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ABSTRACT

The transient behavior of a traffic flow system where the over all
service rate is assumed to be a quadratic function of the occupancy is studied
in this thesis. The system is viewed as a service station with N servers
and the transient probabilities for the system to be in state j at time t are

It can be shown that such a system reaches a state of stagnation or
The mean time to lock up

The partial differential

obtained.
lock up, eventually, regardless of the input rate.
for small N has been verified with Helly' s result.
equation for time dependent input is also obtained.
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CHAPTER 1

INTRODUC TION

In a recent paper[z] entitled "Two Stochastic Traffic Systems
whose Service Times increase with Occupancy'', Walter Helly considers
a traffic model characterized by service times that increase with the
number of patrons undergoing simultaneous service. A traffic circle is
viewed as a service station with N servers handling a Poisson arrival
stream of intensity A . The service times are exponentially distributed
with a mean of 1/[c¢' (N - j)]. The over all service rate is thus, a

quadratic function in j , the number of occupied servers.

. :Jc'j(N'j) (0<j <N)

:)0 (i > N)

where c¢' is a constant. Figure 1 is a plot of p, as a function of j .

The maximum service rate is given by

| occurring at j:%I : Neewen

T |~

max I
c' (N -1) (N+ 1) j:E—(Nj-_l):Nodd

= |



[
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Figure 1

Service rate pj as a quadratic function of occupancy j for N = 20, ¢' =1



Unfortunately, this maximum cannot be maintained without external
control over arrivals. For any A > 0, there is some value of j,
say k , such that |J.j <A, all j>k. Hence the system will ultim-
ately reach the absorbing state N , no matter how small the arrival
rate. At that point the system reaches a state of stagnation and no new
customers are accepted. A lock up is formed at the traffic island and
there are neither new arrivals nor departures from the system. Helly
obtains the mean time for the circle to lock up, starting at t=0 from
state j = 0 and ending at state N .

This thesis studies the transient behavior of the above system
and obtains the transient probabilities for the system to be in state j
at time t . Assuming that it started at t = 0 from state j =0. For
small N the mean time to lock up is also obtained and found to be
in agreement with Helly's result. The system has also been studied for
an arrival rate that varies with time. In chapter III the partial differen-

2
tial equation that describes the system for A(t) =t -t is obtained.



CHAPTER II

THE PROBLEM AND ITS SOLUTION

The traffic circle is taken to be a service system in which
arrivals follow a Poisson distribution with mean rate X . N is the
number of servers, The maximum number of vehicles that can occupy
it simultaneously is equal to the number of servers. The state of the
system is defined as the number of vehicles in the circle at any time.
Interdeparture intervals are distributed exponentially with a mean ser-
vice rate p.j = c¢' j(N -j), a quadratic function of occupancy j. There
are two reasons for the dependence of the service rate on occupancy.
First, when vehicles follow each other, their speed declines with decreased
headways. Second, when a circle is crowded, departing vehicles, blocked
by others from turning out, cease forward motion thus preventing progress
for those behind. It appears that once occupancy is very high, a jam or
lock up condition, spontaneous recovery to free flow is exceedingly unlikely
unless there is a very substantial reduction in the arrival rate.

Let

pj(t) = Probability that the system is in state j at time t

The system starts in state j =0 at time t = 0,



Thus

=0 i# 0

Then with the A and p.j described above, we have

iR W p(t) - A p (1)
e B e 0
d p.(t)
i _ ;
i = Hj+lpj+l(t)+h pj_l(t) (uj+h)pj(t),
dp (t)
=
— = x a0 - a2 By ()
dt
and
d p(t)
N
= AP (t)
" N-1

Now define

N .
R (s, t) = Z p;(t) s’

—
1
(=]



