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CHAPTER TWELVE

APPLICATIONS OF ECONOMETRIC ANALYSIS
TO FORECASTING IN INTERNATIONAL RELATIONS

Nazli Choucri

I. INTRODUCTION

This chapter examines some key issues and difficul-
ties encountered in the course of applying
econometric analysis to forecasting in international
relations. We will note the problems involved and
the solutions adopted, and indicate the conse-
quences of faulty analysis, analytical bias, or mea-
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helpful comments and suggestions on an earlier version of
this paper. For assistance in computer analysis I am most
grateful to Jonathan Shane, Alexis Sarris, and Walt Mal-
ing of the TROLL Project and to Raisa Deber for re-
search assistance. This chapter draws upon Chapters 2,
10, and 17 of Nazli Choucri and Robert C. North, Na-
tions in Conflict: National Growth and International Vio-
lence (1975). An earlier version of this chapter appeared
in the Papers of the Peace Science Society (International),
Volume 21, 1973, pp. 15-39.

surement error. In so doing, we shall draw upon
our recent investigations into the long-range causes
of international conflict. Our objective, during the
past several years, has been to develop systematic
procedures for isolating the determinants of inter-
national violence. The general approach we have
employed is one common to any econometrician
concerned with the analysis of time series data, or
any statistician examining the properties of small
samples.! But our applications of these methods
are not common to political analysis. Economists,
for example, appear to know much more about the
nature of market systems, business cycles, infla-
tion, and so forth, than political analysts know
about conflict and warfare, arms races, lateral pres-
sure, or international alignments.?

In the course of our inquiries we have developed
a partial theory of the dynamics in question, trans-
lated this theory into a model from which strue-
tural equations were developed, and then esti-
mated the unknown parameters. The purpose of
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this enterprise was to investigate the implications
of alternative parameter estimates upon the behav-
ior of the system as a whole. Experimenting with
“high” and “low” coefficients, and comparing these
with baseline parameters and system outputs pro-
vided us with a reliable means of looking into
alternative outcomes and alternative futures.

It is not our objective here to question the na-
ture of causality, or to dispute the assumptions un-
derlying the social and behavioral sciences. Others
have done this elsewhere.3 Nor is it our intent to
deliver an introductory lecture on the algorithms
upon which elementary statistical methods are
based. Rather, our purpose is to make explicit the
critical problems inherent in econometric analysis
and the ways we have sought to resolve them.4
Toward this end we discuss: (1) the structure of our
model of international conflict as an extension of
the general linear model in regression; (2)
methodological implications of alternative perspec-
tives upon causality; (3) some key statistics and
common problems in causal inference; (4) simul-
taneous estimation and the problem of identifiabil-
ity; (5) serial correlation and time dependent cor-
rections; (6) the use of instrumental variables and
generalized least squares; (7) system change and
breakpoint analysis; and finally (8) procedures
employed for simulation, forecasting, and policy
analysis and some practical illustrations.

II. A MODEL OF INTERNATIONAL
CONFLICT: EXTENSIONS OF THE
GENERAL LINEAR MODEL

In a recent study of international politics, we have
argued that the roots of conflict and warfare can be
found in the basic attributes and characteristics of
nations and that the most critical variables in this
regard are population, resources, and technology.
We have then attempted to specify the intervening
sequences between these three sets of variables on
the one hand and conflict and warfare on the other.
On the basis of empirical and historical analysis, we
suggest that the chain of developments relating
population, resources, and technology to violence
appears to be the following:

A combination of population and developing
technology places rapidly increasing demands upon
resources, often resulting in internally generated
pressures. The greater this pressure, the higher

will be the likelihood of extending national ac-
tivities outside territorial boundaries. We have
termed this tendency to extend behavior outside
national boundaries lateral pressure. To the extent
that two or more countries with high capability and
high pressure tendency (and high lateral pressure)
extend their interests and psycho-political borders
outward, there is a strong probability that eventu-
ally the two opposing spheres of interest will inter-
sect. The more intense the intersection, the
greater will be the likelihood that competition will
assume military proportions. When this happens,
we may expect competition to be transformed into
conflict and perhaps an arms race or cold war. At a
more general level of abstraction, provocation will
be the final act that can be viewed as the stimulus
for large-scale conflict or violence. But an act will
be considered provocation only in a situation that
has already been characterized by high lateral
pressure, intersections among spheres of influence,
armament tensions and competitions, and an in-
creasing level of prevailing conflict.

Major wars, we have argued, often emerge
through a two-step process: in terms of internally
generated pressure (which can be traced to popula-
tion dynamics, resource needs and constraints, and
technological development) and in terms of recip-
rocal comparison, rivalry, and conflict, on a
number of salient capability and behavior dimen-
sions. Each process tends to be closely related to
the other, and each, to a surprising degree, can be
accounted for by relatively nonmanipulable vari-
ables (or variables that are controllable only at high
costs). And it is these variables, we hypothesize,
that provide the long-range roots of conflict and
warfare.

The first step in the transition from a general
theoretical statement to a model capable of sustain-
ing the empirical test is to identify the variables to
be explained. These will eventually serve as the
outputs of the model. The second is to specify
those effects that contribute to outcome variables
by developing equations designed to explain the
behavior of each of the dependent variables.

Those explanatory variables that are thought to
contribute to our understanding of the outcomes in
question can be other dependent variables (lagged
or unlagged) or they may be exogenous variables
and not to be explained by the model. For policy
purposes it is important to select at least some
explanatory variables that are manipulable by the
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policy maker. For obvious reasons, it would not
be useful to select only variables that are all
“givens” or variables that are manipulable at very
high costs, nnless, of course, one’s objectives were
to test for the extent to which nonmanipulables
dominated system behavior.

Our theoretical statement can thus be trans-
formed into graphic relationships, as noted in Fig-
ure 12.1. These relationships can then be trans-
lated into structural equations, the parameters of
which could then be estimated in the context of the
general linear model. This particular model per-
tains to the pre-World War I period, 1870-1914.

The general linear model in econometrics and
causal modeling is a conceptual mechanism to de-
termine the values of variables when quantitative
data are supplied.® This mechanism includes a set
of equations, their functional form, and an accom-
panying set of specifications and restrictions. We
combine observed data, specifications of a model,
and the laws of probability to obtain estimates of
unknown parameters. ®

This basic linear model is of the following form:

I g g
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Y=XB+U

where Y represents a vector of observations of the
dependent or endogenous variable over
time;

X represents the matrix of independent
variables (explanatory, predetermined,
and exogenous);

B is the vector of coefficients to be esti-

mated from empirical data;

represents the vector of error or distur-
bance term, which has three error com-
ponents: (1) error due to a linear approx-
imation of the “true” functional form, (2)
error resulting from erroneously in-
cluded or left out variables, and (3) ran-
dom noise.

