r,v), (1.9)

where h{r,v) is the distribution function at initial time ¢,.

1.1.3 Assumptions of Quasi-Classical Transport

It is informative to examine some of the assumptions which validate
quasi-classical transport theory. Space-dependent quantities (lattice inho-
mogeneities and electric fields) must vary slowly on a length scale of several
lattice constants. The distribution function, electric field, and boundary con-
ditions are not permitted to vary significantly during a collision-interaction
time or along a collision-interaction length.!®> Mcreover, the energy absorbed
by carriers during acceleration by the electric field is limited to the width of
the carrier energy band. Assumptions pertaining o phonon scattering also
exist. The phonon population is assumed near thermal equilibrium despite
collisions with nonthermal carriers. The collision process is assumed to con-
serve carrier spin. As a final note, the carrier-phonon ensemble is assumed
to be in a state of “molecular chaos”. Thus, statistical correlations between
the initial quasi momenta* of colliding particles are ignored.

12This procedure is will be discussed later in Chapters 2 and 4.

13This agrees with the concept that collisions are instantaneous—the elapsed time between
collisions is much greater than the collision interaction time.

14Crystal momentum is conserved during collisions only to within an integral multiple
of A K (taking into account the phonon quasi momentum), where K is a reciprocal lattice
vector. Collisions that involve nonsero multiples (Umklapp processes) will be ignored. For
further discussion of this topic see reference [8].
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1.2 Solution of the BTE

1.2.1 Conventional Methods

Numerous approaches have been used to solve the BTE in device struc-
tures. Many approaches implement simplifying approximations, yet almost
all are numerical in nature because of mathematical complexity.

The simplest and most widely known approach is drift-diffusion theory
[11]. Carrier collisions are modeled by means of a relaxation time. The main
result of this theory is that the carrier current density can be written as

J(r,t) = |q|pn(r,t)E(r,t) — ¢DV n(7,t), (1.10)

where n is the carrier concentration, u is the mebility, and D the diffusivity,
with the latter two quantities being derived from the theory. Device simula-
tion is carried out by solving Eq. (1.10) in conjunction with the continuity
and Poisson equations. This theory works best when the deviation of the
actual carrier distribution function from equilibrium is relatively small and
ballistic effects (pertaining to collisionless or nearly collisionless situations)
are regligible.!®

A more sophisticated approach to solving the BTE involves parameteri-
zation of the distribution function. For example, the distribution function is
often approximated by a displaced and heated Maxwellian [5]:

f(ry0,t) ~ n{r,t) exp(—6vT B6v), (i.11)

in which the column vector 6v = v — wv4(r,t), 6v7 denotes matrix trans-
pose of 6v, and S is the inverse temperature matrix with elements {8},; =
m* [2kpT;;(r,t). Approximation (1.11) is then substituted into the BTE and
successive moments are evaluated. The resulting equaiions for n, vy, and
B——corresponding to mass, momentum, and energy conservation-—are then
solved along with Poisson’s equation. The validity of this technique becomes
questionable when the distribution function is poorly described by (1.11), as
in ballistic systems or those with highly anisotropic scattering.

16 A necessary condition for validity of drift-diffusion theory is that typical carrier velocities
must be small compared with the thermal velocity, vep ~ (kpT/ m*}1/2_ As a rule, drift-
diffusion theory is valid for length scales greater than the mean free path and times scales
greater than the mean collision time.
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Another common technique is the Monte Carlo method [9]. Device simu-
lation is accomplished through tabulation of phase-space carrier trajectories.
Scattering events are determined by random-number generation based on
actual scattering-probability-rate functions. Poisson’s equation can be in-
cluded in the simulation procedure. Data storage requirements are extremely
large and certain scattering mechanisms, such as carrier-carrier, are difficult
to handle. Moreover, statistical convergence is slow; yet, the Monte Carlo
method is favored by many because of its simplicity and ease of implemen-
tation.

Other solution procedures also exist: momentum- and energy-dependent
relaxation-time methods, iterative integral methods, and direct integration
methods, to name a few [7,12,13].

1.2.2 The Spectral Method

The method of weighted residuals is the general approximation technique
that will be used to solve the BTE in this work [14]. This method finds
application in a wide variety of numerical problems and is closely related to
the finite-element and Rayleigh-Ritz (variational) methods [15,16].

The method of weighted residuals has been successfully implemented in
various fields, ranging from fluid flow, heat and mass transfer, chemical-
reaction systems to analysis of mechanical structures and nuclear-reactor
simulation {14,17]. Specifically, the type of weighted-residual method that
will be dealt with here is known as a spectral method [16].'® This method
can be used to solve differential (ordinary and partial) and integrodifferential
equations, linear and nonlinear. The principle behind the spectral method is
that the solution of the governing equation can be approximated with a linear
combination of “basis functions”. These functions, composing a basis set,
are defined over the entire domain of interest. The choice of basis functions
is an important consideration; it is desirable to choose successive elements
of a mathematically complete set. The calculation of the basis function
expansion coefficients, a,, n = 1,..., N, proceeds by substituting the basis
function expansion into the governing equation, which in generalized space

16Throughout the literature other names are in frequent use: eigenfunction or global
expansion, modal, and Rits-Galerkin.
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and operator notation can be written as Oy(z) = 0. Hence,
N
0 Y a,®a(z) = R(z) (1.12)
n=1

where z has dimensionality s, the functions ®, are elements of the basis set,!”
and the quantity R is called the residual. Equations can be developed for
the a, by forcing the integrated residual to vanish for N different weighting
functions, wy,:

/ &'z wo(z)R(z) = O, (1.13)
n=1,---,N.

Here, the integration is to be performed over the entire z domain. Standard
residual-weighting procedures, as defined by selection of weighting functions,
have been established. The more common methods are the collocation (pseu-
dospectral), where w, = 6(z — z,); the Galerkin, where w,, = ®,(z); and
the least-square, where w, = 0®,(z) [14,16]. In theory, the residual is ex-
pected to vanish throughout its domain as N — oo, and thus the method
becomes exact. This property is ensured if the basis functions constitute a
mathematically complete set. Note that it is computationally advantageous
to use an orthogonal (or “nearly orthogonal”) basis set.

The distinct advantage of the spectral method is its mathematical com-
pactness. Frequently, sufficient accuracy can be maintained while keeping
the total number of basis functions reasonably small. These “low-order”
expansions result in substantial reduction of computational effort. Hence,
the spectral method is particularly useful when the spectral content of the
solution is limited.!®

1.2.3 Spectral Solution of the BTE

Actval implementation of the spectral method is slightly more compli-
cated than what has so far been discussed. But before delving into details of
the proposed method it is useful to review the closely related work of Rees.

171t is presently assumed, for simplicity, that each basis function satisfies the appropriate
boundary conditions.

18These considerations aside, the spectral method is generally quite accurate. For exam-
ple, the spectral method typically requires a factor of two to ten fewer degrees of freedom
(unkncwns) than the popular finite-difference method [16,18].
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Rees has developed a numerical simulation procedure to model the Gunn
effect in GaAs diodes [4,19]. The simulation procedure directly solves the
BTE along with Poisson’s equation. Rees’s starting point was the asser-
tion that the distribution function can be approxiinated with the series
expansion,!®

N
fro,t) = D an(r,t)®a(v). (1.14)
n=1

The basis functions ®, were obtained from previously calculated numerical
solutions of the time-independent, spatially homogeneous BTE for a series of
electric-field strengths. Rees then formulated an elaborate numerical scheme
to calculate the expansion coefficients a,. It was found that approximately
eighteen basis functions were sufficient to achieve five-percent accuracy in
calculating average carrier velocities.

Although Rees was able to significantly reduce computational effort, sev-
eral important limitations, which relate to generalization and applicability,
have not been resolved. For instance, the time-stepping algorithm requires
weak variation of the distribution function over a mean free path,?? a severe
constraint when attempting to simulate ballistic systems. Also, extension of
the method to systems of higher dimensionality is not easily effected.

In light of the work by Rees, the spectral method used here is predicated
upon the expansion (1.14). A numerical algorithm is developed by substitut-
ing the expansion into the BTE. The spatial and temporal dependence of the
expansion coefficients is treated using the method of finite differences (15].
A residual-weighting procedure, in velocity, is then carried out to determine
the expansion coefficients. This method can be regarded as a hybrid between
the finite-difference and spectral methods, and hereafter will be called the
FD-spectral method.

19The independent variables for this cylindrically symmetric problem were (z,v,, v,,t).

20Rees has claimed that time steps could be taken at least as large as the mean carrier
collision time, At ~ r.. In addition, numerical stability is ensured only if the spatial
discretisation length is large compared to the distance traveled by carriers during a single
time step At (see Appendix B): Az >» Dr;, where ¥ is the mean carrier velocity. Hencs,
space-dependent quantities (the distribution function included) must vary weakly over a
mean free path £y;, ~ 7.
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1.3 Thesis Scope

This work’s primary goal is to establish and test a new algorithm for
direct solution of the BTE in semiconductor device structures. All analyses
will be carried out for the time-independent case; quasi-classical scattering
will be included. A single spherical, parabolic band will be assumed and only
monopolar (electron) transport will be described. Solution of the Poisson-
BTE system will not be attempted; thus a priors specification of the electric
field will be necessary.

The specific objectives of this work fall into three categories:

e The development of an FD-spectral algorithm, with particular atten-
tion to the choice of basis functions, residual-weighting procedures, and
finite-differencing schemes.

e The establishment of a numerical solution procedure for the resultant
FD-epectral equations. Direct and iterative methods will be examined.

e Analysis of the numerical behavior of the FD-spectral method, includ-
ing issues pertaining to stability, accuracy, data storage, and execution
speed.

The thesis is organized in four subsequent chapters. Chapter 2 deals
with preliminary numerical calculations. Two proven methods for direct
solution of the BTE are chosen: an iterative integral method and a finite-
difference method. Calculations are performed for simple problems to gain
familiarity in sclving the BTE; issues relating to the collision operator and
numerical behavior of quasi hyperbolic equations are investigated. Chap-
ter 3 focuses on solution of the low-dimensionality?® BTE by means of the
FD-spectral method. Simulations of various one-dimensional device struc-
tures are accomplished by direct Gaussian elimination of the FD-spectral
equations. Chapter 4 concerns solution of the high-dimensionality BTE by
means of the FD-spectral method. An iterative pseudo-transient method
is presented to simulate transport in a two-dimensional transversally peri-
odic and mirror-symmetric devire structure. Finally, Chapter 5 concludes
the thesis with a summary of important results and ap assessment of the
FD-spectral method. That ciuapter ends with a discussion of numerous mod-
ifications and extensions of the FD-spectral method.

2141, ow-dimensionality” refers to the {r,v,t) domain
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Chapter 2

Preliminary Numerical
Calculations

Investigative numerical calculations have been performed to gain famil-
iarity in soiving the BTE. These calculations are vital for formulation of the
FD-spectral method even though they involve established solution methods.
The BTE, as pointed out in the previous chapter, is a linear integrodifferen-
tial equation. Without the collision term, this equation becomes a standard
hyperbolic partial differential equation, first order in space, velocity, and
time. Numerical solution of hyperbolic equations is extensively discussed in
the literature, especially for problems of low dimensionality [20,21].! The
collision term, however, complicates the solution of the BTE in twe ways.
First, the collision term usually requires a series of integrations over the ve-
locity domain, an arduous numerical task. And second, the mere existence
of the collision term removes the BTE from the well-understood hyperbolic
class of differential equations. Preliminary numerical calculations presented
in this chapter provide information concerning the behavior of typical carrier
distributions in semiconductors as well as “benchmark” solutions that can
be compared with FD-spectral solutions of Chapters 3 and 4.

The preliminary numerical calculations implement two proven solution
methods: the finite-difference method and the Rees integral method. Each
method is well suited for solution of the low-dimensionality BTE, but only
the integral method can take into account the effects of a physically realistic
collision term. The finite-difference method is easier to apply when solving

1That is, involving one through three independent variables, not counting time.
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ballistic problems or when solving problems where the collision term does not
involve explicit integration [see, for example, collision term (2.35)]. The Rees
integral method will be used to solve the space-independent, time-dependent
BTE with cylindrical velocity symmetry, the (v,,v,,t) problem, whereas the
finite-difference method will be used to solve the space- and time-dependent
BTE with a single velocity variable, the (z,v.,t) problem. Independent
variable sets for these test problems have been chosen to facilitate numerical
implementation? and provide reasonably realistic results.

2.1 The (v,,v;,t) Problem

Under certain circumstances the BTE may become space independent.
One such case is when the electric field is 2 directed, spatially uniform,
although possibly time dependent: E= E,(t)é,. The distribution function
is then cylindrically symmetric and depends on three independent variables,
f = f(v,,v;,t). Variation with velocity polar angle coordinate ¢ does not
occur.® Explicitly, the BTE for this spatially uniform problem is

_aj_ _ __qE: af
.  m* dv,

+Cf. (2.1)

2.1.1 The Rees Integral Method
2.1.1.1 Velocity Discretization

Equation (2.1) can be solved by an iterative integral method. The method
used here has been developed and verified by Rees [12]. The Rees integral

2In particular, computer variable storage, execution rate, and program coding issues were
addressed.

3This can be understood by examining individual carrier trajectories. The spatially
uniform electric field points in the z direction and can oaly perturb the z component of
velocity, v,. Collision processes scatter carriers with rotational uniformity about the collision
axis (see Appendix E). The distributior function can vary only in v, and v, not ¢. This
symmeiry car be proved rigorously by examining the invariance of the BTE to rotations
about the v, axis.

4This method should not be confused witk the more general one discussed in Chapter 1,
developed for solving the space-dependent BTE.
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method uses a standard velocity discretization in which the continuous ve-
locity variable, v = v,&, + v,&,, is transformed as follows:

f(v,t) — fi;(2), (2.2)

v, = (£ — 1) Av,,
Vz; = Vso + jAv,,
1=1,---,L,
j=1,---, M.

The discrete velocity domain v;; = v,.¢, + v,;&, constitutes a uniform mesn
with LM cells centered at (v,,v,;) of size Av, by Av,. Since the collision
term entails a continuous integration over velocity variables, the collision
operator appropriately transforms into a discrete collision operator,

Cf — 3 Cisuyefuy(8).- (2.3)
‘l"l

The discrete collision operator C;;i;» operates only on the dummy velocity
indices ¢' and j', and numerically approximates the cortinuous mathematical
operations ertailed in Cf.

2.1.1.2 Time Discretization

Time is discretized, like velocity, by introducing a discrete time variable
h:
fii(t) — &, (2.4)

h
th =t, + 9 At",

u=1

h=0,1,2---.

The quantity #, corresponds to a discrete time sample after initial time ¢,;
the time step At* can be made variable for each time sample as indicated by
the superscript 2. The Rees integral method also requires time discretization
of the electric field,

E.(t) — E*. (2.5)
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2.1.1.3 The Rees Equations

Figure 2.1 depicts the velocity discretization mesh over which iterative
cocmputations are perfermed. For practicality, the velocity domain is made
finite and is enclosed with boundary cells.® Cells not on the boundary are
denoted internal cells.

Only the results of Rees’s method will be presented here since a complete
derivation is lengthy and can be found in Rees’s original paper [12]. As
discussed in Appendix A, the method breaks down into two iterative steps
which are carried out at each internal mesh point. The first step describes
the influence of collisions. An intermediate array g,'?j is calculated:

gy = (A") TN fi5 + 3 Cjust S (2.6)
"I"I

t=1,---,L-1,
Jj=2,--- . M-1.

In the second step, which describes the adcitional influence of the electric
field, g{‘, iz used to calculate the distribution function after a time step Ath:

m‘
go= W[_W(v" _v""l)] i
3
m* m’ j
L™ (______) 3 wagk. (2.7)
qE" gERAR ) S

The summation derives from numerical evaluation of a continuous integral
as detailed in Appendix A.2. In this case, a variant of standard trapezoidal
integration is used with sample weights w), [see formulas (A.12) and (A.13))].
Boundary mesh points are handled differently. In accordance with the
discussion of Section 1.1.2, the proper boundary condition for this problem is
that the carrier distribution must vanish at each boundary node. No iteration
is therefore necessary at boundary mesh points and the distribution function

is set to zero for all time samples:
h =0, (2.8)

(7

5The boundary encloses a large enough region to minimize artificial “edge effects”.
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Figure 2.1. Velocity discretization mesh for the (v,,v,,t) problem.
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kh=0,1,2,---,
1= la"'aLa J= I’M)
t=L, j=1,---,M.
Presentation of the Rees integral method would not | . complete without

discussion of initial conditions. Initial conditions establish the starting point
for subsequent iteration. A natural choice is the equilibrium Maxwellian,

m‘
,-O,- = fo(vij) = N exp (— 2kBTv?j) . (2.9)

f=1,---,L-1,
1=2,-+-,M -1,

This initial distribution must be normalized to yield a desired carrier concen-
tration through specification of the normalization constant W.% Imitial con-
dition (2.9) is appropriate for many applications involving time-dependent
calculations of systems initially near equilibrium. Other iritial conditions
may be expedient when the initial transient is irrelevant, as in steady-state
calculations. An initial condition obtained from a previous, closely related
calculation can greatly enhance steady-state computation time, for example.

2.1.2 The Collisicn Term
2.1.2.1 Polar-Optic Phonon Scattering Rates

For the present problem a single phonon scattering rm.echanism, polar op-
tic, has been selected. Polar-optic phonon scattering arices from the electric
polarization associated with iaitice atoms. Polar-optic phonon scattering
is the dominant scattering mechanism in the central I' valley of gallium
arsenide’ and was selected primarily for sake of physical realism. A brief

9By definition of the distribution function the normalization constant & and the carrier
concentration n are related aa follows: N ffom f:° f: " d¢dv,dv, v, exp(—m*v?/2kgT) = n.
Upon integration, N(2xkpT/m*)3/3 =n. It should also be n.entioned that the velocity
diacretisation mesh is chosen large enough to make (2.9) nearly zero close to boundary
mesh points [vpz, |[vs1], [vsae| > (2koT/m*)1/3], and therefore consistent with (2.8).

"At extremely low temperatures of a few degrees kelvin acoustic phonon scattering be-
comes impcortant.
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discussion along with a derivation of this, and other, phonon scattering rates
can be found in Appendix E ; Section E.4 treats polar-optic phonon scatter-
ing, where the scattering probability rate is shown to be {Eq. (E.24)]

Spo(v,0') =

m*g?wee} — €;1) | Nib(e' — € — hwy) (absorption)
8n2h|v — v'|? (Ne+1)6(¢’ — € + hw,) (emission).

(2.10)
Quantities h,¢€,, €, and w, are Planck’s constant, the static and high-fre-
quency dielectric constants, and the longitudinal-optic-phonon frequency,
respectively. The parameter N, is the Bose-Einstein occupancy factor cor-
responding to a phonon energy hw,: N, =[exp(—hw,/kT) — 1]~!. The func-
tions £ and &’ are simply initial and final carrier kinetic energies, m*v*/2 and
m*(v')?/2. Equation (2.10) contains expressions for phonon absorption and
emission processes.

Polar-optic scattering is inelastic; initial and final carrier energies are not
identical but differ by the phonon energy Aw,.® Furthermore, the scattering
is anisotropic. In other words, the scattering rate varies with angle between
initial and final carrier velocity vectors.®

The total scattering probability rate due to polar-optic phonons is found
upon integration of (2.10) over all possible final states o' [Eq. (E.27)]:

(me)l/zqut(e;l - C;l)
4y/2xh /€

N;In VErVe I Ruwe

Ve Ve F R
VE+VE — hw,

(Net l)ln‘\/g‘\/s— Fuwe *

Apo(€) =

(absorption)

(e — hw,) (emission).
(2.11)

Observe that the total scattering-probability rate is a function of initial en-
ergy or, equivalently, the magnitude of initial velocity. Phonon emission
contributes to total scattering only when carriers have initial energy greater
than the phonon energy, as is ensured by the unit step function u(e — hw,).1°

8The delta functions of in (2.10) are nonsero only when € — ¢’ = :hw,.
9This property is manifested from the presence of the anisotropy term |v — o'|~2 in (2.10).
Note, too, that low-angle scattering is strongly favored.
10Carrier-phonon scattering is characterized by two conservation rules. Conservation of
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2.1.2.2 The Collision Operator

According to Eqgs. (1.3} and (1.4) the collision term, as expressed by the
action of a collision operator on the distribution function, consists of in- and
out-scattering contributions. Upon integration over the symmetry variable
¢, the action of the continuous collision operator can be expressed as

(02_03)1/2
T = [ gyt S0 Er60 8600
(u: 02)1/2
Loy € T/ 40 = €,6,85(6,0)
Ao(€)f(0,8) ~ A,(€) (v, 1), (2.12)

where v, = (2hw,/m*)'/? is the carrier velocity corresponding to the longitudinal-
optic-phonon energy. Abscrption and emission components have been lin-
early combined, and scattering probability rates S,, and Sf, have been cast

in cylindrical coordinates. Refer to Appendix E for a complete derivation of
the in-scattering contributions in (2.12) [Egs. (E.28) through (E.30)]. Total
scattering probability rates A7, and A, are given by the absorption () and
emission (+) entries of (2. 11)

In order to implement Rees’s integral method the collision operator must
be converted to discrete form. Numerical evaluation of (2.12) is conveniently
carried out using the trapezoidal rule [15]. Quantities between mesh points
are approximated via linear interpolation (see Section C.1). Thus, the colli-
sion term takes the form

2 Ciujefitn = Ew# 3o (Vay vi) {w™ (W) fly- () + 1 — w™ (W)} F - (42}

+ Zwﬂ (vlﬂ’ vlJ){w (”’) prt(p) + [1_ w+(”’)]f:v+(y)+l}
po(E'J) h A;ir-o(‘s‘ﬂ'.i) :',;;" (2'13)

for which g;; = m*vj; 2./2 and w, are the trapezoidal integration weights. Sum
limits are specified through correspondence with integral limits in (2.12)

emission. Conservation of momentum states that initial and final carrier-phonon momentum
is preserved to within a reciprocal lattice vector (see footnote 14, Chapter 1): m*v =
m*'y’ £ Ag+nhK, n=0,1,2,---, where hq is the phonon quasi momentum. Phonon quasi
momentum and energy are connected through a dispersion relation w = w(q) for the type
of phonon involved. See reference [6] for further elaboration.
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(which may necessitate additional interpolation). Linear interpolation weight-
ing fractions, w~ and w*, as well as discrete distribution indices, v~ and v*,
are all functions of summation variable; their dependencies are likewise de-
termined through correspondence with (2.12).

2.1.3 Numerical Implementation
2.1.3.1 Velocity Discretization Mesh

Equations (2.6) and (2.7), which define the Rees integral method, have
been solved by iterative scanning over a velocity mesh. In this study the
velocity mesh comprises fixed, uniform rectangular cells; the distribution
function ,’; corresponds to the velocity mesh point (v,,v,;) (see Fig. 2.1).
The largest mesh used in actual simulations was L = 40, M = 80.

2.1.3.2 Solution of the Rees Equations

At each internal point on the velocity discretization mesh a two-step iter-
ation must be performed in order to advance the the distribution function a
single time step At*. A single scan constitutes two separate “sub-scans”, one
for (2.6) and another for (2.7). Boundary mesh points require no iteration.
A “Gauss-Siedel” time-stepping algorithm has been found to yield favorable
results. The algorithm simply requires replacement of % by f/*! on a point
by point basis [that is, over (v,;, vs;) as soon as fi*! is calculated]. For small
time steps the difference compared with updating after each complete mesh
scan—“Jacobi” time stepping—is miniscule. In fact, Gauss-Siedel time step-
ping saves on computer memory in that storage of temporary mesh arrays is
not necessary. An additional berefit of Gauss-Siedel time stepping is good
numerical stability because of its semi-implicit nature.!!

1 Explicit methods are characterised by iterations in which quantities for the next time
step ( f‘.';.'“ in the present case) depend only on information obtained from previous time
samples. Implicit methods, which are generally more stable but more difficult to implement,
depend on information obtained from the current time sample. Semi-implicit methods
depend on information obtained in part from the current time sample and in part from
previous time samples. The method presented here can be shown to be semi-implicit, thus
combining the ease of implementation associated with explicit methods and the increased
stability associated with implicit methods. See reference [22] for additional information.
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2.1.3.3 Numerical Stability

On account of the original BTE being quasi-hyperbolic, an overall con-
straint exists to ensure numerical stability during iterative solution. The
constraint, known as the CFL (Courant-Friedrichs-Lewy) stability criterion,
applies to all situations dealing with numerical solution of first-order hy-
perbolic or quasi-hyperbolic equations [20,21]. A full discussion of the CFL
criterion is given in Appendix C; in simple, intuitive terms the constraint
amounts to the statement that any “physical velocity” cannot exceed the
“mesh velocity”. For the specific problem at hand

qE, Av,
'l-—”-;—l' S F (2.14)

Here, the physical velocity corresponds to the coefficients in the original BTE
[Eq. (2.1)] that multiply gradient terms. The mesh velocity is obtained by
dividing the increment in gradient variable by the time step. Criterion (2.14)
asserts that specification of F, and Av, sets an upper bound on the largest
time step usable; using any larger time step will generate erroneous, ever-
growing solutions.

Highly accurate calculations of time-dependent phenomena naturally re-
quire the use of small time steps. Using small time steps will result in large
computation times. Unfortunately, this situation is inescapable for time-
dependent calculations. Convergence to a steady state can be accelerated by
means of pseudo-transient iteration, however. Initially, time steps are chosen
large, but within stability limits, allowing the system to rapidly “equilibrate”
to an approximate stezdy-state solution. The fact that this initial transient
is of low accuracy (because of large At*) is of no concern. Accuracy of the
approximate steady-state solution can then be ameliorated if the time step is
gradually decreased (At* - 0 as h — oo). Theoretically, vanishingly small
time discretization error (see the next section) can be achieved as long as
the time steps are made smaller and smaller. Steady-state solution of the
Rees equations has been found to be ten to one-hundred times faster than
the alternative fixed time-step iteration scheme.

To conclude this section, a discussion of the iterative velocity mesh scan-
ning procedure is warranted. Iteration over the velocity mesh can occur in

stability associated with implicit methods. See reference [22| for additional information.
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an infinity of scanning patterns.!? Scanning in a left-to-right, top-to-bottom
fashion has proved advantageous (refer to Fig. 2.1). First, numerical index-
ing (i5) of the scan pattern is trivial and thus computer coding is simjli-
fied. Second, and more important, left-to-right scanning allows calculation
of (2.7) in a highly efficient manner. The time-wasting operation associated
with performing the sums in (2.7) can be optimized by storing partial sums
and merely adding a single term corresponding to the current mesh point. In
actual practice, iterative scans involving (2.7) take a small fraction of time
compared with those involving (2.6).

2.1.3.4 Numerical Errors

Numerical solution of differential equations introduces errors in the de-
pendent variable, which arise from the finite-digit representation of numbers
in computer systems— round-off error—and discretization of continuous va-
riables-—discretization error [15]. A complete analysis of the Rees integral
method therefore entails a study of the two types of errors mentioned above.

Numbers stored in modern-day computers are usually represented by a
set of binary digits, one set for storage of the mantissa and another for
storage of the exponent. Each set comprises a finite number of binary dig-
its. Thus mathematical operations cannot provide numerical results which
require resolution beyond the least-significant binary digit of the mantissa
(and the exponent, for that matter). These round-off errors are quantified
by specifying the smallest quantity that can be added to unity the result
of which can still be resolved. In this work, all calculations were performed
on a computer system with a resolution of one part in ten million (single
precision). Iterative solution of Rees's equations yields negligible round-off
error because the error per mathematical operation is extremely small and
each time step entails a relatively low number of mathematical operations
which prevents excessive accumulation of round-off error.!$

A more significant numerical error is discretization error. The discrete
representation of continuous velocity and time variables and hence the car-
rier distribution is the essential starting point for Rees’s integra!l mcthad.

12As a reminder, scanning refers to a systematic sampling of all velocity mesh point to
effect one single iterative time step of Eqs. (2.8) and (2.7).

13R ound-off error can become a serious problem when numerous mathematical operations
are involved, such as a long series of matrix-matrix multiplications.
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It is difficult to obtain a priori knowledge of velocity increments and time
steps (Av,, Av,, At?) which will result in acceptably small absolute error.
Nevertheless, it is possible to self-consistently monitor relative discretization
errors if a series of solutions is examined, each for smaller velocity and time
steps. Monotonically decreasing velocity increments and the time step will
ensure acceptably small absolute errors. Self-consistent error monitcring
does, however, suffer from certain limitations. Decreasing velocity incre-
ments will result in an increase in computer variable storage; decreasing the
time step will result in an increase in computation time (not to mention the
possibility that a decrease in velocity increment may, on account of the CFL
criterion, force use of an unmanageably small time step).

In practice, numerical errors have been found to accumulate during it-
eration of the Rees equations [12]. Unchecked, these errors will eventually
lead to corruption of the desired solution. Normalization scaling can pre-
vent unwanted accumulation. The principle behind this approach is that the
total carrier concentration is expected to remain constant with time. Er-
ror correction is achieved through scaling the distribution function with an
appropriate correction factor:

.0 O
_ z:.','w‘vaﬁ‘fc‘j

g - A°
>, wiwivpfh

The correction factor ¢ is easily calculated by double trapezoidal integra-
tion. It represents the ratio of original carrier concentration at initial time
t, (h = 0) to error-corrupted carrier concentration.!* Equation (2.15) needs
to be applied only when ¢ is significantly different from unity; for example,
calculations carried out in Section 2.1.4 have shown that tens of time steps
may pass before ¢ varies by more than a few percent.

