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ABSTRACT

The transient behavior of a traffic flow system where the over all

service rate is assumed to be a quadratic function of the occupancy is studied

.n this thesis. The system is viewed as a service station with N servers

and the transient probabilities for the system to be in state j at time t are

obtained. It can be shown that such a system reaches a state of stagnation or

lock up, eventually, regardless of the input rate. The mean time to lock up
lor small N' has been verified with Helly's result. The partial differential
squation for time dependent input is also obtained.
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CHAPTER 1

INTRODUC TION

2[In a recent paper ] entitled '""Two Stochastic Traffic Systems

~vhose Service Times increase with Occupancy', Walter Helly considers

1 traffic model characterized bv service times that increase with the

number of patrons undergoing simultaneous service. A traffic circle is

viewed as a service station with N servers handling a Poisson arrival

stream of intensity A . The service times are exponentially distributed

vith a mean of 1/[c¢' (N - j)1. The over all service rate is thus, a

quadratic function in j , the number of occupied servers.

. 1 vaN = 1) WU - i &lt; N)

'}

where c¢' is a constant. Figure 1 is a plot of

The maximum service rate is given ' x7

Ls

c!' N

4. as a function ot

. . N

occurring at j = &gt; N even

Tax
1

id
c' (N -1Y(N+1) }

i

5 (N+1): Nodd
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Service rate iL. as a quadratic function vf occupancv | for N = 20 !



Jnfortunately, this maximum cannot be maintained without external

~ontrol over arrivals. For any XA &gt; 0, there is some value of j

say k , such that I &lt; Xx, all j&gt;k. Hence the system will ultim-

ately reach the absorbing state N , no matter how small the arrival

rate. At that point the svstem reaches a state of stagnation and no new

~ustomers are accepted. A lock up is formed at the traffic island and

there are neither new arrivals nor departures from the system. Helly

&gt;btains the mean time for the circle to lock up, starting at t= 0 from

state 1 = 0 and ending at state N

This thesis studies the transient behavior of the above system

and obtains the transient probabilities for the system to be in state

at time t. Assuming that it started at t = 0 from state i =0. For

small N the mean time to lock up is also obtained and found to be

in agreement with Helly's result. The system has also been studied for

an arrival rate that varies with time. In chapter III the partial differen-

2
tial equation that describes the system for A(t) =t -t is obtained.



CHAPTER IT

[HE PROBLEM AND ITS SOLUTION

[he traffic circle is taken to be a service system in which

arrivals follow a Poisson distribution with mean rate AX . N 1s the

crumber of servers. The meximum number of vehicles that can occupy

it simultaneously is equal to the number of servers. The state of the

system is defined as the number of vehicles in the circle at any time.

Interdeparture intervals are distributed exponentially with a mean ser-

vice rate mw. = c¢' j(N - 3), a auadratic function of occupancy j. There

are two reasons for the dependence of the service rate on occupancy.

First, when vehicles follow each other. their speed declines with decreased

rweadwavs. Second, when a circle is crowded. departing vehicles, blocked

by others from turning out. cease forward motion thus preventing progress

for those behind. It appears that once occupancy is very high, a jam or

lock up condition, spontaneous recovery to free flow is exceedingly unlikely

anless there is a very substantial reduction in the arrival rate.

|4.

5.(t) = Probability that the svstem is in state

Fhe svstem starts in state 1 = 0 at time []

1 at time



Thus

J 0)

T'hen with the A and pu. described above, we have

d p,(t)
L(t) = x p(t)

d p,(t)
= by Pot) tap, (8) - (pw ra) p(t)

1p, (8)
A py (8) = (iy +A) py(8)

Jd

2. )

ana

d P(t)

Now define R (s,t)

Ap (1)

D.(t) s
a,

i=0



Multiplying both sides of (2.1) by s” and summing for all 0 &lt;j &lt;N|

dR
1

2

cs(s-1) SR te (son -N)
ds ds

a
1 R

2
dq

| _ar

cto5 (1=8s) dt

-N aR

ds

NfeA (1 - 8) R-X p(t) s (s

rot

N-1
A Py 8

(2.2)

1-N)/2[ntroducing R' (s,t) = R{(s,t) o! )/ and substituting in (2.2) for

R we have

2
d R!