The general linear form can be extended to the
case of m independent variables and n equations,
with the assumption that each dependent variable
can be expressed as a linear function of the inde-
pendent or exogenous variables (linear in the
parameters only; the variables can be nonlinear
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Figure 12.1 Dynamics of international violence: the model.
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functions of other variables). It is also assumed that
empirical observations are generated by a stochas-
tic mechanism. In the case of the general model,
ordinary least squares (OLS) provides the best

linear unbiased estimates of the parameters only if

the following assumptions or a priori constraints
are not seriously violated: (1) that the disturbance
terms (U) are random variables, with zero mean
and homogenous variance; (2) that the disturbances
are uncorrelated over time; and (3) that the

The model we have developed is more complex
than the general linear case. Some of the complex-
ity is due to the nature of the processes being
modeled, the procedures we have employed to
correct for significant departures from the assump-
tions underlying an ordinary least squares solution
of the general linear model, and the use of simul-
taneous equation estimators to obtain unbiased
coefficients of feedback systems. The resultant sys-
tem of equations is presented in Table 12.1.

exogenous variables are not correlated with the dis-
turbances.

The entire analysis was undertaken on TROLL/
1, an interactive computer system developed at the

Table 12.1 Systems of simultaneous equations used to represent the dynamics of international violence
(italics indicate variables endogenous to the system).

colonial area = oy + B, (population density) + B (national income per capita) + Bs (trade per capita)
+ By (military expenditures) + p,.

intensity-of-intersections = az + Bs (colonial area) + Bs (military expenditures) + B; (colonial-area-of-
nonallies) + By (violence-behavior) + By (violence-of-others) + pos.

military expenditures = az + Bio (military expenditures,_,) + By, (military-expenditures-of-nonallies)
+ B2 (intensity-of-intersections) + Bys (colonial area) + By (population-times-national-income) + pis.

alliances = a4 + Bis (military expenditures) + Big (intensity-of-intersections) + By (military-expenditures-
of-nonallies) + Bis (population-times-national-income) + py.

violence-behavior = as + B (intensity-of-intersections) + Bso (military expenditures) + Ba; (military-
expenditures-of-nonallies) + B (alliances) + Bas (violence-of-others) + ;.

colonial area = in thousand square miles

population = home population, in thousands

population density = home population divided by home area (in thousand square miles)

national income = in thousand US dollars standardized to 1901-1910 = 100

trade = imports plus exports, in thousand US dollars standardized to 1901-1910 = 100

military expenditures = army plus navy allocations, in thousand US dollars standardized to 1901-1910

= 100

nonallies = dummy variable representing dyadic relationship: 1 if two states are not formally allied, 0 if
they are

alliances = number of formal alliances

violence-behavior = metricized variable (from 1 to 30) representing the highest intensity of violence of
the behavior of the actor state toward all other states

violence-of-others = metricized variable (from 1 to 30) representing the highest intensity of violence of
the behavior of all other states toward the actor state

intensity-of-intersections = metricized variable (from 1 to 30) representing the highest intensity of vio-
lence in specifically colonial conflicts between the actor state and other major powers

population-times-national-income = multiplicative variable representing the interactive effect of home
population and national income

@ . . . a; = constant (or intercept) term

My . . . s = error (or disturbance) term

Instrument list: iron and steel production, pig iron production, government expenditures, merchant
marine tonnage, military expenditures of nonallies, colonial area of nonallies, population density, popu-
lation times national income, national income per capita, trade per capita, intensity-of-intersections,,,
violence behavior,_;, violence of others, alliances;_;, wheat production, coal production.
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Massachusetts Institute of Technology for the anal-
ysis of econometric models and complex systems.”
We have used generalized least squares, transform-
ing the independent variables according to the
structure of the serial correlation in the distur-
bances, in conjunction with two stage least squares
(a limited information maximum likelihood es-
timator), so as to incorporate a time-dependent
correction as well as simultaneous effects in the
final estimates of the parameters.®

It is important to appreciate that the parameters
of an equation cannot be estimated purely on the
basis of empirical data, no matter how complete,
reliable, or extensive these may be.? The role of
data is as follows: Information is useful for iden-
tification purposes only if it can serve to distinguish
among structural equations. Observational data
alone cannot perform this necessary step in model
building, although analysis of one set of data can
provide clues for specification of the next set.
Nonetheless, only in conjunction with a priori re-
strictions and specifications can empirical data be
put to good usage.® But the most basic issue of all
in making the transition from a theoretical state-
ment to a formal model is specification of causal
ordering.

Ill. DIRECTIONAL RELATIONS
AND CAUSAL INFERENCE

In the most general sense, “causation” refers to hi-
erarchies of influences or effects, most readily char-
acterized by asymmetrical relations within a spec-
ified system. Causation, however, is not necessarily
implied by a particular time sequence —a considera-
tion that is commonly neglected in systematic social
and political inquiry. Because of this simple but
almost self-evident point, it is important to adopt
alternative criteria for the specification of causal
relations. In a persuasive argument, Herbert Simon
suggests that causal orderings are determined by the
appearance of non-zero coefficients in a system of
equations (Ando, et al., 1963). The a priori specifica-
tion of zero coefficients thus raises the issue of iden-
tifiability. ! “For complete identifiability of a struc-
ture those restraints must preclude the existence in
the same model of a different equivalent structure,
that is (in linear models), a different set of equations
whose members are linear combinations of the
original equations” (Ando, et al., 1963). Causation

is, therefore, closely related to identifiability, while
the requirements of identifiability, by necessity,
impose certain constraints on the process of model
building.

The question of causation gives rise to a related
set of philosophical and empirical problems (Ando,
et al., 1963, p. 23; see also Orcutt, 1952, pp. 305-
311). The long-standing debate among social scien-
tists regarding causal perspectives upon the “real
world” —whether it be essentially hierarchical or
recursive, or whether it be essentially nonrecur-
sive or simultaneous—can be resolved through a
combination of these two positions, namely that
the overall framework or system of relations (or
equations) in the structure under consideration
may basically be recursive (thus negating simul-
taneous relations at a macro level), but that small
components (or blocks) thereof may be nonrecur-
sive (thus allowing for feedback relations within
a localized context). For applied analysis, the ap-
proach one takes has one important effect: How
one perceives the phenomena one seeks to model
(whether they are considered basically recursive
or nonrecursive) will dictate the kind of estimation
procedure employed, and the ways in which the
phenomena are represented in a system of equa-
tions. We have adopted the nonrecursive view of
causality while recognizing that in the long run
greater understanding of the dynamics in question
may be obtained through the expansion of our
model and the use of a block-recursive approach.
The general linear model provides the intellectual
tools to structure reality and to think about direc-
tional influences. Our analysis goes far beyond, to
causal modeling, simultaneous estimation, simula-
tion, and policy analysis.

