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Abstract

Immunization is widely recognized as one of the most successful and cost-effective health

interventions, preventing two to three million deaths from vaccine-preventable diseases each

year. Although progress has been made in recent years, substantial operational challenges

persist in resource-limited settings with frequent stock-outs contributing to sub-optimal im-

munization coverage and inequality in vaccine access. In this paper, we investigate the role

of rainy season induced supply chain disruptions on vaccination coverage and inequalities.

We develop a modeling framework combining spatial modeling—to predict flood disruptions

in road networks—and a discrete-event simulation of a multi-tiered vaccine supply chain

(VSC). Our models are fitted and validated using data from the Malagasy VSC network.

Our baseline simulation predicts the national vaccination coverage with good accuracy and

suggests that 67% of regions with low reported immunization coverage are affected by rainy

season disruptions or operational inefficiencies, causing significant geographical inequalities

in vaccine access. We investigate various mitigation strategies to increase the resiliency of

VSCs and find that by strategically placing buffer inventory at targeted facilities prior to the

rainy season the proportion of children receiving all basic vaccines in these areas is increased

by 7% and the geographical inequality in vaccination coverage is reduced by 11%. By also

∗Corresponding author.
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increasing the replenishment frequency from every third month to every month, the national

vaccination coverage improves by 37%. Our results contribute to achieving the UN Sustain-

able Development Goals (SDGs) by providing actionable insights for improving vaccination

coverage (SDG 3) and investigating the resiliency of the VSC to increased flooding due to

climate change (SDG 13).

Keywords: Global Health; Vaccine Supply Chain Design; Resource-Limited Settings;

UN Sustainable Development Goals; Spatial Modeling; Discrete-Event Simulation

1 Introduction

The third goal of the United Nations (UN) Sustainable Development Goals (SDGs) is to “ensure

healthy lives and promote well-being for all at all ages” (UN, 2019b). Immunization is widely

recognized as one of the world’s most successful and cost-effective health interventions, prevent-

ing two to three million deaths each year from vaccine-preventable diseases (WHO, 2017).

Although immunization coverage has improved in recent years, substantial challenges per-

sist. First, immunization coverage rates are too low (UN, 2019b). Global coverage of the

pneumococcal conjugate vaccine, which has the potential to substantially reduce under five

mortality rates, is below 50%. Coverage of the required two doses of the measles vaccine in-

creased from 59% in 2015 to 67% in 2017, but is still short of the 95% threshold needed to

prevent outbreaks of this highly contagious disease. While coverage of the three required doses

of DTP (the vaccine preventing diphtheria, tetanus and pertussis) increased from 72% in 2000 to

85% in 2015, it has remained unchanged between 2015 and 2017. Second, immunization access

is demographically and geographically unequal. Immunization coverage is substantially lower

in low- and middle-income countries (LMICs) than in high-income countries (WHO/UNICEF,

2017). Furthermore, immunization coverage inequalities favoring rich and urban populations

within LMICs have been reported (Restrepo-Méndez et al., 2016).

A main driver of poor immunization coverage in LMICs is the inability of vaccine supply

chains (VSCs) to ensure the availability of vaccines at the administration points (Aina et al.,

2017). An important contributing factor to the vaccine distribution challenge is the presence

of a rainy season, during which facilities are cut off from the road network. According to

the World Health Organization (WHO), floods and extreme precipitation are increasing in

frequency and intensity, further disrupting the supply of medical and health services (WHO,
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2018). Moreover, the impact of the rainy season will likely increase in the future due to climate

change, disproportionally affecting LMICs with weak health infrastructure. While SDG 13 (UN,

2019a) aims to strengthen resiliency to climate-related hazards and advance climate change

mitigation and impact reduction, limited research exists on improving supply chain resiliency

to rainy season disruptions. The want of prior work in this area is likely due to the lack of

data (reliable data on road networks, VSC disruptions due to flooding, and the geographical

distribution of demand are not readily available) and a modeling framework to describe the

impact of the rainy season on supply chain performance.

In this paper, we develop a data-driven modeling approach combining spatial modeling and

discrete-event simulation to assess and mitigate the effect of the rainy season on vaccination

coverage and inequalities in LMICs, and we apply it to the Malagasy VSC, using data pro-

vided by our field collaborators at UNICEF Madagascar. Our discrete-event simulation model

captures the important characteristics and challenges inherent to VSCs in LMICs, including

transportation capacity and potential cold chain breakdowns. Furthermore, we leverage geo-

graphic information systems (GIS) and spatial modeling to overcome the lack of data, allowing

us to predict realistic estimates for the road network, the parts of the supply chain network that

are likely to be disrupted during the rainy season, and the geographical distribution of demand.

While we apply our modeling framework to the Malagasy VSC, its structure is general and

representative of VSCs in other LMICs, many of which routinely face disruptions caused by a

rainy season. As a result, our insights and mitigation strategies are applicable beyond the case

of Madagascar.

We use our modeling framework to address three main questions. First, what are the key

drivers behind the public health performance of the Malagasy VSC? Specifically, what is the

impact of rainy season disruptions and the current operational strategy on vaccination coverage

and inequalities? Second, how effective are simple, shorter-term modifications to the Malagasy

VSC operations to improve the health outcomes (i.e., vaccination coverage, inequalities) of the

current system and to mitigate the effect of the rainy season? Third, how sensitive is the

performance of the current VSC, as well as the proposed mitigation strategies, to increased

disruptions due to climate change?

Our simulation of the current system uncovers two main drivers of low vaccination coverage

within the VSC. First, using our spatial modeling framework we are able to identify the facilities

which are most likely to be impacted by the rainy season disruptions. Our estimates indicate
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that vaccination coverage is on average 27 percentage points lower in those facilities that are

affected by the rainy season, confirming that rainy season disruptions in the VSC are a main

driver of unequal access to vaccines. Second, we find that missed orders are a much larger source

of operational inefficiency in the Malagasy VSC than wasted vials due to cold chain or trans-

portation breakdowns. Furthermore, the missed orders are not only due to upstream stockouts

but also due to limited transportation capacity. We explore various operational strategies to

mitigate the impact of the rainy season. We find that while increasing the order-up-to levels at

facilities affected by the rainy season results in a modest improvement in vaccination coverage

(3 percentage points for facilities impacted by the rainy season, 1 percentage point nationally),

the full potential of the rainy season mitigation strategy is only realized when the underlying

operational bottlenecks in the VSC are concurrently addressed. By jointly increasing the VSC’s

transportation capacity (through increased replenishment frequency), the vaccination coverage

of facilities affected by the rainy season can be increased by 29 percentage points (accompanied

by a 23 percentage point increase in the national vaccination coverage). Finally, we find that a

relatively mild increase in flooding, due to climate change, would result in 37% more facilities

being affected. Although the mitigation strategy of jointly increasing transportation frequency

and order-up-to levels at the affected facilities is still effective, it cannot prevent some deterio-

ration in vaccination coverage. More substantial action is therefore required to make the VSC

robust to climate change.

Our work makes practical-, academic-, and policy-relevant contributions. Practically, we

provide concrete suggestions for improving the VSC in Madagascar. Furthermore, VSCs in

most other countries in sub-Saharan Africa (SSA) are also assisted by UNICEF and have a

similar structure. Therefore, our results are applicable to inform VSC design beyond Madadas-

car. From an academic perspective, we propose a modeling framework combining discrete-event

simulation modeling with state-of-the art spatial modeling to estimate the road network and

the geographical distribution of demand, and to predict supply chain disruptions due to the

rainy season and increased flooding due to climate change. The use of GIS and spatial mod-

eling provides an opportunity for the humanitarian and global health operations management

community, as it allows researchers to obtain realistic estimates of geographical data that are

often unavailable. Finally, this work contributes to the SDGs in several ways. Assessing and

improving vaccination coverage and inequalities (induced by the rainy season) contributes to

reducing preventable deaths of newborns and children under five years of age (SDG 3.2) as well
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as to provide access to vaccines for all (SDG 3.8) (UN, 2019b). Investigating and understand-

ing the potential impact of increased flooding due to climate change contributes to improving

resiliency to climate-related hazards (SDG 13.1) and to raising awareness on climate change

mitigation and impact reduction (SDG 13.3) (UN, 2019a).

The remainder of this paper is organized as follows. We review the existing related literature

in Section 2, and provide background information on VSCs in LMICs and the case of Madagascar

in Section 3. Our data-driven modeling approach combining spatial modeling and discrete-event

simulation is discussed and validated in Section 4. Results and policy insights are reported in

Section 5, and Section 6 presents concluding remarks including a summary of the main insights,

a discussion of the limitations of this study, and opportunities for future work.

2 Related literature

Kraiselburd and Yadav (2012) state that ineffective and poorly designed supply chains for

purchasing and distributing medicines, vaccines, and health technologies are one of the most

important barriers to increasing access in LMICs, and they indicate the potential contribution

of the operations management research community in these settings. Our work contributes to

the growing body of literature on global and public health operations management, including

not-for-profit and development operations.

This includes work regarding the impact of donor funding on inventory management (Natara-

jan and Swaminathan, 2014), inventory allocation (Natarajan and Swaminathan, 2017) and na-

tional stock-outs of life-saving drugs (Gallien et al., 2017), the estimation and measurement of

managerial efficiency drivers of country-level health care programs (Berenguer et al., 2016), the

location of health facilities and planning of health schemes in rural areas (Smith et al., 2009), and

the location and routing of mobile health clinics (Doerner et al., 2007) in LMICs. Furthermore,

Leung et al. (2016) investigate the impact of inventory management on stock-outs of essential

drugs in health clinics in Zambia, thereby indicating that more rigorous, independent research

on pharmaceutical supply chains in LMICs is needed. In addition, McCoy and Lee (2014) model

the impact of increasing the capacity of the health delivery fleet in Zambia on efficiency and

equity. The global and public health operations literature also includes studies that aim to im-

prove several aspects of tuberculosis and HIV supply chains such as improving HIV early infant

diagnosis supply chains (Deo and Sohoni, 2015; Jónasson et al., 2017), locating roadside clinics
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in Africa to improve access to HIV related services for long distance truck drivers (Ares et al.,

2016; de Vries et al., 2020), and allocating scarce resources for planning treatment programs

while explicitly incorporating adherence (Mccoy and Johnson, 2014). Furthermore, de Treville

et al. (2006) illustrate how basic principles of operations management can assist not-for-profit

organizations by presenting a case study in which they assess the impact of long lead times

on the efforts of the WHO to eradicate tuberculosis. Another stream of papers focuses on the

malaria supply chain by designing strategies to improve the distribution of malaria medications

(Parvin et al., 2017) and by investigating whether donors should subsidize the purchases and/or

the sales of the private-sector distribution channel to improve access to malaria drugs (Taylor

and Xiao, 2014). In global and public health settings, community health workers often play

an important role. In this regard, Cherkesly et al. (2019) investigate the design of a network

of community health workers in underserved areas. Whereas all of the above studies focus on

the supply side, Mehrotra and Natarajan (2019) incorporate both supply and demand in their

analysis by allocating a limited budget to patient and provider incentives to maximize health

outcomes in humanitarian health care service programs.

A last stream of papers that is related to global and public health operations, and that is

most closely linked to our study, focuses on VSCs in LMICs (see De Boeck et al. (2019) for a

detailed review). Most closely linked to our paper are studies that investigate the impact of

altering shipping policies and frequencies (Assi et al., 2013; Brown et al., 2014), and the effect

of implementing different ordering policies combined with various buffer stock levels (Rajgopal

et al., 2018). Moreover, Haidari et al. (2016) and Rabta et al. (2018) explore the impact of

operating drones and indicate their potential, especially for addressing last mile distribution

problems. Approaching immunization systems from a broader, system-wide perspective, De-

couttere et al. (2020) capture the complexity of immunization systems by mapping the different

subsystems and their links to the SDGs. The main differentiating factors of our work are its

focus on the impact of the rainy season, and the combination of spatial modeling and discrete-

event simulation. Moreover, we incorporate several characteristics inherent to VSCs that are

not or only sporadically considered in the current literature on VSCs (e.g., unreliable cold chain

equipment, stochastic transportation times) (De Boeck et al., 2019).
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3 Vaccine supply chains in LMICs and the case of Madagascar

In this section, we provide some background information on VSCs in LMICs (Section 3.1) and

we introduce the case of Madagascar (Section 3.2).

