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CHAPTE R TWELVE 

APPLICATIONS OF ECONOMETRIC ANALYSIS 
TO FORECASTING IN INTERNATIONAL RELATIONS 

Nazli Choucri 

I. INTROD UCTION 

This chapte r examines some key issues and difficul­
ties encountered in the course of applying 
econometric analysis to forecas ting in international 
relations. We will note the problems involved and 
the solutions adopted, and indicate the conse­
quences of faulty analysis, analytical bias, or mea-

I am particularly grateful to Hayward Alker for critical 
comments and suggestions at every stage of these investi­
gations; to Douglas Hibbs, Michael Leavitt, Amy Leiss, 
Michael Mihalka, Thomas Robinson, and Scott Ross for 
helpful comments and suggestions on an earlier version of 
this paper. For assistance in computer analysis I am most 
gratefu l to Jonnthan Shane, Alexis Sarris, and Walt Mal­
ing of the TROLL Project and to Raisa Deber for re­
search assistance. This chapte r draws upon Chapters 2, 
10, and 17 of Nazli Choucri and Robert C. North , Na­
tions in Conflict: National Growth and International Vio­
lence (1975). An earlier version of this chapter appeared 
in the Papers of the Peace Science Societ y (International), 
Volume 21, 1973, pp. 15-39. 

sureme nt error. l n so doing, we shall draw upon 
our recent investigat ions into the long-range causes 
of international conflict. Our objective, during the 
past several years, has been to develop systematic 
procedures for isolating the de terminants of inter­
national violence. The general approach we have 
employed is one common to any econome trician 
concerned with the analysis of time series data, or 
any statistician examining the properties of small 
samples. 1 But our applications of these methods 
are not common to political analys is. Economists, 
for example, appear to know much more about the 
nature of market syste ms, business cycles, infla­
tion, and so forth, than political analysts know 
about conflict and warfare , arms races, lateral pres­
sure, or international alignments. 2 

ln the course of our inquiries we have developed 
a partial theory of the dynamics in question, trans­
lated th is theory into a model from which struc­
tural equations were developed, and then esti­
mated the unknown parameters. The purpose of 



182 FORECASTING METliODOLOCIES: APPLICATI O!\S TO INTERNATIONAL RELATIO'S 

this e nterprise was to investigate the implications 
of alternative parameter estimates upon the be hav­
ior of the system as a whole. Experime nting with 
"high" and "low" coefficients, and comparing these 
with baseline parameters and system outputs pro­
vided us with a reliable means of looking into 
alternative outcomes and alternative futures. 

It is not our objective here to question the na­
ture of causality, or to dispute the assumptions un­
derlying the social and behavioral sciences. Others 
have done this e lsewhere. 3 Nor is it our intent to 
deliver an introductory lecture on the algorithms 
upon which ele mentary statistical methods are 
based. Rather, our purpose is to make explici t the 
critical problems inherent in econometric analysis 
and the ways we have sought to resolve them. 4 

Toward this end we discuss: (1) the structure of our 
model of international conflict as an extension of 
the general linear model in regression; (2) 
methodological implications of alternative perspec­
tives upon causality; (3) some key statistics and 
common problems in causal inference; (4) s imul­
taneous estimation and the problem of identifiabil­
ity; (5) serial correlation and time dependent cor­
rections; (6) the use of instrumental variables and 
generalized least squares; (7) system change and 
breakpoint analysis; and finally (8) procedures 
employed for simulation, forecasting, and policy 
analysis and some practical illustrations. 

II. A MODEL OF INTERNATIONAL 
CONFLICT: EXTENSIONS OF THE 
GENERAL LINEAR MODEL 

In a recent study of international politics, we have 
argued that the roots of conflict and warfare can be 
found in the basic attributes and characteristics of 
nations and that the most critical variables in this 
regard are population, resources, and technology. 
We have then attempted to specify the intervening 
seque nces be tween these three sets of variables on 
the one hand and conflict and warfare on the other. 
On the basis of e mpirical and historical analysis, we 
suggest that the chain of developments re lating 
population, resources, and technology to violence 
appears to be the following: 

A combination of population and develuping 
technology places rapidly increasing demands upon 
resources, often resulting in internally generated 
pressures. The greater this pressure, the higher 

will be the likelihood of extending national ac­
tivities outside territorial boundaries. We have 
termed this tendenc} to extend behavior outside 
national boundaries lateral pressure. To the eAtent 
that two or more countries with high capability and 
high pressure tendency (and high lateral pressure) 
extend their interests and psycho-political borders 
outward, there is a strong probability that eventu­
ally the two opposing spheres of interest will inter­
sect. The more intense the intersection, the 
greater will be the likelihood that competition will 
assume military proportions. When this happens, 
we may expect competition to be transformed into 
conflict and perhaps an anns race or cold war. At a 
more general level of abstraction, provocation will 
be the final act that can be viewed as the stimulus 
for large-scale conflict or violence. But an act \\ill 
be considered prorncation only in a situation that 
has already been characterized by high lateral 
pressure, inte rsections among spheres of influence, 
armament tensions and competitions, and an in­
creasing level of prevailing confl ict. 

Major wars, we have argued, often emerge 
through a two-step process: in terms of internall} 
generated pressure (which can be traced to popula­
tion dynamics, resource needs and constraints, and 
technological developmen t) and in terms of recip­
rocal comparison, rivalry, and conflict, on a 
number of salient capability and behavior dimen­
sions. Each process tends to be closely related to 
the other, and each, to a surprising degree, can be 
accounted for by relatively nonmanipulable vari­
ables (or variables that are controllable only at high 
costs). And it is these variables, we hypothesize. 
that provide the long-range roots of conflict and 
warfare. 

The first step in the transition from a general 
theore tical statement to a model capable of sustain­
ing the empirical test is to identify the variable~ to 
be explained. These will eventually serve as tht' 
outputs of the model. The second is to specif\ 
those effects that contribute to outcome variables 
by developing equations designed to explain the 
behavior of each of the dependent variables. 

Those explanatory variables that are thought to 
contribute to our understanding of the outcomes in 
question can be other dependent variables Oagged 
or unlagged) or they may be exogenous variables 
and not to be explained by the model. For poliC) 
purposes it is important to select at least some 
explanatory variables that are manipulable by the 
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policy maker. For obvious reasons, it would not 
be useful to select only variables that are all 
"givens" or variables that are manipulable at very 
high costs, unless, of course, one's objectives were 
to test for the extent to which nonmanipulables 
dominated system behavior. 

Our theoretical statement can thus be trans­
formed into graphic relationships, as noted in Fig­
ure 12. l. These relationships can then be trans­
lated into structural equations, the parameters of 
which could then be t•strmated in the context of the 
general linear model This particular model per­
tains to the pre-World \\'ar I period, 1870-1914. 

The general linear model in econometrics and 
causal modeling is a conceptual mechanism to de­
termine the value~ of variables when quantitative 
data are supplied. 5 This mechanism includes a set 
of equations, their fun<:tional form, and an accom­
panying set of specifkations and restrictions. We 
combine observed data, specifications of a model, 
and the laws of probability to obtain estimates of 
unknown parameters. 8 

This basic linear model is of the following form: 

Population 
density 

National income 
per capita 

expansion 

+ 

Colonial expansion 
of rival powers 

Population 

Y = X/3 + U 

where Y represents a vector of observations of the 
dependent or endogenous variable over 
time; 

X represents the matrix of independent 
variables (explanatory, predetermined, 
and exogenous); 

f3 is the vector of coefficie nts to be esti­
mated from empirical data; 

U represents the vector of error or distur­
bance term, which has three error com­
ponents: (1) error due to a linear approx­
imation of the "true" functional form , (2) 
error resulting from erroneously in­
cluded or left out variables, and (3) ran­
dom noise. 

