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Abstract

While AI has the potential to transform patient care, the development of equitable
clinical AI models and their translation to hospitals remains difficult. From a compu-
tational perspective, these tools must deliver consistent performance across diverse
populations and adapt to diverse clinical needs, while learning from biased and scarce
data. Moreover, the development of tools relies on our capacity to balance clinical AI
utility and patient privacy concerns. In this thesis, I will discuss our contributions in
addressing the above challenges in three areas: 1) cancer risk assessment from imaging,
2) personalized screening policy design and 3) private data sharing through neural
obfuscation. I have demonstrated that our clinical models offer significant improve-
ments over the current standard of care across globally diverse patient populations.
The models now underlie prospective clinical trails.
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Chapter 1

Introduction

While recent advances in machine learning have led to superhuman model performance

on many tasks, developing equitable clinical AI tools that can readily be translated to

clinical care remains difficult. From a computational perspective, these tools must

deliver consistent performance across diverse populations while learning from biased

and noisy data. Moreover, it is often not clear how to effectively translate clinical

questions into AI models, or how to leverage them to benefit patient care given varying

clinical constraints. Finally, the development of clinical AI tools is severely restricted

by patient privacy considerations, resulting in a dearth of public datasets. To address

these challenges, this thesis focuses on developing modeling approaches that are robust

to data generation biases, can adapt to diverse clinical requirements and enable new

privacy-utility trade-offs. I will present contributions in three areas:

1. Predicting future cancer risk

2. Designing personalized screening policies

3. Private data sharing

The clinical tools presented in this work offer significant improvements over the

current clinical standard across globally diverse patient populations, and they are

implemented at multiple hospitals.
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1.1 Predicting Cancer Risk

Early detection key to improving cancer outcomes. Across multiple cancers, randomized

clinical trails[33, 117, 118, 113, 39] have demonstrated that screening can significantly

decrease cancer mortality by diagnosing the disease at earlier stages; for instance,

mammography has been shown to decrease breast cancer mortality by 25% [39] and low-

dose computed tomography was shown to decrease lung cancer mortality by 24%[33].

These findings have motivated considerable investments in population screening, with

the United States spending an estimated 7.8 billion dollars on mammography screening

per year[86] . While screening can improve patient cancer outcomes, the practice also

carries significant harms including false positives, unnecessary biopsies, and patient

anxiety. To balance the benefits of screening against the harms, screening programs

rely upon risk models, which predict the probability of a patient developing cancer

in the future, to determine how to allocate screening. Intuitively, patients at higher

risk of breast cancer should be afforded more sensitive screening regimes, improving

early detection, while patients at lower risk should receive less screening, minimizing

over-treatment. Improvements in risk modeling would enable clinical guidelines to

achieve further improve patient outcomes (through earlier detection or prevention)

while reducing over treatment. However, despite decades of effort, the accuracy of risk

models used in clinical practice remains modest. For instance, the Tyrer-Cuzick (TC)

[123] and Gail [42] models achieved areas under the curve (AUCs) of 0.62 and 0.59,

respectively, in a prospective UK screening cohort [19].

Since the first breast cancer risk model in 1989 [42], traditional risk assessment

models have relied on a small number of categorical variables encoding patient demo-

graphics and clinical history combined with traditional statistical models to predict

risk[42, 123, 27]. The improvement of these models has primarily relied on identifying

new categorical variables to incorporate (i.e. feature engineering). For example, previ-

ous research [101, 27] explored multiple risk factors related to hormonal and genetic

information and Brentnall et al [19] incorporated mammographic breast density, an

expert defined imaging biomarker, into the Gail risk model and Tyrer-Cuzick model
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(TC). The key limitation of expert defined risk markers, such as breast density, is that

they cannot capture the full richness of a patient’s phenotype, limiting the accuracy of

the resulting risk models. Same-age patients who are assigned the same density score

can have drastically different mammography with vastly different outcomes. Whereas

previous studies [68, 16, 18] explored automated methods to assess breast density,

these efforts reduced the mammographic input into a few statistics largely related to

volume of glandular tissue that are not sufficient to distinguish patients who will and

will not develop breast cancer.

We hypothesized that there are subtle but informative cues on mammograms that

may not be discernible by human experts or simple volume-of-density measurements,

and deep learning methods could leverage these cues to yield significantly improved

risk models. However, developing clinically meaningful risk models directly from

imaging requires addressing several unique computational challenges. Risk models

must provide predictions at various time points in the future (e.g. one to five years)

while learning from patient data with variable amounts of followup information. They

should benefit from potentially missing non-image data, such as age and family history,

and they must perform consistently across across heterogeneous mammography devices.

Finally, to ensure equitable improvements in care, clinical AI tools must demonstrate

robust performance across diverse screening populations.

To address these challenges, we developed Mirai, a mammography-based deep

learning model designed to predict cancer risk. Mirai significantly outperformed the

clinical standard of care, the Tyrer-Cuzick (TC) model, obtaining a five-year AUC of

0.76 compared to 0.62 by TC, and it maintained its accuracy across seven hospital

systems from five countries[146, 145]. To achieve this performance, we designed Mirai

to address the key requirements of cancer risk modeling. To estimate risk at multiple

time points, we explicitly designed the model architecture to decompose the prediction

of cumulative risk into multiple intermediate hazard predictions. This decomposition

allows the model to leverage different features to predict long and short term risk,

while producing self consistent predictions. To benefit from non-image risk factors (e.g.

age, family history) that may be missing at test time, we trained Mirai in a multi-task
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fashion to predict non-image risk factors from the imaging. This auxiliary objective

acts as an additional regularizer while enabling the model to conditionally impute

non-image information if it isn’t available. Finally, to ensure that Mirai obtained

consistent accuracy and calibration across heterogeneous mammography machines,

we proposed a conditional adversarial training scheme to eliminate hardware specific

biases. Altogether, our work [145] demonstrates that image-based breast cancer model

can offer broad and equitable improvements in care.

1.2 Designing Personalized Screening Policies

Effective population cancer screening programs must balance the benefits of early

detection against the harms of over screening. This capacity relies on both our ability

to predict future cancer risk, and our ability to design personalized risk-based screening

policies. While recent deep learning advances have transformed cancer risk prediction

(as discussed in 1.1), our ability to design risk-based screening policies still lags behind.

Existing screening guidelines [32, 110] still rely on only a few features, such as a

patient’s age and smoking history, to decide who should get screened and how often,

limiting their ability to personalize care. As a result, these programs generally assign

all patients a single screening regime (e.g. annual screening) for decades. Novel

AI-driven risk models[146, 143] offer us the opportunity to transform population

screening. AI-based risk models can capture complex dependencies in a patients high

dimensional data, yielding improved accuracy, and they offer a dynamic snapshot of a

patient’s risk as the patient’s raw data evolves over time. To take full advantage of

dynamic AI-based risk models, we propose computational framework, Tempo[144], to

derive agile screening policies that can adjust the screening regime as the patients risk

evolves. We hypothesized that by pairing AI-based risk models with AI-driven policy

design, we could uncover significantly more efficient cancer screening policies, yielding

both improved early detection and reduced over screening.

We can view breast cancer screening as a markov decision process, where we

wish to develop a policy that can map a patient’s risk (state) to a screening followup
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recommendation (action) in order to maximize that patient’s chances of early detection

while minimizing their screening harms (reward). With this formulation, reinforcement

learning (RL) algorithms could train policies to make a sequence of screening-followup

decisions to maximize the future reward. However, applying RL algorithms for

screening policy design, a setting where only retrospective screening data is available,

poses several unique challenges. First, the training data only includes patient risk

assessments (states) when mammograms were taken; however, to simulate how a

novel policy would have acted for a patient, we need also need to know the risk

assessment at intermediate points. As result, we train an generative model that learns

to interpolate a patient’s risk at unobserved time points from observed screenings. This

risk progression model allows us to leverage the retrospective screening trajectories

as a full simulation environment to evaluate and train policies. Moreover, while we

can leverage counterfactual reward metrics to evaluate the screening cost and early

detection benefit of a policy, different hospital systems with disparate local resource

constraints, have diverse desired weightings between different rewards (i.e. early

detection benefits and screening costs). Furthermore, these hospital preferences are

not known at training time. To enable our policies to support diverse and unknown

clinical preferences, we condition our policies on the desired clinical trade-off and

train our policies to generalize across possible preferences with multi-objective Q-

learning[149].

We demonstrated the efficacy of Tempo in the context of breast cancer. We

trained our risk-based screening policies on a large screening mammography dataset

from Massachusetts General Hospital (MGH; USA) and validated this dataset in

held-out patients from MGH and external datasets from Emory University (Emory;

USA), Karolinska Institute (Karolinska; Sweden) and Chang Gung Memorial Hospital

(CGMH; Taiwan). Across all test sets, we find that the Tempo policy combined with

an image-based risk model is significantly more efficient than current regimens used in

clinical practice in terms of simulated early detection per screen frequency. Moreover,

we show that the same Tempo policy can be easily adapted to a wide range of possible

screening preferences, allowing clinicians to select their desired trade-off between early
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detection and screening costs without training new policies. Finally, we demonstrate

that Tempo policies based on AI-based risk models outperform Tempo policies based

on less accurate clinical risk models. Altogether, our results show that pairing AI-based

risk models with agile AI-designed screening policies has the potential to improve

screening programs by advancing early detection while reducing over-screening.

1.3 Private Data Sharing

Data sharing remains a central challenge to the development for equitable clinical

AI tools. The creation of public medical datasets is severely restricted by privacy

regulations [54, 43] that aim to prevent the leakage of identifiable medical data We

consider a scenario where a single large hospital wishes to release a large labeled

medical imaging dataset (e.g. mammograms with cancer labels) to enable untrusted

third parties to develop clinically meaningful AI models while preventing patient

reidentification. To this end, we develop an encoding scheme for private data release.

An ideal encoding scheme would enable model development for arbitrary down-

stream tasks using standard machine learning tools while preventing raw data reiden-

tification; moreover, this scheme should be computational efficient and not require

data owners to train their own models (e.g. generative models[59, 141]) or to leverage

expensive cryptographic primitives [44]. Designing such an encoding scheme has

remained a long standing challenge for the community. For instance, differentially

private approaches pursue this goal by adding independent random noise to limit the

sensitivity of the encoding outputs to the input data. While these methods afford

strong theoretical privacy guarantees, the magnitude of random noise to needed obtain

privacy often results in too large of a utility loss in clinical tasks for practical use. More

recently, several lightweight heuristic encoding schemes [55, 139] have been shown

to achieve better modeling utility. However, these schemes only offer privacy in the

best case, when the raw data distribution follows strong assumptions (e.g. the data is

Gaussian [139]), and they do not offer privacy on real medical imaging datasets such

as X-rays[147].
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In dissertation, we propose Syfer, a neural obfuscation method to protect against

re-identification attacks. In our framework, data owners encode their data with a

random neural network (acting as their private key) for public release. While arbitrary

random neural networks are not sufficient to achieve privacy on real word data (e.g.

X-rays), we demonstrate how we how to shape the distribution of private keys by

composing random layers with trained obfuscator layers. The obfuscator layers are

trained on public data to precondition random transformations in order to achieve

privacy against an estimated attacker while maintaining the invertability of the whole

transform. In doing so, we learn a distribution of random encoders that tightly adapted

to the characteristics of real world X-rays. To characterize the privacy utility trade-offs

of complex encoding schemes on real world data, we introduce a flexible computational

attacker and a realistic chest X-ray utility benchmark. We demonstrated that our

scheme could obtain a 25 point AUC improvement over a differentially private baseline

while maintaining high guesswork, a well-known metric in password security. Our

results demonstrate that learned encoding schemes can offer significantly improved

privacy utility trade-offs while supporting arbitrary and unknown downstream tasks.

1.4 Outline

The rest of this thesis is organized as follows:

• Chapter 2 presents methods predicting cancer risk from medical imaging. The

models significantly outperformed clinical standard in large-scale validation

study across seven hospital systems from five countries.

• Chapter 3 introduces a reinforcement-learning based framework for deriving

personalized screening policies from longitudinal screening data and AI-based

risk models (as explored in Chapter 2). We showed that this framework was

significantly more efficient than existing clinical guidelines across diverse test

sets from four hospitals, achieving earlier detection for lower screening costs.

• Chapter 4 proposes a neural obfuscation method for encoding private data to
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protect against re-identification attacks. We demonstrated that X-ray classifiers

built using this scheme obtained strong privacy and approached the performance

of classifiers trained on raw images.
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Chapter 2

Predicting Future Cancer Risk from

Medical Images

2.1 Introduction

It is estimated that 39 million mammograms are performed in the United States every

year [125, 67], with $1.1 billion dollars being spent by Medicare alone [49]. Despite

the wide adoption of breast cancer screening, the practice is riddled with controversy.

Proponents of more aggressive screening strategies aim to maximize the benefits of

early detection [115, 50, 51, 77, 29, 114], whereas advocates of less frequent screening

aim to reduce the false-positive assessments, anxiety, and costs for the patients who

will never develop breast cancer [121, 103, 14, 20, 120]. As a result, in the United

States, there are multiple guidelines with different recommendations about when to

start screening, how often to get screened, and when supplemental screening is needed

[132, 87, 109, 83, 84, 110]. We argue that both goals of earlier detection and reducing

overtreatment can be achieved by leveraging more accurate risk models. With im-

proved risk-based guidelines, we can offer more sensitive screening to patients who will

develop cancer, achieving earlier detection while reducing unnecessary screening and

overtreatment for the rest. Moreover, because of the scale of breast cancer screening,

even modest improvements in screening guidelines have the potential to benefit a wide

patient population.
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All guidelines currently in clinical use leverage risk models. Some guidelines [84]

use risk models as simple as a patient’s age to determine whether, and how often,

a woman should get screened, whereas others [87] combine multiple factors relating

to age, hormonal factors, genetics, and mammographic breast density to determine

whether supplemental imaging should be considered. However, despite decades of

effort, the accuracy of risk models used in clinical practice remains modest. For

instance, the Tyrer-Cuzick [123] and Gail [42] models achieved areas under the curve

(AUCs) of 0.62 and 0.59, respectively, in a prospective UK screening cohort [19].

Recently, image-based deep learning models have shown considerable promise [143, 36],

obtaining AUCs up to 0.70 for assessing 5-year risk and advancing the state of the

art. However, to bring an image-based risk model to the clinic, we not only need to

further improve its accuracy but must also validate its performance at scale across

diverse populations and clinical settings. Furthermore, we need to demonstrate that

it can identify more accurate high-risk cohorts. Here, we aimed to achieve all three of

these goals by developing Mirai and studying its performance across seven hospital

systems across the United States, Israel, Sweden, Taiwan, and Brazil.

2.2 Results

2.2.1 Overview of algorithm

In computational terms, risk assessment can be viewed as a prediction task, where the

model is trained to associate features of mammograms with future cancer diagnoses.

Although this setup, referred to as supervised learning, is commonly used for medical

tasks [65, 94, 6, 31, 52], risk modeling also poses several unique requirements. It

requires risk prediction at various time points, the ability to leverage potentially

missing nonimage data (such as age and family history), and consistent performance

across heterogeneous mammography devices. Inherent to risk modeling is learning

from patients with variable amounts of follow-up and needing to assess risk at different
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time points. Although it is possible to train separate models to assess risk for each

time point based on patients with the corresponding amount of follow-up (1 to 5 years),

this approach can result in mutually inconsistent risk assessments. For instance, a

model could predict that a patient has a higher risk of developing cancer within 2

years than within 5 years. Moreover, this approach does not leverage the inherent

relationship between assessing risk at different time points. We address this by

training a single model to predict risk at all time points and by explicitly designing the

architecture to produce self-consistent predictions. This formulation also enables the

model to learn from data with variable amounts of follow-up. Although our method

primarily focuses on mammograms, we also wanted to leverage nonimage risk factors

(for example, age and hormonal factors) if they were available. An obvious mechanism

for incorporating nonimage risk factors is to add them as an input to the model jointly

with the image. However, this design would prevent hospitals that do not collect this

kind of information from using the model. Although we could impute this missing

information by using a reference population, that would not take into account the

relationship between the mammogram and the risk factors. To address this challenge,

we trained our model to predict risk factor values from the mammogram, enriching our

original objective with this new prediction task. This formulation enabled the model

to benefit from available risk factor data while allowing it to impute the information

if it is missing. To incorporate deep learning risk models into clinical guidelines,

the models must be consistent across a range of mammography devices, in other

words, they must predict the same risk for a patient regardless of the mammography

device. We addressed this challenge by adopting a conditional-adversarial training

scheme [153]. This training regime forces the model to induce image representation

in a device-invariant fashion and to produce consistent risk assessments. Our full

model, named Mirai, is depicted in Fig 2-1. It takes as input all standard views of

a mammogram: left craniocaudal (L CC), left mediolateral-oblique (L MLO), right

craniocaudal (R CC), and right mediolateral-oblique (R MLO). Mirai consists of four

modules: an image encoder, an image aggregator, a risk factor predictor, and an

additive-hazard layer. A run through the model works as follows: first, we pass each
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mammogram view independently through the image encoder. Next, we take each

image representation as well as which view it came from (for example, L CC and

R MLO), and pass it into the image aggregation module to combine information

across views and obtain a representation of the entire mammogram. Given this rich

representation of the mammogram, we then predict a patient’s traditional risk factors

as used in Tyrer-Cuzick (such as age, weight, and hormonal factors) and refer to this

as our risk factor prediction module. If risk factor information is not available at

inference time, we then use the predicted values. Next, we take the mammogram

representation from our image aggregator, combined with our risk factor information

(predicted or given), and predict a patient’s risk with an additive-hazard layer. The

additive-hazard layer predicts a patient’s risk for each year over the next 5 years.

Architectural details for each module are presented in the Methods, and all code is

released.

2.2.2 Training and testing at MGH

We developed Mirai using the Massachusetts General Hospital (MGH) dataset, which

consists of 210,819, 25,644, and 25,855 examinations from 56,786, 7020, and 7005

patients, for the training, validation, and test sets, respectively. This dataset contained

detailed risk factor information, as used in Tyrer-Cuzick version 8 (TCv8), that was

available at the time of mammography. The distribution of clinical risk factors in the

MGH dataset, as used by TCv8, is shown in table B.2. A flowchart illustrating the

construction on the MGH dataset is shown in Fig. 2-3.

To determine the impact of using predicted risk factors on Mirai’s performance, we

evaluated the model both when using the electronic health record-based and predicted

risk factors, referring to the two scenarios as “Mirai with risk factors” and “Mirai

without risk factors,” respectively. We compared Mirai against three alternative

risk models: Hybrid DL [143], Image-Only DL [143], and TCv8. Hybrid DL is a

deep learning model based on both mammograms and traditional risk factors, and

Image-Only DL is a deep learning model based only on mammograms. Hybrid DL

requires traditional risk factors to predict risk, whereas Image-Only DL does not use
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Figure 2-1: Schematic description of Mirai. The four standard views of an individual
mammogram were fed into Mirai. The image encoder mapped each view to a vector.
The image aggregator combined the four view vectors into a single vector for the
mammogram. In this work, we used a single shared ResNet-18 as an image encoder,
and a transformer as our image aggregator. The risk factor predictor module predicted
all the risk factors used in the Tyrer-Cuzick model, including age, detailed family
history and hormonal factors, from the mammogram vector. The additive hazard layer
combined information from both the image aggregator and risk factors (predicted or
given) to predict coherent risk assessments across five years.
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such information. We note that Hybrid DL and Image-Only DL were both developed

using the same MGH dataset as Mirai, and so, differences in performance can only

be attributed to the algorithm design. Image-Only DL is equivalent to the image

encoder component of Mirai trained by itself as a 5-year risk classifier. TCv8 is a

traditional risk model that combines a variety of risk factors including age, family

history, and hormonal factors and is a current clinical standard. We obtained TCv8

risk assessments using the Command-Line version of the IBIS Breast Cancer Risk

Evaluation tool (version 8).

To better investigate the connection between risk estimation and cancer detection,

we also compared Mirai with retrospective radiologist BI-RADS (Breast Imaging-

Reporting and Data System) assessments and a recently proposed cancer detection

model, Image-and-Heatmaps [135], on the MGH test set. Image-and-Heatmaps is

a convolutional neural network trained on a large dataset from New York Univer-

sity (NYU) using both pixel-level and whole-image annotations to predict cancer

within 120 days. We obtained Image-and-Heatmaps cancer predictions using their

publicly available GitHub [45] and did not use test-time data augmentations or model

ensembling.

On the 25,855 examinations (588 positive) in the MGH test set, Mirai with and

without risk factors obtained C-indices of 0.76 (0.74 to 0.80) and 0.75 (0.72 to 0.78)

compared with C-indices of 0.72 (0.69 to 0.75), 0.72 (0.69 to 0.75), and 0.64 (0.60

to 0.67) by Hybrid DL, Image-Only DL, and TCv8, respectively. The full results on

the MGH dataset are summarized in Table 2.1, and receiver operating characteristic

(ROC) curves for each time point are shown in Fig. 2-2. Mirai with risk factors had a

significantly higher 5-year AUC than Hybrid DL, Image-Only DL, and TCv8 with P

values of <0.001, <0.001, and <0.001, respectively. Mirai with risk factors did not

have a significantly higher 5-year AUC than Mirai without risk factors (P = 0.27). We

also present an analysis of model performance excluding cancers identified within 6

months of the screening mammogram, resulting in 25,708 examinations (441 positive)

(table B.1). In this setting, Mirai with risk factors had a significantly higher 5-year

AUC than Hybrid DL, Image-Only DL, and TCv8, with P values of <0.001, 0.02, and
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<0.001, respectively, and did not have a significantly higher 5-year AUC than Mirai

without risk factors (P = 0.27). We also evaluated the performance of radiologist

BI-RADS assessments and Image-and-Heatmaps [135] in Table 2.1. Radiologists

obtained ROC AUCs of 0.92 (0.90 to 0.95) and 0.75 (0.72 to 0.78) at 1 and 2 years,

respectively, compared with 0.84 (0.81 to 0.88) and 0.80 (0.76 to 0.83) by Mirai. We

found that Image-and-Heatmaps obtained a 1-year AUC of 0.78 (0.73 to 0.82) and a

C-index of 0.68 (0.65 to 0.72).

We performed an ablation study of Mirai to investigate the effects of different

design choices on overall performance and mammography device bias (table B.10 and

fig. C-2). To evaluate the mammography device bias of a risk model, we trained

a classifier to predict which machine was used to acquire a mammogram from the

model’s corresponding risk assessment and measured the AUC of this device-identity

classifier on the MGH test set. We found that an ablation of Mirai without risk factors

that removed conditional adversarial training obtained a device-identity AUC of 0.76

(0.75, 0.76), reflecting large device bias. With the addition of conditional adversarial

training, Mirai without risk factors obtained a device-identity AUC of 0.50 (0.50, 0.50),

effectively removing the bias. We evaluated the saliency of each risk factor in Mirai’s

predictions across the MGH test set in fig. C-4. The most important risk factors

were a patient’s BRCA status, if they had any family history (binary family history),

and if they had had any children (parous), with average saliency scores of 0.07 (0.07,

0.07), 0.04 (0.04,0.04), and 0.03 (0.03, 0.03), respectively. In contrast, mammograms

had an average saliency score of 2.19 (2.17, 2.22). We note that the mammogram

obtained a 30-fold higher saliency score than the most important clinical factor, BRCA

status. This finding is consistent both with the reported performance of Mirai with

and without risk factors shown in Table 1 and the result that Mirai with risk factors

did not obtain a significantly higher five-year AUC than Mirai without risk factors

(p=0.27).
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Model Use RF C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC
TCv8 No 0.64 (0.60, 0.67) 0.66 (0.61, 0.71) 0.65 (0.61, 0.69) 0.64 (0.60, 0.68) 0.63 (0.59, 0.67) 0.62 (0.59, 0.66)
Radiologist BI-RADs NA 0.67 (0.65, 0.70) 0.92 (0.90, 0.95) 0.75 (0.72, 0.78) 0.68 (0.65, 0.70) 0.64 (0.62, 0.67) 0.62 (0.60, 0.65)
Image-and-Heatmaps No 0.68 (0.65, 0.72) 0.78 (0.73, 0.82) 0.73 (0.70, 0.77) 0.69 (0.66, 0.73) 0.67 (0.63, 0.70) 0.64 (0.60, 0.68)
Image-Only DL No 0.72 (0.69, 0.75) 0.79 (0.75, 0.83) 0.75 (0.71, 0.78) 0.73 (0.70, 0.77) 0.73 (0.70, 0.76) 0.73 (0.70, 0.77)
Hybrid DL) Yes 0.72 (0.69, 0.75) 0.78 (0.75, 0.82) 0.74 (0.71, 0.78) 0.72 (0.68, 0.75) 0.72 (0.68, 0.75) 0.72 (0.69, 0.76)
Mirai No 0.75 (0.72, 0.78) 0.84 (0.80, 0.87) 0.78 (0.75, 0.82) 0.77 (0.74, 0.80) 0.76 (0.73, 0.79) 0.76 (0.73, 0.79)

Table 2.1: ROC AUCs and C-indices for Mirai and prior risk models on the MGH test
set. We also evaluated Image-And-Heatmaps and radiologist BI-RADs assessments.
RF refers to "risk factors". All metrics are followed by their 95% confidence interval.