Multiplying both sides of (2.1) by s’ and summing for all 0 <j <N,

d d
¢ R = ¢! 8 (s - 1) Ez{-l-c‘(s—l)(l-N)-—Ii+)L(1-s)R-7Lp(t)sN(s-l)
N
dt ds ds
or
2
d R 1 dR 1 - N dR A
= + + R
ds &' 8 (1~ 8) dt 8 ds glhs
N-1
)LpNs
" (2.2)
Cl

(1-N)/2

Introducing R!' (s,t) = R(s,t) s and substituting in (2.2) for

R , we have

: ; ; -at
Multiplying both sides of (2. 3) by e “* and integrating for t = 0 to «w, we




00
% {5, 8) = ( a S e bt
0
x fa) = § e_at pN(t)dt
0
since
R' (s, 0) e e . Qw2 po(0) = [ -N)/2
t=0
We have
2 2
S TR X(Z’S) +l—2 [——————l_N +2'- Bk — ] x(a, s)
ds s 4 (i c' (1 -s)
(2. 4)
-(1+N) /2
_ A S(N—I)/Z ] s
(o c' (1 -s)

Hence the original an order partial differential equation has been reduced



to a an order linear differential equation with variable coefficients.
Since s = 0 1is a regular singular point of the differential equa-
tion (2.4), the method of Frobenius can be applied to obtain a power
series solution for it.
The complementary function which is the solution of the homogeneous

equation obtained by setting RHS of (2.4) to zero, is first obtained. Let
o0

i+
xla;g) = Z ai (p) s P be a solution of
1=0
d ) i 1 NZ A
. b +--—2 [ - + — s + ki | = (a,8) = 0
ds s 4 c! ¢! {1 =)
The indicial equation
1 NZ
telp =1) + =—=— 1 a [p) = ©
4
4 N . .
has roots pl , pZ = E and ao(p) can be chosen arbitrarily. The

difference between Py and [ is a positive integer, hence the two solu-

tions corresponding to Py and Py respectively are obtained as:

el
[s° ) ao)s'] and [ (") a5 ]
0

o
©
1l
©

—

P=E5



The complementary function of (2.4), thus, is

p oio‘ p OOA
i 2
% (0, 68) = A s a(p,)s + B s [ log s ai(pz)s
N

o

where

of a, (p)
1-N2 + A
[ p(pt+l) + ] al(p) T a, (p) = 0
B (o
(2.5)
1 2 NZ
[(p+n) (p+n-1)+ Ia (o) - [(ptn-1) (p+n-2) + —
B 4
A A
ok +| ) iy )
e
. %' an-Z(p) R



Since a, (p) can be chosen arbitrarily set

ao(pl) =1
and
1 N2
aj(p,) = [(p+ N)(p+ N-1) + J
4 =
p=p,
1+ N N 1 -N
s , =
1 i 2 2

The subsequent a's can now be determined.

Next we determine the particular solution of (2.4). Rewriting

(2. 4)

2 2 >
g
> x(a,s) + [q0+qls+qzs o ] % (a, s)

ds

(3-N)/2 ]

2 _ e
= [1+s+ s +....SN1+(>\X ‘l"l)SN
Cl
+ sN+1+ ...... ] (2. 6)

Applying the method of variation of parameters it is observed (see

appendix A) that the particular solution should be of the form

10



< i+ = itr o iy
x (a,s) = log s Z Tls p+z U1S +Z Mls
=) 1=0 =
A
3-N 1-N A+a o
E = qo = ] ql = » qi: —_ y A 22
2 4 c! c!

