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ABSTRACT

Measurements of the electrical resistivity (p) and derivative of
electrical resistivity with respect to magnetic field (3p/9H) as a function
of magnetic field is done on samples of graphite intercalation compounds
where the focus has been on the oscillatory behavior with the field
(Shubnikov-de Haas effect) rather than the background values of (p) and
(30/3H). The materials which have been studied are CyFeCl3 (stage-1, 3,
and 7), Cy,pdcly (stage-3), C_Br, (stage-15), C_Rb (stage-3), and

xX 2 X
C Act, (stage-4).

Possible shapes of the Fermi Surfaces for graphite intercalation
compounds has been inferred from angular dependence of Shubnikov-de
Haas oscillations. Possible shapes of Fermi Surfaces are sliced
a11ipsoids formed by zone folding of a graphite like constant energy
surface along the c-axis, with possible warping similar to that of
pure graphite. It has been found that the larger the cross section of
the ellipsoidal Fermi Surfaces, the higher the anisotropy.
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CHAPTER 1

'NTRODUCTION

Graphite intercalation compounds consist of an alternating sequence

of intercalate monolayers separated by n contingous graphite layers

(n &gt; 1) where n denotes the stage of the compound. The chemical

reaction by which the compounds are formed is facilitated by the

highly anisotropic bonding in graphite; the hexagonal array within a

single carbon layer contains very strong sp? covalent bonds, whereas

adjacent layers are bonded mainly by the weak P, overlap between

nearest-neighbor layers. As a result, the in-plane graphite structure

is essentially unchanged by intercalation, while the c-axis spacing

can increase by as much as a factor of 3 or more to accommodate the

intercalate. Graphite can form synthetic metals by virtue of its

aromatic electron band structure. The macro-aromatic molecules in its

crystals readily suffers injection or emission of electrons when

brought in contact with electron donor or electron acceptor intercalants.

Therefore, in principle, metallic solids with wide diversity of

electronic characteristics can be synthesized by intercalation of

suitable species between sheets of hexagonally bonded carbon atoms

in graphite. Two main categories of elements and compounds have been

reported to intercalate graphite: donors - esentially Group I and II

metals: or acceptors such as halogen molecules Br,. Icl, ...;
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compounds sbd, AsFg, ..., Bronsted acids HNO5, Hy50, ..., and certain

oxides, sulfides and flourides. Interest in these materials stems from

the fact that the anisotropy can be varied over a wide range by proper

choice of the intercalating species. One of the property changes

accompanying intercalation is the large increase in a-axis (in-plane)

conductivity Oy The anisotropy (0,/0,) increases with intercalation
up to a factor 10° for acceptors, while it decreases for alkali metals.

This suggests that p-type compounds are strongly two-dimensional. Thus,

one can study phenomena peculiar to two dimensional systems in a

systematic way. Several practical applications are also expected. Some

acceptor compounds have an in-plane conductivity Ty greater than that

of copper with only 1/3 the density. Alkali donor compounds exhibit

superconductivity where neither species alone undergoes a superconducting

transition. Applications in catalysis is expected where the chemical

reactivity of the intercalated molecule is selectively modified by the

electron transfer from or to graphite.

Experiments such as, conductivity and specific heat confirm the

metallic character of these compounds. The electronic structure of

these compounds is still unknown (except for CoK and Cel), in spite

of a considerable amount of published experimental results relevant to

the electronic structure.

The motivation for the present research is to study the Fermi

surfaces of the graphite intercalation compounds in order to obtain

insight into the electronic structure of these compounds. The
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Shubnikov-de Haas effect has been used to investigate the electronic

structure of graphite intercalation compounds. In a high magnetic

field and at low temperature, the free electron gas is quantized in

Landau levels. The magnetoresistivity oscillates as the magnetic field

changes. These oscillations are periodic in inverse field (1/H) and

the frequency of the oscillations is given by F = NCRwhere A is an

extremal sectional Fermi surface area perpendicular to the magnetic

field. Therefore, by looking at the angular dependence of each

frequency, one is able to determine the shape of the Fermi surfaces.

The compounds studied are C FeCl, (stage 1-3-7), C,PdCT, (stage 3),

C.Brs (stage 15), C, AICI (stage 4), as acceptor compounds and C,Rb
(stage 3) as donor compounds. The effort was focused on the shape of

the Fermi surfaces of these compounds, the stage dependence of the

frequencies in the CFeClg system, and the intercalant dependence of

these frequencies.
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CHAPTER 2

3JAUKGRULND

In this chapter, we review the graphite energy band structure

which is described by the Slonczewski-Weiss McClure mode. We describe

a model for dilute graphite intercalation compounds based on

modification of the pure graphite structure (M.S. Dresselhaus,

G.F. Dresselhaus, J.E. Fisher, 1977). In Section 2.3, a possible model

for the Fermi surfaces of graphite intercalation compounds has been

introduced. Finally, in Section 2.4, we discuss the Shubnikov de-Haas

nffect.