Figure 2-2: ROCs for model predictions on MGH test set.

2.2.3 Generalization to additional populations

For Mirai to be useful to the larger community, it must be validated in a diverse set

of clinical environments and patient populations. To this end, we tested the model

on a dataset from the Novant, Emory, Maccabi-Assuta, Karolinska, Chang Gung

Memorial Hospital (CGMH) and Barretos which consisted of 14,157, 44,008, 6,189,

19,328, 13,356, and 5,900 examinations from 5,887, 16,495, 6,189, 7,353, 13,356, and

5,900 patients of which 235, 1,003, 186, 1,413, 244, and 146 examinations were followed

by cancer within 5 years, respectively. Demographics of each dataset are shown in

tables 2.2, B.2, B.3, B.4. A dataset construction flowchart for all datasets is shown in

Fig. 2-3. Traditional risk factors were not available in either dataset. As a result, we

tested Mirai without risk factors.

The performance of Mirai across all time-points and across all test sets is reported

in Table 2.3. Mirai (without risk factors) performed similarly across all test sets,

obtaining Uno’s C-indices of 0.75 (0.70 to 0.80), 0.77 (0.75 to 0.79), 0.77 (0.73 to 0.81),

0.81 (0.79 to 0.82), 0.79 (0.76 to 0.83) and 0.84 (0.81 to 0.88) on the Novant, Emory,

Maccabi-Assuta, Karolinska, CGMH and Barretos test sets, respectively. These results

are similar to C-index of 0.75 (0.72 to 0.78) at MGH. Mirai obtained 1-year AUCs of

0.84 (0.80 to 0.87), 0.78 (0.73 to 0.84), 0.83 (0.81 to 0.86), 0.86 (0.81 to 0.91), 0.90
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MGH Novant Emory Maccabi-Assuta Karolinska CGMH Barretos
Unique patients 7,005 (233) 5887 (123) 16,495 (495) 6189 (186) 7,353 (799) 13,356 (244) 5,900 (146)
All exams 25855 (588) 14157 (235) 44008 (1003) 6189 (186) 19328 (1413) 13356 (244) 5900 (146)
Age at Exam
<40 724 (7) 0 (0) 410 (11) 23 (1) 0 (0) 0 (0) 0 (0)
40-50 7025 (95) 3917 (53) 9047 (147) 1589 (47) 7814 (364) 4008 (74) 2810 (41)
50-60 7829 (188) 5368 (65) 12113 (235) 1232 (23) 5477 (387) 6301 (115) 2114 (59)
60-70 6708 (182) 4872 (117) 13182 (302) 2232 (57) 5174 (563) 3024 (55) 976 (46)
70-80 3001 (94) 0 (0) 7638 (285) 1038 (44) 863 (99) 0 (0) 0 (0)
80< 568 (22) 0 (0) 1495 (23) 75 (14) 0 (0) 0 (0) 0 (0)

Table 2.2: Demographics of Massachusetts General Hospital (MGH), Novant, Emory,
Maccabi-Assuta, Karolinska, Chang Gung Memorial Hospital (CGMH), and Barretos
test sets. Patient statistics are followed by the number of patients who were diagnosed
with breast cancer within five years. Exam level statistics, including age demographics,
are followed by the number of exams which were followed by a cancer diagnosis within
five years.

Site C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC
MGH, USA 0.75 (0.72, 0.78) 0.84 (0.80, 0.87) 0.78 (0.75, 0.82) 0.77 (0.74, 0.80) 0.76 (0.73, 0.79) 0.76 (0.73, 0.79)
Novant, USA 0.75 (0.70, 0.80) 0.78 (0.73, 0.84) 0.76 (0.71, 0.81) 0.76 (0.71, 0.81) 0.75 (0.70, 0.80) 0.75 (0.70, 0.80)
Emory, USA 0.77 (0.75, 0.79) 0.83 (0.81, 0.86) 0.79 (0.77, 0.82) 0.77 (0.75, 0.80) 0.77 (0.75, 0.79) 0.76 (0.74, 0.79)
Maccabi-Assuta, Israel 0.77 (0.73, 0.81) 0.86 (0.81, 0.91) 0.81 (0.76, 0.87) 0.79 (0.75, 0.84) 0.77 (0.73, 0.81) 0.75 (0.71, 0.79)
Karolinska, Sweden 0.81 (0.79, 0.82) 0.90 (0.89, 0.92) 0.86 (0.84, 0.88) 0.82 (0.80, 0.84) 0.80 (0.79, 0.82) 0.78 (0.76, 0.80)
CGMH, Taiwan 0.79 (0.76, 0.83) 0.90 (0.87, 0.93) 0.86 (0.83, 0.90) 0.82 (0.78, 0.85) 0.80 (0.77, 0.84) 0.79 (0.75, 0.82)
Barretos, Brazil 0.84 (0.81, 0.88) 0.89 (0.86, 0.93) 0.87 (0.84, 0.91) 0.86 (0.83, 0.90) 0.85 (0.81, 0.89) 0.82 (0.78, 0.86)

Table 2.3: Area under the Receiver Operating Curve (AUCs) for predicting cancer in
one to five years and Uno’s C-index for Mirai on all test sets. All metrics are followed
by their 95% confidence interval.

(0.89 to 0.92), 0.90 ( 0.87 to 0.93), and 0.89 (0.86 to 0.93) at MGH, Novant, Emory,

Maccabi-Assuta, Karolinska, CGMH, and Barretos, respectively. Mirai obtained

one higher 1-year AUC at Karolinska (0.90), CGMH (0.90), and Barretos (0.89),

where screening is biennial, than at MGH (0.84), Novant (0.78), Emory (0.83), and

Maccabi-Assuta (0.86), where screening is annual. The performance of Mirai when

excluding cancers diagnosed within 6 months is shown in Table B.5. Here, Mirai

obtained C-indices of 0.69 (0.66 to 0.73), 0.72 (0.66 to 0.79), 0.69 (0.66 to 0.72), 0.70

(0.64 to 0.76), 0.71 (0.69 to 0.74), 0.70 (0.66 to 0.75), and 0.78 (0.74 to 0.83) on the

MGH, Novant, Emory,Maccabi-Assuta, Karolinska, CGMH, and Barretos test sets,

respectively, compared with a C-index of 0.62 (0.58 to 0.67) obtained by TC on the

MGH test set.
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2.2.4 Identifying high-risk cohorts

To evaluate the clinical significance of Mirai’s performance, we evaluated its ability to

identify high-risk cohorts that may benefit from supplemental screening. To perform

this analysis, we restricted our attention to patients who were initially screening

negative and had at least 5 years of screening follow-up. We defined an examination as

screening negative if it was not followed by a cancer diagnosis within 6 months. This

resulted in cohorts of 9,284, 7,524, 8,640, 1,385, 7,194, 11,167, and 2,057 examinations

from 3,957, 3,617, 5,774, 1,385, 5, 707, 11,167, and 2,057 patients of which 441, 140,

632, 107, 869, 139, and 70 were followed by cancer within 5 years from MGH, Novant,

Emory, Maccabi-Assuta, Karolinska, CGMH, and Barretos, respectively. We defined

the sensitivity of a guideline as the percentage of all patients who would develop

cancer within 5 years included within the high-risk cohort and thus may benefit from

supplemental screening. We defined the specificity of the guidelines as the percentage

of all patients who do not develop cancer within 5 years not included in the high-

risk cohort and thus may avoid overtreatment. We compared three guidelines for

identifying high-risk patients: 20% lifetime risk by TC (TC guideline), Mirai at the

specificity of the TC guideline, and Mirai at the sensitivity of the TC guideline. We

studied Mirai at TC specificity and TC sensitivity to evaluate the potential of Mirai

to improve early detection for a fixed cost (ie, specificity) and the potential to reduce

costs for a fixed level of early detection (ie, sensitivity), respectively. The Mirai at TC

specificity and Mirai at TC sensitivity guidelines were chosen to match the specificity

and sensitivity of the TC guideline on the MGH development set. We only evaluated

the TC model on the MGH test set as the necessary risk factors were not available at

the other six institutions. We performed this analysis on all test sets and subgroups of

the Emory data set by race. To illustrate the full spectrum of possible operating points

for this use case, we also plot receiver operating curves for Mirai for each institution.

The performance of Mirai in selecting high risk cohorts across all tests sets is shown

in Table 2.4. On the MGH test set, the Mirai at TC specificity guideline obtained

a sensitivity of 39.7% (32.9 to 46.5) compared with a sensitivity of 22.9%(15.9 to
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Method Sensitivity Specificity
MGH, USA: 9,284 exams from 3,957 patients. 441 exams followed by future cancer.
Tyrer-Cuzick (TC) Lifetime Risk >20% [4] 22.9% (15.9, 29.6) 85.4% (84.1, 86.6)
Mirai at TC specificity [4] 39.7% (32.9, 46.5) 85.2% (84.1, 86.4)
Mirai at TC sensitivity 20.0% (14.2, 25.1) 94.2% (93.4, 94.9)
Novant, USA: 7,524 exams from 3,617 patients. 140 exams followed by future cancer.
Mirai at TC specificity 50.0% (38.5, 61.4) 84.6% (83.3, 85.7)
Mirai at TC sensitivity 23.6% (14.1, 32.1) 95.4% (94.7, 96.0)
Emory, USA: 8,640 exams from 5,774 patients. 632 exams followed by future cancer.
Mirai at TC specificity 36.7% (31.6, 41.8) 84.9% (84.0, 85.9)
Mirai at TC sensitivity 22.0% (17.4, 26.3) 91.5% (90.7, 92.2)
Maccabi-Assuta, Israel: 1,385 exams from 1,385 patients. 107 exams followed by future cancer
Mirai at TC specificity 40.2% (30.9, 49.3) 84.8% (82.9, 86.8)
Mirai at TC sensitivity 22.4% (14.6, 30.2) 92.5% (91.1, 94.0)
Karolinska, Sweden: 7,194 exams from 5,707 patients. 869 exams followed by future cancer
Mirai at TC specificity 42.9% (38.5, 47.0) 85.0% (84.0, 86.0)
Mirai at TC sensitivity 21.9% (18.4, 25.2) 94.3% (93.7, 95.0)
CGMH, Taiwan: 11,167 exams from 11,167 patients. 139 exams followed by future cancer
Mirai at TC specificity 45.3% (36.7, 53.5) 84.6 (83.9, 85.2)
Mirai at TC sensitivity 23.0% (15.8, 29.8) 94.8% (94.4, 95.2)
Barretos, Brazil: 2,057 exams from 2,057 patients. 70 exams followed by future cancer.
Mirai at TC specificity 37.1% (25.6, 48.1) 85.2% (83.6, 86.8)
Mirai at TC sensitivity 21.4% (11.1, 30.4) 91.7% (90.51, 92.92)

Table 2.4: High risk cohort analysis for all test sets. For each test set, we restricted
our analysis to patients who were initially screening negative and had at least five-
years of screening follow-up. We defined an exam as screening negative if it was not
followed by a cancer diagnosis within six months. We defined a future c¬ancer as
a pathology confirmed breast cancer diagnosis within five years of the mammogram.
Mirai thresholds (i.e. “at TC sensitivity” and “at TC specificity”) were chosen to match
the performance of the Tyrer-Cuzick (TC) model on the development MGH set.
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29.6) obtained by TC, yielding a significant improvement (P < .001). The Mirai at

TC sensitivity obtained a specificity of 94.2% (93.4 to 94.9) compared with 85.4%

(84.1 to 86.6) obtained by TC, yielding a significant improvement (P < .001). This

performance was maintained across our other institutions. The Mirai at TC specificity

guideline obtained sensitivities of 50.0% (38.5 to 61.4), 36.7% (31.6 to 41.8), 40.2%

(30.9 to 49.3), 42.9% (38.5 to 47.0), 45.3% (36.7 to 53.5), and 37.1% (25.6 to 48.1)

at Novant, Emory, Maccabi-Assuta, Karolinska, CGMH, and Barretos, respectively.

The Mirai at TC sensitivity guideline obtained specificities of 95.4% (94.7 to 96.0),

91.5% ( 90.7 to 92.2), 92.5% (91.1 to 94.0), 94.3% (93.7 to 95.0), 94.8% (94.4 to 95.2),

and 91.7% (90.51 to 92.92) at Novant, Emory, Maccabi-Assuta, Karolinska, CGMH,

and Barretos, respectively. The Mirai receiver operating curves for selecting high-risk

cohorts across all test sets are shown in Figure C-1.

2.2.5 Subgroup analysis

We also validated all risk models for different clinical subgroups of interest. In the MGH

test set, we computed model C-indices for patients of different races (White, African

American, and Asian American), different age groups, different density categories, and

different mammography devices. We found that Mirai performed similarly across all

groups. This information is available in table B.6. We note that the C-indices for Mirai

with risk factors for White, Asian American, and African American patients were

0.75 (0.72 to 0.78), 0.80 (0.68 to 0.95), and 0.71 (0.55 to 0.90), respectively, compared

with 0.64 (0.60 to 0.68), 0.54 (0.36 to 0.75), and 0.62 (0.44 to 0.84) for TCv8. In the

Karolinska dataset, we computed Mirai C-indices by future cancer subtype (invasive,

HER2 status, and so on) in table B.7. The distribution of cancer subtypes is reported

in table B.8. We found that Mirai obtained similar C-indices across different subtypes,

which is further supported by a t-SNE (t-distributed stochastic neighbor embedding)

[74] analysis (Fig. C-3) showing that the model learns similar representations for

mammograms regardless of the subtype of the future cancer.

As shown in Table B.9, we found that Mirai performed similarly across different

race subgroups of the Emory test set. The Mirai at TC specificity guideline obtained
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sensitivities of 33.9% (26.3 to 41.0) and 40.0% (32.0 to 47.2) for African-American

and White patients, respectively. The Mirai at TC sensitivity guideline obtained

specificities of 90.7% (89.6 to 91.9) and 91.9% ( 90.8 to 93.0) for African-American

and White patients, respectively.

2.3 Discussion

We developed a risk model, Mirai, to assess breast cancer risk from screening mammo-

grams. Mirai demonstrated improved discriminatory capacity over the state-of-the-art

clinically adopted Tyrer-Cuzick and prior deep learning approaches Hybrid DL and

Image-Only DL. Moreover, we found that Mirai, which was trained at MGH, main-

tained its performance on datasets on test sets from seven hospitals across five countries.

Externally validating our model across diverse clinical settings is especially important

given recent negative findings for the generalization of other proposed mammography-

based models for cancer risk [128]. We evaluated Mirai across races, ages, and breast

density categories in the MGH test set, across races on the Emory dataset and across

cancer subtypes on the Karolinska dataset and found that it performed similarly across

all subgroups. We also demonstrated how Mirai could be implemented in current

clinical pipelines focused on identifying high-risk patients and showed that it improved

over existing risk models such as Tyrer-Cuzick lifetime risk.

Accurate short-term risk prediction (ie, within 5 years) is essential for early

detection efforts in breast cancer. Traditional risk models, such as the TC model, are

already widely implemented and support existing supplemental screening guidelines

by the American Cancer Society, the American College of Radiology, and the National

Comprehensive Cancer Network [110, 12, 83, 84, 9]. However, these models only

provide a global risk prediction for large groups of patients, limiting their predictive

accuracy for individuals and for specific time frames. Moreover, current guidelines for

MRI eligibility[110, 12] leverage lifetime TC risk, which ignores a patient’s short-term

risk of breast cancer and further limits the model’s predictive utility. Our retrospective
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analysis across multiple test sets suggests that Mirai has the potential to replace current

risk models (eg, TC) in guidelines for MRI screening, improving early detection and

reducing overtreatment. For instance, we found that Mirai could obtain 70% relative

improvement in sensitivity over the TC-based guideline at MGH while maintaining

the same specificity.

The performance of Mirai can be attributed to how its design captures unique

characteristics of breast cancer risk estimation. Specifically, the model architecture

jointly reasons over both different views of the mammogram and multiple time points

of risk assessment. Moreover, we demonstrated how to incorporate nonimage risk

factors such as age or hormonal factors to further refine accuracy, while enabling the

model to impute this information if it is not provided. Last, we used a conditional

adversarial training regime to learn image representations that are device invariant.

Our work is also related to the large volume of work [135, 45, 72, 133, 106, 148, 4,

134, 99, 97, 41, 107, 64, 79] focused on developing deep learning models for breast

cancer detection. Although the tasks of cancer detection and future cancer risk are

distinct, we hypothesize that some of the technical lessons from the two tasks can

be complementary. For instance, we hypothesize that aggressive model ensembling

strategies used by [135, 79, 104] and the use of detailed cancer region annotations

could be used to improve image-based risk models. Moreover, we hypothesize that our

mechanisms for predicting risk at multiple time points, optionally using risk factors,

and learning representations that are invariant to mammography machines could be

used to improve the current state of the art in cancer detection systems.

Although Mirai can be tested as a cancer detection system, direct comparison to

prior work in cancer detection is difficult due to a lack of publicly available code

[79, 62] and the lack of common benchmarks. Not directly comparable, we note that

Mirai obtained a 1-year AUC of 0.90 on the Karolinska test set, similar to the top

single-model AUC 0.90 on a separate Karolinska test set reported by [104]. We also

evaluated Image-and-Heatmaps [135], a recently proposed cancer detection model

trained to predict cancer within 120 days, on a large dataset from NYU. Image-and-

Heatmaps obtained a 120-day AUC of 0.89 on the NYU test set [135], and it obtained
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a 1-year AUC of 0.78 on the MGH test set. We note that it is difficult to compare this

model with our own because of the difference in study objectives and training datasets.

These results further highlight the importance of creating common benchmarks with

standardized evaluation to enable direct comparison between models. We believe that

sharing trained models is important for the continued development of cancer detection

and risk assessment systems, and to this end, we are releasing our code and models

for public research use.

There are multiple directions for future work that can further improve the accuracy

and utilization of the imaging-based models for cancer risk. Although our model

only considers a patient’s current mammogram agnostic of previous imaging, it is

known that changes in imaging over time contain a wealth of information. A natural

next step is to develop methods that can effectively use a patient’s full history of

imaging. In a similar fashion, expanding the model to use tomosynthesis is likely

to yield further performance improvements. Beyond work in improving accuracy,

additional research is required to determine how to adapt image-based risk models to

different mammography devices across multiple vendors. Although our conditional

adversarial training scheme enabled us to obtain consistent risk assessments across

mammography devices where we have training data, we did not evaluate whether our

models can generalize to unseen mammography devices. In addition, although our

own evaluation focused on defining high-risk cohorts, other methods are required to

design more fine-grained risk-based guidelines.

Our study had limitations. Our analysis of the benefit of different screening

guidelines was retrospective. Prospective clinical trials are needed to confirm the

clinical benefit of identifying improved high-risk cohorts using Mirai and to establish

Mirai guidelines. Moreover, Mirai was only developed and tested using Hologic

mammograms. Future work will be needed to test and adapt this technology to

more mammography vendors and to tomosynthesis images. Moreover, although Mirai

provides a risk assessment for cancer in either breast, it does not provide a risk estimate

for each breast.

In conclusion, Mirai, a mammography-based risk model, maintained its accuracy
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across globally diverse test sets from MGH, USA; Novant, USA; Emory, USA; Maccabi-

Assuta, Israel; Karolinska, Sweden; CGMH, Taiwan; and Barretos, Brazil. Moreover,

guidelines based on Mirai significantly outperformed the existing clinical guidelines

based on the TC model at MGH and maintained their performance across all test

sets. This is the broadest validation to date of an AI-based breast cancer model and

demonstrates that the technology can offer broad and equitable improvements in care.

Prospective clinical trials of this technology are warranted.

2.4 Methods

2.4.1 Study Design

The primary objectives of this study were to develop a model to assess breast cancer

risk and to validate its performance across diverse populations and clinical settings. We

designed and benchmarked our algorithm, Mirai, against the Tyrer-Cuzick model and

other deep learning models trained on the same MGH dataset, namely, Image-Only DL

and Hybrid DL, in predicting future risk. Although Mirai was trained to predict both

first-time cancer cases and recurrences, we limited our analysis to patients without a

prior history of breast cancer to enable a fair comparison against the Tyrer-Cuzick

model. Our secondary objective was to demonstrate the ability of Mirai to identify

high-risk cohorts and to compare it with the current Tyrer-Cuzick lifetime risk based

guideline.

2.4.2 Description of Cohorts

Our retrospective study was approved by the institutional review board of each clinical

institution with a waiver for written informed consent and was compliant with the

Health Insurance Portability and Accountability Act. We collected data sets from

Massachusetts General Hospital (MGH), USA; Novant, USA; Emory, USA; Maccabi-

Assuta, Israel; Karolinska, Sweden; Chang Gung Memorial Hospital (CGMH), Taiwan;

and Barretos, Brazil. Across all data sets, we collected mammograms from a large
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subset of patients and leveraged the mammograms to obtain Mirai risk assessments.

Mirai was trained using Hologic images, and all mammograms included in this study

were taken using a Hologic machine.

To collect the MGH data set, we collected consecutive screening mammograms

from 80,134 patients screened between January 1, 2009, and December 31, 2016,

at MGH. We obtained outcomes through linkage to a local five-hospital registry in

the Massachusetts General Brigham healthcare system, alongside pathology findings

from MGH’s mammography electronic medical record. We excluded patients without

at least 1 year of screening followup, who were diagnosed with other cancers (eg,

sarcoma) in the breast or did not have all four views available, to identify 70,972

patients. Patients were randomly split into n = 56,786 for training, n = 7020 for

development, and n = 7166 for testing. To enable fair comparison against the Tyrer-

Cuzick model, we excluded 161 patients with prior history of breast cancer from the

test set, leaving 7005 patients. Because each patient had multiple examinations, this

resulted in 210,819, 25,644, and 25,855 examinations for training, development, and

testing, respectively.

To collect the Novant data set, we selected 7,238 patients randomly from the

cohort of all patients age 40-69 years screened at a Novant Health clinic between

January 1, 2012, and December 31, 2016. We included all mammograms across this

time period and obtained outcomes by querying both a local cancer registry and the

Novant electronic medical record.We excluded patient examinations that did not have

at least 1 year of screening follow-up with prior cancer or whose mammogram did not

include all four standard views to identify 14,157 examinations from 5,887 patients.

To collect the Emory data set, we extracted 8 years of mammograms from an

institutional database of all comers for screening mammography from 2013 to 2020

and randomly selected 30% of women from this database, totaling 75,010 examinations

from 28,994 patients. We collected outcomes from pathology findings from Emory’s

institutional database using Magview software (Fulton, MD). As with other data sets,

we excluded patients’ examinations that did not have at least 1 year of screening

follow-up, with prior cancer or whose mammogram did not contain all four standard
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views to identify 44,008 examinations from 16,495 patients.

To collect the Maccabi-Assuta data set, we selected all comers for screening

mammography at Maccabi-Assuta during 2015 age 30 years or older, resulting in 9,775

examinations from 9,775 women. For each patient, we obtained dates of first breast

cancer diagnosis from the Maccabi-Assuta electronic medical records and a regional

registry. We excluded examinations from non-Hologic machines and patients with a

history of breast cancer to identify 6,189 examinations from 6,189 patients.