3.1 Background on vaccine supply chains in LMICs

VSCs in LMICs mainly consist of four components (De Boeck et al., 2019): sourcing of vaccines

at the central (i.e., national) level, storage of vaccines at the storage facilities, transportation

of vaccines between levels, and administration of vaccines at the administration points. In

the remainder of this subsection, we give a brief overview of each of these components. For

a detailed overview and comprehensive review of vaccine distribution networks in LMICs, we

refer to De Boeck et al. (2019) and references therein.

Initially, vaccines are shipped from the manufacturer to the destination country. Often,

health and humanitarian organizations, including the WHO, UNICEF, the Pan American Health

Organization (PAHO), and the Global Alliance for Vaccines and Immunization (GAVI), provide

assistance during the procurement process by identifying qualified vaccines and manufacturers,

and by ensuring affordable prices (Herlin and Pazirandeh, 2012).

Throughout the VSC, vaccines are stored at different storage locations. Given the required

low temperatures during storage, appropriate cold chain equipment (CCE) is needed. In LMICs,

the requirement of CCE for storage introduces multiple challenges: CCE is often unreliable due

to equipment failures, power outages and an unreliable electricity grid; preventive maintenance

to avoid equipment failures is rarely executed; spare parts are often not available; and repair of

CCE can take months (Ashok et al., 2017; Brooks et al., 2017; Karp et al., 2015; Lennon et al.,

2017). In addition, storage space at the facilities is limited and in practice sometimes needs to

be shared among vaccines and other temperature-sensitive products.

Transportation of vaccines between the facilities is done using a variety of transportation

modes (e.g., airplanes, trucks, motorcycles, bicycles, carrying vaccines on foot) depending on the

road conditions and the accessibility of the facilities. Distributing vaccines in LMICs also poses

several challenges: transportation durations are stochastic due to transportation disruptions

including bad road conditions, possibility of vehicle ransacking and vehicle issues; remote areas

can be very hard to reach; and vaccines need to be kept cold during transportation, resulting

in the requirement of adequate CCE for distribution (Lemmens et al., 2016).
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The final component of the VSC is the actual administration of the vaccines. An important

form of wastage encountered in this step is open-vial wastage which occurs when a multi-dose

vial is opened, but not all doses are administered. Since several multi-dose vials cannot be

used anymore six hours after opening, the remainder of doses in a multi-dose vial at the end

of a vaccination session is discarded, and thus results in open-vial wastage (WHO, 2014). It is

important to note the difference between a vaccine dose and a vaccine vial. To administer one

vaccination to a child, one vaccine dose is needed. A vaccine vial is a unit that can contain one

or multiple doses. This means that for a ten-dose vial with open-vial wastage, a daily demand

of one or ten doses results in the same number of demanded vials (i.e., one vial). Depending on

the vaccine, vaccine vials can be single- or multi-dose. The smallest unit possible to transport or

store is thus a vaccine vial (possibly containing multiple doses). General policy states that after

depleting a multi-dose vial, a new vial should be opened upon a patient arrival (Heaton et al.,

2017), meaning that every arriving patient gets vaccinated if enough vaccines are available.

VSCs in LMICs face high percentages of wastage. In addition to open-vial wastage occurring

at the administration step, a second type of wastage comprises closed-vial wastage. Closed-vial

wastage results from unreliable storage and distribution equipment, and limited shelf life (e.g.,

vaccines that have been out of the required temperature ranges, vaccine vials broken or lost

during storage or transportation) (Wallace et al., 2017).

3.2 The Malagasy vaccine supply chain

The current VSC of Madagascar is representative of VSCs in the region and has a similar

structure as described in Section 3.1. The Malagasy VSC consists of four levels: one national

facility in Antananarivo, 22 regional facilities, 106 district facilities and 3155 basic health cen-

ters. The national facility receives vaccines from the manufacturer through UNICEF, our field

collaborator. These national deliveries are scheduled to take place four times per year. Next,

from the national facility, there are two ways in which vaccines can flow through the network

to the district level. First, in the standard way, shipments from the national to the regional

facilities occur on a trimestral basis through (cold) trucks or airplanes. These vaccines are then

transported from the regional to the district level through trimestral deliveries by pick-ups or

motorcycles. Second, a selected few district facilities are replenished directly by the national

facility by means of (cold) trucks or airplanes. This is the case for district facilities that are

either close to an existing transportation route or that are geographically isolated. Finally,
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vaccines are picked up monthly from the district facilities by the basic health centers (which

serve as vaccination points).

The Malagasy VSC faces numerous challenges. Similar to other LMICs, it has a high

percentage of obsolete CCE and vaccine wastage. Also, the existing road network is in poor

condition as it is the 5th worst in the world according to the World Economic Forum (2017).

In addition, getting the required vaccines to the targeted population in Madagascar is further

complicated by the presence of a rainy season. During the rainy season (from November to

March), the accessibility of the affected transportation links is reduced or eliminated, resulting

in numerous facilities that are seasonally isolated for months at a time. According to the World

Bank (2015), rain-related issues (i.e., floodings, cyclones, late rains) accounted for 26.6% of the

negative shocks reported in 2010 in Madagascar. Moreover, sea levels will rise in the future due

to climate change, increasing the number of transportation links and facilities affected by the

rainy season (USAID, 2017). The World Bank reports that “Madagascar is one of the most

climate vulnerable countries in the world with a poor and predominantly rural population, a

high geographical exposure to climate events, and a lack of readily available resources to respond

to and recover from natural disasters” and predicts that the potential future impact of extreme

precipitation and flooding, and sea level rise on health services in Madagascar is alarmingly

high (World Bank, 2015).

Moreover, Madagascar experiences major inequities in immunization coverage, which are

mainly geographic in nature. A study done by van den Ent et al. (2017) indicates that a child

living in a more wealthy region of Madagascar is 3.4 times more likely to be vaccinated than

a child living in a poorer region characterized by remote areas located far away from access

to health care. Also, the World Bank stated in 2015 that “almost 30 percent of all deaths in

Madagascar are still attributable to preventable and infectious and parasitic diseases, with the

burden of disease falling disproportionately on the poor” and that “immunization is a proxy

indicator of the availability of primary health care in a country, and this has declined from 62

percent in 2008 to 33 percent in 2012 in some of the poorest regions in Madagascar” (World

Bank, 2015).
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4 Modeling approach

We develop a data-driven modeling approach combining spatial modeling and discrete-event

simulation to capture the dynamics of the Malagasy VSC, including the impact of the rainy

season. In the remainder of this section, we first give a brief overview of the data sources

(Section 4.1). We then describe our simulation model of a multi-tiered VSC (Section 4.2)

including the model structure (Section 4.2.1) and the model outputs (Section 4.2.2). Next, we

explain how we use spatial models to obtain critical inputs to the simulation model (Section

4.3) including the flood hazard map (Section 4.3.1), the road network and routes during the

dry season (Section 4.3.2), the rainy season disruptions (Section 4.3.3), and the geographical

distribution of vaccination demand to the basic health centers (Section 4.3.4). Finally, we

validate our modeling approach in Section 4.4. Figure 1 provides a schematic overview of the

modeling approach. We refer the reader to Appendices A, B and C for more detailed discussions

of the modeling and assumptions, the data sources, and the validation.

4.1 Data sources and collaborators

The field data used in this paper is provided by UNICEF Madagascar. It comprises (i) an Effec-

tive Vaccine Management (EVM) analysis carried out in 2014, (ii) a Health System Strength-

ening Cash Support proposal form composed in 2014, (iii) the Health Sector Development plan

for 2015-2019, proposed in 2015, (iv) an application for support from the cold chain optimi-

sation platform from September 2016, (v) data on the district needs per vaccine antigen for

the routine immunization delivery in August and September of 2015, and (vi) a file, combining

114 separate files from 2017, providing facility locations and data detailing the capacities and

resources per district. In addition to providing data, UNICEF Madagascar supported us by an-

swering data-related questions and explaining several aspects of the Malagasy VSC. Moreover,

information on vaccines’ representation and characteristics (e.g., number of doses required to

be fully vaccinated, wastage rates), and inventory and cold chain guidelines (e.g., safety factor

for order-up-to levels) are available on the WHO website.

These field data and WHO information were leveraged to estimate a substantial proportion

of the model’s input parameters. To obtain representative estimates for the remaining input

parameters, we use a combination of spatial modeling (using open-source data), relevant liter-

ature, expert opinions, observations during field studies in SSA, and our own rationale. The
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Figure 1: Schematic overview of the modeling approach
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developed spatial models are explained in Section 4.3, and an overview of the model’s input

parameters, the type of sources used to determine the input values, and a discussion of the input

values that are based on relevant literature, expert opinions, observations during field studies

in SSA, and our own rationale can be found in Appendix B.

4.2 Discrete-event simulation model

Our discrete-event simulation model is designed to characterize the Malagasy childhood VSC,

capturing the important characteristics and challenges inherent to a VSC in a LMIC. This

means that the simulation model accounts for different types of wastage (i.e., open-vial wastage

and closed-vial wastage), considers limited storage and transportation capacities, and allows

for several uncertainties (i.e., unreliable storage equipment, stochastic transportation times,

stochastic demand). The generic structure of our discrete-event simulation model therefore also

applies to other countries in SSA.

4.2.1 Model structure

Our discrete-event model simulates the supply chain of childhood vaccines from the arrival at the

national storage facility to the administration of the vaccines at the health center level. Our units

of analysis are boxes containing a specified number of vaccine vials that are transported between

and stored at facilities throughout the VSC. Facilities are classified as either storage facilities at

the national, regional and district levels, or basic health centers at the lowest level of the supply

chain. Administration of vaccines only occurs at the basic health centers. Transportation

between storage facilities is conducted by one of the available transportation modes. Each

vaccine antigen differs with respect to the number of doses per vial, the number of doses required

to be fully vaccinated, the packed volume per vial, the wastage rate as defined by the WHO,

and, for a given multi-dose vial, whether there is open-vial wastage (i.e., whether the multi-dose

vial cannot be used anymore after opening).

The model is designed to capture three main aspects that cause problems in VSCs in

LMICs: (i) cold chain storage bottlenecks, including CCE breakdowns and limited storage

space, (ii) transportation bottlenecks, including unpredictable transportation times and limited

total transportation capacity (which is a combination of the number of vehicles available, the

available transportation capacity in each vehicle, and the replenishment frequency), and (iii)

exogenous disruptions, i.e. the rainy season.
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Table 1: Overview of main data sources used to model characteristics (more detailed overview
in Appendix B)

Supply chain tier Characteristic Main data source

Storage facilities Ordering process Field data, WHO information
Storage of vaccines Field data, expert opinion
Handling and execution of orders Field data, spatial models

Basic health centers Ordering process Field data, WHO information
Administration of vaccines WHO information, spatial models

In the remainder of this subsection, we give a (high-level) overview of the model structure

and highlight the most important aspects. We first discuss the main characteristics of the

storage facilities at the national, regional and district levels: the ordering process of outgoing

orders, the storage of vaccines (including cold chain storage bottlenecks), and the handling and

execution of incoming orders at the supplying facilities (including transportation bottlenecks

and rainy season disruptions). Next, we present the main characteristics of the basic health

centers: the ordering process and the administration of vaccines. An overview of the main data

sources used to model each of these characteristics is given in Table 1. A detailed description of

the model structure, including notations, probability distributions of the stochastic parameters,

and equations, is given in Appendix A.1.

Storage facilities at national, regional and district levels. The first main characteristic

of the storage facilities is the ordering process of outgoing orders. The storage facilities are

replenished at specified rates (usually every three months) and have an order-up-to level for

each vaccine antigen.1 When ordering vaccines, the effective storage space is taken into account.

More specifically, it is possible (e.g., due to fridge breakdowns) that there is not enough storage

space left at the facility to store all the planned ordered vaccines (i.e., the effective capacity is

smaller than the required capacity to store the sum of all boxes of vaccines currently present

at the facility and the planned ordered vaccines). In this case, the ordered quantities for each

vaccine antigen are reduced proportionally to the capacity available and the volumes that were

planned to be ordered. At the national level, it is possible that a replenishment is not fulfilled

due to delays in the procurement process.