Here again the T's , U's and M's

are obtained by substituting for

x (a, s} in (2. 6) and equating the coefficients of the various powers of s

on both sides. The general solution of (2.4) is found to be

o0
)sl+Bs logsz

1

x(a, s)

00
fol
1AZ
i=0

But

% (o, &) = gw S

Ll



or

el 0 o0
N i i ) i
= !
L {B{s,t)) = & & }, a_l(pl)s + B [logsz ai(pz)s +Z al {pZ)S ]
0 N 0
w0 N-2 0
N i Y i N i
T log s z Ti s + s /) Ui s + s z I\/Ii s
0 0 1
(2. 8)

L (R(s,t)) being an abbreviation for the Laplace transform of R (s, t),
where A and B are to be determined from initial conditions. By defini-
tion R (s,t) = i P, (t) s , a power series in s not involving any

0
logarithmic terms. Also (see appendix A) a . . satisfy the

N (pz) AN+ (p5)

same recurrence relation as the T,'s . Hence the logarithmic terms in
Al

(2.8) must cancel. Thus

T
B= - 0

ay (py)
A can now be determined from the boundary condition

L [R{l,88] = i— (2.9)

Taking the limit of (2.8) as s -1

il



o |~
11
>
1
l)
o
i
=]
o8
._..m_
=
N“-—’
+
G
e
B

(8 i
0 N-2 co
1 o : 1
A= [ = + a. (p,) - U, - M,] ——
a to. ) i 2 i i 00
N ‘P2 0 0 ] Z -
i WPy
0
(2.10)
Hence
co (0.0}
LRG0 = 5 A ) B o) T a1 o Vi
=i = A R & Ly (ol i 0l °
0 N ‘P2 0
N—‘Z 0.
+ s U, s1 4 sN z M, sl
1 Ak
0 1

A being given by (2.10)

0
coefficient of s in R HS

L p, (1) )

e ay  (p,)

13



or

I
&

7
l

Py (t) ay (p,) ]

2y (p,)

-1 ;
p.{t) = L [ coefficient of s’ on RHS |

4
-1 0
=L ORGSO S ' i
[ o) 8 gt W
ay (e,
-1 . '
Ti; denoting the inverse Laplace operator .
-1 TO
p.(t) = L.~ [Aa . (p)- a
J J"N 1 a ( )
N g
Particular cases
(i) N =2
2
B (A +a) a
az (pz) = [ |2' it ]
c !
T _ 3 {1 A t+a )
0
2 ¢! ¢!

14

7

]

i < N-|



(A +a)
1A=t o 1
B =
2 Zigh
(X +a) <
s bl
el (&
] — 2
and ay (pz)
Therefore
At o rke
L (p, (t)) = 2B = . (2.11)
(A +a) + a <
By the limit theorems for Laplace transforms
lim a L (p,(t) = lim P () =1
0 0
d.=> ‘00 t—= 0
and
lim a Ly (p. ity ) = lim b dE) = @
0 0
a—0 t — o0
Inverting (2.11) w.r.t. a we have
1 -a.t _G'Zt
_ i - il
po(t) [ (X +¢ o.l)e (A +c az)e
a, -a,

1 b



where

1
1 2 2
a =E[Z)L+c'-[(2.l+c‘) —4?\2]2 ]
1
1 2 2
e, = > [2Xx +c' +[(2Xx + c") —4_7L2]2]
From (2.1)
| = 1l : d p, (t) N
) 1 2 2 e
= = (az-al) [(&azk-l-azc'-az—h -Xxc')e
-a
—(Zalkﬁ-alc‘-a -A -Ac')e
Also
pz(t) = ?LS Py (t) dt + constant
A Zazh+a c’-az—hz—-hc'
- [ - ( 2 2
c! (0.2—(11) )
42
2 2
(2(117L+0. c‘-al—l -A c') -a

Since pz(oo)zl k=l
16



The mean time to lock up is given by

using Helly' s notation

in agreement with his result,

Figures 2, 3, and 4 represent the behavior of the probabilities
Py (t) , p1 (t), and pz (t) with time. We note that for c¢' = 10, the time
to lock up when X =5 is about 42 minutes while for A = 10 it is only
15 minutes. This kind of behavior of the system is not surprising in view
of increasing the input by a factor of 2 .
The time is in the units used for 1/c' where c¢' is the constant
in }J.j = c'j (N-j). Here one supposes ] and N to be dimensionless so the

units of ¢' are vehicles per unit time. Thus if ¢' = 10, time is in units

of 1/10 hour.