The Karolinska data set was extracted from the Cohort of Screen-Aged Women[35].

All women age 40-74 years within the Karolinska University uptake area who had

attended screening and were diagnosed with breast cancer, without implants and

without prior breast cancer, from 2008 to 2016 were included, as well as a random

sample of controls with at least 2 years of follow-up, from the same time period. The

full Karolinska case-control data set included 11,303 women, and 70% of both cases

and controls were randomly selected for inclusion in this study, resulting in 19,328

examinations from 7,353 patients.

To collect the CGMH data set, which consisted of 13,356 examinations from

13,356 patients, we selected random women undergoing screening mammography there

between 2010 and 2011 who were age 45-70 years. Following local guidelines, we also

included women age 40-44 years who had a family history of breast cancer. Cancer

outcomes were obtained from the national cancer registry.

To collect the Barretos test set, we selected all women age 40 to 69 years who

received screening mammograms at the Fernanopolis and Campo Grande units from

January 2, 2014, to June 30, 2015, to obtain a cohort of 6,206 mammograms from 6,206

patients. Cancer outcomes were obtained from patient medical records at Barretos

Cancer Hospital. We excluded mammograms without all four standard views, with

prior cancer, and with insufficient follow-up to identify 5,900 examinations from 5,900

patients.

Across all data sets, we defined a cancer-positive outcome as a pathology-confirmed

diagnosis of either invasive breast carcinoma or ductal carcinoma in situ. We used

screening follow-up to define when patients were cancer-negative. For instance, we
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considered a patient negative for 3 years if they had screening follow-up for at least 3

years without a cancer diagnosis. For all data sets, except the CGMH data set, we

excluded patients with prior cancer to enable fair comparison against the TC model,

which does not assess risk for this population. We did not perform this exclusion for

the CGMH data set because of difficulties in manual data curation.

2.4.3 Image Preprocessing

All of the mammograms used in this study were captured using either the Hologic

Selenia or Selenia Dimensions mammography devices. We converted presentation view

dicoms to PNG16 files using the DCMTK library. We used the dcmj2pnm program

(v3.6.1, 2015) with +on2 and– min-max-window flags. We used torchvision (version

0.2.1) and Pillow (version 5.2.0) python libraries for image preprocessing and data

augmentations. First, we resized each mammogram view to 1664 by 2048 pixels.

Following standard practice [48], we normalized our images to have zero mean and

unit variance. To this end, we calculated the pixel mean and standard deviation across

the training set and normalized each image by this mean and standard deviation

before feeding it into the model. We used the training set image mean and standard

deviation for all images.

2.4.4 Architecture Details

We encoded each view of the mammogram independently using ResNet-18 [53], with

a global max pooling layer at the end, to compress the image representation to a

512-dimensional vector, x. We refer to this as our Image Encoder. We note that

this is akin to the Image-Only model from [143]. To aggregate the information from

different views, we took the image representation from each view, and conditioned it

on a learned view and laterality embedding, to obtain view-specific representations.

To condition a vector 𝑥 by an embedding 𝑒, we used the following expression:

ℎ = (𝑊𝑠𝑐𝑎𝑙𝑒𝑒)× 𝑥+ (𝑊𝑠ℎ𝑖𝑓𝑡𝑒)
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We then took these view-specific representations and passed them into a Transformer

network [90] with attention-pooling to obtain a 512-dimensional mammogram level

representation. We refer to this component as our Image Aggregator.

Given the mammogram-level representation, we trained the model to independently

predict each risk factor as used in TCv8. We minimized the combined cross-entropy

loss of predicting each risk factor, weighted by a hyperparameter lambda, and the

log-likelihood loss of predicting future cancer. We note that the risk factor prediction

module can be thought of as a generative model that uses the mammogram to impute

missing risk factors, and thus allows the model to be run using the mammogram alone.

We refer to this component as our Risk Factor Predictor.

The additive-hazard layer first took in a patient’s features, m, from the mammogram

representation and the traditional risk factors (predicted or given), and predicted a

patient’s baseline risk, 𝐵(𝑚) using a small network (in our case a linear layer). To

predict risk at k years away from the mammogram, it separately predicted the positive

0-1 year marginal hazard (i.e., the additional risk of getting cancer in the next year)

using network 𝐻0, and the 1-2 year hazard using network 𝐻1, etc. Each marginal

hazard network, e.g 𝐻1, is implemented as a linear layer followed by a ReLU. To

obtain the overall risk at year k, the additive-hazard layer summed the baseline risk

and the marginal hazards up to year k. This is summarized in equation 1, where

𝑃 (𝑌 = 1, 𝑇 = 𝑘|𝑚) refers to a patient being diagnosed with cancer within k years.

We note that this modeling objective follows seminal work [1] in linear additive-hazard

survival models.

𝑃 (𝑡𝑐𝑎𝑛𝑐𝑒𝑟) = 𝑘|𝑚) = 𝐵(𝑚) + Σ𝐻𝑖(𝑚)

The architecture of our additive-hazard layer ensured that risk predictions were

always monotonic (that is, a patients two-year risk is always higher than their one-year

risk) and enabled us to easily optimize our model by maximizing the log-likelihood

of the observed data in our training set. For patients with less than five years of

screening followup, we leveraged their data to supervise the prediction over the years
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for which we know their outcomes.

The device discriminator took as input the mammogram level representation from

the Image Aggregator, as well as the predicted risk over time, and aimed to predict

the identity of the device that took the mammogram, Hologic Selenia or Selenia

Dimensions. This function is implemented as a two-layer multilayer perceptron with a

batch-normalization [56] and ReLU nonlinearities.

2.4.5 Model Training

We trained Mirai in two phases; first, we trained the image encoder in conjunction

with the risk factor predictor and additive hazard layer to predict breast cancer

independently from each view without using conditional adversarial training. In this

stage, we intialialized our image encoder with weights from ImageNet [102], and

augmented our training set with random flips and rotations of the original images. We

found that adding an adversarial loss at this stage or training the whole architecture

end-to-end prevented the model from converging. In the second stage of training,

we froze our image encoder, and trained the image aggregation module, the risk

factor prediction module, the additive hazard layer, and the device discriminator in a

conditional adversarial training regime [153]. We trained our adversary for three steps

for every one step of training Mirai. In each stage, we performed small hyperparameter

searches and chose the model that obtained the highest C-index on the development

set.

2.4.6 Model Calibration

To obtain absolute probabilities of cancer, we utilized the Platt method [93] to calibrate

the predicted probabilities of cancer on the development set. We calibrated each year’s

risk prediction separately. For instance, to calibrate our predictions for 5-year cancer

risk, we restricted our calibrator to match the incidence seen for exams with at least

five years of followup on the development set.
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2.4.7 Saliency Analysis

Saliency scores for the model inputs were calculated with the integrated gradients

method [111]. Specifically, the Image Aggregator of Mirai ’with risk factors’ was passed

the image representation from each view along with the patient risk factors from the

MGH test set. The gradient of the 5-year logit score was then computed with respect

to each individual input. The integral over the gradients was approximated using 150

steps and a baseline vector of all zeroes. Last, the saliency score was obtained by

summing the attributions of each input, averaging over the entire test set, and taking

the absolute value of the resulting mean.

2.4.8 Measuring Device Bias

To investigate the impact of different mammography devices on model calibration,

we trained a device-identity classifier to recover which device an exam was taken

from (Selenia Dimensions vs Lorad Selenia) from the risk assessment alone for each

model, and report the ROC AUC of this classifier. Specifically, we trained a logistic

regression model on the risk assessments of each model on the MGH validation set,

and tested its ability to predict the correct mammography device on the MGH test set.

If there exists a systematic bias in risk assessments by mammography device, then

the device-identity classifier can leverage this signal to obtain a high AUC on the test

set. For models that do not contain any device-related bias in their risk assessments,

the device-identity classifier obtains an AUC of 0.50.

Both Hybrid DL [143] and ImageOnly DL [143] formulated five-year cancer risk

prediction as a classification task and so they were trained on the 2009-2012 subset of

the MGH dataset with five-years of followup. MGH only utilized one mammography

machine during this time, Lorad Selenia, and as a result, ImageOnly DL and Hybrid

DL did not learn device specific bias. In contrast, all Mirai ablation variants shown in

table B.10 were able the full MGH training set because they used a survival formulation

of cancer risk (additive hazard or Cox), thus were able to learn device-related bias.
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2.4.9 T-SNE Analysis

For all t-SNE analysis, we used the final image hidden representation from Mirai and

visualized it in two dimensions with the t-SNE function in sklearn.manifold module of

scikit-learn 0.21.3 [91] with default parameters.

2.4.10 Ablation Analysis

To study the effect of our design decisions, we report a detailed ablation study of

Mirai’s components in table B.10. Moreover, to study the importance of our Additive

Hazard formulation, we compare an Image Encoder with our Additive Hazard layer

to an Image Encoder trained with a Cox Proportional Hazard’s layer. The Cox

proportional hazard layer predicted a single relative hazard per patient, analogous to

𝐵(𝑥), and this model was optimized to maximize the Cox partial likelihood objective,

similar to prior work in deep Cox survival models [61].

2.4.11 Statistical Analysis

We evaluated all models by the AUC for 1- to 5-year outcomes. For instance, to

compute the 3-year AUC, we considered a mammogram as positive if it was followed

by a cancer diagnosis within 3 years and negative if it had at least 3 years of screening

follow-up. We also calculated Uno’s C-index[124], which offers a generalized AUC

across all time points. To address that patients may have multiple examinations,

we used a clustered bootstrap approach with 5000 samples to calculate confidence

intervals. To assess the significance of the difference between two AUCs, we used the

paired DeLong’s test [34] as implemented in the pROC package in R [98]. To assess

the significance of the difference between two ratios, we used a two-tailed t test as

implemented in R[95]. For both tests, we used a predefined P < 0.05 for significance.

2.4.12 Data and materials availability

All code used for training and developing the models is available at learningto-

cure.csail.mit.edu (DOI: 10.5281/zenodo.4291202). The trained Mirai model is pub-
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licly available at github.com/yala/Mirai. All datasets were used under license to the

respective hospital system for the current study and are not publicly available.

56



Figure 2-3: Dataset construction flow-charts
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Chapter 3

Optimizing risk-based cancer screening

policies with reinforcement learning

3.1 Introduction

For multiple diseases, early detection significantly improves patient outcomes[110, 131].

This motivates considerable investments in population-wide screening programs[30, 32]

such as mammography for breast cancer. To be effective and economically viable,

these programs must find the right balance between early detection and overscreening.

This capacity builds on two complementary technologies: (1) the ability to accurately

assess patient risk at a given time point and (2) the ability to design screening regimens

based on this risk. With recent advances in deep learning, imaging and genetics, risk

assessment technologies are rapidly improving[46, 146, 143]. However, our ability to

utilize these predictions to personalize screening regimens lags behind. This deficiency

is particularly apparent when the screening system has limited throughput.

In this paper, we focus on the design of screening regimens attuned to the increased

capacity of the modern risk assessment models. The need for new methods to

personalize screening is motivated by a substantial change in risk assessment algorithms.

Traditional risk assessment models rely on a number of categorical variables encoding

patient demographics and clinical history combined with traditional statistical models

to predict risk[42, 123]. These scores are relatively static throughout a patient’s
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lifetime, with changes typically driven by the patient’s age. Moreover, the limited

predictive capacity of these risk models restricts the scope of recommendations they

support and, consequently, their impact on the screening regimen. Current guidelines

divide the population into a few large groups, most often discriminating predicted

high-risk patients from the rest, and recommend the same screening frequency to all

the members of that cohort [13, 85, 109]. As a result, there remain large opportunities

to further personalize care.

The power of novel, AI-driven risk models [143, 146, 35, 73] has given us an opportunity

to fundamentally transform population screening. Deep learning algorithms enable

these risk models to operate over raw patient data, such as imaging, in addition to

traditional expert-specified categorical variables. Moreover, these models can detect

highly complex dependencies, which further strengthens their predictive capacity

relative to traditional methods. One distinctive feature of these risk models is that

their predictions may fluctuate over time as the patient’s raw data evolve. This feature

suggests that screening regimens need to be flexibly adjusted with changes in risk

and optimized over a patient’s lifetime. We hypothesize that by pairing AI-based risk

models and agile AI-based screening regimens, we can improve early detection while

lowering the overall cost of screening. This article presents empirical findings that

support this hypothesis in the area of breast cancer screening. The core methodology

is applicable to other disease areas and other types of risk models beyond imaging.

3.2 Results

3.2.1 Overview of the algorithm

In computational terms, we can view breast cancer screening as a sequential decision

task, where we wish to develop a policy (i.e., screening guideline) that predicts a follow-

up recommendation for each patient to maximize their chance for early detection while

minimizing screening costs. Intuitively, such a policy should recommend infrequent

screenings for low-risk patients while prescribing a higher frequency of screenings
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for patients at increased risk. The question is how to personalize screening intervals

based on a patient’s risk profile. More formally, we can cast the screening problem

as a Markov decision process, where a patient’s state is their risk assessment, the

possible actions are different follow-up recommendations (e.g., 6 months or 2 years)

and rewards are a combination of expected early detection benefits and screening costs.

This formulation enables us to find the best possible policy for this Markov decision

process with reinforcement learning (RL) algorithms[100, 112]. RL algorithms train

policies (i.e., machine learning models) to make a sequence of decisions that maximize

future reward (e.g., early detection benefits) without explicit guidance on the right

decision at intermediate steps. Policies are initialized randomly, and through a mix of

random exploration and utilization of current knowledge, RL algorithms iteratively

improve policies. We show how to leverage RL methods of determining effective cancer

screening policies from retrospective screening data.

Applying RL in this context poses a unique challenge, namely the estimation

of patient trajectories from retrospective data. The training data pertaining to

individual patients only contain information about their risk at the time points when

the mammogram was taken. However, to determine whether the algorithm makes

the correct recommendation, we need to know the risk assessment at intermediate

points. Therefore, we design an algorithm that learns to extrapolate a patient’s risk at

unobserved time points from the observed screenings. This estimation evolves as new

mammograms of the patient become available. With access to these predictions, we

can guide our reinforcement learner to adjust its actions according to the estimated

risk. Using the retrospective trajectories as our simulation environment, we train

screening policies to maximize the future reward given the patient’s evolving risk

assessments, as illustrated in Fig. 3-1. In doing so, our trained screening policies are

specialized to the dynamics and subtleties of the underlying risk model.

Our full framework, named Tempo, is depicted in Fig. 3-2. As described above, we

first train a risk progression neural network to predict future risk assessments given

previous assessments. This model is then used to estimate patient risk at unobserved

time points, and it enables us to simulate risk-based screening policies. Next, we
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Figure 3-1: Retrospective patient trajectory from MGH test set compared to recom-
mended trajectories by different guidelines. This patient was screened every year,
from years zero to year three, and was diagnosed with breast cancer in year three.
The red “x” and red line indicate the known time of cancer diagnosis. The green check
marks indicate screening negative mammograms, and the green line indicates the
last known negative time-point, i.e., year two. For each recommended trajectory, we
can compute the screening cost and early detection benefit relative to the historical
screening. We measure the early detection benefit of a policy, by comparing it’s recom-
mended screening dates to the last known negative date and the known cancer date.
In our simulation, Tempo-Mirai, annual screening and biennial screening obtained an
early detection benefit of 6.0 months, 0 months and -12.0 months respectively while
recommending an average of 1.0, 1.0 and 0.5 mammograms per year for this patient.

train our screening policy, which is implemented as a neural network, to maximize the

reward (i.e., a combination of early detection and screening costs) on our retrospective

training set. We train our screening policy to support all possible early detection versus

screening cost trade-offs using Envelope Q-learning[149], an RL algorithm designed

to balance multiple objectives. The input of our screening policies is the patient’s

risk assessment and desired weighting between rewards (i.e., screening preference).

The output of the policy is a recommendation for when to return for the next screen,

ranging from 6 months to 3 years in the future, in multiples of 6 months. Our reward

balances two contrasting aspects, one reflecting the imaging cost (i.e., the average

number of mammograms per year recommended by the policy) and one modeling early

detection benefit relative to the retrospective screening trajectory. Our early detection

reward measures the time difference in months between each patient’s recommended

screening date, if it was after their last negative mammogram, and the actual diagnosis

date. We evaluate screening policies by simulating the recommendations for held-out
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Figure 3-2: Overview of Tempo. Our Tempo Policy takes as input a risk assessment
(e.g., from Mirai), and outputs a recommended followup time, such as k years into
the future. If a risk assessment is not available at the time step k, we estimate the
missing risk assessment using our Risk Progression Network.

patients. The exact reward details and the neural network architectures used are

elaborated in Methods.

3.2.2 Experimental Setup

We developed Tempo using the MGH dataset, which consists of 137,682, 16,634

and 17,119 exams from 43,749, 5,399 and 5,525 patients for the training, validation

and testing sets, respectively. For each exam, we had access to Mirai12 and Tyrer–

Cuzick version 8 (TCv8; [123] ) risk assessments. Mirai[146] is a recently proposed

mammography-based AI risk model that predicts risk at multiple time points, and

TCv8 [123] is a traditional risk model that combines a variety of risk factors, including

age, family history and hormonal factors. For Tempo to be broadly applicable,

its screening policies must be validated in new clinical environments and patient

populations. To this end, we also validated Tempo on representative datasets from

Emory (consisting of 22,094 exams from 10,369 patients), Karolinska (consisting of

14,356 exams from 7,191 patients) and CGMH (consisting of 12,280 exams from 12,280

patients). For each exam in the Emory, Karolinska and CGMH datasets, we obtained

Mirai risk assessments. We note that the Emory, Karolinska and CGMH datasets
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MGH Emory Karolinska CGMH
All exams 17119 (608) 22030 (723) 14362 (1768) 12280 (235)
Age
<40 120 (2) 237 (7) 0 (0) 0 (0)
40-50 4710 (91) 4523 (114) 5921 (558) 3656 (74)
50-60 5271 (187) 6210 (162) 4200 (499) 5816 (109)
60-70 4728 (198) 7018 (231) 3903 (652) 2801 (52)
70-80 1997 (96) 3532 (195) 338 (59) 7 (0)
80< 313 (34) 510 (14) 0 (0) 0 (0)

Table 3.1: Demographics of Massachusetts General Hospital (MGH), Emory, Karolin-
ska, and Chang Gung Memorial Hospital (CGMH) test sets. Each number is followed
by the number of exams eventually followed by a cancer diagnosis.

were only used for held-out testing. The demographics for all test sets are reported

in Table 3.1, and more detailed demographics for each dataset are shown in Tables

B.11, B.12, B.13, B.14. Our dataset construction is shown in Fig. C-9. All datasets

are described in detail in Methods.

Our primary objective was to develop personalized screening policies that would

outperform current guidelines, improving early detection while reducing screening

costs. To this end, we developed Tempo-Mirai, an RL-trained screening policy that

operates on Mirai risk assessments. This policy takes as input a patient’s Mirai risk

assessment and outputs a follow-up recommendation as illustrated in Fig. 3-2. We

implemented our risk progression model, which extrapolates unobserved Mirai risk

assessments from prior risk assessments, as a recurrent neural network (RNN). This

method is described in detail in Methods and validated in Table B.15. Sample risk

progression predictions are shown in Fig. C-5.

We compared Tempo-Mirai with existing screening guidelines, including annual

screening, biennial screening and a hybrid screening strategy recommended by the US

Preventive Services Task Force (USPSTF)[109], which switches from annual screening

to biennial screening at age 55 years. To assess the benefit of leveraging Mirai, a

mammography-based AI risk model, over a traditional clinical risk model in the

Tempo framework, we also developed Tempo-TCv8, a Tempo policy that operates on
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TCv8 risk assessments. We utilized a deterministic model, static risk, to estimate risk

progression for TCv8. This model is detailed in Methods. To quantify the benefit of

using our RL approach to develop risk-based screening policies (i.e., Tempo) over a

supervised learning approach, we also developed Supervised-Mirai and Supervised-

TCv8. Instead of maximizing the overall reward with RL (without supervision for

intermediate decisions), our supervised learning approach trains policies to predict

the optimal follow-up recommendation at each time step. These baselines are detailed

in Methods.

For each policy (e.g., Tempo-Mirai or annual screening), we measure its screening

cost in terms of the average number of mammograms it recommends per year and its

early detection benefit in months relative to historical screening. Our early detection

metric assumed that early screening, following a patient’s last negative mammogram,

could offer a maximum early detection benefit of 18 months. We note that our early

detection benefit metric is local and institution specific, as different institutions have

different screening patterns. To directly compare policies that recommend differing

numbers of mammograms, we also evaluated the efficiency of each policy, as measured

by the early detection benefit in months divided by the number of mammograms

per year recommended. Our efficiency metric is best suited to compare policies that

obtain positive early detection benefits.

3.2.3 Evaluating personalized screening policies

The results of all screening policies across the MGH, Emory, Karolinska and CGMH

test sets are illustrated in Table 3.2. We utilized the same Tempo-Mirai operating

point across all test sets. We illustrate the performance of Tempo across different

operating points (i.e., screening preferences) in all test sets in Fig. 3-3.

On the MGH test set, the annual and USPSTF guidelines obtained screening

efficiencies (i.e., early detection benefit per screening cost) of 1.58 (95% confidence

interval (CI), 0.54, 2.58) and 4.42 (95% CI, 5.83, 3.12). In contrast, Tempo-Mirai,

Tempo-TCv8 and Supervised-Mirai obtained screening efficiencies of 4.29 (95% CI, 3.17,

5.25), 2.16 (95% CI, 1.18, 3.40) and 0.80 (95% CI, 0.58, 2.12), respectively. We found
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Screening Policy Risk model Average number of Mammograms per Year Earlier Detection in Months Efficiency
MGH Test Set: 17,119 exams from 5,525 patients. 210 patients develop cancer.
Annual Age 1.0 (1.00, 1.00) 1.58 (0.54, 2.58) 1.58 (0.54, 2.58)
Biennial Age 0.5 (0.50, 0.50) -5.17 (-6.22, -4.13) -10.34 (-12.44, -8.26)
USPSTF Age 0.72 (0.71, 0.73) -3.18 (-4.23, -2.22) -4.42 (-5.83, -3.12)

Supervised TCv8 1.66 (1.65, 1.69) 4.55 (3.51, 6.08) 2.74 (2.08, 3.70)
Mirai 0.94 (0.92, 0.96) 0.75 (-0.55, 1.94) 0.80 (-0.58, 2.12)

Tempo TCv8 0.96 (0.94, 0.97) 2.06 (1.14, 3.20) 2.16 (1.18, 3.40)
Mirai 0.96 (0.94, 0.97) 4.10 (3.06, 4.96) 4.29 (3.17, 5.25)

Emory Test Set: 22,030 exams from 10,340 patients. 333 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 3.21 (2.37, 3.88) 3.21 (2.37, 3.88)
Biennial Age 0.5 (0.5, 0.5) -4.03 (–5.07, -3.22) -8.07 (-10.14, -6.5)
USPSTF Age 0.68 (0.67, 0.69) -2.11 ( -2.97, -1.40) -3.12 ( -4.36, -2.08)
Supervised Mirai 1.16 (1.15, 1.18) 2.05 (0.48, 3.29) 1.76 (0.41, 2.86)
Tempo Mirai 1.08 (1.07, 1.08) 6.39 (5.49, 6.99) 5.92 (5.06, 6.54)
Karolinska Test Set: 14,353 exams from 7,191 patients. 919 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 6.29 (5.76, 6.85) 6.29 (5.76, 6.85)
Biennial Age 0.5 (0.5, 0.5) -2.04 (-2.66, -1.41) -4.07 ( -5.32, -2.82)
USPSTF Age 0.79 (0.79, 0.80) 1.02 (0.37, 1.63) 1.28 (0.46, 2.08)
Supervised Mirai 0.60 (0.59, 0.61) 0.34 (-0.60, 1.24) 0.56 (-0.98, 2.11)
Tempo Mirai 0.75 (0.74, 0.76) 7.23 (6.46, 7.97) 9.63 (8.53, 10.72)
CGMH Test Set: 12280 exams from 12280 patients. 235 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 11.00 (9.86, 12.28) 11.00 (9.86, 12.28)
Biennial Age 0.5 (0.5, 0.5) 5.59 (4.11, 7.05) 11.18 (8.22, 14.09)
USPSTF Age 0.78 (0.77, 0.78) 8.63 (7.15, 10.06) 11.10 (9.14, 13.01)
Supervised Mirai 0.98 (0.97, 0.99) 8.02 (6.23, 10.21) 8.17 (6.30, 10.53)
Tempo Mirai 0.88 (0.87, 0.89) 11.36 (10.21, 12.59) 12.92 (11.54, 14.41)

Table 3.2: Results for all screening policies on the MGH, Emory, Karolinska and
CGMH test sets. For each policy, we report the average number of mammograms
per year, the early detection benefit in months relative to historical screening (higher
positive number means earlier), and the screening efficiency (higher positive number
is better). We defined screening efficiency as the early detection benefit divided by
the average number of mammograms per year. All metrics are followed by their 95%
confidence interval.
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Figure 3-3: Early detection vs the number of mammograms per year at MGH (top
left), Emory (top right), Karolinska (bottom left), CGMH (bottom right). Each point
for a Tempo model (e.g., Tempo-Mirai) corresponds to an alternative preference in
the trade-off between early detection and screening frequency. Tempo policies (i.e.,
Tempo-Mirai, Tempo-TCv8) are all trained using our reinforcement learning framework
and Supervised policies (i.e., Supervised-Mirai, Supervised-TCv8) are trained using a
supervised learning baseline. Mirai and TCv8 policies refer to policies that leverage
Mirai, and Tyrer-Cuzick version 8 risk assessments respectively.

that Tempo-Mirai was significantly more efficient than Tempo-TCv8, Supervised-Mirai

and annual screening (P < 0.001, P < 0.001 and P < 0.001), obtaining higher early

detection per screening cost. Specifically, Tempo-Mirai obtained an early detection

benefit of 4.10 (95% CI, 3.06, 4.96) months while recommending 0.96 (95% CI, 0.94,

0.96) mammograms per year, while the annual guideline obtained an early detection

benefit of 1.58 (95% CI, 0.54, 2.58) months while recommending 1.0 mammograms

per year.