2.1. Energy Band Structure of Graphite

The graphite crystal lattice is shown in figure 2.1. The distance

between layer planes is much larger than the distance between atoms

in a layer, and each atom has three equivalent neighbors in the

same layer. The planes are stacked in ABAB order and there are two

kinds of atomic sites: type A which has neighbors directly opposite

in adjacent planes, and type B which does not. There are four atoms

in a unit cell, an A and B atom from each plane. The Brillouin zone

is a thin hexagonal cylinder as shown in figure 2.2. The Fermi

surfaces are located in the region of the vertical zone edges HKH.

Because of the large anisotropy of the crystal structure, it

's a reasonable starting approximation to ignore the interaction
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between layers. The Brillouin zone for a single layer is a two-dimensional

hexagon. The 2S, 2P 5 2P, atomic wave functions form the bonding and

antibonding trigonal orbitals, which make up the o-bands. The P, atomic

wave functions give rise to two m-bands, which are degenerate at the

six Brillouin zone corners. The Tower and upper wm bands from the

valence and the conduction bands, and in the single layer model there

is no overlap or band gap between the two bands which are degenerate at

the corners of the two-dimensional zone. The energy of interaction

between layers is of the order of .5 eV which causes very little change

in the overall character of m-bands, whose width is about 20 eV.

However, the interaction between layers has a profound effect near the

six vertical zone edges where the bandwidth is small and where the

carriers are located. There are four m-bands in the three-dimensional

band structure of graphite, as there are twice as many atoms in the

three-dimensional unit cell. A general model for the behavior of the

energy bands near the zone edge was developed by Slonczewski, Weiss

and McClure. The Fermi surfaces have very little extent in the x or

y direction, so the kep method was used in xy plane and the tight

binding method parallel to the c-axis. Their model can be described

by a (4x4) Hamiltonian
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The quantity o is the dimensionless distance from the zone edge,

g = 13 ak, where a is the lattice spacing in the plane and « is the

distance in k-space from the zone edge. The quantity a is a polar

angle about the zone edge as indicated in figure 2.2. The range of
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estimated values of band parameters are:

v,
“y

Yo

Ya

A

 5 ay

-.019 eV ;

.044 eV

008 eV

Ya 39 eV

Yy = 14 to .29 eV

Y5 038 el

For the case Y3 = 0, the Hamiltonian can be diagonalized easily.

The energy in this case is independent of a, so that Fermi surfaces

are figures of rotation about the zone edge. Along the zone edge

(c = 0) the energy is given by the formulas for Eqs E, and Eq

(eqs. (2.1), (2.2) and (2.3)). Away from the zone edge, the two

highest states increase in energy with increasing o, while the two

lowest states decreases, as shown in figure 2.3. For negative values

of Yoo the lowest energy in the conduction band is at K, and the

highest point in the valence band at H. Thus, for pure graphite,

there would be electrons around K and holes around H. Introduction

of the parameter Y3 causes the energy to depend upon the polar angle

o, the function having trigonal symmetry. Thus the Fermi surface

also is trigonally distorted. The Fermi surfaces are quite anisotropic,

with the length in the c-direction about 13 times the width

perpendicular to the c-axis. Figure 2.4 shows the Fermi surface model

for graphite, emphasizing the hole and electron locations and the
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trigonal warping.

2.2. Effect of Intercalation in the Dilute Limit

Graphite intercalation compounds consist of an alternating

sequence of intercalate monolayers separated by n graphite layer, where

n denotes the stage of the compound. We distinguish layers adjacent

to the intercalate layers as "bonding layers" whereas the rest of

graphite layers are referred to as "interior layers". The question

arises to what extent the electronic structure of graphite intercalation

compounds can be deduced from a rigid band model modification of the

graphite electronic structure. It has been speculated that for Tow

enough intercalate concentrations (called the dilute 1imit) the

electronic structure of the interior layers would resemble that of

pure graphite. The electronic interaction between the intercalate

monolayers and two adjacent bounding layers is localized within this

sandwich. An estimate of the dilute limit follows directly from

SWMcC model. The model includes interaction between carbon atoms

separated by up to two layer planes. In fact, the band overlap which

produces the semimetallic behavior of graphite is associated with

the SWMcC band parameter v,, representing interaction between atoms

two layers apart. Starting at an interior layer and making overlaps

corresponding to Yo suggests that the SWMcC model, would apply to

compounds with stage 5 (3 interior layers and 2 boundary layers)

which is an estimate of validity of the dilute limit. A modified

SWMcC model can be used to compute the dependence of the SdH extremal
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areas as a function of Fermi level in the dilute limit (M.S. Dresselhaus,

G. Dresselhaus, J.E. Fisher, 1977). Figure 2.5 shows the result of

such a calculation. The planes through H and K points and perpendicular

to the k-axis always yield extremal cross-sectional areas. There is an

additional extremal area associated with the holes (labeled Emax point)

occurring at &amp; = Emax’ and the values for Emax corresponding to these

extremal areas are given by the upper abscissa scale. As a first

approximation, figure 2.5 can be used to estimate the change in the

Fermi level as a result of intercalation for the frequencies and

the range f &lt; 50 Tesla.