The second main characteristic is the storage of vaccines. Each storage facility has a number

of cold rooms and fridges available. However, a significant proportion of the fridges can be

1In practice, the WHO often refers to this policy as the min-max policy.
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obsolete. Moreover, due to the unreliability of the CCE, the limited execution of preventive

maintenance, and the unavailability of spare parts, fridges fail after a stochastic life period.

Depending on the type of failure, these fridges need to be repaired or replaced. Due to these cold

chain failures, the effective capacity might be substantially lower than the installed capacity. In

addition, when a CCE failure occurs, the resulting effective capacity might be smaller than the

required capacity to store all boxes of vaccines currently present at the facility, and some boxes

are therefore discarded. The number of discarded boxes for each vaccine antigen is proportional

to the volumes that were stored at the facility before the CCE failure occurred. To account

for local practices at many storage facilities in response to cold chain problems with respect to

insufficient storage space (e.g., transporting vaccines to the nearest facility and retrieving the

vaccines right before vaccination sessions), we assume that there is always at least one fridge

working at each facility.

The final main characteristic is the handling and execution of incoming orders (including

transportation) at the supplying facilities. This is done using fixed transportation routes. When

multiple facilities are included in a transportation route, and the sum of the ordered quanti-

ties exceeds the current stock of the supplying facility, the shipped quantities are determined

proportionally to the ordered quantities. Each facility has a number of transportation modes

available. The transportation mode that is used to deliver the order depends both on the avail-

ability of the transportation modes and the total required capacity of all orders included in the

route. First, it is checked whether a transportation mode is available that has a net capacity

greater or equal to the total required capacity. Next, if no such transportation mode is cur-

rently available, the transportation mode with the greatest net capacity that is currently idle

is selected. Last, if no transportation modes are currently idle, the orders are canceled. In case

the net capacity of the selected transportation mode is smaller than the total required capacity,

the total shipped quantities are reduced proportionally to the volumes that were planned to be

shipped. After the shipped quantities are determined, the route is executed. We assume that

transportation times are stochastic and drivers only depart from a facility to continue their

route during working hours. During transportation, a percentage of the vaccines is lost due

to e.g. breakage, depending on the transportation mode. If a facility cannot be reached due

to rainy season disruptions (i.e., Section 4.3.3), it is not replenished during the rainy season.

Moreover, we assume that the accessible facilities are also impacted by the rainy season, as the

transportation times increase during this period of the year (in terms of average and variance).
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Basic health centers. The first main characteristic of the basic health centers is the ordering

process. From each basic health center, someone travels to the supplying storage facility to pick

up vaccines at a specified rate. To determine the required quantities for each vaccine antigen, an

order-up-to policy is applied. The order-up-to level is based on the average forecasted demand,

and is increased by a wastage factor and a safety factor (i.e., 25%) as determined by the WHO.

The second characteristic is the administration of vaccines at the basic health centers, which

occurs on a specified number of vaccination days per week. The demand at each basic health

center for each vaccine antigen is stochastic. Moreover, the total yearly demand is capped by

a maximum that is based on the basic health center’s catchment area (i.e., Section 4.3.4).2 In

order to account for open-vial wastage (i.e., Section 3.1), we model the demand for each vaccine

antigen in doses (instead of vials or boxes).

4.2.2 Model outputs

Each simulation replication runs for five years, of which the first two years count as the warm-up

period. The model outputs are based on 50 replications. We calculate yearly statistics, thus

obtaining 150 observations for each model output. We define two types of key model outputs:

public health performance and operational performance. These model outputs are all related to

SDG 3 that aims to increase good health and well-being for all (UN, 2019b). While the public

health outcomes are directly linked to SDG 3, the operational outcomes are indirectly linked

to this SDG as they provide possible explanations for, and help to define underlying causes of

public health outcomes.

Public health performance. The first main public health outcome of interest is the pro-

portion of children who have access to all required doses of all recommended vaccine antigens

(by calculating the minimum vaccination coverage rate over all required vaccine antigens). We

refer to this outcome as full vaccination coverage rate, and denote it by α. Furthermore, we

report this outcome for the catchment areas of all facilities (αtot), facilities that are affected

by the rainy season (αR), and facilities that are not affected by the rainy season (αNR). For

the remainder of the paper we refer to the latter two sets of facilities as rainy and non-rainy

season affected facilities. Importantly, these full vaccination coverage rates are different from

2Note that this means that we include all eligible children in the demand. The rationale behind this modeled
demand is that there should be a vaccine available for every child. A discussion on the demand assumption is
provided in Section 6.2.
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the immunization coverage rates as defined by the WHO. That is, our simulation model in-

cludes all eligible children in the demand, whereas the immunization coverage rates as defined

by the WHO depend on realized demand, which is censored due to a number of influencing de-

mand factors (e.g., operational, behavioral, social) and factors related to service delivery such as

nurse availability. To understand what it takes to reach full vaccination, we look at population

numbers (i.e., Section 4.3.4).3

The second public health outcome of the model is the mean absolute deviation in full vac-

cination coverage defined as

MADfac =

∑J
j |αj − αtot|

J
, (1)

which provides an indication of the inequalities in full vaccination coverage between the catch-

ment areas of the different facilities j ∈ J .

Operational performance. The first set of operational outcomes of the model are the types

of waste. The model reports the maximum number of boxes wasted/discarded over the different

vaccine antigens (i) because of CCE breakdown: WCCE , and (ii) during transportation: Wtr.

The second set of operational outcomes of the model are the types of missed orders (facil-

ities to facilities). The model reports the maximum number of missed orders (in boxes) over

the different vaccine antigens because of (i) insufficient inventory at the higher level facility:

MOinv, (ii) unavailability of vehicles at the higher level facility: MOveh, and (iii) insufficient

transportation capacity: MOcap.

4.3 Spatial models

A key challenge to studying geographical aspects of supply chains (including environmentally

driven disruptions) is the lack of data. Similarly for our study, not all required input data could

be extracted from the provided field data and WHO information (as mentioned in Section 4.1).

More specifically, no detailed field data are available on the road network, the rainy season dis-

ruptions, and the geographical allocation of vaccination demand to specific basic health centers.

We propose to overcome these data-related challenges and obtain realistic estimates through

the use of GIS.4 In this section, we use GIS and spatial modeling to calculate flood hazard risks

3Further discussion on the demand assumption is provided in Section 6.2.
4GIS systems are designed to capture, store, manipulate, analyze, and present geographical data. They can be

used to edit data in maps, analyze and combine spatial information, and present data and outcomes of analysis.
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(Section 4.3.1), to define the road network and routes during the dry season (Section 4.3.2),

to predict rainy season disruptions (Section 4.3.3), and to obtain the geographical allocation of

demand to the basic health centers (Section 4.3.4).

4.3.1 Flood map

To create a flood hazard map of Madagascar that identifies areas that are at high risk of

flooding, we apply the method used by Kourgialas and Karatzas (2011) and Ozkan and Tarhan

(2016). This method classifies each pixel5 of the region under study into categories of flood

hazard ranging from very low to very high risk by calculating a flood hazard value between 1

and 10 (where 1 and 10 indicate a very low and very high flood hazard, respectively). Similar

to prior literature, we consider five factors that contribute to the flood hazard value: flow

accumulation, slope, land use, rainfall intensity, and elevation (Ajin et al., 2013; Kourgialas and

Karatzas, 2011; Ozkan and Tarhan, 2016). To create the final flood hazard map, we apply a

linear combination of the five factor maps, using weights calculated to reflect the interaction

between different factors, based on established methods (Shaban et al., 2001). We create the

different factor maps using open-source data. The modeling details (including a description

of how we applied the methods outlined above to Madagascar, an overview of the applied

classifications, interactions and weights, and the five individual factor maps) and a description

of the open-source data used can be found in Appendix A.2.1.

Applying the methods outlined above, we obtain the consolidated flood hazard map depicted

in Figure 2. This map indicates that the South-East coastline and the North-Western part of

Madagascar are extremely prone to flooding.

4.3.2 Road network and routes during dry season

As a map of the Malagasy road network is not available online (e.g., some routes between facil-

ities could not be found using OpenStreetMap), we define it using established spatial modeling

approaches. For this purpose, we use the friction surface expressed as the maximum rates at

which humans can move through each pixel of the world’s surface (expressed in minutes per

meter). These open-source data are obtained from the project on accessibilities to cities of

the Malaria Atlas Project (Earth Engine Data Catalog, 2019; Weiss et al., 2018). The inputs

used to create this friction surface map consist of gridded surfaces that quantify the geograph-

5A pixel is the unit of analysis for spatial models, proportional in size to the resolution of the underlying map.
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Figure 2: Flood hazard map

ical positions and salient attributes of roads, railways, rivers, water bodies, land cover types,

topographical conditions (slope angle and elevation), and national borders (Weiss et al., 2018).

We approximate the Malagasy road network during the dry season by removing pixels in

the friction surface map that correspond to speeds below 10 kilometers per hour (as the speed

to travel by foot or river boat is below 10 kilometers per hour). In this way, we obtain the

road network shown in Figure 3a.6 To calculate the transportation times between facilities, we

locate the facilities on the road map and define the routes between the facilities using GIS.

4.3.3 Rainy season disruptions

To define the road network during the rainy season, we combine the flood hazard map (Section

4.3.1) with the map of the road network during the dry season (Section 4.3.2). That is, we

determine a threshold on the flood hazard value above which a pixel of the map is considered

flooded. In this study, we consider areas with a flood hazard value of 7.5 or higher as flooded.

This threshold value corresponds to a high flood hazard risk according to the classifications of

Kourgialas and Karatzas (2011) and Ozkan and Tarhan (2016), and the corresponding flooded

areas include the areas indicated by field data. The flooded pixels are removed from the road

network during the dry season in order to obtain the road network during the rainy season

(depicted in Figure 3b).

6Note that we converted the speeds from minutes per meter to minutes per kilometer for the sake of clarity.
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Figure 3: The Malagasy road network during (a) the dry season and (b) the rainy season

(a) Dry season (b) Rainy season

To determine the facilities that are affected during the rainy season (i.e., facilities that are

cut off from the road network), we define the routes between the facilities using the road map

during the rainy season shown in Figure 3b. If no route from the supplying facility to a facility

exists, the latter is considered to be rainy season affected. We predict that 39% of facilities are

impacted by the rainy season with respect to disrupted roads. Figure 8 in Appendix A.2.2 gives

a geographical overview of these facilities.

4.3.4 Geographical allocation of demand to the basic health centers

To define the catchment areas of the basic health centers, we use the friction surface explained

in Section 4.3.2 (Earth Engine Data Catalog, 2019; Weiss et al., 2018) and the locations of the

basic health centers (Madagascar Decision Support System, 2019). We furthermore assume that

people will go to the basic health center that they can reach the fastest (i.e., they minimize their

traveling time). Combining this information using spatial modeling, we obtain the catchment

areas of the basic health centers and the corresponding travel times (during the dry season) to

the nearest health center (depicted in Figure 9 in Appendix A.2.3).

To obtain the number of children that need to be vaccinated in each basic health center’s

catchment area, we use estimates of the number of births per pixel. These open-source data

are obtained from Worldpop (Worldpop, 2019) and contain numbers of live births with national

totals adjusted to match UN national estimates. These data are produced by integrating mul-

tiple data sources on population distribution, age structure, and fertility rates. Further details
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on the methods used to create these data can be found in James et al. (2018) and Tatem et al.

(2014). Combining the numbers of live births with the catchment areas of the basic health

centers using spatial modeling, we obtain estimates of the number of children that need to be

vaccinated in each basic health center’s catchment area.

4.4 Model validation

4.4.1 Spatial models

As the construction of the spatial maps is motivated by the absence of detailed data, it is not

possible to validate the maps on the basis of field data. We therefore validate the obtained flood

hazard and road map by comparing our outcomes with publicly available information.

First, a categorized flood hazard map (in the form of an image), indicating flood risks in

Madagascar, is made available by OasisHub, a research program that publishes environmental

data (OasisHub, 2019; Climate-ADAPT, 2019). The areas and degrees of risk indicated on the

map provided by OasisHub are similar (by visual inspection) to those identified on the flood

hazard map that we constructed in Section 4.3.1 (i.e., Figure 10 in Appendix C).