Numerical errors can also be responsible for generating completely un-
physical, negative values for the distribution funrtion. Occurrence of nega-
tive values prevails in regions where the distribution function is extremely
small, typically those of large velocity magnitude. A simple corrective proce-
dure has proved efficacious—“zero clipping”. At the mesh point in question
the distribution function is forced to zero whenever acceptance of the usual

(2.15)

14The appearance of v,; in (2.15) stems from the fact that the velocity volume element in
cylindrical coordinates is d3v = vpdépdu,du,. After integration over the symmetry variable
¢, d%v = 27xv,dv,dv,; the factors of 27 have been canceled in writing (2.15).
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iterative update would produce negative values; otherwise, the iteration pro-
ceeds according to (2.6) and (2.7).

2.1.4 Results and Discussion
2.1.4.1 Execution Rate

Calculations for this section, and, in fact, throughout this thesis, were
performed on an Hewlett-Packard 1000F minicomputer. The HP-1000F exe-
cutes at roughly five one-hundredths MFLOPS (million floating-point oper-
ations per second). Whenever possible, pseudo-transient iteration was per-
formed to enhance calculation rates. Iteration of the Rees equations pro-
ceeded at approximately ten time step scans per second (error correction in-
cluded) for a mesh size of L = 40, M = 80. Tests have shown that evaluation
of collision term (2.13) dominates iterative calculation, so that calculation
time is nearly proportional to the number of trapezoidal integration samples
(~ L).

2.1.4.2 Solution Verification

Verification of solutions generated from any numerical methed is crucial,
and sometimes tedious, especially when analytical solutions are unavailable.
A sequence of tests was undertaken to establish validity of the numerical
solutions. At first, ballistic tests (no collisions) were performed, whereby the
time evolution of an initial equilibrium Maxwellian was studied. In this case a
simple analytical expression for the carrier distribution, given in Eqs. (F.13)
and (F.14) of Appendix F, is available for comparison. Good agreement was
observed between numerical and exact solutions. Most errors were less than
one-tenth of one percent after hundreds of time steps.

The next verification test was performed on the full BTE, coilision term
included. Proper installation of scattering-rate computer routines was checked
through evaluation of the total scattering probability rate from S(v,v") di-
rectly, using numerical integration [refer to Eq. 1.4], as well as comparison
with results given by Fawcett for polar-optic phonon scattering [10]. Further,
steady-state calculations of the velocity-field characteristic (o, versus E,)
were compared with those obtained from Fawcett’s Monte-Carlo method
(10]. Even though Fawcett’s calculations were for the multivalley gallium ar-
senide system, comparison was made over the pre-DNR (differential negative
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Quantsty Value Units

Carrier charge, ¢ 1.62 x 1019 | coulombs
Carrier effective mass, m* 6.10 X 10~% | kilograms
Boltzmann’s constant, kg 1.38 x 107%*° | joules/kelvin
Planck’s constant, i 1.06 x 10~°* | joule-seconds
Lattice temperature, T 300 kelvin

Static dielectric constant, ¢, 1.11 x 107'° | farads/meter
High-frequency dielectric constant, € 9.58 x 10~ | farads/meter
Longitudinal-optic phonon frequency, w, | 5.37 x 10"® | seconds™"

Table 2.1: Physical parameters for I' valley of gallium arsenide, with polar
optic scattering.

resistance) region |E,| < 3 kV/cm.

A final verification test, based on qualitative physical reasoning, was con-
ducted. Solutions were checked for overall consistency of form: velocity and
time variation in a mathematically smooth manner, agreement with initial
and boundary conditions, and rapid “roll-off” for velocities beyond which
polar-optic phonons are generated, v > v,.

2.1.4.3 Numerical Solutions

Numerical calculations, employing Rees’s integral method, have been suc-
cessfully carried out. This section will present the results of a representative
calculation.

Table 2.1 lists the physical parameters used in the calculation. Parameter
values closely agree with the data available for the I' valley of galliuin arsenide
(4,8-10]. Computational parameters are displayed in Table 2.2. The values
given for these parameters have been adjusted to yield acceptable solution
accuracy (less than one-percent relative error). Pseudo-transient iteration to
a steady state was performed, and therefore only the smallest time step is
given.

The piots of Figs. 2.2 and 2.3 depict the steady-state distribution function
versus velocity in two high-symmetry directions'®: one along v, for v, = 0

15Figure 2.3 portrays the distribution as an even function of v, solely for aesthetic pur-
poses. Actually v, is defined for nonnegative values only, so that “negative v,” coincides
with positive v, at a polar angle ¢ = £x.
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| Quantity | Value [ Units |
Electric field strength, E; 5.00 x 10° | volts/meter
| Time step (minimum), At* |1.00 x 1071% | seconds

Number of v, points, L 40 —
Number of v, points, M 80 —_
Cell size, Av, 6.13 x 10* | meters/second
Cell size, Av, 4.60 x 10* | meters/second

Number of iterative scans ~ 3000 —
Average change in f; per
iterative scan (steady state) | ~ 1077 —

Table 2.2: Computational parameters for the (v,,v,,t) problem.

and the other along v, for v, = 0. As expected, the distribution vanishes
at large velocity magnitudes. More importantly, an asymmetry in the v,
dependence of the distribution is evident and arises from the influence of the
z-directed electric field. In addition, optic phonon emission is seen to rapidly
attenuate the distribution for velocities greater than v,. Significant heating
(or broadening) of the distribution is apparent and is chiefly a consequence of
randomizing collisions. Interestingly, the v, dependence of the distribution
shows significant heating (see Fig. 2.3), although the field points in a direction
perpendicular to é,. Again, this feature is produced by collision processes,
which transfer carriers from states with large v, and small v, to those with
small v, and large v,.

The true three-dimensional nature of the carrier distribution is displayed
in the contour plot of Fig. 2.4. It is now apparent that the distribution closely
resembles a distorted ellipsoid. The distortion can be understood as arising
from two factors: the z-directed electric field and the optic-phonon colli-
sion process. Anisotropic polar-optic phonon scattering tends to accentuate
elongation of this ellipsoid because low-angle collisions dominate.

2.2 The (z,v;,t) Problem

Now that some of the issues relating to space-independent solution of the
BTE have been investigated, it is fitting to consider solution of the space-
dependent BTE. In fact, device simulation is intrinsically space dependent;
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Figure 2.2. Steady-state carrier distribution versus v, for v, = 0.
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Figure 2.3. Steady-state carrier distribution versus v, for v, = 0.
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Figure 2.4. Contour plot of steady-state carrier distribution versus (v,, v,).
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hence solution of the apace- as well as the velocity- and time-dependent
BTE is of great importance. The simplest case of a space-, velocity-, and
time-dependent distribution function is f = f(z,v.,t); variation is allowed
along only a single space and velocity dimension.!® Physically, this case
corresponds to a situation in which carriers are constrained to move along
a single, fixed line where collisicns can alter only the magnitude and sign
of velocity. Although physically unrealistic in the context of device simula-
tion, this simple problem possesses many essential attributes that directly
generalize to systems of higher dimensionality.

Consistent with the distribution function’s dependence, only the z com-
ponent of electric field is nonvanishing. It varies in space and time: E=
E.(z,t)e.. In continuous variables, the BTE takes the form

of 9f qE;df
at v’&:c m® dv,

+Cf. (2.16)

One of the more frequently emploved techniques for numerical solution of
differential equations is the finite-difference method. Over the years, much
has been written about this method [15,20,21]. In the following sections the
finite-difference method will be applied to Eq. (2.16). Implementation of the
finite-difference method is straightforward and requires moderate levels of
computation when three independent variables are involved. Moreover, a
detailed understanding of this method is critical for the development of the
hybrid FD-spectral method which will be taken up ir the next two chapters.

2.2.1 The Finite-Difference Method
2.2.1.1 Space and Velocity Discretization

Finite-difference discretization of independent and dependent variables
is analogous to that of Rees’s integral method. A discrete space-velocity
domain is defined, indexed with (17):

f(za Uz, t) _— fij(t), (2.17)

T; = T, + tAzZ,

187n physically realistic systems, as will be seen in later chapters, other components of
space and velocity must be included.
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Vzj = Uz +jsza
i=1,--,L,
j=1--- M.

The above equation is completely anaiogous to (2.2) and should be self-
explanatory.

Various differencing schemes exist for approximating the derivatives in
(2.18). There is the fcrward-difference scheme:

af . f-‘+1:’ — f-’:‘ = At 4.
32 T T =AMl (2.18)
af N f-‘f+1 - fij .

Jv, Avg

Al fij. (2.19)

For convenience, the difference operators Al and A} have been defined. On
the other hand, a reverse-difference scheme also exists:

of o Jii—ficyy . -

of . fizfew . ny, (2.20)
af Pt S

oy — LAl A fi (2.21)

Both difference schemes are of equal accuracy, having a truncation error that
is first order in increment variable.!” Unfortunately, formulas (2.18) and
2.19) or (2.20) and (2.21) will result in a pumerical instability wnen applied
to (2.16), or to any other hyperbolic system for that matter (see Appendix B)
[20,21]. To resolve this diffizulty, the physical origin of each derivative term
must be examined. Each term corresponds to convection of carriers either in
space or in velocity. Flow by convection is always directional, its direction
determined by the sign of the prefactor which multiplies each derivative
term in (2.16). Negative prefactors imply fiow in the direction of increasing
mesh point index and thus reverse differencing should be used. Contraxily,
positive prefactors imply flow in the direction of decreasing mesh point index
and thus forward differencing should be used. Consistent with these remarks

17This is evident after expanding the distribution function in a Taylor series.
For the forward-differcnce representation of 3f/3z, f(z + Az,vst) = f(z,v,t) +
[8f(z,vzyt)/32)Az - (terms of order < 4z?). ‘Therefore, 6f/dz = (fir1; —
fi;)/ Az + (terms of order < Az); other derivative approximations can be handled similarly.
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a “mixed” difference operator can be defined:

o1 Az fi fv; >0 . 4
5; _—) { A:fu if Vzj <0 - Az fl)s
o ALfi aB>0 . .. ‘
avz — { A:;f') if qEz <0 - A”x‘f'J' (2.23}

Difference formulas (2.22) and (2.23) will result in a numerically stable finite-

(2.22)

difference algorithm.!®
The electric field is defined at each mesh point and discretizes as

E.(z,t) — E.(t). (2.24)
And, in the spirit of the Rees integral method, the continucus collision term
transforms into a sum over velocity mesh points v,;», symbolized below:

Cf — 3 Cijifip(t)- (2.25)
1‘)

2.2.1.2 Time Discretization
The time dependence of the distribution function discretizes in a straight-
forward manrer, with variable time samples, according to [compare with

A (2.26)

(2.4)]
fii{t) — i5

h
th =t + 2 AtY,

u=1

h=20,1,2,---.

Conversion cf the time derivative in (2.16) to a discrete representaticn par-
allels the forward-difference scheme of the previous section, except in this

case instabilities are not expected to arise. Therefore,
h41 k
) _ Ji —fi, (2.27)
ot Ath
18Numerical analysts commonly call this differencing scheme *upwinding®, as the dif-
ferencing is in the direction from which the “convective wind" is “blowing” (the “wind”®
componente being given by the pertinent prefactor).
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Discretization (2.27) is simply the conventional forward-Euler formula, mod-
ified for a variable time step [22|. The truncation error per time step is of
order At?. Lastly, the electric field transforms as follows:

E.i(t) — EZL. (2.28)

2.2.1.3 Finite-Difference Equations

At each time sample ¢, a set of coupled difference equations for f,-'}“ in

terms of ,’; can be written. The equations are defined on a uniform rect-
angular space-velocity mesh that extends over a finite line segment in space
and over an infiniie segment in velocity. However, as depicted in Fig. 2.5,
this velocity mesh has been truncated for convenience. Computational cells
with centers (z;,v.;) are of two types, internal and boundary.

Based on the transformation equation of the previous sections, the finite-

difference equation hoiding at each internal mesh point is'®

qEX

f.-';-“ = ‘.'; + Ath(—v,; A% f,.’;. - ;?Afs b+ > Cig ,f;.,), (2.29)
5!

i=2,...,L—-1, j=2-,M—1

Thus, the difference Eq. (2.29) establishes a procedure for numerical solution
of the BTE (2.16), and, unlike Rees’s integral method, incorporates the
effects of drift, diffusion, and collisions in a single iterative step.

At boundary mesh points, alternate equations apply. With reference to
Fig. 2.5 and the discussion of Section 1.1.2, for mesh points along the top
and bottom boundaries

h=0, (2.30)
h=0,1,2,---,
t1=1,---,L, j=1,M.

The mathematically correct condition is f‘-'; =0fort=1,---,L when ¢qFE,; >
0 and j = 1 or when ¢E,; < 0 and j = M; otherwise (2.29) is to be invoked.
This condition is equivalent to (2.30) when the boundary velccities v;; and

19Without loss of generality M is assumed even and the discretisation mesh is assumed
symmetric about v, = 0 (see Fig. 2.5).
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Figure 2.5. Space-velocity discretization mesh for the (z,v,,t) problem.
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vgas are sufficiently large. For the sake of computational efficiency, boundary
condition (2.30) should be used. Meanwhile, for left and right boundary mesh
points,

fi = { Folwm) = Mexp (~gfqvdy) i =1, 5= (M/2) + 1,00, M
N 0 i:L’ j:l’-..’M/z,
(2.31)

h=0,1,2,,

where f, is the equilibrium Maxwellian with normalization constant N. Oth-
erwise (2.29) is to be invoked. Other, more complicated left- and right-
injected carrier distributions are possible; those of (2.31) have proved ade-
quate for these numerical studies.

The final matter of initial conditions must now be resolved. Along the
same lines as the latter part of Section 2.1.1.3, a frequent choice for initial
distribution function is the equilibrium Maxwellian:

£ = folvss), (2.32)

=1, j=13°"1M/2s
t=2,---,L-1,5=2,--- , M -1,
i=L, j=(M/2)+1,--, M.

Occasionally, it may be desirable to use previously calculated results rather
than the above equation.

2.2.2 The Collision Term

2.2.2.1 Fictitious One-Dimensional Scattering Rates

Equation (2.16) governs transport in a physically unrealistic one-dimensional

system, as mentioned before. Consequently, scattering rates that are analo-
gous to those of realistic higher-dimensionality systems must be postulated.
A fictitious scattering probability rate can be deduced by arbitrarily asserting
criteria: (1) the scattering probability rate should depend on only initial and
final velocity states, v, and v, (2) only velocity states with equal magnitude
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should couple (scattering is therefore quasi elastic), (3) scattering should be
isotropic, that is, there should be no directional preference for the final scat-
tered velocity vector v.2,, and last of all, (4) the scattering probability rate
should have a simple mathematical form. Equation (2.33) meets all these
criteria:

See(vzy V) = Sb(vs + v). (2.33)

The subscripts refer to quasi-elastic scattering and the fixed constant S, is
an adjustable “scattering strength”. On account of the quasi-elastic nature
of scattering both absorption and emission rates combine into the single rate
given above.

After integration over all possible final velocities (2.33) gives forth a con-
stant total scattering probability rate,

ch = Sqe- (2.34)

2.2.2.2 Collision Operator

The action of the collision operator on the continuous distribution func-
tion can now be determined. Subtracting the in-scattering from the out-
scattering contribution yields

Cf = S4lf(zy—vzyt) — f(z,vs,t)]. (2.35)
When discretized, (2.35) turns into
Z Cipfl = SeolFhasa-j = 1) (2.36)
J’

for a symmetric velocity mesh (see footnote 19).

2.2.3 Numerical Implementation
2.2.3.1 Discretization Mesh

As previously discussed in connection with Fig. 2.5, a uniform rectangu-
lar discretization mesh has been set up that spans the space-velocity domain
(z;,vz;). Equation (2.29) is iterated via systematic scanning of the discretiza-
tion mesh. In this study, the maximum mesh size was L, = M = 80.
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In order to enhance convergence rates, 2 mapping algorithm was devised
so that the number of cells (and therefore the cell size) could be altered during
iteration. Mapping simply entailed two-dimensional interpolation between
different-sized merhes (see Section C.1). Convergence rates were enhanced
by starting with a coarse mesh and progressively refining the mesh during
ensuing time steps. In practice, the procedure was found to speed up con-
vergence by factors as large as ten.

2.2.3.2 Collection Points

An interesting peculiarity of first-order, quasi-hyperbolic systems is the
existence of so-called collection points.?> When one or more coefficients of
gradient terms in the governing equation vanish, sudden, unexpected behav-
ior may occur. In the BTE (2.16) collection pcints are v,; = 0 and E% = 0.
Anomalies, including step discontinuities and numerical instabilities, have
been observed whenever mesh and collection points coincide. The situation
is easily remedied if the discretization mesh is shifted or, alternatively, if a
small amount is added to the coefficients at each collection point.

2.2.3.3 Solution of the Finite-Difference Equations

The change in the distribution function after each time step is determined
by iterating (2.29) at each internal mesh point. An initial condition begins
the iteration; note, however, that boundary points for which ‘-';. is specified
in (2.30) and (2.31) do not require iteration. According to Section 2.2.1.2,
Eq. (2.29) defines a forward-Euler time-stepping scheme. The dual advantage
of reduced memory requirement and improved numerical stability is obtained
through a modification of the time-stepping scheme. Updated values for
the distribution function replace old values as soon as available in a Gauss-
Siedel fashion. A separate mesh array need not be stored for each time step,
contrary to the standard forward-Euler scheme; at the same time, numerical
stability is improved because the iteration is semi-implicit (see footnote 12).
The numerical errors associated with conversion from the forward-Euler to
modified forward-Euler schemes are insignificant.

20The term “collection” arises from the field of fluid dynamics where it signifies an accu-
mulation of fluid matter.
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Accuracy in time-dependent calculations necessitates small time steps,
thus demanding a relatively large amount of computation. The use of vari-
able time steps can somewhat reduce the computational effort.?! In the case
of steady-state calculation, computational effort can be dramatically reduced
if a pseudo-transient is evolved. Convergence is accelerated by starting with
large time increments (but not too large a8 to violate any CFL criteria; refer
to the next section) and gradually decreasing their size as the iteration pro-
ceeds. A reduction of time-step size will imaprove accuracy in steady-state
solutions.

With reference to Fig. 2.5, an antisymmetric scanning pattern has been
used to iterate (2.29). First, the top half of the space-velocity mesh is scanned
left-to-right, top-to-bottom, and then, the bottom half is scanned right-to-
left, bottom-to-top. This scanning pattern is designed to eliminate nonuni-
formities due to the scanning process itself. Successful results have been
attained using this scanning procedure.

2.2.3.4 Numerical Stability

The CFL stability criterion (see Section 2.1.3.3 and Appendix C) sets
limits for the relative sizes of time steps and space increments. Any quasi-
hyperbolic system that violates the CFL criterion will inevitably develop a
numerical instability. For the case at hand, two CFL stability criteria exist:

Az
Ivzjlmdz < —_At” (2.37)
and . A
v
;n_.."qE:ilmaz < At:. (2.38)

In other words, maximum physical velocities and accelerations need be less
than corresponding mesh velocities and accelerations.

2.2.3.5 Numerical Errors

The finite-difference method, like the Rees integral method, is subject
to round-off and discretization errors. Accumulation of round-off error is

21Fven though the time steps are variable, they are always assumed small compared with
the time to converge to steady state.
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iguorable since there are relatively few mathematical operations per iteration.
This is not the case with discretization error. These errors—originating from
discretization in space, velocity, and time—can lead to false solutions, or
perhaps, a numerical instability.

It is posesible to monitor discretization error by checking the relative
change in the distribution function for successively smaller space-velocity in-
crements and time step (Az, Av,, At*). Except for the difference in the inde-
pendent variables, this self-consistent procedure is identical to to that of Sec-
tion 2.1.3.4, and is therefore limited by the computer system specifications—
memory size and execution rate.

2.2.4 Results and Discussion
2.2.4.1 Execution Rate

All calculations were performed on an HP-1000F minicomputer (see also
Section 2.1.4.1). Execution rates were enhanced using variable time-stepping,
space-velocity mesh mapping, and whenever appropriate, iterating a pseudo-
transient. An execution rate of twenty-five time-steps per second was achieved
for a mesh size of L = M = 80.

2.2.4.2 Solution Verification

A three-level solution verification procedure has been carried through.
This procedure has been established in treating the previous (z,v,,v;) prob-
lem (see Section 2.1.4.2). Verification consists of tests without collisions
(ballistic), tests with collisions, and tests based on qualitative physical rea-
soning.

Steady-state?? ballistic calculations, in which the collision term of (2.29)
is dropped, were compared with available analytical solutions in Appendix F.
Calculated solutions agreed with Eqs. (F.13) and (F.14) to within one per-
cent for constant positive electric fields and to within ten percent for con-
stant negative fields (¢ > 0). The larger error in negative field solutions is
attributable to difficulties in resolving shock discontinuities associated with
the ballistic version of the BTE.?3

321n accordance with thesis objectives, issues relating to time-dependent calculations are
left to future works and will not be addressed here.
23These discontinuities disappear upon inclusion of the collision term.
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[ Quantity | Value | Units |
Carrier effective mass, m* 2.99 x 10~°! | kilograms
Quasi-elastic scattering constant, S, | 2.00 x 10° seconds™!

Table 2.3: Physical parameters for equivalent spherical, parabolic X valley
of silicon, with fictitious quasi-elastic scattering.

After verification of ballistic solutions, the collision term was included.
Despite its simple form, the collision-term computer routine was checked
numerical evaluation of the identity ¥ Cjpfij» = 0 for fij = fo(vzy).

Qualitative physical reasoning was then used for additional verification.
Solutions were checked to obey boundary conditions. Also, the z component
of current density, J,, was checked for apatial invariance.?* Finally, observa-
tion of a bimodal velocity distribution in high-field spatial regions confirmed
the physical fact that the fictitious scattering mechanism has a symmetrizing
influence.

2.2.4.3 Numerical Solutions

This section is devoted to results for a representative finite-difference
solution of the BTE (2.16). Physical parameters for the calculations are
listed in Table 2.3.2° Though the scattering mechanism is artificial, most
physical parameters were chosen to closely agree with those for silicon.?®
Computational parameters are listed in Table 2.4. Only the final minimum
values of space increment, velocity increment, and time step are given for
this steady-state calculation.

A cusped-barrier potential distribution was selected, as drawn in Fig. 2.6.
On either side of the cusp the potential varies quadratically; hence the electric
field is piecewise linear. This potential is similar to that found during the
operation of many semiconductor devices. In fact, the cusp represents an
extreme test of the solution method because real device potentials will tend
to vary more smoothly.

24]p general 8J,/8z = —qdn/3t, where J, = q [ dvz v f(z,vz, t). Under steady-state
conditions, 3n/3t =0, f = f(z,v:); thus J; = constant.

25Here, and in all future calculations, refer to Table 2.1 for the values of ¢,A,kg, and T.

26For simplicity, an equivalent X-point minimum (spherical, parabolic) is assumed.
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Figure 2.6. Potential and electric field versus z.
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| Quantity Value | Units
Time step (minimum), At® | 1.00 x 10~° | seconds

Number of z points, L 80 —

Number of v, points, M 80 —

Cell size, Az 1.25 x 107° | meters

Cell size, Av, 2.75 x 10* | meters/second
Number of iterative scans ~ 2500 —

Average change in f]; per
iterative scan (steady state) | ~ 1077 —

Table 2.4: Computational parameters for the (z,v,,t) problem.

The steady-state distribution functions are displayed in Figs. 2.7 and 2.8.
Figure 2.7 shows how the distribution function changes with v., with z as
a parameter. Figure 2.8 is a three-dimensional representation of the same
distribution function over the entire space-velocity domain. It is apparent
that boundary conditions are cbeyed. The distribution function vanishes
for large positive and negative v, and at z = L., v, < 0; while it becomes
the equilibrium Maxwellian at z = 0,v;, > 0. Near the entrance region
z =~ 0 the distribution function is symmetric and nearly Maxwellian. Carriers
with insufficient energy to cross the potential cusp simply “roll back” to the
entrance region; the symmetrizing effect of scattering is a weak perturbation.
In the region near the potential cusp, the transition region z ~ L,/2, the
distribution changes rapidly versus z and v,. This behavior is primarily
attributable to the sudden reversal of electric field. Beyond the transition
region and toward the exit region z ~ L, the distribution function is highly
asymmetric and in no vay resembles an equilibrium Maxwellian. Its bimodal
structure stems from the simultaneous influence of accelerating fields and
symmetrizing scattering. The secondary peak in the distribution (v, < 0) is
always smaller than the primary one (v, > 0). This is in large part due to
the boundary condition at z = L;,v, < 0.

Carrier transport can be better understood if typical trajectories are con-
sidered. Two types of trajectories are possible. Carriers with insufficient
energy to surmount the potential barrier merely roll up against it and then
back down with the random chance of being scattered to a velocity state of
opposite sign along the way. Some carriers have sufficient energy to surmount
the potential barrier, beyond which they quickly roll down toward the exit
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Figure 2.7. Steady-state carrier distribution versus v., parameterized frcm
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Figure 2.8. Three-dimensional plot of the carrier distribution versus (z, v,).
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region. Random scattering can reverse the direction of some carriers (the
first time after which they are greatly slowed by the large opposing field);
yet, from time to time carrizrs will eventually reach the exit region.

It is fitting to close this section with a brief digression frem which one can
draw direct parallels to the FD-spectral method that compcses the core of
this thesis and which is covered in the next two chapters. As statzd earlier,
the z component or current density should be constant with z. Numerical
integration for J, shows that it indeed is not constant but varies as much as
seven percent from average, with largest deviaticns in close proximity to the
notential cusp. The finite-difference method, as presented here, is not con-
servative, yet it attempts to minimize the spatial variation of current density.
If desired, current density variation car: be reduced by decreasing space and
velocity increments.?’” Conservative numerical formulations are pessible but
are significantly more complicated [23]. Moreover, it is precisely this varia-
tion in current density which permits an accessment of absclute numerical
error. Consequently, so long as the discretization procedure is of sufficient
resolution (in other words, consists of sufficiently many mesh points), eas-
ily implemented nonconservative methods are well-suited for solution of the
BTE.

"Iy the limit Az, Av. — 0, variation in current density becomes vanishingly small. Here,
issues concerning round-off errcr and execution time are agsumed ignorable.
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Chapter 3

Spectral Solution of the
Low-Dimensionality BTE

The methods of Chapter 2 are practical when the BTE takes on a simple
form, that is, no more than two independent variables in space and velocity.
Consider, for example, the finite-difference method of Section 2.2.1. If an
additional space variable were included, iterative scanning would proceed
over a three-dimensional domain (two space and one velocity variables), a
difficult computational task.! Consider now, the Rees integral method of
Secticn 2.1.1. If an additional velocity variable were included, not only would
iterative scanning proceed over a three-dimensional domain, but evaluation of
the physically realistic collision term would involve a time-consuming double
integration (see Appendix E).

Chapter 2 has, however, laid the groundwork from which highly effi-
cient methods for solving the BTE can be developed. The present chapter
is devoted to one such method, the FD-spectral method, first mentioned
in Section 1.2.3. The FD-spectral method, as developed here, applies to
systems of low dimensionality that have a total of one to three space and
velocity variables. In line with the thesis objectives, only solution of the
time-independent BTE will be attempted. To advantage, time-independent
FD-spectral equations will be solved directly in a single one-step procedure,

! Three-dimensional finite-difference calculations are barely feasible on today’s large com-
puter mainframes and array processors; in fact, most medium-sised computers and mini-
computers (the HP-1000F included) are overburdened by these calculations.
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Gaussian elimination.? .

This chapter breaks down into two major parts. In the first part, the
FD-spectral method is applied to a two-dimensional (z,v;) problem. In the
second part, it is applied to a three-dimensional (z,v,,v;) problem. Although
somewhat artificial from the device simulation standpoint, the (z,v:) prob-
lem offers relative simplicity and, using collision term (2.35), should agree
with steady-state finite-difference solutions of Section 2.2.4.3. Once the FD-
spectral method has been established, the more realistic (2,v,,v,) problem,
which incorporates phonon scattering, will be solved. It is this latter prob-
lem that will indicate the overall feasibility of simulating real devices by
FD-spectral solution of the BTE.

3.1 The (z,v;) Problem

Based on the introductory remarks of Section 2.2, the simplest case of
a time-independent, space- and velocity-dependent distribution function is
f = f{z,vs). Hence, variation is permitted only along a single space and
velocity dimension. Consistent with this picture, the electric field can only
have an z component, with possibly an z dependence: E = E,(z)é,. The
BTE for this problem is identical to Eq. (2.18), except for exclusion of the

time variable:
df _qF; 8f
*9z m* dv.

+Cf =0. (3.1)

3.1.1 The FD-Spectral Method

3.1.1.1 Velocity Discretization

When the FD-spectral method is applied to (3.1) velocity is discretized
in spectral fashion (refer to Section 1.2.3). The distribution function is ap-
proximated with a series expansion in N velocity-dependent basis functions
¢, with space-dependent expansion coefficients:

N
f(z,v;) = 21 an(z)Pn(v:)- (3.2)

2In low-dimensionality systems, direct solution of time-independent equations is numeri-
cally efficient compared with iterative golution. The next chapter concerns iterative solution
of high-dimensionality systems.
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From the above equation, it is apparent that knowledge of the N expansion
coefficients is all that is necessary to evaluate the carrier distribution (given
a specific basis set ¢y, -+, dn). Symbolically, this spectral discretization can
be represented as®

f(z,v:) — a(z), (3.3)

{a(z)}n = an(2),
n=1,.--,N.

Relation (3.3) merely states that the distribution function, under a spec-
tral velocity discretization, transforms into a spatially dependent vector field
a(z).