2.3. A Model for Fermi Surfaces of Graphite Intercalation Compounds

The model described in Section 2.2 is applicable to describe low

frequencies (less than 50 Tesla) of dilute compounds (n &gt; 5). For

lower stage compounds and for higher observed frequencies, one has

to appeal to band calculations. In the absence of a band calculation

for higher stage compounds and with analogy to the pure graphite

Fermi surfaces, one can for simplicity make the approximation of an

ellipsoidal Fermi surface along the c-axis. The effect of periodic

layers of intercalants can be modeled as slices in the ellipsoidal

Fermi surface through zone folding effects. Figure 2.6 shows the

assumed model for the Fermi surfaces of graphite intercalation

compounds. The distance between slices is ET where I. is the distance
between adjacent intercalant layers. Furthermore, at each "cut" strong

effect of perturbation "cuts" result in splitting of the surface as is
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illustrated in figure 2.7.

Shubnikov de-Haas Effect

The Shubnikov de-Haas effect is an oscillatory dependence of

the electrical resistivity on the magnetic field. This is produced

by the oscillation of the density of states at the Fermi level caused

by the quantization of electronic energy levels in the presence of a

magnetic field. The oscillations are periodic in inverse field.

If electrons with isotropic effective mass m* a spherical band

are exposed to the magnetic field along the z-direction, the energy

eigenvalues are

—

1 h2k? 1n+ gh + ua £7 gui n 0,1,2,...

where w is the cyclotron frequency lo = =. Kk, is the wave vector

in z-direction (H z-direction), and yu is the Bohr magneton. Due to

the quantization of the electron orbit in k-space in a plane perpendicular

to the magnetic field the parabolic band is split into subbands which

are separated in energy by the amount ha... The uniform distribution

of quantum states in k-space in the field-free case is replaced by a

series of interlocking Landau cylinders with the cross section A_ in

the direction perpendicular to the magnetic field:

(n + v) [Get]
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y is 5for perfectly free electrons since the Schrodinger equation

for the orbital motion in the magnetic field reduces to that of the

harmonic oscillator problem, for which the energy eigenvalues are

(n + Pha. vy is also 1 for electrons which obey a general quadratic

dispersion law. This is often the case for states near band extrema.

 Yy is very close to T even for a Fermi surface of arbitrary shape

(A.V. Gold). The discrete nature of the Landau cylinder is smeared

out unless the Landau level separation hw, is larger than kgT. Another

requirement for the observation of the quantum effect is that complete

orbits in k-space be performed by the electrons before they are scattered,

which can be formulated by the condition wr &gt;&gt; 1, where T is the

relaxation time. The condensation of quantum states into the Landau

cylinders in the magnetic field has drastic consequences on the density

of states. Ignoring the spin, the density of states per unit energy

and unit volume is of the form:

n

1(1)2(2m* 3/2 ex(EE) = 32] 2 En
hw

n —1/21E - I + 3
3 2)

The summation is done over all occupied magnetic subbands.

Whenever the energy coincides with that of a Landau level extremum

the density of states diverges. The divergence is due to an

oversimplification which neglects the finite width of the Landau levels

due to collision broadening. The oscillation in the density of states

as a function of the magnetic field can strongly affect the scattering
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rate of electrons and produce oscillation in the transport properties.

A maximum in the scattering (and consequently, maximum in resistance)

occurs in a longitudinal magnetic field whenever the Fermi level

coincides with the Landau subband extremum. Provided that the Fermi

level remains constant independent of H, the oscillations in the

resistivity are periodic in inverse field. The oscillations in the

transverse magnetoresistance are also periodic in inverse field. The

period in both cases is for the simplest model of a solid

Ald _ he 1_2me1 aIn m*c E hc

F = * |h2

2me1
he A

where A is the extremal cross section of the spherical Fermi surface.