LT



Pl 4

Figure 2

The graphs for po(t) in unit of 1/10 hours for ¢! = 10, N=2, A =5 and 10
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Figure 3

The graphs for pl(t) in units of 1/10 hours for ¢' =10, N=2, A =5 and 10
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Figure 4

The graphs showing the probabilities to lock up

in units of 1/10 hours for c¢' =

20

{6

N

2, A =5and10.



2
. [1+ A +a (A +c21,) 1
B:_—.g 3 c! c!
b 3
3 3 [ (A +a)r (A+(12) Foa ]
¢! 4
2 2
B [c! +)\2+2Ac'+u(c'+2h)+a ]
3 2 2 2 3
3[a"+a (4c'+3x) +a (4xc' + 4c' + 3N ) +a ]
2 2 2
+ " 2X) + e+ 2 ¢!
L(Po(t)) 5 [0" O'(C ?L) & A Rl A.C] (212)
3 2 2 2 3
[a”"+a (4c' +3x)+a (4xc' +4c' +3Xx )+2a ]
Let Gy v 95 and a, be the roots of a in the denominator of (2.12).
For
2
A:[-—,:_)%(-l6c'3—27)t3+36c' A+ 27)
2 2
b { —16c'3-2?k3+36c' A+ 27)
2916
12 143
16
- = (c¢'"+3rc') } ]

2l



and

2
B = [-% (—16C'3-277L3+ 36et A+ 2T)

2
. {(—léc'3-27k3+36c’ PL+2?)2
2916
T | 3 1/2 1/3
— m (C +3AC) } ]
" . ALE - (4 c' + 3 1)
. 35
W . . tAa+B) i i (A - B)N3 ) (4 ¢ + 32)
& 2 2 2
and
L. las+B) i (A - B)N3 ) (4 ¢ 4+ 31)
> 2 2 2
Then

a, +d. k. 4+ k a; ta, k. +k

It I 2 1 2 2 %
L (p, (1)) = -

(al - 0,2) (al - u3) a-a (CL2 - al) (0'2 —a3)
0,3 +a3k1+k2 I
+
(CL3 B al) (cL3 - az) a-aj

22




(a +0.k+kz) (o1 (0,2
P, (L) = e it
: (@, -a,) (@ -a,) (a
] 2 1 3 2
<+ k
a3 +CI.3 1\1 5 u3t
+ e
(ay ~ay) lag - a,)
where
kl = ¢c' + 2\
and
2 2
kz = e Nk 2he!

P, (t) can be determined as before and is

2
(<J.1 + allirkZﬁL + al)

=gyl ey ey

Z3



il I i
2! (a, -a,) (a, ~a.) 2!
il 2 1 3
(2ec'+A)(x +al)
+
2:el
a2+0.2 kl+k2 (12()\ -’raz)
B { - A

+ 2
Zhed
a -I-U.3k1+k‘2 (?L+03)
- {0,3 - A
= D t
(cL3 al)(cl,3 az) 2 ¢
(2et +x) (ax +a.)
3
+ }
2 c!
and
a, +a, k., + k a, (A +a.)
A 1 Il 2 1
py(t) = 1+ [ — A
2 (Cl.l - 0.2) (al - a3) ay 2 @

24
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25

st }ez
Z ¢!
(X +a.)
L {a 5 - A
3
0.3 2 el
(Ze' + X) (A +12.) a
3
i }(
2 ¢l



CHAPTER IIT

THE PARTIAL DIFFERENTIAL EQUATION FOR TIME DEPENDENT INPUT

In this chapter the instantaneous arrival rate of vehicles is
assumed to depend on time and is taken to equal t -t . The differen-
tial-difference equations describing the system remain the same as in