IV. CAUSAL INFERENCE: SOME KEY
STATISTICS!? AND COMMON PROBLEMS

Two of the more common criteria for evaluating
the performance of a model are (1) how well the
specified equations can predict known data, and (2)
where and why findings differ from known data.
Examining the patterns of errors (or residuals),
therefore, becomes an important aspect of model
building.

The variance of the coefficient (or standard error)
indicates the precision of the coefficient as derived
from empirical data. The statistical significance of a

B S IR m———
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parameter is inferred from the magnitude of the ¢
statistic, and the significance of several parameters
is inferred from the F ratio. In a regression equa-
tion, the value of F measures the joint significance
of the parameter estimates. The summary statistic,
R?, refers to the amount of variance in the depen-
dent variable explained by the independent vari-
ables (and the associated stochastic mechanism). A
very high R* may imply an identity or a trivial re-
gression equation, while a low R* does not neces-
sarily indicate an invalid equation.® Other sum-
mary statistics are needed before an educated
judgment is drawn, such as the standard errors
around the parameters. In practical applications,
however, these statistics are often subject to bias in
the parameters.’®* When the disturbances are se-
rially correlated, the variances and standard errors
will be deflated, producing inflated t, F, and R®
statistics, leading to possible erroneous inferences.
Correcting for serial correlation is a crucial aspect
of causal modeling, highlighting the importance of
the Durbin-Watson statistic.

The Durbin-Watson statistic, otherwise known
as the d statistic, is a test of the significance of se-
rial correlation in the autocorrelation parameter,!®
The statistic is not applicable in cases with lagged
endogenous variables—since the test was de-
veloped for nonstochastic vectors of explanatory
variables. The Durbin-Watson statistic is no longer
valid when there is a coincidence of lagged en-
dogenous variables and autocorrelated distur-
bances. In that case, the statistic is asymptotically
biased upward and no longer tests for autocorrela-
tion. Thus, a nonsignificant d statistic does not pre-
clude the possibility that OLS estimates are incon-
sistent when there are lagged endogenous variables
in the equation. In the case of simultaneous sys-
tems, the same problem exists for the system en-
dogenous variables. The endogenous (including
lagged endogenous) variables must be replaced by
instrumental variables (see Section VII below).

A common difficulty in statistical analysis is high
collinearity among the explanatory variables. But
we cannot rule out the use of a particular variable
or the estimation of a particular equation simply
because of multicollinearity. Other problems might
arise (see Rao and Miller, 1971, p. 48). High inter-
correlations result in the loss of precision, but the
exclusion of a theoretically relevant variable on
those grounds might exacerbate serial correlation

in the disturbances.'® Further, multicollinearity af-
fects the precision of coefficient estimates rather
than their values.

By far the most serious problem in data analysis
and parameter estimation involves measurement
error. It is customary to equate measurement error
with faulty data or erroneous quantitative mea-
sures. While such problems are undoubtedly the
source of much distortion in both analysis and re-
sults, it is important to broaden the conventional
definition in at least two ways. First, specific esti-
mates of the error in quantitative measures may be
obtained from the measures themselves and incor-
porated as confidence intervals around the basic
data for purposes of modifying the results accord-
ing to the degree, magnitude, and direction of
cumulated error,!” The second extension of mea-
surement error thinking lies in the structure of the
underlying equation itself. Measurement error may
be attributed to cases where the magnitude of the
disturbance of the error term raises serious ques-
tions concerning the validity of the equation and
the viability of the resulting specification. Ideally,
the most desirable situation is one in which (1) er-
rors in the quantitative measures are known to be
negligible and (2) the disturbance term is small and
exhibits no discernible trend of either positive or
negative serial correlation. In practice, however,
neither of these conditions hold: The extent of fault
in the data is often not known, and the distur-
bance term exhibits significant serial correlation,
especially in trend analysis of time series data.'®
The methods employed to minimize the effects of
serial correlation will be discussed below.

V. SIMULTANEOUS INFERENCE
AND THE PROBLEM OF IDENTIFIABILITY

When there is mutual dependence among the en-
dogenous variables, simultaneous estimation of
the parameters is called for (see Christ, 1960, pp.
838-871). This set of procedures is more complex
than standard regression analysis. Estimation in
the classical regression mode involves one depen-
dent variable and several independent ones. In the
simultaneous case there are several jointly depen-
dent variables. This situation generates an iden-
tification problem. This means that even if infinite
data were available from which the reduced form of
the parameters could be derived exactly, the val-
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ues of the coefficients cannot be estimated without
some a priori theoretical restriction upon the
number of exogenous and endogenous variables in
each equation.!?

The addition of a priori restrictions to identify
an equation is useful only if the same restrictions
are not employed to identify other equations as
well. However, such additional restrictions gener-
ally occur in the form of linear inequalities for the
coefficients to be estimated. Inequalities of this na-
ture add to the efficiency of the estimates but do
not assist in the identification of a particular equa-
tion. Furthermore, if a model is not identifiable,
manipulating the equations or the order of con-
stituent variables will not assure identification —
either a model is identifiable or it is not.

The problem of identifiability is thus closely re-
lated to theory and method, and is central to any
model building effort. An equation is identifiable
when a combination of a priori assumptions and
empirical observations allows for a distinction be-
tween the parameters of the equation and those of
other equations. By extension, a model is identifi-
able if each equation represents a distinct set of
relationships. The problem is one of having suffi-
cient a priori information to distinguish among
equations. A certain minimum is necessary. Be-
vond that, any added information may be put to
use. In just-identified equations there is exactly
one way to obtain the “true” equation from the
reduced form. In over-identified cases there is more
than one way. In under-identified situations, where
a priori information is insufficient to provide a dis-
criminating service, there is no way in which the
“true” equation may be recovered or distin-
guished from others in the same functional form.
The model we have developed through experi-
mentation and alternative specification is an over-
identified set of equations: There is more than one
way to retrieve the reduced form of each original
equation. In practical terms, the problem is gen-
erally one of choosing among the various alterna-
tives for an over-identified equation or model.