Implicit in this treatment is an a priors selection of the basis set. For the
time being, the basis set is assumed to comprise N successive functions of
a mathematically complete set. Ac Jitional details concerning specific basis
sets will be given in a later section. These basis functions, in general, possess
zeros and extrema that will be taken to increase in number with order n.
Furthermore, it will be assumed that the functions alternate in parity with
increasing order.!

3.1.1.2 Space Discretization

Discretization of the space variable z proceeds according to the finite-
difference method, in a manner analogous to that of Section 2.2.1.1. Space is
divided into L cells of width Az with center points z,; the coefficient vector
a(z) is now defined over a discrete domain:

a(z) — a, (3.4)

z; =z, + tAz,
¢=1,---,L.

3Here, and throughout this work, subscripted curly brackets denote elements of a vector
quantity in the eingle-subscript case, or elements of a matrix quantity in the double-subscript
case.

4These last two properties are true for all basis sets used in this thesis and most of the
standard mathematical sets found in the literature [24]. In general, for an arbitrary basis
set, these properties need not be strictly true.
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In similar fashion, the electric field becomes a function of discrete space, so
that

Ez(x) R Ezc'- (3.5)

Observe that the discrete version of the distribution function can now be
written

filve) = il{a;}mn(v,). (36)

3.1.1.3 FD-Spectral Equations

FD-spectral equations are formulated following the method outlined in
Section 1.2.3. The series approximation (3.2) is substituted into the gov-
erning equation, (3.1). Spatial variables and derivatives are handled through
the standard firite-difference method. Velocity derivatives and collision term
integrals are evaluated explicitly for each basis function. FD-spectral equa-
tions are developed by forcing the velocity residual to zero at N collocation
points v, k= 1,---, N. Collocation points can be chosen to coincide with
either extrema of ¢x or zeros of ¢n41.5 Collocation at either extrema or ze-
ros results in a highly accurate spectral approximation (see Appendix C.4).
Extrema and zero collocation are of comparable accuracy, so for reasons of
standardization, extrema collocation will be adopted here and for the rest of
this work. Collocation should avoid the collection point v, = 0, based on the
observations of Section 2.2.3.2. Conveniently, collection points are avoided
by simply choosing N even.®

The illustration of Fig. 3.1 depicts the hybrid FD-spectral mesh for this
problem. It consists of finite-difference points z;, internal and boundary, as
well as collocation points v,;. At each internal finite-difference point the pro-
cedure described in the preceding paragraph produces the vector difference
equaticns:

—VA*a. 9Es , o
Ta; - — Aa; + Ca; = o, (3.7)

i=2,---,L—1,

51t is assumed that ¢ is available and that each basis function ¢, has n extrema and
n — 1 seros.

8Since the basis functions used here have either odd or even parity, their extrema are
symmetrically located with respect te v, = 0.
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Figure 3.1. FD-spectral discretizaticn mesh for the (z,v,) problem.
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in which a; is an N vector, 0 is the rull vector; and V', A, and C are N x N
matrices with elements

{V }kn = Uz Pn (vsk) ’

{A}am = 8 (028) ()
{C}i“ﬂ = C[¢n(vzk)]a
k,n:]_’...’N.

where the prime superscript denotes differentiation. The vector operator Af
in (3.7) is a direct generalization of the scalar mixed difference operator A%,
first encountered in Section 2.2.1.1.
£ 1 _ { A;‘{a.},, if vy > 0.
{Az ac}k = ] A‘;{a,},, if v, < 0. (3.9)
Coupling to boundary points with ¢ = 1 and ¢ = L must also be treated.
Assume collocation points are labeled k = 1,---,N/2 for v,z > 0 and k =
(N/2) +1,---,N for v, < 0. With Section 2.2.1.3 as a guide, at the left
boundary (see Fig. 3.1) an equilibrium Maxwellian distribution of carriers
is injected. Vector difference Eqs. (3.7) are still valid, but now, coupling to
boundary points with ¢+ = 1 has to be taken into account, for which

{Val}k = vzkfo(vzk)a (3.10)
k=1,,N/2.

The equilibrium Maxwellian f, has already been defined in (2.31). At the
right boundary no carriers are injected, and the following formula allows
coupling to boundary points with ¢ = L:

{Varh =0, (3.11)
k= (N/2)+1,-+,N.

One last issue still needs to be addressed, the boundary condition as-
sociated with large velocity, |v;] — oo. If each basis function vanishes as
|vz] — oo, the boundary condition is automatically satisfied and no new
boundary equations are necessary. If, however, a basis set is selected with
functions that do not vanish as |v;| — oo (for example, a Fourier set) ad-
ditional boundary equations are necessary. They are derived by truncating
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the velocity domain to the finite interval [vze,, ,¥zkn..], Where vs , and
sk, denote minimum and maximum collocation point values, and forcing
the distribution function to zero at its endpoints. Mathematically, the first
and last components on the left side of vector equations (3.7) have to be
replaced”:

E. LI
{-Vaia; - qm—_Aa,- +Ca}tp — ) {&i}nbn(vae)s (3.12)

n=1

k=1,N.

This procedure is somewhat tedious, but has been carried out with success
for Fourier and Tchebycheff basis sets over a finite interval (refer to Section
3.1.4.3).

3.1.2 The Collision Matrix

Of vital importance is linking the previous chapter’s (z,v,,t) problem to
the problem currently at hand. This will allow direct comparizon, providing
an independent means through which the FD-spectral method can be vali-
dated. Obviously, the logical choice of scattering mechanism is the fictitious,
quasi-elastic process described in Section 2.2.2.

3.1.2.1 Matrix Elements

Elements of the collision matrix C are evaluated using formulas (3.8)
and collision term (2.35), noting that the collision operator affects only the
velocity variable.

{C}kn = sqe[¢n(_v:k) - ¢n(vzk)]- (3.13)

As a reminder, (3.13) includes the combined effects of in- and out-scattering
of carriers.

"The injected distribution should be vanishingly small at interval endpoints: folvse) = 0
for k=1, N.
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3.1.3 Numerical Implementation
3.1.3.1 Space Discretization Line

FD-spectral equations are defined on a discretization line. In this study,
the discretization line has been divided into a maximum of eighty (L = 80)
uniform cells with centers z;. Unlike Chapter 2’s finite-difference method,
the FD-spectral equations are solved directly, without iteration; thus, once
specified, the cell size Az is fixed for the entire calculation.

3.1.3.2 DBasis Sets

The FD-spectral method relies upon G priors selection of a basis set.
Basis sets comprising standard mathematical functions have been picked.
In circumstances where closed-form analytical expressions are not available,
extrema collocation points are calculated numerically (see Appendix C.3).
On account of computational limitations, no greater than thirty functions
(N=30} were included in the basis set.

Various representative basis sets are used in this thesis—Fourier, Tcheby-
cheff, and Hermite-Gaussian. The first seven functions of each set are plotted
in Appendix G, Figs. G.1 through G.3. Fourier and Tchebycheff sets are de-
fined over a finite interval and require additional boundary equations (3.12).
The Fourier extrema are distributed to provide uniform interpolatory resolu-
tion throughout the velocity domain. The Tchebycheff set has a nonuniform
distribution of extrema with greater density near the interval endpoints and
therefore provides enhanced interpolatory resolution near interval endpoints
at the expense of decreased mid-interval resolution. Hermite-Gaussian func-
tions are defined over an infinite interval. Also, these functions decay to zero
for infinite argument magnitude, eliminating the need for additional bound-
ary equations. In contrast to the Tchebycheff set, the Hermite-Gaussian set
provides excellent mid-interval interpolatory resolution while suffering from
poor resolution near endpoints.® In practice the first element of the Hermite-
Gaussian set, a simple Gaussian, is matched to the equilibriutn Maxwellian
distribution. Appendix G covers the important mathematical properties of
these three sets.

8 Although Hermite-Gaussian functions are defined on the infinite interval, only the finite
interval (vzk,, . Vak,...] 18 considered here.
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3.1.3.3 Solution of FD-Spectral Equations

Solution of the FD-spectral Eqs.—(3.7), (3.10), and (3.11), with the pos-
sible modification of (3.12)—proceeds by Gaussian elimination [15]. But, be-
fore discussing the finer poinis of this numerical technique, issues pertaining
to calculation of the spectral matrices—V ,A, and C—require examination.

Through proper arrangement of collocation point labels, that is the row
subscripts k, the spectral matrices become two-fold symmetric. This sym-
metry can be exploited to reduce spectral matrix calculation time. The col-
location points, as remarked earlier, are symmetrically located about v; = 0
(see footnote 6). If the spectral matrices are row ordered vzpy(ny2) = —Vza
for k = 1,--+,N/2, then the last N/2 rows of each spectral matrix can be
determined from the first N/2 rows by transposing rows, with possible in-
version of sign. The matrix V contains elements v,z¢,(v.:} that transpose
[k = k+ (N/2), k =1,---,N/2] with parity opposite tc that of ¢, (with
odd parity if ¢, is even or with even parity if ¢, is odd). The matrix 4
contains elements ¢'(v;;) that transpose the same way as V.° Next, the ma-
trix C contains a linear superposition of elements ¢,(v.x) and ¢,(—v,:) that
transpose individually according to the parity of ¢,,.!° Finally, the boundary
vector (3.10) contains elements v.; f,(v:i), and like the spectral matrices, are
two-fold symmetric, transposing with odd parity.

After evaluation of the spectral matrices and boundary vector, the entire
set of FD-spectral equations is ready for solution. The set constitutes a large,

%Functions ¢,, and ¢/, always have opposite parity.
10Closer inspection of Eq. (3.13) reveals that {C}iy(n/2)n = —{C}en if ¢y, is 0dd; if $n
i8 even, {C}x, = 0 for all k.
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block tridiagonal matrix equation with the structure!?

( By S3 N[ e\ [ 8)
Q R3 S as [4]
Q R4 S Gy 0
Q RL—S ) [ 59 3 o
Q B, ; S ar_z o
\ Qi By, J \ L1 J \ o }
(3.14)

Expansion coefficient vectors ay, - -+, @1, and boundary vector 8 are of length
N. Matrix block elements—R;,---, B3, S, S2, Q, and Q,_;—are of di-
mension N x N. By inspection, matrix Eq. (3.14) has a large LN? x LN?
coefficient matrix; fortunately, the systemn is sparse—that is, most of the
matrix entries are zero. This system can be solved efficiently using block
Gaussian elimination, details of which are deferred to Appendix C.5. In
short, block Gaussian elimination involves two steps. The first, forward
elimination, converts the system of equations into one which is block upper-
triangular. Forward elimination proceeds block row by block row for L rows,
each row operation requiring an order N* matrix inversion [15].}? Round-off
error (see the next section) during matrix inversion is minimized through
partial pivoting [15]. The second step, back substitution, involves a series of
M, order N?, matrix-vector recursions to construct the final solution vector
(o2, -, aL-x)T-

3.1.3.4 Numerical Errors

Round-off and discretization errors have been examined in Chapter 2 for
Rees’s method and the finite-difference method (see Section 2.1.3.4). The
FD-spectral method is also subject to these errors.

Round-off error can be significant when the FD-spectral equations are
solved directly, by Gaussian elimination. The principal contribution to round-

11Block elements derive directly from Eqs. (3.7), (3.10), and (3.11). Note, also, coefficient
matrix entries off the three block diagonals are sero.

12«Qrder” refers here to number of multiplications. Multiplication is the dominant com-
putational operation in these calculations.
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off error occurs during forward elimination, this being an order LN3 process
once completed. Because the elimination proceeds from the top to bottom
row, round-off error tends to “trickle” top to bottom, with the latter elements
of the solution vector (@p_;, @r_3,--:) accumulating the largest amount of
error. This type of error can be monitored and in some cases controlled
if calculations are carried out in double precision, in which the number of
binary digits per variable is doubled.!® Instead of resorting to double preci-
sion, round-off error in the present calculation was monitored by means of a
consistency check. Once the solution vector is determinred, the matrix-vector
multiplication on the left side of (3.14) is performed, which is only an order
MN? process. The result is then compared with the right side of (3.14).
Any differences are attributable to round-off error. It has been found using
this check that the magnitude of the vector difference between right and left
sides is usually less than one part in one thousand (see Section 3.1.4.3 for
typical simulation conditions).

Discretization error occurs because of the discrete representation of a
continuous space variable in the finite-difference approximation, and from
the finite, truncated representation of an infinite, mathematically complete
basis set in the spectral approximation. Space and velocity discretization
error can be monitored in the same spirit as that followed in Chapter 2.
Distribution functions, calculated using formula (3.6), are compared for suc-
cessively smaller space increment Az and larger basis set number N. If the
changes in the distribution function are small then discretization error is cor-
respondingly small. Moreover, the question as to whether there are enough
basis functions is readily answered by noting the behavior of the expansion
vector elements {&;},. From general principles, adequate spectral resoluticn,
or equivalently, low velocity discretization error is attained if only the high-
order elements (n &~ N) of each expansion vector (a;, 1 = 2,---,L—1) decay
smoothly to zero. Last of all, the foregoing error monitoring procedures are
limited only by the capabilities of the computer system, namely, memory
size and execution rate.

13The HP-1000F ininicomputer has as word length of sixteen bits. Two words are used
to represent real variables, a twenty-four-bit mantissa and an eight-bit exponent, in sin-
gle precision. Double precision uses four words, a fifty-six-bit mantissa and an eight-bit
exponent.
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3.1.4 Results and Discussion
3.1.4.1 Execution Rate

As usual, all computaticns were performed on an HP-1000F minicom-
puter (see Section 2.1.4.1). An entire FD-spectral calculation consists of
two separate “subcalculations”: spectral matrix evaluation and subsequent
Gaussian elimination of the FD-spectral equations.

The spectral matrix calculation entails evaluation of four block elements
in (3.14), S, S3, Q, and Q,_,; two constituent matrices for R;,'* A and
C; and lastly, the boundary vector 8. Thirty basis functions were used in
most computations. Te accommodate all the spectral matrices in computer
memory, a disk-swapping virtual memory feature EMA (extended memory
access) was implemented. Despite some of the inefficiencies associated with
EMA, a thirty-basis-function spectral matrix evaluation executed in ten to
fifteen seconds real timie.

Overall calculation time was dominated by Gaussian elimination. Mem-
ory enhancement was achieved, as before, through EMA. An additional fea-
ture denoted VIS (vector instruction set) was used. This feature reduces
matrix and vector operation times by means of microcoding.’® Gaussian
elimination of the FD-spectral equations typically took from one to two
minutes of computer time, for an eighty-point space discretization line and
a thirty-element basis set (L = 80, N = 30).

3.1.4.2 Solution Verification

Verification of FD-spectral solutions was carried out in much the same
way as that for the (z,v,,t) problem. A three-level scheme was implemented,
encompassing tests without collisions (ballistic), tests with collisions, and
tests based on qualitative physical reasoning. All calculations used a Tcheby-
cheff basis set and were performed at maximum space and velocity resolution,
L =80 and N = 30. Whenever possible, comparisons with the steady-state
solutions of Chapter 2’s (z,v,,t) problem were made for additional verifica-
tion.

14The matrices B;, ¢ = 2,---,L — 1, are never stored, but calculated as needed from
V,4,C, and gE;;/mn".

18In combination, the rate-reducing EMA and the rate-increasing VIS features result in
an effective execution rate comparable to the baseline execution rate of 0.05 MFLOPS.
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Under ballistic conditions, in which the collision term is dropped, and for
constant electric fields, the FD-spectral solutions were compared with exact
analytical solutions derived in Appendix F [Eqs. (F.13) and (F.14)] . As has
been previcusly observed for the finite-difference calculations of Chapter 2,
agreement between numerical and analytical solutions was good. Negative
electric-field solutions agreed to within one percent. Positive electric-field
gsolutions agreed less well to within ten percent, attributable to difficulties in
the spectral resolution of ballistic shock discontinuities.

This discontinuity resolution issue deserves further attention. Figure 3.2
compares exact and numerical solutions for propagation of a boundary-
injected step diecontinuity under a ten-term Hermite-Gaussian spectral ex-
pansion. The distribution function is spatially constant and is plotted against
v,. Collocation points are depicted by circles. Coilisions are neglected and
the electric field is set to zero. Carriers are injected with Maxwellian dis-
tribution only at the boundary z = 0. The FD-spectral solution oscillates
rapidly near the step discontinuity. This behavior is reminiscent of the Gibbs
phenomenon encountered in Fourier theory [25|. Note, however, that the nu-
merical solutions are extremely accurate near each collocation point.!® This
test not only examines resolution characteristics but also reveals the inher-
ent mathematical robustness of the FD-spectral algorithin when subiect to
severe conditions.

Once the ballistic solutions of BTE (3.1) have been verified, the collision
term Cf can be included for further verification. Although simple in form,
the collision operator was checked for proper transiation to computer code
by numerical evaluation of the identity {C}y; = 0 (¢, o f,, similar to that
described in Section 2.2.4.2)

Additional verification by direct comparison with steady-state finite-dif-
ference solutions of Chapter 2 yielded acceptable results. Errors ranged from
one to three percent over the entire (z,v,) domain. These comparisons were
made in a variety of cases—ballistic, collision-dominated conditicns; uniform,
nonuniform electric fields; and so forth.

To complete the verification process, FD-spectral equations were studied
to see whether their properties concurred with those deduced from physical
reasoning. Solutions were checked to ensure that they obeyed boundary
conditions, the z component of current density was monitored for spatial

18This is expected because the residual R(v.) vanishes exactly at the collocation points
Vg = Ugk-
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Figure 3.2. Exact and numerical solutions for ballistic propagation of a
boundary-injected step discontinuity.
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| Quantity | Value | Units |
Number of basis functions, N | 30 —
Number of z points, L 80 —
Cell size, Az 1.25 X 107° | meters
Average roundoff error in [a] [ ~ 1075 —

Table 3.1: Computational parameters for the (z,v,) problem.

invariance (see the end of Section 2.2.4.3), and collisions were observed to
symmetrize the distribution function. For the most part, all solutions varied
in a continuous, systematic manner throughout their domain, as anticipated.
Under circumstances where step discontinuities in the velocity dependence
of the distribution function occur, physical arguments assert that increasing
the scattering strength ($,,) tends to attenuate and smooth the discontinuity.
This tendency has been directly confirmed.

3.1.4.3 Numerical Solutions

Results from a typical FD-spectral calculation for solution of BTE (3.1)
will Le presented. Physical parameter, computational parameters, and the
potential distribution were chosen so as to obtain exact correspondence with
the finite-difference calculation of Section 2.2.4.3. Results from the Chapter
2 finite-difference calculation should therefore be compared with the ones
given here.

Physical parameters are identical to those of Table 2.3. Table 3.1 dis-
plays the computational parameters. Results are for a Tchebycheff basis set,
although Fourier and Hermite-Gaussian sets yielded similar results. Only
fourteen basis set elements were needed in order to achieve an accuracy
comparable to Chapter 2’s finite-difference method, thus underscoring this
method’s numerical efficiency.

The electric field and potential distribution were the same as those used
previously, and have been plotted in Fig. 2.6. The cusped form of the po-
tential and the consequent step discontinuity in electric field will test the
solution method under severe, though somewhat unphysical, conditions.

Plotted in Fig. 3.3 is the velocity dependence of the distribution function
for a series of spatial positions, ranging from the entrance region z ~ 0 to
the exit region £z ~ L,. As an initial comment, notice the close similarity
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Figure 3.3. Carrier distribution versus v;, parameterized from z
z=0L,.
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between Fig. 3.3 and the finite-difference solution of Fig. 2.7. Direct compar-
ison has shown that both solutions agree to within one percent at entrance
and exit regions, while expectedly agreeing less well, to within three percent,
in the transition region =z ~ L;/2. Boundary conditions are all satisfied.
The distribution function vanishes at large positive and negative velocities;
at the entrance z = 0 it is an equilibrium Maxwellian for v, > 0, and at the
exit £ = L, no carriers are injected, so that it vanishes for v, < 0. Similar
to observations previously made in Section 2.2.4.3 for the (z,v,,t) prob-
lem, the carrier velocity distribution changes shape from a quasi-equilibrium
Maxwellian in the entrance region, to an nonequilibrium asymmetric func-
tion in t' :xit region, changing rapidly in the central transition region. The
symmetrizing effect of scattering is clearly evidenced by the bimodal shape
of the distribution in transition and exit regions. Section 2.2.4.3 contains
a more complete discussion of the results described here, including details
pertaining to the underlying microscopic physical processes that are involved.

Current density along the z direction was determined by evaluating the
first moment of the distribution function according to Appendix I. Current
densities varied, on average, three percent from the mean, with maximum
deviation just after and minimum deviation just before the potential cusp,
both within five percent of mean. This behavior supports the closing remarks
of Chapter 2 and reflects the nonconservative nature of the FD-spectral al-
gorithm. Increasing, singly or simultaneously, the number of space points
and basis functions has been found to reduce current density variation!;
nevertheless, these solutions are accurate enough for the purposes at hand.
Moreover, current density variation serves as an indicator of absolute numer-
ical error. These issues will be reexamined towards the end of this chapter.

To conclude this section, which represents the first application of the FD-
spectral method, the carrier distribution will be viewed from a different, but
equivalent, perspective—transform space. From (3.14), it is apparent that
the FD-spectral method makes available the distribution function expansion
coefficients at each discrete space point. These expansion coefficients are, by
definition, the carrier distribution basis-function transform with respect to
velocity. Figure 3.4 depicts the Tchebycheff transform of this section’s sam-
ple calculation. Expansion coefficients of increasing order (o, az,---, ay)
are depicted with bar lines at a space point in entrance, transition, and exit

17In theory, current density is exactly constant if L — oo and N — oo.
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Figure 3.4. Tchebycheff transform of the carrier distribution in entrance,
transition, and exit regions.
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regions. In the entrance region, the carrier distribution is well approximated
by a Gaussian (that is, an equilibrium Maxwellian) function. Correspond-
ingly, the Tchebycheff set resolves this function with a Gaussian-like ex-
pansion coefficient distribution in transform space.!® In transition and exit
regions, the nonequilibrium character of the distribution function is mani-
fested by an oscillation in transform space. As a final note, the decay in
expansion coefficient magnitude with increasing order implies good spectral
resolution and is therefore a positive indication of solution accuracy.

3.2 The (2,v,,v;) Problem

In the first half of this chapter the FD-spectral methed has been estab-
lished. The BTE was solved for a system with variation in a single space
and velocity dimension, and included a simple fictitious scattering mecha-
nism. In the second half of this chapter, tiie FD-spectral method will be
extended to a system with variation in an additional velocity dimension, and
also, physically realistic phonon scattering mechanisms will be included.

Introductory remarks of Section 2.1 conclude that a physically realistir,!®
spatially homogeneous system with a z-directed electric field has a carrier
distribution that is cylindrically symmetric in velocity. The same can be
concluded about a physically realistic system with additional variation along
the z-axis. If such a system is time independent the disiribution function
takes the form f = f(z,v,,v,) and the electric field can be written E =
E,(2)2,. The BTE for this system follows from general Eq. (1.2) and is
similar to (3.1) in structure: '

v_al__quaf

xaz m av‘ + Cf = 0. (3.15)

18 An analogy can be made here with Fourier theory. The Fourier transform of a Gaussian
is also a Gaussian, and the corresponding halfwidths are inversely related.

19The term “physically realistic® is used here to denote semiclassical systems where car-
riers are free to move in three spatial dimensions. In this work only the previous (z,v.)
problem and Chapter 2’s (z, v,, t) problem are not physically realistic owing to the fact that
carriers are artificially constrained to move along a single spatial dimension.
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3.2.1 The FD-Spectral Method
3.2.1.1 Velocity Discretization

As was done in the preceding (z,v.) problem, the distribution function
can be approximated with a spectral series expansion in N basis functions
®,,, all dependent on the vector velocity variable v = v,€, + v,é,,

N
f(z,0) = z_:lan(z)ﬁ,,(v). (3.16)

Spatial variation in this problem is expressed by the argument of each ex-
pansion coefficient a,,. Expansion (3.16) is somewhat indeterminate since
it does not specify the mathematical structure of ®,(v). An obvious choice
for these basis functions is a sequence of products generated from the mono-
dimensional set of Section 3.1.1.1; hence, Eq. (3.16) is equivalent to the

double series expansion?®
N¢ Ny
f(z,9) = Z E Aem(2)P2e(vp)Pm(vs)- (3.17)
&=1 m=1

The subscripts 2£ and m denote the order of each monodimernsional basis el-
ement (see the end of Section 3.1.1.1). Because of the distribution function’s
inherent even parity in v,, {3.17) includes only the first N, even v,-dependent
constituent functions. In addition, a direct connection between the global in-
dex n and the local indices £ and m can always be established: ap = oyn)m(n)
or, inverting the index transformation, aum = an(e,m).?* Global ar. local in-
dex limits are further related by N = N,N,,. Expansions (3.16) and (3.17)
are simply the multi-dimensional generalization of (3.2). As a last remark,
the basis set ®,, is mathematically complete on account of the constituent
functions ¢;, and ¢,, being themselves complete.

Expansion (3.16) implies, for a given basis set, the distribution function is
determined by a finite number of parameters, the expansion coefficients «,,.
An N-element, spatially dependent vector made up of expansion coefficients

30This expansion is analogous to that found in the Fourier treatment of multi-dimensional
functions [25].

2!Many index transformations—¢(n), m(n), and n(¢, m)—are conceivable, their sole re-
quirements being that they map, in a one-to-one fashion, the N, elements of ¢2¢ and N,
elements of ¢,, onto the N elements of ®,,.
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can represent the carrier distribution. Therefore, under spectral velocity
discretization the distribution function transforms to a vector field as follows:

f(z,0) — a(2), (3.18)

{a(2)}n = an(2),
n=1,---,N.

3.2.1.2 Space Discretization

Space discretization is carried through using the finite-difference method
(compare with Section 3.1.1.2). The variable z is sampled at L finite-
difference points z;. The carrier distribution, and thus the coefficient vector
a(z), is assumed constant within an interval Az about each sampled point.
Expressed in mathematical form,

a(z) — a;, (3.19)
Zz =2, + 1Az,
t=1,.--,L.

Along with this discretization, samples of the electric field must be taken:

E,(2) -— E. (3.20)

Once spac. .ind velocity have been discretized, the discrete version of the
continuous distribution function follows from

filv) = ;{af},,@,.(o). (3.21)

Alternatively, formula (3.21) can be written in double series form with the
use of (3.17).
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3.2.1.3 FD-Spectral Equations

Equations for the a;, the FD-gpectral equations, are developed exactly as
described earlier in Section 3.1.1.3, with the exception of a few minor modi-
fications. Expansion (3.16) is substituted into the governing equation (3.15).
Collocation sets the vector velocity residual R(v:) to zero at N points??
(Vok, ), kK = 1,-+-,N, defined by the positive extrema of ¢,n,(v,) and
the positive and negative extrema of ¢y, (v,). T  s0id the collection point
v, = 0, N,, is taken even.

Before writing the FD-spectral equations, their numerical domain de-
serves brief attention. Schematized in Fig. 3.5 is the numerical mesh that
pertains to this problem. It comprises finite-difference and collocation points.
The mesh exists in a three-dimensional region, and is depicted by an aggre-
gate of planes, defined by the collocation points and positioned at each finite-
difference point. There are only two types of mesh points, boundary points,
on planes associated with space-velocity boundaries (i = 1 and 1 = L), and
internal points, on all other remaining planes.

Since {3.1) and (3.15) have similar form, their resulting FD-spectral equa-
tions are also similar. For each internal point, using the notation of Section
3.1.1.3,

- VAfa,— - qff%‘;Aa’,' +Ce; = 0, (3.22)
i=2,..,L—1,

where A¥ is defined like AZ in (3.9) but with v, replaced by v,;. This set
of coupled vector difference equations is identical in form to that of (3.7). In
terms of the giobal index n,

{V}kn = vxkq)n(v:k) 3

{4} = %f" (o), (3.23)
{C}en = C[®n(var)],
kyn=1,---,N.

Elements of matrix A can be further simplified by resorting to local indices,
which gives 08 (v.:)/0vs = b2¢(n)(Vk)Pin(n)(vsk). The integrals involved in

22Collocation points are located by vectors vy, for which vy = v, + vske,.
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space discretization
line

Figure 3.5. FD-spectral discretization. mesh for the (z, v,,V;) probiem.
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C[®n(vei)] will be approximated in Section 3.2.2.2 by a Gaussian quadrature,
thus converting the continuous operator C into a discrete operator Cg.

Alternate equations apply for coupling to boundary points with ¢ = 1 and
{ = L. An equilibrium Maxwellian distribution of carriers is injected from
the left boundary (refer to Fig. 3.5 for orientation), while no carriers are
injected from the right boundary. Therefore, coupling to boundary points is
effected through

{Vai}r = vaefo(vs), (3.24)
k=1,---,(N/2),
and
{Verki =0, (3.25)
k=(N/2)+1,--,N,
where

f.(0) = N exp (—%vz) . (3.26)

Here, vy = (v?, + v%;)!/? is the magnitude of v, and X is a suitable normal-
ization constant. Also, an even number of symmetrically located collocation
points labeled k = 1,---,N/2 for v,;, > 0 and k = (N/2) + 1,---,N for
v, < 0 has been assumed. o

Before beginning the next section, attention must be paid to one final
detail. All through this treatment, boundary equations for large velocity
regions, or more precisely for points at the plane edges in Fig. 3.5, were
purposefully neglected (see the end of Section 3.1.1.3 for comparison). If a
basis set is selected with the property that all its elements vanish for infi-
nite velocity magnitude, the corresponding boundary conditions will always
be satisfied and no additional boundary equations are required. It is this
assumption, ®,(v) — 0 as v — co, that has been implicit in the foregoing
treatment and will be adhered to for the remainder of this work.