In addition to overall performance on the test sets, we also studied the histogram

of early detection benefits in Fig. C-6, and the histogram of recommended screening
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Figure 3-4: Histograms of screening frequency, i.e., average number of mammograms
per year, as recommended by each screening policy for patients across the MGH (first
row), Emory (second row), Karolinska (third row) and CGMH (fourth row) test sets.

frequencies in Fig. 3-4 and Fig. C-7. We note that all trained policies (for example,

Tempo-Mirai, Supervised-Mirai) have the same set of possible recommendations

ranging from a 6-month to 3-year screening follow-up, but we found that Supervised-

Mirai only selected two options, recommending either 6 months or 3 years of follow-

up. In contrast, Tempo-Mirai at our chosen operating point leveraged follow-up

recommendations of 6 months, 1 year and 2 years. As shown on Fig. 3-4, we found

that Tempo-Mirai offered a wider range of recommended frequencies than other

methods, reflecting a larger degree for personalization. This reflects the optimization

differences between the two policies. Tempo-Mirai is optimized to maximize overall

reward across patient trajectories, as measured by early detection and screening cost,

and does not receive any explicit guidance on the correct recommendation given a

specific risk assessment. As a result, Tempo-Mirai has the flexibility to explore a wide
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range of possible recommendations during training to identify high-performing policies.

In contrast, Supervised-Mirai has a rigid modeling objective; it is instead trained to

predict the optimal (i.e., correct in hindsight) screening recommendation from each

risk assessment, which is difficult given the uncertainty of real-world risk models.

To understand the flexibility of Tempo-based policies, we plotted the performance

of each policy in Fig. 3-3 while varying the screening preference (i.e., operating point),

which specifies the desired balance between early detection and screening cost. Across

a wide range of possible operating points, Tempo-Mirai outperformed other policies in

increasing early detection and reducing screening costs, demonstrating that the policy

can be easily adapted to suit clinical requirements without retraining.

Next, we analyzed Tempo-Mirai’s ability to generalize to new populations. To

this end, we tested Tempo-Mirai, which was trained on MGH data, on test sets from

Emory, Karolinska and CGMH. In the Emory test set, Tempo-Mirai, Supervised-Mirai

and annual screening obtained efficiencies of 5.92 (95% CI, 5.06, 6.54), 1.76 (95% CI,

0.41, 2.86) and 3.21 (95% CI, 2.37, 3.88), respectively. In the Karolinska test set,

Tempo-Mirai, Supervised-Mirai and annual screening obtained efficiencies of 9.63 (95%

CI, 8.53, 10.72), 0.56 (95% CI, 0.98, 1.55) and 6.29 (95% CI, 5.76, 6.85), respectively.

In the CGMH test set, Tempo-Mirai, Supervised-Mirai and annual screening obtained

efficiencies of 12.92 (95% CI, 11.54, 14.41), 8.17 (95% CI, 6.30, 10.53) and 11.00

(95% CI, 9.86, 12.28), respectively. Tempo-Mirai was significantly more efficient than

Supervised-Mirai and annual screening in all test sets, with P < 0.001 and P < 0.001

at Emory, P < 0.001 and P < 0.001 at Karolinska and P < 0.001 and P = 0.02 at

CGMH.

While the above results show that Tempo-Mirai consistently improved over alternate

policies in screening efficiency, we also observed that the absolute magnitude of early

detection varied substantially across different datasets. For instance, annual screening

obtaining early detection benefits of 1.58 (95% CI, 0.54, 2.58), 3.21 (95% CI, 2.37,

3.88), 6.29% (95% CI, 5.76, 6.85) and 11.0 (95% CI, 9.86, 12.28) months in the MGH,

Emory, Karolinska and CGMH test sets, respectively. This difference can be attributed

to the different rates of screening across the datasets; patients with future cancer at
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MGH, Emory, Karolinska and CGMH obtained an average of 0.93, 0.94, 0.80 and 0.66

mammograms per year. These differences are further detailed in Tables B.11, B.12,

B.13, B.14, which report detailed demographics of each dataset.

We also noted that Tempo-Mirai recommended different amounts of screening

across the MGH, Emory, Karolinska and CGMH test sets, recommending an average

of 0.96 (95% CI, 0.94, 0.97), 1.08 (95% CI, 1.07, 1.08), 0.75 (95% CI, 0.74, 0.76) and

0.88 (95% CI, 0.87, 0.89) mammograms per year, respectively. This difference can

be attributed to differences in cancer incidence between the different centers. The

5-year cancer incidence at MGH, Emory, Karolinska and CGMH was 2.2%, 3.0%, 1.2%

and 1.8%, respectively, and we expect Tempo to recommend higher rates of screening

for higher risk populations. However, the model can offer a diverse set of possible

operating points across all test sets, as illustrated in Fig. 3-3; our results indicate that

different hospitals may need to input different operating points to obtain the same

average screening volume

3.2.4 Subgroup analysis

We also investigated how our policies performed for different patient subgroups by race

in the Emory test set in Table B.16 and by age and breast density in the MGH test set

in Table B.17. We highlight the results of Tempo-Mirai, which obtained efficiencies of

5.92 (95% CI, 5.06, 6.54) and 4.29 (95% CI, 3.17, 5.25) on the Emory and MGH test

sets. Tempo-Mirai obtained efficiencies of 5.89 (95% CI, 4.56, 7.02) and 6.06 (95%

CI, 5.28, 7.04) for African American and white patients in the Emory test set. When

grouping MGH patients by age, Tempo-Mirai obtained efficiencies of 3.41 (95% CI,

1.44, 5.53) or 4.45 (95% CI, 3.49, 6.03) for patients aged younger or older than 55 years,

respectively. When grouping MGH patients by breast density category, Tempo-Mirai

obtained efficiencies of 4.10 (95% CI, 2.85, 5.48) and 4.49 months (95% CI, 2.86, 6.35)

for patients with nondense and dense breasts, respectively, where nondense refers to

the Breast Imaging Reporting and Data System categories of almost entirely fatty

or scattered areas of fibroglandular tissue and dense refers to the Breast Imaging

Reporting and Data System categories of heterogeneously dense or extremely dense.
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3.2.5 Robustness to assumptions

Our empirical results across the different test sets depend on the exact choice of

assumptions of our early detection metric. As illustrated in Fig. 3-1, our early

detection metric measured the time difference in months between each patient’s

recommended screening date and the diagnosis date. Our metric assumed that the

maximum early detection benefit obtained through earlier screening was 18 months.

To test our model’s robustness to this assumption, we also evaluated Tempo-Mirai,

Supervised-Mirai and annual screening across all test sets when setting our maximum

early detection benefit assumption to 6, 12, 18 and 24 months. We note that we did

not retrain Tempo-Mirai for this analysis and that Tempo-Mirai was originally trained

using the 18-month assumption. For each policy, we measured its screening efficiency

(i.e., the early detection benefit divided by the number of mammograms recommended

per year) to enable a head-to-head comparison between policies that recommend

different screening volumes. As shown in Extended Data Fig. C-8, Tempo-Mirai is

more efficient than annual screening across all datasets and assumptions. This result

is further supported by the histogram of early detection benefits shown in Fig. C-6.

3.3 Discussion

We developed an RL framework for personalized screening, Tempo, to predict follow-up

recommendations from patient risk assessments. We demonstrated that a Tempo

policy based on Mirai risk assessments was significantly more efficient than annual

screening, achieving earlier detection per screening cost. Moreover, we showed that the

same Tempo policy can be adapted to a wide range of possible screening preferences

and that policies that leverage more accurate risk models (i.e., Mirai) outperform

those based on less accurate risk models (i.e., Tyrer–Cuzick). We found that policies

developed using data from MGH generalized to held-out test sets in Emory, Karolinska

and CGMH and significantly outperformed both annual screening and our supervised

learning baselines. Finally, we demonstrated our results were robust across a range of

possible assumptions for our early detection metric.
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Our screening policies can be easily implemented in any screening clinic where

Mirai risk assessments are collected. Clinicians can retrospectively validate our trained

screening policies on their own screening population and choose an operating point

to achieve the desired balance between screening volume and early detection benefit.

The installed policy can then offer clinicians suggested risk-based follow-up intervals

immediately after a patient’s risk assessment. Depending on clinical requirements,

Tempo can be utilized to significantly reduce the volume of screening for a fixed early

detection target or improve early detection for a fixed screening budget. For instance,

we showed that Tempo-Mirai could obtain better early detection than annual screening

at Karolinska while reducing screening by 25%. Given the scale and cost of breast

cancer screening, even modest improvements in screening guidelines have the potential

to benefit a wide patient population.

Our study is complementary to a rich body of work surrounding risk-based

screening[42, 87, 84, 88]. Several guidelines already recommend supplemental imaging

or chemoprevention based on risk assessments[84, 88, 127], and recent results from

the DENSE trial[9] have shown that a breast density-based screening strategy could

significantly reduce interval cancers compared to current screening. Our work is most

closely related to the MyPeBS trial[28], which prospectively compares a personalized

screening follow-up strategy based on either Tyrer–Cuzick[123] or MammoRisk[66]

risk assessments with current national recommendations. These studies point to

substantial clinical interest in risk-based screening; however, current methods for

devising screening policies rely on categorizing patients into a few coarse categories

(e.g., low and high risk), limiting personalization.

Our study provides a data-driven alternative for clinical decision-making and can

be easily integrated into a screening trial or routine patient care. Our work is also

complementary to ongoing efforts to improve mammography reading; Tempo screening

policies can be deployed in tandem with new technologies aimed at improving breast

cancer detection at the time of screening (i.e., computer-aided detection[79, 72] or

triage systems[148, 99]. Our work is also related to a large volume of modeling studies

focused on breast cancer[75, 8, 129, 76, 122, 105, 3]. Typically, these approaches
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operate over a model of disease progression that characterizes how patients transition

between healthy and disease states. The transitions are informed by patient features

and impact the likelihood of different observations, such as a palpable lump. Their

probabilities can be estimated from retrospective data or retrieved from the literature.

The approaches then work to identify the optimal screening policy under the specified

disease progression model. While these approaches were the first to demonstrate the

feasibility of developing personalized screening policies, they have several limitations

that restrict their practical use in clinical settings. First, the postulated disease

progression model does not capture the full complexity and uncertainty of cancer.

Second, the methods generally assume that a patient’s features are fixed and do not

evolve over their lifetime[3]. This assumption does not hold in general and is not

applicable to modern AI-based risk models that are sensitive to changes in patient

health. In contrast, our framework does not assume a complete disease progression

model; instead, it assumes access to a risk model (rather than discrete set of states)

and a reward function that measures the performance of a screening trajectory given

observational data. This relaxed assumption allows us to optimize screening policies

directly on observed patient trajectories, which contain the full diversity of cancer

diagnoses, as well as validate our policies on held-out patient populations, which may

differ in their cancer characteristics, such as Emory, Karolinska and CGMH.

This study focuses on breast cancer screening using image-based risk models.

However, our framework is flexible and can be readily utilized for other diseases, other

forms of risk models and other definitions of early detection benefit. For instance, it

can easily incorporate richer representations of the cancer outcomes. Recent work

has highlighted concerns about the potential overtreatment of ductal carcinoma in

situ[126]. Tempo policies can take these differences into account by leveraging separate

reward metrics for the early detection of invasive and in situ cancers. In this scenario,

Tempo policies would be trained using three reward metrics (early detection of invasive

cancers, early detection of in situ cancers and screening cost), and clinicians would

select a Tempo operating point (i.e., screening preference) that achieves the desired

balance among the three metrics. In a similar fashion, our framework can be used to
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optimize more refined definitions of early detection benefit that account for properties

of the cancer (e.g., tumor size and grade) at the time of diagnosis. For instance, given

access to a patient’s tumor properties, a cancer mortality model and a cancer growth

model, a sophisticated early detection metric could directly estimate the reduced

mortality risk if the cancer had been diagnosed at an earlier time point. Given a

patient’s age, this metric could also directly be tried to quality-adjusted life years.

Similarly, more sophisticated measures of screening cost that take into account varying

false-positive risks depending on patient characteristics (e.g., breast density) could be

used to further refine screening policies. In this sense, prior work in modeling cancer

mortality and screening benefits[75, 8, 129, 76, 122, 105] is complementary to our own.

We expect that the utility of Tempo, which is agnostic to the underlying choice of

screening metrics and risk model, will increase as risk models and outcomes metrics

are further refined across more diseases.

There are multiple future directions that can further improve personalized screening

algorithms. While our method focused on predicting follow-up recommendations given

risk estimates from established risk models, one could instead directly input rich

patient information, such as a patient’s mammograms and family history, into the

screening policy. Directly learning to interpret this information for the purpose of

personalized screening in an end-to-end fashion may result in more accurate policies.

Moreover, the action space of our method could be expanded to include different

types of screening recommendations, such as leveraging magnetic resonance imaging or

mammograms, and future work could separately model the costs and benefits of each

modality. Finally, given improved screening policies, future work could also recalculate

the earliest and latest age such that screening is still cost-effective for a patient.

This study has several limitations. Our early detection metric assumed that

cancer is detectable up to a fixed time (18 months) before diagnosis. While we

found that the trends reported in our study were robust to different values of this

assumption (ranging from 6 to 24 months), none of these assumptions are individually

correct across all cancers, as the early detection potential of a tumor depends on that

tumor’s characteristics at the time of diagnosis. Moreover, our screening cost metric,
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recommended mammography volume, does not provide a full analysis of screening

cost; it does not quantify false-positive risks or additional screening harms.

Our simulations also did not account for the sensitivity of screening mammography

or the probability of a patient entering the clinic with a palpable lump if their diagnosis

is overly delayed. While our framework is agnostic to the specifics of how the rewards

are formulated, further research using more refined early detection metrics, such as

quality-adjusted life years, that explicitly model tumor characteristics at the time of

detection and tumor growth is needed. While Tempo can be applied with any risk

model, Tempo-Mirai inherits the limitations of Mirai. Mirai has only been validated

using Hologic full-field digital mammograms, and future work is needed to adapt

the risk model to more mammography vendors and tomosynthesis images. Finally,

prospective trials are necessary to assess the efficacy of these models in clinical care

before widespread adoption.

3.4 Methods

3.4.1 Study design

The primary objective of this study was to develop personalized screening policies

that could improve early detection while reducing screening costs. To this end, we

developed Tempo, an RL framework for personalized screening that can be paired with

any risk model. As illustrated in Fig. 3-2, Tempo policies are neural networks that

take as input a risk assessment and output a screening follow-up recommendation. In

this study, we focused our attention on breast cancer screening, and we hypothesized

that our Tempo policies could offer improved early detection benefits over annual

screening without requiring more screening. Moreover, we hypothesized that these

policies would generalize to new institutions. We developed Tempo-Mirai, an RL-based

policy that operates on Mirai (version 0.4.0.) risk assessments, and compared this

policy to existing guidelines, including annual and age-based screening. Mirai is a

deep learning-based risk model that predicts a patient’s future risk directly from
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their mammogram. To assess the benefit of leveraging Mirai risk assessments over a

traditional risk assessment model (i.e., Tyrer–Cuzick), we also developed Tempo-TCv8,

an RL-based policy that operates on Tyrer–Cuzick risk assessments. To evaluate the

benefit of using our RL approach for creating personalized risk policies (i.e., Tempo),

we also developed models based on a supervised learning approach, Supervised-Mirai

and Supervised-TCv8. An RNN was used to estimate risk progression for Mirai, and

a deterministic model, static risk, was used to estimate risk progression for TCv8. All

models were trained on the MGH dataset and tested at MGH, Emory, Karolinska and

CGMH.

3.4.2 Dataset Description

Dataset description. To develop Tempo, we collected consecutive full-field screening

mammograms and detailed risk information at the time of mammography from

80,134 patients screened between 1 January 2009 and 31 December 2016 at MGH

under approval of MGH’s institutional review board (IRB) with a waiver for written

informed consent and in compliance with the Health Portability and Accountability

Act. We obtained outcomes through linkage to a local five-hospital registry in the

Massachusetts General Brigham healthcare system, alongside pathology findings from

MGH’s mammography electronic medical record. We collected detailed risk factors,

including those used by the Tyrer–Cuzick model, from provider-entered information

and patient-entered questionnaires in the electronic medical record. We associated

each mammogram with patient risk factors as present at the time of mammography.

We excluded patients who were diagnosed with other cancers (e.g., sarcoma) in the

breast or did not have all four views (left craniocaudal (CC), left mediolateral oblique

(MLO), right CC and right MLO). For patients who developed cancer, we excluded

exams made within 6 months of diagnosis. For patients who did not develop cancer,

we excluded exams made within 3 years of the last follow-up screen. We note that 6

months and 3 years are the minimum and maximum follow-up recommendations for

Tempo, so this exclusion enabled us to ensure that simulations always occur within

the bounds of observed data. This exclusion resulted in 54,673 patients who were

76



randomly split into groups for training (43,749), development (5,399) and testing

(5,525). We note that this dataset was also used to develop Mirai12, so we used the

same training, development and testing splits. Because each patient had multiple

exams, this resulted in 137,682, 16,634 and 17,119 exams for training, development

and testing, respectively. All mammograms were acquired on Hologic machines. For

each exam, we obtained Mirai[146] risk assessments, as well as TCv8 risk assessments.

Detailed demographic information for this dataset is available in Table B.11, and the

dataset construction procedure is shown in Fig. C-9.

To evaluate the ability of Tempo policies to generalize to new populations, we

collected the Emory, Karolinska and CGMH datasets under approval of the relevant

IRBs with a waiver for written informed consent. To create the Emory test set,

which contains a large representation of African American women, we extracted

8 years of full-field mammograms from an institutional database of all comers for

screening mammography from 2013 to 2020 and randomly selected 30% of women

(28,994 patients). All mammograms were acquired on Hologic machines. We collected

outcomes from pathology findings from Emory’s mammography electronic medical

record. We obtained Mirai risk assessments for each exam. As with the MGH dataset,

we excluded exams within 6 months of diagnosis. For patients who did not develop

cancer, we excluded exams within 3 years of the last follow-up screen. This resulted in

a total of 22,030 exams from 10,340 patients. Detailed demographics of this dataset

are shown in Table B.12, and the dataset construction procedure is shown in Fig. C-9.

The Karolinska test set was extracted from the cohort of screen-aged women[35].

All women aged 40–74 years within the Karolinska University uptake area who had

attended screening and were diagnosed with breast cancer, without implants or prior

breast cancer, from 2008 to 2016 were included, as well as a random sample of controls

with at least 2 years of follow-up data from the same time period. The full Karolinska

case–control and validation datasets included 11,301 and 2,580 women, respectively. A

random subset of 9,484 patients in total were selected for inclusion in this study. We

included all full-field mammograms, acquired on Hologic machines, from 2008 to 2016

for the included women that contained all four views (left CC, left MLO, right CC
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and right MLO), resulting in 14,362 exams from 7,193 patients. We excluded exams

within 6 months of a cancer diagnosis. For patients who did not develop breast cancer,

we excluded exams within 3 years of the last screening follow-up. Because of the case-

control dataset design, this dataset has a much higher ratio of patients who developed

cancer, relative to the 1.9% incidence reported in the cohort of screen-aged women[35].

To take this into account, we randomly resampled patients who did not develop cancer

from our cohort to produce a larger dataset with a 1.9% cancer incidence, resulting

in a total of 93,052 exams from 7,193 patients. Detailed demographics are shown

in Table B.13 with the dataset construction procedure in Fig. C-9. Given the 1.9%

patient-level cancer rate and the length of the collection period, we estimated that

the 5-year cancer incidence in the Karolinska population was 1.2%. For each exam,

we obtained Mirai[146] risk assessments.

To create the CGMH test set, which consisted of 12,280 exams from 12,280 patients,

we selected random women undergoing full-field screening mammography at CGMH

between 2010 and 2011 who were aged 45–70 years. Women aged 40–44 years were

also included if they had a family history of breast cancer, following local screening

guidelines. All mammograms were acquired on Hologic machines. Cancer outcomes

were obtained from the national cancer registry. Demographics for this dataset are

available in Table B.14 and Fig. C-9. For all patients, we collected the date of last

screening follow-up. We excluded patients with unknown age. For each patient who

developed cancer, we also manually collected all the dates of their future screenings

from 2010 to 2020 through chart review. This allowed us to estimate early detection

benefits relative to historical screening. We did not collect all future screening dates

for patients who did not develop cancer. For patients who developed cancer, we

excluded exams within 6 months of diagnosis, while for patients who did not develop

cancer, we excluded exams within 3 years of the last follow-up screen. For each exam,

we obtained Mirai risk assessments. The CGMH test set only included one Mirai

risk assessment per patient; as a result, our ability to estimate risk progression at

CGMH is more limited compared with the other test sets, where the risk progression

model benefited from multiple prior observations and made predictions across shorter
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time intervals. This limitation means it is more difficult to estimate the quality of

Mirai-based policies (i.e., Tempo-Mirai and Supervised-Mirai) in this dataset.

For patients with multiple exams in a dataset, we considered each exam in their

trajectory as a possible simulation starting point and evaluated screening policies

across all starting points. For instance, consider a patient who was screened in years

1, 2 and 3. For training and evaluation, we consider the scenarios in which the patient

started to follow the Tempo-Mirai policy at years 1, 2 and 3. Simulating policies from

multiple starting points offers more information about the behavior of a policy. To

account for these correlated simulations in computing our CIs, we used a clustered

bootstrap procedure with 5,000 samples. We note that our risk progression model

always had access to all prior observations and was not affected by the choice of

simulation starting point.

For each trajectory, we considered its censor time as either the date of cancer

diagnosis via biopsy or the date of last screening follow-up. We designed our screening

policies to offer a minimum follow-up recommendation of 6 months and a maximum

follow-up recommendation of 3 years. Because our follow-up intervals were in incre-

ments of 6 months, we discretized time across all trajectories into 6-month time steps.

This was done by subtracting the first date in the trajectory from all dates and then

dividing the date difference by 6 months using integer division (i.e., without rounding).

As a result, an exam 9 months after time-step 0 was considered step 1. This design

decision simplified our simulation code.