The general linear form can be extended to the 
case of m independent variables and n equations, 
with the assumption that each dependent variable 
can be expressed as a linear function of the inde­
pendent or exogenous variables (linear in the 
parameters only; the variables can be nonlinear 

ational 
income 

i-.--1-------Military expenditures 
of rival powers 

commitments 

Violence 
behavior 

Violence 
behavior of 
other states 

Figure 12.1 Dynamics of international violence: the model. 
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functions of other variables). It is also assumed that 
empirical observations are generated by a stochas­
tic mechanism. In the case of the general model, 
ordinary least squares (OLS) provides the best 
linear unbiased estimates of the parameters only if 
the following assumptions or a priori constraints 
are not seriously violated: (1) that the disturbance 
terms (U) are random variables, with zero mean 
and homogenous variance; (2) that the disturbances 
are uncorrelated over time; and (3) that the 
exogenous variables are not correlated with the dis­
turbances. 

The model we have developed is more complex 
than the general linear case. Some of the complex­
ity is due to the nature of the processes being 
modeled, the procedures we have employed to 
correct for significant departures from the assump­
tions underlying an ordinary least squares solution 
of the general linear model, and the use of simul­
taneous equation estimators to obtain unbiased 
coefficients of feedback systems. The resultant sys­
tem of equations is presented in Table 12.1. 

The entire analysis was undertaken on TROLU 
1, an interactive computer system developed at the 

Table 12.1 Systems of simultaneous equations used to represent the dynamics of international violence 
(italics indicate variables endogenous to the system). 

colonial area = a 1 + {31 (population density) + f3.i (national income per capita) + {33 (trade per capita 
+ {34 (militanJ expenditures) + IL1· 

intensity-of-intersections = a 2 + {35 (colonial area) + {36 (military expenditures) + {31 (colonial-area-of­
nonallies) + {38 (violence-behavior) + {39 (violence-of-others) + µ,i. 

military expenditures = a 3 + {310 (militanJ expenditures1_ 1) + {311 (military-expenditures-of-nonallies) 
+ /312 (intensity-ofintersections) + /313 (colonial area) + {314 (population-times-national-income) + IL3. 

alliances = a.. + {315 (militanJ expenditures) + {316 (intensity-of-intersections) + /311 (military-expenditures­
of-nonallies) + {318 (population-times-national-income) + IL4· 

violence-behavior = a 5 + /319 (intensity-of-intersections) + {320 (militanJ expenditures) + /321 (military-
expenditures-of-nonallies) + {322 (alliances) + {323 (viole nce-of-others) + ILs· 

colonial area = in thousand square miles 
population = home population, in thousands 
population density = home population divided by home area (in thousand square miles) 
national income = in thousand US dollars standardized to 1901-1910 = 100 
trade = imports plus exports, in thousand US dollars standardized to 190I- 1910 = 100 
military expenditures = army plus navy allocations, in thousand US dollars standardized to 1901-1910 

= 100 
nonallies = dummy variable representing dyadic relationship: 1 if two states are not formally aJlied, 0 if 

they are 
alliances = number of formal alliances 
violence-behavior = metricized variable (from 1 to 30) representing the highest intensity of violence of 

the behavior of the actor state toward all other states 
violence-of-others = metricized variable (from 1 to 30) representing the highest intensity of violence of 

the behavior of all other states toward the actor state 
intensity-of-intersections = metricized variable (from 1 to 30) representing the highest intensity of ,;o_ 

lence in specifically colonial conflicts between the actor state and other major powers 
population-times-national-income = multiplicative variable representing the interactive effect of home 

population and national income 
a1 ... a 5 = constant (or intercept) term 
IL• ... ILs = error (or disturbance) term 

Instrument list: iron and steel production, pig iron production, government expenditures, merchant 
marine tonnage, military expenditures of nonallies, colonial area of nonallies, population density, popu­
lation times national income, national income per capita, trade per capita, intensity-of-intersections.-1. 
violence behavior,_., violence of others, alliances1-1, wheat production, coal production. 
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Massachusetts Institute of Technology for the anal­
ysis of econometric models and complex systems. 7 

We have used generalized least squares, transform­
ing the independent variables according to the 
structure of the serial correlation in the distur­
bances, in conjunction with two stage least squares 
(a limited information maximum likelihood es­
timator), so as to mcorporate a time-dependent 
correction as well as simultaneous effects in the 
final estimates of the parameters. 8 

It is important to appreciate that the parameters 
of an equation cannot be estimated purely on the 
basis of empirical data, no matter how complete, 
reliable, or extensive these may be. 9 The role of 
data is as follows: Information is useful for iden­
tification purposes only if it can serve to distinguish 
among s tructural equations. Obse rvational data 
alone cannot perform this necessary step in model 
building, although analysis of one set of data can 
provide clues for specification of the next set. 
Nonetheless, only in conjunction with a priori re­
strictions and specifications can empirical data be 
put to good usage. 10 But the most basic issue of all 
in making the transition from a theoretical state­
ment to a formal model is specification of causal 
ordering. 

Ul. DIRECTIONAL RELATIONS 
AND CAUSAL INFERENCE 

In the most general sense, "causation" refers to hi­
erarchies of influences or e ffects, most readily char­
acterized by asymmetrical relations within a spec­
ified system. Causation, however, is not necessarily 
implied by a particular time sequence- a considera­
tion that is commonly neglected in systematic social 
and political inqui ry. Because of this simple but 
almost self-evident point, it is important to adopt 
alternative c riteria for the specification of causal 
relations. In a persuasiw argument, Herbert Simon 
suggests that causal orderings are dete rmined by the 
appearance of non-zero coefficients in a system of 
equations (Ando, et al., 196.'.3). The a priori specifica­
tion of zero coefficients thus raises the issue of iden­
tifiability.11 "For complete identifiability of a struc­
ture those restraints must preclude the existence in 
the same model of a differe nt equivalent structure, 
that is (in linear models), a different set of equations 
whose me mbers are linear combinations of the 
original equations" (Ando, et al. , 1963). Causation 

is, therefore, closely related to identifiability, while 
the requirements of identifiability, by necessity, 
impose certain constraints on the process of model 
building. 

The question of causation gives rise to a related 
set of philosophical and empirical problems (Ando, 
et al., 1963, p. 23; see also Orcutt, 1952, pp. 305-
311). The long-standing debate among social scien­
tists regarding causal perspectives upon the "real 
world" -whether it be essentially hierarchical or 
recursive, or whether it be essentially nonrecur­
sive or simultaneous-can be resolved through a 
combination of these two positions, namely that 
the overall framework or system of relations (or 
equations) in the structure under consideration 
may basically be recursive (thus negating simul­
taneous relations at a macro level), but that small 
components (or blocks) thereof may be nonrecur­
sive (thus allowing for feedback relations within 
a localized context). For applied analysis, the ap­
proach one takes has one important e!Tect: How 
one perceives the phenomena one seeks to model 
(whe ther they are considered basically recursive 
or nonrecursive) will dictate the kind of estimation 
procedure employed, and the ways in which the 
phenomena are represented in a system of equa­
tions. We have adopted the nonrecursive view of 
causality while recognizing that in the long run 
greater understanding of the dynamics in question 
may be obtained through the expansion of our 
mode l and the use of a block-recursive approach. 
The general linear model provides the intellectual 
tools to structure reality and to think about direc­
tional influences. Our analysis goes far beyond, to 
causal modeling, simultaneous estimation, simula­
tion, and policy analysis. 