3.2.2 The Collision Matrix

Elements of the collision matrix, C, have to be evaluated in order to im-
plement the FD-spectral method. To obtain approximate correspondence to
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a single-valley model for silicon, scattering due to {intra-valley®?) deformation-
potential acoustic and nonpolar optic phonons will be taken into account.
This will also test the performance of the FD-spectral method when mul-
tiple scattering mechanisms are present. Nonpolar optic and deformation-
potential acoustic scattering arise from lattice distortions accompanying op-
tic and acoustic lattice waves, respectively. Although similar in physical
origin to polar-optic phonon scattering, presented in Section 2.1.2.1, these
scattering mechanisms are not predicated upon lattice ion polarization. Ap-
pendix E, from which all of this section’s formulas are taken, should be con-
sulted for additional information concerning these scattering mechanisms.

3.2.2.1 Deformation-Potential Acoustic and Nonpolar Optic Scat-
tering Rates

The probability-scattering rate associated with deformation-potential acous-
tic phonons is given in Appendix E and is rewritten here [Eq. (E.6)]:

Sa(0,0') = (E;‘;))Z';ﬁffis(e' _e), (3.27)

Some of the above quantities have been defined previously; &, is the acous-
tic-deformation-potential interaction constant, p is the crystal density, and
u is the acoustic wave speed (the speed of sound) in the semiconductor. The
collision process is approximated as being elastic, which means initial and
final carrier kinetic energies are assumed equal®$; thus phonon absorption
and emission processes can be combined. Notice, too, that unlike polar-optic
phonon scattering, the collisions are isotropic and therefore the orientation
of the scattered vector velocity is uncorrelated with respect to the initial
orientation.

Nonpolar optic phonon scattering is an inelastic, isotropic process which,
like polar-optic phonon scattering, includes both phonon absorption and
phonon emission terms. From Appendix E [Eq. (E.14)] the scattering prob-

#3Scattering processes can can be either intra- or inter-valley. Because of the single-valley
assumption, all inter-valley processes transform into effective intra-valley processes.

4 Actually, |¢'—¢| = hw,(g) where huw,(g) is the energy of the acoustic phonon of wavevec-
tor ¢ involved in the collision (see footnote 10, Chapter 2, and references [8,10]).
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ability rate is

n_ (m*)382 Noé(e' — € — hw,) (absorption)
Sol0:) = S { (N, +1)6(' — € + hw,) (emission). (3.28)

The expression Z, is the nonpolar optic phonon interaction constant, w,
is the optic phonon angular frequency, and #%w, is the associated phonon
energy. The Bose-Einstein occupancy factors depend on temperature and
optic phonon energy: N, = {exp(hw,/ksT) — 1|71

Total acoustic and optic scattering rates ensue after integration of (3.27)
and (3.28) over all final velocity states v’. For acoustic phonon scattering

(Eq. (E.T)]

V2(m*)3/*kpTE}
rpulht

Aa(e) = ve (absorp. and emission), (3.29)

and for optic phonon scattering [Eq. (E.15))

Ao(€) = (m*)**E} { NoVe + hw, (absorption)
° V2xpw k3 | (No+1)ve— hw, u(e — hw,) (emission)

These total scattering rates, like those for polar optic scattering, depend only
on initial carrier kinetic energy, € = m*v?/2. The total acoustic scattering
rate varies as the square root of energy and hence is proportional to the
magnitude of initial carrier velocity. This indicates a constant-mean-free-
path collision process for which £n, = v2m*kpTE2/cu*h? [8]. In contrast,
the mathematical form of (3.30) does lend itself to a simple constant-mean-
free-path description; in fact, the optic-phonon mean free path is noticeably
energy dependent.

(3.30)

2.2.2.2 Matrix Elements

Scattering rates (3.27) through (3.30) specify the action of the, up untii
now, ~eneric collision operator C. The action of the collision operator on a
basis set element, taking into account cylindrical velocity symmetry, is
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Cl@a(o)] = Sa [ € daem(y/o? = E)bmin)(6)
u3—p3)1/2
+ $7(v) o) d§ daen) (V2 — V2 — £2)Pmin)(£)

~(2-02)1/2

(v3+03)2/3
t s /-(e;u’)m @€ b2em)(VV? + 03 — £2)bm(m) (€)
— Aa(e)én(v) - A;(E)Qn(ﬂ) - A:(e)@n(v)’ (3.31)

where v, = (2hw,/m")}/? is the carrier velocity correspending to the optic-
phonon energy. Scattering factors S;, S, , and S} are written out in Ap-
pendix E [Egs. (E.8), (E.9), (E.16), (E.18) and (E.19)]. The first three
members on the right side of (3.31) represent acoustic and optic phonon
in-scattering contributions, and the remaining members represent the cor-
responding out-scattering contributions in which A; and A}, respectively,
designate the absorption and emission entries of (3.30).

Closed-form expressions for the integrals in (3.31) are generally not avail-
able. To overcome this difficulty, Gaussian quadrature integration is per-
formed (see Appendix C.2). The net effect is to convert a continuous colli-
sion operator into a discrete one, C4, whereupon the working formula for the
collision matrix elements becomes

{Chin = Ca[Bn(vs)]

= SaD_ wadaen)(\/VE — €2)bmir)(£n)
“
+ 8, (vi) prd’zz(n)(\/ v — v2 — £2)bm(n) (1)
b
+ SF D wubayn)(vh + V2 — E2)m(n)(£4)
»

— Aa(eR)Ba(s) = A5 (€1)Bn(9s) — AH(ex)Ba(vy).  (3.32)

Above, £, = m*v2/2, and quadrature is over an interval centered with re-
spect to the origin £ = 0, with weights w, and samples £,. Sum limits are
determined through correspondence with integral limits in (3.31).
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3.2.3 Numerical Implementation
3.2.3.1 Space Discretization Line

FD-spectral solution of this (z,v,,v,) problem was carried out in essen-
tially the same way as that of the previous (z,v.) problem. Specification of
the space discretization line is identical to that of Section 3.1.3.1: the dis-
cretization line is divided into a maximum of eighty (L = 80) uniform, fixed
cells with width Az and centered at z; (1 =1,---,L).

3.2.3.2 Basis Set

Experience gained from solution of the (z,v.) problem suggests that
Hermite-Gaussian functions form a particularly desirable basis set. As op-
posed to Fourier and Tchebycheff sets, a Hermite-Gaussian set provides good
mid-interval velocity resolution (see Section 3.1.3.2). This is a key require-
ment for approximating the more important distribution function features
commonly found in semiconductor devices. The Hermite-Gaussian set has
an added benefit in that large velocity (v — oo0) boundary conditions are
automatically satisfied. And further, this set is especially effective when the
carrier distribution is near thermal equilibrium.?® For these reasons and an
additional one of standardization, Hermite-Gaussian functions constitute the
set of choice, here and in the next chapter.

In subsequent numerical calculations, thirty basis functions are used, gen-
erated from combination of the first three even, v,-dependent, ard ten, even
and odd, v,-dependent Hermite-Gaussian constituent functions.

3.2.3.3 Solution of FD-Spectral Equations

Equations (3.22) and boundary equations (3.24) and (3.25) make up a
system of coupled vector difference equations. Solution proceeds, as before,
by direct Gaussian elimination. Elaboraticn of the solution technique, how-

A sequence of Hermite-Gaussiar functions can have any independent variable scale
(see Appeadix G). To determine a #,..cific scale factor, the first-order element ®,, itself a
Gaussian, is matched to the equilibrium Maxwellian funstion. Choosing the independent
variable scale in this way is by no means obligatery. In cheory, any tixed scale factor will do;
however, a poor choice will necessitate a comparatively large number of basis set elements
to achieve sufficient accuracy.
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ever, will be postponed until the the topic of spectral matrix evaluation has
been covered.

Collocation mesh symmetry must first be examined. The collocation
mesh is defined by the N coordinate pairs (v,z, v,). The collocation domain
encompasses the semi-infinite plane 0 < v, < 400 and —oo0 < v, < 400,
where the collocation points are symmetrically located about the line v, = 0.
If the spectral matrices—V, A, and C—are row ordered (v,x4(n/2), Vzk+(Nj2)) =
(vox, —Vs) for k = 1,---,N/2, then their two-fold row-symmetric structure
is clearly exposed.

The symmetry of each spectral matrix manifests itself in much the same
way as that already discussed in Section 3.1.3.3 for the {z,v;) problem
and, therefore, will lead to a joint savings in computer memory storage
and calculation time. Each spectral matrix possesses a symmetry in which
elements from the first N/2 rows transpose to the last N/2 rows (k —
k+ (N/2), k= 1,---,N/2) according to a definite parity rule. Elements of
matrix V, vudae(v,e)@m(va), transpose with parity opposite t0 ¢m(vs). Ele-
ments of matrix A, @2e(vee) P, (Vsk), transpose, like elements of V', with parity
opposite to @pu(v,). Elements of matrix C, C4[é24(v,e)Pm(vai)], depend only
on velocity magnitude and thus always transpose with even parity.?¢ Lastly,
the boundary vector on the right side of (3.24), v, f,(vx), is also two-fold
symmetriz and transposes with odd parity.

Once these symmetries are taken into account and all the spectral matri-
ces, including the boundary vector, are evaluated, the next step is to perform
Gaussian elimination on the FD-spectral equations. Fortunately, the equa-
tions have a structure identical to that of the preceding (z,v.) problem.?”
And so, the method outlined in Section 3.1.3.3, forward elimination and back
subastitution of a block tridiagonal system, can be followed.

3.2.3.4 Numerical Errors

Error analysis is virtually the same as that for the (z,v;) problem, and
is fully discussed in Section 3.1.3.4. A few remarks are nevertheless in order.

28 Additional advantage can be taken from the fact that the integrands of Eq. (3.31) have
the same parity as ¢m. Consequently, when $,, haa even parity, C4[®n(¢,m)(vx)] = 0; and
when ¢,, has cdd parity, summations in (3.32) need only be performed over half the original
sample variable domain and then doubled.

37 Additional similarities emerge if {z,v,) and (2,v,,v,) problems are compared in terms
of the global index n as opposed to the local indices £ and m.
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As noted in Section 3.1.3.4, round-off and discretization errors can be mon-
itored by performing various tests: back substitution of the solution vector
(az,---,ar_;)7T into (3.14) and calculating the vector error, or changing the
parameters Az and N (that is, N, or N, or both), and observing the roll-off
in the transform domain. Round-off error in actual calculations was compa-
rable to that obtained in the (z,v;) problem because the same number of
mathematical operations were involved.?® Surprisingly, actual calculations
confirmed that the velocity discretization error was comparable to that ob-
tained in the (z,v,) problem even though significantly fewer basis modes
per dimension were used. This reflects a combination of factors: the supe-
rior effectiveness of Hermite-Gaussian functions in resolving typical carrier
distributions and the relative unimportance of high-order (2¢ and m large)
basis functions in the expansion (3.17).

3.2.4 Results and Discussion
3.2.4.1 Execution Rate

Numerical computations were performed on an HP-1000F minicomputer.
Enhancement features such as EMA and VIS were used whenever possible.
For a thirty-element (.7 = 30, N, = 3, and N,, = 10) Hermite-Gaussian basis
set and an eighty-point space discretization line (L = 80), typical calculation
times were on the order of ten seconds for spectral matrix evaluation and
one minute for Gaussian elimination.?®

3.2.4.2 Solution Verification

FD-spectral solutions were verified by means of the standard, previously
established, testing scheme-—ballistic tests, tests with collisions, and then
qualitative tests based on physical reasoning.

Under ballistic conditions and for fixed v,, the (2,v,) dependence of solu-
tions to the (2,v,,v,) problem is identical to the (z,v.) dependence of solu-

28Here, the parameters L and N are aseumed close, if not equal, for both (z,v;) and
(2, vp, vz) problems.

39The reader is directed to Section 3.1.4.1 for review and should note that much of the
its discussion pertains equally well to the (z, v,, v;) problem except for a few obvious minor
modifications (for example, E,; hecomes E.;).
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tions to the ballistic (z,v.) problem.*® Verification of ballistic solutions was
therefore performed through direct comparison with solutions to the already
verified (z,v;) problem. Both problems incorporated a Hermite-Gaussian
basis set and relevant computational parameters were placed at limits gov-
erned by the (z, v,,v,) problem: I = 80, N = N,,, = 10. Agreement between
solutions was monitored for a variety of electric-field distributions. All solu-
tions to (z,v;) and (2,v,,v,) problems concurred to within one part in one
million, the HP-1000F’s maximum (single precision) numerical resolution.

Verification of the full—collision term included—(z,v,,v;) problem was
carried through after ballistic tests were passed. Proper computer codiny;
of acoustic and optic scattering-probability-rate functions was checked usin;
the self-consistent integration technique described in Section 3.1.4.2. Since
no closed-form or independently calculated numerical solutions to this proh-
lem are available, confirmation of the solution validity was left to the final
verification test.

Boundary regions were checked for correct behavior: f — 0 as v — oo
at the exit 2z = Ly , and f = f, at the entrance z = 0. Spatial invariance
of the z component of current density (see Appendix I) was also checked.
Current density variation was minimal and inversely correlated with basis set
number. Observations rzlating to the overall shape of the carrier distribution,
as mediated by each scattering mechanism, were consistent with physical
reasoning. Acoustic phonon scattering tends to couple equi-energy states
and thus, under certain conditions, a circularly symmetric ridge in the carrier
velocity distribution was observed (see Section 3.2.4.3) On the other hand,
optic phonon scattering tends to mix states with different energy so that
no circularly symmetric structure was observed; instead, general heating
or spreading of the carrier velocity distribution was abserved (see Section
3.2.4.3). Allin all, the FD-spectral solutions corroborated physical intuition,
not only for the cases just discussed, but in many other respects, some of
which have been already discussed in connection with the (z,v;) problem
(see Section 3.1.4.2).

30If C f = 0 the independent variable v, in (3.15) is merely a parameter; otherwise (3.15)
has the same form as (3.1). Note, also, that comparison between these equations implies
the correspondences z ~ z,u; ~ v,, and E, ~ E,.
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l Quantsty | Value Units |

Carrier effective mass, m* 2.99 x 103! | kilograms
Crystal density, g 2.33 x 10° | kilograms/meters®
Speed of sound, u 6.33 X 10° | meters/second

Deformation-potential acoustic ,
phonon interaction constant, £, | 1.44 X 107!8 | joules

Optic phonon frequency, w, 8.38 x 10"® | seconds™"
Nonpolar optic
phonon interaction constant, 5, | 1.60 x 10~® | joules/meter

Table 3.2: Physical parameters for equivalent spherical, parabolic X valley
of silicon, with deformation-potential acoustic and nonpclar optic scatterin.

Quantsty Value Units

e

Number of ¢, constituent functions, N, |3 —
Number of ¢, constituent functions, N, | 10 —

Number of z points, L 80 —
Cell size, Az 1.25 x 107° | ...eters
Average roundoff error in |a;] ~ 107 —

Table 3.3: Computational parameters for the (2,v,,v,) problem.

3.2.4.3 Numerical Solutions

In this final section, results of two representative FD-spectral calculations
will be presented and commented upon.

Tables 3.2 and 3.3 list the physical and computational parameters which
were employed in the calculations. Based on data from the literature,
physical parameters have been adjusted to agree as closely as possible with
those for the silicon semiconductor system [8,9]. Electric field and potential
distributions are plotted in Fig. 3.6. The piecewise-linear electric field and
corresponding cusped, piecewise-quadratic potential distribution resembles
those used in Sections 2.2.4.3 and 3.1.4.3.

In the following plotted results only acoustic phonon scattering has been
included. This way, the weaker, more unusual effects of acoustic scattering
will be revealed and at the same time much of the basic transport physics
can still be covered.
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Figure 3.6. Potential and electric field versus z.
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Carrier distributions have been plotted with spatial position z as a pa-
rameter. Figure 3.7 portrays the variation of the distribution function with
velocity component parallel to the electric field, v,, for a fixed normal veloc-
ity component v, = 0. Figure 3.8 portrays the inverse case, in which v, and
vy are interchanged.®! It is evident that large velocity boundary conditions,
f — 0 as v, — oo and v, — +oo, are satisfied. Boundary conditions assc-
ciated with spatial regions are also satisfied: f = f, for z = 9 and v, > 0;
f=0for z= L, and v, < 0. Moreover, as has been seen in previous calcu-
lations, the carrier distribution can be characterized in three distinct spatial
regions. In the entrance region, z = 0, near-equilibrium conditions prevail
and the distribution function closely resembles the symmetric Maxwellian
distribution. The transition region, near the potential cusp, z =~ L./3, is
typified by a rapidly varying distribution function in all three independent
variables (2,v,,v,). Here, the distribution function departs from a symmetric
Maxwellian shape. By the time carriers have progressed to the exit region,
z =~ L,, the distribution function is strongly out of equilibrium as confirmed
by its highly asymmetric v, dependence. Notice Fig. 3.8 implies that in
this latter region the distribution function becomes smaller toward the exit,
eventually vanishing completely at z = L, and v, = O for all v,. This is
consistent with the fact that the distribution funciion is zero at the point
z = L,,v, = v, = 0 in both Figs. 3.7 and 3.8.%

Asymmetries in the carrier distributions shown in Fig. 3.7 are caused by
the diffusion gradient along the z direction, the accelerating action of the z-
directed electric field, and the symmetrizing influence of acoustic scattering.
The overall spatial behavior of these asymmetrical velocity distributions can
be intuitively understood using a current conservation argument. Since the z
component of current density, that is, the carrier distribution’s first moment,

31Note that, for reasons of aesthetics, the domain 0 < vp < oo has been extended to
—00 < v, < oo where f(2,v,,v;) = f(2,~v,, vs).

32Closer examination of Figs. 3.7 and 3.8 in the exit region shows that the distribution
function actually becomes slightly negative. This has a sinall effect on calculated distribu-
tion moments, and is a consequence of velocity discretization error in approximating the
piecewise-smooth solution at z = L,. The three-dimensional distribution plots which will
be presented later will clarify the nature of this error. The error is usually manifested as
an oscillation (with period on the order of the inter-collocation spacing) which in ordinary
Fourier analysis is known as a Gibbs oscillation [25]. Hereafter, this phenomenon will be
designated as “Gibbs ringing® despite the fact that it originates from a Hermite-Gaussian
set.
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Figure 3.7. Carrier distribution versus v, for v, = 0, parameterized from
z=0to z=L,.
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Figure 3.8. Carrier distribution versus v, for v, = 0, parameterized from
z=0to z= L,.
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is conserved, an inverse relation between average velocity and concentration
is expected to exist. The curves of Fig. 3.7 illustrate this relationship. It
is worth noting that the carrie: distributions of Figs. 3.7 and 3.8 are in a
sense “coupled” by the collision processes. Coupling is evidenced in Fig. 3.8
where significant heating perpendicular to the electric field is seen to occur.
This happens because of scattering from electric-field-accelerated states with
large v, to ones with large v,.

A better visualization of the carrier velocity distribution can be attained
with the aid of Figs. 3.9 and 3.10. Figure 3.9 depicts the carrier distribution
in the entrance region as a function of v, and v,. The distribution function
resembles a bell-shaped equilibrium Maxwellian, in accordance with previ-
ous remarks. The shape of the distribution function is primarily determined
by the injective boundary condition at 2z = 0 and subsequent drift and dif-
fusion of carriers up and then down the potential cusp’s left side (refer to
the Fig. 3.9 inset). On account of the near spherical symmetry of the distri-
bution function, acoustic scattering effects roughly cancel and are of minor
importance.3®* Now, in the exit region the distribution function is heavily
out of equilibrium. Figure 3.10 shows that the carrier distribution has a
peculiar “crater-like” structure. Inside the crater undulations exist due to
Gibbs ringing. The circular form of the crater rim is a direct consequence
of the the equi-energy coupling of acoustic scattering. Notice, too, that the
crater-like distribution is somewhat slanted. This behavior is explained by
the fact that the left half (v, < 0) of the distribution must smoothly and sys-
tematically vanish approaching the exit z = L,, in accordance with boundary
conditions.34

It is informative to examine the two-dimensional Hermite-Gaussian trans-
form of the distribution function. A simpler one-dimensional transform has
been ar earlier topic in Section 3.1.4.3; in this case generalization is séraight-
forward. The transform of the carrier velocity distribution is displayed for

33The term “spherical symmetry® means that the velocity distribution has a dependence
f(z,v) = f(z,¢). Also note that spherical symmetry is not in general sufficient to ensure
cancellation of effects arising from an arbitrary scattering mechanism. What is sufficient to
ensure cancellation, however, is that near-equilibrium conditions prevail, for which f s f,
and then Cf m Cf, = 0.

34To think that the slanting is primarily a result of the positive electric field in the exit
region is misleading. For instance, the large positive field just beyond the potential cusp
(towards the exit) strongl’ perturbs the carrier distribution well before the exit, but no
asymmetric slanting is apparent there.
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Figure 3.9. Three-dimensional plot of the carrier distribution versus (v,,v,)

in the entrance region.
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Figure 3.10. Three-dimensional plot of the carrier distribution versus (v,, v,)
in the exit region.
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entrance and exit region in Figs. 3.11 and 3.12, respectively. Expansion
coefficient vectors are represented with solid bars and arranged according to
increasing local indices £ and m. In Fig. 3.11 quasi-equilibrium conditions
prevail and the Maxwellian character of the distribution function is con-
firmed by the large Gaussian function ccefficient ay;. The other coefficients
aun (€ # 1,m # 1) are extremely small. Their nonzero values are not re-
lated to nurnerical errors, however, but signify small, real deviations from an
exact Maxwellian distribution.3® The transform plot of Fig. 3.12 illustrates
the nonequilibrium situation in the exit region. In order to approximate
the carrier distribution, contributions from basis functions with higher-order
constituents (¢, and ¢,,) are required. As a final comment, both Figs. 3.11
and 3.12 show a gradual decay, or roll-off, in expansion coefficient magnitude
with increasing local index £ or m. This behavior, which relates to issues
of accuracy and resolution, has been observed in the (z,v,) problem and is
typical of convergent spectral approximations.

In a device simulation context it is often necessary to evaluate various
macroscopic physical quantities. These quantities depend on integrals, or
more precisely, velocity moments of the distribution function. A few relevant
quantities are plotted against space coordinate in Fig. 3.13. The plots are
generated from the distribution function obtained in the foregoing example
calculation. Displayed are the carrier concentration n(z), the z component of
current density J,(z), and the average z component of velocity v,(z). And,
included for reference is the electric potential 1(z). Carrier concentration
and current density are just the zeroth and first moments, respectively, of
the distribution function, while average velocity is determined through the
simple relation ¥, = J,;/qn. Moments of the distribution function were eval-
uated numerically by means of the efficient method described in Apperdix 1.
Overall, concentration is seen to decrease monotonically with a concomitant
monotonic increase in average velocity. This behavior follows from the fact
that current density is roughly constant, to within ten percent of average,
throughout the device structure.

Upon closer inspection, minor peculiarities which appear as step discon-
tinuities can be seen in Fig. 3.13. The discontinuities are coincident with the
potential cusp and occur because of the step discontinuity in electric field

350f course, deviations must exist or there would be no net current and no measurable
heating of the :carrier distribution.
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Figure 3.11. Hermite-Gaussian transform of the carrier distribution in the
entrance region.
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Figure 3.12. Hermite-Gaussian transform of the carrier distribution in the
exit region.
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Figure 3.13. Carrier concentration, mean z component of velecity, and cur-
rent density versus z (potential and electric field included for reference).

96



there.3® In addition, there is an apparent increase and decrease in current
density about the potential cusp. Most of the variation in current density is
accounted for near the cusp itself. Such variation is believed to be caused
by the difficulty in resolving the rapidly changing distribution function when
the electric field reverses direction.”

Fundamentally, exact constancy of current density for low-order FD-
spectral approximations (N small) is never realized because the zeroth mo-
ment of BTE (3.15), the current continuity equation, is approximated by
what amounts to be a quadrature integration with samples located at the
N collocation points.?® From the remarks at the end of Section 3.1.4.3, the
variation in current density associated with this nonconservative solution
mathod is not necessarily unfortunate—in fact, it can be used to advantage.
First of all, at the expense of additional computation, current density can
be kept within arbitrary bounds if a sufficient number of basis functions are
included in the basis set. Once current density has been constrained to ac-
ceptable limits, it can be statistically averaged over the space discretization
points 2z, ¢ = 1,---,L. The statistical mean of the J,(z;) therefore repre-
sents the “best” numerical approximation to the true current density, while
the corresponding statistical variance not only indicates the relative error in
current density but also the total absolute numerical error (round off and
discretization) in the distribution function f;(v) itself.

Up to now optic phonon scattering has not been included in the calcula-
tions. For the sake of completeness, a quick overview covering the salient
properties of carrier distributions under the dominant influence of optic

38Discontinuities have been completely eliminated by uaing a smoother electric-field dis-
tribution. Interestingly encugh, it has been found that at the potential barrier peak any
discontinuity in the electric field or its derivatives [E(z), EY(2), - -] i8 directly reflected with
a corresponding discontinuity or derivative discontinuity in carrier distribution moments.

3TNot only field reversals of sudden, discontinuous nature are referred to here, but alsc
those which occur in a smooth and gradual fashion, albeit over a relatively narrow spatial
region.

381f necessary, a conservative FD-spectral scheme can be formulated. Spectral matrices
would be determined through evaluation of of N successive moments of the velocity resid-
ual fd% R(v)u;"lvg‘l, p=1,---,Ny and ¢ =1, -+, Ny,. This integral method suffers,
however, from an increased computational burden in perforining moment integrations and 2
loss of symmetry in the resalting spectral matrices. (For example, calculation of the collision
matrix would entail the arduous task of numerically integrating over four or more dimen-
sions.) These disadvantages can be disastrous when attempting to solve high-dimensionality
problems.
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phonon scattering will be given. Calculations have carried out in which
acoustic and optic scattering have been both included. Scattering parame-
ters, acoustic and optic, are listed in Table 3.2. In large part the strong influ-
ence of optic phonon scattering resulted in bell-shaped, Gaussian-like carrier
distributions. In the entrance region the carrier distribution closely resem-
bled the equilibrium Maxwellian. Towards the transition and exit regions the
carrier distribution has been found to become progressively broader because
of carrier heating, yet still Gaussian-like in shape.®® Unlike the the previous
calculations (including only acoustic phonon scattering), no unusual crater-
like distributions were observed. The three-dimensional plot of Fig. 3.14 is
a good examnple of the relatively featureless carrier distribution in an optic
phonon dominated system. This plot shows the velocity distribution in the
exit region and exactly corresponds to the situation depicted in Fig. 3.10
for the optic-phonon-free case. It is apparent that that the optic phonon
scattering process has a “crater-filling” effect that comes about from a. large
amount of inelastic “energy mixing” during collisions. Energy mixing tends
to smooth out any features in the distribution function that vary rapidly in
velocity.*® Observe also that a certain amount of Gibbs ringing is evident.
Similar to what was seen in the acoustic scattering case, Gibbs ringing arises
from the difficulty in satisfying the exit boundary condition f =0 for z = L,
and v, < 0 between collocation points. Finally, it should be mentioned that
additional properties of the carrier distribution in this model silicon system
can be inferred from the next chapter’s closely related problem.

39This behavior is typical in silicon systems and has been independently observed by other
investigators (26].

4O1ndirectly, by means of diffusion (or more precisely, convection), features which vary
rapidly in space are smoothed as well
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Figure 3.14. Three-dimensional plot of the carrier distribution versus (v,, v,)
in the entrance region with optic scattering included.
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Chapter 4

Spectral Solution of the
High-Dimensionality BTE

In the previous chapter the FD-spectral method was applied to systems
with relatively few independent variables. As a consequence, the result-
ing FD-spectral equations could be solved directly, by means of Gaussian
elimination. But many semiconductor devices of current interest do not
fall into the category of low-dimensionality systems; to the contrary, they
are inherently high-dimensionality systems, with at least four independent
variables.! FD-spectral equations for high-dimensionality systems are effi-
ciently solved using iterative techniques. Direct solution techniques, such as
Gaussian elimination, quickly become inefficient on account of the large FD-
spectral equation coefficient matrix and the concomitant loss of tridiagonal
symmetry.2

This chapter is solely concerned with solution of the steady-state (time-
independent) BTE. The iterative pseudo-transient methods first introduced
in Chapter 2 will be extended to solve FD-spectral equations. A five-di-
mensional (z,y,v;,y,v,) problem, which includes both acoustic and optic
phonon scattering, will be treated. The (z,y, v, vy, v;) problem will be set up
to describe transport in a device structure periodic and mirror-symmetric in
z and should be a good basic model of the silicon permeable-base transistor

!The maximum number of independent variables is seven (per band): ir Cartesian coor-
dinates, three space (z,y, z), three velocity (vg, vy, v;), and time ¢.

2The coefficient matrix associated with FD-spectral solution of high-dimensionality sys-
tems is generally Elock banded. Refer to Section 4.2.3 for an example.
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[4], a device that is presently under active research and development. There-
fore, this chapter’s results provide a true test of the FD-spectral method
when it comes to simulation of real, two-dimensional semiconductor devices.