Second, an overview of the Malagasy road network is obtained from the Logistics Capacity

Assessment (LCA) tool, a tool hosted by the World Food Program (LCA, 2019a,b). LCAs give

an overview of the logistics infrastructure, processes and regulations, markets, and contacts in

over 100 countries. The road infrastructure provided by the LCA matches (by visual inspection)

the road network during the dry season that we developed in Section 4.3.2 (i.e., Figure 11 in

Appendix C). Also, the routes between facilities that can be found via OpenStreetMap and

GoogleMaps are similar to the ones found using our map of the road network.

Finally, our flood hazard map (Figure 2) and the road maps during the dry and rainy season

(Figure 3) were validated through collaborator discussions.

4.4.2 Simulation model

Validating the outcomes of the simulation model poses a challenge for various reasons. First of

all, the only performance measures that are publicly available are the immunization coverage

rates as defined by the WHO. These can be accessed through the WHO website (WHO/UNICEF,

2018) or through the website of the Demographic and Health Surveys (DHS) (Demographic

and Health Surveys Program, 2019). As mentioned in Section 4.2, these immunization coverage
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Table 2: Comparison of reported immunization coverage rates and simulated full vaccination
coverage rates

Level of aggregation Region WHO data (2014) DHS data (2008-2009) Simulation output αtot (2014)

National Madagascar 64.00 61.60 61.63
Regional Alaotra Mangoro - B B

Amoron’i Mania - B B
Analamanga - B B
Analanjirofo - B W
Androy - W W
Anosy - W B
Atsimo Andrefana - W B
Atsimo Atsinanana - W W
Atsinanana - B W
Betsiboka - W W
Boeny - W W
Bongolava - B B
Diana - B B
Haute Matsiatra - B B
Ihorombe - W W
Itasy - B B
Melaky - W B
Menabe - W B
Sava - W W
Sofia - W W
Vakinankaratra - B B
Vatovavy Fitovinany - W W

Notes: B: better than national performance, W: worse than national performance.

rates are based on the realized demand (and are therefore censored as they are affected by stock-

outs, nurse availability, and a number of influencing operational, behavioral and social factors),

whereas the full vaccination coverage rates from the simulation model are based on population

numbers to understand what it takes to get full immunization. Second, these data are mostly

only available at the national level. Only the DHS data is disaggregated and provides immu-

nization coverage rates at both national and regional levels. However, the most recent DHS

data on immunization coverage rates in Madagascar dates from 2008-2009. Therefore, an exact

comparison between the immunization coverage rates available on the WHO and DHS websites,

and the full vaccination coverage rates from the simulation model is not possible.

Although an exact comparison is not meaningful, we make an attempt to validate the simula-

tion model by (i) comparing the national full vaccination coverage from the simulation model αtot

with national immunization coverage rates recorded in WHO and DHS data (WHO/UNICEF,

2018; Demographic and Health Surveys Program, 2019), and (ii) comparing the regions in terms

of ‘better than national: B’ or ‘worse than national: W’ performance. From the DHS data, we

use the variable ‘received all 8 basic vaccinations’ from the 2008-2009 survey.

Table 2 indicates that our simulation model correctly predicts the national full vaccination
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coverage, and that it captures the differences between regions. That is, the model correctly

predicts whether a region performs better or worse than the national coverage rate for 73% of

the regions. Moreover, since our modeling approach focuses on the supply of vaccines, modeling

the rainy season and operational decisions, but does not include behavioral or social demand

aspects, it indicates which regions are performing below average due to supply issues. Therefore,

the results in Table 2 suggest that 67% (8 out of the 12 regions labeled as ‘W’ in the DHS data) of

regions with low reported immunization coverage rates are affected by operational inefficiencies

or rainy season disruptions. The observed differences between the DHS data and the simulation

outcomes might be explained by (i) demand for vaccinations that is substantially lower than

the maximum demand in poor or remote areas, (ii) immunization rates that are close to the

national immunization coverage rate, or (iii) differences between 2008-2009 and 2014.

Overall, we believe that the results in Table 2 suggest that our modeling approach, combin-

ing spatial modeling and discrete-event simulation, satisfactorily captures the behavior of the

Malagasy VSC.

5 Results and policy insights

In this section, we first report simulated estimates of the model outputs for the baseline sce-

nario (Section 5.1). Next, based on these results, we study the effect of several shorter-term

modifications to the current Malagasy VSC (Section 5.2). Last, we illustrate how our modeling

approach can be applied to assess the impact of an increase in flooding due to climate change

(Section 5.3).

5.1 Baseline scenario and effect of rainy season

First, consider the simulated model outputs of the baseline scenario which approximates the

stochastic behavior of the current Malagasy VSC (depicted in Table 3).

Observation 1. Substantial inequalities in full vaccination coverage between rainy and non-

rainy season affected facilities, and between facilities in general, are present in the current

Malagasy VSC. An estimated gap of 27 percentage points exists between rainy and non-rainy

season affected facilities, while our measure of inequality, MADfac, equals 25%.

Whereas the national full vaccination coverage αtot equals 62%, there is a substantial differ-

ence between the vaccination coverage of rainy season affected facilities αR which equals 43%
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Table 3: Simulation outputs of the current Malagasy VSC

Mean 95% CI

Public health performance
αtot (%) 62 [61; 62]
αR (%) 43 [43; 43]
αNR (%) 70 [70; 70]
MADfac (%) 25 [25; 25]

Operational performance
WCCE (boxes) 373 [329; 416]
Wtr (boxes) 1682 [1617; 1693]
MOinv (boxes) 22292 [21812; 22771]
MOveh (boxes) 162 [79; 245]
MOcap (boxes) 29745 [29320; 30171]

Notes: αtot, αR, αNR: full vaccination coverage based on all facilities, the rainy season affected facilities,
and the non-rainy season affected facilities, respectively. MADfac: mean absolute deviation. WCCE , Wtr:
waste due to CCE breakdowns and during transportation, respectively. MOinv, MOveh, MOcap: missed
orders due to insufficient inventory, unavailable vehicles, and insufficient vehicle capacity, respectively.

and that of non-rainy season affected facilities αNR which equals 70%. This results in a gap

of 27 percentage points, meaning that the burden of vaccine preventable diseases falls dispro-

portionally on the rainy season affected areas. Moreover, in line with prior literature, we find

that there are important inequalities (a simulated mean of 25% for MADfac) in full vaccination

coverage between facilities in general in Madagascar (van den Ent et al., 2017).

Observation 2. In the current Malagasy VSC, missed orders (52,199 boxes annually or 96%

of the sum of missed orders and discarded boxes) are a larger source of operational inefficiency

than wasted vials (2,055 boxes annually or 4% of the sum of missed orders and discarded boxes).

Most of these missed orders are due to either insufficient inventory (22,292 boxes or 42.5% of

the missed orders) or insufficient vehicle capacity (29,745 boxes or 57% of the missed orders).

The operational mechanisms driving the health outcomes can also be observed in Table 3.

The results indicate that in the baseline scenario, a substantial number of missed orders is due

to insufficient inventory or vehicle capacity. That is, whereas only 0.5% of missed orders is due

to the unavailability of vehicles, 42.5% and 57% of missed orders are induced by insufficient

inventory at the higher level facility and insufficient vehicle capacity, respectively. The outputs

in Table 3 also show that the total number of discarded boxes is mainly driven by issues

during transportation (82% of discarded boxes), and to a limited extent by CCE breakdowns

(18% of discarded boxes). Consequently, it seems that the major operational issues in the
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current Malagasy VSC are the missed orders due to insufficient inventory and vehicle capacity.

Moreover, given the limited number of discarded boxes due to CCE breakdowns, the missed

orders due to insufficient inventory are not because inventory at the facility is being discarded,

but because the boxes never got there as the facility was not replenished by the upper level

facility as it should have been. This also explains the relatively low number of wasted boxes as

boxes cannot be discarded if they do not reach the facility.

Observation 3. The main drivers for the public health performance of the current Malagasy

VSC are:

(i) Rainy season disruptions: Substantial inequalities are observed between rainy and non-

rainy season affected facilities.

(ii) Operational inefficiencies: The vehicle capacity constitutes an operational bottleneck,

impeding the flow of vaccines through the network.

Based on these simulated public health and operational outcomes, we identify two main

drivers that explain the observed low vaccination coverage and high inequalities. On the one

hand, the presence of the rainy season introduces an inequality gap between rainy and non-

rainy season affected facilities as the former are not replenished throughout the rainy season.

On the other hand, a shortage in vehicle capacity impedes the flow of vaccines through the VSC,

resulting in insufficient inventory at the facilities (in both the rainy and non-rainy season).

5.2 Effect of modifications to the Malagasy vaccine supply chain

Based on Observation 3, we consider the impact of two types of shorter-term modifications to

the Malagasy VSC: (i) introducing a rainy season inventory buffer for the rainy-season affected

facilities, and (ii) increasing the replenishment frequency. Both of these modifications have been

discussed by UNICEF Madagascar.

The first modification aims at mitigating the effect of the first driver, i.e. the rainy season

disruptions. Introducing a rainy season inventory buffer should increase the inventory levels at

the rainy season affected facilities, thereby reducing the number of stock-outs due to canceled

shipments during the rainy season. These rainy season buffers are implemented by increasing

the order-up-to levels (which already include a safety stock as determined by the WHO) of the

rainy season affected facilities. More specifically, in this study, we increase the order-up-to levels

with 50% and 100%, respectively. Note that a 100% buffer covers the entire demand during the
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Table 4: Simulation outputs of the current Malagasy VSC and the impact of the considered
modifications

Replenishment frequency 1 month 2 months 3 months

Rainy season buffer No buffer 50% 100% No buffer 50% 100% No buffer 50% 100%

Public health performance
αtot (%) 80 83 85 75 77 79 62 62 63
αR (%) 58 67 72 54 59 63 43 46 46
αNR (%) 90 90 91 85 85 86 70 70 70
MADfac (%) 17 13 11 21 19 20 25 26 27

Operational performance
WCCE (boxes) 61 88 174 301 433 510 373 429 383
Wtr (boxes) 2295 2412 2490 2127 2209 2243 1682 1694 1703
MOinv (boxes) 15503 15752 16758 16578 20514 26782 22292 30397 39108
MOveh (boxes) 10559 11324 11799 1445 1487 1062 162 233 254
MOcap (boxes) 1680 2540 4021 9154 14491 19277 29745 35893 39451

Notes: αtot, αR, αNR: full vaccination coverage based on all facilities, the rainy season affected facilities,
and the non-rainy season affected facilities, respectively. MADfac: mean absolute deviation. WCCE , Wtr:
waste due to CCE breakdowns and during transportation, respectively. MOinv, MOveh, MOcap: missed
orders due to insufficient inventory, unavailable vehicles, and insufficient vehicle capacity, respectively.

rainy season. However, due to limited storage space, it is possible that a facility does not have

enough storage space left to store the required buffer. In that case, the order-up-to levels are

increased until the maximum storage space is reached.

The second modification aims at reducing the impact of the second driver, i.e. the vehicle

capacity bottleneck. There are two obvious ways to do this: (i) increasing the vehicle capac-

ity (e.g., buying vehicles with larger capacity), or (ii) increasing the replenishment frequency,

thereby reducing the quantities that need to be transported during a single shipment. In this

study, we investigate the effect of increasing the replenishment frequency, since this is a shorter-

term modification that can be realized with minimal efforts and resources. More specifically,

we increase the replenishment frequency from every third month to every second month and

every month, respectively. Table 4 reports the simulated outcomes of these experiments. A

more detailed overview of these outcomes (including the 95% confidence intervals) can be found

in Appendix D.

Observation 4. To achieve the full mitigation potential of the rainy season buffer, operational

bottlenecks must be concurrently addressed (see Figure 4). By increasing the replenishment

frequency from trimestral to monthly shipments, the impact of implementing a 100% rainy

season buffer on vaccination coverage rates αtot and αR increases from 1 to 5 percentage points,

and from 3 to 14 percentage points, respectively.
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First, consider the impact of only implementing a rainy season buffer (while maintaining

trimestral shipments). Table 4 and Figure 4 show that solely increasing the order-up-to levels

of the rainy season affected facilities with 100% only slightly (although statistically significant

according to the 95% confidence intervals in Appendix D) improves αtot with 1 percentage

point. This improvement is entirely attributed to the rainy season affected facilities as αR

increases with 3 percentage points, resulting in a decrease of the gap between αNR and αR of

3 percentage points. Although resulting in an improvement of public health performance, the

estimated impact is limited. This is due to the substantial increase in the estimated number

of missed orders due to insufficient inventory MOinv and insufficient vehicle capacity MOcap.