To ensure that our simulations always occurred within the time frame of the

observed data, we excluded starting points where cancer was diagnosed in less time

than the minimum action (6 months). For screening trajectories without a cancer

diagnosis, we excluded starting points where the time to the last screening follow-up

was less than the maximum action (3 years). To understand the latter exclusion,

consider a patient with no known future cancer date who was screened at year 1 and

had her last screening follow up at year 2. If a Tempo policy recommended follow-up in

3 years (e.g., return at year 4), then we could not assess whether that recommendation

would result in a diagnosis delay as that time point (i.e., year 4) is unobserved. To
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avoid this scenario, we exclude exams where a Tempo policy cannot be evaluated (i.e.,

within 3 years of the last follow-up date if the patient does not develop cancer).

Mammograms were converted to the PNG16 format using the dcmj2pnm com-

mand of the DCMTK toolkit (version 3.6.1, 2015). Torchvision (version 0.2.1) and

Pillow (version 5.2.0) Python libraries were used for image preprocessing and data

augmentations.

3.4.3 Reward Design

We considered two rewards in our simulation environment: measuring imaging cost

and early detection benefit. We modeled our imaging cost reward as the negative

amount of mammograms per year recommended by a policy. To model early detection

benefits, we measured the time difference in 6-month time steps between each patient’s

recommended screening date (if it was after their last negative mammogram) and

the actual diagnosis date. We then converted this value into months. We defined a

patient’s diagnosis date as the date of their positive biopsy result. Negative values of

this reward imply a delayed diagnosis, and positive values imply relative screening

benefit over the retrospective trajectory. We capped maximum early detection benefit

for any patient at 18 months and did not cap the possible screening delay. As a result,

if a patient’s last negative mammogram was 3 years before their cancer diagnosis and

a screening policy recommended a mammogram 2 years and 1 year before a patient’s

cancer diagnosis, then we assigned this trajectory an early detection benefit of 18

months. We provide additional analysis for different possible assumptions for the

maximum screening benefit in Fig.C-8. We also considered an alternative definition of

early detection benefit, where a policy can only offer early detection if it recommends

an additional screen within 18 months of the diagnosis date in Table B.18. In the

above example where a patient is screened 2 years and 1 year before their diagnosis,

this definition would yield an early detection benefit of 12 months instead of 18

months. Across both definitions (Table 3.2 and Table B.18), Tempo-Mirai obtains

better efficiency than other guidelines (e.g., annual screening).
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3.4.4 Risk progression models

As shown in Fig. 3-2, our risk progression models take as input a sequence of prior

risk assessments and predict a risk assessment at the next time step. We considered

two possible methods to estimate risk progression, namely Static Risk, which always

predicted that a patient’s risk at the next time step would be the same as at the

last time step, and an RNN. Our RNN estimated risk progression in an iterative

fashion; at each step, it took as input a single risk assessment and outputted a

single risk assessment for the next time step. We implemented our RNN as a gated

recurrent unit[25] with an additive hazard layer[146] and trained the model to minimize

the Kullback– Leibler divergence between predicted risk assessments and the risk

assessments observed in the MGH training set.

We experimented with different learning rates, hidden sizes, number of layers and

dropout, and we chose the model that obtained the lowest validation Kullback–Leibler

divergence in the MGH validation set. Our final risk progression RNN had two layers,

a hidden dimension size of 100 and a dropout of 0.25, and it was trained for 30 epochs

with a learning rate of 1× 10−3 using the Adam optimizer. The outputs of our risk

progression model for Tempo-Mirai are visualized in Fig. C-5. Given a trained risk

progression model, we can now estimate unobserved risk assessments autoregressively.

At each time step, the model takes as input the previous risk assessment, the prior

hidden state, using the previous predicted assessment if the real one is not available and

predicts the risk assessment at the next time step. We validated our risk progression

network on the MGH, Emory and Karolinska test sets in Table B.15 and note that

our RNN outperformed the static risk baseline in all datasets. Because we collected

only one exam for each patient in the CGMH test set, we could not validate the risk

progression network on that test set. Information regarding the implementation for

each risk progression and hyperparameter search is available in our code release.
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3.4.5 Personalized screening models

We implemented our personalized screening policy as a multiple-layer perceptron,

which took as input a risk assessment and weighting between rewards and predicted

the Q-value for each action (i.e., follow-up recommendation) across the rewards. This

network was trained using Envelope Q-Learning[149]. Following recent work in deep

RL[81, 5], we used an experience replay buffer to reduce correlation between our

training batches and utilized a target Q-network[81] to stabilize training updates.

We experimented with different numbers of layers, hidden dimension sizes, learning

rates, dropouts, exploration epsilons, target network reset rates and weight decay rates.

We note that we conducted the same grid searches for Tempo-Mirai and Tempo-TCv8

and chose each model to maximize the average reward on the MGH validation set.

Our final Tempo-Mirai model had six layers, each with 256 hidden units, followed

by rectified linear unit (ReLU) nonlinearities. It was trained for 30 epochs using a

learning rate of 1 × 10−3, a dropout of 0.25 and a weight decay of 0.01 using the

Adam optimizer, and the target network was reset every 1,000 batches. Our final

Tempo-TCv8 model had four layers, each with 256 hidden units, followed by ReLU

nonlinearities. It was trained for 30 epochs using a learning rate of 1× 10−3, a dropout

of 0.25 and a weight decay of 0 using the Adam optimizer, and the target network

was reset every 1,000 batches. Information regarding the implementation of each risk

policy, the training code and our hyperparameter searches is available in our code

release. For both Tempo-Mirai and Tempo-TCv8, we chose a reward weighting to

approximately match the screening cost of annual screening on the MGH development

set and used this reward weighting across all test sets. Tempo-Mirai used a reward

weight of 0.5 and 3.0 for screening cost and early detection, respectively. Tempo-TCv8

used a reward weight of 0.77 and 3.0 for screening cost and early detection, respectively.

3.4.6 Supervised learning baseline

We implemented our supervised learning baselines, Supervised-Mirai and Supervised-

TCv8, as a multiple layer perceptron, which took as input a risk assessment and
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predicted a probability distribution across follow-up recommendations. This network

was trained to minimize the cross-entropy loss between its actions and the optimal

sequence of actions. We computed optimal actions for each patient to maximize our

rewards metrics. For patients who did not develop cancer within the time period

of the maximum follow-up recommendation, the optimal action was the maximum

follow-up recommendation of 3 years. For patients who developed cancer, the optimal

action was to recommend a screening follow-up in the time step following the last

negative mammogram. Unlike Tempo-Mirai, which is trained to maximize trajectory

level rewards using RL, Supervised-Mirai is trained to maximize the likelihood of

the optimal sequence of actions. As a result, Supervised-Mirai does not benefit from

observing how its own errors compound across the trajectory at training time.

For each supervised model, we experimented with different numbers of layers,

hidden dimension sizes, learning rates, dropouts and weight decays. To enable fair

comparison against Tempo models, we searched the same space of hyperparameters

and selected those that achieved the best average reward on the MGH validation

set. Our final Supervised-Mirai model had eight layers, each with 512 hidden units,

followed by ReLU nonlinearities. It was trained for 30 epochs using a learning rate of

1× 10−3, a dropout of 0.25, a weight decay of 0.1 and the Adam optimizer. Our final

Supervised-TCv8 model also had eight layers, each with 512 hidden units, followed by

ReLU nonlinearities. It was trained for 30 epochs using a learning rate of 1× 10−4, a

dropout of 0.25, a weight decay of 0.1 and the Adam optimizer. Information regarding

the implementation of each risk policy, the training code and our hyperparameter

searches is available in our code release.

3.4.7 Statistical analysis

To calculate CIs while accounting for patients with multiple simulations, we used

a clustered bootstrap approach with 5,000 samples. To assess significance in the

difference between two metrics, we used a two-tailed t test with a predefined P value

of 0.05 for significance.
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3.4.8 Data and Code Availability

Data availability All datasets were used under license to the respective hospital

system for the current study and are not publicly available. All models and code

used for training, evaluating and developing Tempo are publicly available at learningto-

cure.csail.mit.edu and github.com/yala/Tempo (https://doi.org/10.5281/zenodo.5585318).
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Chapter 4

Syfer: Neural Obfuscation for Private

Data Release

4.1 Introduction

Data sharing is a key bottleneck for the development of equitable clinical AI algorithms.

Public medical datasets are constrained by privacy regulations [54, 43], that aim to

prevent leakage of identifiable patient data. We propose Syfer, an encoding scheme

for private data release. In this framework, data owners encode their data with a

random neural network (acting as their private key) for public release. The objective

is to enable untrusted third parties to develop classifiers for the target task, while

preventing attackers from re-identifying raw samples.

An ideal encoding scheme would enable model development for arbitrary (i.e

unknown) downstream tasks using standard machine learning tools. Moreover, this

scheme would not require data owners to train their own models (e.g. a generative

model). Designing such an encoding scheme has remained a long-standing challenge

for the community. For example, differentially private methods pursue this goal by

leveraging random noise to limit the sensitivity of the encoding to the input data.

However, this often results into too large of a utility loss. In this work, we propose to

learn a keyed encoding scheme, which exploits the asymmetry between the tasks of

model development and sample re-identification, to achieve improved privacy-utility
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trade-offs.

The relevant notion of privacy, as defined by HIPAA, is de-identification, i.e.

preventing an attacker from identifying matching pairs between raw and encoded

samples. We measure this risk using guesswork, i.e. the number of guesses an attacker

requires to match a single raw image to its corresponding encoded sample. We

consider an extreme setting where the attacker has access to the raw images, the

released encoded data and the randomized encoding scheme, and only needs to predict

the matching between corresponding pairs (raw image, encoded image). While the

adversary can simulate the randomized encoding scheme, they do not have access to

the data owner’s private key. Our evaluation setup acts as a worst-case scenario for

data privacy, compared to a real-world setting where the attacker’s knowledge of the

raw images is imperfect. To efficiently measure guesswork on real-world datasets, we

leverage an model-based attacker trained to maximize the likelihood of re-identifying

raw images across encodings.

While an arbitrary distribution of random neural networks is insufficient to achieve

strong privacy (i.e. high guesswork) on real-world datasets, we can learn to shape

this distribution to obtain privacy on real data by composing random layers with

trained obfuscator layers. Syfer’s obfuscator layers are optimized to maximize the

re-identification loss of a model-based attacker on a public dataset while minimizing a

reconstruction loss, maintaining the invertability of the whole encoding. To encode

labels, we apply a random permutation to the label identities.

We trained Syfer on a public X-ray dataset from NIH, and evaluated the privacy

and utility of the scheme on heldout dataset (MIMIC-CXR) across multiple attacker

architectures and prediction tasks. We found that Syfer obtained strong privacy,

with an expected guesswork of 8411, i.e. when presented with a grid of 10,000 raw

samples by 10,000 encoded samples, it takes an attacker an average of 8411 guesses

to correctly guess a correct (raw image, encoded image) correspondence. Moreover,

models built on Syfer encodings approached the accuracy of models built on raw

images, obtaining an average AUC of 0.78 across diagnosis tasks compared to 0.84 by

a non-private baseline with the same architecture, and 0.86 by the best raw-image
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baseline. In contrast, prior encoding schemes, like InstaHide [55] and Dauntless [139],

do not prevent re-identification, both achieving a guesswork of 1. While differential

privacy schemes, such as DP-Image [69], can eventually meet our privacy standard

with large enough noise, achieving a guesswork of 1379, this resulted in average AUC

loss of 33 points relative to the raw-image baseline, i.e. an AUC of 0.53.

4.2 Related Work

Differentially Private Dataset Release Differential privacy [40] methods of-

fer strong privacy guarantees by leveraging random noise to bound the maximum

sensitivity of function outputs (e.g. dataset release algorithms) to changes in the

underlying dataset. For instance, DP-Image [69] proposed to add laplacian noise to

the latent space of an auto-encoder to produce differentially private instance encodings.

Instead of directly releasing noisy data, [141, 119, 59] propose to leverage generative

adversarial networks (GANs), trained in a differentially private manner (e.g. DP-SGD

[2] or PATE [89]), to produce private synthetic data. However, differentially private

GANs have been shown to significantly degrade image quality and result in large utility

losses [23]. Instead of leveraging independent noise per sample to achieve privacy,

Syfer obtains privacy through its keyed encoding scheme and thus enables improved

privacy-utility trade-offs.

Cryptographic Techniques Cryptographic techniques, such as secure multiparty

computation and fully homomorphic encryption [150, 47, 11, 21, 44, 17, 24] allow

data owners to encrypt their data before providing them to third parties. These tools

provide extremely strong privacy guarantees, making their encrypted data indistin-

guishable under chosen plaintext attacks (IND-CPA). However, building models with

homomorphic encryption [82, 70, 60, 15] requires leveraging specialized cryptographic

primitives and induces a large computational overhead (ranging from 100x-10,000x

[71]) compared to standard model inference. As a result, these tools are still too slow

for training modern deep learning models. In contrast, Syfer considers a weaker threat
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model, where attackers cannot query the data owner’s private-encoder (i.e no plaintext

attacks) and our scheme specifically defends against raw data re-identification (the

privacy notion of HIPAA). Moreover, Syfer encodings can be directly leveraged by

standard deep learning techniques, improving their applicability.

Lightweight Encoding Schemes Our work extends prior research in lightweight

encoding schemes for dataset release. Previous approaches [63, 116, 108] have proposed

tools to carefully distort images to reduce their recognition rate by humans while

preserving the accuracy of image classification models. However, these methods do

not offer privacy against machine learning based re-identification attacks. [136, 140,

137, 96] have proposed neural encoding schemes that aim to eliminate a particular

private attribute (e.g. race) from the data while protecting the ability to predict other

attributes (e.g. action) through adversarial training. These tools require labeled data

for sensitive and preserved attributes, and cannot prevent general re-identification

attacks while preserving the utility of unknown downstream tasks. Our work is

most closely related to general purpose encoding schemes like InstaHide [55] and

Dauntless [139, 138]. InstaHide encodes samples by randomly mixing images with

MixUp [152] followed by a random bitwise flip. Dauntless encodes samples with random

neural networks and proved that the scheme offers strong information theoretic privacy

if the input data distribution is Gaussian. However, we show that neither InstaHide

nor Dauntless meet our privacy standard on our real-world image datasets. In contrast,

Syfer leverages a composition of trained obfuscator layers and random neural networks

to achieve privacy on real word datasets while preserving downstream predictive utility.

Evaluating Privacy with Guesswork Our study builds on prior work leveraging

guesswork to characterize the privacy of systems [78, 80, 7, 92, 10]. Guesswork

quantifies the privacy of a system as the number of trials required for an adversary

to guess private information, like a private key, when querying an oracle. In this

framework, homomorphic encryption methods, which uniformly sample 𝑏-bit private

keys, offer maximum privacy [38], as the average number of guesses to identify the
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Figure 4-1: Architecture of the model-based attacker. Given pairs of raw samples
(𝑋,𝐿𝐹 (𝑋)) and encoded samples (𝑍, 𝑌 ), the attacker learns to recover matching pairs
(𝑥, 𝑧) ∈ 𝑀𝑇 . In this figure, we omit label information for clarity.

correct key is 2𝑏−1. In the non-uniform guessing setting [26], guesswork offers a

worst-case notion of privacy by capturing the situation where an attacker may only

be confident on a single patient identity. Such privacy weaknesses are not measured

by average case metrics, like Shannon entropy.

4.3 Method

We propose Syfer, an encoding scheme which uses a combination of learned obfuscator

layers and random neural network layers to encode raw data. Syfer is trained to

maximize the re-identification loss of an attacker while minimizing a reconstruction

loss, which acts as a regularizer to preserve predictive utility for downstream tasks. To

estimate the privacy of an encoding scheme on a given dataset, we use a model-based

attacker trained to maximize the likelihood of re-identifying raw data. To encode the

labels 𝐿𝐹 (𝑋), Syfer randomly chooses a permutation of label identities {1, ..., 𝑘}.
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4.3.1 Privacy Estimation via Contrastive Learning

Before introducing Syfer, we adopt Eve’s perspective and describe how to evaluate

the privacy of encoding schemes. The attacker is given the candidate list 𝑋𝐸 = 𝑋𝐴,

and a fixed encoding scheme Γ, i.e. a fixed distribution 𝑃 (𝑇 ). We propose an efficient

contrastive algorithm to estimate 𝑃 ((𝑥, 𝑧) ∈ 𝑀𝑇 |𝑍𝐴, 𝑌𝐴,Γ, 𝑋𝐴). When the context

allows it, we omit the conditional terms and use 𝑃 ((𝑥, 𝑧) ∈ 𝑀𝑇 ).

As shown in Figure 4-1, the attacker’s model 𝐸 is composed of an instance-level

encoder 𝐸ins, with parameters 𝜙ins, acting on individual images and their labels and a

set-level encoder 𝐸set, with parameters 𝜙set, taking a set of instance representations

as input.

In each iteration, we sample a batch 𝑋 = (𝑥1, . . . , 𝑥𝑏) of datapoints from 𝑋𝐸 = 𝑋𝐴

and a transformation 𝑇 = (𝑇𝑋 , 𝑇 𝑌 ) according to the fixed distribution 𝑃 (𝑇 ). Let

𝑍 = 𝑇𝑋(𝑋) = (𝑧1, . . . , 𝑧𝑏) denote the transformed batch and 𝑌 = 𝑇 𝑌 (𝐿𝐹 (𝑋)) =

(𝑦1, . . . , 𝑦𝑏) the encoded labels. The hidden representations of the raw data are

computed as a two-step process:

1. using 𝐸ins, we compute 𝐻𝑋 = (ℎ𝑋
1 , . . . , ℎ

𝑋
𝑏 ) where each ℎ𝑋

𝑖 = 𝐸ins (𝑥𝑖, 𝐿𝐹 (𝑥𝑖)) ;

2. using 𝐸set, we compute 𝑅𝑋 = (𝑟𝑋1 , ..., 𝑟
𝑋
𝑏 ) where each 𝑟𝑋𝑖 = 𝐸set

(︀
ℎ𝑋
𝑖 , 𝐻

𝑋
)︀
.

Similarly, for the encoded data, we form 𝐻𝑍 = (ℎ𝑍
1 , . . . , ℎ

𝑍
𝑏 ) where ℎ𝑍

𝑖 = 𝐸ins (𝑧𝑖, 𝑦𝑖)

and 𝑅𝑍 = (𝑟𝑍1 , ..., 𝑟
𝑍
𝑏 ) where each 𝑟𝑍𝑖 = 𝐸set

(︀
ℎ𝑍
𝑖 , 𝐻

𝑍
)︀
.

Following prior work on contrastive estimation [22], we use the cosine distance

between hidden representations to measure similarity:

sim(𝑟𝑋𝑖 , 𝑟
𝑍
𝑗 ) =

(︀
𝑟𝑋𝑖

)︀⊤
𝑟𝑍𝑗

‖𝑟𝑋𝑖 ‖‖𝑟𝑍𝑗 ‖
.

Then, we estimate the quantity 𝑃 ((𝑥𝑖, 𝑧𝑗) ∈ 𝑀𝑇 ) as proportional to 𝑝(𝑥𝑖, 𝑧𝑗):

𝑝(𝑥𝑖, 𝑧𝑗) =
exp(sim(𝑟𝑋𝑖 , 𝑟

𝑍
𝑗 ))∑︀𝑏

𝑘,𝑙 exp(sim(𝑟𝑋𝑘 , 𝑟
𝑍
𝑙 ))

.
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Figure 4-2: Proposed encoding scheme: Syfer uses repeating blocks of learned obfusca-
tor layers and random neural network layers as 𝑇𝑋 and samples a random permutation
of {1, ..., 𝑘} as 𝑇 𝑌 .

The weights 𝜙ins and 𝜙set of the attacker’s model 𝐸 are trained to minimize the

negative log-likelihood of re-identification across unknown 𝑇 :

ℒreid = −
∑︁

(𝑥,𝑧)∈𝑀𝑇

log (𝑝(𝑥, 𝑧)) .

4.3.2 Syfer

Architecture As illustrated in Figure 4-2, we propose a new encoding scheme by

learning to shape the distribution 𝑃 (𝑇 ). Specifically, we parametrize a transformation

𝑇𝑋 using a neural network that we decompose into blocks of learned obfuscator layers

(weights 𝜃Syfer), and random layers (weights 𝜃𝑘𝑒𝑦). The obfuscator layers are trained

to leverage the randomness of the subsequent random layers and learn a distribution

𝑃 (𝑇 ) that achieves privacy. In this framework, Alice constructs 𝑇𝑋 by randomly

sampling the weights 𝜃𝑘𝑒𝑦 and composing them with pre-trained obfuscator weights

𝜃Syfer to encode the raw data 𝑋. Alice chooses the label encoding 𝑇 𝑌 by randomly

sampling a permutation of the label identities {1, . . . , 𝑘}, which is applied to 𝐿𝐹 (𝑋).

We note that our 𝑇 𝑌 assumes that Alice’s dataset is class-balanced1.

Alice’s random choices of 𝜃𝑘𝑒𝑦 and 𝑇 𝑌 act as her private key, and she can publish

1If Alice’s data is not class-balanced, she can down-sample her dataset to a class-balanced subset
before release.
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the encoded data with diagnosis labels for model development while being protected

from re-identification attacks. Given Bob’s trained classifier to infer 𝑇 𝑌 (𝐿𝐹 (𝑥)) from

𝑇𝑋(𝑥), Alice then uses
(︀
𝑇 𝑌

)︀−1 to decode the predictions.

Algorithm 1 Syfer training
1: Initialize obfuscator parameters 𝜃Syfer
2: Initialize attacker 𝐸 with parameters 𝜙 = (𝜙ins, 𝜙set)

3: Initialize decoders 𝐷1, . . . 𝐷𝑠 with parameters 𝛽1, . . . , 𝛽𝑠
4: For each decoder, sample random layer weights

𝜃1𝑘𝑒𝑦, . . . 𝜃
𝑠
𝑘𝑒𝑦 (fixed throughout training)

5: Set flag optimize_estimators ← true
6: repeat
7: Sample a batch of datapoints 𝑋 from 𝑋public

8: lightgray◁ Step 1: Compute re-identification loss
9: Sample a set of random layer weights 𝜃batch

𝑘𝑒𝑦

10: Using obfuscator parameters 𝜃Syfer and key 𝜃batch
𝑘𝑒𝑦 :

11: 𝑇batch ← 𝑓(𝜃Syfer, 𝜃
batch
𝑘𝑒𝑦 )

12:
(︁
𝑍batch, 𝑌 batch

)︁
← 𝑇batch(𝑋,𝐿𝐹 (𝑋))

13: 𝑅𝑍 ← 𝐸𝜙

(︁
𝑍batch, 𝑌 batch

)︁
14: 𝑅𝑋 ← 𝐸𝜙(𝑋,𝐿𝐹 (𝑋))

15: ℒreid ← contrastive_loss
(︁
𝑅𝑋 , 𝑅𝑍

)︁
16: lightgray◁ Step 2: Compute reconstruction loss
17: ℒrec ← 0

18: for 𝑖 ∈ {1, . . . 𝑠} do
19: Using obfuscator parameters 𝜃Syfer and fixed key 𝜃𝑖𝑘𝑒𝑦:
20: 𝑇 𝑖 ← 𝑓(𝜃Syfer, 𝜃

𝑖
𝑘𝑒𝑦)

21:
(︁
𝑍𝑖, 𝑌 𝑖

)︁
← 𝑇 𝑖(𝑋,𝐿𝐹 (𝑋))

22: ℒrec ← ℒrec + MSE
(︁
𝐷𝑖

(︁
𝑍𝑖

)︁
, 𝑋

)︁
23: end for
24: lightgray◁ Step 3: Alternatively update parameters
25: if optimize_estimators then
26: 𝜙← 𝜙−∇𝜙ℒreid
27: 𝛽𝑖 ← 𝛽𝑖 −∇𝛽𝑖

ℒrec {for 𝑖 ∈ {1, . . . 𝑠}}
28: optimize_estimators ← false
29: else
30: 𝜃Syfer ← 𝜃Syfer −∇𝜃Syfer(𝜆rec · ℒrec − 𝜆reid · ℒreid)

31: optimize_estimators ← true
32: end if
33: until convergence

Training Data owners may not have the computational capacity to train their own

obfuscator layers, so we train Syfer without direct knowledge of 𝑋𝐴 or 𝐿𝐹 . Instead,

we rely on a public dataset 𝑋public and use the null labeling function 𝐿𝐹 (𝑥) = 0. To

be successful, Syfer needs to generalize to held-out datasets, prediction tasks and

attackers.
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As shown in Algorithm 1, we train Syfer’s obfuscator layers (parameters 𝜃Syfer) to

maximize the loss of an attacker 𝐸 (parameters 𝜙 = (𝜙ins, 𝜙set)) and to minimize the

reconstruction loss of an ensemble of decoders 𝐷1, . . . , 𝐷𝑠 (parameters 𝛽1, . . . 𝛽𝑠).