This result has been generalized for Fermi surfaces of rather general

shape (Onsager, 1952). For a general Fermi surface, the quantum

oscillations in different parts of the Fermi surfaces will interfere

destructively except at the extremal cross section. Therefore, the

more general relation holds

H hc Aovtr.

where A asiy is the extremal area of the Fermi surface perpendicular

to the magnetic field. The Fermi level remains constant as long
E

F
a Pr 1.

hw,
The most general form of the resistivity in a magnetic field

as
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is due to Lifschitz and Kosevich (1956) and has the following form

for the ; th carrier

~y L; ru, ru, A. |et reh 21,1 Bin)SL —- T ") cos| e wo 4)H

where B.(r) is the amplitude of the rth harmonic of the jth carrier,

wy = His the cyclottoy frequency at the Fermi surface extremum for
the th carrier, U; = ar, kgTp is the collision broadening of the

Landau levels which is characterized by the Dingle temperature Ths A;

the extremal cross section of the Fermi surface, and ¢:(r) is a phase

factor. The appearance of SC is due to the fact that we are

not at zero temperature, and Ls is determined by a particular mechanism

for electron scattering. The total resistivity is then the sum of

the damped oscillatory terms po. which are periodic in inverse magnetic

field and a background non-oscillatory term pp, namely

dTotal ~ L Ps Pg

Thus, in order to obtain extremal cross sectional areas of Fermi

surfaces, one has to obtain the power spectrum of the oscillatory

part of the resistivity.
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CHAPTER 3

JESCRIPTION OF THE EXPERIMENT

In this chapter, we will describe the experimental details for

the measurement of electrical resistivity (po) and of the derivative of

electrical resistivity with respect to magnetic field % as a function

of magnetic field where the focus is on the oscillatory behavior with

Field (Shubnikov de-Haas effect) rather than the background values of

9p(p) and 3]
In the first section of this chapter, we will describe the

experimental details of electrical resistivity measurements. The

second section illustrates the modulation technique while the third

section deals with data analysis.

Electrical Resistivity as a Function of Magnetic Field

Resistivity measurements were made for the magnetic field range

0 &lt; H&lt; 14 T while the samples were immersed in liquid Helium (4.2K).

3.1.

Four contacts A, B, C and D were connected as shown in figure 3.1. A

constant current flows from A to D within the a-planes of the sample

and the voltage is measured across Band C. Vg. is, then, proportional

to the electrical resistivity of the sample. The magnetoresistance 1s

measured as a function of the magnetic field. Measurements were made

with H at various angles © with respect to the c-axis of the sample.
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Figure 3.2 shows the DC magnetoresistance setup. The setup

consists of a current source (1 mA - 2 A), DC amplifier, x-y recorder,

A/D convertor, and a cartridge tape drive. For the measurements, we

used a KEPCO Current Regulator cc-7-2M as a current source, a Keithley

140 (precision nanovolts) as the DC amplifier, a Philips PM8125 x-y

recorder, and Columbia 300B was used as a tape drive (recorder). The

outputs of A/D convertors were recorded on the magnetic tape of the

tape drive. The magnetic field was measured by an output voltage

proportional to the current flowing in the magnet. The voltage

proportional to magnetic field was taken directly from the control

console. The relationship between the current in the magnet and magnetic

field is provided for the cell magnets used.

Ohmic contacts were bonded onto the sample using conductive

paint ( Dupont #4929 ). The sample was mounted on a sample holder

attached to a dip stick, and immersed in 1iquid helium contained in a

storage Dewar. The current source was set typically at 50 mA. The output

voltage from the DC-amplifier which provided the resistivity and the

output voltage proportional to the magnetic field was sampled typically

at the rate of eight pairs per second and was recorded on magnetic

tape. The magnetic field was typically swept at the rate of 1.4 Tesla

per minute.



_ Yc

—-= -—-

i

To the magnet]
BD ——

DC AMPLIFIER

Voltage proportional
1 to magnetic field

CONSOLE “N——

=

_x-y RECORDER

liquid He

&gt;. |

LAMPE

~

SN
MAGNET

fe

« —|A/D CONVERTOR pr

&lt;
I

J
5

CURRENT
SOURCE

-

COLUMBIA 300
TAPE DRIVE

Figure 3.2: DC MagnetoresistanceSetup



-33-

3.2. Derivative of ResistivityasaFunction of Magnetic Field

The amplitude of the SdH oscillations decreases with increasing

sample rotation angle 6 of H with respect to the magnetic field. In

order to observe the oscillations at higher angles, we had to appeal

to the modulation technique which yields the derivative of resistivity

with respect to magnetic field rather than the resistivity itself.

Modulation Technique

In this method, the sample geometry remains the same as in the

orevious method. However, a small 7.5 Hz sinusoidal magnetic field

is superimposed on the sweeping magnetic field. The output voltage

Vac is detected (Fig. 3.1) by a lock-in amplifier tuned at a frequency

of 7.5 Hz. Vac is, then, proportional to the derivative of the

electrical resistivity with respect to magnetic field.