4.1 The (z,y,v;,vy,v,) Problem

In contrast to Chapter 3’s (z,v,,v,) problem, variation is now permit-
ted throughout a two-dimensional spatial plane. Velocity variation is in-
tertwined with spatial variation and thus any physically realistic system
with two space variables must also possess three velocity variables. The
distribution function for this system is f = f(z,y,v:,vy,v;) in Cartesian
coordinates. Two-dimensional spatial variation further implies that the ve-
locity dependence of the carrier distribution is mirror symmetric about the
(vz,vy) plane: f(---,v,) = f(-+-,—v4)3% hence, for calculation purposes the
phase-space domain will be restricted to v, > 0. In line with the assumed
distribution function dependencies, the electric field can vary with z and y
only; vectorially, E = E,(r)é. + E,(r)é, where r = zé,+yé,. The continuous
version of the BTE can be expressed

2}—=—v-V’,}'——q—E'-V,,j'~+-C)‘. (4.1)

or m*
Here, v = v,¢, + v &, + v,¢, is the vector velocity variable and C is the usual
collision operator. More precisely, Eq. (4.1) is simply the steady-state BTE,
modified for pseudo-transient evolution. The parameter 7, pseudo time, can
be envisioned mathematically as a time variable for a time-dependent dis-
tribution f = f(r,v;7). Nevertheless, r has no physical significance in rep-
resenting actual time; its introduction merely facilitates iterative numeri-
cal solution of the steady-state, time-independent BTE—that is, (4.1) with

3Symmetries in the distribution function can be clearly understood by considering indi-
vidual carrier trajectories. (The following argument applies to time-dependent systems as
well) Drift and diffusive effects only alter the v, and v, components of carrier velocity. The
influence of collisions is to alter not only the v, and v, components of carrier velocity but
also the v, component. Thus, all three velocity variabies are coupled through the BTE’s
integral collision term. Actual scattering processes change a carrier’s z-directed velocity by
amounts that have an equal likelihood of being positive or negative. Any ensemble of carri-
ers therefore possesses a rairror symmetric velocity distribution about the (v., vy) plane, at
all points in space. (The discussion of Appendix H may be helpful in better understanding
the relationship between carrier trajectories and the distribution function.)

104



8f/8r = 0. [See Sections 2.1.3.3 and 2.2.3.3 for a discussion of the pseudo-
transient method in the context of the (v,,v,,t) and (z,v.,t) problems.]

4.2 The FD-Spectral Method

4.2.1 Velocity Discretization

Application of the FD-spectral method to BTE (4.1) requires spectral
decomposition of the distribution’s velocity dependerce:

f(r,o;7) = ; an(r;7)®,(v), (4.2)

in which elements of the velocity basis set and space- and pseudo-time-
dependent expansion coefficients are denoted ¢, and «,, respectively. Upon
generalization of the arguments presented in Section 3.2.1.1, the basis func-
tions can be expressed in terms of monodimensional products; therefore,

N, N¢{ Npa

flro3r) 2 3230 3 cem(ri7)be(v2) $e(vy) $2m (v2)- (4.3)

x=1¢=1m=1

The the above triple-series expansion is a three-dimensional generalization
of (3.17). Constituent functions ¢.,d,, and ¢, derive, respectively, from
the first N, (even and odd), N, (even and odd), and N,, (even) elements
of a monodimensional basis set; even v,-dependent constituent functions are
included, in accordance with comments made in the previous section. An as-
sortment of transformation functions link the global index n of (4.2) with the
local indices x, £, and m of (4.3). In complete analogy with what was done for
the low-dimensionality problem in Section 3.2, a relationship exists between
the expansion coefficients: an = ag(n)e(n)m(n) 21 Cxem = Cn(x,em)- Upper lim-
its on global and local indices are connected through N = N.N,N,,. Notice,
also, that the basis functions ®, are mathematically complete because the
constituent functions belong to a mathematically complete set themselves.
It is evident that the distribution function f(r,v;7) and the expansion
coefficients an(r;7) contain equivalent information. Spectral discretization
of velocity thereby transforms the distribution function to a pseudo-time-
dependent vector field:
f(r,v;7) — a(r;7), (4.4)
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4.2.2 Space and Pseudo-Time Discretization

The remaining variables ¥ and 7 are discretized through the customary
finite-difference procedure. Here, solutions to the BTE are sought over a
fixed rectangular space mesh, L points in £ by M points in y. Hence,

a(r;7) — a;i(r), (4.5)

T, = z, + 1Az,

Yi = Yo + JAY,
i=1,---,L,
j=1,---, M.

Alcong with discretization of the distribution function’s independent space
variables the electric field transforms as

E(f) g Ez.','éz + E,,.-,-é,. (4.6)

As touched upon earlier, pseudo time 7 aids in iterative solution of the
time-independent BTE. Pseudo time can be treated like a real physical time
variable for purposes of numerical algorithm development. Along the semi-
infinite pseudo-time axis the expansion coeflicients further discretize accord-
ing to

a'-j(r) —_— a:-;-, (4.7)

h
Th=To+ 3 ATY,
u=1

h=0,1,2,---.

In this case a finite-difference discretization of pseudo time has been per-
formed with a variable sample interval AT%.
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Evaluation of the discrete distribution function is now possible starting
from either expansions (4.2) or (4.3). From (4.2)*

i5(v) = Z_:l{a?,-}n@n(v)- (4.8)

4.2.3 FD-Spectral Equations

To develop a set of FD-spectral equations, substitution of expansion (4.2)
into governing equation (4.1) is carried out. This procedure has already
been outlined in Section 1.2.3 and is a direct extension of what was done
for the (z,v,,v;) problem. In this instance, the residual R(v.) is forced to
vanish at a set of N collocation points (vzs,vyk,vse), k& = 1,---, N, where
the vy are now three dimensional. Collocation points are determined by all
possible combinations of extrema firom constituent functions ¢p,_, ¢n,, and
$2n,. (positive extrema only). As is usual practice, N, and N, are taken even
to avoid collection points v, = 0 and v, = 0.

The FD-spectral equations are defined over a hybrid finite-difference-
collocation mesh. Figure 4.1 illustrates this numerical domain. It consists of
a “finite-difference plane” in which each finite-difference point r;; connects
to a “collocation cube” comprising the v,. There are basically two types of
mesh points: internal and boundary. Boundary points are associated with
the collocation cubes that emanate from finite-difference points at spatial
boundaries, 1+ = 1,L and j = 1, M. The majority of mesh points, however,
are designated internal points, which includes all the remaining nonboundary
collocation cubes, t =2,---,L—1and j=2,---,M — 1.

At each internal mesh point the FD-spectrai equations have the vector-
difference structure for a single pseudo-time step shown below:

<A
fij=-VA.,a}, - WA«

15 N

Ao qEi;

A ——

E.,..
Aol — ‘—I-ﬂT’:‘iBa?j + Calj (4.9)

and N
o' = o + AT,

- (4.10)

41t will be seen later that the time-independent distribution function is approximated by
f‘-';(v) for h — oo, the “steady-state” discrete distribution function. Therefore, the discrete
distribution function in (4.8) should be thought as being independent of pseudo-time index
h in an asymptotic sense.
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Figure 4.1. FD-spectral discretization mesh for the (z,y, v,,v,,v,) problem.
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i=2,---,L-1,
=2, M~1

A single pseudo-time step requires two “subcalculations”: (4.9) for f:: given
al, and then (4.10) for aj"'. These vector equations are a generalization of
(3.22), and presently incorporate additional space and pseudo-time variables.
The vector quantity f:', represents the action of drift, diffusion, and colli-
sion terms on the right side of original BTE (4.1). Improved second-order
accuracy in spatial finite-difference derivatives is attained through central

differencing [15], whereby

1

4A.af; = ﬁ—z(aﬁu —a! ), (4.11)
.1 A A

Aua:';' = ﬁ‘y‘(aqﬂ - aij—l)' (4.12)

Both of these formulas have & spatial discretization error which is second
order in each respective increment variable, Az or Ay. Written out in full,
the spectral matrix elements are

{V}kn = vzk@n(vk)y {W}kn = vkan("k),

(Ahin = Zo2(00), {Bhen = Zo2(00)
{Chin = C[&n(01) (413
k,n=1,---,N.

Elements of mairices A and B can be further reduced by converting to lo-
cal indices: 89,(v:)/0v, = ¢ “)(vzk)m(,,)(v,,k)(ﬁgm(,,)(v,b) and 8®,(v.)/dv,
= ¢K(n)(v,k)¢'t(n)(vyk)¢2m(n) (v,,,S. The collision operator will be expounded
upon later in Section 4.3.2, and a discrete form labeled C4 will be introduced.
The update equation for the expansion coefficient vectors, (4.10), needs
additional explanation. First of all, the matrix T is called the transformation
matrix. This N x N matrix enables transformation from an N vector, whose
elements are the the distribution function evaluated at each collocation point,
to the expansion coefficient vector, for any discrete space point and pseudo

time (1, 7; h):
al, =TfF, (4.14)
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{f:;}h = i’;(vk)’
k=1,--,N.

The transformation matrix is readily determined from formula (4.8), which
gives its inverse:

{T7 }an = Bn(vs). (4.15)

It is therefore evidert the discrete distribution function can be equivalently
represented with either of two vector fields, a?j or ff', These representa-
tions will be called, for sake of brevity, « and f representations. Update
equation (4.10) is simply the first-order forward-Euler formula (see Sec-
tion 2.2.1.2) for 2 single, variable pseudo-time step in the a representation
of the carrier distribution.®

Second, the forward-Euler pseudo-time stepping scheme has a discretiza-
tion error of order Ar” for the hth pseudo-time step. This does not match
the second-order spatial derivative azcuracy of difference formulas (4.11) and
(4.12). Since the iarge-h behavior of the distribution function is of sole con-
cern, evolution of the pseudo transicnt is irrelevant (as long as a stable steady
state is achieved). Thus, a first-order pseudo-time stepping scheme is, in fact,
desirous because of its simplicity and relative insensitivity to numerica! in-
stability (when compared with higher-order, explicit or implicit, schemes).
In addition, the variable pseudo-time step feature can enhance convergence
rates if comparatively large step sizes are used during the initial pseudo
transient.

To completely specify the FD-spectral equations, boundary conditions
must be incorporated. Along the front spatial boundary (refer to Fig. 4.1) a
carrier distribution corresponding to an equilibrium Maxwellian is injected.
Along the rear spatial boundary no carriers are injected. Coupling to bound-
ary points with ) = 1 and j = M is effected by setting

h _ vykfo(vk) k= 1,“‘,N/2,
{Wag’l}k - { {W&:‘z}k k — (N/z) + 1,. . ,N, (4.16)
1t = 1,--- ,L’

50n substitutior of (4.2) into (4.1), the continuous pseudo-time derivative yields the
rate of change of the distribution function at each collocation point (for ¥ = vx). These
derivatives can be arranged in vector form; after forward-Euler discretization they become
(f?j+l - ff'j)/Ar". Multiplying the residual equation through by T produces the desired
result, (4.10).
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where the equilibrium Maxwellian is

m‘
fo(vr) = N exp (— ZkBTv:) , (4.17)
and .
h _ {Wa"M_l}k k = 1,"‘,N/2,
{(Wagyde = { 0 k= (N/2)+1,-,N, (4.18)

i=1,---,L5

The quantity N is a suitable normalization constant and v; is the veloc-
ity magnitude, (v3, + v, + v},)'/?, at the kth collocation point. All the
above equations have been written assuming an even number of symmet-
rically located cellocation points labeled k£ = 1,-.-,N/2 for v, > 0 and
k= (N/2)+1,--+,N for v, < 0, which will be adhered to throughout the
rest of this chapter. Additional equations are needed when conditiens at the
left and right spatial boundaries are incorporated (refer again to Fig. 4.1 for
orientation). For this problem spatially periodic symmetry in the z direction
will be presumed, with the left and right spatial boundaries being planes of
mirror symmetry. This implies that no net carrier flow across these bound-
aries can occur. Mathematically, carriers are regarded as being specularly
reflected upon interaction with either the left or right boundary. Appendix H
contains a thorough analysis of the this mirror-symmetric boundary condi-
tion. The essential result of the analysis is that the carrier distribution
possesses even v, parity at left and right boundaries {see boundary condition
(H.3)] It is convenient to situate the actual physical boundaries half-way be-
tween the boundary (mesh) points at z; and z; and the internal points z,
and zy_j, respectively. In this case (4.9) and (4.10)—modified by bound-
ary Eqs. (4.16) through (4.18)—remain valid for indices 1 = 2, L — 1 and
7 =1,---,M. Coupling to boundary points can still occur, for which the

8The second line [k = (N/2) + 1,---, N| of (4.16) and the first line (k = 1,---, N/2) of
(4.18) are artificial boundary conditions. They arise from using a second-order-correct finite-
difference formula (4.11) or (4.12) to approximate continuous first-order spatial derivatives.
They are purely a manifestation of the numerical approximation process and are not associ-
ated with any of the *physically correct” conditions that would be applied in an analytical
treatment of the contiruous BTE (4.1). The artificial boundary conditions are expected to
have a minimal effect on solution accuracy (at least much smaller than the improvement
obtained by replacing first-order differencing formulas with those of second order).
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(v.-symmetry) expansion coefficient relations

{a?}n = {ad;}n(-1)" 1 (4.10)
and
{eh;}n = {a}_y;}n(-1)""71 (4.20)
n = 1, SN N,
j = 1$ ttty Ma
must hold.”

Boundary conditions for large velocity regions that do not include any
spatial boundaries—that is, the collocation cube faces at internal mesh peints
in Fig. 4.1—have been neglected. This is permitted, because it is assumed
that the basis functions decay to zero for large (infinite} velocity magnitude.
A similar situation has been faced in connection with the (z,v,,v,) problem
(see the end of Section 3.2.1.3}.

Bulk iteration equations {4.9) and (4.10), along with boundary equations
(4.16) through (4.20), are incomplete without initial conditi~as in pseudo
time. Only a first-order pseudo-time derivative appears in BTE (4.1); hence,
a single initial condition is sufficient. Given no a priors information with
regard to the form of the final steady-state distribution function, an equilib-
rium Maxwellian distribution offers a reasonable starting condition at h = 0.
In terms of vector expansion coefficients,

a?j = Tfoa (4'21)

{fo}k = f0(vk)a

i=1,---,L
j'——l””sMs
k=1,---,N.

Of course, an alternate initial condition could prove superior if information
concerning the form of the final steady-state distribution function is available.
For example, once the steady-state distribution function has been calculated

"The above relations follow directly from boundary conditicn (H.3) and expansion (4.3).
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using initial condition {4.21), it (or any of its transient pseudo-time samples)
can be used as an initial condition for any subsequent, closely related cal-
culation. From actual experience, this procedure has been found to greatly
enhance steady-state convergence rates fcr pseudo-transient iteration of the
FD-spectral equations.

4.3 The Collision Matrix

Collision phenomena are incorporated into this iterative formulation of
the FD-spectral method through the collision matrix C in (4.9). Elements
of the collision mairix depend on the collision operator C through (4.13). In
following with the analysis of the (z,v,,v,) problem, the same single-valley
model of the silicon semiconductor system, which includes deformation-
potential acoustic and nonpolar optic phonon scattering, will be used. Details
of this model have been covered in Section 3.2.2; supplementary information
can be found in Appendix E.

4.3.1 Deformation-Potential Acoustic and Nonpolar Op-
tic Scattering Rates

Deformation-potential acoustic and nonpolar optic phonon scattering rates
have already been presented in Section 3.2.2.1, Egs. (3.27) through (3.30),
and will not be rewritten here. The primary point of difference between the
collision term for Section 3.2’s (z,v,,v,) problem and the present problem is
that the velocity vectors v and v' now depend on three Cartesian variables

d 8
vz, vy, and v,.

4.3.2 Matrix Elements

The action of the collision operator on a basis set element involves inte-
gration over constant-energy “shells” in velocity space [according to (3.27),
(3.28), and general formulas (1.3) and (1.4)]. In this instance

8For instance, £ = m*v?/2 where v? = v2 + v2 + v? in scattering rates (3.27) through
(3.30).
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C[®n(v)]

[ ]S dgan su(eno)

~(v3-n3)1/3

X Pr(n)(€) Pen) (M) P2m(m) (/2 — €2 — 97)

(02_03)1/2 (uz_"g_,,z)l/z
+ / dgdn S7(€,1,)

—(v3—03)1/3 J—(v2—y3—n2)1/3

X ) (€) Bem) (1) B2mimy (/07 — v2 — €2 — 1?)
02 ug 1/3 02 og_ 3\1/2
[T [ dedn SH(Em0)

—(v3+4v3)1/3 J_(v34u3—g3)1/3

X ) (€) Betm) (1) Pamim) (/02 + v2 — €2 — 72)
 A(€)Ba(9) — AT(€)Bn(0) — AT(€)Ba(v).  (4.22)

+

Complete expressions for the scattering factors S5, S, and S} are given in
Appendix E [Eqs. (E.10), (E.11), (E.17), (E.20), and (E.21)]. The first three
members on the right side of (4.22) are the acoustic and optic in-scatiering
contributions, while the remaining three members are the corresponding out-
scattering contributions (see Section 3.2.2.2). Advantage of the mirror veloc-
ity symmetry has been taken in writing (4.22) since its integrals are actually
performed over constant-energy half-shells (v, > 0) and the result then dou-
bled. Clearly, (4.22) is nothing more than a generalization of the (2,v,,v,)
problem’s (3.31).

The chances of evaluating the integrals of (4.22) in closed form are slim, if
at all possible. In practice, numerical evaluation by means of double Gaussian
quadrature (after Appendix C.2) has proved effective. The collision operator
is therefore converted to discrete form Cy, from which elements of the collision
matrix can be calculated [compare with (3.32)]:

{C}in = Ca[®n(v)]
= Z wuwvsa(fm Nys vk)¢n(n)(Eu)¢dn)(ny)¢2n;(n) (V vg - 63 - ?7,2.)
LY ]

+ Ewnwvso— (&us "99”k)¢~(ﬂ)(fu)¢ﬁ(") ("V)‘ﬁzﬂn)(\/”f —-v3— £ — '7;2;)

i

+ Zwuwvs:.(f.u’ N, vk)¢n(n) (nv)¢£(n)(fp)¢2nz(n)(\/v: + vz - 5;2) - '7;24)
v,u

- A,,(E,,)Q,,(v,,) - A;(EZ;)Q,.(!&) - A;‘(ek)(b,,(v,,). (4.23)
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Quadrature is over the (v},v;) plane, centered with respect to the origin,
with weights (w,,w,) and samples (n,, §,). Outer and inner sum limits are
prescribed by correspondence with integral limits in (4.22)

4.4 Numerical Implementation

4.4.1 Space Discretization Mesh

Equations derived in the foregoing section are defined throughout a two-
dimensional space discretization mesh.? The mesh is made up of a pla-
nar, uniform array of of rectangular cells with centers located at (z;,y;) for
{t=1,---,L and § = 1,---,M (not counting virtual mesh points). Cell di-
mensions Az and Ay are fixed to simplify computation, but could be made
to vary, in an optimal fashion, every pseudo-time step. This was not possi-
ble for the direct solution method of Chapter 3. A maximum mesh size of
fifteen points along z (L = 15) and thirty points along y (M = 30) has
been set so as not to unduly prolong computation times. At this maximum
resolution, half as many points were needed in z as compared with y in order
to maintain spatial isotropy.'®

4.4.2 Basis Set

Predicated on the work of Chapter 3, a fixed Hermite-Gaussian basis set
has been selected for ail calculations in this chapter. Thirty-six basis func-
tions are employed, resulting from combinations of constituent functions—six
each in v, and vy, and one in v,.!!

9The terms ®space discretization mesh” and “finite-difference mesh” are employed
interchangeably.

10To see this better, refer to Fig. H.1 in Appendix H. Figure H.1 illustrates the infinite
transverse-periodic geometry of the system at hand. On account of this geometry the
distribution function needs only to be solved only in a half-unit cell (see the discussion of
Appendix H).

110nly one v, constituent function is used because of the computational limitations of
the HP-1000F computer.
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4.4.3 Solution of FD-Spectral Equations

‘Two steps are involved in selving the FD-spectral equations: calculation
of the spectral matrices—V, W, A, B, and C-—and subsequent iteration for
the expansion coefficient vectors af; (R — 00). Spectral matrix evaluation
will be taken up first. It has been shown in Sections 3.1.3.3 and 3.2.3.3 that
proper collocation point ordering reduces spectral matrix calculation time
and storage requirements. The same is true here, although the collocation
domain differs slightly. The domain forms a collocation cube in velocity
space, as earlier noted, bounded as follows: —co < v,,v,; < +oo and
0 < vy < +oo0. Collocation point components v,; and vy, are distributed
throughout the (v,,v,) plane with four-fold symmetry.!? Thus, collocation
point components are related by changes in sign from quadrant to quadrant
in the (v;,v,) plane. To clearly elicit symmetries, spectral matrices are row
ordered as follows: Matrixrowsk =1,---,N/4, k = (N/4)+1,---,N/2, k =
(N/2) +1,---,3N/4, and k = (3N/4) + 1,---, N are associated, in the or-
der just written, with the first (v.,v, > 0), second (vzz < G,vy, > 0),
third (vex,ve < 0), and fourth (v.x > O,v, < O) quadrant collocation
points.!®> Row ordering is then accomplished through the correspondences
(Vekt(SN/4)> —Vyk+(3N/4)s Vsk+(3N/4) = (—Vzk+(N/2)s —Vyk+(N/2)s Vak+(N/2)) =
(—Vzk+(N/4)> Vyb+(N/4)> Vsk+(N/4) = (Vzks Vyrs sx) for k=1,---, N/4.

Additional symmetries are revealed if the spectral matrices are column
ordered.!* Column ordering merely involves specification of a transforma-
tion rule between basis function global and local indices. Spectral matrix
columns, labeled with the global indicesn = 1,---, N/4, correspond to all ba-
3is functions that have ¢, and ¢, both of even parity. The remaining columns
are ordered similarly, with global indices n = (N/4) +1,---,N/2, n =
(N/2)+1,---,3N/4, and n = (3N/4)+1,---, N corresponding, as written,
to constituent function parities ¢, odd and ¢, even, ¢, and ¢, both odd, and
lastly, . even and ¢, odd.!®

12Fundamentally, this property is due to symmetries in extrema locations of ¢. about
ve = 0 and ¢, about v, = 0.

13The total number of basis functions, N, is assumed divisible by four.

14Spectral matrices in Chapter 3 were not column ordered because the eventual savings in
computational effort did not justify the increase in numerical “book keeping”. With regard
to the present high-dimensionality problem, however, the numerical book keeping is well
justified by a major savings in computational effort.

18Notice the parity of @, is irrelevant, just as the sign of v,x, during row ordering. All
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Arrays (D.1) and (D.2) in Appendix D portray the internal symmetries
in each spectral matrix brought about from the foregoing row- and column-
ordering procedures (refer to Section D.1). Each spectral matrix is parti-
tioned into sixteen N/4 x N/4 block matrices. For spectral matrices de-
picted by (D.1), the four block columns are identical save for changes in sign
of the last three block rows. Such matrices will be denoted ¢ symmetric in
accordance with the “column symmetry” just described. Spectral matrices
¥V and W have a sign pattern given by the upper symbols, while lower sym-
bols pertain to the spectral matrices A and B. These sign patterns can be
verified upon examination of spectral matrix element equations (4.13), not-
ing collocation quadrants along block rows and constituent function parities
along block columns [refer to array (D.1)]. The collision matrix C has a
particularly simple structure. According to (D.2), most of the elements of
C are zero. Those that are not constitute the left-most block column, each
block being identical. The structure of the collision matrix sparse can be
understood if collision operator equation (4.22) is closely examined. Equa-
tion (4.22) implies that elements of C are a function of velocity magnitude
(or energy) only. Consequently, the four block rows of C must be the same.®
The basis function constituents, moreover, in (4.22) possess either even or
odd parity, and so only when ¢, and ¢, are both even functions is there a
nonzero in-scattering contribution.’”

The spectral matrices, after proper row and column ordering, are ¢ sym-
metric. These types of matrices can be efficiently put into computer memory
simply by storing the nonzero matrix blocks of the top block row along with
an associated sign pattern for matrix blocks in the last three block rows.
The so-called boundary vector with elements given by the right side of (4.16)

this stems from the fact that the distribution’s velocity dependence is mirror symmetric
about the (v, vy) plane.

16Remember that element rows that make up each block row differ from block row to block
row by (vz,v,) collocation quadrant. Components of velocity are squared in determining
velocity magnitude, so that it follows immediately that C' is ¢ symmetric.

171n terms of local indices, nonsero in-scattering contributions occur when « and £ are both
odd, whereas all other contributions with combinations of odd and even indices {x, £) cancel
exactly to sero after integrals in (4.22) are evaluated. Incidentally, to further economise
computational effort the sum limits and the scattering factors in (4.23) should be altered
when calculating nonsero matrix entries. The scattering factors $,, §;°, and 3.} should be
multiplied by four, and the discrete lower limits should each be made to correspond with
continuous lower limits £ = 0 and n = 0.
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[k =1,---,N/2| can be similarly handled. Inspection of the boundary vector
reflects the fact that only the first N/4 elements (k = 1,---,N/4) need be
stored. The second half of this vector [k = (N/4) + 1,---,N/2| can always
be determined from its first half with the rule vy, (v/g fo(ve) = vy fo(v)) for
k=1,---,N/4.

To finish this discussion of preliminary matrix evaluaiion, the symmetry
of the transformation matrix T' will be explored. The inverse transformation
matrix T~ is obviously ¢ symmetric and possesses a sign pattern in accor-
dance with the parity of ¢, and ¢, [see definition (4.15) with &, replaced by
¢~(n)¢¢(n)¢zm(n)]. Array (D.3) depicts T~ ! with N/4 x N/4 block elements
T7Y, £T;1, £751, and £T;!. In Section D.1, it is shown that there is a re-
lationship between block elements of T and T™!. Array (D.10) depicts this
relationship. Block elements of T and T~ ! are themselves related through
matrix inversion. The transformation matrix therefore possesses a symme-
try along each block row—hereby denoted r symmetry—that is in a sense
complementary to ¢ symmetry. Again, as has been made clear for the c-
symmetric case, the block elements and sign pattern can be stored efficiently
in computer memory.

After ordering and evaluating the spectral matrices, the transformation
matrix, and the boundary vector, the FD-spectral equations are ready for
iterative solution. Iteration commences with an initial condition, (4.21)
for instance, and in each subsequent pseudo-time step (4.9) and (4.10) are
scanned throughout the space-discretization mesh ( = 2,---,L — 1 and
J = 2,--+,M — 1)—subject, of course, to the boundary equations (4.16)
through (4.20). Similarities do exist between this iterative procedure and
the one used in Section 2.2.3.3; however, this time iteration is for the vec-
tor quantity af-‘j as oppecsed to the scalar quantity ,.';- (the latter quantity
in Section 2.2.1.2’s notation). To minimize asymmetric accumulation of nu-
merical error over the space discretization mesh, two antisymmetric scanning
patterns were used in alternating fashion for each pseudo-time step. With
reference to Fig. 4.1, the first scanning pattern begins at the rear-left mesh
point and proceeds left-to-right, rear-to-front. The second scanning pattern
begins at the front-right mesh point and proceeds right-to-left, front-to-rear.
The iterative procedure outlined here is by no means unique. For example,
a Jacobi iteration procedure (see Section 2.1.3.2) is also possible.!®

18This type of iterative procedure was not selected because it offers a lesser degree of
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Apart from increased storage efficiency, ordering of the spectral and trans-
formation matrices permits a significant reduction in steady-state calculation
time when performing the numerous vector-matrix multiplications demanded
by the iterative equations (4.9) and (4.10). Normally a vector-matrix multi-
plication is an order N? process {referring to the number of scalar multipli-
cations) for an N vector and an N x N matrix. But, since all the matrices
in (4.9) and (4.10) are either ¢ or r symmetric, the vector-matrix multipli-
cations can be optimized through temporary storage of intermediate vector
products. Specifics of an optimized vector-matrix multiplication algorithm
are left to Appendix D.2. Actual tests have shown that the optimized multi-
plication algorithm reduces steady-state calculation time by a factor of four.

4.4.4 Numerical Errors

The fundamental origins of round-off and discretization errors have been
remarked upen in Section 2.1.3.4. Round-off and discretization errors are
manifested in different ways and in varying degrees of importance depend-
ing on the problem at hand. Generally, round-off error tends to be unim-
portant when numerical equations are solved iteratively. This is the case
the iterative solution of the (z,y,v.,vy,,v;) problem. Round-off error usu-
ally does not accumulate to intolerable levels on account of the intrinsic
error-canceling effect of iteration. Any round-off error that does accumulate
is primarily connected with the order N® matrix-vector multiplications in
(4.9) and (4.10) at each space mesh point.!® When the FD-spectral equa-
tions are solved iteratively, numerical error is dominated by discretization
error. This was observed for the iterative calculation in Chapter 2. In order
to quantify the effects of finite-difference and spectral discretization errors,
the parameters Az and Ay, and N,., N,, and N,,, respectively, can be var-
ied for a series of otherwise identical calculations. Changes in the carrier
distribution function (either in f or a representations) are then monitored
in much the same way as described for Chapter 2’s (z,v.,t) problem (see

numerical stability and requires roughly twice as much computer mesnory storage as the
presently used Gauss-Siedel procedure. While on the subject of iterative procedures, Jacobi
iteration of the FD-spectral equations would be exactly equivalent to solution of the time-
dependent BTE [(4.1) where r is replaced with ¢| by means of first-order, forward-Euler
time-stepping.

191n contrast, round-off error in Chapter 3’s direct solution method, Gaussian elimination,
is associated with an order N3 mairix-inversion process per space point.
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Section 2.2.3.5). Spectral discretization error can further be assessed after
resorting to the transform domain (see Sections 3.1.3.4 and 3.2.3.4) and de-
termining whether the distribution function in the a representation decays
sufficiently quickly with increasing local basis function indices «, ¢, and m.
The finite size of the pseudo-time step A7” contributes to discretization error
as well. This error can be monitored like the finite-difference and spectral
discretization errors above. Onlyv the large-k, steady-state step size needs to
be varied—the smaller the step size the smalier the asscciated discretization
error. Step sizes throughout the initial pseudo transient have no bearing
on discretization error, as long as they are not tco large as to produce an
numerical instability.