IV. CAUSAL INFERENCE: SOME KEY 
STATISTICS12 AND COMMON PROBLEMS 

Two of the more common criteria for evaluating 
the performance of a model are (1) how well the 
specified equations can predict known data, and (2) 
where and why findings d iffer from known data. 
Examining the patte rns of errors (or res iduals), 
therefore, becomes an important aspect of model 
building. 

The variance of the coefficient (or standard error) 
indicates the precision of the coefficient as derived 
from empirical data. The s tatistical significance of a 
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parameter is inferred from the magnitude of the t 
statistic, and the significance of several parameters 
is inferred from the F ratio. In a regression equa­
tion, the value of F measures the joint significance 
of the parameter e~timates. The summary statistic, 
R2

, refers to the amount of variance in the depen­
dent variable explained by the independent vari­
ables (and the associated stochastic mechanism). A 
very high R2 may imply an ide ntity or a trivial re­
gression equation, while a low R2 does not neces­
sarily indicate an invalid equation.13 Othe r sum­
mary statistics are needed b efore an educated 
judgme nt is drawn, such as the standard errors 
around the parameters. In practical applications, 
however, these statistics are often subject to bias in 
the parameters. 14 When the disturbances are se­
rially correlated, the variances and standard errors 
will be deflated, producing inflated t, F, and R2 

statistics, leading to possible erroneous infe rences. 
Correcting for serial correlation is a crucial aspect 
of causal modeling, highlighting the importance of 
the Durbin-Watson statistic. 

The Durbin-Watson statistic, otherwise known 
as the d statistic, is a test of the significance of se­
rial correlation in the autocorrelation parame ter.15 

The statistic is not applicable in cases with lagged 
endogenous variables-since the test was de­
veloped for nonstochastic vectors of explanatory 
variables. The Durbin-Watson statistic is no longer 
valid when the re is a coi11cidence of lagged en­
dogenous variables and autocorrelated distur­
bances. In that case, the statistic is asymptotically 
biased upward and no longer te sts for autocorrela­
tion. Thus, a nonsigniflcant d statistic does not pre­
clude the possibility that OLS estimates are incon­
siste nt when there are lagged endogenous variables 
in the equation. In the case of simultaneous sys­
te ms, the same problem exists for the syste m en­
dogenous variables. The e ndogenous (including 
lagged endogenous) variables must be re placed by 
instrumental variables (see Section VII be low). 

A common difficulty in s tatistical analys is is high 
collinearity among the explanatory variables. But 
we cannot rule out the use of a particular variable 
or the estimation of a particular equation simply 
because of multicollinearity. Other problems might 
arise (see Rao and Miller, 1971, p. 48). High inter­
correlations result in the loss of precision, but the 
exclusion of a theoretically relevant variable on 
those grounds might exacerbate se rial correlation 

in the disturbances. 18 Furthe r, multicollinearity af­
fects the precision of coefficient estimates rather 
than their values. 

By far the most serious problem in data analysis 
and parameter estimation involves measurement 
error. It is customar} to equate measurement error 
with faulty data or erroneous quantitative mea­
sures. While such problems are undoubtedly the 
source of much distortion in both analysis and re­
sults, it is important to broaden the conventional 
definition in at least two ways. First, specific esti­
mates of the error in quan titative measures may be 
obtained from the measures themselves and incor­
porated as confidence intervals around the basic 
data for purposes of modifying the results accord­
ing to the degree, magnitude, and direction of 
cumulated error.17 The second extension of mea­
surement error th inking lies in the structure of the 
underlying equation itself. Measurement error may 
be attributed to cases where the magnitude of the 
disturbance of the error term raises serious ques­
tions concerning the valid ity of the equation and 
the viability of the resulting specification. Ideallr, 
the most desirable situation is one in which (1) er­
rors in the quantitative measures are known to be 
negligible and (2) the disturbance term is small and 
exhibits no discernible trend of e ithe r positive or 
negative serial correlation. In practice, however, 
ne ither of these conditions hold : The extent of fault 
in the data is often not known, and the distur­
bance tenn exhibits significant serial correlation, 
especially in trend analys is of time series data. 18 

The methods employed to minimize the effects of 
serial corre lation will be d iscussed below. 

V. SIMULTANEOUS INFERENCE 
AND THE PROBLEM OF IDENTIFIABILITY 

When there is mutual dependence among the en­
doge nous variables, simultaneous estimation of 
the parameters is called for (see Christ, 1960, pp. 
838-871). This se t of procedures is more complex 
than standard regression analysis. Estimation m 
the classical regression mode involves one depen­
dent variable and several indepe ndent ones. In the 
s imultaneous case there are several jointly depen­
de nt variables. This situation generates an iden­
tification problem. This means that even if infinite 
data were available from which the reduced form of 
the parame ters could be derived exactly, the val-
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ues of the coe fficients cannot be es timated without 
some a priori theoretical restriction upon the 
number of exogenous ;md endogenous variables in 
each equation. 10 

The addition of a priori restrictions to identify 
an equa tion is useful only if the same restrictions 
are not employed to identify other equations as 
well. However, such additional restrictions gener­
al ly occur in the form of linear inequalities for the 
coefficients to be estimated. Inequalities of this na­
ture add to the efficit•ncy of the estimates but do 
not assist in the identification of a particular equa­
tion. F urthe rmore, if a model is not identifiable, 
manipulating the equations or the orde r of con­
stituent variables will not assure identification -
either a model is identifiable or it is not. 

The problem of identifiability is thus closely re­
lated to theory and method, and is central to any 
model building effort An equation is ide ntifiable 
when a combination of a priori assumptions and 
empirical observations allows for a distinction be ­
tween the parameters of the equation and those of 
other equations. By extension, a model is identifi­
able if each equation represents a distinct set of 
relationships. The problem is one of having suffi­
cient a priori information to distinguish among 
equations. A certain minimum is necessary. Be­
yond that, any added information may be put to 
use. In j 11st-ide11tified equations there is exactly 
one way to obtain the "tme" equation from the 
reduced form . In over-identified cases the re is more 
than one way. In under-identified situations, whe re 
a priori information is insufficient to p rovide a dis­
criminating service, there is no way in which the 
"true" equation may be recovered or distin­
guished from others in the same fu nctional form. 
The model we have developed th rough experi­
mentation and alternative specification is an over­
identified set of equations: There is more than one 
wa}' to re trieve the reduced form of each original 
equation. In practical terms, the problem is gen­
erally one of choosing among the various alterna­
tives fo r an over-identified equation or model. 