Standard statistical theorems, developed for the
case in which the explanatory variables are treated
as if they were fixed in repeated sampling, cannot
be used when there are lagged endogenous vari-
ables. Furthermore, the coincidence of lagged
endogenous variables and autocorrelated disturb-
ances inflates the t statistic and may signal erro-
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neous inferences. Marked departures from the
assumptions underlying the general linear model
produce biased parameter estimates, often neces-
sitating equally marked departures from standard
regression procedures. The practical implica-
tions of serial correlation in simultaneous sys-
tems for parameter estimation are sometimes
overwhelming,

VI. SERIAL CORRELATION AND TIME
DEPENDENT CORRECTION?2?

Because the nature of the serial correlation in the
disturbances is often unclear—if it were known,
the solution to the problem would be simply to
adjust the parameter estimates accordingly—we
are confronted with the necessity of estimating the
nature of the autocorrelation parameter empirically
and identifying the underlying stochastic process.
This involves (1) isolating the systematic compo-
nent of the disturbances, and (2) adjusting the in-
dependent variables so as to develop consistent es-
timates of the parameters.

Aitken has demonstrated that the generalized
least squares estimator produces an unbiased esti-
mate of the error variance when disturbances are
autocorrelated (Aitken, 1935, pp. 42-48). But the
estimate is not the “true” autocorrelation parame-
ter p. However, it does have a known statistical
distribution and in small samples it is consistent.?!
Our objective is to identify the theoretical struc-
ture of the time dependent parameter, and to
determine its statistical properties.

Four disturbance structures have properties that
are tractable and well known: (1) first order au-
toregressive process, where each error term (1)
depends only upon its previous value (u;—;) plus a
random component (g); (2) second order autore-
gressive structures where u, depends upon u;_s and
tiy—1, plus a random component (€,); (3) first order
moving averages, where the disturbances depend
only upon a series of temporally adjacent, inde-
pendently disturbed, random variables, and
hence all the disturbances prior to u,.; do not con-
tribute to generating u;; and (4) second order mov-
ing averages, where, for the same reason, the au-
tocorrelation of u; is effectively zero with all terms
beyond w,—p. In the “real world,” higher order
structures are probably operative, but their statis-
tical tractability amounts to a major computational
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problem, and it is not always clear that the benefits
accrued by computational complexity are greater
than the costs incurred.?2

We seek to identify the structure of serial corre-
lation parameters so as to obtain unbiased general
least squares (GLS) estimates of the parameter val-
ues and their statistical variance and other attri-
butes. A critical aspect of GLS involves a careful
analysis of the residuals. There are at least two
ways in which this can be done. The first, a cor-
relogram analysis, involves retrieving the residuals
from regression analysis and then correlating the
first t/5 terms with the initial value of the residual,
generating empirical values. These empirical val-
ues are then compared to the “theoretical” values
that would be expected from a particular autore-
gressive structure. The second way, applicable only
for autoregressive processes, involves regressing
the residuals (u;) upon their previous values (u,
for AUTO1 and w-,, 4z, for AUTOZ2,) and ob-
serving the statistical significance of the two equa-
tions and the value of the Durbin-Watson statistics.
In applied analysis, however, it is often difficult to
distinguish moving average processes from au-
toregressive processes that dampen off sharply (see
Hibbs, 1972, p. 51 and Hanna, 1960). There are
also difficulties in determining whether the dis-
crepancy between the theoretical autocorrelation
parameter and its empirical counterpart is sig-
nificant rather than attributable to noise. Identify-
ing the structure of serial correlation and making
appropriate adjustments amount to an important
aspect of any such investigations.

VII. INSTRUMENTAL VARIABLES
AND GENERALIZED LEAST SQUARES

As noted earlier, OLS yields inconsistent parame-
ter estimates in dynamic models with lagged en-
dogenous variables and serial correlation in the
error term. The OLS residuals are no longer the
“true” underlying disturbances, in that Y,_; has a
tendency to co-opt the systematic component of
the disturbances.??® This results in an upward bias
for the coefficient of the lagged endogenous vari-
able and a downward bias for the other exogenous
or explanatory variables, frequently leading to er-
roneous inferences. This was a particularly serious
problem in our investigations since determining
the effects of the previous year’s military alloca-

tions upon next year’s budget amounted to an im-
portant aspect of our research. For this reason we
must find ways of compensating for expected dis-
tortions.

One important assumption of least squares is
that the errors are uncorrelated with the co-terms
and uncorrelated with each other.2* To meet this
assumption, instrumental variables—which are as-
sumed to be uncorrelated with the error but highly
correlated with the original co-terms—are created.
The constructed variables are linear combinations
of the original terms and, therefore, assumed to be
uncorrelated with the disturbances. They can thus
be used to estimate the coefficient of the original
equations. The original data, and not the con-
structed terms, are used to calculate the residuals
(Eisner and Pindyck, 1972). Good instruments
must have the following properties: (1) they must
be truly exogenous and, in theory, uncorrelated
with the disturbances, as a lagged endogenous
variable usually is not;?* (2) there must be no si-
multaneous feedback loops connecting the equa-
tions to be estimated with the equations explain-
ing the potential instrument; (3) the disturbances
in the equation to be estimated must not be corre-
lated with the explanatory variable.

One question remains: Should the time depen-
dent correction be made before or after the in-
strumental variable substitution?2® In the analysis
reported below we have followed the algorithms
implemented in TROLL by undertaking gener-
alized least squares first, then the instrumental
variable substitution. But we have tested empir-
ically for the differences that are yielded when the
reverse procedure is employed; that is, first the in-
strumental  variable substitution and then
generalized least squares, and have found no sig-
nificant differences for the model in Table 12.1.
Several rounds of generalized least squares rarely
produce theoretically meaningful results. For this
reason, if an initial use of GLS does not appear to
correct for serial correlation adequately, respec-
ification is definitely called for.

In sum, the correction for the coincidence of
lagged endogenous variables and serial correlation
involves a two-stage instrumental variable substitu-
tion and the use of generalized least squares. If we
treat lagged endogenous variables as endogenous,
then a consistent estimate of the equation can be
obtained using an instrumental variable estimator
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with current and lagged exogenous variables as in-
struments, provided the system has a sufficient
number of exogenous variables. This estimator is
robust against all forms of autocorrelation in the
disturbances, but not against serial correlation in
the explanatory variables. In this case, it becomes
necessary to estimate the structure of the distur-
bance and then confront the problem of sequenc-
ing with respect to generalized least squares and
two stage least squares, as noted above.

VIII. SYSTEM CHANGE
AND BREAKPOINT ANALYSIS

The occurrence of breakpoints and problems relat-
ing to the estimation of system change and predic-
tion beyond the break are central issues in model
building and forecasting. Sharp shifts in dynamics
may signify discontinuities in some underlying em-
pirical realities (but they may well be quite natural
regularities of other empirical realities). Often
breakpoints indicate incompleteness of theoretical
specification.