: 2
chapter II except that A is replaced by t -t

Using the notation of the last chapter we have,

d” R 1 dR! 4s(t-t)+c (1 -N) ,
B 2 :
ds c' s (1-s) dt 4l s
- 2
-t e
Cl
or
2 2
d x 2 d x 2 dx (l-NZ) a
g = = 20 } %
ds c''g da et 8 da 4 s c' s (1 -s)
- (1+N) /2 S(N—l)/Z A dz
= - [d— x +—5 x
eft v il =s) (i “ da
(3.1)

26



nd
The above equation is a 2 order partial differential equation of the

[2]

form
5= + Rr &+ ‘EE+ @q & Pp + Zz = [
%
2 1 -
where 5 =0, R=1, T =@ = - ' A N + & :
c' s 2
45 c' s (1 -s)
- (14N)/2 S(N-l)/z
P=0, U= 2 f (a)
¢t {1 - 5) c!
2
d d %
fla) = — = + > X
da da

To solve the linear equation (3.1), the process consists of changing
the variables.

Let the independent variables s and a be changed to £ and n as

yet undetermined; then when p', q' .... denote 0o ; ?—
il

d€

equation becomes

2
# [RUG) + TUE) +sE F1
2 2
+t'[R(%) S%E gﬂa+ (3—2)]

2.7



dg dn dn d& Eﬂ d&
1 (e ==l ks e gt
+s[2Rds ds i S(ds da+da ds)
d d dz 3 dzg dZE
+2T-&§d—“]+p1[ =+ s T 3
s . ds dsda da
d& d& d2 dz
+P2E + 0= ] +q [R— + 5 —1
ds da ds dsda

I
c

2
+Td—g+P«d—”+Q-§1]+2z (3.2}

Let m and n be the roots of the quadratic equation in k
2
Rk + Sk + T = 0

Then

Since these two roots are unequal, we choose £ and n so that

g dE 2 ME g

c' s da

28



and

and

d
Substituting in (3.2) for % - etc. , and dividing throughout by

" ds

1
oo

2
d& dn S
=5 =1 4 = = :
da da = R ) N

we have the following reduced form

Where

29

2a

(3. 3)



1/2 1/2 1/2 1/2
2/cy [sY@/e) +1/2 82?8

L = &' 58 &

1/2 1/2
_ 1/2 1/2
M= c se? e_Z(Z/C ) 5 (2/ct) [s_]l (2/ch) - 172 5‘3/2] /8
1 - N 2
N = [ - ] c's e 7%/8
4 g c' s {1l - 8)
and
(1-N)/2
v - 2@ [S(N+1)/Z fla) - 1/8
1 - s

(3.3) is a standard partial differential equation and can be solved for x .

30



APPENDIX A

SOLUTION OF THE DIFFERENTIAL EQUATION

d x 1 1 - N A +a a 2 a 3
o [ e st+— 85§ +— 8 + ]x
2 2
ds s 4 c! o c!
N-1
s , - (14N)/2
= —=i g 3 =
ol c' (1 - s)

To obtain the complementary function we solve the homogeneous equation:

2
d x 1 2 3
5+ [ggtastas ta,s +...] x=0..... (A1)
ds s
where
&
=N A+ e a
9 = » g = s Gl =i —— 5 1= 2
0 1 il
4 c! c!

Equation (A.1) has s = 0 for an infinity of degree two. Frobenius's

method can therefore be employed to obtain its solution. Let

co

¥ i4
e

[ |

3l



Substitution in (A.1) gives

=) 2
p(p—l)aosp + (p+ 1) pa, sP +(p+2)(p+l)a25p +
q q
0 I pt2
+ 5 +q2+q35+..][aos ta s
S S
+...] =0 (A.2)

Equating to zero the coefficient of the lowest power of s

f(p)qo = (p(p-l)+qo)a0:0

A
sao

is not zero, being the coefficient of the first term in x , (A.2) shows

that the values of p to be considered are the roots of f(p). i.e.