12

2
dR! -N

_ ——— a &gt; + 2 Rr =A

c!' s{l -s) dt 4 eo!

nfp— p(t) N-13/2

 2. 3)

. . . -at

Multiplving both sides of (2.3) bv e OF and integrating for t = 0 to oo. we

Ld

(a, s)
ep— -R' (5.0)+ax(a,s)|

~s (1 - sg)



a
{ - N

ig $f fh Ix fo,9 = 2
4 LE ~

(N-1)/2 =xSs / x (a)

where x and x are defined as the Laplace transforms

LL “RY (st) dt

rr.

-at
P(t) dt

since

2 (s. 0)
1-N/25 / R (s,t a-N)/2: / p,(0) = [L-N)/2

 +}

Ne have

2
d x(a, s) . 1 1 - N“
- S-Lrmben ye [ — —

N-1)/2 ~~

KR

7 (a) +

as

—_— ] x(a, s)
ct (1 = g)

_-(14N)/2
r/Y 4)

~1 (1-8)

i oo nd i i

dence the original 2 order partial differential equation has been reduced



na : : ‘ y ‘ ’ gz

to a 2 order linear differential equation with variable coefficients.

Since s = 0 is a regular singular point of the differential equa-

tion (2.4), the method of Frobenius can be applied to obtain a power

series solution for it.

[he complementary function which is the solution of the homogeneous

equation obtained by setting RHS of (2.4) to zero, is first obtained. I.et
a

x (a.s a, (p) id be a solution of
» :

 = 0)

2 .

d x(a, s) . 1 [L-"
1.2 2 . ~

.

Z— 1 x(a,s)
{1 -s)

-

 }

“he indicial eguation

&lt;

plo-D+ =" ap) = 0

nas roots py Pp, = ir and ap) can be chosen arbitrarily. The

difference between p. and p, is a positive integer, hence the two solu-

tions corresponding to op and 0, respectively are obtained as:

~)

a. {p) s |
7) —

d ; i
and [| — [ sP \ a, (p) s'|

do Led !
|

’) -



[he complementary function of (2. 4), thus, is

X a, s) = uz [ leg (p,) ,

Ls]

~vhere

1 {} &lt;a (pn ]1212 a _

[he a.(p) are calculated from the following recursion relations in terms

Sf 4 [0

o(p+l) + —
 \

La (p) +
a +A

a, (p) . J

(2.5)

 (p+ n) (p+n-1) + (p) - [(0+n-1) (p+ n-2)

W/L + a)

L
- od

A
, (0)

Ia (p)

i

2
\T

= /



Since a (p) can be chosen arbitrarily set

{
)

‘ .}

ky

ind

2
I = N

a (py) = [ (p+N)(p+N-1)+

i+N i = N

J )
?

[he subsequent a's can now be determined

Next we determine the particular solution of (2.4). Rewriting

Z

2 2
s d

2
x (a,s) - - (gq,+a.s+-  | ox (a,s)

~

B-N)/2

N+

ed

l

N= A Cy SN

2. 0)

Applying the method of variation of parameters it is observed (see

sppendix A) that the particular solution should be of the form



~

&lt; (a, s) = logs

=)
J

1i=0

&lt;

" q _1-N _ Ata
QT Ta.

c!

vi

1

1

(2.7)

Jere again the T's , U's and M's are obtained by substituting for

&lt; (a, s) in (2.6) and equating the coefficients of the various powers of s

&gt;n both sides. The general solution of (2.4) is found to be

, WL CS

=0

Po
a. (p.) s + 3g [ log s

(J 1
 1 =0

s | log =
J

1=0

0

=NT

{ J) oS

 df

. Vv

=]

2 i1t

4 a. si + LTO ey (st) dt =
0

( Wat R (s. t) ((1-N)/2 dt



4

L(R(s,t)) = s r=

hv

a { , + [logs
7

4 ‘Nn J

log s

3

2. 8)

L (R(s,t)) being an abbreviation for the Laplace transform of R(s,t),

vhere A and |=

[on R (s.t)

. . u

logarithmic terms.

are to be determined from initial conditions. By defini-

1 :

p. (t) s , a power series in s not involving any
1

Also (see appendix A) a_, (p,) CI (p,)... satisfy the

same recurrence relation as the T's . Hence the logarithmic terms in

2.8) must cancel. Thus

3 =

{0,

can now be determ 1ed from the boundarv condition

CIR (L,Y) = (2.9)

[aking the limit of (2.8) as
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T
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a(p

0
a. (p |

In—— Se —

rv

i

0

(2.10)