4.4.5 Numerical Stability

At the end of the previous section it was alluded that step size can effect
numerical stability. The strategy behind efficient pseudo-transient iteration
is to take relatively large pseudo-time steps initially in order to converge
rapidly to a steady-state solution. Unfortunately, the step size cannot be
made arbitrarily large, but is constrained according to CFL stability criteria
(see Appendix B.1). Time-dependent calculations of Chapter 2 were also con-
strained by CFL stability criteria (see Sections 2.1.3.3 and 2.2.3.4). In point
of fact, the (z,y,v;, vy, v;) problem represents a vector, quasi-hyperbolic sys-
tem [20], first-order in pseudo time; hence, the resulting FD-spectral equa-
tions must satisfy CFL stability criteria:

Az \? Ay \?
2 2 < 22 =7 .
Vol T ol <y (22 (A1) (4:24)
and
|q| |vzk|maz : Ivyk‘maz :
— VI Bzis|taz + | Eyislae < Nar) T\ Nar ) (4.25)

CFL relations (4.24) and (4.25) are extensions of (2.14), (2.37) and (2.38).
Here, grid velocities and accelerations are two-dimensional vector quantities
whose magnitudes are to be compared with corresponding physical velocity
and acceleration magnitudes. The maximum collocation velocity compo-
nents are to be taken over all indices &k = 1,---, N. The maximum electric
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field components are to be taken over the entire space-discretization mesh
{ =1,---,L and 7 = 1,---, M. Mesh accelerations, on the right side of
(4.28), follow in analogy from those of Chapter 2, whereby velocity cell size
is replaced with the mean velocity interva! between collocation point com-
ponents. The above CFL criteria establish necessary, but not sufficient,
conditions for numerical stability.2°

It is no new fact that numerical solution of first-order hyperbolic sys-
tems may lead to an unconditional numerical instability when (pseudo)
time stepping is explicit and nontemporal derivatives are approximated with
central difference formulas [Egs. (4.11) and (4.12), for example|, even if
CFL criteria (4.24) and (4.25) are satisfied [20,21,23]. Stabilization can be
achieved through introduction of small “diffusion” terms in the FD-spectral
equations.*! This procedure is frequently used in the numerical analysis of
fluid flow, where it it commonly denoted pseudec-viscous stabilization [20].
According to Appendix B.2, pseudc-viscous stabilization of the present vec-
tor hyperbolic system can be achieved if the vector expansion coefficient a?,-
in FD-spectra! Eq. (4.10) i3 replaced with a weighted average of itseif and
its eight nearest neighbors:

ot — (1-0,-0,—0)af;

h h
Q1+ Q.
+ Oz (—.+1, — 11)

2
A h
at .+ a’

5 +1 15—1

+ o, (——2 )
A h A h

L RTINS ol HIRPIRT o (PPN | S P

+ 0Oz 2 .

(4.26)

Pseudo viscosities 0,0y, and o, should be kept positive to avoid unsta-

20The CFL stability relations (4.24) and (4.25), have been obtained through semi-
quantitative, semi-intuitive reasoning. A rigorous theoretical treatment of CFL stability
would conclude that additional factors appear in (4.24) and (4.25). These factors depend
on eigenvalues of matrices derived from the spectral and transformation matrices in com-
bination with the discrete electric field. A mathematically rigorous stability analysis of a
similar, but simpler, vector hyperbolic system has been carried out in Appendix B.1. (See
aleo reference [20].)

21 Assuming, of course, that CFL stability criteria are met.
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ble “anti-diffusion”. Generally speaking, the larger the pseudo viscosity the
greater the stabilizing influence, until the sum of all the pseudo viscosi-
ties surpasses unity, at which point instability will occur (see Section B.2).
“Diffusion errors” brought about by the use of substitution (4.26) can be
minimized if pseudo viscosities are made as small as possible, just encugh to
ensure stabilization.??

4.5 Results and Discussion

4.5.1 Execution Rate

All numerical computations were implemented on an HP-1000F mini-
computer.?®> Whenever possible EMA and VIS enhancement features (see
Section 3.1.4.1) were used to increase memory storage and speed up arith-
metic execution rates.

A fixed, thirty-six element (N = 36,N, = N, = 6, N, = 1) Hermite-
Gaussian basis set consumed roughly two and one-half minutes calculation.
time in evaluating spectral matrices V, W, A, B. Approximately ten hours
was spent performing double Gaussian quadrature for elements of the colli-
gion matrix C (to a numerical accuracy of one part in one hundred). Another
two and one-half minutes, typically, was required to perform matrix inver-
sions necessary in evaluating the transformation matrix T. Full advantage
of matrix symmetries was taken during this initial matrix evaluation phase,
including the efficient matrix (and vector) storage scheme explained in Sec-
tion 4.4.3.

Iterating (4.9) and (4.10) took on average one-half second per mesh point
for every pseudo-time step. Nearly all this time was spent executing vector-
matrix multiplications that have been optimized according to Appendix D.2.
Pseudo-viscous stabilization entailed relatively little calculation time since it
involved only vector operations.

All calculations were performed with 2 fixed space discretization mesh
size of L = 5 and M = 10. Variable-sized pseudo-time steps were adjusted
so as to minimize steady-state convergence time. A convergence criterion of

32Djiffusion errors are expected to be vanishingly small, no greater than round-off or
discretization errors, if pseudo viscosities are kept small

23Because of hardware problems, some calculations were performed on a Digital Equip-
ment Corporation VAX-750, set up to emulate the HP-1000F.
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no more than one part in ten-million maximum variation (over the entire
space mesh) in |af| per pseudo-time step was chosen. Under this criterion,
convergence was usually achieved after a few thousand complete space-mesh
scans. Relatively little iteration time was spent evolving the initial, rapidly
changing portion of the pseudo transient; in fact, most of the iteration time

was spent during the large-h, asymptotic portion of the pseudo transient.

4.5.2 Solution Verification

By the convention established in Chapters 2 and 3, FD-spectral solu-
tions were verified in three ways: tests without the collision term (ballistic),
tests with the collision term, and finally, tests based on qualitative physical
reasoning.

Ballistic tests were first performed for the case of vanishing z-directed
electric field, that is, E.;; = {C}ss = 0. In addition, the y-directed elec-
tric field was assumed independent of transverse position z. These condi-
tions imply that solutions to the (z,y,v.,v,,v,) problem are independent
of z. For any z and fixed v, the (z,v.,v,) dependence of solutions to the
(z,y, vz, vy, v,) problem corresponds exactly with ballistic solutions of Sec-
tion 3.2’s (z,v,,v,) problem.?* Verification can then proceed through com-
parison with the previously verified, ballistic (z,v,,v,) problem. Relevant
computational parameters for both problems were set to limits appropriate
to the (z,y,vs,vy,v;) problem. For example, the (z,y,vs,vy,v;) problem
used M = 10 and N = 36 (N, = N, = 6}, and so, in Chapter 3’s notation,
the (z,v,,v,) problem was set to use L = 10 and N = 36 (Ny = N = 6).
All solutions to (z,v,,v,) and (z,y, vz, v,,v,) problems agreed to within one
part in one thousand.?®

Ballistic tests were completed after allowing for full two-dimensional vari-
ation in space. Exact, analytical solutions to this ballistic problem are gen-

241f Cf = 0, the independent variable v, in BTE (4.1) is just a parameter. Furthermore,
the solution to (4.1) does not vary with z (given the z-independent boundary conditions
of Section 4.2.3), so that the term v,3f/8z vanishes ({V}x, = 0). Hence, the following
correspondence exists between the (2, v,, v;) and (z, y, vz, vy, v;) problems: (y, vz, vy, Ey) ~
(2, vp, vsy Ey).

35The small discrepancy between solutions is greater than observed previously for the
similar verification test in Section 3.2.4.2. This is not surprising because iterative and
direct solution methods are used here, in contrast to solely direct solution methods used in
Section 3.2.4.2.
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erally too complex to warrant their use in verification. Instead, verification
consisted of extensive and systematic “proof-reads” of the program code
in conjunction with an extensive series of “real-time variable consistency
checks”, whereby each computer program variable is monitored during pro-
gram execution. Computer program routines that execute vector-matrix
multiplications involving V and A4 were especially scrutinized and were com-
pared directly with the similar routines involving W and B.2®

Tests that included acoustic and optic phonon collision terms were next
performed. No closed-form analytical or independently calculated numerical
solutions were available for comparison. Proper installation of acoustic and
optic scattering rates [Eq. (4.23)] in the computer program was checked using
the self-consistent integration technique aiready described in Section 3.1.4.2,
but now extended to a three-dimensional velocity domain (v., vy, v;).

Final verification of the full (z, y, vs, v,, v;) problem is predicated on quai-
itative physical reasoning. Solutions were examined near boundaries for cor-
rect behavior: f — 0 for v — oo, f = f, in the entrance region y =~ 0,
f =~ 0 in the exit region y =~ L, and f(---,vg,+*) = f(-++, —v;,--) at left
and right reflective boundaries £ = 0 and £ = L.. Spatial invariance of the
integrated y component of current density (see Appendix I), JE= dz J,(z,y),
was checked. This integrated quantity varied minimally (less than ten per-
cent of mean, typically) in a manner reminiscent of current density J,(z) in
Chapter 3’s (2, v,,v,) problem. The influence of acoustic and optic scattering
on the overall shape of the distribution function agreed well with physical
expectation. Both distribution spherical symmetrization and carrier heating
effects due to acoustic and optic scattering, respectively, were observed.?”

4.5.3 Numerical Solutions

Physical parameters employed in these calculations are ident:cal to those
listed in Table 3.2. Computational parameters are listed in Table 4.1 and
should all be self-explanatory. A contour plot of the electric poiential is
displayed in Fig. 4.2. The selection of this “saddle-shaped” potential was
conditioned by an analytical model developed for the permeable-base tran-
sistor [27].

28Computer rontines involving W and B are at this point considered verified, as the
verification process described in the preceding paragraph has been carried through.
27A physical explanation of these effects is given in Section 3.2.4.3.
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Figure 4.2. Contour plot of potential versus (z,y).

125



Quantsty Value | Units |

Number of ¢, constituent functions, N, |6 —_
Number of ¢, constituent functions, N, | 6 —
Number of ¢, constituent functions, N, | 1 —
Number of z points, L 5 —_
Number of y points, M 10 —
Cell size, Az 1.00 X 10~° | meters
Cell size, Ay 5.00 x 107 | meters
Pscudo-time step (minimum), Ar" 1.00 x 10~ | seconds
Number of iterative scans ~ 2500 —
Average change in || per

iterative scan (steady state) ~ 1077 —

Table 4.1: Computational parameters for the (z,y, v, vy, v,) problem.

In all forthcoming results optic phonon scattering has not been suppressed
as was done previously in Section 3.2.4.3. In addition, spatial scales have
been purposely reduced to elicit ballistic effects.?®

The y-dependence of the carrier distribution versus v, has been found
to behave in a manner similar to Fig. 3.7 for the (z,v,,v;) problem. The
distribution function is characterized by three spatial regions: an entrance
(y = 0) region, an exit (y ~ L,) region, and a transition (y ~ L;/2) region
that encompasses the saddle point in potentiai. The carrier distribution is
spherically symmetric and near equilibrium in the entrance region, where-
upon it becomes a relatively rapidly varying function of y and v, in the
transition region (because of large fields and concentration gradients), and
finally it becomes highly asymmetric in the exit region. The detailed ac-
count given in Section 3.2.4.3 provides an explanation of the behavior just
described. In referring back to Section 3.2.4.3, it should be kept in mind
that the additional degrees of freedom (independent variables) in space and

28gpatial scales have been chosen extremely small and are, to a degree, “physically unre-
alistic® given the potential of Fig. 4.2. Under this ballistic regime, with weak acoustic and
optic scattering, the thirty-six-clement basis set should provide sufficient accuracy. Calcu-
lations in which scattering is more prominent should be performed using larger basis sets
(at least N =8, No =10, N, =3, N = 240). This is estimated to require eighty times
the present computational effort, without any algorithm optimisation. (See Section 5.3
concerning array processors.)
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velocity associated with this problem only affects the mathematics but does
not alter the underlying physical processes. It has also been observed that
the y-dependence ~f the carrier distribution versus v,, for fixed v, and v,, is
analogous to Fig. 3.8. The general behavior of the carrier distribution in the
entrance, transition, and exit regions agrees with that described above.

A better feel for the spatial variation of the distribution fur.ction can be
obtained by noting Fig. 4.3. Plotted are contours of constant carrier con-
centration n as a function of discrete position (z;,y;). Carrier concentration
was determined through zeroth moment evaluation of the distribution func-
tion in accordance with the prescription laid out in Appendix I. Carriers are
geen to reside in greatest number near regions of local minima in potential,
as expected. Notice that there is a rapid decrease in carrier concentration
just beyond the potential saddle point and towards the device exit. This
behavior is a direct consequence of current continuity in the steady state
(V,-J = 0) and the fact that the carriers acquire progressively larger field-
directed velocity passing through the transition region (refer to Fig. 4.4 and
the discussion of the next paragraph).

The velocity field associated with the carrier distribution is pictured in
Fig. 4.4. Proportionally scaled, mean velocity vectors (9,,%,) have been
drawn at selected points in the spatial domain. These vectors were de-
termined via first moment evaluation of the carrier distribution (after Ap-
pendix I) and subsequent division by the local carrier concentration. It
is readily seen that carrier flow is directed from entrance to exit, with an
initially small %, component in the quasi-equilibrium entrance region and
an increasingly larger ¥, component beyond the the saddle peint and into
the nonequilibrium transition and exit regions. There is an inverse correla-
tion between carrier concentration and average velocity magnitude (compare
Figs. 4.3 and 4.4 ) as might be guessed from a current continuity argument.?

For completeness a few closing remarks will be made concerning flux
correction. The iterative FD-spectral method presented in this chapter is

39Current density is related to concentration and velocity by J = gn(r)8(r). Steady-
state current continuity asserts V. .J = 0. The inverse correlation mentioned above is
only qualitative and therefore approximate. If the continuity equation is integrated with
respect to z from O to Lz, then J:(L.,y) — J=(0,y) + fOL’ dz 8Jy(z,y)/3y = 0, where
J = Jo(z,y)2; + Jy(z,y)@,. At the left and right reflective boundaries (refer to Fig. 4.1
or H.1) the distribution function it mirror symmetric about the (v,,v,) plane, so that

J:(0,y) = Jz(Lz,y) =0 and d(foL’ dz Jy)/dy = 0, which implies foL’ dz J, = constant.
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Figure 4.3. Contour plot of carrier concentration versus (z,y).
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Figure 4.4. Vector plot of mean (z,y) velocity versus (z,y).
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nonconservative (V, - J only approximately zero). The simplest (and rec-
ommended) option is to adopt Section 3.2.4.3’s procedure, and statistically
average the net transverse flux, [J* dx J,, over the y;. Another option is to
extend the conservative integral method that has been described in Chap-
ter 3, footnote 38. But unfortunately, this approach suffers from various
disadvantages, as has been noted. A last possible option is to formulate a
computationally efficient, iterative flux-correction scheme.
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Chapter 5

Conclusion

5.1 Summary

The main thesis objective is the development of a numerical solution
method, the FD-spectral method, for the BTE. Particular emphasis has been
placed on solving the time-independent BTE in the context of semicenductor
device simulation. This main objective, along with the secondary objectives
outlined in Section 1.3, has been successfully met through completion of a
hierarchical sequence of numerical calculations.

At first, preliminary investigative calculations were performed. The BTE
was solved in relatively simple systems by means of two established numerical
methods, the Rees integral and the finite-difference methods (see Chapter 2).
These calculations were invaluable in exposing many important issues that
were relevant to the subsequent FD-spectral calculations. More practically,
solutions obtained from these preliminary calculations were essential in order
to establish benchmark solutions for future solution verification.

TLis next level of calculation hierarchy involved FD-spectral solution of
the low-dimensionality BTE. These calculations represent a major thesis con-
tribution and consequently will be reviewed here in greater detail. The FD-
spectral calculations, in order of increasing complexity, have been denoted
the {z,v;) and (z,v,,v,) problems, and have been carried out for a one-
dimensional, cusped-barrier device structure (see Chapter 3). A variety of
spectral basis sets, derived from standard mathematical functions—Fourier,
Tchebycheff, and Hermite-Gaussian—have been incorporated in the calcu-
lations. Overall computational efficiency was achieved through collocation
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residual weighting. A mixed, first-order finite-difference scheme was imple-
mented in order to convert spatial derivatives to discrete form. The FD-
spectral equations generated for these twe probiems possessed a large block-
tridiagonal coefficient matrix. For the sake of computational efficiency, these
FD-spectral equations were solved directly via Gaussian elimination. The
computational effort associated with this direct solution procedure scales
as N3 per space discretization-line peint (where N is the number of basis
functions.)

The last, most complex level in the calculation hierarchy dealt with ¥'D-
spectral solution of the high-dimensionality BTE. Calculations undertaken
at this level represent the most significant thesis contribution in connec-
tion with the simulation of real, modern-day semiconductor devices. A
two-dimensional transversally periodic and mirror-symmetric device struc-
ture was simulated, which has been denoted the {z,y,v.,vy,v,) problem
(see Chapter 4). Spectral collocation was performed in conjunction with
a Hermite-Gaussian basis set, resulting in good overall computational effi-
ciency. A highly accurate centered, second-order space differencing scheme
was also used; instabilities relating to this differencing scheme were effectively
removed upon inclusion of pseudo viscosities. Discretization of the pseudo-
time derivative was handled with a first-order, variable-step-sized forward-
Euler scheme, modified for “Gauss-Siedel” iteration. The FD-spectral equa-
tions for the (z,y,v.,vy,v;) problem possess a very large banded block-
tridiagonal coefficient matrix, thereby precluding the the possibility of a com-
putationally efficient direct solution procedure. To overcome this difficulty,
the FD-spectral equations have been solved by iterative pseudo-transient
evolution. This iterative solutior: procedure scales in computational effort as
N? per space discretization-mesh point per pseudo-time step.

5.2 Assessment of the FD-Spectral Method

Based on the results of this thesis it is now possible to assess realistically
the FD-spectral method, not only as a means of solving the BTE for device
simulation, but also as a general numerical solution technique applicable to a
wide ciass of mathematical problems. Here are some of the more noteworthy
features of the FD-spectral method:
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o Computationally robust—The FD-spectral method is computationally
robust. Fourier, Tchebycheff, and Hermite-Gaussian basis sets result
in well-conditioned FD-spectral equations. Whether the FD-spectral
equations are solved directly or iteratively, they are relatively insensi-
tive to reasunably small numerical errors (round off and discretization).!

o High accuracy and fast ezecution—Compared with other general nu-
merical sclution tecuniques, such as the finite-difference and finite-
element methods, the FD-spectral method achieves equivalent if not
superior accuracy, depending on the specific problem being solved, for
a fixed execution time (in other words, computational effort). It is
evident, however, that when it comes tc solution of the BTE in semi-
conductor device structures the FD-spectral method is definitely of
superior accuracy, comparable with that of the Monte Cario method,
for example. This is largely because of the excellent interpolatory char-
acteristics of the spectral basis set.

It is estimated that the FD-spectral method would execute ten to
twenty times slower than a conventional drift-diffusion approach of
equivalent accuracy. The large FD-spectral execution time reflects
a “true” increase in computational effort as warranted by the addi-
tional sophistication in transport physics. Relative to the Monte Carlo
method the FD-spectral method is judged, on a basis of equal accuracy,
to be ten to one-hundred times faster in execution rate.?

o Low storage—Computer memory storage requirements for FD-spectral
variables are minimal. This follows from the compact spectral rep-
resentation of the distribution function in combination with the low
number of space-point couplings associated with the finite-differencing
of space derivatives. The FD-spectral equations constitute a block-
sparse system; furthermore, storage requirements for individual blocks
(which make up spectral and transformation matrices) can be greatly
reduced through proper row- and column-ordering.

1This behavior has also been observed in various tests, where, for example, the effect of
adding a small perturbation to collocation point locations was studied.

2Coupling of Poisson’s equation is not auticipated to affect significantly the relative
execution rates quoted above.
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e Ballistic effects—Ballistic effects are readily simulated using the FD-
spectral method. Unlike the “spectral” method previously reveloped
by Rees (see Section 1.2.3), there is nc minimum iengih-scale con-
straint. In addition, tests performed in Sections 3.1.4.2 and 4.5.2 have
demonstrated that the FD-spectral method is capable of resolving bal-
listic shock discontinuities.

o Ertension to higher dimensions—Great interest lies in the extension of
pumerical solution methods to systems with many independent vari-
ables. As exemplified in Chapter 4, the FD-spectral method can be
extended in an easy, straightforward manner. Increasing dimensional-
ity will, of course, imply an increase in computational effort.

In all fairness, the FD-spectral method has some shortcomings:

o Specificity of basts set—The FD-spectral method has to be “customized”
to the particular problem at hand through selection of an “cptimal”
basis set. Selecting an arbitrary, mathematically complete basis set
wiii result in a workable algorithm but not necessarily a computation-
ally efficient one. Basis set selection should be conditioned by any a
priort knowledge of the carrier distribution, but otherwise is largely a
matter of intuition along with trial and error. Finite-difference and
finite-element methods offer greater mathematical generality.

e Stabilizatson—Numerical stabilization of the FD-spectral equations may
be called for during iterative solution (see Section 4.4.5). This necessi-
tates introduction of stabilizing pseudo-viscosity terms, causing a slight
increase in overall complexity of the FD-spectral method.

o Fluz correction—In Section 3.1.4.3 it has been noted that the FD-
spectral method, when applied to the BTE, is not strictly conserva-
tive. A reformulation of the FD-spectral method or the use of a flux-
correction algorithm may, in some cases, be required. Again, this would
lead to an unwanted increase in complexity with, perhaps, a marked
decrease in computational efficiency.

On balance, the desirable features of the FD-spectral method more than
make up for its shortcomings.
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5.3 Future Work

This thesis represents a foundation from which a multitude of applica-
tions, improvements, and extensions are possible. In this final section, sug-
gestions for several promising areas of future investigation will be made.

The most obvious area of future investigation is simulation of real semi-
conductor devices. Of immediate necessity would be the establishment of an
efficient numerical procedure for coupling Poisson’s equation to the BTE. To
keep things simple, initial device simulations should focus cn semiconductor
systems in which it is adequate to treat carriers as if they were in single
spherical, parabolic bands, and in which only monopolar transport need be
considered. A prime candidate for such a study is the silicon permeable-base
transistor. Bipolar transport could be dealt with next through the inclusion
of an additional spherical, parabolic band. The narrow-base silicon bipolar
transistor would make a logical device choice at this point. Additional sim-
ulations can be carried through for devices in semiconductor systems with
complicated multivalley band structures. Devices fabricated in III-V semi-
conductor materials fall into this category. For instance, the gallium arsenide
permeable-base and metal-semiconductor field-effect transistors along with
the heterojunction bipolar transistor are ideal for these types of studies.
Another interesting advanced application of the FD-spectral method entails
simulation of the high electron mobility transistor, particularly at low tem-
peratures where it behaves as a quasi two-dimensional device. Provisions
should be made to adequately model subband scattering in this device.

Nonlinear processes can also be included in future device simulations:
carrier-carrier scattering (degenerate systems), high-field breakdown (Zener
and avalanche), as well as direct and indirect, radiative and nonradiative
band-to-band transitions. It should be said that nonlinear processes are
not always bulk phenomena but may be associated with device boundaries
and interfaces. Interface state generation, free-surface charge trapping, and
diffuse surface scattering are all examples of nonlinear surface phenomena.

An alternative area of future investigation is the adaptation of the FD-
spectral method to a computer system known as an array processor. Ar-
ray processors are specialized computer systemns with internal architecture
optimized for high-speed execution of highly concurrent mathematical op-
erations. FD-spectral equations can be efficiently solved on an array pro-
cessor. An enormous savings in total computation time can be achieved
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when the FD-spectral equation are solved iteratively. The long series of
vector-matrix multiplications required for solution are ideally suited for ar-
ray processing. With use of an array processor, extremely accurate solution
of high-dimensionality problems (which entail a large number of basis func-
tions and space-mesh points) can be brought within the realm of practicality.

The FD-spectral method is fundamentally a general numerical technique,
from a purely mathematical viewpoint. There are many ways in which this
general numerical technique can be modified and possibly improved. Vari-
ably sized finite-difference cells can be used, either continuocusly varying from
point to point or in discontinuous “jumps” from region to region. The num-
ber of basis set elements can likewise be made variable. Other types of basis
sets, such as Legendre or Gram polynomiais {15,24] could be used, possibly
in coniunction with a transformation of coordinate geometry. In fact, con-
stituent functions need not be limited to a single class of mathematical func-
tions; hybrid basis sets of this sort may be advantageous for some mathemat-
ical problems. Further, it is possible to customize the basis set by direct mod-
ification of the original set or by a formal mathematical optimization proce-
dure such as that developed by Karhunen and Loeve [28]. Residual-weighting
procedures like those covered in Section 1.2.2 {other than collocation) can
be tested. Different methods can be developed through hybridization of
the spectral method with the triangular finite-difference or finite-element
methods [20,29]. Pseudo-transient iteration of vector-hyperbolic systems can
be sped up by taking different-sized pseudo-time steps for each scalar FD-
spectral equation [that is, each element of vector equations (4.9) and (4.10)]
in accordance with CFL stability criteria for each corresponding collocation
point. Fully time-dependent calcuiations can be performed through exten-
sion of the first-order, forward-Euler pseudo-time-stepping scheme to an ex-
plicit, second-order predictor-corrector time-stepping scheme [22]. Note also
that pseudo-transient iteration naturally lends itself to solution of nonlinear
problems (including those remarked upon in the previous discussion on de-
vice simulation applications). Lastly, powerful multigrid techniques [30] can
be used to enhance the convergence rate for iterative solution of FD-spectral
equations.

The final, and probably the most important area of future investigation
that will be mentioned here, is FD-spectral solution of transport equations
that govern quantum-mechanical semiconductor devices. Devices such as
these violate many of the assumptions stated in Section 1.1.3 for quasi-
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classical transport. Failure of quasi-classical transport theory is expected
to occur in systems characterized with extremely small space scales (on the
order of a few lattice constants or less) ...u extremely short time scales (on
the order of a collision interaction time or less), particularly at low temper-
atures. A general, quantum-statistical transport theory predicated on the
density-matrix formalism is then required. A quantum-mechanical analog
of the BTE follows directly from this formalism and is commonly called the
Wigner-Boltzmann transport equation [31]. Many issues remain unresolved
in assessing the suitability of the FD-spectral method for solving the Wigner-
BTE; nevertheless, with exciting advances being made in quantum-device
technology® these issues are well worth exploring.

3See, for example, references [3,32] concerning the high electron mobility transistor and
the resonant-tunnelicg diode.
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Appendix A
The Rees Integral Method

Rees has developed an iterative integral method for solution of the BTE
in spatially homogeneous systems. A complete derivation of the method’s
working equations has been carried out in Rees’s original paper [12]. The
key result is that the distribution function at discrete time £, f h(v), evolves
in two steps: first, by application of the collision operator,

g*(v) = (A" + C]*(v), (A1)
and second, by projection alorg a collision-free trajectory,
mry — [ (__ﬂ__)h_qh

[*(v) /; dn exp )9 (v m‘E n). (A.2)

Equations (A.1) and (A.2) are entirely general and thus valid for any space-
indepsndent problem. If reference to the (v,,v;,t) problem of Chapter 2 is
desired, the identification v = v,&, + v,¢, and E* = E*¢, should be made.

A.1 Equivalence to the Finite-Difference
Method

Before proceeding to a derivation of the velocity-discretized versions of
(A.1) and (A.2) in the next section, the relationship between the Rees and
finite-difference methods will be examined. The integration variable in (A.2)
can be changed to £, £ =n/Ath, so that

00 . th
M) = At"/; d¢ exp(—¢€)g*(v — 94

h o 4 \ )
— E™g). (A.3)
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Expansion of (A.3) for small At* implies

**1(v) = At*[g*(v) — %%f:Eh - V9" (v)], (A.4)

after integrating over £. On elimination of g*(v) with the use of (A.1), A
(o) w (o) — 2L Bb 9, (o) + AthCp(n) - LA  gh v e (o).
(A.5)

In the limit At* — O the rightmost member vanishes and expression (A.5)
merely becomes the variable-time-step forward-Euler formula, which is used
extensively in finite-difference calculations (see Section 2.2.1.2):

M o) — fMo)
Ath

;q:E" - Vo f* () + CfA(v). (A.6)

A.2 Application to the (v,,v,,t) Problem

Velocity discretization of (A.1) and (A.2) for application to the (v,, v,,?)
problem is straightforward. Discretization of (A.1) is trivial; the result has
been written in Chapter 2 as Eq. (2.6). Discretization of (A.2) requires
greater explanation. For simplicity, the quantity v = ¢EPAt*/m* in all forth-
coming equations. Cast in the relevant velocity components, (A.2) changes
to

M (v,,v,) = /:o dn exp(—— Atb)g (v,,,v, - Kuf’Tn) . (A.7)

A new integration variable, £ = v, — ¢E®*n/m”, along with discretization of
(v,,v5) to (v,4,v,5) yields

A
fh-f-l(vp,,v,,) = éVt—-exp( ”z:)/ d¢ exp( )g (v,i, €), (A.8)

t=1,---,L—1
j=2a"'aM_17

for ¢, E*, At*, and m* positive. The domain of integration for (A.8) can be
split, giving

Vg Ves-1
P wprrag) = exp (=4 P phrigy, 0 )
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n At"exp( "V’)/ deexp( ) " (v €). (A.9)

s5—-1

At this juncture it is useful to approximate the ¢ dependence of g*(v,;, &)

by linear interpolaiion (see Appendix C.1) from g%_;, = ¢"(v,i,vs-1) to
h _ qh 3.

gi; = 9" (vpiy Vy5):

g:;" L Y N B (A.10)

gh (vpn £) =
Equation (A.10) is then substituted into (A.9), thereby enabling its integra-
tion, after which tedious algebraic manipulation leads to

fh+1 ( Vsj +vx)—l)

]

Ath Vys
f:;tll: v exP(_vj) Z w#gn!:n (A‘ll)

v v w=j-1
where
= ) e ves ()]
Wj-1 =~ [(u + Av,) exp ( ” ) 4 v exp ( ” (A.12)
and
Wi = =1 [(u Avy) exp( ) + v exp ( 'l’:l)] (A.13)

For consistency, f**! in (A.11) has been subscripted like g* to show its
velocity dependence. Equation (2.7) follows from (A.11) by writing out v in
full.
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Appendix B

Numerical Solution of
First-Order Hyperbolic
Differential Equations

B.1 The CFL Stability Criteria

Certain universal stability constraints exist whenever hyperbolic or quasi-
hyperbolic differential equations are solved iteratively using an explicit time,
or pseudo-time, stepping scheme. As first noted in Section 2.1.3.3 these con-
straints, commonly referred to as the CFL (Courant-Friedrichs-Lewy) sta-
bility criteria, can be readily deduced through intuitive physical arguments.
A formal mathematical derivation of the CFL stability criteria will be the
topic of this section. Two representative examples, a scalar and a vector
hyperbolic system, will be studied.