which is a quadratic in p with roots Py and Py equal to N

.a
0
2
is chosen arbitrarily. Since the difference between N and Py is a positive

integer N, we take

a; (p) = & [ lo s MY dps M-l e 2o B

32



and thus secure that none of the coefficients a 1is infinite; moreover

ay undetermined and therefore an arbitrary constant, so that c¢ is

an arbitrary constant. By equating to 0 the coefficients of various

powers of s in (A.2) we have:

(p(pt1)+gp)a +q 3, =0

{lp+Dlpti-l)+dy}a ~{(p+i-Lylpti-2)+q,~-q }a

-1
A N :
Sl 0 i22 (A. 3)
CI
’ 1+ , .
We notice that for p = Py = 3 all the ai‘ s are determined in terms

of a5 from the above recurrence relations and the corresponding solution

is

(0.8}
2 o o
] i ‘P
=0

corresponding to the root py = L 2_ il , there are two integrals of the equa-
tion (A.1) viz
o0
+
X:[z ai(p)slp] andx:[gE
- P -
0 p = »02 2= PZ

33



As regards the first integral
00
+pl
ey s
0

the coefficients a. for all the values i =0,1,...N-1 contain a factor
1

p - Py hence when p is made equal to Py the sum of the first N

p .
2
terms in s ; a, (pZ) s' vanishes. As regards the second sum, we
0

write it in the form

pt+N ptN-1
_I_
& ay (P ) N+1 (P2) :
. . 1 -N
which when p is made equal to Py (= — ), becomes
1+N 3+N
2 2
s 2y (pZ) + s aN+l (p2)+..
P
a series that begins with s and proceeds in ascending powers of s .
But
0
+1
x= [ ) ap)sf]
0 P
Py
is a series that begins with s and proceeds in ascending powers of s,
hence
o.0]
+1
x = [ ) ates”]
0 PP



is not an independent integral, it is a constant multiple of

is
0
d +1
% = [ T 5‘ a, (p) sP ]
p L _
O p_pz
o 2 Py o
- : = h
= 5 log s /, ai (pz) Sl +: 5 2 a_:!l (pa) Sl
A= =)
where
d
1 — i
al (p,) [ 3 &) ]
P=P>

0 0
S bds+Bs?[1 '
= s a, (p)) s s og s a, (‘OZ) s
0 i=N
w .
2l
I
1=0



A and B are unknown constants to be determined from the boundary

conditions.

The Particular Solution

Now we proceed to find the particular solution of the equation

3-N
é A [q, + + 2+ ] = i [1+e+ ¢
> > o t 98 + 4, s X = s+ 8
ds s et
£ (A x + 1) s + ]

(A. 4)

In order to get an idea of the exact fovn of the particular solution, the
variation of parameter technique is applied. This is a method of deter-
mining the particular integral when the complementary function is known.

The Wronskian for the complementary function of a 2nd order differential

equation is

[ 2 2 L

where the primes represent differentiation w.r.t. s

dv i L LR G 5 U — —1—(q + st Yk s =l
ds W R 2 Vg T g e
S

B = ) = O

36



o:x

Hence the Wronskian is a constant Wc

N-1
1 2 % sd(l+N)/2
Let his) = — [ s x 4 ]
cl l - s
o0
(s} = spl 3 a. ( )s1
L - i ‘Pq
0
0
B = 2 hede e (p,) s
u,(s) = s a; {p,) s s og s a, {p,) s
0 =N
Put a, = a, (pl), bi = 2 (,02)