Figure 3.3 shows the experimental setup. The setup contains

the same new elements. An ITHACO Dynatrac 391A Tock-in amplifier

were used for detection of 7.5 Hz frequency component of Vac (Fig. 3.1)

which is proportional to the derivative of resistivity 2). A

frequency divider and General Radio 1310-B oscillator are used to

produce a stable 7.5 Hz modulating signal to drive the reference of

the lock-in amplifier as well as the oscillatory part of the sweeping

magnetic field. The frequency divider divides the 60 Hz Tine

frequency by 8 (7.5 Hz) and by coupling to the oscillator makes it

sossible to have a stable 7.5 Hz oscillator output provided that the

sscilator frequency is set in the interval 7 Hz &lt; f &lt; 8 Hz. A

general radio decade voltage divider 1454-AH was used to reduce the



—

He

&gt;
 -—

~~

ne

i TAPE DRIVE

LOCK-IN
AMPLIFIER

A/D CONVERTO:

—

.J x-y RECORDER
-

SAMPLE
CURRENT

SOURCE VOLTAGE.
DIVIDER

IFREQUENC OSCILLATPR
DIVIDER

To the
Magnet

MAGNET
CONSOLE

“igure 3.3: AC Magnetoresistance Setup



-35-

voltage to the console which drives the oscillatory part of the

magnetic field. Care was taken to choose the amplitude of the oscillatory

part of the magnetic field as small as possible in order not to lose

the fine structure of 25 and at the same time large enough to produce a

reasonable signal. One source of noise can be the currents induced in

the wires attached to the four contacts by the oscillatory component

of the magnetic field. This noise can be reduced if two woven wires

with opposite helicity are used instead of a single wire. The output

of the lock-in amplifier (proportional to 20) and the output of voltage

out of the console which is proportional to the magnetic field (described

in the previous section) were sampled at the rate of typically eight

pairs per second and recorded on the magnetic tape (via the Colombia

300 tape drive) to yield the magnetic dependence of 9p
SH

Data Reduction

In this section, we will discuss the data reduction system. The

analysis is done on a PDP/11 computer at the National Magnet Labortory.

The data analysis yields the frequencies and relative amplitudes of

SdH oscillations. The data reduction procedure consists of the removal

3.3.

of the non-oscillatory part of the signal (magnetoresistance or its

derivative), inversion of the magnetic field, and subsequent Fourier

transformation.

Details of the Data Analysis

The data on the magnetic tape contains the signal and voltage

oroportional to the magnetic field as pairs. The pairs are read into
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the computer and stored on floppy disks (NASCHUA 2200-20) with the help

of a tape drive (Colombia 300B) linked to the PDP/11. The program to

activate the tape drive is COPY.LDA[200,20] which was written by Don

Nelson. The data analysis is done using the Rubin System One (RST)

program (also written by Don Nelson). This program carries a host of

other subprograms essential in data reduction. This program can

accommodate a maximum of 1024 pairs of integers. There are typically

5000 pairs for a ten minute magnet sweep. The number of data pairs is

reduced to a number that can be handled by RS1 through an averaging

procedure carried out by calling the SFAVE[200,20] program. This program

averages the signal values in equal intervals of magnetic field. With

an appropriately chosen interval, the data can be reduced to be

accommodated by RS1. This step reduces the maximum frequency cutoff

from 2.5x10° Tesla to 5x10" Tesla which is much larger than the largest

frequency observed (~10 Tesla). Thus, in averaging the data no essential

features are lost. Having inputted the reduced data into RS1 the

non-oscillatory part of the signal can be eliminated by first fitting

a second order polynomial to the pairs and subsequent subtraction of

this polynomial. The voltage values proportional to the magnetic field

range from zero to 20,000. Since RST rounds off floating point numbers,

an arbitrary constant p14 = 16,384, rather than unity, is divided by

the magnetic field values to avoid loss of the significant figures.

Jpon this division, RS1 gives another scaling value automatically, which

must be kept track of. The data processed so far which is the oscillatory

part of the signal versus the scaled inverse field is not distributed
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in equal intervals (non-uniform data). The above non-uniform data is

made into uniform (equidistance) data of length 1024 through an

interpolation scheme in RS1. Having subtracted the DC part of the

uniform data, the data is then Fourier analyzed to yield the Fourier

power spectrum of the SdH oscillations. Since the processed data

before the Fourier transformation was scaled, the power spectrum should

he appropriately scaled to yield the true power spectrum. The

resolution of the power spectrum is

AF or
a1
Ho Hy

where Hy and Hy are lower and upper bounds of magnetic field in the

experiment. The resolution of the spectrum is mainly determined by

the Tower bound of the magnetic field where there are still observable

oscillations. For a typical case, H, = 14 T and H, = 2 T (fig. 3.4).
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Therefore the best resolution one can obtain for a typical signal

is AF ~ 1 Tesla. However, this maximum resolution can be achieved through

a program that can accommodate more points than 1024 points (RS1 progam).
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CHAPTER 4

-XPERIMENTAL RESULTS

In this chapter, we shall report the results of stage, angular,

and intercalant dependence of the Shubnikov-de Haas effect in graphite

intercalation compounds. The materials to be studied are C FeCls,

C,PdCl,, C,Bro, C,Rb, and C, AICI. The details of the results for the

above compounds shall be illustrated in section 4.1. We shall explore

a possible model of G.I.C. in section 4.2.