We can think of breakpoints either as sharp
changes in slope, or as nonlinearities. Some shifts
may signify discontinuities which may be directly
included in the equation as dummy variables (as
we have done when defining changes in rivaling
powers).27 The incorporation of a break directly in
the analysis increases the fit between historical and
estimated data and between historical and simu-
lated dynamics.

In some instances the break results from quan-
titative changes. In others it results from qualita-
tive changes. There are as yet no known methods
whereby the particular points at which a significant
shift has occurred may be identified precisely
(other than costly and complicated iterative proce-
dures). For this reason, the best alternative is to
plot the data, then to hypothesize the occurrence
of a break based on empirical observation and to
test for its statistical significance. The Chow test is
still the most appropriate significance test for
breakpoints. Quasi-experimental techniques for
coping with such problems provide additional
perspectives upon these issues, but they are cum-
bersome and complicated.?8

The Chow test, modified recently by Fisher, in-
volves the comparison of a set of coefficients with
those of another array of which it is a subset.2? We

have inquired into the statistical significance of dif-
ferences among two sets of regressions, one yield-
ing coefficients for the period as a whole, the other
for a particular subperiod. Cases where a sig-
nificant difference emerged provided important
clues into system change or transformation. Phase
shifts can be identified with systemic breaks. But
breaks that are more in the nature of nonlinearities
may not always be identified as such. The result is
simply a “bad” fit that cannot be attributed to an
underlying break, but rather to nonlinearities that
are not specified in the functional form of the equa-
tion. A search for breakpoints also assists in iden-
tifying poor specification or areas of misspecifica-
tion.

In sum, the analysis of residuals and identifica-
tion of breakpoints becomes, much like sensitivity
analysis, a critical aspect of the research enter-
prise.3°

IX. SIMULATION, FORECASTING,
AND POLICY ANALYSIS

The next step in this analysis is to develop vari-
able simulations of the system as a whole and to
observe its behavior under various conditions. This
is done in two stages: The five equations are simu-
lated equation by equation (by employing historical
values at each iteration in place of calculated en-
dogenous variables), and then the entire system is
simulated in simultaneous mode (by employing
calculated values for all endogenous variables). A
successful (single equation) forecast increases the
probability of a valid simulation: a successful simu-
lation almost certainly implies a successful fore-
cast.3! A forecast (of a single equation) is conducted
independently of the other equations and its solu-
tion depends primarily upon the existence of his-
torical values for the endogenous variable, period
by period. A simulation involves the entire system
of equations, solving for the jointly dependent var-
iables without recourse to their historical observa-
tions. A completely self-contained structure is
operative in a simulation, allowing a fairly con-
trolled method of varying parameters and observ-
ing the implications for the system as a whole.32
The TROLL/1 facilities, upon which our simula-
tion of the system of simultaneous equations was
undertaken, calculate values of the jointly en-

dogenous variables in the model over a period of
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time for which exogenous data are available, or for
any subperiod therein. For simulation, four types
of information are required: the structure of the
model itself, initial historical (or known) values for
the endogenous variables, data for the exogenous
variables, and constant files (coefficients and
parameters that have been estimated earlier).33

A dynamic simulation proceeds as follows: For a
given model in which Y and Z are endogenous vari-
ables, and A, B, X are exogenous variables:

Yo = ay + buAr + buZey + uy.
Zg = dy + bﬂXp + bngl + Ua.

In the first period, Y and Z are calculated using ex-
ogenous values for A, B;, and X;, and an exogenous
starting value for the endogenous variable Z,_;.
In the second period, (t + 1), Y4, and Z,, are
computed using exogenous values for A..y, By,
and X, ., and the simulated endogenous value for Z
from the previous period. Historical values for the
endogenous variables are no longer employed. This
procedure then continues, calculating the en-
dogenous variables frora their simulated values
during the previous period and the current value of
the exogenous variables. It must be noted that at
each step subsequent to the initial ¢, historical val-
ues for the exogenous variables must be provided.

The solution for a variable at any given period is
a function of a series of iterations in which all the
equations in the block are solved and iteration val-
ues of the endogenous variables produced. Con-
vergence criteria identify the point at which the
iteration has reached a solution. Sometimes it is
necessary to relax the convergence criteria in order
to obtain a solution. A common procedure for
checking the performance of the simulation when
convergence is attained, is to examine the sum-
mary statistics, particularly percent error, and
compare the simulated values of the endogenous
variables with the actual, or known historical val-
ues.34

There are several sources of error in a simula-
tion: First, the disturbance in period ¢t may not be
accurately forecasted; second, there may be errors
when estimating the parameters from observed
samples (errors arising during the sampling period
or measurement error), and third, there may be
errors in forecasting the exogenous and lagged en-
dogenous variables for period ¢.35

The basic procedure for undertaking simulation

experiments is to resimulate the model with differ-
ent inputs (or sets of information) from those used
in the base simulation. Changes in parameters/
values, in estimated coefficients, in endogenous
variables, or in exogenous files may be made. To
compare the results, we note the discrepancies be-
tween historical data output for the initial simula-
tion and that for the modified simulation. For pol-
icy purposes it is necessary to modify the
coefficients of key variables and then observe the
effects upon the simulated output. This is done by
changing coefficients one by one and obtaining the
simulated output after each modification. Only in
this way is it possible to identify the effects of pol-
icy changes upon the entire simulation.36

X. SIMULATION, FORECASTING,
AND POLICY ANALYSIS: THE BRITISH CASE

By way of providing some empirical reference to
the above discussion, we draw upon recent inves-
tigations of the British case, 1871-1914. Table
12.2 presents summary statistics of the mean
values for historical data, simulation values, and
forecasts for each of the dependent variables in the
system of simultaneous equations depicted earlier
in Table 12.1 and, in diagram form, in Figure
12.1. These summary statistics (and the plots
noted below) provide useful insights into the
structure of the dynamic system modeled. Space
limitations prevent an extensive commentary upon
the political significance of these results. Some
brief observations may be in order concerning the
quantitative findings and their “real-world” impli-
cations.

In terms of colonial expansion, the simulation of
British territorial acquisitions began slightly below
the real-world level, but the two remained fairly
close until 1880, when the simulation (and the
single equation bootstrap projection) continued an
upward trend and failed to replicate a slight drop
in the real-world level. Between 1885 and 1889 the
simulation and the real-world data were again
close, but in 1890 and 1891 the simulation failed to
replicate two sharp increases in the real-world
level largely accounted for by British territorial
gains in Africa. The two plots (and also the single
equation bootstrap projection) were close from
1896 until 1899 and 1900, when the real-world
level, reflecting additional British gains in Africa

J
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and elsewhere, underwent further sharp increases.
In 1909 the simulation moved on above the real-
world level.