These results imply that the observed limited effect of implementing a rainy season buffer is

due to operational inefficiencies hampering the flow of vaccines through the network. This, in

turn, impedes the rainy season affected facilities from actually reaching the order-up-to levels,

thereby not realizing the full potential benefits of implementing a rainy season buffer.

To further investigate this issue, Figure 5 gives an overview of the estimated total number

of delivered boxes during one year for each vaccine antigen at the district level for different

scenarios. In order to get insights into the differing impact on rainy and non-rainy season

affected facilities, these outcomes are calculated separately for (i) all district facilities, (ii) only

the rainy season affected district facilities, and (iii) only the non-rainy season affected facilities.

Figure 5 confirms our observation that the flow of vaccines through the network is blocked, as

solely implementing a 100% rainy season buffer does not substantially increase the number of

delivered boxes at the district level.

Next, we look at the effect of only increasing the replenishment frequency (without imple-

menting a rainy season buffer). Solely altering the replenishment frequency from trimestral to

monthly shipments considerably improves αtot with 18 percentage points. We also note the

substantial increase in the number of delivered boxes depicted in Figure 5. This again confirms

the vehicle capacity bottleneck in the current network. However, the results in Table 4 and

Figure 4 also show that increasing the replenishment frequency is predicted to widen the in-

equality gap between rainy and non-rainy season affected facilities: the difference between αNR

and αR increases with 5 percentage points. This can be explained by the two drivers defined

in observation 3. Whereas rainy season disruptions only affect the rainy season affected facil-

ities, operational inefficiencies have an impact on all facilities. If the operational inefficiencies

are mostly resolved (i.e., by increasing the replenishment frequency), then the only driver left
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Figure 4: Full vaccination coverage rates

Notes: The four scenarios depicted are (i) Baseline scenario (no rainy season buffer, trimestral shipments),
(ii) 100% B, 3M delivery (100% rainy season buffer, trimestral shipments), (iii) No B, 1M delivery (No
rainy season buffer, monthly shipments), and (iv) 100% B, 1M delivery (100% rainy season buffer,
monthly shipments).
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Figure 5: Total number of delivered boxes at district level

(a) All district facilities

(b) Rainy season affected district facilities (c) Non-rainy season affected district facilities

Notes: Average simulated total number of delivered boxes at the district level calculated separately for
(a) all district facilities, (b) only rainy season affected district facilities, and (c) only non-rainy season
affected district facilities. The four scenarios depicted in each subfigure are (i) Baseline scenario (no
rainy season buffer, trimestral shipments), (ii) 100% B, 3M delivery (100% rainy season buffer, trimestral
shipments), (iii) No B, 1M delivery (No rainy season buffer, monthly shipments), and (iv) 100% B, 1M
delivery (100% rainy season buffer, monthly shipments).
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hampering the public health performance of the VSC is the rainy season. This then results in

higher inequalities between rainy and non-rainy season affected facilities.

Last, consider both modifications simultaneously. That is, we implement a 100% rainy

season buffer while introducing monthly shipments. Table 4 and Figure 4 show that this results

in a substantial improvement of the public health outcomes compared to the baseline scenario.

The estimated national full vaccination coverage αtot increases with 23 percentage points (from

62% to 85%). This means an estimated 38% increase in the number of children that can be

reached with all basic vaccinations. While the vaccination coverage rates of both the rainy and

non-rainy season affected facilities show a considerable improvement, the rainy season affected

facilities benefit the most with an increase of 29 and 21 percentage points in full vaccination

coverage for the rainy and non-rainy season affected facilities, respectively. This, in turn,

reduces the inequality gap between rainy and non-rainy season affected facilities: the difference

between αNR and αR decreases from an estimate of 27 percentage points to 19 percentage

points. Moreover, a considerable reduction in the inequality gap between facilities in general

can be observed: MADfac decreases from an estimate of 25% to 11%.

Also note the impact of combining these two modifications compared to solely increasing

the rainy season buffer or only altering the replenishment frequency. First, adding monthly

replenishment frequencies to a 100% rainy season buffer enables to realize the impact of im-

plementing this buffer as the operational bottleneck is now relieved. This is also demonstrated

in Figure 5 by the increase in total delivered boxes at the district level. Second, implementing

a 100% rainy season buffer on top of monthly shipments further improves αtot (compared to

solely introducing monthly shipments) by 5 percentage points. Moreover, this improvement is

mainly attributed to the rainy season affected facilities with a substantial improvement of αR

of 14 percentage points. This shows that the rainy season has an important impact on health

performance and that implementing a rainy season buffer can significantly mitigate this impact,

if there are no substantial operational inefficiencies hampering the flow of vaccines through the

VSC network.

These results have implications for policy and practice. The substantial estimated improve-

ments in health outcomes show that implementing shorter-term modifications such as increasing

the replenishment frequency and implementing an additional rainy season buffer can significantly

impact the performance of the VSC. It therefore seems important to first investigate and focus

on these or similar shorter-term modifications, before concentrating on longer-term interven-
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tions (e.g., adding CCE, buying new vehicles with larger capacities) as the latter are typically

more expensive, take more time and effort to be implemented, and might involve higher risks.

This is especially relevant as resources are limited in these VSC settings. Moreover, it seems

important to also investigate the presence of operational inefficiencies and to study modifica-

tions that reduce those inefficiencies, as potential improvements in public health performance

(e.g., implementing a rainy season buffer to mitigate the impact of the rainy season) might be

hampered by operational inefficiencies.

Observation 5. A trade-off might exist between full vaccination coverage rates (or other health

performance indicators) and equity measures. Whereas introducing monthly shipments and a

100% rainy season buffer improves all public health indicators, only increasing the replenish-

ment frequency while not implementing any rainy season buffer improves national vaccination

coverage at the cost of a widening inequality gap between rainy and non-rainy season affected

facilities compared to the baseline scenario.

The results shown in Table 4 and Figure 4 also indicate that a trade-off might be present

between full vaccination coverage rates on the one hand and equity measures on the other hand.

One example was already discussed above where introducing monthly replenishment frequencies

increases αtot, but also widens the inequality gap between αNR and αR. In addition, consider the

case where we do not introduce a rainy season buffer and increase the replenishment frequency

from every 3 months to every 2 months. This modification results in a substantial increase of

αtot, αR, and αNR of 13, 11, and 15 percentage points, respectively. However, it also leads to a

widening inequality gap between rainy and non-rainy season facilities as the difference between

αNR and αR increases from 27 percentage points to 31 percentage points. These outcomes

suggest that, in this case, the overall improvement is disproportionally allocated to the non-

rainy season affected facilities. Therefore, other modifications might be preferred.

This result is important from a policy perspective because it underscores the importance

of considering equity measures. In addition, it avoids scenarios where an overall improvement

is, unwillingly, accompanied by a widening inequality gap. This is also relevant as interna-

tional health and humanitarian organizations are increasingly emphasizing and advocating for

equitable access to healthcare.
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5.3 Impact of an increase in flooding due to climate change

SDG 13 pleads to “take urgent action to combat climate change and its impacts” (UN, 2019a).

Improving the climate resiliency of the Malagasy VSC is necessary as sea levels will rise in the

future due to climate change, increasing the number of transportation links and facilities affected

by the rainy season (USAID, 2017). In addition, the World Bank states that “Madagascar is

one of the African countries most severely affected by climate change impacts” and has recently

(i.e., December 2019) approved a $50 million grant to increase Madagascar’s disaster and climate

resiliency (World Bank, 2019a,b).

In this section, we illustrate how our modeling approach can be applied to assess the impact

of an increase in flooding due to climate change. Unfortunately, to the best of our knowledge, no

detailed information is currently available about the magnitude of the expected future increase

in rainy season affected facilities. As explained in Section 4.3.3, we use a threshold value of

7.5 to determine the flooded areas in the baseline scenario. This threshold value corresponds

to a high flood hazard risk according to the classifications of Kourgialas and Karatzas (2011)

and Ozkan and Tarhan (2016), and the corresponding flooded areas include the areas indicated

by field data. To illustrate the potential impact of climate change on the Malagasy VSC, we

decrease the threshold value above which a pixel of the road network is considered to be flooded

from 7.5 to 7. We choose this value because a flood hazard value of 7 still corresponds to a

relatively high risk (i.e., according to Kourgialas and Karatzas (2011) and Ozkan and Tarhan

(2016), a flood hazard value between 5 and 8 corresponds to a moderate to high risk), while

a decrease of 0.5 is not too extreme. This relatively small decrease in flood hazard threshold

value results in a substantial 37% increase in the number of rainy season affected facilities.

We first look at the impact of an increase in flooding on the current Malagasy VSC operations

(i.e., trimestral shipments and no additional rainy season buffer). A comparison between the

simulated outcomes of the baseline scenario and the considered increase in rainy season affected

facilities is given in Table 5.

Observation 6. In the absence of policy action to make the VSC more robust, even a moderate

increase in flooding will result in a significant 37% increase in facilities being affected by the

rainy season and, in turn, have an impact on the public health performance of the Malagasy VSC

by (i) decreasing the number of fully vaccinated children by 4%, and (ii) further widening the

inequality gap between rainy and non-rainy season affected facilities with 3 percentage points.
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Table 5: Simulation outputs of the impact of a 37% increase in rainy season affected facilities
on the baseline scenario

Baseline Climate change Impact

Mean 95% CI Mean 95% CI

Public health performance
αtot (%) 62 [61; 62] 59 [59; 59] -3
αR (%) 43 [43; 43] 42 [41; 42] -1
αNR (%) 70 [70; 70] 72 [71; 72] +2
MADfac (%) 25 [25; 25] 25 [25; 25] Not significant

Operational performance
WCCE (boxes) 373 [329; 416] 373 [331; 415] Not significant
Wtr (boxes) 1682 [1617; 1693] 1589 [1579; 1600] -93
MOinv (boxes) 22292 [21812; 22771] 19702 [19238; 20165] -2590
MOveh (boxes) 162 [79; 245] 199 [104; 294] Not significant
MOcap (boxes) 29745 [29320; 30171] 26631 [26264; 26997] -3114

Notes: αtot, αR, αNR: full vaccination coverage based on all facilities, the rainy season affected facilities,
and the non-rainy season affected facilities, respectively. MADfac: mean absolute deviation. WCCE , Wtr:
waste due to CCE breakdowns and during transportation, respectively. MOinv, MOveh, MOcap: missed
orders due to insufficient inventory, unavailable vehicles, and insufficient vehicle capacity, respectively.

A mild increase in flooding due to climate change (by decreasing the flood hazard thresh-

old value with 0.5), is estimated to reduce the national full vaccination coverage αtot with 3

percentage points (from 62% to 59%). This decrease in national vaccination coverage results

in an estimated 4% reduction in fully vaccinated children. Moreover, the rainy season affected

facilities bear the largest burden of this deterioration. Whereas the estimated full vaccination

coverage of the non-rainy season affected facilities αNR increases from 70% to 72%, that of the

rainy season affected facilities decreases from 43% to 42%. (Note that the increase of αNR can

be explained by higher inventory levels at non-rainy season affected upper level facilities as rainy

season affected lower level facilities are not supplied during the rainy season.) This results in a

widening of the inequality gap between rainy and non-rainy season affected facilities: the sim-

ulated difference between αNR and αR increases with 3 percentage points (from 27 percentage

points to 30 percentage points).