Standard statistical theorems, developed for the 
case in which the explanatory variables are treated 
as if they were fixed in repeated sampling, cannot 
be used whe n there are lagged e ndogenous vari­
ables. F urthe rmore, the coincidence of lagged 
endogenous variables and autocorrelated disturb­
ances inAates the t statistic and may signal erro-

neous inferences. Marked departures from the 
assumptions und erlying the general linear model 
produce biased parameter estimates, often neces­
s itating equally marked de partures from standard 
regression procedu res. The practical implica­
t ions of serial corre lation in simultaneous sys­
tems for parameter estimation are some times 
overwhe lming. 

VI. SERIAL CORRELATION AND TIME 
DEPENDENT CORRECTION2o 

Because the nature of the serial correlation in the 
disturbances is often unclear-if it were known, 
the solution to the problem would be simply to 
adjust the parame ter estimates accordingly-we 
are confronted with the necessity of estimating the 
nature of the autocorrelation parameter empirically 
and identifying the underlying stochastic process. 
This involves (1) isolating the systematic compo­
nent of the d is turbances, and (2) adjusting the in­
depende nt variables so as to develop consistent es­
timates of the parame ters. 

Aitke n has de monstrated that the generalized 
least squares estimator produces an unbiased esti­
mate of the error variance when d isturbances are 
autocorrelated (Aitke n, 1935, pp. 42-48). But the 
estimate is not the " true" autocorrelation parame­
ter p . However, it does have a known statistical 
distribution and in small samples it is consistent. 21 

Our objective is to identify the theore tical struc­
ture of the time depende nt parameter, and to 
determine its statistical properties. 

Four distu rbance s tructures have properties that 
are tractable and well known: (1) first order au­
toregressive process, whe re each error term (111) 
depends only upon its previous value ( 111_ 1) plus a 
random component (ft ); (2) second order autore­
gressive structu res whe re li t depends upon llt-t and 
llr-i. plus a random component (E1); (3) fi rst orde r 
moving averages, where the disturbances depend 
only upon a series of temporally adjacent, inde­
pende ntly disturbed, random variables, and 
hence al l the disturbances prior to ll1•1 do not con­
tribute to generating ll1 ; and (4) second order mov­
ing averages, where, for the same reason, the au­
tocorrelation of u1 is effectively zero with all terms 
beyond ll1-2· In the "real world ," higher order 
structures are probably operative, but their statis­
tical tractability amoun ts to a major computational 
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problem, and it is not always clear that the bene fits 
accrued by computational complexity are greater 
than the costs incurred. 22 

We seek to identify the structure of serial corre­
lation parameters so as to obtain unbiased general 
least squares (G LS) estimates of the parameter val­
ues and their statistical variance and other attri­
butes. A critical aspect of GLS involves a careful 
analysis of the residuals. There are at least two 
\"'.ays in which this can be done. The first, a cor­
relogram analysis, involves retrieving the residuals 
from regression analysis and then correlating the 
first t /5 terms with the initial value of the residual, 
generating empirical values. These empirical val­
ues are then compared to the " theoretical" values 
that would be expected from a particular autore­
gressive structure. The second way, applicable only 
for autoregressive processes, involves regressing 
the residuals (u1) upon their previous values (u,_1 

for AUTO! and u,_., ll1- 2 . for AUT02,) and ob­
serving the statistical significance of the two equa­
tions and the value of the Durbin-Watson statistics. 
In applied analysis, however, it is often difficult to 
distinguish moving average processes from au­
toregressive processes that dampen off sharply (see 
Hibbs, 1972, p. 51 and Hanna, 1960). There are 
also difficulties in determining whether the dis­
crepancy between the theoretical autocorrelation 
parameter and its empirical counterpart is sig­
nificant rather than attributable to noise. Identify­
ing the structure of serial correlation and making 
appropriate adjustments amount to an important 
aspect of any such investigations. 

VII. INSTRUMENTAL VARIABLES 
AND GENERALIZED LEAST SQUARES 

As noted earlier, OLS yields inconsistent parame­
te r estimates in dynamic models with lagged en­
dogenous variables and serial correlation in the 
error term. The OLS residuals are no longer the 
"true" underlying disturbances, in that Y,_1 has a 
tendency to co-opt the systematic component of 
the disturbances. 23 This results in an upward bias 
for the coefficient of the lagged endogenous vari­
able and a downward bias for the other exogenous 
or explanatory variables, frequently leading to er­
roneous inferences. This was a particularly serious 
problem in our investigations since determining 
the effects of the previous year's military alloca-

tions upon next year's budget amounted to an im­
portant aspect of our research. For this reason we 
must find ways of compensating for expected dis­
tortions. 

One important assumption of least squares is 
that the errors are uncorrelated with the co-terms 
and uncorrelated with each other. 24 To meet this 
assumption, instrumental variables-which are as­
sumed to be uncorrelated with the error but highly 
correlated with the original co-terms-are created. 
The constructed variables are linear combinations 
of the original terms and, therefore, assumed to be 
uncorrelated with the disturbances. They can thus 
be used to estimate the coefficient of the original 
equations. The original data, and not the con­
structed terms, are used to calculate the residuals 
(Eisner and Pindyck, 1972). Good instruments 
must have the following properties: (1) they must 
be truly exogenous and, in theory, uncorrelated 
with the disturbances, as a lagged endogenous 
variable usually is not;25 (2) there must be no si­
multaneous feedback loops connecting the equa­
tions to be estimated with the equations explain­
ing the potential instrument; (3) the disturbances 
in the equation to be estimated must not be corre­
lated with the explanatory variable. 

One question remains: Should the time de pen­
dent correction be made before or after the in­
strumental variable substitution?26 In the analysis 
reported below we have followed the algorithms 
implemented in TROLL by undertaking gener­
alized least squares first, then the instrumental 
variable substitution. But we have tested empir­
ically for the differences that are yielded when the 
reverse procedure is employed; that is, first the in­
strumental variable substitution and then 
generalized least squares, and have found no sig­
nificant differences for the model in Table 12.1 
Several rounds of generalized least squares rareh 
produce theoretically meaningful results. For this 
reason, if an initial use of GLS does not appear to 
correct for serial correlation adequately, respec­
ification is definitely called for. 

In sum, the correction for the coincidence of 
lagged endogenous variables and serial correlation 
involves a two-stage instrumental variable substitu­
tion and the use of generalized least squares. If we 
treat lagged endogenous variables as endogenous. 
then a consistent estimate of the equation can be 
obtained using an instrumental variable estimator 
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with current and l,1gged exogenous variables as in­
struments , provided the system has a sufficient 
number of exogenous variables. This estimator is 
robust against all forms of autocorrelation in the 
disturbances, but not against serial correlation in 
the explanatory \ariables. In this case, it becomes 
necessary to estimate the structure of the distur­
bance and then confront the problem of sequenc­
ing with respect to generalized least squares and 
two stage least sq11.1res, as noted above. 

VIII. SYSTEM CHANGE 
AND BREA.KPOl'JT ANALYSIS 

The occurrence of breakpoints and problems relat­
ing to the estimation of system change and predic­
tion beyond the bn•ak are central issues in model 
building and forecasting. Sharp shifts in dynamics 
may signify discontmuities in some underlying em­
pirical realities (but they may well be quite natural 
regularities of other empirical realities). Often 
breakpoints indicate incompleteness of theoretical 
specification. 