Jence

A

 so (Rs, t)) = sh .

being given bv (2.10)

 4 t)
0

~ocefficient of = 'n RHS

a'
0 \ 2

[J 5)

)



» (t) =

J}

0

a; (p,)
2 (p,) ;

 coefficient of s° on RHS 1

T
0

- —— a’ (ps)

Ag (05)
+ U

# il

Te  \N -

denoting the inverse lLi.avlace operator

L 0

¢) Aa op) -
a; (05)

(p,) + M,|j=N

Particular cases

\|—_

05)
2

Ata)
2

L
~

(1+
A + iq

? of



(A +a)
c!A

&amp;

(A +a) a
— + =

»
~.

weA.

andn an (p,)

Therefore

pp, (t)) = 2B =
Tat Cl

Z
 A +a) + a c

(2.11)

By the limit theorems for Laplace transforms

lim a
0 [SC A JA r)

arid

1m a L (P, (t)) = lim Po (t)
vy — () Foo 0

\J

inverting (2.11) w.r.t. a we have

}
.C) - (A + CF

-yu

}y oe

.

(x + oi i
—

-



where

&gt; [2X +c -[@2Xx +c) - 2 9%

J
| 2x + c¢' CLEA Ee) ant

From (2.1)

d
ca Pg (t)

 = rr. —

zc! (a,- a) [ (20

ed . J

A p(t) ]

A 1
, Z

. C - a,

 =~ 1

mt

2
 ul

1

Aleo

Since

.)

fon } ge

A { p. (t) dt + constant

 % 2a
&lt;

, Ato c¢' -

c' (a, -a_) [=

2a, +t a c oh

aA c!

xc!

-C
J



[he mean time to lock up is given by

CL I

3\

d
© 37 (Py (t))

1sing Helly' s notation

n agreement with his result.

“igures 2. 3. and 4 represent the behavior of the probabilities

(t) , (t), and (t) with time. We note that for c¢' = 10. the time2 Pp, P,

0 lock up when XX = 5 is about 42 minutes while for AX = 10 1t is onlv

| 5 minutes. This kind of behavior of the svstem is not surprising in view

&gt;f increasing the input bv a factor of 2

The time is in the units used for 1/¢!' where c¢' is the constant

‘nN I = c'j (N-j). Here one supposes 7 and N to be dimensionless so the

units of ¢' are vehicles per unit time. Thus if ~ 1 10. time is 1n units

yf 1/10 hour.
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Figure 2

[he graphs for P(t) in unit of 1/10 hours for ¢' = 10, N=2.2x =5and 10
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The graphs for p(t) in units of 1/10 hours for c¢' =10. N=2. 2 =5 and 10
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Figure 4

The graphs showing the probabilities to lock up

n units of 1/10 hours for c¢' =10. N=2. Xx = 5 and 10.
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1 N

3 = .0 ——————

3

| a

Z
ch +a (A +a) |rerer—5m———2

c! c'

3
(A +a) . A + a)

2
1 ~1

- v (cc!+AN)+a

la" +a (4c'+30)+a(4xc!fam.30%)+2

et

L (p(t)
P(e!+2)+cor“4 2x c!

a ta (4c +30) +a (4rc + 4
[=

~ 1 - x

 and a. be the roots of a in the denominator of (2.12).

/  7’

ey

= (16 c'&gt; = 2707+36a=» +27)

Ln ot” ET INE IEP + 27°
2971A

729
5 j 1/2 1/3

(c' + 3x ct)



rad

TA - = (-16c'” - 270° + 36¢ “a + 27)

~lbcr” S27 T+ 36c' Tn L278
2% ()

“ 3.00°Lo (c' + 3) c')
72Q

-

A+ B)

fo (4 c!' + 3A)

L(A - B)N3 (4 ¢c' + 3X)

ed

‘A + R) (A - BIN3 (4 c' + 32)

Then

L (p(t) ) =

es

r

 (1 - (1 , 2a - a |

a-a,

1

T

2

a, ta, k, tk,
- } (ec -a)

tk,
—

Cu -a ) (a. - as)

EE

n »

—



}
©) -

~ ko +k

la) vay
[a = a) (a. - a.)

+ k

 LZ
(a -a.)G - 1

5 ro, kK

a, -a,) (a, - a.)