Consider the first-order scalar hyperbolic equation

du du

—a—t- = C-a—z, (Bl)
where u = u(z,t) and c is some constant. The stability of (B.1) when subject
to an explicit time-stepping scheme can be investigated following the method
of von Neumann [20,23]|. To assess numerical stability, a single Fourier mode
u(z,t) = €(t) exp(tkz) is substituted into (B.1). Subsequent discretization
in time, £(t) — &%, t, =t, + hAt, requires that

€M = (1 + iAtke)€r, (B.2)
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h=0,1,2---.
The solution to (B.2) is

¢* = (1 + iAtke)r€°. (B.3)

The stability requirement is that the amplification factor! |¢*/£° must be
less than or equal to unity; this is true if

|1+ iAtke| < 1. (B.4)

Obviously, inequality (B.4) can never be met (for At > 0 and k, ¢ # 0); that
being so, (B.3) will always become unbounded as h — oo, a characteristic of
first-order hyperbolic equations when time-stepped explicitly.

In reality there are small, additional stabilizing terms associated with the
original hyperbolic equation, the discretization errors themselves or some-
times ones introduced artificially. These terms induce stability provided that
the relevant CFL criteria are not violated. To illustrate the effect of these
stabilizing terms the quantity §3%u/dz? will be added to the right side of
(B.1), with § being a small positive constant, a diffusivity. The added diffu-
sion term is a good way to achieve cortrolled stabilization; although in some
situations [the (v,,v,,t) and (z,v.,t) problems of Chapter 2| small diffusion
terms arising from space discretization errors are inherently present and do
not have to be intreduced explicitly. In any event, a von Neumann analysis
concludes that

eh = (1 — Atsk? + iAtke)*¢® (B.5)
and
|1 — At6k® + iAtke| <1 (B.6)

as opposed to (B.3) and (B.4).
As a rule Aték* > 0 in (B.6), and for stability to be at ail possible
|1 — At6k?| < 1. Hence, satisfaction of the CFL criterion

Az
< = .
lel < %3 (B.7)

is necessary (but not always sufficient) to guarantee overall stability. This
can be deduced by setting |Atke| < 1 for stability (assuming 1 — Aték? =~ 0)

1Note that £* may be complex.
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and realizing that this inequality must be satisfiel for all Fourier modes
exp(tkz) with |k| < 7/Az.? A small amount of algebra then produces (B.7).
A stronger condition for stability can be arrived at in a similar fashion, if
specific bounds on Aték? are known.

The first-order vector hyperbolic equation,

au_ a_u
at = oz

where C is a constant square matrix, can be treated analogously. The vector
equivalent of (B.5) is

¢* = [(1-- AtSK*)I +iAtkC €0, (B-9)

(B.8)

where I is the identity matrix. A diffusive stabilizing term §8%*u/dz? has
been added to the right side of (B.8) and a vector Fourier-mode dependence
¢(z,t) = £(t) exp(skz) has been posited. Matrix equation (B.9) is brought
into tractable form by setting 5* = S¢&”* and choosing § so that (1—At6k?) I+
{AtkC is diagonal. In terms of n* Eq. (B.9) transforms into

2" = [(1 - Atsk*)I +iAtkSCS™'|"n°. (B.10)

From the well-known properties of matrices, if the columns of §~! consist of
the eigenvectors of (1— At6k?)I +sAtkC, then the bracketed factor in (B.10)
will be diagonal® with diagonal elements equal to the corresponding eigen-
values. The transformation matrix S will be taken to have this diagonalizing
property. Instead of an amplification factor, elements of the diagonal ampli-
fication matrix (1 — At6k*)I + iAtkSCS ™' must be bounded in magnitude
by unity. In other words,

11 — Aték® + 1Atkdma:(C)| < 1. (B.11)

where the symbol A,.,. denotes the, possibly complex, eigenvalue of largest
magnitude. In analogy with the scalar case, a necessary condition for overall
stability is [compare (B.6) and (B.11)]

Az
A C)| < — B.12
Amas(©)] < 52, (B.12)
%Fourier modes with |[k| > x/Az are identical in discretized space to modes with |k| <
x/Az since exp(i(k + mK)nAz] = exp(iknAz) for K = 2x/Az and integer n and m.
3The inverse transformation matrix $™! is assumed to exist [33].
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the CFL criterion.

The foregoing stability analysis extends without difficulty to systems of
higher dimensionality, and can be applied directly to eitber the {(v,,v,,1),
(z, vz, t), or (Z,y,vz,vy,v,) problems. Although not proved here, CFL crite-
ria (2.14), (2.37), (2.38), (4.24), and (4.25), which were obtained intuitively,
are expected to roughly agree with those obtained from von Neumann’s
method.*

B.2 Pseudo-Viscous Stabilization

It has been stated earlier that stabilization can in some cases occur au-
tomatically, with no need for external introduction of diffusion terms. Dis-
cretization errors in both (v, v,,t) and (z,v.,t) problems can be shown to be
mathematically equivalent to a small, stabilizing diffusion term (see reference
[21] for an example of this). The (z,y, v;, vy, v;) problem, on the other hand,
uses an accurate, second-order finite-difference derivative scheme in space.
Stabilizing discretization errors are negligible and external artificial diffusion
terms raust be added to the governing equation. In this instance it is conve-
nient to work with pseudo viscosities 0,,0,, and 0., (refer to Section 4.4.5)
gince it is easier to introduce stabilizing terms after discretization of the
original governing equation (4.1). The discrete version of (4.1), stabilized by
continuous-to-discrete conversion of an added diffusion term, reads

aff' = o + At FY + At* (5 ALaf; + 6,4 al; + 6,40 a}),  (B.13)
where F}; is a vector function of a¥}, a?, ;, and af,, [refer to Eqs. (4.9) and
(4.10)]; 8,8, and 6, are the z, y, and “diagonal” diffusivities, respectively:

. 1
1
2 _h o h h h
Ava‘-,- = (W(a‘j+l - 20" + a""_l), (B.15)
and
1

2 h =
4 a; =

2[(Az): + (Ap)7 (“?+1j+1 - 20‘?,‘ + a?—lj—l)

4 Actual results from numerical calculations have directly validated the CFL criteria ob-
tained by intuition.
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1
2((Az)* + (Ay)?]

+ (a?—lﬁ-l - 2“?:‘ + a?+lj—l . (B.16)
The stabilization scheme described by substitution (4.26) is a direct conse-

quence of (B.13) through (B.16). The pseudo viscosities in (4.26) and the
diffusivities used here are therefore related:

_o(Az)?  gy(Ay)? _o5[(Az)® + (Ay)?)
b= —Sxp o b= gap v 2040 = 248

(B.17)

The pseudo viscosities are all positive and their sum must be bounded by
unity: o, + 0; + 05y < 1; or else an instability may occur. This is not
surprising because the pseudo viscosities 0;,0y,0;, can be interpreted as
“weighting factors” in an approximation for a?j in the unstabilized version
of (B.13) (6, = &, = &, = 0) . At the other limit, it is clear that the
pseudo viscosities can not be negative, since this would result in destabilizing
“negative diffusion”. In fact, the pseudo viscosities should be kept as small as
possible to achieve numerical accuracy® but large enough to induce numerical
stability.

5Remember that the diffusion terms in (B.12) will themseives produce additional numer-
ical error in the final solution. Small pseudo viscosities (02, 0y, 02y < 1) should give rise to
acceptably small numerical error.
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Appendix C

Standard Numerical Methods

C.1 Interpolation

Often times in numerical calculations a function depends on a discrete set
of independent variables. Function values at points that do not coincide with
the discrete set are readily approximated by means of interpolation. In one
dimension, given a discrete, real-valued function f; with independent variable
z;,! the approximate value of its continuous version f(z}, for z; < z < 44,
can be obtained with a linear fit between adjacent samples f;y; and f;:

f(z) » f;:—i:—i—:(z —z)+ fi (C.1)

The linear interpolation formula (C.1) becomes in two dimensions a bilin-
ear interpolation formula. The discrete function f;; now depends on two vari-
ables, z; and y;. The approximate value of the continuous two-dimensional
function f(z,y), for z; < z < z;4, and y; < y < Y41, follows from a bilinear
fit among four adjacent samples, fi;+1, fi+1js fij+1, @a0d fir1j410

_ Jirrger = fijrr = Sfivr + i
f(z,y) =~ (Tiv1 — i) (yie1 — ¥;)

f;p+l fu ( ) f;:-! .15 — ft.J (.’B _ :B,') + fl‘j- (0.2)
+1 — 14-1

(z — zi)(y — )

1A uniform discretisation yields z; = z, + tAz, 1 =1,2,3,- -, for example.
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C.2 Gaussian Quadrature

When a closed-form expression for some integral is not available, or per-
haps too complicated, numerical integration is a useful alternative. Many
numerical integration techniques exist: rectangular, trapezoidal, Simpson’s,
and so forth [15]. The numerical integration technique favored in this the-
sis is formally known as Gauss-Legendre quadrature, or simply Gaussian
quadrature. Gaussian quadrature integration is especially accurate when
integrating functicns that are well approximated by high-order polynomials.

The m-point Gaussian quadrature formula for the integral of a function
f(z) over the interval [-1,41] is

/ dz f(z) ~ Zw, f(=z), (C.3)
-1 i=1

in which z,,- - -, z» are the (nonequidistant) zeros of the mth degree Legendre
polynomial, Pn(z) = (2™m!)~1d™[(z* — 1)™]/dz™ [24], and w,,---,w,, are
fixed constants known as the quadrature weights. Quadrature weights are
calculated upon the assertion that (C.3) should be exact for the m functions
f(z) = Pi(z), s =0,---,m—1. The accuracy of the quadrature formula (C.3)
is borne out by the fact that it can be shown to be exact for all polynomials
of degree 2m — 1 or less (reference [15] gives a proof). Under circumstances
where integration is over an arbitrary interval [a,b] a linear transformation
of integration variable “renormalizes” to the interval [—1, +1]:

/:da: f(z) = [b;a («f N :f:)] . (C.4)

A two-dimensional integration formula results from repeated application of
(C.3) and (C.4) for each independent variable:

/_11 /: dzdy f(z,y) le‘wa(xuy,), (C.5)

1j5=1

with interval renormalization

[ [ 2t 1 = (352) (455
/fdfdnf[ (s Zf:),d;"(w;f_f)]. (c.6)
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Precalculated samples and weights, z; and w;, for sixteen, thirty-two,
sixty-four, and ninety-six point quadrature formulas are listed in reference
[24]. Note further that integration accuracy can be improved beyond that
of the ninety-six point formula if the integration domain is partitioned and
quadrature is performed over each “subdomain”. This integration procedure
has been of frequent service throughout this thesis.

C.3 The Bisection Algorithm

One of the easiest ways to numerically determine the zeros or extrema of
an arbitrary function is by means of the bisection algorithm. Determination
of spectral basis function extrema is a good example of when the bisection
algorithm can be usefully applied (refer to the discussion of Hermite-Gaussian
functions in Appendix G).

Suppose it is known that a single zero or extremum (minimum or maxi-
mum) of a function f(z) falls within the interval [a,b]. The zero or extremum
can then be located through bisection of the interval [a,b] into two interv Is
[e, (a + b)/2] and [(a + b)/2,b], followed by evaluation of f(z) at the three
distinct endpoints: f(a), f[(a + b)/2], and f(b). If a zero is being searched
for, it is assumed to lie within [a, (@ + b)/2] when the sign of f(e) iz oppo-
site to that of f[(a + b)/2] and to lie within [(a + b)/2,b] when the sign of
f[(a + b)/2] is opposite to that of f(b). Note that f(a) and f(b) must be of
opposite sign if the interval [a, b] contains a single zero. If f(a), f[(c +b)/2],
or f(b) is by some chance exactly zero the problem is concluded. In practice
this does not frequently happen, and so the the algorithm just described
is repeated, each time starting anew with the previous bisected interval in
which the zero is assumed to lie. Thus, the zero can be located to within the
endpoints of an arbitrarily small interval. An extremum can be searched for
in a similar manner. In this case it is assumed to lie withir [a, (a+5) /2] when
f(a), f(a+8)/2] > f(b) (maximum), or f(a), f[(a+b)/2] < f(b) (minimum);
and to lie within {(a + b)/2,b] when f[(a + b)/2], f(b) > f(a) (maximum),
or f{(a +b)/2|,f(b) < f(a) (minimum). All other inequality relationships
between the f values are ruled out by the assumption of a single extremum
in the interval [a,b]. If the initial interval includes several zeros or extrema,
either shortening the interval or resorting to 2 a process of elimination will
resolve the problem.
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C.4 The Theory of Spectral Collocation

A simple, intuitive analysis of spectral collocation will be presented here;
the reader is directed to reference [14] for a more rigorous analysis.

Consider the equation Oy(z) = 0, where O is a generalized operator (as in
Section 1.2.2) and y(z) is an unknown function of perhaps several variables,
z = (z,...,z,). The spectral method involves the residual function,

R(z) = 0§(=), (C.7)

where the approximation for y(z) is given by

N
y(z) = ;anﬁn(z)- (C.8)

The basis functions ®, make up an orthogonal, mathematically complete
set. The function §(z) is a good approximation to y(z) when R(z) ~ 0 over
the relevant z domain. One way of choosing the N expansion coefficients o,
in (C.8) is according to a method first used by Galerkin [14]:

/ &'z ®,(z)R(z) = 0, (C.9)

k=1,---,N,

in which the residual is made orthogonal to the first N basis functions.
Since the ®,, are complete, (C.9) defines a mathematically well-conditioned,
systematic procedure to determine the unknown expansion coefficients, and
hence the spectral approximation §(z). It is expected that |R(z)| — O as
N — oo for all z.

An undesirable aspect of Galerkin’s method is that the integrals (C.9)
have often to be evaluated numerically, which can be computationally ex-
pensive for 8 > 2. A question then arises: Is there another method that
possesses mathematical properties resembling those of Galerkin’s method,
but without need of the laborious integrations demanded by (C.9)? The
answer is, of course, yes, the collocation (or pseudo spectral) method.

The collocation method forces the residual to vanish at N selected collo-
cation points, z;,---,Zx. Equations for the expansion coefficients, or equiv-
alently §(z), are simply

R(z;) =0, (C.10)
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In this instance, no integration is necessary. Collocation points are either
the N zeros of ®y,, (zero collocation) or the N extrema of &y (extrema
collocation)?; this establishes a relationship between collocation and Galerkin
methods. Figure C.1 depicts possible R aud ®y,; in the simple, but in-
formative, one-dimensional case (s = 1}. A three-term (N = 3) spectral
approximation is made. This zero-collocation procedure forces R(z) to ap-
proximate ®y.,(z) through placement of zeros z,, z;, and zs. Consequently,
the Galerkin equations (C.9) are roughly satisfied because of approximate
orthogonality between ®y,; and the §,, k = 1,---,N.3 Figure C.2 depicts
an equally viable extrema-collocation procedure. It is seen that extrema col-
location makes @y (z) nearly orthogonal to R(z); the residual is obligated
to switch signs where &y is largest, that is, at its extrema. The residual
is nearly orthogonal to ®,,---,®x_; as well since it crosses the zero axis
at least N times and therefore resemblez ®y..;. Again, the Galerkin equa-
tions (C.9) are roughly satisfied. In fact, both zero- and extrema-collocation
methods are mathematically equivalent to Galerkin’s method as N — oo.

As a final remark, not using the zeros or extrema derived from the appro-
priate high-order basis functions runs the risk of lesing numerical accuracy.
If, for example, the bell-shaped function (1 + 2z?)~! is approximated with a
Tchebycheff basis set (see Appendix G), on a finite interval [-1,+1] with uni-
form collocation-point spacing, spurious interpolatory oscillations will occur
near interval endpoints, called the Runge phenomenon [15].* The collocation
method attempts to “mimic” the Galerkin method so that the overall numer-
ical approximation error (that is, discretization error, ~ [ d’z |y(z) — §(2)|)
vanishes in a mathematically well-behaved fashion with increasing N; Runge
oscillations should be minimized, if not eliminated.

2The basis functions are assumed oscillatory in nature, examples of which are illustrated
in Appendix G [Figs. G.1, G.2, and G.3].

30rthogonality asserts that fdz ®x(z)®n+1(z) = O for k = 1,---,N. If R(z) =
®n+1(x) then [ dz ®4(z)R(z) ~ 0, an approximate version of (C.9).

4This phenomenon is not so surprising after noting that Tchebycheff polynomials oscillate
relatively rapidly near interval endpoiunts.
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Figure C.1. Example of R and ¢y, for zeros collocation.
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Figure C.2. Example of R and ¢y for extrema collocation.
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C.5 Gaussian Elimination of Block-Tridiagon-
al Systems
The system of equations (3.14) generated from FD-spectral solution of the

(z,v;) and (z,v,,v,;) problems have a block-tridiagonal structure, rewritten
here,

(Bos V(e ) ()
s
Qs Rq, S Gy (1]
Q RL-—& S Qr-3 (1]
Q R, ., S QL2 (4]
\ Qi1 By /) \ary/ \o)
(C.11)

where Q,Q;_,,Ri,R.—,,S, and §; are square matricez and a; and 3 are
corresponding vectors (1 = 2,:--,L — 1). Equation (C.11) can be solved for
the a; through generalization of the Gaussian elimination procedure that is
usually applied to systems of scalar equations [15].

The first step is forward elimination. The top block row is premultiplied
by R;! and any “block elements” directly beneath R, are eliminated. Elim-
ination proceeds through matrix scaling of the top block row followed by
addition of that row to lower block rows.® This process is repeated, starting
with the leading block element of the second row down through the last block
row, resulting in a block-upper-triangular system, which is mathematically

SWritten in full, after eliminating with its top block row, (C.11) changes to:

I R;ISQ ag R;lﬂ
Rs—-QR;'S; S as -QR;!'p
o

Q R4 S [+ 71
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equivalent to (C.11):

( I Ug \ ( Qg \ ( Y2 \
I US Cig T3
I U4 Oy Y4
I Up_s ap_g Ti-3
I Ur-; ap—2 Vi-2
\ I J\epn/) \apy)
(C.12)

The matrices U;, t = 2,---,L - 2 and vectors «;, t = 2,---,L — 1 represent
the upper-diagonal and inhomogeneous block elements.

The second step in the solution procedure is back substitution. A re-
cursion relation for the a; immediately follows when (C.12) is written out,
bottom to top:

Ap-1 = TVp-1»
e =9 —UL-ier i1, (C.13)

£=2,.,.,L_2'
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Appendix D

Spectral and Transformation

Matrices for the (z,y,vz,vy,vz)
Problem

D.1 Symmetry of the Spectral and Transfor-
mation Matrices

Undertaken in this appendix is further elaboration of the ¢ symmetry of
the spectral matrices, along with a proof of the r symmetry of the transfor-
mation matrix, all in context of the (z,y,v;,v,,v,) problem.

With reference to the discussion in Section 4.4.3, matrices U, V', 4, and
B have been shown to be ¢ symmetric. Array (D.1) conveniently illustrates
their symmetry.

ee o0e 00 eo
I Gy, G Gy G,
I +G; FG, :FG3 +G,
III FG £G; FGs; £G4
v FG1 FG; FGs £G4

(D.1)

Matrices G, G3,G3, and G4 represent “generic” block elements within each
c-symmetric spectral matrix. The upper sign is to be taken for U and V
matrices, whereas the the lower sign should be taken for 4 and B matrices.
Column ordering is indicated by the parities of the constituent functions
¢rde (e=even and o=o0dd) and row-ordering by the collocation quadrant in
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the (vz,v,) plane. Matrices C and T™! are also ¢ symmetric, according to
Section 4.4.3. Arrays (D.2) and (D.3) depict their respective symmetries:

ee o0¢e 00 e€o

I Cl Cg Cs C4
I |c ¢ ¢ c,
i | ¢, ¢, ¢s ¢, |’ (D.2)
v \¢, ¢, Cs C,
éé oé 00 €0
I Y R T“ ;!

II Tt -1t -1 T
ur | ryt -3t T“ -T;!
IV T;l T;l __T;I —'T:l

It was claimed in Section 4.4.3 , without proof, that the transformation
matrix T is r symmetric. This can be proved by means of Gaussian elimina-
tion (see Apperdix C.5), given that T™! is ¢ symmetric. Array (D.3) can be
augmented with the identity block matrix,

(D.3)

Pt Tt TP o
v R RS PRI LI/ I §
7' -1 T3 -T' 0 O
' Tt -1 -1 0 0

; (D-4)

OS~Q Q0
~QO OO

where I is the identity matrix. The inverse of T™!, that is, T, can be com-
puted using the standard augmented-matrix technique 33|, generalized for
block matrices. The inverse results after a sequence of elementary block-
row operations, summarized in (D.5) through (D.9) (see the discussion of
Appendix C.5):

PR PO T, I 0 0 O
o -21;' 213! O -1 O O
0 -21;' 0 -t -101 0| (DI
0 ¢ -2T;' -2 -1 0 O [
T8 0 o T, ir ir oo
o -21;' 213 O -1 I O O
0 o0 2yt —2Ty* 0 -I I 0) (D-6)
] 0 21! 21! -I ¢ O I



TS O 0 TN 3 M 0 0)
o -2r;! 0 =21 -I O I O (D.7)
0 o 27! -2 0 -I I O’ '
0 0 0 -4 -I -1 I I)
T;! o o 0 iI %I %I %11\
o -21;% 0 O -3 I ?I —§I (D’8)
] 6 2I;° O ir -ir i1 31y’
0 0 0 4T -1 I I I )
and,
I 00O %1'1 }lrl irl %Tl
o1 ooO0 fT’ ‘fT’ ~iT, 3T, (D.9)
0 01I@O iT’ -iTs 1T —%Ts '
o 00 I T, ir, -ir, -iT,

4

In the last, step, (D.9), the block element identity relations T\T7' =T,T;' =
TsT;' = T,T;' = I have been employed. Augmented array (D.9) therefore
implies that 7' is r symmetric with structure

T1 T1 Tl Tl

1 T, -T, -T, T,
- . .10
(4) Tg -Ts Ts -Ts (D.10)

T, T, -T, -T,

D.2 Numerical Evaluation of Vector Prod-
ucts Involving C- and R-Symmetric Ma-
trices

Iterative solution of the (z,y, vz, v,, ;) problem requires a large number
of vector-matrix multiplications specified by (4.9) and (4.10). The numerical
computaiion time for these multiplications can be greatly reduced—by a
factor of four—if matrix symmetries are fully exploited.

It is evident from the preceding section that only two types of vector-
matrix multiplications will be encountered in iterating {4.9) and (4.10): writ-
ten symbolically, a vector product with a c-symmetric matrix,

Pa =b, (D.11)
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and a vector product with an r-symmetric matrix
Qe =d. (D.12)

The N x N matrices P and Q are composed of N/4 x N/4 block-matrix
elements P; and @;, ¢+ = 1,---,4, respectively, with a block-element sign
pattern s;; = 1 for¢,5 = 1,---,4. Vectors a,b, ¢, and d are all of iength N.
Suppose @, b, ¢, and d are partitioned into N/4-vector elements!:

a4 bl (3] dl
a=| % | b= b2 e=| and d = d3 (I".13)
- a3 ’ b3 ? €3 ? d3 )
B4 b4 €4 d,

The vector-matrix products (D.11) and (D.12) can be put into the form,

i 8ij(Pja;) = b; (D.14)

J=1
and

4
Q,- (Z 8,-1-6,') = d.' (D.15)
j=1

fori =1,---,4. The calculatiorns would commence by evaluating and storing
the quantities within parentheses above. Appropriate matrix additions and
subtractions in the case of (D.14), or matrix multiplications in the case of
(D.15), would then be carried out. In terms of computational effort (number
of scalar multiplications) this procedure results in an order N?/4 process.
“Brute force” evaluation of (D.il) or (D.12) is an order N? process, and
thus a factor of four is gained in execution rate. Observe also that only four
block matrices P; (or Q;), not their large original matrix P (or @), need be
stored in computer memory.

1By assumption, N is divisible by four. This also follows from the fact that the vectors
e, b, ¢, and d multiply c- and r-symmetric matrices that, by definition, have four-fold internal
symmetry [see (D.1) through (D.3) and (D.10), for example].
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Appendix E

Scattering Probability-Rate
Functions

Appendix E contains derivations of physically realistic scattering proba-
bility rates in terms of velocity variables. The derivations will start with k-
dependent scattering-probability-rate functions obtained from the literature.’
The primary intent here is not to describe physical scattering processes in
painstaking detail (nonparabolicity factors, screening effects, Bloch-function
overlap integrals, and the like [6-10], but tc make reasonable assumptions
and approximaiions that simplify the mathematics while the same time pre-
serving overall mathematical behavior.

Throughout this appendix, it is understood that the assumpticns of Sec-
tion 1.1.3 are all in effect.

E.1 Transformation to Velocity Space

As is standard practice, semiconductor scattering rates are formulated in
k-space variables. Carriers (electrons) are described through introduction of
a k-space distribution function f(¥)(r,k,t), an occupation probability that
when multiplied by the density of states (including spin) per unit k volume

1These probability-rate equations have been taken from Conwell’s monograph High-Field
Transport in Semiconductors [8] and Jacoboni and Reggiani's review article The Monte-
Carlo Method for Solution of Charge Tranaport sn Semiconductors with Applications to Co-
valeat Materials [9]. These two works should also serve as good starting references for a
physical explanation of semiconductor scattering processes.
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per unit r volume, 2/(27)%, and the phase-space volume element d*rd®k gives
the number of carriers in (r,r + dr) with wavevector within (k,k + dk) at
time t. The k-space version of BTE (1.2) (for a spherical, parabolic band)
can be shown to be [6]

af® h g
= kv, B _IE.v, k) 4 ck)gE) E.1
= - f y O+ CES (E.1)

where the collision operator C*¥) affects only the k variables according to
the scattering formula (nondegeneraie statistics, time and space variables
suppressed)

CBf = s [ @ [fOE)SOE K - FOESHE R (B2)

[compzre (E.1), (E.2) and (1.2) through (1.4)]. Both in- and out-scattering
contributions have been written explicitly in (E.2), and the appearance
of the (single-spin) density-of-states factor V/(2x)* follows from the spin-
conservation assumption (see Section 1.1.3). Here, V is the quantization
volume chosen small enough that f(*) is nearly constant within V. It is im-
portant to understand that the k-space scattering rate S*)(k, k') is a prob-
ability per unit time for transitions from k to k', unlike the velocity-space
scattering rate S(v, v'), which is a probability per unit time per unit velocity
volume (see Section 1.1.1).

Transformation to velocity variables is achieved through setting hk =
m*v and hk' = m*v', and using the associated differential relations d*k =
(m*/#)3d% and d*k' = (m*/h)*d®v'. Transformation of (E.1) leads directly
to BTE (1.2), after changing C®) to C, the collision operator in velocity
space, and f(*) to f, the occupancy probability per unit r volume per unit
v volume. The latter transformation involves just multiplicative factors:
f(r,0,t) = fE)(r,m*v/h,t) x 2/(27)® x (m*/#)3. Similar transformation of
(E.2) ends with

- o o () s (5055
—f(v) (2:)3 (%)3 50 (5 %”')] ' (E:3)

164




Comparison of velocity-space Egs. (1.3) and (1.4) with (E.3) above estab-
lishes the transformation rule

14 m* 3 m* m’
ne Y (M gwm (L, ™ _
§(v,v) (21.—)8( n) § (h i ") (E-4)

The quantity S(9,9')d>v’ can be interpreted as a probability rate for transi-
tions from v to within (v',v' + dv'), as originally stated in Section 1.1.1.

E.2 Deformation-Potential Acoustic Scatter-
ing

The combined absorption and emission probability rate for deformation-
potential scattering by acoustic phonons is [19]

2ﬂ'k5T':".§

(k) N =
SWk k) = =2

5(e' —e). (E.5)

where € and &' are the initial and final kinetic energies, respectively, which for
spherical, parabolic bands are simply € = (hk)?/2m* and ¢' = (hK')?/2m".
Quantization volume is given by V, crystal density by p, speed of sound
by u, and acoustic-deformation-potential interaction constant by Z,. In es-
tablisning (E.5) collisions are treated as elastic (¢ = €'), carrier screening
has been neglected, and the cell-periodic Bloch-function overlap integral has
been set to unity (see reference [10]). Equipartition is also assumed to hold;
thus, typical carrier energy (~ kpT) is much larger than the phonon energy
hw,(g) near ¢ = 0.
Transformation of (E.5) to velocity variables is achieved by means of
(E.4), yielding
2 =2
Sa(v,v') —_ (m ) kBT'-'a

)it & ) (E.6)

where kinetic energies are now expressed as ¢ = m*v?/2 and €' = m*(v')?/2.