In general, the simulations of military expendi-
tures in the Great Power systems were quite suc-
cessful. The British simulation ran slightly lower
than the real-world expenditure levels during the
1870’s. In the earlier years of this period, Britain
fought the Ashanti Wars and was involved in other
colonial conflicts, but in many respects the period
was characterized by an 1874 declaration from the
throne of friendly relations with all powers. Mili-
tary expenditures remained fairly stable into the
early 1880’s. At this point, the simulation overtook
the real-world levels of expenditure and became
consistently a trifle higher. Between 1895 and 1900
the simulation overshot the actual levels consis-
tently. By the outbreak of the Boer War in 1899
the simulation was registering well above real-
world expenditures. A year later the two were
close. Then the real-world data rose to a sharp
peak in 1903, leaving the simulation behind but
above its 1900 level. At this peak point, the single
equation bootstrap projection was closer to the
real-world data than was the simulation. After the
1903 peak, the simulation and the real-world data
both dropped back and then rose more slowly to
substantially the same 1914 level (see Figures 12.2
and 12.3).

Although the mean values for the simulations
and forecasts of intersecting spheres of influence
were close to the mean historical values, the per-
centage errors—calculated over the entire period
—were considerable. Percentage errors take into
account each deviation from the mean in a calcula-
tion of the overall percentage. Since the metrics
involved were of small magnitudes—covering the
range of the interaction scale from 1 to 30—any
increment of deviation makes a greater impact on
the percentage error calculations than similar
increments in the cases where the metric itself
involves large numbers—such as military expendi-
tures in monetary values or colonial area in thou-
sands of square miles.

The actual discrepancy or error between the his-
torical alliance commitments and the simulated or
forecasted commitments was small. But, because of
the nature of the metric involved—low values and
variance in the alliance commitment series—these
minor discrepancies in absolute terms become

Table 12.2 Some comparative statistics: Historical data, simulation, and forecasting. The British case, 1871-1914.

Mean of BRMS of
% Error: % Error

Forecasted

Mean of RMS of
% Error:

% Error:

Simulation Simulation

Simulated

Historical

Forecast F orecast-

Mean

Mean

Mean

Variable

3.308

—-0.204

10,920,400

3.354
211.261

—0.206

73.917

10,919,900

Lateral pressure (Colonial area: sq. mi.) 10,968,400

Intersections (level: scale 1-30)

27.762

0.934

72.705 264.524

12.988
1.563 24,396 211,856,000

—15.627
67.101

12.896

211,742,000

12.989

212,392,000

Military expenditures (1906 US §)
Alliance commitments (number)

-11.645 34.829
70.664 307.747

1.581
20.364

27.270
276.158

1.578
20.419

1.568
20.364

Violence behavior (level: scale 1-30)
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major ones in percentage terms. In such cases, we
can only observe these two sets of statistics and
draw the appropriate inferences. Since the actual
error between historical and simulated alliance
commitments was very small, we find it reasonable
to conclude that our simulation of these dynamics
captured much of the underlying processes. Such
an inference is reinforced by the high congruence
between the actual or historical changes in alliance
commitments and our simulation of these changes.
The correspondence between the two is almost
perfect. As much cannot be claimed with respect to
percentage change over time, however. But al-
though the correspondence between actual and
simulated percentage changes in alliance commit-
ments is not as good as in the case of actual
changes, the degree of fit is still within bounds that
define a fairly successful simulation.

A similar assessment may be made with respect
to the results of the simulation of prevailing levels

of international violence: There was a high level of

congruence between the actual level of violence —
as measured by scaled interaction data—and the

R T =TT

193

simulation and forecast of these levels. The actual
error between simulation and forecast, on the
one hand, and real-world data, on the other, was
negligible, but the percentage errors were con-
siderable. Again, much as in the cases of the
intersection and alliance variables, this outcome
is due to the nature of the metrics involved.
Changes in the violence behavior of the powers
were also extremely well replicated, both in
terms of simulating the violence variables within
the five equation systems and in terms of simulat-
ing violence as a single equation forecast. In each
case the artificial replication coincided closely with
the real-world data. But the year-to-year percent-
age changes were not reproduced as satisfactorily
as the actual changes.

A successful simulation model should do more
than enhance our understanding of the dynamics of
a system and the interdependence among its com-
ponents. Once such a model is developed and its
parameters estimated from empirical data—the
values being robust and the coefficients statistically
significant —we must still address ourselves to the
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“so what?" query. By allowing us to raise questions
of a “what if” or “if . . . then . . . 7 nature, a via-
ble simulation should identify critical intervention
points where policy changes (alterations in
coefficients) will yield specific future outcomes.

By modifying the parameters in each equation
and observing the changes in the behavior of the
dependent variables, it is possible to draw infer-
ences concerning real-world equivalences and ex-
pected behaviors. Although even a summary dis-
cussion of our policy analysis for the British case
cannot be presented here, suffice it to add that the
entire system was much more sensitive to upward
swings in the dynamics under consideration than to
downward swings. In other words, the dynamics in
question were imbedded, seemingly, in explosive
tendencies that surfaced with any slight upward
changes in key parameters, whereas the system did
not respond as dramatically to counterbalancing
downward changes in the same parameters (see Fig-
ure 12.4).37

Such findings bear witness to the complexities of
decision making and indicate the counterintuitive
tendencies and behavioral characteristics of many
large social systems. This type of experimental ap-
plication of econometric analysis to political inquiry
provides a methodology for assessing both theory
and the outcomes of conventional regression analy-
sis (including departures therefrom) and also a
basis for experimenting with various alternative
policy formulations. Overall, these partial and, in
some instances, nonobvious outcomes of an
“if . . .then . . .” nature serve as further tests of
a model and accompanying equations. Political sci-
entists must now investigate the full range of polit-
ical problems to which econometric analysis and
forecasting might be put to use. Unless the issues
raised in the earlier sections of this paper are given
sufficient attention, it is unlikely that the exercise
described in the last sections will be undertaken
with any degree of validity. And, at this stage in
the development of quantitative methodology, the
issues of theory, method, and procedure assume
paramount importance.

NOTES

1. See, for example, Deusenberry, et al. (eds.) (1965
and 1969).
2. Dynamic modeling, which is current in econometric

analysis, can be used for political inquiry to provide
(1) an aid to understanding political dynamics, (2) a
tool for simulation, and forecasting political behavior
and outcomes, and (3) a guide to the choice of public
policy. The crucial test of a model lies in its internal
and statistical validity. Its prime usefulness is to
make forecasts and compare the forecasts with actual
historical values as a means of understanding how
systems behave. For a survey of the development of
econometrics as a field of inquiry, see Klein (1971),
pp. 415-421. For an instructive application of econo-
metric analysis to political inquiry, see Kramer
(1971).