At each step of training, we sample a transformation 𝑇 batch by choosing a new

𝜃batch
𝑘𝑒𝑦 to combine with the current 𝜃Syfer (Alg. 1, L.9-11). Using the current attacker

weights 𝜙, we then compute the re-identification loss (Alg. 1, L.13-15) as:

ℒreid = −
∑︁

(𝑥,𝑧)∈𝑀𝑇

log (𝑝(𝑥, 𝑧))

Next, we estimate the overall invertability of the encoding scheme by measuring

the reconstruction loss of an ensemble of decoders 𝐷1, . . . , 𝐷𝑠. For each each decoder

𝐷𝑖, we randomly sample a private key 𝜃𝑖𝑘𝑒𝑦, which is fixed throughout the training

algorithm. Each decoder 𝐷𝑖 is trained to reconstruct 𝑋 from 𝑍 = 𝑇 𝑖(𝑋) where 𝑇 𝑖 is

constructed by composing the current 𝜃Syfer with 𝜃𝑖𝑘𝑒𝑦. We update 𝛽𝑖 to minimize the

reconstruction loss (Alg. 1, L.17-23):

ℒrec =
𝑠∑︁

𝑖=1

(︀
𝐸𝑋 [||𝑥−𝐷𝑖 ∘ 𝑇 𝑖(𝑥)||2]

)︀

We train our attacker and decoders in alternating fashion with Syfer’s obfuscator

parameters. On even steps, Syfer’s weights 𝜃Syfer are updated to minimize the loss:

ℒ = 𝜆rec · ℒrec − 𝜆reid · ℒreid

On odd steps, the attacker and decoders are updated to minimize ℒreid and ℒrec

respectively (Alg. 1, L. 25-32).

In this optimization, the tasks of our attacker and decoders are asymmetric: the

attacker is trained to generalize across transformations 𝑇 (i.e. 𝜃𝑘𝑒𝑦), while the decoders

only need to generalize to unseen images, for a fixed key 𝜃𝑘𝑒𝑦.
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4.4 Experiments

Datasets For all experiments, we utilized two benchmark datasets of chest X-rays,

NIH [130] and MIMIC-CXR [58], from the National Institutes of Health Clinical

Center and Beth Israel Deaconess Medical Center respectively. Both datasets were

randomly split into 60,20,20 for training, development and testing, and all images

were downsampled to 64x64 pixels. We leveraged the NIH dataset to train all private

encoding schemes (i.e. Syfer and baselines), and we evaluated the privacy and utility

of all encoding schemes on the MIMIC-CXR dataset, for the binary classification tasks

(𝑘 = 2) of predicting Edema, Consolidation, Cardiomegaly, and Atelectasis. This

reflects the intended use of the tool, where a hospital leverages a pretrained Syfer for

their heldout datasets.

For privacy and utility experiments considering a specific diagnosis task, we used

a filtered version of the MIMIC-CXR data with balanced labels and explicit negatives.

Specifically, for each diagnosis tasks, we followed common practice [57] and excluded

exams with an uncertain disease label, i.e., the clinical diagnosis did not explicitly

rule out or confirm the disease. Then, we selected one random negative control case

for each positive case in order to create a balanced dataset. Our dataset statistics are

shown in Appendix A.0.2.

Syfer Implementation Details As shown in Figure 4-2, Syfer consists of re-

peated blocks of trained obfuscator layers and random neural network layers. Following

prior work in vision transformers [154], Syfer operates at the level of patches of images.

We used a patch size of 16x16 pixels and 5 Syfer blocks for all experiments. We

implemented our trained obfuscator layers as Simple Attention Units (SAU), a gated

multi-head self attention module. We implemented our random neural networks as

linear layers, followed by a SeLU nonlinearity and layer normalization. All random

linear layers weights were sampled from a unit Gaussian, and we used separate random

networks per patch. Our full Syfer architecture has 12.9M parameters, of which 6.6M

are learned obfuscator parameters and 6.3M are random neural layer parameters. The

SAU module is detailed in Appendix A.0.3.
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We trained Syfer for 50,000 steps on the NIH training set to maximize the re-

identification loss and minimize the reconstruction loss, with 𝜆reid = 2, 𝜆rec = 20. We

trained our adversary and decoder for one step for each step of obfuscator training. We

implemented the instance encoder 𝐸ins and set encoder 𝐸set of our adversary model

as a depth 3 and depth 1 SAU respectively. We utilized separate 𝐸ins networks to

encode the raw data (𝑋,𝐿𝐹 (𝑋)) and encoded data (𝑍, 𝑌 ). We use a single decoder2

𝐷1 (i.e. 𝑠 = 1) and implement it as a depth 3 SAU. We used a batch size of 128, the

Adam optimizer and a learning rate of 0.001 for training Syfer and our estimators.

The training of Syfer is fully reproducible in our code release.

Privacy Estimators To evaluate the ability of Syfer to defend against re-identification

attacks, we trained attackers to re-identify raw images from Syfer encodings on the

MIMIC-CXR dataset. Since we cannot bound the prior knowledge the attacker may

have over 𝑋𝐴, we consider the extreme case and train our attackers on their evaluation

set, i.e. we only use MIMIC-CXR’s training set for privacy evaluation. As a result, the

attacker does not have to generalize to held-out images, but only to held-out private

encoders 𝑇 .

As described in Section 4.3.1, the attacker is trained to re-identify raw images from

encoded images across new unobserved private keys using an image encoder 𝐸ins and a

set encoder 𝐸set. This attacker estimates 𝑃 ((𝑥, 𝑧) ∈ 𝑀) for an encoding scheme Γ on

a dataset 𝑋. Across our experiments, we implemented 𝐸ins as either a ResNet-18 [53],

a ViT [154], or a SAU. We implemented 𝐸set as a depth 1 SAU. All attackers were

trained for 500 epochs.

We computed the guesswork of each attacker by sorting the scores 𝑝(𝑥, 𝑧) and

identifying the index of the first correct correspondence. To measure the attackers

average performance, we also evaluated the ROC AUC of the attacker attempting to

predict an (𝑥, 𝑧) matching as a binary classification task. A higher guesswork and

lower re-identification AUC (ReID AUC) reflect a more private encoding scheme.

2Using an ensemble of 𝑠 = 5 decoders did not significantly improve downstream utility.
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Encoding Guesswork ReId AUC
Dauntless 1.0 (1, 1) 1.00 (1.00, 1.00)
InstaHide 1.0 (1, 1) 1.00 (1.00, 1.00)
DP-S, 𝑏 = 10 1.2 (1, 2) 0.98 (0.98, 0.98)
DP-S, 𝑏 = 20 7.2 (1, 31) 0.86 (0.85, 0.86)
DP-S, 𝑏 = 30 68 (1, 205) 0.70 (0.70, 0.70)
DP-I, 𝑏 = 1 5.0 (1, 17) 0.89 (0.88, 0.89)
DP-I, 𝑏 = 3 77 (3, 276) 0.73 (0.73, 0.73)
DP-I, 𝑏 = 5 1379 (49, 4135) 0.59 (0.59, 0.60)
Syfer-Random 1.7 (1, 4) 0.99 (0.99, 0.99)
Syfer (𝑇𝑋 only) 8476 (1971, 20225) 0.50 (0.49, 0.52)

Table 4.1: Privacy evaluation of different encoding schemes against an SAU based
attacker on the unlabeled MIMIC-CXR dataset. For Syfer, only 𝑇𝑋 is used. DP-S
and DP-I stand for DP-Simple and DP-Image respectively. The scale parameter 𝑏
characterizes the laplacian noise. Metrics are averages over 100 trials using 10,000
samples each, followed by 95% confidence intervals (CI).

Attacker Guesswork ReId AUC
SAU 8476 (1971, 20225) 0.50 (0.49, 0.52)
ViT 8411 (5219, 12033) 0.50 (0.49, 0.51)
Resnet-18 10070 (9871, 10300) 0.50 (0.47, 0.53)

Table 4.2: Privacy evaluation of Syfer across different attacker architectures on the
unlabeled MIMIC-CXR dataset. Metrics are averages over 100 trials using 10,000
samples each, followed by 95% CI.

Diagnosis Guesswork ReId AUC
Syfer

Edema 3617 (94, 11544) 0.50 (0.49, 0.51)
Consolidation 1697 (83, 5297) 0.55 (0.53, 0.57)
Cardiomegaly 9834 (2072, 15766) 0.51 (0.49, 0.53)
Atelectasis 13189 (2511, 28171) 0.50 (0.48, 0.52)
Ablation: Syfer with no label encoding (𝑇𝑋 only)

Edema 47 (12, 83) 0.76 (0.76, 0.76)
Consolidation 36 (2, 104) 0.76 (0.76, 0.76)
Cardiomegaly 42 (17, 57) 0.75 (0.75, 0.75)
Atelectasis 80 (65, 98) 0.75 (0.75, 0.75)

Table 4.3: Privacy evaluation of Syfer when released with different diagnoses in
MIMIC-CXR dataset. Metrics are averages over 100 trials using 10,000 samples each,
followed by 95% CI.

Generalized Privacy We first evaluated the guesswork and re-identification AUC

(ReID AUC) of attackers trained using only encoded images (i.e. without labels) on
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Encoding E Co Ca A Avg
Using raw data 0.91 0.78 0.89 0.85 0.86
Using encoded data

DP-S, 𝑏 = 10 0.51 0.51 0.52 0.52 0.52
DP-S, 𝑏 = 20 0.50 0.50 0.50 0.50 0.50
DP-S, 𝑏 = 30 0.49 0.49 0.50 0.51 0.50
DP-I, 𝑏 = 1 0.60 0.59 0.60 0.59 0.60
DP-I, 𝑏 = 2 0.54 0.50 0.55 0.55 0.54
DP-I, 𝑏 = 5 0.53 0.55 0.51 0.52 0.53
Syfer-Random 0.89 0.75 0.86 0.84 0.84
Syfer 0.82 0.69 0.81 0.78 0.78

Table 4.4: Utility for chest X-ray prediction tasks across different encoding schemes.
All metrics are ROC AUCs across the MIMIC-CXR test set. Guides of abbreviations
for medical diagnosis: (E)dema, (Co)nsolidation, (Ca)rdiomegaly and (A)telectasis.

the entire unfiltered MIMIC-CXR training set. For Syfer, this only requires using

the neural encoder 𝑇𝑋 . We compared Syfer to prior lightweight encoding schemes,

including InstaHide [55] and Dauntless [139, 138]; and differential privacy methods,

like DP-Image [69]. We now detail our baseline implementations.

• To assess the value of training Syfer’s obfuscator layers, we compared Syfer to

an ablation with randomly initialized obfuscator layers, Syfer-Random.

• InstaHide randomly mixes each private image with 2 other private images (i.e

with MixUp [152]) and then randomly flips each pixel sign.

• Dauntless [138] applies a separate random linear layer to each 16x16 pixel patch

of the images, with each random weight initialized as according to a standard

Gaussian distribution.

• DP-Simple adds independent laplacian noise to each pixel of the image to obtain

differential privacy. We evaluated using a scale (or diversity parameter) 𝑏 of

10.0, 20.0 and 30.0.

• DP-Image [69] adds independent laplacian noise to the latent space of an auto-

encoder to produce differentially private images. Our auto-encoder architecture

is further detailed in Appendix A.0.4. We trained our auto-encoder on the NIH
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dataset and applied it with laplacian noise on the MIMIC-CXR dataset. We

evaluated using a scale 𝑏 of 1.0, 2.0 and 5.0.

We report the expected guesswork and AUC for each attack as well as 95%

confidence intervals (CI). To compute confidence intervals, we sampled 100 bootstrap

samples of 10,000 images (all encoded by a single 𝑇 ) from the MIMIC-CXR training

set. Our 100 bootstraps consisted of 10 random data samples (of 10,000) across 10

random 𝑇 .

Privacy with Real Labeling Functions In practice, the encoded images are

released with encoded labels to enable model development on tasks of interest. Using

this additional knowledge, attackers may be able to better re-identify private data. To

evaluate the privacy of Syfer encodings when released with public labels, we trained

the attackers to re-identify raw images given access to (raw image, raw label) pairs

and (obfuscated image, obfuscated label) pairs. To highlight the importance of Syfer’s

label encoding scheme 𝑇 𝑌 in this scenario, we also train attackers on an ablation of

Syfer which does not encode the labels and releases (obfuscated image, raw label).

This corresponds to using only Syfer’s neural encoder 𝑇𝑋 .

We performed this attack independently per diagnosis. We implemented the

instance encoder 𝐸ins of our attacker as an SAU, our self-attention module, and

represented the disease label an additional learned 256 dimensional input token for

𝐸ins. As before, our attackers were trained for 500 epochs, and evaluated on the

MIMIC-CXR training set. We report the expected guesswork and AUC for each attack

as well as 95% confidence intervals. To compute confidence intervals, we sampled 100

random 𝑇 and encoded the whole class-balanced MIMIC-CXR training set for each

sampled 𝑇 .

Utility Evaluation We evaluated the utility of an encoding scheme on the MIMIC-

CXR dataset by measuring the ROC-AUC of diagnosis models trained using its

encodings. We compared the utility of Syfer to a plaintext baseline (i.e. using raw

data), which provides us with a utility upper bound. To isolate the impact of training
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Syfer’s obfuscator layers on utility, we also compared the utility of Syfer to Syfer-

Random. We also computed the utility of our differential privacy baselines, DP-Simple

with a scale parameter 𝑏 of 10, 20 and 30 and DP-Image with a scale of 1, 2 and 5.

For each encoding scheme, we experimented with different classifier architectures (e.g.

SAU vs ResNet-18), dropout rates and weight decay, and selected the architecture

that achieved the best validation AUC.

4.5 Results

Generalized Privacy We report our generalized privacy results, which consider

re-identification attacks on the unlabeled MIMIC-CXR dataset, in Table B.19 and

Table B.22, with higher guesswork and lower ReID AUC denoting increased privacy.

While Syfer was trained to maintain privacy against an SAU-based attacker on the

NIH training set, we found that its privacy generalized to a held-out dataset, MIMIC-

CXR, and held-out attack architectures (e.g. ResNet-18 and ViT). Syfer obtained a

guesswork of 8411 (95% CI 5219, 12033) and an ReId AUC of 0.50 (95% CI 0.49, 0.51)

against a ViT attacker. We note that a guesswork of 10,000 corresponds to guessing

randomly in this evaluation. In contrast, the InstaHide and Dauntless baselines could

not defend against re-identification attacks obtaining both a guesswork of 1.0 (95% CI

1, 1). As illustrated in Appendix A.0.5, the differential privacy baselines can obtain

privacy at the cost of significant image distortion. DP-Image with a laplacian noise

scale of 5.0 obtained a guesswork of 1379 (95% CI 49, 4135) and an attacker AUC of

0.59 (95% CI 0.59, 0.60).

Privacy with Real Labeling Functions We evaluated the privacy of releasing

Syfer encodings with different public labels in Table B.21. Releasing raw labels resulted

in significant privacy leakage with guessworks ranging from 36 (95% CI 2, 104) to

80 (95% CI 65, 98) for Consolidation and Atelectasis respectively. In contrast, when

labels are protected using Syfer’s label encoding scheme and released alongside the

image encodings, Syfer maintains privacy across all diagnoses tasks, with guessworks
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ranging from 1697 (95% CI 83, 5297) to 13189 (95% CI 2511, 28171) for Consolidation

and Atelectasis respectively.

Utility Evaluation We report our results in predicting various medical diagnoses

from X-rays in Table B.20. Models built on Syfer obtained an average AUC of 0.78,

compared to 0.86 by the plaintext baseline and 0.84 by the Syfer-Random baseline.

In contrast, the best differential privacy baseline, Image-DP, obtained average AUCs

of 0.60, 0.54 and 0.53 when using a scale of 1 and 2 and 5 respectively. Syfer obtained

a 25 point average AUC improvement over DP-Image while obtaining better privacy.

4.6 Discussion

We propose Syfer, an encoding scheme for releasing private data for machine learning

model development while preventing raw data re-identification. Syfer uses trained

obfuscator layers and random neural networks to minimize the likelihood of re-

identification, while encouraging the invertability of the overall transformation. In

experiments on MIMIC-CXR, a large chest X-ray benchmark, we show that Syfer

obtains strong privacy across held-out attackers, obtaining an average guesswork of

8411, whereas prior encoding schemes like Dauntless [139], InstaHide [55] did not meet

our privacy standard, obtaining guessworks of 1. While differential privacy baselines

can achieve privacy with enough noise, we found this came with a massive loss of

utility, with DP-Image obtaining an average AUC of 0.53 for a guesswork of 1379.

In contrast, models built on Syfer encodings approached the utility of our plaintext

baseline, obtaining an average AUC of 0.78 compared to 0.86 by the plaintext model.

Future Work While our threat model considers a computationally unbounded

adversary, in practice, we rely on model-based attackers for both the development and

evaluation of Syfer. More powerful models may result in more successful attacks on

Syfer. As a result, continued research into re-identification algorithms is needed to

offer stronger theoretical guarantees and develop more powerful encodings. Moreover,

while we show that Syfer generalizes to an unseen datasets, this does not guarantee
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that it will generalize to arbitrary datasets. Additional research studying the privacy

impact of domain shifts is also necessary.
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Appendix A

Syfer: Supplementary Materials

A.0.1 Guesswork Supplementary Details

Recall that for an ordered list of 𝑚𝑛 correspondence guesses (𝑢1, . . . , 𝑢𝑚𝑛), where

𝑢𝑖 ∈ 𝑋𝐸 × 𝑍𝐴, the guesswork is defined as the rank of the first correct guess: 𝒢 =

min𝑘{𝑘 s.t. 𝑢𝑘 ∈ 𝑀𝑇}, where 𝑀𝑇 = {(𝑥, 𝑧) ∈ 𝑋𝐸 × 𝑍𝐴 s.t. 𝑧 = 𝑇𝑋(𝑥)}. In the event

of ties, the guesswork is computed as the expected value over permutations of the

suitable subsets. In the paper, we use 𝑋𝐸 = 𝑋𝐴 but the guesswork can be computed

for an arbitrary superset 𝑋𝐸 ⊇ 𝑋𝐴 of size 𝑚.

Guesswork Algorithm We propose the following algorithm to compute the guess-

work for a given probability matrix and set of correct guesses.
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Algorithm 2 Guesswork algorithm
Input Correct matching 𝑀𝑇 = {(𝑥𝑖, 𝑧𝑗) s.t. 𝑧𝑗 = 𝑇𝑋(𝑥𝑖)}

Input Probability matrix 𝐴 where 𝐴𝑖,𝑗 = 𝑃 ((𝑥𝑖, 𝑧𝑗) ∈𝑀)

Output Guesswork 𝒢 for 𝐴

1: From 𝐴, extract

𝑆 = {(𝑖, 𝑗, 𝐴𝑖,𝑗) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}

2: Partition 𝑆:

𝑆 =
⋃︀

𝑝 𝑆𝑝 where 𝑆𝑝 = {(𝑖, 𝑗, 𝐴𝑖,𝑗) s.t. 𝐴𝑖,𝑗 = 𝑝}

3: Find the highest value of 𝑝 such that 𝐴𝑝 contains matches:

𝑞 = max𝑝{𝑝 s.t. ∃(𝑖, 𝑗, 𝐴𝑖,𝑗) ∈ 𝑆𝑝 s.t. (𝑥𝑖, 𝑧𝑗) ∈𝑀𝑇 }

4: 𝒢 ← 0

5: for 𝑝 > 𝑞 do

6: 𝒢 ← 𝒢 + |𝐴𝑝|

7: end for

8: 𝒢 ← 𝒢 +
1+|𝐴𝑞|

1+|𝐴𝑞∩𝑀 |

9: return 𝒢

The expression 1+|𝐴𝑞 |
1+|𝐴𝑞∩𝑀 | is derived by computing the expected value of number of

trials before success in the urn problem without replacement.

[guesswork calculation extended] Let 𝑋𝐸 = 𝑋𝐴 = {1, 2} and disregard labels for

now. Consider three transformations 𝑋𝐴 → {𝑎, 𝑏, 𝑐, 𝑑}:

𝑇1 :

⎧⎨⎩ 1 ↦→ 𝑎

2 ↦→ 𝑏
𝑇2 :

⎧⎨⎩ 1 ↦→ 𝑏

2 ↦→ 𝑎
𝑇3 :

⎧⎨⎩ 1 ↦→ 𝑐

2 ↦→ 𝑑

We evaluate the following encoding schemes, defined by the distribution used to

sample 𝑇 :

Γ1 : 𝑃 (𝑇1) = 2/3, 𝑃 (𝑇2) = 1/3, 𝑃 (𝑇3) = 0

Γ2 : 𝑃 (𝑇1) = 1/2, 𝑃 (𝑇2) = 1/2, 𝑃 (𝑇3) = 0

Γ3 : 𝑃 (𝑇1) = 1/3, 𝑃 (𝑇2) = 1/3, 𝑃 (𝑇3) = 1/3.

For Γ1, Eve observes 𝑍𝐴 = {𝑎, 𝑏} regardless of the choice of 𝑇𝐴. Given her

knowledge of 𝑃 (𝑇 ), she elects to rank {(1, 𝑎), (2, 𝑏)} before {(1, 𝑏), (2, 𝑎))} which gives

guessworks 𝒢(𝑇1) = 1 and 𝒢(𝑇2) = 3. In expectation, the guesswork of Γ1 is 5/3 (with

a variance of 8/27).

For Γ2, Eve observes 𝑍𝐴 = {𝑎, 𝑏} as well, but equally ranks all 4! orderings of

the guesses ((1, 𝑎), (1, 𝑏), (2, 𝑎), (2, 𝑏)), which leads to the same guesswork for both 𝑇 :

104



𝒢(𝑇1) = 𝒢(𝑇2) =
1
2
· 1 + 1

2
· 2
3
· 2 + 1

2
· 1
3
· 3 = 5

3
(no variance).

For Γ3, whenever Eve observes 𝑍𝐴 = {𝑐, 𝑑}, she deduces that 𝑇𝐴 = 𝑇3, which leads

to a guesswork of 1. In the other cases, observing 𝑍𝐴 = {𝑎, 𝑏} means that 𝑇1 and

𝑇2 are equally likely, so the guesswork is 5/3. In expectation, the guesswork is 13/9,

which is lower (and thus worse privacy) than the previous schemes.

Guessworks in Special Cases We discuss two special cases that arise when

computing guesswork.

1. If all guesses in the bucket 𝐴𝑝 of highest probability are correct guesses, then

the guesswork is 1, characterizing a non-private scheme. Note that this does not

depend on the cardinal of the bucket 𝐴𝑝 of highest probability: regardless of

whether the attacker is confidently correct about one matching pair or multiple

matching pair, the guesswork will still be 1.

2. If the probability matrix is uniform (i.e. there is 𝑝 for which 𝑆 = 𝑆𝑝, such that

all guesses are in the same bucket), then the guesswork is 𝑚𝑛+1
𝑛+1

, i.e. 𝒢 ≈ |𝑋𝐸|.

This characterizes an attacker that fails to capture any privacy leakage of the

encoding scheme.

Note that |𝑋𝐸| is not an upper-bound of guesswork. An attacker that is confidently

wrong can achieve a guesswork up to 𝑚𝑛− 𝑛+ 1.