, Tk)

vhere

+ /\

and

TL 2)

» (t) can be determined as before and is

i
(t) = —

2 et

2

ay + ak tk JA + a,)

(a -a,)(a -a

Lv

\a + a iy I
{i ) (a \

J

IX +

Z

(a, + ak, + tp)
(1 ~~ Ya -n

(A +o)



~ k k ep tap ti)
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2c! (a, -a,) (a -a,)
’ a

 XA +a.)
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pte, + 5 (22 +a)
la, -a,) (a, -a,)

2c +A) (x +a)
——————

a

C US a )
{ a. (A tas)

2c +x) (x +a

‘nd

2
a. +a, k,. +k

1 1

2 ct (a -a la -a.)

————

al

A + a,

a
2c! 1CIS SN 1 e



ws!
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CHAPTERIII

[HE PARTIAL DIFFERENTIAL EQUATION FOR TIME DEPENDENT INPUT

in this chapter the instantaneous arrival rate of vehicles is

2
assumed to depend on time and is taken to equal t -t The differen-

ial-difference equations describing the system remain the same as in

~hapter II except that A is revlaced by +

Tsing the notation of the last chapter we have

“RY
2 F
dea

 dR'

c!' s (1 - s) dt

4s (t -
2

1 (1 - N

N-1)/2Ct) p(s )/

a
i 2

3

 Lo
“ d

2
~''ga da

~ dx
cc! « da

." (I1+N)/2

~ 1 (1-sg)

+ 0 i

&gt;

(N-1)/2

 +‘
~1 gq (1-s)

[Ly a
d 2

a da

 J

ot



a
[he above equation is a 2% order partial differential equation of the

2ts ppm h ]

5S - dr 4 Hy

~vhere S = 0 &lt;=

.- (1+N)/2
J = —m ———

~t (1 = sg)

— 0

24)
.

An

wt] -
b J +

2)
~1 =
r

2
1a

CJ «Jd

ed

N-1)/2

|

NT
[=

n c!' s (1 -s)

[o solve the linear equation (3.1), the process consists of changing

‘he variables.

Let the independent variables

set undetermined: then when

,

he) and a oe changed to

a y dx dx
enote — , —

d&amp; dn

g and n as

the

aqguation becomes

d&amp;d&amp; dedé sd anat |" + T (4R (52

&lt; 9

dn dn dn dn |
R (52) tS 33 7. ~ T(x)



d§ dn
2 R— —

ds ds
dn df | dn d&amp;+ S{7 P+ FF )

 ~~ d&amp; dn
I = da

2 2 2
&lt; d

| 3 P' {| 2-3 + 8S d§ + T 23
ds dsda da

48
da

d er
da

 &amp; 2
de

L
_ d
3 dl.

dsda

L
d13 +p dn
da. ds

gn
2 —_—

1a

(3.2)

[Let m and n be the roots of the quadratic equation in

-Q  J)

Then

. 1,2

~ 1 _)

Since these two roots are unequal, we choose &amp; and mn so that

1g
dg

cm &amp;
- da

1/2
= (==) dg

da

28



11d

dn _ , dn
ds da

which determine £ and mn as

1 /¢

2(2/c')\

, 1s =
I

CT) dn
da

1.1d

ny 1,4
2(2/c)

i i } d&amp; dm
= 2 ZS =n
Substituting in (3.2) for T= Ta

2
d&amp; dn 3Sas 9M 47 2 2

da da (4T R )

etc. , and dividing throughout by

- 3

~1gq

—

we have the following reduced form

2
d x dx

Ea IL —
dEd n * d&amp;

dx

Mo + a: (3. 3)

Where



Vi

 ee os 1/2 1/2
-a 2(2/c ) 5 (2/c') [ a (2/c') + 1/2 a3 /~~ fgoe

ve VEL | 1 -1/2 3/2 / 8-2(2/c") S (2/ct) [s (2/cC 1 S

l
SL -N
2 A 5.1=s)

C | S
~LaA

| /8

and

ny (N+1)/2r s )/ f(a) [(1-N)/2
 —————— 1/8

(3.3) is a standard partial differential equation and can be solved for

11



APPENDIX A

SOLUTION OF THE NIFFERENTIAL EQUATION

wy

N=]

+ a
. S “je mtn

(1+N)/2

Foren (1 - =)

[0 obtain the complementary function we solve the homogeneous equation:

17x
2

ds
: q n

— J A. 1g

here

 Zl
- NI A Ta

Equation (A.1l) has s = 0 for an infinity of degree two.

nethod can therefore be emvploved to obtain its solution [,et

» SI

Frobenius! s



Substitution in (A. 1) gives

) as
0.

a (A Pp a,
2

4

v (p+2)(p+1)asP

J ) d
dw

1

 8S 31 oD
Pa

A, 2)

fCgquating to zero the coefficient of the lowest power of -

(JJ ~ - (po - L} 1 EP J « .J

As a, 1s not zero, being the coefficient of the first term in x , (A.2) shows

that the values of 3 tO be considered are the roots of f(p).