. See, for example, Blalock and Blalock (1968) and

Ando, et al. (1963).

. Although the broad lines of our investigations are

common in econometric analysis, we have found that
applied econometrics is not always consonant with
econometric theory. In many cases we have also
found that the problems confronting us—such as the
coincidence of lagged endogenous variables and se-
rial correlation in the disturbances—are raised in
econometric texts as critical problems, but rarely are
sufficient guidelines or practical direction provided to
assist in resolving such issues. For this reason, our
approach has been highly exploratory, and the solu-
tions we have adopted amounted to practical applica-
tions of theoretical arguments. Since there are, as
yet, no clear cut solutions to problems such as these,
much of what we have done is both controversial and
experimental.

. See, for example, Johnston (1972), especially pp. 1-8

and 121-176; Christ (1966), especially pp. 1-15,
243-298.

. For related considerations, see Fennessey (1968), pp.

1-27, and Rao and Miller (1971).

. See TROLL/1 User's Guide, Computer Research

Center for Economics and Management Science, Na-
tional Bureau of Economic Research, Inc., June,
1972.

. The dynamic elements in a model are usually gener-

ated by lagged relationships, by first (or higher order)
derivatives, by employing endogenous variables as
explanatory, and by introducing random shock vari-
ables. These considerations are important in drawing
inferences about the structure of the system of equa-
tions in question and about the ability of the system
to predict both the behavior of the model and the be-
havior of outcome variables. In the course of our in-
vestigations we have employed each of these proce-
dures for approximating dynamic systems. Here we
note only the most effective approaches. See, for ex-
ample, Franklin M. Fisher, “Dynamic Structure and
Estimation in Economy-Wide Econometric Models,”
in Deusenberry, et al. (eds.) (1965), pp. 590-635.
Dynamic models can be constructed by employing
explicit functions of time, linear approximations,
exponential functions, quadratic trends, first and
higher order differences, distributed lags and spec-
tral analysis. The result is a system of equations in the
correct form, whose parameters are subject to proba-
bility error associated with the inference procedure
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10.

11.
. The formulae for the statistics discussed below can be

13.

used. We solve the estimated equation of the model
in order to obtain an estimate of the reduced form,
An earlier version of this analysis was undertaken
with the use of rates of change variables on both
sides of the equations. In that case, we have found
that the resulting parameter estimates were surpris-
ingly fragile throughout.

. The necessity of a priori specifications, endemic to

the question of causality, is predicted on two consid-
erations. First, these specifications must allow the
investigator to develop a particular system of equa-
tions, and to identify the dependent and indepen-
dent variables, and the nature of the inequalities.
This initial specification in itself constitutes an opera-
tional statement of theory, however vague, inarticu-
lated, or implicit it may be. Second, a priori informa-
tion is necessary for the distinction of one equation
from another. Information of this nature generally
constitutes restrictions on the coefficients of the vari-
ables (where somie are set at zero) and on the nature
of the random or disturbance term. Without the
specification of zero coefficients for some variables in
each equation, there is no way to distinguish one
equation from another. See Fisher (1966), Chapters 1
and 2.

For a theoretical treatment of data, see Coombs
(1964).

For conditions of identifiability, see Fisher (1966).

found in any standard econometric text. Here we are
concerned primarily with the problem of inference.
See, for example, Johnston (1972); Christ (1966); and
Rao and Miller (1971).

The smaller the variance of a parameter estimate, the
less sensitive the estimate will be to errors in the
dependent variable. Furthermore, the smaller the
correlation among the independent variables, the
higher the precision of the regression estimates.
However, computation precision does not neces-
sarily guarantee that the most theoretically precise
estimation procedure has been used. See Rao and
Miller (1971), p. 24.

. The “bias” of a parameter estimate is the difference

between the mean value of the distribution of the
estimate and its “true” parameter value. Bias may
also result from the omission of relevant variables in
the equation. But this will not increase the variance
of the estimates of the coefficients, nor does the in-
troduction of superfluous variables severely impede
the precision of the estimate. Although no statistical
tool is a substitute for good theory, some errors are
likely to have greater consequences for robust infer-
ences than others. For example, regression
coefficients with the wrong sign indicate most likely
that some misspecification has taken place, or that
the variables are not appropriately defined, or that
we are mistaken about the “right” sign, or that there
is an interactive effect that has not been taken into
account. It is often difficult to identify the “real” rea-
son for a “wrong” sign. See Rao and Miller (1971),
pp. 27-35. “Precision” seeks the minimum variance
estimate, regardless of bias. As a summary statistic,

15.

16.

17

18.

19.

20.

21.
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the mean square error provides importance to bias
and to precision:

MSE = Var(8) + [Bias(8)]2.

When the estimated equation is the “true” equation,
ordinary least squares provides the minimum var-
jance unbiased estimate. See, also for example, Ken-
dall (1954), pp. 403-404.

Durbin and Watson (1950 and 1951); also see John-
ston (1972), pp. 250-254. See also Section VI of this
chapter.

The precision of the parameter estimate depends
upon the serial correlation parameter as well as upon
the process generating the independent variables.
Ordinary least squares is still unbiased in the pres-
ence of serial correlation, but it does not have
minimum variance. If we can identify the structure
and value of the autocorrelation parameter, then by
an appropriate transformation of the variables we can
use ordinary least squares to provide minimum var-
iance estimates. This is appropriate only in the single
equation case where simultaneous effects are not
thought to operate. When the dependent variables in
the equation are also serially correlated, then the
bias depends also on the parameters that generated
their serial correlation. And when the variance in the
error term is not constant, ordinary least squares
does not produce the best linear unbiased estimates.
See also Schink and Chiu (1966), pp. 36-67. We
have attempted to attain high precision (by seeking
sharp and robust parameter estimates) and minimize
bias (by respecifying each equation to account
explicitly for the effects of separate independent vari-
ables.)

The conventional use of measurement error may thus
be viewed in the context of confidence intervals, the
problem being defined in terms of the absence of
vital information rather than the presence of known
error in the quantitative measures.

For related considerations, see Blalock (1965), pp.
37-47.