Discussion on Eve’s strategy In our definition of guesswork, Eve commits to a

probability matrix 𝐴𝑖,𝑗 = 𝑃 ((𝑥𝑖, 𝑧𝑗) ∈ 𝑀), then enumerates her guesses in descending

order of likeliness. This would not be the optimal strategy for an attacker who wishes

to minimize the number of guesses required to identify a correct match. For instance,

if 𝑃 ((𝑥𝑖, 𝑧𝑗) is uniform, Eve could commit to a single column (or row) and achieve

an expected number of guesses of 𝑚/2 (or 𝑛/2). More generally, after Eve made her

first guess 𝑢1, she can assume the first guess was incorrect and recompute the new

probability matrix 𝑃 ((𝑥𝑖, 𝑧𝑗) ∈ 𝑀 |𝑢1 ̸∈ 𝑀), then proceed with subsequent guesses.

Such an auto-regressive strategy is costly to implement. In practice, Eve also would
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not have access to an oracle that notifies her when a guess is correct. Therefore,

we adopt the definition of guesswork exposed in Section ?? as an efficient way to

universally compare the privacy of different encoding schemes.

A.0.2 Dataset Statistics

We leveraged the NIH training set for training Syfer, and leveraged the unlabeled

MIMIC-CXR training set for all generalized privacy evaluation. To evaluate utility and

privacy with real labeling functions, we use the labeled subsets of the MIMIC-CXR

dataset. The labeled MIMIC-CXR training and validation sets were filtered to be

class balanced, by assigning random one negative control for each positive sample.

The number of images per dataset is shown in Table A.0.2

Dataset Train Dev Test

Unlabeled

NIH 40365 NA NA

MIMIC-CXR 57696 NA NA

Labeled

MIMIC-CXR E 3660 1182 12125

MIMIC-CXR Co 1120 375 11031

MIMIC-CXR Ca 11724 3876 12791

MIMIC-CXR A 2164 3992 12129

Table A.1: Dataset statistics for all datasets. The training and development sets of

MIMIC CXR Edema, Consolidation, Cardiomegaly and Atelecatasis were filtered to

contain one negative control for each positive sample. Guides of abbreviations for

medical diagnosis: (E)dema, (Co)nsolidation, (Ca)rdiomegaly and (A)telectasis.
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A.0.3 SAU: Simple Attention Unit

Figure A-1: Simple Attention Unit Architecture. The module uses a learnable gate

at each layer to interpolate between leveraging behaving as a feed forward network

(FFN) and a multi-headed self attention network (MHSA).

Our Simple Attention Unit (SAU), illustrated in Figure A-1, utilizes a learned gate, 𝛼,

at each layer to interpolate between acting as a standard feed forward network (FFN)

with no attention computation, and a multi-head self-attention (MHSA) network. We

found that this allowed for faster and more stable training compared to ViTs[154, 37]

in both privacy and utility experiments. To encode patch positions, we leverage a

learned positional embedding for each location, following prior work [154, 37]. Each

layer of the SAU is composed of the following operations:

𝑥𝑛𝑜𝑟𝑚 = BatchNorm(𝑥)

ℎ𝑓𝑓𝑛 = SELU(𝑊𝑖𝑛𝑥𝑛𝑜𝑟𝑚 + 𝑏𝑖𝑛)
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ℎ𝑎𝑡𝑡𝑛 = MHSA(𝑥𝑛𝑜𝑟𝑚)

ℎ = 𝜎(𝛼)× ℎ𝑎𝑡𝑡𝑛 + (1− 𝜎(𝛼))× ℎ𝑓𝑓𝑛

𝑜 = SELU(𝑊𝑜ℎ+ 𝑏𝑜) + 𝑥𝑛𝑜𝑟𝑚

Where Multi-head self-attention (MHSA) is defined as:

𝐾𝑖, 𝑄𝑖, 𝑉𝑖 = 𝑊𝑖𝑥𝑛𝑜𝑟𝑚

head𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑖𝐾

𝑇
𝑖√

𝑑𝑘
)𝑉 𝑖

ℎ𝑎𝑡𝑡𝑛 = BatchNorm(𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑎𝑡𝑡𝑛)

Where 𝑑𝑘 is the dimension of each head, all 𝑊 and 𝑏 are learned parameters, and

𝛼 is a learned gate. 𝛼 is initialized at −2 for each layer.

A.0.4 DP-Image Baseline

DP-Image[69] is a differential privacy method based adding laplacian noise to the

latent space of auto encoders to achieve differential privacy. We trained our auto-

encoder on the NIH training set, with no noise, and apply it with noise on the MIMIC

dataset. Our encoder, mapping each 64x64 pixel image 𝑥 to a 256d latent code 𝑧, is

composed of six convolutional layers, each followed by a leaky relu activation and

batch normalization. Each convolutional layer had a kernel size of 3, a stride of 2.

This was then reduced a single code 𝑧 with global average pooling. Our decoder, which

mapped 𝑧 back to 𝑥, consisted of six transposed convolutional layers, each followed

by a leaky relu activation and batch normalization. The auto encoder was trained to

minimize the mean squared error between the decoded image and the original image.

A.0.5 Visualizations

In Figure A-2, we visualize the impact of Syfer and DP-Image encodings when using

different amounts of noise (parametrized by the diversity parameter 𝑏). Each row
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represents a different image. The raw_x column are raw images. The Syfer column

shows encodings obtained when applying Syfer’s neural encoder for a specific choice of

private weights 𝜃𝑘𝑒𝑦: those are representative of the released images. We then train a

decoder 𝐷𝑇 for a specific choice of private weights 𝜃𝑘𝑒𝑦. During training, the decoder

has access to parallel data (raw image, encoded Syfer image). We visualize the decoded

images in the Syfer decoded column. Note that in our scenario, only Alice would be

able to train such a decoder: Bob and Eve only have access to encoded images with

labels. The DP-image no noise column is the reconstructed image obtained with the

trained auto-encoder that is used for the DP-Image baseline. We also visualize the

reconstructed images when varying amounts of noise are added.
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Figure A-2: Vizualisations of raw images, Syfer encodings, decoded Syfer encodings, and DP-Image encodings. Syfer encodings

were obtained after applying the 𝑇𝑋 part of Syfer to raw images. Decoded Syfer encodings are obtained by a model 𝐷𝑇 trained

on a set of parallel training data (plaintext attack). DP-Image encodings are shown with varying amount of noise.
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A.0.6 Additional Privacy Analyses

Patch size Guesswork ReId AUC
Syfer

32px 102795 (25221, 235114) 50 (50, 50)
16px 12715 (4670, 31748) 50 (46, 54)

Table A.2: Privacy evaluation of Syfer against attackers attempting to re-identify
patches of the encoded images. Guesswork was computed over a random subset of
10,000 samples. All metrics are followed by 95% confidence intervals.

A.0.7 Additional Utility Analyses

In Figure A-3, we plot the learning curves of Syfer, Syfer-Random and our plaintext

baselines when training on fractions 1
32

, 1
16

, 1
8
, 1

4
, 1

2
and 1 of the data.

Figure A-3: Average AUC on MIMIC-Test set when training with different fractions

of the data when using Syfer, Syfer-Random, and Plaintext encodings.

We find that it takes plaintext models 1
2

of the training data to reach the full

performance of Syfer-Random, indicating that using a random Syfer architecture

harms sample complexity. Syfer, which achieves strong privacy, requires more data to

achieve the same utility, with Syfer-Random achieving the same average AUC when

using less than 1
8

of the data and Plaintext achieving the same performance when

using 1
32

.
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Appendix B

Tables

Model Use RF C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC
TCv8 Yes 0.62 (0.58, 0.67) 0.65 (0.51, 0.79) 0.64 (0.59, 0.70) 0.63 (0.58, 0.67) 0.62 (0.58, 0.66) 0.62 (0.57, 0.66)
Radiologist BI-RADs NA 0.53 (0.50, 0.55) 0.74 (0.63, 0.86) 0.55 (0.51, 0.58) 0.53 (0.50, 0.55) 0.52 (0.50, 0.54) 0.52 (0.50, 0.53)
Image-And-Heathmaps No 0.63 (0.59, 0.67) 0.71 (0.61, 0.84) 0.68 (0.63, 0.73) 0.64 (0.60, 0.69) 0.62 (0.58, 0.66) 0.59 (0.55, 0.63)
Image-Only DL No 0.67 (0.64, 0.71) 0.64 (0.53, 0.76) 0.67 (0.62, 0.73) 0.68 (0.64, 0.72) 0.68 (0.65, 0.73) 0.70 (0.66, 0.73)
Hybrid DL Yes 0.67 (0.63, 0.71) 0.63 (0.51, 0.76) 0.68 (0.63, 0.73) 0.67 (0.62, 0.71) 0.67 (0.63, 0.72) 0.69 (0.65, 0.73)

Mirai No 0.69 (0.66, 0.73) 0.71 (0.60, 0.84) 0.71 (0.66, 0.76) 0.71 (0.67, 0.75) 0.71 (0.67, 0.75) 0.71 (0.68, 0.75)
Yes 0.70 (0.66, 0.74) 0.72 (0.61, 0.84) 0.72 (0.67, 0.78) 0.72 (0.68, 0.76) 0.71 (0.68, 0.75) 0.72 (0.68, 0.76)

Table B.1: ROC AUCs and C-indices for Mirai and prior risk models on the MGH
test set excluding cancers confirmed within six months of the screening mammogram.
We also evaluated Image-And-Heatmaps and radiologist BI-RADs assessments. RF
refers to "risk factors". All metrics are followed by their 95% confidence interval.

113



MGH Training Set MGH Validation Set MGH Test Set
Characteristics All (%) Cancer (%) All (%) Cancer (%) All (%) Cancer (%)
All exams 210819 (100%) 5379 (100%) 25644 (100%) 612 (100%) 25855 (100%) 588 (100%)
Age
<40 5812 (2.8%) 84 (1.6%) 711 (2.8%) 7 (1.1%) 724 (2.8%) 7 (1.1%)
40-50 55905 (26.5%) 1113 (20.7%) 6821 (26.6%) 142 (23.2%) 7025 (27.2%) 95 (16.2%)
50-60 63314 (30.0%) 1348 (25.1%) 7762 (30.3%) 166 (27.1%) 7829 (30.3%) 188 (32.0%)
60-70 54925 (26.1%) 1770 (32.9%) 6674 (26.0%) 179 (29.3%) 6708 (25.9%) 182 (31.0%)
70-80 25401 (12.0%) 816 (15.2%) 3037 (11.8%) 102 (16.7%) 3001 (11.6%) 94 (16.0%)
80< 5461 (2.6%) 248 (4.5%) 639 (2.5%) 16 (2.6%) 568 (2.2%) 22 (3.7%)
Density
Almost entirely fatty 20411 (9.7%) 315 (5.9%) 2429 (9.5%) 53 (8.7%) 2474 (9.6%) 31 (5.3%)
Scattered areas of fibroglandular tissue 102112 (48.4%) 2623 (48.8%) 12519 (48.8%) 261 (42.7%) 12490 (48.3%) 264 (44.9%)
Heterogeneously dense 78892 (37.4%) 2196 (40.8%) 9461 (36.9%) 263 (43.0%) 9751 (37.7%) 271 (46.1%)
Extremely dense 9293 (4.4%) 242 (4.5%) 1225 (4.8%) 35 (5.7%) 1129 (4.4%) 22 (3.7%)
BI-RADS
0 - Additional imaging needed 13810 (6.6%) 1579 (29.4%) 1686 (6.6%) 164 (26.8%) 1785 (6.9%) 186 (31.6%)
1-Negative or 2-Benign 196797 (93.3%) 3786 (70.4%) 23932 (93.3%) 447 (73.0%) 24043 (93.0%) 400 (68.0%)
Other 47 (0.02%) 9 (0.2%) 3 (0.01%) 1 (0.2%) 4 (0.01%) 1 (0.2%)
Race
White 171509 (81.4%) 4646 (86.4%) 20710 (80.8%) 518 (84.6%) 21006 (81.2%) 512 (87.1%)
African American 9883 (4.7%) 209 (3.9%) 1209 (4.7%) 26 (4.3%) 1204 (4.7%) 21 (3.6%)
Asian or Pacific Islander 9477 (4.5%) 160 (3.0%) 1231 (4.8%) 17 (2.8%) 1238 (4.8%) 26 (4.4%)
Hispanic 2266 (1.1%) 63 (1.2%) 260 (1.0%) 5 (0.8%) 225 (0.9%) 6 (1.0%)
Other Race 11423 (5.4%) 138 (2.6%) 1439 (5.6%) 20 (3.3%) 1486 (5.7%) 15 (2.6%)
Device
Lorad Selenia 81106 (38.5%) 2009 (37.4%) 9850 (38.4%) 216 (35.29%) 9937 (38.4%) 241 (41.0%)
Selenia Dimensions 129493 (61.4%) 3150 (58.6%) 15767 (61.5%) 369 (60.29%) 15882 (61.4%) 311 (52.9%)
Unknown 220 (0.1)% 220 (4.1%) 27 (0.1%) 27 (4.4%) 36 (0.1%) 36 (6.1%)

Table B.2: Detailed demographics for Massachusetts General Hospital dataset. For
each demographic, we report the number of corresponding mammography exams the
percentage of they constitute of the total. All cancer counts reflect cancer within
five-years.

114



Novant Dataset
Characteristics All Cancer
All exams 14157 (100.0) 235 (100.0)
Age
40-50 3917 (27.67) 53 (22.55)
50-60 5368 (37.92) 65 (27.66)
60-70 4872 (34.41) 117 (49.79)
Race
White 10555 (74.56) 185 (78.72)
African American 2687 (18.98) 44 (18.72)
Asian 220 (1.55) 0 (0.0)
Hispanic 391 (2.76) 5 (2.13)
American Indian or Alaskan Native 28 (0.2) 0 (0.0)
Time to Cancer
0-1 year 95 (0.67) 95 (40.43)
1-2 years 52 (0.37) 52 (22.13)
2-3 years 48 (0.34) 48 (20.43)
3-4 years 31 (0.22) 31 (13.19)
4-5 years 9 (0.06) 9 (3.83)

Table B.3: Detailed demographics of Novant test set
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Novant Dataset
Characteristics All Cancer
All exams 14157 (100.0) 235 (100.0)
Age
40-50 3917 (27.67) 53 (22.55)
50-60 5368 (37.92) 65 (27.66)
60-70 4872 (34.41) 117 (49.79)
Race
White 10555 (74.56) 185 (78.72)
African American 2687 (18.98) 44 (18.72)
Asian 220 (1.55) 0 (0.0)
Hispanic 391 (2.76) 5 (2.13)
American Indian or Alaskan Native 28 (0.2) 0 (0.0)
Time to Cancer
0-1 year 95 (0.67) 95 (40.43)
1-2 years 52 (0.37) 52 (22.13)
2-3 years 48 (0.34) 48 (20.43)
3-4 years 31 (0.22) 31 (13.19)
4-5 years 9 (0.06) 9 (3.83)

Table B.4: Detailed demographics of Emory test set

Site C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC
MGH, USA 0.69 (0.66, 0.73) 0.71 (0.60, 0.84) 0.71 (0.66, 0.76) 0.71 (0.67, 0.75) 0.71 (0.67, 0.75) 0.71 (0.68, 0.75)
Novant, USA 0.72 (0.66, 0.79) NA 0.71 (0.63, 0.80) 0.73 (0.66, 0.80) 0.72 (0.65, 0.79) 0.72 (0.66, 0.79)
Emory, USA 0.69 (0.66, 0.72) 0.74 (0.66, 0.84) 0.71 (0.68, 0.75) 0.70 (0.67, 0.73) 0.71 (0.68, 0.74) 0.71 (0.68, 0.74)
Maccabi-Assuta, Israel 0.70 (0.64, 0.76) NA 0.67 (0.53, 0.83) 0.72 (0.66, 0.79) 0.70 (0.63, 0.76) 0.68 (0.62, 0.74)
Karolinska, Sweden 0.71 (0.69, 0.74) NA 0.72 (0.67, 0.77) 0.73 (0.71, 0.76) 0.73 (0.70, 0.75) 0.71 (0.69, 0.73)
CGMH, Taiwan 0.70 (0.66, 0.75) 0.84 (0.72, 0.99) 0.76 (0.68, 0.84) 0.71 (0.64, 0.77) 0.71 (0.66, 0.76) 0.70 (0.66, 0.75)
Barretos, Brazil 0.78 (0.74, 0.83) 0.87 (0.80, 0.94) 0.82 (0.76, 0.89) 0.81 (0.76, 0.87) 0.79 (0.74, 0.84) 0.75 (0.70, 0.80)

Table B.5: Area under the Receiver Operating Curve (AUCs) for predicting cancer
in one to five years and Uno’s C-index for Mirai on all test sets excluding cancers
diagnosed with six months of the mammogram. All metrics are followed by their 95%
confidence interval.
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Model TCv8 ImageOnly Hybrid DL Mirai without Risk Factors Mirai with Risk Factors
Race
African American 0.62 (0.44, 0.84) 0.72 (0.61, 0.89) 0.73 (0.59, 0.88) 0.72 (0.56, 0.89) 0.71 (0.55, 0.90)
Asian 0.54 (0.36, 0.75) 0.68 (0.53, 0.85) 0.67 (0.50, 0.85) 0.77 (0.64, 0.92) 0.80 (0.68, 0.95)
White 0.64 (0.60, 0.68) 0.73 (0.69, 0.76) 0.72 (0.68, 0.75) 0.75 (0.71, 0.78) 0.75 (0.72, 0.78)
Age
<50 0.63 (0.56, 0.71) 0.66 (0.59, 0.74) 0.68 (0.60, 0.77) 0.71 (0.63, 0.78) 0.71 (0.55, 0.90)
50-70 0.64 (0.60, 0.69) 0.71 (0.67, 0.74) 0.71 (0.68, 0.75) 0.74 (0.71, 0.78) 0.80 (0.68, 0.95)
>70 0.54 (0.46, 0.62) 0.76 (0.69, 0.83) 0.71 (0.63, 0.89) 0.74 (0.67, 0.82) 0.75 (0.72, 0.78)
Density
Non-Dense 0.63 (0.58, 0.68) 0.71 (0.67, 0.76) 0.70 (0.66, 0.75) 0.74 (0.70, 0.78) 0.75 (0.71, 0.79)
Dense 0.64 (0.59, 0.69) 0.73 (0.69, 0.77) 0.73 (0.69, 0.78) 0.76 (0.72, 0.80) 0.76 (0.72, 0.80)
Mammography Device
Lorad Selenia 0.65 (0.61, 0.70) 0.71 (0.67, 0.75) 0.71 (0.67, 0.76) 0.73 (0.69, 0.77) 0.74 (0.68, 0.78)
Selenia Dimensions 0.62 (0.57, 0.67) 0.74 (0.71, 0.78) 0.73 (0.69, 0.77) 0.77 (0.74, 0.81) 0.78 (0.74, 0.82)

Table B.6: C-Index for different models on different sub-populations in the MGH test
set. All metrics are followed by their 95% confidence interval.

Subtype C-Index 1-year AUC 2-year AUC 3-year AUC 4-year AUC 5-year AUC
Invasive 0.80 (0.78, 0.82) 0.90 (0.88, 0.92) 0.85 (0.83, 0.87) 0.81 (0.79, 0.83) 0.8 (0.78, 0.82) 0.77 (0.75, 0.79)
DCIS 0.81 (0.79, 0.84) 0.92 (0.9, 0.94) 0.88 (0.85, 0.91) 0.83 (0.81, 0.86) 0.81 (0.79, 0.84) 0.78 (0.76, 0.81)
ER+ 0.81 (0.79, 0.83) 0.91 (0.89, 0.93) 0.87 (0.85, 0.89) 0.82 (0.81, 0.84) 0.81 (0.79, 0.83) 0.78 (0.76, 0.81)
ER- 0.75 (0.70, 0.80) 0.87 (0.82, 0.94) 0.79 (0.73, 0.85) 0.76 (0.71, 0.82) 0.75 (0.69, 0.80) 0.73 (0.68, 0.78)
PR+ 0.80 (0.78, 0.82) 0.9 (0.88, 0.93) 0.86 (0.83, 0.88) 0.81 (0.79, 0.84) 0.8 (0.78, 0.82) 0.78 (0.75, 0.80)
PR- 0.81 (0.78, 0.84) 0.9 (0.87, 0.94) 0.86 (0.82, 0.90) 0.83 (0.79, 0.86) 0.81 (0.78, 0.85) 0.78 (0.74, 0.81)
HER2+ 0.79 (0.75, 0.84) 0.92 (0.87, 0.97) 0.87 (0.82, 0.93) 0.83 (0.78, 0.88) 0.79 (0.74, 0.85) 0.75 (0.70, 0.81)
HER2- 0.81 (0.79, 0.83) 0.9 (0.88, 0.92) 0.86 (0.83, 0.88) 0.82 (0.80, 0.84) 0.81 (0.79, 0.83) 0.78 (0.76, 0.81)

Table B.7: C-Indices and ROC AUCs for Mirai in predicting cancers of different
subtypes in the Karolinska test set. For each row in the table, we evaluate the ability
of the model to discriminate between patients who developed the specific subtype of
cancer (e.g., HER2-) from those who did not develop cancer. All metrics are followed
by their 95% confidence interval.