) 1/7

which is a quadratic in p with roots p, and p, equal to - FN 1
)

nt

is chosen arbitrarily. Since the difference between Nn and 1

/
1S a bositive

integer N. we take

p)
2

= ¢c| (p+ N) (p+ N=-1) + i -N



and thus secure that none of the coefficients a is infinite: moreover
n

2, undetermined and therefore an arbitrary constant, so that c¢ is

an arbitrary constant. By equating to 0 the coefficients of various

bowers of s in (A.2) we have:

0p+1)+g.) 1

(ot)(p+i-1)+aq,Jfpti-1) (p+i-2)+q,-. ja

A. 3)

1 +N
We notice that for p = py = 5 all the a.'s are determined in terms

Hf a from the av- -~ --- -

AL

~~ ~-~lations and the corresponding solution

 ) s

=)

~orresponding to the root o N there are two integrals of the equa-

Son (AL 1) viz

A
x

—

a. (p) site 1
a

and x = [

)  1}



As regards the first integral

S
Py

‘he coefficients a. for all the values 1 =0,1,...N-1 contain a factor
1

0,. hence when p is made equal to Py the sum of the first

 P ,
terms ins a, (p,) s vanishes. As regards the second sum, we

1

0
~tite it in the form

~vhich when Nn

Lf PTN-1

Ls made equal tu  Oo

a
NJ «

), becomes

 + IN
2

1 i

1 series that begins with s t

3 Nt {0

and proceeds in ascending powers of =

4

 ma LY

~
i } i 1

.s a series that beoins with =s

1e [1C &amp;

\
sald

a (p) P11

0 = r

and proceeds in ascending powers of



's not an independent integral, it is a constant multiple of

Pp) sO
0=0n

Consequently corresponding to the roots p, of p the solution of (A.1)

|
a t

dp lt
I

lox =
—

+1
.. (p) sPT

a. (,

LN

0 =
-~

) s+ ~
he:

NY

~vhere

d
(p ) = [ = a, (p)]

0D=1"1

Hence the comvlementaryv function of (A. 1) is given by

{op )s
~~ Z

B s [log3

ND

ot
J

=a\

(p,) s

i
(py) 8 1

[J

i=.



A and B are unknown constants to be determined from the boundary

~onditions.

Che Particular Solution

Now we proceed to find the particular solution of the equation

i
Z

1s
 ta.st+a,s+...

7

J IN

} "

A 4)

[n order to get an idea of the exact foynof the particular solution, the

variation of parameter technique is applied. This is a method of deter-

mining the particular inteoral when the complementarv function is known.

he Wronskian for the complementary function of a 2nd order differential

aguation is

i u - uy, uu’

where the primes represent differentiation w. r. c.

aw

dea
= uu:

/ ~ Ho, Lv (gn + st...) (u, u, ~u uu) = J)



N = WwW

dence the Wronskian is a constant W

et as)
1

s)

N-1
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 (eg )s +s logs )

J

Sit a Ne
&gt;)

Then the particular solution of (A. 4) bv variation of parameters

3]

Wz c.(s) u,(s) + c,(s) u,(s)

vhere

3) = wr ( h(s)u(s)ds constant
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Fhe particular solution

5) u,(s) + c,(s) u,(s)

.s given by

29 =

N \ -

\
feof

(=O

(A. 5)

substituting for x from (A. 5) in (A. 4)

Ly

(i+p -1)T.s
+p 2%

 - bi dogs D (40) (in -1)
d
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1+po )
mm
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(itr) (i+r-1 itr \Yu s (i+ 0.) (i+ 0
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oN [ 1+s $1 o (A. 6)

wquating coefficients for different values ou.