We can think of breakpoints either as sharp 
changes in slope or as nonlinearities. Some shifts 
may signify discontinuities which may be directly 
included in the (•quation as dummy variables (as 
we have done when defining changes in rivaling 
powers). 27 The incorporation of a break directly in 
the analysis increases the flt between historical and 
estimated data and between historical and simu­
lated dynamics. 

In some instances the break results from quan­
titative changes. In others it results from qualita­
tive changes. There are as yet no known methods 
whereby the particular points at which a significant 
shift has occurred may be identified precisely 
(oilier than costly and complicated iterative proce­
dures). For this reason, the best alternative is to 
plot the data, then to hypothesize the occurrence 
of a break based on empirical observation and to 
test for its statistical significance. The Chow test is 
still the most appropriate significance test for 
breakpoints. Quasi-experimental techniques for 
coping with such problems provide additional 
perspectives upon these issues, but they are cum­
bersome and complicated. 28 

The Chow test, modified recently by Fisher, in­
volves the comparison of a set of coefficients with 
those of another array of which it is a subset. 29 We 

have inquired into the statistical significance of dif­
ferences among two sets of regressions, one yield­
ing coefficients for the period as a whole, the other 
for a particular subperiod. Cases where a sig­
nificant difference emerged provided important 
clues into system change or transformation. Phase 
shifts can be iden tified with systemic breaks. But 
breaks that are more in the nature of nonlinearities 
may not always be identified as such. The result is 
simply a "bad" flt that cannot be attributed to an 
underlying break, but rather to nonlinearities that 
are not specified in the functional form of the equa­
tion. A search for breakpoints also assists in iden­
tifying poor specification or areas of misspecifica­
tion. 

In sum, the analysis of residuals and identifica­
tion of breakpoints becomes, much like sensitivity 
analysis, a critical aspect of the research e nter­
prise. 30 

IX. SIMULATION, FORECASTING, 
AND POLICY ANALYSIS 

The next step in this analysis is to develop vari­
able simulations of the system as a whole and to 
observe its behavior under various conditions. This 
is done in two stages: The five equations are simu­
lated equation by equation (by employing historical 
values at each iteration in place of calculated en­
dogenous variables), and then the entire system is 
simulated in simultaneous mode (by employing 
calculated values for all endogenous variables). A 
successful (single equation) forecast increases the 
probability of a valid simulation: a successful simu­
lation almost certainly implies a successful fore­
cast. 3l A forecast (of a single equation) is conducted 
independently of the other equations and its solu­
tion depends primarily upon the existence of his­
torical values for the e'1dogenous variable, period 
by period. A simulation involves the entire system 
of equations, solving for the jointly dependent var­
iables without recourse to their historical observa­
tions. A completely self-contained structure is 
operative in a simulation, allowing a fairly con­
trolled method of varying parameters and observ­
ing the implications for the system as a whole. 32 

The TROLlll facilities, upon which our simula­
tion of the system of simultaneous equations was 
undertaken, calculate values of the jointly en­
dogenous variables in the model over a period of 
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time for which exogenous data are available, or for 
any subperiod therein. For simulation, four types 
of information are required : the structure of the 
model itself, initial historical (or known) values for 
the endogenous variables, data for the exogenous 
variables, and constant files (coefficients and 
parameters that have been estimated earlier). 33 

A dynamic simulation proceeds as follows: F or a 
given model in which Y and Z are e ndoge nous vari­
ables, and A, B, X are exogenous variables: 

Y, = a, + b11A, + b12Z1.1 + u, . 
Z, = a2 + b21X1 + buBt + !l2. 

In the first period, Y and Z are calculated using ex­
oge nous values for A,, 81, and X, , and an exogenous 
starting value for the endogenous variable z1_ 1• 

ln the second period, (t + 1), Y1+1 and Z1+1 are 
computed using exogenous values for A1+i, Bt+., 
and X 1+ 1 and the simulated endogenous value for z, 
from the previous period. Historical values for the 
endogenous variables are no longer e mployed . This 
procedure then continues, calculating the en­
dogenous variables front the ir simulated values 
during the pre vious period and the current value of 
the exogenous variables. It must be noted that at 
each step subseque nt to the initial t , historical val­
ues for the exogenous variable s must be provided . 

The solution for a variable at any given period is 
a function of a series of ite rations in which all the 
equations in the block are sQlved and iteration val­
ues of the endogenous variables produced. Con­
vergence criteria ide ntify the point at which the 
iteration has reached a solution. Some time s it is 
necessary to re lax the converge nce criteria in order 
to obtain a solution . A common procedure for 
checking the pe rformance of the simulation when 
convergence is attained , is to examine the sum­
mary sta tistics, particularly percent error, and 
compare the simulated values of the endogenous 
variables with the actual, or known historical val­
ues. 34 

There are several sources of error in a simula­
tion: First, the disturbance in period t may not be 
accurately forecasted; second, there may be e rrors 
when estimating the parameters from observed 
samples (errors aris ing during the sampling pe riod 
or measure ment error), and third, the re may be 
errors in forecasting the exogenous and lagged en­
dogenous variables fo r period t . 35 

The basic procedure for undertaking simulation 

experiments is to resimulate the model with differ­
ent inputs (or sets of information) from those used 
in the base simulation Changes in paramete rs/ 
values, in estimated coefficie nts, in e ndogenous 
variables, or in exogenous fli es may be made. To 
compare the results , we note the discrepancies be­
tween historical data output for the initial simula­
tion and that fo r the modified simulation. For pol­
icy purposes it is necessary to modify the 
coefficients of key variables and then observe the 
effects upon the simulated output. This is done by 
changing coe fficients one by one and obtaining the 
simuJated output after each modification. Only m 
this way is it possible to identify the effects of pol­
icy changes upon the e ntire simulation. 36 

X. SIMULATION, FORECASTING, 
AND POLICY ANALYSIS: THE BRITISH CASE 

By way of providing some empirical reference to 
the above discussion, we draw upon recent inves­
tigations of the British case, 1871-1914. Table 
12.2 presents summary statistics of the mean 
values for historical data, simulation values, and 
forecasts for each of the dependent variables in the 
system of simultaneous equations depicted earlie r 
in Table 12. l and, in d iagram form , in Figure 
12 . l. These summary statistics (and the plots 
noted be low) provide usefu l insights into t he 
stnicture of the d ynamic system modeled. Space 
limitations prevent an extensive commentary upon 
the political significance of these results. Some 
brief observations may be in order concerning the 
quantitative find ings and their " real-world" impli­
cations. 

In te rms of colonial expansion, the simulation of 
British territorial acquisitions began slightly belo"' 
the real-world level, but the two remained fairly 
close until 1880, whe n the simulation (and the 
s ingle equation bootstrap projection) continued an 
upward trend and failed to re plicate a slight drop 
in the real-world level. Between 1885 and 1889 the 
simulation and the real-world data we re again 
close, but in 1890 and 1891 the simulation failed to 
replicate two sharp increases in the real-world 
level largely accounted for by British territorial 
gains in Africa. The two plots (and also the single 
equation bootstrap projection) we re close from 
1896 until 1899 and 1900, when the real-world 
level, re flecting additional Brit ish gains in Africa 
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and elsewhere, underwent further sharp increases. 
In 1909 the simulation moved on above the real­
world level. 