4.1. SdH Results

The results of the SdH measurements made on the above materials

are shown in figures 4.1 to 4.9. Figure 4.1 shows some typical SdH

oscillations (C,PdCT, Stage-3) as a function of angle and figure 4.2

illustrates the corresponding power spectra. As one notes in figure

4.2 that as 6 is increased the structural features labelled 1 and 2

are displaced toward higher frequencies. The results of the angular

dependence of several of the SdH frequencies for C Fed; (Stage 1, 3,

and 7), C,PdCl,, C.Bros C,AICT 5, and C,Rb are shown in figures 4.3,

4.4. 4.5. 4.6, 4.7, 4.8, and 4.9, respectively.

The results of the SdH measurements on C FeClg (Stage 1, 3, and

7) are summarized in tables 4.1 to 4.3. The tables contain only

the frequencies with large amplitudes in the power spectra of SdH
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oscillations and those frequencies which do not disappear as the sample

is rotated. In addition to the major peaks in the power spectrum,

there are a host of smaller peaks observed in the spectrum of the

above compounds which are ommited in the tables. The angular accuracy

of all data is +2° and the accuracy in the frequencies is #5 Tesla.

The angular dependence of frequencies observed in C. FeCl, (stage 1,

3, and 7) are shown in the figures 4.3, 4.4, and 4.5 respectively. A

cylindrical Fermi surface has a cosine dependence for ne and this

cosine dependence is drawn in the figures as a reference. The low

frequency 20 Tesla shows identical behavior in both stages 2 and 7

compounds and has an anisotropy between 6 = 0 and 90° of about 2.

frequencies exhibit more cosine-1ike behavior. The estimates of

anisotropy are found in the next chapter.

Table 4.4 shows the frequencies obtained as a result of

Shubnikov-de Haas measurements on three samples of C,PdCT, (stage 3).

The angular dependence of the 92 T, 402 T, and 504 T frequencies for

sample 2 are shown in figure 4.6. From table 4.4 and figure 4.6 one

notes some variation of frequencies for samples of the same nominal

compound (C,PdCT, stage 3).
Tables 4.5 and 4.6 contain frequencies as a function of angle

Larger

for a dilute CBr compound (corresponding approximately to stage 5)

and C AICI, (stage 4). The angular dependences are plotted in figures

4.7 and 4.8, respectively.

A11 the materials considered so far had acceptors as intercalants;

however C Rb is an example of a donor intercalation compound. Results



-51-

TABLE 4.1

Shubnikov-de Haas Frequencies (in Tesla)

As A Function of Angle for C FeCl, - Stage 1
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TABLE 4.2

Shubnikov-de Haas Frequencies (in Tesla)

As A Function of Angle for C FeCl, - Stage 3
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TABLE 4.3

Shubnikov-de Haas Frequencies (in Tesla)

As A Function of Angle for CFeCl, - Stage 7

3 = ()

aN
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510

3 = ane
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250

a3 A

116

310

“3ia

9 “N° 0

Tol

Excessive
Noise

Excessive
Noise 2300

260

780

]5° 8 90°

TABLE 4.4

Sample Dependence of SdH Frequencies

For 3-Samples of C,PdCl,

Sample-1

75

102

372

137

“A

Sample-2

64

92

371

402

"5hLF

Sample-3

06

100

375

179

1G

u=*xo

68+5

98 + 4

372+2

423+15

499 + 3

9 x 100
u

7%

49

59%

4%

2%
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TABLE 4.5

Shubnikov-de Haas Frequencies (in Tesla)

As A Function of Angle for C BrZ - Stage 15
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TABLE 4.6

Shubnikov-de Haas Frequencies (in Tesla)

As A Function of Angle for C.A1CI, - Stage 4
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for the frequencies and angular dependence are shown in table 4.7 and

figure 4.9, respectively.

Table 4.8 shows the frequencies observed for zero angle for C,FeCl;

stages 1, 3 and 7. The amplitudes for each stage are in arbitrary units

and the amplitudes are scaled so that the maximum amplitude within each

stage is 1,000 (harmonics are excluded in table 4.8). Some of these

frequencies were omitted in tables 4.1 to 4.3 since they disappear

quickly as the sample is rotated even as low as 15°.