These results are important from a policy perspective because they indicate that in the

absence of policy action, even a mild increase in flooding due to climate change can have an

important impact on the public health performance of the Malagasy VSC by (i) decreasing the

national full vaccination coverage and thus the number of fully vaccinated children, and (ii)

further widening the vaccination inequality gap between rainy and non-rainy season affected

facilities. These outcomes thus underscore the importance of increasing the climate resiliency
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Table 6: Simulation outputs of an increase in the number of rainy season affected facilities and
the impact of the modifications

Replenishment frequency 1 month 2 months 3 months

Rainy season buffer No buffer 50% 100% No buffer 50% 100% No buffer 50% 100%

Public health performance
αtot (%) 76 81 83 72 73 75 59 60 60
αR (%) 58 67 71 53 58 61 42 43 44
αNR (%) 90 91 91 85 85 85 72 72 71
MADfac (%) 19 14 12 22 21 23 25 27 28

Operational performance
WCCE (boxes) 63 173 243 313 449 463 373 380 396
Wtr (boxes) 2139 2324 2401 1996 2060 2096 1589 1604 1609
MOinv (boxes) 15314 14717 20544 15191 23615 32442 19702 31677 43019
MOveh (boxes) 8694 9462 9922 1289 1213 1379 199 214 201
MOcap (boxes) 1656 2854 5053 8446 16376 22704 26631 34307 39431

Notes: αtot, αR, αNR: full vaccination coverage based on all facilities, the rainy season affected facilities,
and the non-rainy season affected facilities, respectively. MADfac: mean absolute deviation. WCCE , Wtr:
waste due to CCE breakdowns and during transportation, respectively. MOinv, MOveh, MOcap: missed
orders due to insufficient inventory, unavailable vehicles, and insufficient vehicle capacity, respectively.

of the Malagasy VSC.

We next consider the impact of an increase in flooding on the different shorter-term modifi-

cations introduced in Section 5.2. The simulated outcomes for all combinations of rainy season

buffers and replenishment frequencies when an increase in the number of rainy season affected

facilities occurs are shown in Table 6. A more detailed overview of these outcomes (including

the 95% confidence intervals) is given in Appendix D.

Observation 7. Additional actions are needed to increase the climate change resiliency of

the Malagasy VSC. Although introducing monthly shipments and implementing a 100% rainy

season buffer mitigates the impact of increased flooding due to climate change compared to the

baseline scenario, it cannot prevent a 3% deterioration in fully vaccinated children.

The results in Table 6 indicate that introducing monthly shipments and a 100% rainy season

buffer remains the best scenario (based on public health outcomes) as it maximizes the national

full vaccination coverage αtot while minimizing the inequality gaps. Moreover, comparing the

results in Table 4 and Table 6 demonstrates that the estimated impact of increased flooding

due to climate change in this scenario is less severe than in the baseline scenario.

Nevertheless, comparing the results in Table 4 and Table 6 also shows that none of the sce-

narios is sufficiently resilient to protect the Malagasy VSC against the considered consequences

of climate change. The national full vaccination coverage αtot in the best scenario decreases
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with 2 percentage points, resulting in a 3% decrease in fully vaccinated children. Although

the inequality gap between rainy and non-rainy season affected facilities is not substantially

impacted, the overall vaccination inequality gap widens: MADfac increases from 11% to 12%.

Based on these results, it seems necessary to investigate additional longer-term actions. Such

actions might include installing additional CCE at rainy season affected facilities, changing

(part of) the transportation links during the rainy season, relocating facilities, and adding

transportation modes that are better able to deal with flooded or extremely muddy roads (e.g.,

4x4 trucks, drones).

6 Conclusion

6.1 Summary of main insights

In several LMICs, the already challenging task of getting the required vaccines to the tar-

geted population is further complicated by the presence of a rainy season. To the best of our

knowledge, this paper is the first to study the impact of the rainy season on the public health

performance of VSCs in LMICs. Using the context of the Malagasy VSC, we assess the impact

of the rainy season on vaccination coverage rates and inequalities, and we investigate various

mitigation strategies. Our findings provide contextual information and insights that are rele-

vant for policy and practice. Also, our results contribute to achieving the UNSDGs by providing

actionable insights for improving vaccination coverage (SDG 3) and investigating the resiliency

of the VSC to increased flooding due to climate change (SDG 13).

To do so, we develop a data-driven modeling approach combining spatial modeling and

discrete-event simulation. GIS and spatial modeling prove to be promising methodologies to

face data-related challenges. More specifically, we use spatial modeling to predict realistic

estimates for the road network, the parts of the supply chain network that are likely to be

disrupted during the rainy season, and the geographical distribution of demand. The use of

GIS and spatial modeling therefore provides an opportunity for the operations management

community, and the humanitarian and global/public health operations community in particular

as the latter operate in settings where data-related challenges are abundantly present. For

example, GIS and spatial modeling might be used to estimate the road network, or to predict

regions and roads that are vulnerable to geographical problems (e.g., rain, snow, droughts) or

disasters (e.g., hurricanes, landslides). Our discrete-event simulation model characterizes the
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supply chain of childhood vaccines in LMICs, thereby capturing the important characteristics

and challenges inherent to these settings (i.e., different types of wastage, limited storage and

transportation capacities, unreliable CCE, stochastic transportation times, stochastic demand).

The simulation model is generic and can thus provide the backbone of a decision support tool

that can be used to investigate various settings and interventions on the ground.

We find that substantial inequalities in full vaccination coverage exist between rainy and non-

rainy season affected facilities, and between facilities in general in the current Malagasy VSC.

These public health outcomes are induced by two main drivers: (i) rainy season disruptions, and

(ii) operational inefficiencies (i.e., transportation capacity bottleneck). We therefore investigate

two shorter-term modifications to the system: (i) introducing a rainy season buffer for the rainy

season affected facilities, and (ii) increasing the replenishment frequency. Our results show that

implementing a 100% rainy season buffer and introducing monthly shipments results in a 38%

increase in the number of children that can be reached with all basic vaccinations. Moreover,

inequalities between rainy and non-rainy season affected facilities are substantially reduced.

Our results also highlight the significant and important potential impact of an increase

in flooding due to climate change on the public health performance of the current Malagasy

VSC. In the absence of policy action to make the VSC more robust, even a moderate increase

in flooding will result in a significant 37% increase in the number of rainy season affected

facilities and, in turn, is estimated to decrease the national full vaccination coverage, resulting

in a 4% reduction in fully vaccinated children. Moreover, the burden of this reduction falls

disproportionally on the rainy season affected facilities with a widening of the inequality gap

between rainy and non-rainy season affected facilities. Although implementing a 100% rainy

season buffer and monthly shipments is still effective, it cannot prevent some deterioration in

full vaccination coverage and inequalities.

Our findings have implications for policy and practice. Given the limited resources in these

settings, it seems important to first focus on shorter-term modifications as such interventions

are estimated to already substantially improve the public health performance of the current

Malagasy VSC, and can be realized with minimal efforts and resources. However, with respect

to mitigating the impact of an increase in flooding due to climate change, these shorter-term

interventions will not suffice, and it seems necessary to investigate additional longer-term ac-

tions in the future. Moreover, we emphasize the importance of considering equity measures

in the analysis, as a trade-off might exist between full vaccination coverage (or other health
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performance indicators) and equity measures.

6.2 Limitations

Although our aim is to model reality as closely as possible, full information is mostly not

available and some assumptions need to be taken. We therefore provide a brief discussion of

the most important assumptions and limitations of our study.

First, as explained in Section 4.2.1, it is possible that boxes need to be discarded due to

cold chain failures or insufficient storage capacity, that the number of ordered boxes can only

partially be fulfilled due to insufficient vehicle capacity at the higher level facility, or that the

number of ordered boxes need to be reduced due to insufficient storage space at the lower

level facility. To the best of our knowledge, no detailed information is available on how these

numbers are determined for each of the vaccine antigens in practice. We therefore assume that

these are proportional to the volumes that were stored or ordered. This assumption is based

on an equitable distribution of vaccine antigens (based on guidelines of the WHO that focus on

equitable solutions, and on SDG 3.8 that aims to provide equitable access to vaccines for all).

Moreover, we believe that on average, this is a reasonable assumption, as a preference for one

vaccine antigen in a particular facility will likely be compensated by a focus on other vaccine

antigens in other facilities.

Second, some required input data could not be extracted from the field data provided by

UNICEF Madagascar, WHO information, or spatial models, and are therefore based on rele-

vant literature, expert opinions, observations during field studies in SSA, and our own rationale.

These include the failure and repair times of CCE, the random cancellations of national supply,

the coefficients of variation and the ratio between the minimum and the average of the trans-

portation times, and the number of vaccination days per week. An overview of the data sources

and rationale applied to estimate these input parameters are provided in Appendix B.

Third, in our model, we include all eligible children in the demand, and we assume that

people go the the nearest health facility (i.e., they minimize their travel time). Although

reaching all eligible children is the ultimate goal of international organizations such as the

WHO and GAVI (e.g., Reach Every District/Reach Every Child) and it is the aim of SDG

3.8 (i.e., provide access to vaccines for all), this is currently not the case in reality. Also,

people might not go to the health facility that is closest to where they live, but e.g. go to the

one that is on their way to work. However, no accurate data on demand for vaccinations is
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available, and forecasting this demand is very difficult because of numerous influencing factors

(e.g., operational, behavioral, social). Given that the aim of SDG 3.8 is to provide access to

vaccines for all children, we therefore focus on the performance of the Malagasy VSC in case

of maximum demand (i.e., based on the population). This means that the rationale behind the

modeled demand is that there should be a vaccine available for every child. In this way, we can

understand from the supply side what it takes to get full immunization. Note, however, that

any demand, once available, can be easily linked to our simulation model.

Last, even though we focus on shorter-term mitigation strategies that can be realized with

minimal efforts and resources, it is important to remark that these strategies still come at a

cost. That is, while implementing inventory buffers and increasing replenishment frequencies

result in more vaccines flowing through the supply chain, it will unavoidably increase variable

holding and transportation costs. This trade-off is not that surprising. However, the magnitude

of the improvement in full vaccination coverage and inequalities is remarkable.

6.3 Future work

Our paper opens several future research opportunities that are related to this work.

Extending the modeling approach to other problems and settings. Since the simulation model

is generic, it can be easily adapted and applied to other problems and settings. Also, GIS

and spatial modeling can be used to estimate several types of geographically related data.

Future research might extend this work to other countries, or use it to investigate other types

of interventions (e.g., longer-term actions to mitigate the impact of climate change). The

modeling approach applied in this paper might also be extended to other types of global/public

health supply chains (e.g., medicines, food), and to other types of geographical problems (e.g.,

droughts, snow) or disasters (e.g., hurricanes, landslides).

Embedding the modeling approach into an optimization framework. Our modeling approach

might also be extended by embedding it in an optimization framework. For instance, the

replenishment frequencies and rainy season buffers might be varied between different facilities

to optimally use the available resources. It would also be interesting to study the optimal

allocation of a limited budget to several types of supply chain investments to maximize climate

change resiliency.

Understanding and modeling the demand for vaccinations. Demand for vaccinations is chal-

lenging to model because it depends on numerous influencing factors including operational,
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behavioral and social factors. Comprehensive data collection and empirical analysis can help

to understand and forecast the demand for vaccinations. To do so, modeling the link with

other SDGs (e.g., poverty, nutrition, education) is important as these can greatly influence the

demand for health care, and vaccinations specifically. These forecasts could be linked to our

models to investigate a more detailed impact on public health performance.
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Appendix

A Details modeling approach

The discrete-event simulation model was programmed in AnyLogic 8.4.0. The spatial models

were developed using QGIS 3.4.12.

A.1 Discrete-event simulation model

This subsection provides a detailed overview of the discrete-event simulation model structure.

An overview of the notations used throughout this subsection is given in Table 7.

A box b that contains a specified number of vaccine vials v is transported between and

stored at facilities throughout the VSC. These facilities can be either storage facilities j at the

national, regional and district levels, or basic health centers h at the lowest level of the supply

chain. Administration of vaccines only occurs at the basic health centers h. Transportation

between storage facilities j is conducted using one of the available transportation modes l. Each

vaccine antigen i differs with respect to the number of doses per vial di, the number of doses

required to be fully vaccinated ai, the packed volume per vial qi, the wastage rate wi as defined

by the WHO and, for multi-dose vials, whether there is open-vial wastage (i.e., whether the

multi-dose vial cannot be used anymore after opening) oi.

The model is instantiated for 8 vaccine antigens i, 129 storage facilities j, 3155 basic health

centers h, and 4 transportation modes l, where

i ∈ {BCG, DTC-HepB-Hib, IPV, OPV, MMR, PCV-10, ROTA, TT},

l ∈ {airplane, truck, pickup, motorcycle}.