In general, the simulations of military expendi­
tures in the Great Power systems were quite suc­
cessful. The British s imulation ran slightly lower 
than the real-world expenditure levels during the 
1870's. In the earlie r years of this period, Britain 
fought the Ashanti Wars and was involved in other 
colonial conflicts, but in many respects the period 
was characterized by an 1874 declaration from the 
throne of friendly relations with all powers. Mili­
tary expenditures remained fairly stable into the 
early 1880's. At this point, the simulation overtook 
the real-world levels of expenditure and became 
consistently a trifle higher. Between 1895 and 1900 
the simulation o,·ershot the actual levels consis­
tently. By the outhreak of the Boer War in 1899 
the simulation was registering well above real­
world expe nditures A year later the two were 
close. Then the real-world data rose to a sharp 
peak in 1903, lea\ mg the simulation behind but 
above its 1900 level. At this peak point, the single 
equation bootstrap projection was closer to the 
real-world data than was the simulation. After the 
1903 peak, the simulation and the real-world data 
both dropped back and then rose more slowly to 
substantially the same 1914 level (see Figures 12.2 
and 12.3). 

Although the mean values for the simulations 
and forecasts of inte rsecting spheres of influence 
were close to the mean historical values, the per­
centage e rrors-calculated over the entire period 
- were conside rable. Percentage errors take into 
account each deviation from the mean in a calcula­
tion of the overall percentage. Since the metrics 
involved were of small magnitudes-covering the 
range of the inte raction scale from l to 30-any 
increment of deviation makes a greater impact on 
the percentage e rror calculations than similar 
increments in the cases where the metric itself 
involves large numbers-such as military expendi­
tures in monetary values or colonial area in thou­
sands of square miles. 

The actual discre pancy or error between the his­
torical alliance commitments and the simulated or 
forecasted commitments was small. But, because of 
the nature of the metric involved-low values and 
variance in the alliance commitment series-these 
minor discrepancies in absolute terms become 
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Figure 12.2 Simulating lateral pressure: British colonial areas. 
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major o nes in pcrcentagt• ll'nns. In such cases, we 
can on ly observe tht•st• two sets of statistics and 
dra" the appropriate 111ft•n •nces. Since the actual 
error !)(• tween h istorical and simulated alliance 
commitme nts was ,·er} small, we fi nd it reasonabl e 
to conclude that our simulation of these dynamics 
captured muc h of tht underlying processes. Such 
an inft• rence is reinforct•d hy the high congruence 
between the actual or historical changes in alliance 
commitme nts and our s1111ulation of these changes. 
The c:orrespondenct' bt>tween the two is almost 
perfect. As much cannot ht• daimed with respect to 
percentage change OH'r tune, howeH.'r. But al­
though the correspondenee be tween actual and 
simulated pe rcen tage changes in a ll iance commit­
ments is no t as good .1s in the case of actual 
changes, the degree of fi t is st ill wi thin bounds that 
defin e a fa irly successfo l s11nulation. 

A similar assessment may he made with respect 
to the results of the simulation of prevailing levels 
of inte rnational violenc<'· There was a high level of 
congrue nce between the actual level of violence­
as measured by scaJed mteraction data-and the 
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simulation and forecast of these lcvds. The actual 
e rror be tween simulatio n and forecas t, on the 
one hand, and real-world data, on the other, was 
negligible, but the percc11tagc e rrors were con­
siderable. Again , m uch as in the cases of the 
intersection and alliance variables, th is outcome 
is due to the nature o f the me tr ics imoh ed . 
Change s in the violence be havior of the powers 
were also extre me ly we ll re plica ted , bo th in 
terms of simulating the violence ,·ariables within 
the five equation systems and in terms of sim ulat­
ing violence as a single equation forecas t. In each 
case the artificial replication coincided closely with 
the real-world data. But the year-to-year percent­
age changes were not reproduced as satisfactorily 
as the actual changes. 

A successful simulation model should do more 
than enhance our understanding of the dynamics of 
a sys tem and the interdepe ndence among its com­
ponents. O nce such a model is developed and its 
parameters estimated fi-om e mpirical data- the 
values being robust and the coefficie nts statistically 
s ignificant - we must still add ress ourseh es to the 

Year 
Figure 12.4 Policy experime nt: Explosive change. The impact of changing the 
coefficient for military expenditures 1-1 (in the military expe nditure equation) upon 
Br itish military expenditures. 
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··so what?" query. Br allowing us to raise questions 
of a ··what if" or ""if ... then ... " nature, a \ia­
ble simulation should identif) critical interve ntion 
points where policy changes (alterations in 
coefficients) will yield specific future outcomes. 

By modifying the parameters in each equation 
and observing the changes in the behavior of the 
dependent variables, it is possible to draw infer­
e nces concerning real-world equivalences and ex­
pected behaviors. Although even a summary dis­
cussion of our policy analysis for the British case 
cannot be presented here, suffice it to add that the 
entire system was much more sensitive to upward 
swings in the dynamics under consideration than to 
downward swings. ln othe r words, the dynamics in 
question were imbedded , seemingly, in explosh c 
tende ncies that surfaced with any slight upward 
changes in key parameters, whereas the system did 
not respond as dramatically to counterbalancing 
downward changes in the same parameters (see Fig­
ure 12.4). 37 

Such findings bear witness to the complexities of 
decision making and indicate the counterintuitive 
te ndencies and behavioral characteristics of many 
large social sys tems. This type of experimental ap­
plication of econome tric analysis to political inquiry 
provides a methodology for assessing both theory 
and the outcomes of conven tional regression analy­
sis (including de partures the refrom) and also a 
hasis for experimenting wjth various alternative 
policy formu lations. Overall, these partial and, in 
some instances, nonobvious outcomes of an 
'" if ... the n ... " nature serve as further tests of 
a model and accompanying equations. Political sci­
entists must now investigate the full range of polit­
ical proble1m to which econometric analysis and 
fort•<·asting might he put to use. Unless t lw issues 
raised in the earlier sections of this paper arc given 
sufficient attention, it is unlikely that the exercise 
described in the last sections will be undertaken 
with any degree of validity. And, at this stage in 
the developme nt of quantitative methodology, the 
issues of theory, method, and procedure assume 
paramount importance. 

NOTES 

l. See, for example, Deusenberry, et al. (eds.) (1965 
and 1969). 

2. Dynamic modeling, which is current in econometric 

analysis, can be used for political inquiry to pro' ide 
(1) an aid to understanding political dynam ics, (2 a 
tool for simulation, and forecas ting political behavior 
and outcomes, and 13) a guide to the choice of public 
policy. The crucial test of a model lies in its internal 
and statistical 'alidity. Its prime usefulness is to 
make forecasts and compare the forecasts with actual 
historical values as a means of understanding how 
systems behave. For a survey of the development of 
econometrics as a field of inquiry, see Klein (1971), 
pp. 415-421. For an instructive application of econo­
metric analysis to political inquiry, see Kramer 
(1971). 

3. See, for example, Blalock and Blalock (1968) and 
Ando, et al. (1963). 

4. Although the broad lines of our investigations are 
common in econom<"lric analysis, we have found that 
applied econometrics is not always consonant "ith 
econometric tlwory. In many cases we have alo,o 
found that the problems confronting us-such as the 
coincidence of laitged endogenous variables and se­
rial correlation in the disturbances-are raised in 
econometric teds as critical problems, but rarel> are 
sufficient guidelines or practical direction pro,;ded to 
assist in resolving such issues. For this reason, our 
approach has been highly exploratory, and the solu­
tions we have adopted amounted to practical applit-a­
tions of theoretical argumen ts. Since there are, a,. 
rct, no clear cut solutions to problems such as thc,e, 
much of what we have done is both controversial and 
experimen tal. 