Then the particular solution of (A.4) by variation of parameters

[3]

is
S Cl(s) ul(s) + CZ(S) U’Z(S)
where

1
cz(s) = —“—r: S‘h(s) ul(s) ds + constant
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) 1 2 . (a0+al)s . (ao+a1+a2)s .
T W, ¢ 2 S
22 N
(a0(1+ Ax )4 a, +a, -i-‘..aN)s
- + el ]
N+ 1
and
() = - = B(&) u, {8} ds + constant
c (s) = - 37 : (s u,(s) ds + constan
c
= - ! ‘[logs{b + (b C o T Sy }
W el N N+1 N
C
e 1 1 1 |+.'.l :::1
+ [ = By +bY o+ b+ by bl )+ (A x b
+ bl +b' +..... bl )&+ ..... B g o
0 1 N+1 0
il
+ (b! +b‘l)s N+ ......
£ B + D F e b! )s'1+....]ds
0 1 N-1
1 2
s
= - ! } b.. 4 — (b e
ch'[logs {b0+b1+ Begoy ot BByt (N+bN+l)+ }
1 ! 1
_l =, N‘_Z ----- = O 1.1:- N_Z
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bl 4+bl +...b_ -b B s
+ (A x bl + + bN N)s

0 0
bt 1
1 1 0
= (b .. bl Y= = (bl .. .5l ) — .
3 = 2 -1
0 N-2° s 0 N-3 2a (N-I)SN
The particular solution
X = Cl(S) ul(s) + CZ(S) uz(s)
is given by
3-N N-2 00
Py 3 i 2 ‘ i P i
x = 8 10gsST_s+s Zu_s+s Z M. s
P 1 il i
0 i=0 3= ]
(A. 5)

substituting for x from (A.5) in (A. 4)

i+p1 & ].-i-pl Ll 1-i-pl

i -1 i i i = 1)

(1+pl )Tis +Z (1+pl)Tis + log s z (1+pl)(1+pl ) .S
0 0

o L\.ﬂg

N-2

itr S e
+ (i+r) (i+r—1)uis +>J(i+pl)(i+p1—l)Mis
1

L4

P o0 . . 9 itp

1 1 i 1

+(q0+qls+...)[s logsZTis +Z u, s +Z M, s ]
0 0 1



3 [1+s+s2+ ...+(>Lx"':+1)sN+....]_ (A. 6)

C !

Equating coefficients for different values of x

1 3 -N

(r(r-1) + qo) e 2

[r(l+r)+q0] ul+ql u0 =

[ (r+1) (rti-1) +qp] u, - [ (r+i-1) (i+r-2)+q -q

1 i-1 el A2

2<isN-2. (A.7)

The u's can all be determined from above relations. Now

equating to zero the coefficient of logarithmic terms on the LHS of (A. 6)

[y ey = L g [F, =0

[ oy oy + D +qy]1 T +q Ty =0

[py + D)o +i-Daq ] T, - [(p, +i-1}(p, +i-2)+qy-q, ] T, -%, T
1 =2 (A, 8)
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All the T's are then known in terms of T, from (A.8). Itis also

obvious that the T's satisfy the same recurrence relations as a, (p

1

b
and a. ('02)' Equating coefficients of s(N )/ on both sides of (A.6).
1

((pl -1)+pl)T0 + qluN_2+q2uN_3+....qN_1 uO = —

Since u's are already known from (A.7), T _  can be determined from

3)/2
the above equation. Next, equating coefficients of s(N+ )/ etcs T on

both sides of {(A. 6) we set

. 1 e : : il
(J+pl )Tj+(_]+p1)Tj+ {(J‘i’p)(J'!'pl )-I~q0} MJ,JrqlM +

j-1

e +q, foer. q. == '
%41 "N-2 T Y42 UN-s jin-1 Yo T @ 1

W

The above relation determines all M's . Hence the particular

solution, (A.5) is fully determined.