(2)

The model logic consists of four main parts: (i) the supply of vaccines at the national level,

(ii) the reception and storage of vaccines at the storage facilities j, (iii) the reception, handling

and execution of orders at facilities j, and (iv) the ordering process and the demand at the basic

health centers h. The remainder of this subsection defines the dynamics of each of these four

parts.
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Table 7: Model notation summary

I/O Notation Definition

Inputs i Vaccine antigen
j Storage facility
h Basic health center
l Transportation mode
r Transportation route
y Vaccination day
v Number of vaccine vials per box
di Number of doses per vial for vaccine antigen i
ai Number of doses required to be fully vaccinated for vaccine antigen i
qi Packed volume per vial for vaccine antigen i
wi Wastage rate for vaccine antigen i as defined by the WHO
oi Binary parameter indicating, for multi-dose vials, whether there is open-vial wastage for vaccine antigen i
λn National replenishment rate
λc Maximum cancellation rate national replenishment
N c
j Number of cold rooms at facility j

Nf
j Number of fridges at facility j

Cc Net storage capacity (in liters) of a cold room
Cf Net storage capacity (in liters) of a fridge
Cinitj Initial storage capacity (in liters) at facility j

tf Mean failure time of fridges
tr Mean repair time of fridges
tmaxr Maximum repair time of fridges
tminr Minimum repair time of fridges
λr Rate at which facilities are replenished
Mji Order-up-to level (in boxes) of facility j for vaccine antigen i
N t
jl Number of transportation mode l available at facility j

Ctl Net storage capacity (in liters) of transportation mode l
tkjl Mean transportation time from facility k to facility j using transportation mode l
tminkjl Minimum transportation time from facility k to facility j using transportation mode l

CVl Coefficient of variation of transportation mode l
wtl Percentage of boxes that is lost during transportation using transportation mode l
τ Factor by which tkjl

min increases during the rainy season
λdih Mean demand rate for vaccine antigen i at basic health center h
Dmax
ih Maximum yearly demand (in doses) for vaccine antigen i at basic health center h

λp Rate at which basic health centers pick up boxes at the supplying storage facility
Mhi Order-up-to level (in boxes) of basic health center h for vaccine antigen i
E[Dhi] Average forecasted demand during the replenishment period for vaccine antigen i at basic health center h
s Safety factor s for order-up-to-levels as determined by the WHO

Intermediary outputs Iji Inventory level (in boxes) of vaccine antigen i at facility j

Ceffj Effective storage capacity (in liters) at facility j

Creqj Required storage capacity (in liters) at facility j

Bf
ji Number of discarded boxes of vaccine antigen i when a CCE failure occurs at storage facility j

bfji Number of boxes of vaccine antigen i that was stored at facility j before the CCE failure

Br
ji Number of discarded boxes of vaccine antigen i from a replenishment at facility j

brji Number of boxes of vaccine antigen i that is present in the replenishment at facility j

Okji Ordered boxes of vaccine antigen i ordered by lower-level facility j at higher-level facility k
Bo
kji Number of boxes by which the ordered quantities Okji for each vaccine antigen i are reduced in case of insufficient

storage capacity at facility j
bokji Number of boxes of vaccine antigen i that were planned to be ordered by facility j at facility k

Skji Shipped boxes of vaccine antigen i from facility k to facility j
Cor Total required capacity (in liters) of all orders included in route r
Stotalkir Total shipped boxes from facility k of each vaccine antigen i on route r
Bs
kir Number of boxes by which the total shipped quantities Stotalkir for each vaccine antigen i are reduced in case of

insufficient transportation capacity
bskir Number of boxes of vaccine antigen i that were planned to be shipped from facility k on transportation route r
Dtotal
ih Total yearly demand (in doses) for vaccine antigen i at basic health center h

ddhiy Demand (in doses) for vaccine antigen i at basic health center h on vaccination day y

Ihi Inventory level (in boxes) of vaccine antigen i at basic health center h
Ivhi Inventory level (in vials) of vaccine antigen i at basic health center h
dvhiy Number of demanded vials of vaccine antigen i on vaccination day y at basic health center h

uvhiy Number of used vials of vaccine antigen i on vaccination day y at basic health center h

Ohi Ordered boxes of vaccine antigen i by basic health center h
Phi Number of boxes that are eventually picked up by the basic health center h for each vaccine antigen i
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A.1.1 National supply

The national storage facility is replenished at a specified rate λn (i.e., trimestral in our case

study). The first replenishment in the simulation model occurs at time t = uniform(0, 1
λn

).

Because of delays in the procurement process, it is possible that a replenishment is not fulfilled

(i.e., the replenishment is canceled). This happens at a rate that follows a uniform distribution

with maximum λc, thus occurring at most one time per 1
λc

years.

A.1.2 Reception and storage of vaccines at the storage facilities j

Each storage facility j has a number of cold rooms N c
j and fridges Nf

j with a net capacity of

Cc and Cf liters, respectively. However, a significant proportion αj of the fridges at facility j

can be obsolete. This means that each facility j has an initial storage capacity Cinitj equal to

Cinitj = N c
jC

c + (1− αj)(Nf
j C

f ). (3)

Fridges fail after a life period that follows an exponential distribution with a mean tf . The

time to repair follows a triangular distribution with a mean tr, a maximum tmaxr and a minimum

tminr . Due to these cold chain failures, the effective capacity Ceffj might be substantially lower

than the initial capacity Cinitj . Moreover, when a CCE failure occurs, the resulting effective

capacity Ceffj might be smaller than the required capacity Creqj to store all boxes of vaccines

currently present at facility j, and some boxes are therefore discarded. The number of discarded

boxes Bf
ji for the different vaccine antigens i when a CCE failure occurs at storage facility j

is proportional to the number of boxes bfji that was stored at facility j before the CCE failure

occurred and the packed volume per vial qi, where

Bf
ji =

⌈
bfjivqi∑
i∈I b

f
jivqi

(Creqj − Ceffj )
1

qi

1

v

⌉
. (4)

The resulting inventory Iji of vaccine antigen i at facility j after a CCE failure thus equals

Iji = Iji −Bf
ji. (5)

To account for local practices at many storage facilities in response to cold chain problems

with respect to insufficient storage space (e.g., transporting vaccines to the nearest facility and

retrieving the vaccines right before vaccination sessions), we assume that there is always at least
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one fridge working at each facility j.

Upon reception of a replenishment of vaccines at storage facility j, it is checked whether

there is enough storage space available to store all the arrived boxes. When this is not the case

(i.e., the effective capacity Ceffj is smaller than the required capacity Creqj to store all boxes

of vaccines currently present at facility j), some of the replenished boxes are discarded. The

number of discarded boxes Br
ji for the different vaccine antigens i is proportional to the number

of boxes brji that is present in the replenishment and the packed volume per vial qi, where

Br
ji =

⌈
brjivqi∑
i∈I b

r
jivqi

(Creqj − Ceffj )
1

qi

1

v

⌉
. (6)

The resulting inventory Iji of vaccine antigen i at facility j after a replenishment of brji boxes

thus equals

Iji =


Iji + brji if Ceffj ≥ Creqj ,

Iji +
(
brji −Br

ji

)
if Ceffj < Creqj .

(7)

A.1.3 Reception, handling and execution of orders at the storage facilities j

Each storage facility j at the regional and district level is replenished at a rate λr and has an

order-up-to level Mji for each vaccine antigen i. The ordered quantities Okji of vaccine antigen

i ordered by lower-level facility j at higher-level facility k equal

Okji = Mji − Iji. (8)

However, it is possible (e.g., due to fridge breakdowns) that there is not enough storage

space left at facility j to store all the planned ordered vaccines (i.e., the effective capacity Ceffj

is smaller than the required capacity Creqj to store the sum of all boxes of vaccines currently

present at facility j and the planned ordered vaccines). In this case, the ordered quantities Okji

for each vaccine antigen i are reduced with Bo
kji, proportionally to the number of boxes bokji

that was planned to be ordered and the packed volume per vial qi, where

Bo
kji =

⌈
bokjivqi∑
i∈I b

o
kjivqi

(Creqj − Ceffj )
1

qi

1

v

⌉
. (9)
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The resulting ordered quantities then equal

Okji = Okji −Bo
kji. (10)

The handling of orders at the supplying facilities only happens during working hours. For a

single-destination route, the shipped quantities Skji of vaccine antigen i from upper level facility

k to lower level facility j are determined based on the inventory levels Iki where

Skji = min {Okji, Iki} . (11)

When multiple facilities are included in a transportation route r, and the inventory at the

supplying facility is enough to cover all orders, the shipped quantities Skji are determined in

the same way as for the single-destination routes. However, when the sum of the ordered

quantities Okji exceeds the current stock of the supplying facility, the shipped quantities Skji

are determined proportionally to the ordered quantities Okji where

Skji =

⌊
Okji∑
j∈r Okji

Iki

⌋
. (12)

Each facility j has a number N t
jl of transportation mode l available, each with a net capacity

of Ctl . The transportation mode l that is used to deliver the order depends both on the avail-

ability of the transportation modes and the total required capacity Cor of all orders included in

the route where

Cor =
∑
j∈r

∑
i∈I

Okjiqiv. (13)

To determine the transportation mode l that is used to execute the deliveries, it is first

checked whether a transportation mode l is available that has a net capacity Ctl greater or

equal to the total required capacity Cor . Next, if no such transportation mode is currently

available, the transportation mode with the greatest net capacity that is currently idle at facility

k is selected. Last, if no transportation modes are currently idle at facility k, the orders are

canceled.

In case the net capacity Ctl of the selected transportation mode l is smaller than the total

required capacity Cor , the total shipped quantities Stotalkir on route r for each vaccine antigen i are
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reduced with Bs
kir, proportionally to the number of boxes bskir that was planned to be shipped

and the packed volume per vial qi, where

Bs
kir =

⌈
bskirvqi∑
i∈I b

s
kirvqi

(Cor − Ctl )
1

qi

1

v

⌉
, (14)

Stotalkir = Stotalkir −Bs
kir, (15)

Skji =

⌊
Okji∑
j∈r Okji

Stotalkir

⌋
. (16)

After the shipped quantities Skji are determined, the route is executed. We assume that

transportation times follow a lognormal distribution with a minimum tminkjl , a mean tkjl and a

coefficient of variation CVl, depending on the transportation mode l. Drivers only depart from a

facility to continue their route during working hours. Also, during transportation, a percentage

wtl of the vaccines is lost due to e.g. breakage, depending on the transportation mode l.

The presence of the rainy season complicates the delivery of vaccines. Some facilities are not

accessible, and are therefore not replenished during the rainy season. Moreover, we assume that

the accessible facilities are also impacted by the rainy season, as the minimum transportation

times tminkjl increase with a factor τ during this period of the year.

A.1.4 Ordering process and demand at the basic health centers h

Administration of vaccines at the basic health centers h occurs on a specified number of vacci-

nation days per week y. The demand at each basic health center h for each vaccine antigen i on

a vaccination day follows a Poisson distribution (as commonly used in literature) with a mean

λdih. Moreover, the total yearly demand Dtotal
ih is capped by a maximum Dmax

ih that is based on

the basic health center’s catchment area. We assume that demand that is not fulfilled, is lost.

In each basic health center h, on every vaccination day y, a demand ddhiy in doses is gener-

ated for each vaccine antigen i. For the basic health centers, the inventory is recorded in the

simulation model both in number of boxes Ihi and in number of vials Ivhi. Based on the demand

ddhiy and the inventory levels Ivhi, the number of demanded vials dvhiy and the number of used

vials uvhiy on vaccination day y at basic health center h for vaccine antigen i are calculated,
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where

dvhiy =


⌈
ddhiy
di

⌉
if oi = 1,

ddhiy
di

if oi = 0,

(17)

uvhiy =


dvhiy if Ivhi ≥ dvhiy,

Ivhi if Ivhi < dvhiy.