5. See, fo r example, Johnston (1972), cspt>ciall> pp. 1-8 
and 121- 176: Christ (1966), especially pp. 1-15, 
243- 298. 

6. For re lated cons1derations, sec Fennessey (1968), pp. 
1- 27, and Rao and Miller (1971). 

7. Sec TROLUl t.:scr"s Guide, Computer Research 
Center for Economics and Management Science, ~a­
tional Bureau of Economic Research, Inc .. Jum 
1972. 

8. The dynamic e lements in a model are usually gener­
ated by lagged rdationships, by first (or higher order) 
derivatives, by employing endogenous variables as 
explanatory, and h> introducing random shock van­
ables. These considerations are important in dra"init 
inferences about the structure of the system of equa­
tions in question and about the ability of the system 
to predict both the behavior of the model and the be­
havior of outcome variables. In the course of our in­
vestigations we have employed each of these proce­
dures for approximating dynamic systems. Ilcre "e 
note only the most effective approaches. See, for ex­
ample, Franklin M. Fisher, "Dynamic Structure and 
Estimation in Economy-Wide Econometric Models · 
in Deuscnberry, et al. (eds.) (1965), pp. 590-635. 
Dynamic models can be constructed by employinit 
explici t functions of time, linear approximations , 
exponential functions , quadratic trends, first and 
higher order differences, distributed lags and spec­
tral analysis. The result is a system of equations in the 
correct form, whose parameters are subject to proba­
bility error associated with the inference procedure 
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used . We ;olw the t•stimated equation of the model 
in order to ohtam an t•stimate of the reduced form. 
An earlier version of this analysis was undertaken 
with the use of ratt•s of change "ariables on both 
side; of the equatiom. In that case, we have found 
that the n•sultin~ p.1r,111wlt>r e;hmates were surpris­
ingly fragile throughout. 

9. The neecssit) of 11 wwri specifications, endemic to 
the question of caus.ilit), is predicted on two consid­
erations. First, thl'st• specifications must allow the 
investigator to dewlop a particular system of equa­
tion;, and to identify the dependent and indepen­
dent variable;, and thl' nature of the inequalities. 
This initial specification in itself constitutes an opera­
tional statement of tlH'<>r), however vague, inarticu­
lated, or implicit it ma) be. Second, a priori informa­
tion is nece;;ary for thl' distinction of one equation 
from another. Information of this nature generally 
constitutes restrictions on the coefficients of the vari­
ables (where sonit• .ut• si·t at zero) and on the nature 
of the random or disturbance term. Without the 
specification of ~ero codlicienh for some variables in 
each equation, thert• i\ no wa} to distinguish one 
equation from anotlll'r. St'e Fi;her (1966), Chapters I 
and 2. 

10. For a theoretical tn .. 1tnwnt of data, see Coombs 
(1964). 

11. For conditions of idt•nhfiability, see Fisher (1966). 
12. The formulae for tlw statistics discussed below can be 

found in any standard t•conometric text. Here we are 
concernl'd primarih "1th the problem of inference. 
See, for example, Johnston (1972); Christ (1966); and 
Rao and Miller (1971 ). 

13. The smaller tlw variance of a parameter estimate, the 
less sensit ive the t•stimate will be to errors in the 
dependent variable. Furthermore, the smaller the 
correlation among the independent variables, the 
higher the preci\IO!l of the regression estimates. 
However, computation precision does not neces­
sarily guarantee that the most theoretically precise 
estimation procedure has been used. See Rao and 
Miller (1971), p. 2-1 

14. The "bias" of a parameter estimate is the difference 
between the mean value of the distribution of the 
estimate and it> "true parameter value. Bias ma) 
also result from the omi;sion of relevant variables in 
the equation. But thh will not increase the variance 
of the estimate; of till' coefficients, nor does the in­
troduction of >upt•rfluous 'ariablcs severely impede 
the precision of the estimate. Although no statistical 
tool is a substitut<• for good theory, some errors are 
likely to have grt•att'r consequences for robust infer­
ences than otlll'rs. For example, regression 
coefficients with the wrong sign indicate most likely 
that some misspecification has taken place, or that 
the variablt•s are not appropriately defined, or that 
we are mi;taken about tht' "right" sign, or that there 
is an interactive l'fft•ct that has not been taken into 
account. It is often difficult to identify the "real" rea­
son for a "wrong" sign. St•e Rao and Miller (1971), 
pp. 27-35. "Pred;ion" seek> the minimum variance 
estimate, regardless of hias. As a summary statistic, 

the mean square error pro\ides importance to bia> 
and to precision: 

~1SE = \'ar(fi) + [Bias(PlJ2. 

\\'hen the estimated equation b the "true" l'qnation, 
ordinar) least squares pro' ides thl' minimum 'ar­
iance unbiased e>timatt>. See, a l>o for exam ple'. Kl'n­
dall (1951), pp. t03--10-t. 

15. Durbin and Watson (1950 and 1951); also see John­
ston (1972), pp. 250-254. See also Section VI of this 
chapter. 

16. The precision of the parameter estimate depl'nds 
upon tlw scritil correlation parameter as well a'> upon 
the proct•ss gerll'rating the independent ,·ariabk•s. 
Ordin;U) lt•ast squart'> is still unbiased in the pn''>­
encc of •t•rial corn• lation , but it does not lrnn• 
min imum \llriancc. If we can identif) the structure 
and ,a)ue of tllP autocorrelation parameter, then h) 
an appropriate transformation of the n1riahles \\t' can 
use ordinary least squares to pro,·idl' minimum \ar­
ianct• e>timatt•s This is appropriate onl) in thl' oingle 
equation ca><• "here >imultaneous effects are not 
thought to operate. When the dependent \'ariables in 
the equation are also serially correlated, then the 
bias depends also on the parameters that generatl'd 
their st•rial correlation. And "hen the rnri<lllct' in tht• 
error lt>rm h not constant, ordinary lea.-. t squan''> 
docs not prnduce the best linear unbiased t»timall''· 
See also Schink and Chiu (1966), pp. 36--67. We 
have attempted to attain high precision (by seeking 
sharp and rohu'>I paramekr c;timates) and minimi1.t• 
bia\ (I)) re,1wcif) ing each equation to an·ount 
exp)idt)) for the enects of >Cparatt• independent \llri· 
ahk•'>.) 

17. Tlw com cntional use of measurement error ma) thus 
be dewed in the context of confidenc<.' intt>r\'all., till' 
probll'm being deft1wd in terms of th<.' absenct• of 
,·ital information rather than the presence of known 
error in the quantitative measures. 

18. For relatt'd considerations, sec Blalock (1965), pp. 
37 17. 

19. Tlw two nece;sar) conditions for identifiab1lit)' are 
the order ;llld rank conditions. For the order condi­
tion to hold, there must be at least M-1 independent 
restriction\ in an equation where M is the number of 
endogenous variables. This is clearly an exclusion re­
striction. The rank condition stipulates that at lca;t 
one non\'anishing dett>rminant of the order M -1 can 
be formed from the ordinary least square structure of 
an equation, corresponding to the variables excludt•d 
by a /)riori specification from that equation. Sl'e 
Fisher (1966), pp. 39-42 and 60-62; and Fisher 
(1959), pp. 431- 447. For an excellent e:1.position of 
the identification problem in multiequation systems, 
see Hibbs (1973b), Appendix lll. 