The required general solution of (A. 4) is:
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Now

or

= A, e

L (R (s, t

1-N

= L(R' (s,t)) = s L (R (s,t))

[*0]
)) = SNAZ a,lsl+B[1ogs
0

[¢.0]

Z ai (‘OZ) s‘1

N

& : 2
+SN10gSZ Tisl+s\§uisl+sN
0
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APPENDIX B

SOLUTION OF THE DIFFERENCE EQUATION

We note that a, (pl) » a (pZ) and Ti (i=2) satisfy a homogeneous
linear difference equation with coefficients which are quadratic in i .
The following is a technique for solving such equations. The equation to

be solved is

2
! . 1 - N : :
[ (p+ i) (pti-1) +—4—] s [(p+i-1)(p+i-2) + 95 - ql] a
A 5
e ai_Z:O} 1 =2
(B.1)
(1r:>(p+l)+c10)al = -a59
Writing
2
T
(o 1) (p o i=l) e
4 1

and
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The simultaneous equations corresponding to (B.1) are

(p (ptl) + qO) al = = aO q1
— 1=y 1
’YZ al 57 (:l,2 212 A aO
| = 0
A +*y3 a2+a3 a3

If the series solutions for a and T are truncated after n terms, the

above equations can be written in the following matrix form

r
(p (14p) + q, 11 | 2 e
| 1 ‘l I
| = 1
T2 %2 "2 | AT
|
|
X' g, 0, “ 0
| |
] [ - 0
0 A" vy oy |
5
| ‘ l
| & vn—l an—l [ !
i } [ |
At v a | a \ 0

ao is assumed to be known and the a.'s

R (e S I e )
i

evaluated by Cramer's rule. The matrix on the LHS is triangular; hence,

its determinant is the product of its diagonal elements viz
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n
[p(ltp)+q,] T @
1=2
This is the denominator in the expression for all the a.'s and is seen
i
to be independent of a . The numerator for a. will be the same deter-
. ) .th ,
minant as the denominators except that the i column is replaced by the

column matrix on the RHS

Numerator = Ni = | p (1+p) + 4 - a4 9 0
Uy s -A! a, 0
Al V3 @ 0
A 'yi 0
& @ Sy
° Tie Sz
0 Aoy
p (ptl) + q - a5 9,
or Ni = u1+1 UL an v, o, X Qg
Moovy g
Al v; 0
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The determinant A . is an ixi determinant. Multiplying the
i

th plptl) + q,
i column by and adding to the first column we have
]
0 ay 9
= !
P2 %2 Mg
= !
A.l A Vs oq
' 0
A i
(p(ltp) + q5) 2!
QZ = 72 v |
2
- st
Expanding on the 1 TOwW
ba oo
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i+2
= (- D
(- 1) 0 %1 Ti-1
it+2
= D
(=i 0 Y4 Yo
a. =
1
(p (p+l) 4+ qo) I_I CI.n
n=2
. ! [4] .
Where Di 1 is a continuant of order i - 1 all of whose elements

are zero except those in the main diagonal and in the two adjacent diagonal

lines parallel to and on either side of the main diagonal.

Writing
a. b
b B
e, a, b
1 2 2
D =
i-1 B B
<, a,
D -
0 1
where
e, = A fzl)
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o |
1
ws)
o |
I
=
WV
[&®]

b, = a, , =1
J Jtl !
One term of the continuant Di 1 is obviously El EZ.' ..a, , other terms
- i
can be formed from El 22 he ‘gi by replacing any pair of consecutive Zi' S

by the product of the b and c having the same suffix as the first a of

the pair with a negative sign. For example Er = may be replaced by

5 |

-b_¢_ . This is obvious from the definition and from the fact that to get
P

b and ¢ into the position of a and a L1 one interchange is necessary.
r i I &

The numerators for the a.,'s are calculated assuming we decide to
2k

truncate the a's after N terms. Denoting the numerator of a, by N(a,),
bl

we have:
N(al) = 2, 9 (az a3....aN)
N(az) = 2549 D1 = &, d, (51) (u3 Qye ..G.N)
N fa,} = - agg B, %0 ql(glzz_glzl)(aflqﬁi s em )

and so on.
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