The two necessary conditions for identifiability are
the order and rank conditions. For the order condi-
tion to hold, there must be at least M-1 independent
restrictions in an equation where M is the number of
endogenous variables. This is clearly an exclusion re-
striction. The rank condition stipulates that at least
one nonvanishing determinant of the order M-1 can
be formed from the ordinary least square structure of
an equation, corresponding to the variables excluded
by a priori specification from that equation. See
Fisher (1966), pp. 39-42 and 60-62; and Fisher
(1959), pp. 431-447. For an excellent exposition of
the identification problem in multiequation systems,
see Hibbs (1973b), Appendix II1.

This section discusses the nonsimultaneous, non-
lagged endogenous case. See below for the simulta-
neous and/or lagged endogenous case.

See Hibbs, Jr. (1972) for a derivation of the residuals
in the generalized model, and Goldberger (1965),
Chapter 5, for a derivation of the disturbance vari-
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22,

24.

26.
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ance. See also Fisher (1970a) and Rao and Miller
(1971), especially pp. 70-7T4. For a comprehensive
treatment of issues in time series analysis, see Han-
nan (1960) and Anderson (1942), pp. 1-13.
Econometricians have focused primarily upon first
order autoregressive structure (due to the case of
computation) and, as a result, a general tendency to
assume that the world is of a first order autoregres-
sion pervades much of the econometric literature. In
our investigations, however, we have rarely encoun-
tered an AUTOL structure. An AUTO2 usually ap-
pears to be a suitable trade-off between complexity
and accuracy. For empirical analyses, see Rao and
Griliches (1969), pp. 253-272, and Orcutt and Wino-
kur, Jr. (1969), pp. 1-14.

. See Rao and Miller (1971), Chapter 7. The true error

does not depend on the value of the independent
variables, but the residuals do. Residuals, therefore,
reflect the properties of the independent variables as
well as the errors and the effects of left out variables.
If errors are homoscedastic and random, the residual
corresponding to a particular value of the indepen-
dent variables (X,) has a statistical distribution with
zero mean and small variance. See Christ (1966), pp.
394-395; Goldberger (1964), pp. 232-235; and
Johnston (1972), pp. 208-242.

In cases where collinearity among the instrumental
variables is high, principal component transformation
produces a new set of variables that are orthogonal
linear combinations of the original variables. The
new variables are so ordered so that each variable
explains as much of the remaining variance of the
original variables as possible. In such cases, it is pos-
sible to use a smaller number of variables while still
accounting for the major fraction of the variance ex-
plained by the original equation. We employed a
principal components solution only when it was not
possible to create instruments in any other way due
to excessive collinearity among the instruments.

. The choice of instruments is theoretically intuitive. A

predetermined list can be refined in two ways: (1)
through the use of principal components. This
method reduces multicollinearity since the compo-
nents are mutually orthogonal, and principal com-
ponents summarize the information in the list of
instruments; and (2) through structurally ordering in-
strumental variables by first establishing a list of
preference ordering of instruments relative to a par-
ticular explanatory term; then regressing the en-
dogenous variable on the instruments in differing
combinations to determine whether an instrument
further down the list has an effect or whether its con-
tribution is simply using up a degree of freedom; the
constructed elements of Y, together with the ele-
ments of T,, are then employed as instrumental

variables in constructing Y. See Rao and Miller (1971);

and Eisner and Pindyck (1972).

There are differences of views concerning this order-
ing, and hence, the residuals to be employed when
undertaking an instrumental variable substitution.
When combining time dependent corrections,

27.

29.

3L

32,

4.

generalized least squares, instrumental variables, and
two stage least squares, it is not intuitively obvious
which residuals, and at which stage, should be used
in calculating the relevant statistics for evaluating the
parameters at the final stage. On the one hand, it is
argued that when generalized least squares and in-
strumental variables are combined, the transformed
residuals should be calculated without the substitu-
tion. On the other, it is maintained that substitution
should first take place, and then the time dependent
corrections performed. In the latter case, the proper
asymptotic variance-covariance matrix must contain
the instrumental variable substitution. In the former,
it does not. See Hibbs (1972) and Wallis (1967), for
the single equation case, and Eisner and Pindyck
(1972). For other ways of dealing with this problem,
see Fair (1970).

For other illustrations, see Theil (1970), pp. 103~
154.

. Chow (1960), pp. 591-605; and Campbell and Stan-

ley (eds.) (1966).

In our analysis, we have compared the residuals gen-
erated by the regression of the n observations with
those of the m observations (given k number of vari-
ables) and it becomes clear that in instances where
the deviations are great, the F test picks these and
registers them as statistically significant, thereby re-
jecting the null hypothesis. See Fisher (1970a), pp.
361-366; and Johnston (1972), p. 206-207.

. For purposes of experimentation and increasing our

understanding of the model we have developed, we
found it desirable to identify and test for breakpoints
(using the Chow test) in cases where the coefficients
were estimated with and without the uses of instru-
mental variables. We found, generally, that there
were no significant differences in terms of the results
obtained with and without the use of instrumental
variable substitution.

Econometricians generally talk of forecasting when
the endogenous variable in each equation is replaced
by historical values at each point, and of simulation
when the coefficients, the exogenous variables, and
the error terms together with the jointly dependent
variables are employed to generate an artificial repli-
cation of the entire system. This replication is com-
monly referred to as simulation. In looser parlance,
we often talk of forecasting as simulation beyond the
existing data that was used to estimate the
coefficients initially. Clearly, that is not the usage in-
tended in this paper.

See Naylor, et al. (1968), pp. 184-200 for an informa-
tive study.

. The following observations are based on Chapter 8 of

the TROLL/1 User's Guide, June, 1962.

If the object is short-term forecasts, multicollinearity
need not be a necessary drawback. If some of the
explanatory variables are multicollinear, the predic-
tion interval obtained will be large. By eliminating
some collinear variables, one can reduce prediction
interval for a given value of the included indepen-
dent variables. But the actual outcome will change
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very little. Pragmatic forecasts and simulation would
be indifferent to the extent of collinearity while
sophisticated ones will not. Both will make similar
forecasts and the errors will be very similar. See Kuh
and Meyer (1957), pp. 350-393.

The root mean square of the error (RMS) is the most
important summary statistic in indicating how well
the simulated model tracks empirical observations.
Other important summary statistics include the mean
of the forecast and the mean of the simulation, the
percentage error for each, their mean errors, the
mean of their first differences, and the mean of their
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percentage first differences. These statistics, pre-
sented further along, are compared with counterpart
statistics for the historical data, and the discrepancy
indicates the extent of fit between actual observations
and simulated values. TROLL/I User's Guide, 1972,
pp. 8-28.

This procedure assumes that changes in
coefficient will not lead to counterbalancing changes
in others.

See Chapter 17 of Choucri and North (1975) for a
detailed discussion of the experimental analysis.
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