20. This section di;cu;ses the nonsimultaneous, non­
laggc·d l'ndogcnous case. See below for the simulta­
neous ancVor lagged endogenous case. 

21. See llibbs, Jr. (1972) for a deri"ation of the residuals 
in the generalized model, and Goldberger (1965), 
Chapter 5, for a deri\ at ion of the dish1rbance 'ari-
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ance. See also Fisher (1970a) and Rao and Miller 
(1971), especially pp. 70-74. For a comprehensive 
treatment or issues in time series analysis, see Han­
nan (1960) and Anderson (1942), pp. 1- 13. 

22. Econometricians have focused primarily upon first 
order autoregressive structure (due to the case of 
computation) and, as a result, a general tendency to 
assume that the world is or a first order autorcgres­
sion pervades much of the econometric literature. In 
our in"estigations, however, we have rarely encoun­
tered an AUTO! structure. An AUT02 usually ap­
pears to be a suitable tmde-off between complexity 
and accuracy. For empirical analyses, see Rao and 
C•iliches (1969), pp. 253-272, and Orcutt and Wino­
kur, Jr. (1969), pp. 1-14. 

23. See Rao and Miller (1971), Chapter 7. The true error 
docs not depend on the , ·alue of the independent 
variables, but the residuals do. Residuals, therefore, 
reflect the properties or the independent variables as 
well as the errors and the effects of left out variables. 
If errors arc homoscedastic and random, the residual 
corresponding to a particular value of the indepen­
dent variables (X. ) has a statistical distribution with 
7ero mean and small variance. See Christ (1966), pp. 
394-395; Goldberger (1964), pp. 232-235; and 
Johnston (1972), pp. 208-242. 

24. ln cases where collinearity among the instrumental 
\'ariablcs is high, principal component transformation 
produces a new set or variables that arc orthogonal 
linear combinations of the original \'ariables. The 
new variables are so ordered so that each variable 
c~plains as much of the remaining variance of the 
original variables as possible. In such cases, it is pos­
sible to use a smaller number of variables while still 
accounting for the major fraction of the variance ex­
plained by the original equation. We employed a 
principal components solution only when it was not 
possible to create instruments in any other way due 
lo excessive collinearity among the instruments. 

25. The choice of instruments is theoretically intuitive. A 
predetermined list can be refined in two ways: (1) 
through the use of principal components. This 
method reduces multicollinearity since the compo­
nents are mutually orthogonal , and principal com­
ponents summarize the information in the list of 
instruments; and (2) through structurally ordering in­
strumental variables by first establishing a list of 
preference ordering of instruments relative to a par­
ticular explanatory term; then regressing the en­
dogenous variable on the instruments in differing 
combinations to determine whether an instrument 
further down the list has an effect or whether its con­
tribution is simply using up a degree of freedom; the 
constructed elements of Y,, together with the ele­
ments of T1, are then employed as instrumental 
variables in constructing Y. See Rao and Miller (1971), 
and Eisner and Pindyck (1972). 

26. There are differences of views concerning this order­
ing, and hence, the residuals to be employed when 
undertaking an instrumental variable substitution. 
When combining time dependent corrections, 

generalized least squar<•s, instrumental variables, and 
two stage least squares, it is not intuitively obvious 
which residuals, and at which stage, should be used 
in calculating the rele.ant statistics for evaluating the 
parameters at the final stage. On the one hand, it is 
argued that when generalized least squares and in­
strumental variables are combined, the transformed 
residuals should h<• calculated without the substitu­
tion. On the otht•r it is maintained that substitution 
should first take plat·e .111d then the time dependent 
corrections performed In the latter case, the proper 
asymptotic variance-coH1riance matrix must contain 
the instrumental H1riahlc substitution. In the former, 
it does not. See Hibbs (1972) and Wallis (1967), for 
the single equation case, and Eisner and Pindyck 
(1972). For other ways of dealing with lhis problem, 
see Fair (1970). 

27. For other :llustrations, see Theil (1970), pp. 103-
154. 

28. Chow (1960), pp 591 605; and Campbell and Stan­
ley (eds.) (1966). 

29. In our analysis, we have compared the residuals gen­
erated by the regression of the n observations with 
those of the m obs<•rvations (given k number of vari­
ables) and it be<~>mes clear that in instances where 
the deviations an• great, the F test picks these and 
registers them as statistically sign ificant, thereby re­
jecting the null hypothesis. See Fisher (1970a), pp. 
361-366; and Johnston (1972), p. 206-207. 

30. For purposes of experimentation and increasing our 
understanding of the model we have developed, "e 
found it desirablt• to identify and test for breakpoints 
(using the Chow tt•st in cases where the coefficients 
were estimated with and without the uses of instru­
mental variables We found, generally, that there 
were no significant differences in terms of the resultJ> 
obtained with and without the use or instn1mental 
variable substitution 

31. Econometricians generally talk of forecasting when 
the endogenous 'ariable in each equation is replaced 
by historical values at each point, and of simulation 
when the coefficients, the exogenous variables, and 
the error terms together with the jointly dependent 
variables are employed to generate an artificial repli­
cation of the entire system. This replication is com­
monly referred to as simulation. In looser parlanct 
we often talk or forecasting as simulation beyond the 
existing data that was used to estimate the 
coefficients initially. Clearly, that is not the u~age in­
tended in this paper. 

32. See aylor, et al (1968), pp. 184-200 for an informa­
tive study. 

33. The following observations are based on Chapter 8 r>f 
the TROLL/1 User's Guide, June, 1962. 

34. If the object is short-term forecasts, multicollinearit) 
need not be a necessary drawback. If some of the 
explanatory variables are multicollinear, the predic­
tion interval obtained will be large. By eliminating 
some collinear 'ariables, one can reduce prediction 
interval for a given value of the included indepcn· 
dent variables. But the actual outcome will change 
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\ Cry little. Pragmatic forecal>ts and simulation would 
be indifferent to thl t•xtent of collinearity while 
sophisticall'd onl' S " ill not. Both will make similar 
forecru. ts and the error>" ill be very similar. See Kuh 
and Meyer (1957), pp. :v>0- 393. 

35. The root mean square of the error (RMS) is the most 
important summaJ) st,1tistic in indicating how well 
the simulated modl'I tr,1cks empirical obsen·ations. 
Other important M1mn1<1ry statistics include the mean 
of the forecast and tht• mean of the simulation, the 
percen tage error for l·ach, their mean errors, the 
mean of their first difl(·rences, and the mean of their 

percentage fi rst dilTerences. These s tafotics, pre­
sented further along, are compared with counterpart 
statistics for the historical data, and the discrcpanc} 
indicates the extent of fit between actual obsen·ations 
and simulated values. TROLL/I User's Guide, 1972, 
pp. 8-28. 

36. This procedure assumes that changes in one 
coefficient will not lead to counterbalancing changes 
in others. 

37. See Chapter 17 of Choucri and orth (1975) for a 
de tailed discussion of the experimental analysis. 