Cancer Type Number of Exams
Invasive 1243
DCIS 760
ER+ 1093
ER- 183
PR+ 934
PR- 341
HER2+ 156
HER2- 884

Table B.8: Number of exams per cancer type in the Karolinska Dataset.
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Method Sensitivity Specificity
African American: 4,311 exams from 2,831 patients. 301 exams followed by future cancer.
Mirai at TC specificity 33.9% (26.3, 41.0) 83.7% (82.3, 85.1)
Mirai at TC sensitivity 22.9% (16.2%, 29.3) 90.7% (89.6, 91.9)
White: 3,728 exams from 2,501 patients. 306 exams followed by future cancer
Mirai at TC specificity 40.0% (32.0, 47.2) 85.5% (84.0, 87.0)
Mirai at TC sensitivity 20.6% (14.6, 26.2) 91.9% (90.8, 93.0)

Table B.9: High risk cohort analysis for subgroups of the Emory dataset by race. We
restricted our analysis to patients who were initially screening negative and had at
least five-years of screening follow-up. We defined an exam as screening negative if it
was not followed by a cancer diagnosis within six months. We defined a future cancer
as a pathology confirmed breast cancer diagnosis within five years of the mammogram.
Mirai thresholds (i.e. “at TC sensitivity” and “at TC specificity”) were chosen to match
the performance of the Tyrer-Cuzick (TC) model on the development MGH set

Model Use Risk Factors MGH Validation Set C-Index MGH Test Set C-Index Device-Identity Classifier AUC on MGH Test Set

TCv8 Yes 0.63 (0.59, 0.67) 0.64 (0.60, 0.67) 0.50 (0.50, 0.50)

ImageOnly DL No 0.69 (0.66, 0.73) 0.72 (0.69, 0.75) 0.51 (0.50, 0.51)
Hybrid DL Yes 0.71 (0.68, 0.75) 0.72 (0.69, 0.75) 0.50 (0.50, 0.50)
Image Encoder No 0.64 (0.60, 0.67) 0.63 (0.60, 0.67) 0.74 (0.73, 0.74)+ Cox Proportional Hazard Layer
Image Encoder No 0.71 (0.68, 0.75) 0.73 (0.70, 0.76) 0.77 (0.76, 0.77)+ Additive Hazard Layer
Image Encoder No 0.73 (0.70, 0.76) 0.73 (0.70, 0.76) 0.68 (0.67, 0.69)+ Additive Hazard
+ Predict Risk Factors Yes 0.75 (0.72, 0.79) 0.74 (0.72, 0.77) 0.68 (0.67, 0.69)
Image Encoder

No 0.75 (0.72, 0.78) 0.75 (0.73, 0.78) 0.76 (0.75, 0.76)+ Additive Hazard
+ Image Aggregator
+ Predict Risk Factors Yes 0.77 (0.74, 0.80) 0.75 (0.72, 0.78) 0.74 (0.73, 0.74)

No 0.73 (0.70, 0.77) 0.75 (0.72, 0.78) 0.50 (0.50, 0.50)

Mirai =
Image Encoder
+ Additive Hazard
+ Image Aggregator
+ Predict Risk Factors
+ Adversarial Training Yes 0.76 (0.73, 0.80) 0.76 (0.74, 0.80) 0.50 (0.50, 0.50)

Table B.10: Ablation study of Mirai on the MGH datasets. We report the C-Index
for each model on the MGH validation and test sets, as well as the AUC of the
Device-Identity Classifier on the test set. All metrics are followed by 95% confidence
intervals.
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MGH Train Set MGH Validation Set MGH Test Set
Characteristics All Cancer All Cancer All Cancer
All exams 137682 (100.0) 5202 (3.8) 16634 (100.0) 613 (3.7) 17119 (100.0) 608 (3.6)
Age
<40 948 (0.7) 28 (3.0) 114 (0.7) 2 (1.8) 120 (0.7) 2 (1.7)
40-50 36971 (26.9) 1051 (2.8) 4483 (27.0) 151 (3.4) 4710 (27.5) 91 (1.9)
50-60 42425 (30.8) 1331 (3.1) 5153 (31.0) 155 (3.0) 5271 (30.8) 187 (3.5)
60-70 37715 (27.4) 1763 (4.7) 4585 (27.6) 181 (3.9) 4728 (27.6) 198 (4.2)
70-80 16663 (12.1) 798 (4.8) 1958 (11.8) 107 (5.5) 1977 (11.5) 96 (4.9)
80< 2960 (2.1) 231 (7.8) 341 (2.1) 17 (5.0) 313 (1.8) 34 (10.9)
Density
Almost entirely fatty 12639 (9.2) 294 (2.3) 1499 (9.0) 47 (3.1) 1569 (9.2) 30 (1.9)
Scattered areas of fibroglandular tissue 65353 (47.5) 2496 (3.8) 8007 (48.1) 250 (3.1) 8112 (47.4) 293 (3.6)
Heterogeneously dense 52991 (38.5) 2171 (4.1) 6255 (37.6) 276 (4.4) 6633 (38.7) 265 (4.0)
Extremely dense 6623 (4.8) 239 (3.6) 867 (5.2) 39 (4.5) 797 (4.7) 20 (2.5)
Race
White 112055 (81.4) 4495 (4.0) 13432 (80.8) 518 (3.9) 13932 (81.4) 534 (3.8)
African American 6585 (4.8) 204 (3.1) 792 (4.8) 27 (3.4) 807 (4.7) 26 (3.2)
Asian or Pacific Islander 6055 (4.4) 136 (2.2) 779 (4.7) 16 (2.1) 817 (4.8) 21 (2.6)
Hispanic 1542 (1.1) 52 (3.4) 181 (1.1) 5 (2.8) 145 (0.8) 4 (2.8)
Other Race 11445 (8.3) 315 (2.8) 1450 (8.7) 47 (3.2) 1418 (8.3) 23 (1.6)
Time to Next Exam
<1 year 1313 (1.0) 295 (22.5) 172 (1.0) 50 (29.1) 159 (0.9) 32 (20.1)
1-2 years 114503 (83.2) 4264 (3.7) 13791 (82.9) 486 (3.5) 14192 (82.9) 514 (3.6)
2-3 years 12377 (9.0) 429 (3.5) 1489 (9.0) 58 (3.9) 1536 (9.0) 41 (2.7)
>= 3 years 9489 (6.9) 214 (2.3) 1182 (7.1) 19 (1.6) 1232 (7.2) 21 (1.7)
Time to Cancer
0-1 year 61 (0.0) 61 (100.0) 8 (0.0) 8 (100.0) 13 (0.1) 13 (100.0)
1-2 years 298 (0.2) 298 (100.0) 40 (0.2) 40 (100.0) 34 (0.2) 34 (100.0)
2-3 years 508 (0.4) 508 (100.0) 50 (0.3) 50 (100.0) 60 (0.4) 60 (100.0)
3-4 years 632 (0.5) 632 (100.0) 80 (0.5) 80 (100.0) 97 (0.6) 97 (100.0)
4-5 years 724 (0.5) 724 (100.0) 92 (0.6) 92 (100.0) 94 (0.5) 94 (100.0)
5-10 years 2979 (2.2) 2979 (100.0) 343 (2.1) 343 (100.0) 310 (1.8) 310 (100.0)

Table B.11: Detailed demographics of MGH dataset.
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Emory Dataset
Characteristics All Cancer
All exams 22,030 (100.0) 723 (3.3)
Age
<40 237 (1.1) 7 (3.0)
40-50 4,523 (20.5) 114 (2.5)
50-60 6,210 (28.2) 162 (2.6)
60-70 7,018 (31.9) 231 (3.3)
70-80 3,532 (16.0) 195 (5.5)
80< 510 (2.3) 14 (2.7)
Race
White 9,780 (44.4) 348 (3.6)
African American 10,436 (47.4) 343 (3.3)
Asian 994 (4.5) 15 (1.5)
Native Hawaiian or Other Pacific Islander 122 (0.6) 9 (7.4)
American Indian or Alaskan Native 21 (0.1) NA
Multiple 47 (0.2) NA
Time to Next Exam
<1 year 529 (2.4) 48 (9.1)
1-2 years 16,557 (75.2) 546 (3.3)
2-3 years 2,628 (11.9) 82 (3.1)
>= 3 years 2,316 (10.5) 47 (2.0)
Time to Cancer
0-1 year 16 (0.1) 16 (100.0)
1-2 years 96 (0.4) 96 (100.0)
2-3 years 124 (0.6) 124 (100.0)
3-4 years 110 (0.5) 110 (100.0)
4-5 years 132 (0.6) 132 (100.0)
5-10 years 245 (1.1) 245 (100.0)

Table B.12: Detailed demographics of Emory test set
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Karolinska Dataset before resampling Karolinska Dataset after resampling
Characteristics All Cancer All Cancer
All exams 14362 (100.0) 1768 (12.3) 93052 (100.0) 1768 (1.9)
Age
40-50 5921 (41.2) 558 (9.4) 39433 (42.4) 558 (1.4)
50-60 4200 (29.2) 499 (11.9) 27514 (29.6) 499 (1.8)
60-70 3903 (27.2) 652 (16.7) 24010 (25.8) 652 (2.7)
70-80 338 (2.4) 59 (17.5) 2095 (2.3) 59 (2.8)
Time to Next Exam
<1 year 90 (0.6) 84 (93.3) 134 (0.1) 84 (62.7)
1-2 years 5421 (37.7) 618 (11.4) 35380 (38.0) 618 (1.7)
2-3 years 7087 (49.3) 912 (12.9) 45844 (49.3) 912 (2.0)
>= 3 years 1764 (12.3) 154 (8.7) 11694 (12.6) 154 (1.3)
Time to Cancer
0-1 year 25 (0.2) 25 (100.0) 25 (0.0) 25 (100.0)
1-2 years 94 (0.7) 94 (100.0) 94 (0.1) 94 (100.0)
2-3 years 257 (1.8) 257 (100.0) 257 (0.3) 257 (100.0)
3-4 years 204 (1.4) 204 (100.0) 204 (0.2) 204 (100.0)
4-5 years 352 (2.5) 352 (100.0) 352 (0.4) 352 (100.0)
5-10 years 836 (5.8) 836 (100.0) 836 (0.9) 836 (100.0)

Table B.13: Detailed demographics of Karolinska test set. Because the Karolinska
dataset was collected in a case-control design, it has a much higher cancer incidence
than reported in the CSAW cohort. To take this into account, we randomly resampled
this dataset to produce a larger dataset with 1.9% cancer incidence.
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CGMH Dataset
Characteristics All Cancer
All exams 12280 (100.0) 235 (1.9)
Age
40-50 3656 (29.8) 74 (2.0)
50-60 5816 (47.4) 109 (1.9)
60-70 2801 (22.8) 52 (1.9)
70-80 7 (0.1) NA
Time to Next Exam
<1 year NA 13 (100.0)
1-2 years NA 31 (100.0)
2-3 years NA 50 (100.0)
>= 3 years NA 141 (1.2)
Time to Cancer
0-1 year 11 (0.1) 11 (100.0)
1-2 years 24 (0.2) 24 (100.0)
2-3 years 42 (0.3) 42 (100.0)
3-4 years 26 (0.2) 26 (100.0)
4-5 years 36 (0.3) 36 (100.0)
5-6 years 96 (0.8) 96 (100.0)

Table B.14: Detailed demographics of CGMH test set.

Risk Model Progression Model KL Divergence on Test Set (95% Confidence interval)
MGH Test Set: 17,119 exams from 5,525 patients. 210 patients develop cancer.

Mirai Static Risk 0.038 (0.036, 0.040)
RNN 0.028 (0.026, 0.029)

Emory Test Set: 22,094 exams from 10,369 patients. 333 patients develop cancer.

Mirai Static Risk 0.035 (0.034, 0.036)
RNN 0.029 (0.028, 0.030)

Karolinska Test Set: 14,353 exams from 7,191 patients. 919 patients develop cancer.

Mirai Static Risk 0.029 (0.027, 0.031)
RNN 0.026 (0.025, 0.027)

Table B.15: Testing risk progression models on the MGH, Emory and Karolinska test
sets. Static Risk assumes that patient risk does not change, i.e., risk assessments
at future time steps will equal the last observed risk assessment. RNN is an auto-
regressive recurrent neural network that was trained to predict future risk assessments
from prior assessments on the MGH training set. For each model, we report the
Kullback-Leibler (KL) divergence (lower is better), between the risk progression model
predicted risk and the observed risk. All metrics are followed by their 95% confidence
interval.
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Screening Policy Risk model Average Mammograms per Year Early Detection in Months Efficiency
Race: African American. 10436 exams from 4716 patients. 158 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 3.10 (1.70. 4.22) 3.10 (1.70, 4.22)
Biennial Age 0.5 (0.5, 0.5) -3.97 (-5.73, -2.36) -7.94 (-11.47, -4.72)
USPSTF Age 0.68 (0.68, 0.69) -1.96 (-3.57, -0.26) -2.87 (-5.18, -0.39)
Supervised Mirai 1.18 (1.16, 1.20) 2.34 (0.57, 4.45) 1.98 (0.48, 3.83)
Tempo Mirai 1.10 (1.09, 1.11) 6.47 (5.05, 7.64) 5.89 (4.56, 7.02)
Race: White. 9780 exams from 4587 patients. 159 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 3.55 (2.16, 4.32) 3.55 (2.16, 4.32)
Biennial Age 0.5 (0.5, 0.5) -3.95 (-5.44, -2.80) -7.90 (-10.89, -5.60)
USPSTF Age 0.65 (0.64, 0.66) -2.21 (-3.47, -0.86) -3.40 (-5.26, -1.34)
Supervised Mirai 1.16 (1.14, 1.28) 2.43 (0.86, 4.65) 2.09 (0.72, 4.07)
Tempo Mirai 1.07 (1.06, 1.09) 6.50 (5.72, 7.46) 6.06 (5.28, 7.04)

Table B.16: Results for all screening policies on African American and White patients
of the Emory test set. For each policy, we report the average number of mammograms
per year, the early detection benefit in months relative to historical screening (higher
positive number means earlier), and the screening efficiency (higher positive number
is better). We defined screening efficiency as the early detection benefit divided by
the average number of mammograms per year. All metrics are followed by their 95%
confidence interval.
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Screening Policy Risk model Average Mammograms per Year Early Detection in Months Efficiency
Age: <=55. 8,038 exams from 3,016 patients. 84 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 1.16 (-0.34, 2.62) 1.16 (-0.34, 2.62)
Biennial Age 0.5 (0.5, 0.5) -5.50 (-7.11, -3.90) -11.00 (-14.22, -7.80)
USPSTF Age 0.97 (0.96, 0.97) 0.848 (-0.76, 2.29) 0.88 (-0.78, 2.37)

Supervised TCv8 1.45 (1.42, 1.48) 2.17 (0.39, 4.30) 1.50 (0.26, 3.03)
Mirai 0.769 (0.75, 0.80) -2.17 (-4.83, 1.01) -2.82 (-6.08, 1.35)

Tempo TCv8 0.96 (0.94, 0.99) 1.76 (0.21, 3.77) 1.83 (0.21, 4.01)
Mirai 0.86 (0.84, 0.87) 2.92 (1.25, 4.63) 3.41 (1.44, 5.53)

Age: >55. 9081 exams from 2959 patients. 148 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 1.77 (0.68, 2.83) 1.77 (0.68, 2.83)
Biennial Age 0.5 (0.5, 0.5) -5.02 (-6.23, -3.89) -10.04 (-12.47, -7.78)
USPSTF Age 0.5 (0.5, 0.5) -5.02 (-6.23, -3.88) -10.04 (-12.47, -7.78)

Supervised TCv8 1.85 (1.83, 1.87) 5.64 (4.28, 7.44) 3.06 (2.30, 4.07)
Mirai 1.08 (1.06, 1.12) 2.09 (0.38, 3.93) 1.92 (0.34, 3.72)

Tempo TCv8 1.72 (1.70, 1.74) 4.84 (3.20, 6.80) 2.82 (1.84, 4.02)
Mirai 1.04 (1.03, 1.06) 4.63 (3.49, 6.03) 4.45 (3.29, 5.88)

Density: Non-dense. 9681 exams from 3370 patients. 120 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 1.54 (0.21, 2.65) 1.54 (0.21, 2.65)
Biennial Age 0.5 (0.5, 0.5) -5.26 (-6.64, -3.97) -10.51 (-13.28, -7.95)
USPSTF Age 0.67 (0.66, 0.67) -4.05 (-5.43, -2.80) -6.08 (-8.05, -4.27)

Supervised TCv8 1.62 (1.6, 1.65) 4.29 (2.26, 6.31) 2.65 (1.38, 3.95)
Mirai 0.87 (0.84, 0.90) 0.07 (-1.86, 2.03) 0.09 (-2.07, 2.42)

Tempo TCv8 0.96 (0.93, 0.97) 1.56 (0.52, 2.48) 1.64 (0.54, 2.67)
Mirai 0.94 (0.91, 0.95) 3.83 (2.70, 5.00) 4.10 (2.85, 5.48)

Density: Dense. 7430 exams from 2839 patients. 116 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 1.621 (0.28, 2.95) 1.621 (0.28, 2.95)
Biennial Age 0.5 (0.5, 0.5) -5.07 (-6.50, -3.61) -10.15 (-12.98, -7.21)
USPSTF Age 0.79 (0.78, 0.80) -2.19 (-3.80, -0.69) -2.78 (-4.77, -0.89)

Supervised TCv8 1.72 (1.70, 1.74) 4.84 (3.20, 6.80) 2.82 (1.84, 4.02)
Mirai 1.02 (0.98, 1.05) 1.52 (-0.17, 4.00) 1.49 (-0.15, 4.08)

Tempo TCv8 0.96 (0.93, 0.98) 2.63 (1.34, 4.54) 2.77 (1.37, 4.89)
Mirai 0.98 (0.96, 1.0) 4.4 (2.86, 6.08) 4.49 (2.86, 6.35)

Table B.17: Results for all screening policies on subgroups of the MGH test set.
For each policy, we report the average number of mammograms per year, the early
detection benefit in months relative to historical screening (higher positive number
means earlier), and the screening efficiency (higher positive number is better). We
defined screening efficiency as the early detection benefit divided by the average
number of mammograms per year. All metrics are followed by their 95% confidence
interval.
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Screening Policy Risk model Average number of Mammograms per Year Earlier Detection in Months Efficiency
MGH Test Set: 17,119 exams from 5,525 patients. 210 patients develop cancer.
Annual Age 1.0 (1.00, 1.00) 1.37 (0.22, 2.41) 1.37 (0.22, 2.41)
Biennial Age 0.5 (0.50, 0.50) -5.54 (-6.71, -4.53) -11.07 (-13.42, -9.07)
USPSTF Age 0.72 (0.71, 0.73) -3.52 (-4.58, -2.66) -4.90 (-6.31, -3.60)

Supervised TCv8 1.66 (1.65, 1.69) 4.51 (3.42, 6.02) 2.72 (2.03, 3.66)
Mirai 0.94 (0.92, 0.96) 0.75 (-0.55, 1.94) 0.80 (-0.58, 2.1)

Tempo TCv8 0.96 (0.94, 0.97) 1.84 (1.01, 2.88) 1.92 (1.04, 3.06)
Mirai 0.96 (0.94, 0.97) 3.89 (2.82, 4.77) 4.07 (2.92, 5.05)

Emory Test Set: 22,030 exams from 10,340 patients. 333 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 2.85 (1.97, 3.51) 2.85 (1.97, 3.51)
Biennial Age 0.5 (0.5, 0.5) -4.61 (-5.59, -3.79) -9.21 (-11.18, -7.59)
USPSTF Age 0.68 (0.67, 0.69) -2.63 (-3.39, -2.03) -3.89 (-4.98, -3.03)
Supervised Mirai 1.16 (1.15, 1.18) 1.97 (0.49, 3.27) 1.69 (0.42, 2.84)
Tempo Mirai 1.08 (1.07, 1.08) 6.04 (5.24, 6.77) 5.61 (4.82, 6.32)
Karolinska Test Set: 14,353 exams from 7,191 patients. 919 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 5.94 (5.26, 6.56) 5.94 (5.26, 6.56)
Biennial Age 0.5 (0.5, 0.5) -2.76 (-3.36, -2.29) -5.51 (-6.71, -4.58)
USPSTF Age 0.79 (0.79, 0.80) 0.46 (-0.05, 1.02) 0.58 (-0.07, 1.30)
Supervised Mirai 0.60 (0.59, 0.61) 0.07 (-0.78, 1.00) 0.12 (-1.28, 1.70)
Tempo Mirai 0.75 (0.74, 0.76) 6.60 (5.85, 7.32) 8.79 (7.73, 9.86)
CGMH Test Set: 12280 exams from 12280 patients. 235 patients develop cancer.
Annual Age 1.0 (1.0, 1.0) 9.42 (8.32, 10.34) 9.42 (8.32, 10.34)
Biennial Age 0.5 (0.5, 0.5) 1.81 (0.42, 3.17) 3.63 (0.87, 6.33)
USPSTF Age 0.78 (0.77, 0.78) 5.90 (4.31, 6.97) 7.58 (5.52, 9.02)
Supervised Mirai 0.98 (0.97, 0.99) 1.97 (0.49, 3.27) 1.69 (0.42, 2.84)
Tempo Mirai 0.88 (0.87, 0.89) 8.68 (7.56, 9.80) 9.87 (8.52, 11.22)

Table B.18: Results for all screening policies on the MGH, Emory, Karolinska and
CGMH test sets leveraging an alternative definition of early detection benefit. For each
policy, we report the average number of mammograms per year, the early detection
benefit in months relative to historical screening (higher positive number means
earlier), and the screening efficiency (higher positive number is better). We defined
screening efficiency as the early detection benefit divided by the average number of
mammograms per year. All metrics are followed by their 95% confidence interval.

Encoding Guesswork ReId AUC
Dauntless 1.0 (1, 1) 1.00 (1.00, 1.00)
InstaHide 1.0 (1, 1) 1.00 (1.00, 1.00)
DP-S, 𝑏 = 10 1.2 (1, 2) 0.98 (0.98, 0.98)
DP-S, 𝑏 = 20 7.2 (1, 31) 0.86 (0.85, 0.86)
DP-S, 𝑏 = 30 68 (1, 205) 0.70 (0.70, 0.70)
DP-I, 𝑏 = 1 5.0 (1, 17) 0.89 (0.88, 0.89)
DP-I, 𝑏 = 3 77 (3, 276) 0.73 (0.73, 0.73)
DP-I, 𝑏 = 5 1379 (49, 4135) 0.59 (0.59, 0.60)
Syfer-Random 1.7 (1, 4) 0.99 (0.99, 0.99)
Syfer (𝑇𝑋 only) 8476 (1971, 20225) 0.50 (0.49, 0.52)

Table B.19: Privacy evaluation of different encoding schemes against an SAU based
attacker on the unlabeled MIMIC-CXR dataset. For Syfer, only 𝑇𝑋 is used. DP-S
and DP-I stand for DP-Simple and DP-Image respectively. The scale parameter 𝑏
characterizes the laplacian noise. Metrics are averages over 100 trials using 10,000
samples each, followed by 95% confidence intervals (CI).
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Encoding E Co Ca A Avg
Using raw data 0.91 0.78 0.89 0.85 0.86
Using encoded data

DP-S, 𝑏 = 10 0.51 0.51 0.52 0.52 0.52
DP-S, 𝑏 = 20 0.50 0.50 0.50 0.50 0.50
DP-S, 𝑏 = 30 0.49 0.49 0.50 0.51 0.50
DP-I, 𝑏 = 1 0.60 0.59 0.60 0.59 0.60
DP-I, 𝑏 = 2 0.54 0.50 0.55 0.55 0.54
DP-I, 𝑏 = 5 0.53 0.55 0.51 0.52 0.53
Syfer-Random 0.89 0.75 0.86 0.84 0.84
Syfer 0.82 0.69 0.81 0.78 0.78

Table B.20: Utility for chest X-ray prediction tasks across different encoding schemes.
All metrics are ROC AUCs across the MIMIC-CXR test set. Guides of abbreviations
for medical diagnosis: (E)dema, (Co)nsolidation, (Ca)rdiomegaly and (A)telectasis.

Diagnosis Guesswork ReId AUC
Syfer

Edema 3617 (94, 11544) 0.50 (0.49, 0.51)
Consolidation 1697 (83, 5297) 0.55 (0.53, 0.57)
Cardiomegaly 9834 (2072, 15766) 0.51 (0.49, 0.53)
Atelectasis 13189 (2511, 28171) 0.50 (0.48, 0.52)
Ablation: Syfer with no label encoding (𝑇𝑋 only)

Edema 47 (12, 83) 0.76 (0.76, 0.76)
Consolidation 36 (2, 104) 0.76 (0.76, 0.76)
Cardiomegaly 42 (17, 57) 0.75 (0.75, 0.75)
Atelectasis 80 (65, 98) 0.75 (0.75, 0.75)

Table B.21: Privacy evaluation of Syfer when released with different diagnoses in
MIMIC-CXR dataset. Metrics are averages over 100 trials using 10,000 samples each,
followed by 95% CI.

Attacker Guesswork ReId AUC
SAU 8476 (1971, 20225) 0.50 (0.49, 0.52)
ViT 8411 (5219, 12033) 0.50 (0.49, 0.51)
Resnet-18 10070 (9871, 10300) 0.50 (0.47, 0.53)

Table B.22: Privacy evaluation of Syfer across different attacker architectures on the
unlabeled MIMIC-CXR dataset. Metrics are averages over 100 trials using 10,000
samples each, followed by 95% CI.
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Figures
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Figure C-1: Receiver operating curves for Mirai in selecting high cohorts across all test
sets. These datasets are restricted to include patients who were screening negative
and either had cancer within 5 years or 5 years of negative follow-up.

Figure C-2: T-SNE plots for Mirai’s hidden representation colored by cancer subtypes
factors on 1000 random positive exams from the Karolinska test set.
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Figure C-3: T-SNE plots for Mirai’s hidden representation colored by cancer subtypes
factors on 1000 random positive exams from the Karolinska test set.

Figure C-4: Saliency scores of images and all clinical risk factors across the MGH test
set.
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Figure C-5: Estimated (circle) and observed (square) Mirai five-year risk for two
random patients in the MGH test set. We estimated unobserved risk observations using
a recurrent neural network, which was optimized to predict future risk assessments
from past risk assessments on the MGH training set.

Figure C-6: Histogram of early detection benefit in months relative to historical
screening for patients who developed cancer in the MGH (top left), Emory (top right),
Karolinska (bottom left), and CGMH (bottom right) test sets.
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Figure C-7: Histogram of screening recommendations for each screening policy. MGH
(top left), Emory (top right), Karolinska (bottom left), CGMH (bottom right).
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Figure C-8: Our early detection metric assumed that a cancer could be caught up to
18 months before diagnosis. To test the robustness of our results to this assumption,
we also evaluated our screening policies when changing this assumption to six months,
12 months and 24 months. For each policy, we report its screening efficiency, which is
defined as its early detection benefit in months divided by the amount of mammograms
it recommends per year. We use a * to denote the policy with the highest screening
efficiency.
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Figure C-9: Dataset construction flow chart for the MGH dataset (top left), Emory
(top right), Karolinska test set (bottom left), and CGMH test set (bottom right).
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