Table 4.9 summarizes the main frequencies observed for all

compounds at zero angle.

1.2. Perspective

A11 acceptor compounds studied have a "large" frequency in the

range 500 to 600 Tesla. It appears that in all the compounds studied,

larger frequencies exhibit more anisotropy than smaller frequencies.

In particular, frequencies of order 500 tesla follow the cosine curve

quite closely.

The effect of periodicity (staging) in the c-direction can be

modelled by introducing cuts into the ellipsoidal Fermi surface as

shown in the fiqure 2.6. Simple calculations show that areas of the

cuts in the ellipsoid obey the following relation.

- 2m 2 My 2
S(n) = S_ - w= {=| n of ( a4. )
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TABLE 4.7

Shubnikov-de Haas Frequencies (in Tesla)

\s A Function of Angle for C_Rb - Stage 3
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TABLE 4.8

Shubnikov-de Haas Frequencies (in Tesla) of C FeCl, Systems

Stage-1

21 (576)

93 (1000)

1327 (529)
202 (223)

287 (412)

435 (256)

560 (94)

599 (229)

Stage-3

20 (424)

87 (283)
102 (264)

149 (311)

200 (302)

288 (151)

457 (311)

540 (1000)
560 (821)

617 (585)

Stage-7

very weak

90 (1000)

very weak

210 (491)

280 (113)

430 (130)

520 (373)

61.) (876)

Quantities in the parenthesis are relative amplitudes for each stage
and the amplitudes are scaled so that the maximum amplitude with each
stage is 1000 (harmonics are excluded).
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TABLE 4.9

Main Shunikov-de Haas Frequencies (in Tesla)

For A11 Materials Studied

CFeCl CFeCl, C FeCl, C,PdCl, CBr C AICI, C,Rb
Stage-1 Stage-3 Stage-7 Stage-3 Stage-15 Stage-4 Stage-3

2]

33

202

135

760

LGU

20

102

200

457

540

3] 7

20

210

430

520

6¢')“ f

L-

423

499

Weak
595
606

506

Weak
620

4
~-~ yr
-

al

L726

"y )7

7
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Thus the plot of the appropriate frequencies versus n? produces

a straight line in which the slope determines the anisotropy of the

ellipsoid. Figure 4.10 shows the fit for the peaks in the power

spectrum of C, FeCl, - Stage 7. The figure shows that various peaks

(ignoring their amplitudes) fall into a well defined group if the

lines are extrapolated into negative frequencies. The extrapolation

to the negative frequencies may be an indication of the joining of

two adjacent ellipsoids belonging to different Brillouin zones as

indicated in figure 4.11.

From the slopes of these lines one can estimate the anisotropy

of the ellipsoid. In particular, one estimates from the slope of the

Tine containing the 90 Tesla frequency an anisotropy of 16.5 which

seemingly is in conflict with the previously obtained anisotropy of

2 from figure 4.3. The conflict is resolved if one takes the 880 tesla

frequency (figure 4.10) as the belly of the ellipsoid rather than the

90 tesla frequency, as indicated in the figure 4.12. The 20 tesla

frequency could not be fit into any groups.

The frequencies obtained in other compounds fall into groups

similar to CFeCl, - stage 7, giving more support for introduction of

cats in the ellipsoidal Fermi surface as a result of staging. One

should note that the resolution of the analyzed power spectrum is

not good enough to fit large anisotropy (large frequency) cross section.

As a result, the idea of the sliced ellipsoidal Fermi surface remains

a suggestion (conjesture) for further research.
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CHAPTER 5

CONCLUSION

Section 5.1 of this chapter discusses the shapes of the Fermi

surfaces of donor and acceptor graphite intercalation compounds.

Section 5.2 comments on the sample dependence of the observed frequencies.

The stage and intercalant dependence of frequencies are discussed in

sections 5.3 and 5.4, respectively. Finally, section 5.5 contains

general conclusions and comments for further studies.

5.1. The Shape of the Fermi Surfaces

The results of angular dependence of the frequencies are shown

in figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. One can note two

general features from these figures. The anisotropy of the ellipsoids

increases as the magnitude of the frequencies increases. This feature

is independent of the intercalant species and stage. All large

frequencies (greater than 300 Tesla) follow the cosine-law behavior

closely. Furthermore, the angular dependence of the large frequencies

follows a cosine law more closely as the angle is increased. This

suggests that anisotropy estimates of the surfaces are more sensitive

to the values of the large angle frequencies. Therefore, the data

available at the largest angle are used to estimate the anisotropy
kZ+k k

of the ellipsoidal Fermi surfaces. For the ellipsoid = + = E.
X 7
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the following formula is used to estimate the anisotropy of the Fermi

surfaces

 cE

m_
 Zz
m,J

) sin“e.
~

“

15

. , 1v(0) 2 2
2 ' — .