(18)

The resulting inventory Ivhi of vaccine antigen i at basic health center h at the end of

vaccination day y then equals

Ivhi = Ivhi − uvhiy. (19)

Each basic health center h travels to the supplying storage facility j to pick up vaccines at

a rate λp. To determine the required quantities Ohi for each vaccine antigen i, an order-up-to

policy is applied. The order-up-to level Mhi is based on the average forecasted demand E[Dhi]

during the period 1
λp

, and is increased by a wastage factor wi and a safety factor s as determined

by the WHO, where

Mhi = E[Dhi]wis. (20)

The quantities Phi that are eventually picked up by the basic health center h for each vaccine

antigen i are determined by the order-up-to levels Mhi, the inventory levels Ivhi and Ihi of the

basic health center h, the ordered quantities Ohi, and the inventory levels Iji of the supplying

facility j, where

Ihi =

⌊
Ivhi
v

⌋
, (21)

Ohi = Mhi − Ihi, (22)

Phi = min {Ohi, Iji} . (23)

The resulting inventory Ivhi of vaccine antigen i at basic health center h then equals

Ivhi = Ivhi + Phiv. (24)
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Table 8: Overview of hazard classifications for flow accumulation, slope, land use, rainfall
intensity, and elevation, based on Kourgialas and Karatzas (2011) and Ozkan and Tarhan (2016)

Factor Classification Hazard classification

≥ 5868 Very high (10)
3244 – 5868 High (8)

Flow accumulation (pixels) 1908 – 3244 Moderate (5)
620 – 1908 Low (2)

0 – 620 Very low (1)

0 – 3.6 Very high (10)
3.6 – 9.6 High (8)

Slope (degrees) 9.6 – 16.2 Moderate (5)
16.2 – 24.6 Low (2)
≥ 24.6 Very low (1)

Water, permanent wetland Very high (10)
Shrublands, urban, barren or High (8)
sparsely vegetated, savannas

Land cover Grasslands, croplands Moderate (5)
Natural vegetation mosaic Low (2)

Forest, snow and ice Very low (1)

≥ 282 Very high (10)
237 – 282 High (8)

Rainfall intensity (MFI) 197 – 237 Moderate (5)
159 – 197 Low (2)
0 – 159 Very low (1)

< 153 Very high (10)
153 – 414 High (8)

Elevation (m) 414 – 697 Moderate (5)
697 – 1049 Low (2)
≥ 1049 Very low (1)

A.2 Spatial models

A.2.1 Flood map

Similar to prior literature, we consider five factors that contribute to the flood hazard value:

flow accumulation, slope, land use, rainfall intensity, and elevation (Ajin et al., 2013; Kourgialas

and Karatzas, 2011; Ozkan and Tarhan, 2016). For each of these factors, we construct a GIS

map classifying each pixel of the map of Madagascar into one of the five categories of flood

hazard. An overview of the applied classifications is given in Table 8.

In order to create the final flood hazard map, a linear combination of the five GIS factor

maps is calculated. The factor weights are determined by applying the method of Shaban et al.

(2001) which considers the interaction between different factors. An overview of the major

and minor interactions between the considered factors (i.e., flow accumulation, slope, land use,
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Figure 6: Overview of the major and minor interactions between factors that form and influence
a flood

Table 9: Overview of the applied weights for the different factors

Factor Weight (%)

Flow accumulation (pixels) 13.64
Slope (degrees) 18.18

Land cover 22.73
Rainfall intensity (MFI) 13.64

Elevation (m) 31.82

rainfall intensity, elevation), based on Kourgialas and Karatzas (2011), and Ozkan and Tarhan

(2016), is given in Figure 6. A factor weight is increased with 0.5 and with 1 if it has a minor

(i.e., indirect) and major (i.e., direct) effect, respectively, on another factor (e.g., if a factor has

a major effect on two other factors, it is increased with 2). These weights are then converted so

that they sum up to 1 in order to obtain the final weights. An overview of the applied weights

can be found in Table 9.

We use open-source data to create the five GIS factor maps. The flow accumulation data are

extracted from the Hydrologic Derivatives for Modeling and Applications (HDMA) database

which is distributed by the US Geological Survey (USGS) (Verdin, 2017). The slope data are

obtained from the KTH Royal Institute of Technology in Stockholm (KTH-dESA, 2019). This

data set has a resolution of one kilometer and is calculated based on data from the Shuttle

Radar Topography Mission (SRTM). The data on land use are accessed through the USGS

Land Cover Institute who provide global land cover data based on Moderate Resolution Imaging

Spectroradiometer data (Broxton et al., 2014). The data on rainfall intensity are calculated from

precipitation data provided by Worldclim (Fick and Hijmans, 2017). These precipitation data
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have a resolution of one kilometer and include the average monthly rainfall. To obtain the

rainfall intensity, we calculate the modified fournier index (MFI) (Morgan, 2005):

MFI =
12∑
t=1

p2t
P
, (25)

where pt is the average monthly rainfall in month t and P is the average annual rainfall. The

elevation data are released by the geospatial science community of the Consultative Group of

International Agricultural Research (CGIAR-CSI, 2019). Similar to the slope data set, it is

based on data from the SRTM and it has a resolution of 90 meter.

Applying the method outlined above, we obtain the five individual factor maps (Figure 7)

and the consolidated flood hazard map (Figure 2 in Section 4.3.1).

A.2.2 Rainy season disruptions

Figure 8 gives an overview of the rainy season affected storage facilities when the method

explained in Section 4.3.3 is applied.

A.2.3 Geographical allocation of demand to basic health centers

Figure 9 shows the catchment areas of the basic health centers and the corresponding travel

times (during the dry season) to the nearest health center. These are obtained by applying the

method outlined in Section 4.3.4.

B Overview input data

Table 10 provides an overview of the data sources used to estimate the input parameters. The

different data sources used are: (i) field data including raw data, reports, and discussions with

collaborators, (ii) WHO information as available on the WHO website, (iii) spatial models as

explained in Section 4.3, (iv) relevant literature, (v) expert opinions, (vi) observations and

interviews during field studies in SSA, and (vii) own rationale. As can be seen in Table 10, 74%

of the input parameters are entirely based on field data, WHO information and spatial models

(i.e., based on private or publicly available data), and only 8% is determined based on our own

rationale.

For each of the input parameters based on relevant literature, expert opinions, observations

during field studies, or our own rationale, we provide a short explanation.
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Figure 7: Factor maps of (a) flow accumulation, (b) slope, (c) land cover, (d) rainfall intensity,
and (e) elevation

(a) Flow accumulation (b) Slope

(c) Land cover (d) Rainfall intensity

(e) Elevation
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Figure 8: Overview of the rainy season affected storage facilities

Notes: Facilities that are affected by the rainy season are indicated in blue.

Figure 9: (a) Catchment areas of basic health centers and (b) corresponding travel times to the
nearest basic health center

(a) Catchment areas of basic health centers (b) Travel times to nearest basic health center
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Table 10: Overview of data sources used to estimate input parameters

Input parameter Data source used

i field data
j field data
h field data, spatial models
l field data
r field data
y observations during field studies
v WHO information
di WHO information
ai WHO information
qi WHO information
wi WHO information
oi WHO information
λn field data
λc observations during field studies
N c
j field data

Nf
j field data

Cc field data, WHO information
Cf field data, WHO information
Cinitj field data, WHO information

tf expert opinion, observations during field studies
tr expert opinion, observations during field studies
tmaxr expert opinion, observations during field studies
tminr expert opinion, observations during field studies
λr field data
Mji field data, spatial models
N t
jl field data

Ctl field data, WHO information
tkjl spatial models, own rationale
tminkjl spatial models

CVl own rationale
wtl relevant literature
τ own rationale
λdih spatial models
Dmax
ih spatial models

λp field data
Mhi field data, WHO information, spatial models
E[Dhi] spatial models
s WHO information

Notes: The definitions of the different input parameters are given in Table 7 in Appendix A.1.
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Number of vaccination days y. The number of vaccination days per week might vary between

different health facilities, as it is based on several factors including the number of children in

the catchment area, the distances to the health center (determining outreach actions), and the

availability of health care staff. During field studies in SSA, we observed that most health

facilities try to concentrate the vaccinations per vaccine antigen on a fixed weekday to minimize

open-vial wastage. Also, most health facilities perform outreach sessions once a week. Therefore,

y equals 2 days per week in the simulation model.

Maximum national replenishment cancellation rate λc. Cancellations of national vaccine

deliveries are reported during interviews and field studies. However, their frequency is often

unknown and/or volatile. Based on interviews and field studies and due to limited information,

we use a uniform distribution with a maximum cancellation rate of 0.25. This means that it

occurs at most one time per 4 years. An interesting future research area might be to model the

occurrence and drivers of cancellations of national vaccine deliveries. This model might then

be connected to our simulation model to investigate the impact of these cancellations on public

health performance (e.g., a studie similar to Gallien et al. (2017) who build a simulation model

to predict the joint impact of procurement and grant disbursement processes on national drug

availability in Africa).

Failure and repair times of fridges. The average life expectancy (and thus failure time) of

a fridge is 5 years. However, due to the conditions these fridges are used in, the time until

failure might also be considerably shorter. We therefore use an exponential distribution with

a mean tf of 5 years to simulate fridge failures. When a fridge breaks down, it can either be

repaired or replaced. Reparations can take a long time as there is often only a limited number of

technicians responsible for a region (or country). Moreover, when a fridge needs to be replaced,

this can take years. We therefore model the time to repair by a triangular distribution with a

mean tr of 12 months, a minimum tminr of 3 months and a maximum tmaxr of 36 months. The

lack of data on failure and repair times of CCE in LMICs, and the drivers behind it provide an

interesting research area for future empirical research.

Data regarding the statistical distribution of transportation times. No field data is currently

available regarding the road network or transportation times between facilities in Madagascar.

By defining the road network through spatial modeling (Section 4.3.2), we obtain good estimates

of the best-case (i.e., minimum) transportation times. Based on literature (Hao et al., 2013;

Mazloumi et al., 2010; Srinivasan et al., 2014), we use a lognormal distribution to simulate the
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transportation times. In order to do so, we use the minimum transportation time tminkjl , the

average transportation time tkjl, and the coefficients of variation CVl. We then characterize the

parameters µ and σ2 of the lognormal distribution (with µ and σ2 being the mean and variance

of the included normal distribution) of the transportation times as follows (Vandaele, 1996):

µkjl = ln

 tkjl√
CV 2

l + 1

, (26)

σ2kjl = ln
(
CV 2

l + 1
)
. (27)

We then apply the following probability density function:

f (tkjl) =
1(

tkjl − tminkjl

)√
2πσ2kjl

exp

−
(

ln
(
tkjl − tminkjl

)
− µkjl

)2
2σ2kjl

 . (28)

In the simulation model, the squared coefficients of variation CV 2
l equal 0.5, and the min-

imum transportation times tminkjl are increased with 20% and 30% to obtain the average trans-

portation times tkjl during the dry and rainy season, respectively. Furthermore, we set τ (i.e.,

the factor by which tminkjl increases during the rainy season) equal to 5
3 .

Percentage of boxes lost during transportation wtl . Although it is indicated in literature

(De Boeck et al., 2019) and during field studies that vaccine vials are lost or broken during

transportation, no detailed data is currently available. We therefore define these percentages

based on relevant literature (Assi, 2011): 1% and 2% of boxes is lost during transportation by

airplane or (cold) truck, and during transportation by pickup or motorcycle, respectively.

C Validation spatial maps

First, Figure 10 shows the categorized flood hazard map that is made available by OasisHub

(OasisHub, 2019; Climate-ADAPT, 2019) and the flood map that we constructed in Section

4.3.1. The areas and degrees of risk indicated by the two maps are similar (by visual inspection).

Second, Figure 11 depicts the road infrastructure provided by the LCA (LCA, 2019a,b) and

the road network during the dry season that we developed in Section 4.3.2. As is clear from

Figure 11, the two road networks are almost identical.
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Figure 10: Categorized flood hazard map (a) made available by OasisHub (OasisHub, 2019),
and (b) that we constructed in Section 4.3.1

(a) Flood map OasisHub

(b) Flood map constructed in Section 4.3.1
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Figure 11: Overview of (a) the Malagasy road network, obtained from the LCA tool (LCA,
2019b), and (b) the road network during the dry season that we developed in Section 4.3.2.

(a) Road network LCA tool

(b) Road network constructed in Section 4.3.2
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D Additional model results

The simulated model outputs, including the simulated averages and 95% confidence intervals

for each of the simulated scenarios in this paper are given in Table 11.
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