The total scattering probability rate A,(€) is calculated upon integrating
(E.6) over all v' [as in Eq. (1.4)]. Integration is facilitated using spherical-
energy coordinates (¢', ¢',8') with velocity volume element d%v' = 21/2(m*)~3/2
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(61)1/2 sin 0'd€'d¢"d0':

— (m‘)s/szTE?s AT [P 00 soalef b
M) = S A /.,/o de'dd'ds' Ve sin 6'6(c' — €)
ﬁ(m')slszTE?,
xpudht

(E.7)

When the distribution funciion posseszes cylindrical velocity symmetry,
which is the case for the (z,v,,v,) problem, the in-scattering component of
the BTE collision term can be to a certain extent simplified. After suppres-
sion of space and time variables, the in-scattering ccmponent

s y oy _ (m*)¥?kpTE]
/d v f(v;,v;)sa(v ,0) = Zﬁwzpuzh‘

X j:}:/:c de'dg'ds’ Ve'sind'f (‘/fn:ejsiné',\/gcosﬂ') 6(c' —¢)
= 5. [ desfr - €0, (E:3)

with the scattering factor

_ (m*)*ksTE?

Sa= 21i’,¢m37£i )

(E.9)

The first equality in (E.8) follows by transformation to spherical-energy co-
ordinates; the last equality follows from integration over €' and ¢' and sub-
sequent transformation of #' according to ¢ = (2¢/m*)/? cosd'.

A similar situation arises in connection with the (z,y,v,, vy, v,) problem.
In this case the in-scattering component

s..1 r 1 ] ] _(m‘)s/szng ®/2 fx foo PR
[dvf(v,,vv,lv,])Sa(v,v)— /O /_1/0 de'dg'db

\/i',rzpuz#
[2¢ [2er o
! oF ] o i f B . nt e ¢ “c f '
x V&' sin 8 f ( — sin @ cos¢,vm‘ sind sin¢’, - cosl)) 6(e' —¢)
v (,,2_"2)1/2
= [ [ dedn Suemnf(En o= e =) (E.10)
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with the scattering factor

*\2 =2
(m?) k”T““] ! (E.11)

am2putht | VT — &2 — 9t

These results are found through transformation to spherical-energy coor-
dinates, integration over ¢', and then final transformation to rectangular
coordinates.? This last transformation is simply £(8',4') = (2¢/m*)/?sin 9’ cos ¢'
and n(6',¢") = (2¢/m*)!/? sin 0' sin ¢' with Jacobian determinant 3(6', ¢') /8(¢&, n)
— (m‘/Z)l/ze"I/z(sin or)—l(vz _ fz - 772)—1/2-

st o) = |

E.3 Nonpolar Optic Scattering

Nonpolar optic phonon scattering is characterized by the probability rate
[10]

Sgk) (k’ k') =

n&2 { N,b(' — € — hw,) (absorption) (E.12)

pw,V | (N, +1)6(¢' — € + hw,) (emission).

Identical to those in (E.5), energies € and €' are functions of wavevector mag-
nitude. The optic phonon frequency, nonpolar-deformation-potential inter-
action constant, and Bose-Einstein occupancy factor for optic-phonon modes
are denoted w,, 8,, and N,, respectively. The Bose-Einstein occupancy factor
is evaluated at a fixed phonon energy hw,:

1
NO = hw b
-1
o (£24)
waich is consistent with the assumption that there is no dispersion for optical
phonons [hw,(¢) = hw,]. Most of the other assumptions made in the previous
section are also valid here, although in this section collisions are inelastic
(¢' = € £ hw, where kgT ~ hw,).
Transformation of (E.12) to velocity variables works along the same line
as that for the deformation-potential acoustic scattering. With ¢ and ¢’

(E.13)

2Placement of final results in rectangular coordinates, and earlier, in cylindrical co-
ordinates [(E.8)], is done for reasons of numerical accuracy; the distribution function is
presumed, on physical grounds, to be “well-matched” to a uniform discretization in these
respective coordinate systems.
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functions of velocity magnitude, the velocity-dependent scattering probabil-
ity rate becomes

(m*)°82 [ N,6(¢' — € — hw,) (absorption)

n —
So(vsv ) - W { (No + 1)6(5' —€e+ hwo) (emission).

(E.14)

Integration of (E.15) in a manner similar to (E.7) yields

o) = (m*)3282 | N,z T fwy (absorption) (E.15)
o(€) = Vzrpah® | (No+ 1)ve =, u(s — hw,) (emission) '

for the total scattering probability rate due to nonpolar optic phonons. The
unit step function u(e — fiw,) ensures that phonon emission does not occur
for carrier energies less than the optic-phonon epergy.

Lastly, cylindrical and mirror symmetric in-scattering components can be
written immediately, after noting the mathematical manipulations in (E.8)
and (E.10) and replacing ¢ by the appropriate quantity € + kw,. Unit step
functions need also to be introduced to eliminate unphysical imaginary rad-
icals. The results are

[ @ £(u},0i)S(o,0)

v3—y3}1/3
3;'(0)/( ° dé f(y/v? —v2 — £2%,€) (absorption)

~(v3-v2)1/3

(E.16)

(v3+v3)1/3
s:-/—(oz.i.uz)x/zdf f( v? + ‘Ug - 62’ 6) (emission)

and
/dav' f(v,v,,|v.])S(v',v)
[ p(03=u3)V/3 p(v3—u3-n3)1i3
/ / d€dn S; (&,n,v)

~(v2=v3)1/3J —(v3~y3—p3)1/3

x f(&n, \/v2 —v2— £ — 9% (absorption)
(P43 (ot +od-n2) /3
/ / dedn S (€,n,v)

—(v3+93)1/3) —(v34+u2—n3)i/3
L xf(&n, \/vz +v2 — €% —n?) (emission)

(E.17)
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with the scattering factors

m*)2E2N,
)= FLEE o), (E.15
s _ (m*)?E5(N, + 1) .
sp =T (E.19)

_ _[(me )’Ef,N,,] u{v — v,)
So (&m0 = [ anlpwoh’ |\ for — o2 — g2 —n?’ (£:20)

and

SF(&mv) = [(m‘) (E.21)

283(N, +1) 1
43 pw, K>

q/v3+v§—£’—n2.

In all foregoing expressions, the parameter v, — (2hw,/ m*)1/2 ig the carrier
velocity corresponding to the optic-phonon energy.

E.4 Polar Optic Scattering

Scattering due to polar optic phonons obeys the probability-rate equation
[10]

S (k, k') = rq’we(en — €,') | Neb(e' — € — hwy) (absorption)
po A Vik-k)? (N¢e+1)6(e' — € + hw,) (emission).
(E.22)

Equation (E.22) is the analog of (E.12) for nonpolar phonon scattering, and
is predicated upon similar assumptions (spherical, parabolic bands; unity
overlap integral; zero phonon dispersion; and so forth). In the above ex-
pression w, is the longitudinal optic phonon frequency, €w and ¢, are the
high-frequency and static dielectric constants, respectively, and N, is the
Bose-Einstein occupancy factor for longitudinal phonon modes at energy
hw;:
1

()

In velocity variables, with € = m*v?/2 and &' = m*(v)?/2, (E.27) changes

N, =

(E.23)
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to

5..(0,0") = m*qwele ) — ;1) | Nib(e' — € — huy) (absorption)
pol0, ) = 8mihlv — v'|? (N¢+1)6(¢' — €+ hw,) (emission).
(E.24)

Integration of (E.24) for the total scattering probability rate Ay, is slightly
more complicated than in the previous cases owing to the appearance of the
= ‘tering anisotropy term |v — v'|%. It is clear from the definition (1.4) and
luq. (E.24) that A,, will be a function of €, or equivalently, v. Therefore,
it is permitted to choose v parallel to the z axis and pointing in the same
direction as ¢,. In spherical-energy coordinates, application of the law of
cosines implies |v — v'|? = 2¢/m* + 2¢'/m* — 2(2¢/m*)'/*(2¢' /m*)'/? cos §',
which means

m*)2g2wo (et — 1) (7 [x [ V& sin '
Ao(e) = ()L gl )/0/4/0 de'dg'dd' —

Sﬁwzh _ 2\/5@(:05 0'
Né(e' — € — hwy) (absorption)
8 { (Ne+1)6(¢' — €+ huw,) (emission). (E.25)

The integration over €' and ¢’ presents no problem, and a subsequent change
of variables, £ = (e % hw,)/%? cos 8’ (upper sign for absorption, lower sign for
emission), converts (E.25) to

_ (ma)l/2q2w£(r€;-°1 -l

Apol€) =
ro(€) 4/2rh
(8+ﬁw¢)l/2
N, / d¢ (26 — 24/€€ + hw,|™! (absorption)
X ~(e+hwe)1/3
(C—Mt)llz

(N, + 1)/ d¢ (2 — 24/€€ — hw,|™! u(e — hw,) (emission).

(E.26)

—(e=Pwg)P/3
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Integrals in (E.26) are readily evaluated, giving the final result®
(m*) 2 gPwelex — €5)
Apo(€) =
P (e) 4\/-7l'h\/—
ol VERVES Tiw,
e-ve + hw,
E+VE — ﬁ ¢
(Ng'{"l)lni\/_ e wtl (

(absorption)

€ — hwg) (emission).
(E.27)

The (z,v,,v,) problem requires that the in-scattering rate be put in cylin-
drical coordinates. This component is rea.dily calculated by resorting to
spherical-energy coordinates, where |[v' — v| = v? + (v')?— 2vv'[cos b cos ' +
sin 4 sin 6’ cos(¢ ¢")], and mtegra.tmg first over '. Integration over ¢’ is next
carried out using the fact that [} d¢ (a+bcos £)~! =27(a®—b4?)~/2. The final
result is obtained after the change of variables £ = (2/m*)/?(eF Tuut)‘/ % cosd'
(upper sign for absorption, lower sign for emission) and v, = (2¢/m*)}/? cos §:

/ d*' f(v),v})Spe(v',0)

v3-2)1/3
/(( . zﬂ)l/zdf flyv? —vi—€2,¢€)S,,(&,v) (absorption)

(v? ,,z)x/z
[T e ST OS5(E0) (emission),

with the scattering factors

(E.28)

Twie — €') N,

S50l 0) 4nh
u(v — v,) .
X T v - 20y — A - o) —vi - e )
and
+ _ qPwe(ex! — 1) (Ne+ 1)
Seolés0) = 4mh
= (E.30)

[(202 + v2 — 2v,£)2 — 4(v? — v2)(v? 4 v? — £2)|1/2
°In deriving (E.27) use has been made of reiations like 2¢ + Aw, + 21/eVe £ hw =

(Ve Ve hwy)?.
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In ail the above vy = (2hw,/m")'/? is the carrier velocity corresponding to
the longitudinal-optic-phonon energy. Details of the mathematics involved in
obtaining these expressions, (E.28) through (E.30), are in large part identical
to those earlier for (E.8), (E.9), (E.16), (E.18), and (E.19). The only major
difference here is inclusion of a scattering anisotropy term.

172




Appendix F

Analytical Solution of the
Constant-Field, Ballistic (z,v;)
Problem

The constant-field, ballistic (z,v;) problem is a linear, first-order partial
differential equation for f(z,v;):

a_f qE; of —

Y23z T m* ov, % (F-1)
with boundary conditions
f(0,v;) = fi(vz) vz >0. (F.2)
and
f(O, vz) = fz(vz) v, < 0. (F3)

For now it is presumed that ¢E, > 0, a positive constant, and that f; and
f2 are arbitrary functions.

An exact solution to (¥.1) subject to boundary conditions (F.2) and (F.3)
can be obtained using the well-known method of characteristics [34]. The
strategy is to find a transformation that converts (F.1) into an ordinary differ-
ential equation and (F.2) and (F.3) into a relatively simple initial condition.
Consider the general transformation z = z(o,7), v, = v,{0,7); application
of the chain rule results in a differential equation

4 _0z0f 9u:0f _,
do ~ 8o0dzx 8Ho dv,

(F.4)
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which is equivalent to (F.1) if the characteristic equations,
oz ov, qkE,

5 = U= 2nd 0 m*’

do

(F.5)

are obeyed. Characteristic equations (F.5) can be partially integrated to give
specific transformation equations:

2{o,r) = L2 4 y(r)o + exfr),

va(0,7) = %%a +eu(r). (F.6)

The independent variable 7 behaves as a parameter, on which integration
constants ¢; and ¢; depend.

The proper transformation has been found, (F.6). The next step is to
evaluate the integration constants; boundary conditions (¥.2) and (F.3) serve
as a guide. Figure F.1 depicts the strip domain (regions I and II) over which
(F.1) is to be solved. An especially convenient transformation requirement
is that the boundary condition domain BC , corresponding to (F.2), should
map onto B'C', as shown in Fig. F.2. Hence, z(0,7) = 0, which implies
c2(r) = 0; and z = 0, v, > O has to map onto 0 = 0, 7 > 0, which is
certainly true if ¢;(r) = ¢E.7/m*.! A transformation for region I is therefore

defined:
z(o,1) = g'g-%(a’ + 270)
v{o,1) = %.’-(0 +7)

It is easily checked that transformation (F.7) maps region I of the (z,v,)
domain according to Figs. F.1 and F.2. The remaining portion of the (z,v;)
dom-  region II, maps onto the (o,7) domain under the transformation

z(o,7) = %%(02 + 270) + L,
v(o,7) = Ll +1)

} region L. (F.7)

} region II, (F.8)

(as is also depicted in Figs. F.1 and F.2). The above transformation has been
obtained in a manner similar to that used for (F.7). The transformation

1This choice for ¢; i8 one of the simplest, but is by no means the only one that meets
the transformation requirements.
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Figure F.1. Region I and II domains for Eq. (F.1).
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Figure F.2. Region I and II domains, transformed according te characteristic
equations (F.5).
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requirement is that the boundary condition domain FG, corresponding to
(F.3), should map onto F'G’. This means z(0,7) = L,, and that z = L,, v, <
0 maps onto 0 = 0, 7 < 0. These requirements are met if ¢;(r) = ¢E.r/m’
and ¢;(r) = L., based on (F.6).

Inverse transformations for regions I and II are derivable from (F.7) and
(F.8), and can be written?®

o{z,v;) = —E—m. vy — )
(z7) 95a region I, (F.9)
7(z,vz) = q%:

and

o(z,v,) = 2 [v, +y/v2+ 2q—E;-ﬁ(L,, - z)]
(zv.) 9E. m region II. (F.10)

r(z,0.) = = B vl + 2082 (L, - 2)

The final solution step is to integrate (F.4), f(o,7) =constant, and apply
boundary conditicns at ¢ = O for region I (= > 0} and region II (r < 0),
separately. The result is

fovr) f1 %—EFT region I ( |
o,7) = F.11
f2 qn—E?’-r region II.

Upon inverse transformation,

m

fi ( v: — 2FE; , region I
f2 [—\/vﬁ + %(L, - .7:)] region II.

f(z,v:) = (F.12)

?Inversion of (F.7) and (F.8) results in two sets of inverse transformation equations. Only
one set meets the transformation requirements throughout the boundary condition domain,
(F.9) and (F.10), in which it is to be understood that the positive square roots are to be
taken; the other spurious set is ignored. Note that z < mv2/2¢E, in region I, so that the
quantity under the square root in {F.9) ie positive.
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Equation (F.12) can be expressed in terms of boundary conditions used in
Sections 2.2 and 3.1, namely, f; = f, and f; = 0, where f, is the equilibrium
Maxwellian defined in (2.31):

m(%”>fo(”z) vy > 2353,,
° e < \/22Ez,

m

(F.13)

gF;>0and 0< z < L,.

The negative constant-field version of (¥.13) can be written by inspection,
after noting the effect of the transformation z' = L, — z, v' = —v, ¢E. =
—gE; on (F.1), (F.2), and (¥.3), and on regions I and II of Fig. F.1. Thus,

exp (gj”.z) fo(v:) v > —\/E;ln-E.a(z - L.)
0 v < __\/qun_E‘_;_(x - L),

gE;<0and 0< z < L,.

f(z,v5) = (F.14)
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Appendix G

Mathematical Properties of
Monodimensional Fourier,
Tchebycheff, and
Hermite-Gaussian Basis
Functions

Various basis sets have been employed, at one time or another, through-
out this work. T'he important mathematical properties of the functions that
make up these zets will be reviewed. The comprehensive reference Hand-
book of Mathematical Functions by Abramowitz and Stegun [24] should be
consulted for a more thorough treatment.

.1 Fourier Basis Functions

A Fourier basis set derives from a sequence of trigonometric functions
defined on the interval [-1,41]. These functions are solutions to one of the
the simplest second-order ordinary differential equations,

&y - (%)2 y if n and y have even parity
—_— 2 G.1
dz? [Mfm} y if n and y have odd parity. (1)
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Sl od

n=0,1,2,---.
Solutions to {G.1) are given by the trigonometric functions

cos (%) n even (n=0,2,4,---)

Fo(z) = sin [gn-{-l)m:] nodd (n=1,3,5,- ). (G.2)

The Fourier set begins {1,sin nz, cos7z,sin 27z, cos 2rz, - - - }; the first seven
elements are plotted in Fig. G.1.! Notice that n and F, have identical parity
for all n.

The functions F, are mathematically complete and are orthogonal over
[-1,+1]:

1 0 m#n
[ dz Fo(z)Fa(z) ={ 2 m=n=0 (G.3)
-1 1 m=n#0.

In the interval [-1,+1] F, for n even and n > 0 possesses n zeros and n+1
extrema, while for n odd possesses n + 2 zeros and n + 1 extrema. The zeros
are defined by F,(z;) = 0, that is,

i@_:':;-_ll t=1,2,---,n/2; nevenand n > 0

=Y L26-1) (G4)
= t=1,2,---,(r+3)/2; n odd.
And similarly, the extrema are defined by F'(e;) = 0; hence,
. = i?p;—l)- i=1,2,--+,(n+2)/2; nevenand n >0 (G.5)
' :l:%:_:l t=1,2,---,(n+1)/2; n cdd. '

G.2 Tchebycheff Basis Functions

Besides trigonometric functions, Tchebycheff polynomials are also useful
in constructing a basis set. They are solutions to Tchebycheff’s differential

1The reader should not be confused by the fact that the F, are labeled n =

0,1,2, -, whereas the one-dimensional basis functions, ¢,(v:} (Section 3.1), and con-
stituent functions—¢z¢(v,) and ¢, (v,) (Section 3.2); and ¢x{vz), e(vy), and ¢om(vs) (Sec-
tion 4.1)—are labeled n,x,4,m = 1,2,3, - -. The former labeling convention is customary

in purely mathematical treatments and will be adhered to in this appendix.
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Figure G.1. Fourier monodimensional basis elements (n = 0,-- -, 6).
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equation

d’y  dy
(1 - 32)2-;2- - :L'E + nzy = 0, (G6)
rn=012,---

Solutions of (G.6) are given by?
T,.(z) = cos(ncos™ z). (G.7)

The first several Tchebycheff basis elements are {1, z,2z% — 1,4z — 3z,8z* -

8z% + 1,---}. Polynomials T, through Ts are plotted in Fig. G.2. Like the

trigonometric functions, T, and n always have the same parity.
Tchebycheff polynomials obey the recursion formula

Tot1(z) = 22T (z) — Ta-1(z). (G.8)

Formula (G.8) is of particular service when generating the T}, numerically. In
addition, Tchebycneff polynomials are mathematically complete, and further,
they are orthogonal with respect to the weighting function (1 — z?)~'/2 over
[+1,+1]:

0 mEn
/ dz "‘(x)T (2) _ T m=n=0 (G.9)
vi-o 7/2 m=n#0.

The n zeros of Ty, in [-1,+1], T'(z;) = 0, are

z,~=cos[£2—22_n—1)£] t=1,2,---,n; n>0. (G.10)

Correspondingly, the n + 1 extrema, T"(e;) = 0, are located at

e;=cos[m] t1=1,2,---,n+1. (G.11)

2In this case, one of two possible solutions is sought, Tchebycheff polynomials of the first
kind {24].
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Figure G.2. Tchebycheff monodimensional basis elements (n =0, ---,6).
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G.3 Hermite-Gaussian Basis Functions

Most FD-spectral calculations carried out in this thesis implement a
Hermite-Gaussian basis set, whose elements are constructed from solutions

to

d*y .
a-z—z-+(2n+1—z)y=0, (G.12)

n=201,2,---.

Equation (G.12) is the one-dimensional parabolic-potential Schrodinger equa-
tion [35]. Solutions to (G.12) are given by

5u2) = Sl op (3 ) 12 exnl-2) (G.13)

where 0! = 1. The functions S, are called Hermite-Gaussian functions since
they consist of a Gaussian, exp(—z2/2), multiplied by a sequence of Hermite
polynomials.® The Hermite-Gaussian set starts with (2"n!)~'/? exp(—z?/2) x
{1,2z,4z* — 2,823 — 12z,16z* — 482z% + 12, -.}. Hermite-Gaussian functions
up to Sg are plotted in Fig. G.3; n and S, always have the same parity as in
the previous Fourier and Tchebycheff cases.

In numerical applications the recursion formula

Sp+1(z) = 228a(z) — 2nS,-;(2) (G.14)

is of frequent use. Note, tco, the S, are mathernatically complete over the
infinite interval (—oo, +00) with orthogonality relation

[7 dz Su(z)50(a) = { ‘\’/7? min (G.15)

—00

The Hermite-Gaussian function S, possesses n — 1 zeros and n extrema
throughout {—oco, +00). Unfortunately, there are no known closed-form ex-
pressions for their exact location. In any event, the numerical algorithm
outlined in Appendix C.3 can be called upon.

3Hermite polynomials, H,(z), can be shown to satisfy Hermite’s differential equation
y'~2zy'+2ny=0,n=0,1,2,---.
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Figure G.3. Hermite-Gaussian monodimensional basis elements
(n=0,---,6).
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Appendix H

Boundary Conditions in
Two-Dimensional Transversally
Periodic and Mirror-Symmetric
Structures

Different types of boundary conditions that pertain to the BTE have
been touched upon in Section 1.1.2. A qualitative “derivation” will be given
here concerning the boundary conditions along the interface between unit
cells of a two-dimensional transversally periodic and mirror-symmetric device
structure. Although this situation was not covered in Section 1.1.2, it will be
shown in a limiting case that the interfacial boundary condition is equivalent
to (1.7) for a reflective boundary. It is this interfacial boundary conditic.
that has been used in solving the (z,y, vz, vy, v;) problem (see Section 4.2.3).

Figure H.1 depicts a two-dimensional transversally periodic and mirror-
symmetric device structure. This structure has been chosen to resemble
the idealized cross section of a permeable-base transistor (4|, for the sake
of realism. Yet, the following arguments are generally applicable to any
two-dimensional transverse-periodic structure possessing mirror symmetry
(geometrical and material) about the unit-cell interfaces.! The solid up-

1 Mirror symmetry about the unit-cell interfaces of a periodic structure also implies mirror
symmetry about the mid-plane of the unit cell, and vice versa. This is easily proved by using
the defining property that if a function g has parity p upon reflection about the plane z = z,,
then g(z, + ¢) = (—1)Pg(z, — ¢). Assume the unit-cell interface z = 0 is a plane of mirror
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Figure H.1. A two-dimensional transversally periodic and mirror-symmetric
device structure.
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per and lower horizontal lines represent cathode and anode (emitter and
collector) electrodes, respectively. Mathematically, these electrodes are ad-
equately described with the injective boundary conditions (1.6). The series
of cross-hatched horizontal lines represent internal base electrodes; the re-
flective boundary condition (1.7) is well suited in mathematically describing
these electrodes. The dashed vertical lines represent the interface between
unit cells, which repeat indefinitely in z. The BTE is to be solved in the half-
unit cell enclosed by segments AB and C D, after which symmetry arguments
can be made to construct the solution elsewhere.

First, imagine the electric-field distribution E.(z,y)é; + E,(z,y)é, in the
structure of Fig. H.1. Since the geometrical and material properties of the
structure are assumed to be mirror symmetric with respect to iines AB,CD,
and all other equivalent lines, the z component of electric field must also be
mirror symmetric about those symmetry lines. In other words, if either AB
or CD passes through z, then

E.(z, + €6,y) = —E.(z, — €,y) (H.1)

for 0 < € < L;. This can be justified by asserting that an observer at
(zo+¢€,y) or at (z,—€,y) would “see” mirror-symmetric charge distributions
about the line z = z,. In addition, as a special case of (H.1), if there is
no trapped interfacial charge density along symmetry lines (AB, CD, and
other equivalent ones), the electric field must be continuous at those lines.
Thus, lime o E.(z, + €,y) = lime.o—E.(z, — €,y), which can be true only
if E;(z,,y) = 0, where z = z, can now coincides with any mirror-symmetry
line. An analogous charge-symmetry argument can be made to show

EV(IO + €, y) = Eu(xo — & y) (Hz)

for0<e<L,.

Now, imagine the distribution of carriers in the structure of Fig. H.1. In
accordance with the comments of Section 4.1 the carrier velocity distribution
is mirror symmetric about the (v,,v,) plane: f = f(z,y,v;,v,,|v.|). This
is a direct consequence of three basic facts: (1) anode and cathode injected

symmetry and that the periodicity of the structure is L,. Then g( 3L:+€) = (-1)Pg(—%L,—
€) = (—1)Pg(:L. — ¢), proving that L. is also a plane of mirror symmetry. bonversely,
assume that 5L, is a plane of mirror symmetry. Then g(¢) = (—1)?g(L; — ¢) = g(—¢),
proving that z = 0 is also a plane of mirror symmetry.
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velocity distributions are even functions of v,, (2) the scattering probability-
rate function S(v,v') is an even fuaction of v (see Appendix E), and (3)
E iz a two-dimensional vector field in the (z,y) plane. The distribution
function can be viewed as a (steady-state) histogram of positions and ve-
locities for a large number of individual carrier trajectories [which happens
also to be the approach used in the Monte-Carlo method (see Section 1.2.1)].
With reference to Fig. H.1, all possible carrier trajectories can be reduced to
pairs of mirror-symmetric trajectories such as ab and c¢d. This is ensured by
Egs. (H.1) and (H.2), the facts enumerated earlier, and the additional prop-
erty S(vz, vy, vs,v;,v,,v;) = S(—vz,vy,0,5, ~v;,v,,v;) (see Appendix E), if
anode and cathode boundary conditions are spatially homogeneous. There-
fore, the distribution function must obey

f(xo + € Y,Vz, YUy, |‘U,|) = f(zo — &Y, Vg, Uy, Ivll) (H3)

for 0 < € < L., and for any mirror-symmetry line z = z,. Under circum-
stances where the spatial domain has to be absolutely restricted within AB
and CD, it is necessary to evaluate (H.3) for ¢ — 0, which is simply?

F(Zos U5 V2, 0y, |Vs]) = F(Z0r ys — vz, vy, [4]) (H.4)

Equation (H.4) is merely a special case of the reflective boundary condition
(1.7). Note that (H.4) can be interpreted as a “no-flow” condition since
Je(zo,y) = [dv v f =0.

2]t is worth remarking that condition (H.3) results in a convenient boundary condition
for numerical solution of the (z,y, vz, vy, ;) problem (see Section 4.2.3). In this instance
the distribution function is not absolutely restricted within AB and CD but is sampled a
distance ¢ = Az/2 just outside these symmetry lines (refer to Fig. H.1). If, however, the
finite-difference mesh is displaced so that the distribution function is sampled exactly on
either or both svmmetry lines AB and CD, condition (H.4} can then be applied.
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Appendix I

Evaluation of Distribution
Function Moments

Spectral representation of the distribution fun:tion’s velocity dependence
greatly facilitates numerical moment evaluation. The generalized Pth-rank
moment tensor is

Mp(r,t) = /dsv of f(r, e, 1), (L.1)

its tensor character made evident by definition of the tensor quantity v* with
elements

{0P}§hgz'...'g‘, = ]___I;v;,. (12)

Equations (I.1) and (I.2) have been presented in general notation so as to
apply to any of the problems in Chapters 2 through 4.! Observe also that the
zeroth- and first-rank moment tensors (P = 0, 1, respectively) are the carrier
concentration and current density, Mo(r,t) = n(r,t) and M(r,t) = J(r,t);
the second-rank moment tensor (P = 2) is commonly denoted the energy
tensor, Ms(r,t) = W(r,t).

The FD-spectral decomposition (1.14) implies

Mp(r,t) = f: an(r,t)m,p, (1.3)

n=1

1To illustrate, the (z,v,,vs) problem requires r — 2&,, v — v &, + v,&;, d®v —
2xv,dv,dv,, and (v,,v,) — (v1,v2), i, = 1,2, in (L.1) and (L.2).
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with the N “moment parameters”
Map = / d* o7, (v), (L4)

n=1,---,N.

Therefore, numerically efficient moment evaluation would first entail 2 “one-
time-only” determination of the m,p according to (I.4), and then, for any
subsequent FD-spectral calculation, the use of (1.3).

Additional simplification is possible if symmetries in basis function con-
stituents are exploited. This is most easily understood by way of exam-
ple. Take the third-rank tensor element {Ms(r,t)}201 associated with the
(z,y,vz,vy,v;) problem. In terms of constituent functions,

{Ms(r,t)}201 = 3 aeem(r,t)maamomemy, (1.5)
x,Lm
where
mu = [ d€ £4,(8), (16)

v = k2, €0, (2m)l.

The constituent moment parameters m,;, my, and m(m), either vanish or
need only be integrated over a semi-infinite interval depending on the respec-
tive parities of their integrands.
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