(r(r-1)+ gq.) c

r (+r) + q,] v

(r+i) (r+i-1) +q,] u.

oo

. 2 A

(r+i-1) (itr-2)+q,-a,] Ying =a

'
wl &lt;7 &lt;N 2.

ol

A. /)

I'he u's can all be determined from above relations. Now

cquating to zero the coefficient of logarithmic terms on the LHS of (A. 6)

(p - 1) +g.

(p + 1+g |

. . 2 1 A

+ -1 - - - - ~ oe(p, i)(p.+1 ) a, | T-[(p, +i 1)(p, +1 2)+q, 401 7T, P| T. ,

 2 la. 3)



All the T's are then known in terms of T, from (A.8). Itis also

obvious that the T's satisfy the same recurrence relations as a, (p,
1

+1and a. (p,). Equating coefficients of sN )/2 on both sides of (A. 6)

x - 1) + yT + :p Por tg 9) UoT9Uys
1

ee AN “9 =

Since u's are already known from (A. 7), T, can be determined from

+3)/2the above equation. Next, equating coefficients of N )/ etc. . on

yoth sides of (A. 6) we set

Jr  1) 1 + (jt) T + {(+p) ito, -D+tqt M

1] Ugo» T q., 5 u NT

 1
Liin-1 Yo CT +

I'he above relation determines all M's Hence the particular

solution, (A.5) is fullv determined.

[he required general solution of (A. 4) is:
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Now

i-N
2

c{a,s) = L(R' (s,t)) = s

L(R (s,t)) = a a
J.

«
JS

L (R (s, t))

: B[ log s
I
LL

a, ( ps) Ss

&gt;!5

= log ¢
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APPENDIX B

SOLUTION OF THE DIFFERENCE EQUATION

Ne note that a. (py) ; 2, (p,) and T, (i= 2) satisfy a homogeneous

linear difference equation with coefficients which are quadratic in

Fhe following is a technique for solving such equations. The equation to

he solved is

(p+ i) (pri-1) + == a. - [(p+i-1)(p+i-2) + dq - a. | a,

~

dA

13.1)

p (p+ 1)+q,) a = 39 9

Nriting

o+ 1) (p+ 1-1) +
ai

p+ i-1) (p+i-2) + q, -

11:



lhe simultaneous equations corresponding to (B.1) are

0 (pt!) + qq) a

A
J

[f the series solutions for a and T are truncated after n terms, the

above equations can be written in the following matrix form

(p (1+p) + q 14 9,

Rl

a

A

- |]

J

n-u

vd

Bb

4 is assumed to be known and the a.'s  IL = ..2....0n can be

avaluated by Cramer's rule. The matrix on the LHS is triangular; hence,

ts determinant is the product of its diagonal elements viz



Cp (1+ 0) i ilag IT
1=2

{

T'his is the denominator in the expression for all the a's and is seen
1

to be independent of a . The numerator for a. will be the same deter
1

th
minant as the denominators except that the i column is replaced by the

column matrix on the R HS

Numerator = \
o (1+p) + dq

‘ud

1
1+

7
a

+2

1

5 (ptl) + oy in 4,

Liq Doyo @
7

nN

a a
h- deren « U ZN



[he determinant A. is an ixi determinant. Multiplying the

Lr
column by

o(ptl) + q
and adding to the first column we have

49 4

A qq

(p(1+p)+gy)A

st
Kxpanding on the 1 TOW

Lesa:

- a + 4



1

\
4

a, aD.

2, 9, Do

p (pt0 1) + dg) I
n=_.

3
11

4
Where D, l is a continuant ] of order 1 -1 all of whose elements

are zero except those in the main diagonal and in the two adjacent diagonal

lines parallel to and on either side of the main diagonau

Nriting

J
_

= a

}

vhete

Nf 1



ed.

re}

One term of the continuant D, 1 is obviously a a,. ..a. , other terms
- i

can be formed from a a, ...a. by replacing any pair of consecutive a!
i i

&gt;yv the product of the b and c having the same suffix as the first a of

he pair with a negative sign. For example a_ a +1 may be replaced by
+

b c . This is obvious from the definition and from the fact that to get

and c¢ into the position of a and a .q one interchange is necessary
- —-

"he numerators for the a.'s are calculated assuming we decide to

:runcate the a's after N terms. Denoting the numerator of a, by N(a.)

ve have:®

Nv (a

\ ]

)

C Ae a. ...a)

8! ID) = a. fa)(a,a ......a)

#1 0d DO, = -a,aq, (a, a, -b. ¢c)la,ac.....a)

and so on.
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