) Sin 1] ive)5| Cos i

(derivation in Appendix I).

The Table 5.1 1ists the anisotropy estimates for the compounds

that were studied.

The slicing of ellipsoidal Fermi surfaces are promising as

providing a possible model for the dilute compounds (n &gt; 5). This

model was particularly successful in the case of C,FeCl (stage 7)

as is illustrated in figure 4.10. The slopes of the lines in the

figure can be used to estimate the anisotropy of the ellipsoidal

Fermi surfaces. As was computed in the previous chapter, the following

relation (Eq. (4.1) holds between the anisotropy and the slope of the

| ines.

yy =

2 (Mm

J a Xin?
0 n,

(4.1)

where I. = distance between two adjacent intercalant layers.

2

slope| = rE 1 ; £ =
of €?

 mn

m_

29.51 A° for C,FeCl, - stage 7.
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Estimates of the anisotropies are summarized in the table 5.2.

There is no estimate for the 210 Tesla SdH frequency in table 5.2,

Since it could not be fit into any groups of frequencies. As far as

the 90 Tesla frequency in C FeCl, (stage 7) is concerned, there is

jualitative agreement for the anisotropy estimate between the above

value (e = 4.06 from table 5.2) and the previously obtained value from

angular studies (e = 4.2, from table 5.1). However, there is no such

agreement fro the 610 Tesla frequency. This could be due to

incorrect group fitting of the 610 Tesla frequency (fig. 4.11). One

notes that the sliced ellipsoidal Fermi surface model is consistent

with the observation of an increase in the anisotropy with increasing

frequencies. One would expect possible warping in the ellipsoidal

Fermi surfaces of the graphite intercalation compounds on the basis of

the appearance of harmonics of the observed frequencies in the power

spectra of the Shubnikov-de Haas oscillations. Thus, the expected

shapes of the Fermi surfaces are long ellipsoids along the c-axis with

possible warping

5.2. Sample Dependence of the Frequencies

Variations in frequencies within samples of the same intercalant

and stage provides an estimate for the accuracy of the reported data.

Table 4.4 shows the variation in the Shubnikov-de Haas frequencies

of C PdC1, of stage-3. The typical variation in frequency is taken

aS 4
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TABLE 5.1

A\nisotropies of the Frequencies (Tesla)

C, FeCl, - Stage |

21 e= 2.1% .4

93 e = 6.0%1.5

287 e€ = 11.543

CyBroy - Stage 15

93 e = 3.4£1.5

06 e = 14.54

~

o

I'd FeCl, - Stage 3

21. ee = 2.3+.5

102 e= 4+ 1.5

540 € = 15 + 2.5

C, AICI, - Stage 4

8 € =6.0x1.5

426 ¢ =

CFeCl, - Stage 7

90 ee = 4.2+1.5

210 e = 13.0+2.5

610 e = 16.7+3.5

C,Rb - Stage 3

24 ¢ = 3.0% .5

245 ¢ = 4,441.5

TABLE 5.2

Anisotropies of C FeCl, - Stage 7 Frequencies (Tesla)

Estimated From the Slopes of the Lines in Fig. 4.11

»
.

-

0

Af )

10

e = 4.36

£ = —

c = 4,96
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5.3. Stage Dependence of the Frequencies

The stage dependence of the frequencies were studied on C FeCls

for stages 1, 3 and 7. Table 4.8 lists the frequencies of CFeCl, (zero

angle) for the above three stages. The measured data is insufficient

to determine any stage dependence of the frequencies. In order to

obtain the stage dependence of frequencies, each frequency should be

accompanied by its corresponding effective mass. Variation of the

frequency as a function of stage for each effective mass yields the

stage dependence of each frequency. An effective mass determination

involves temperature dependent measurements of Shubnikov-de Haas

oscillations.

5.4. Intercalant Dependence of the Frequencies

Table 5.3 lists all the zero angle frequencies observed for the

compounds that were studied. In order to correlate the listed data

(i.e. intercalant dependence of frequencies), one has to appeal to some

theoretical model (band calculations, etc.) for graphite intercalation

compounds which is unavailable at the moment. In the case of the donor

compound C,Rb (stage 3) there are only two dominant frequencies as

opposed to many frequencies in the acceptor compounds (zero angle). This

sample feature of the donor compound makes it an ideal system for

detailed study of graphite intercalation compounds.



TABLE 5.3

Zero Angle Frequencies Observed in All Studied Graphite Intercalation Compounds

1

O
0

~e( ,-Stage-1 FeCl
la

43

/87F

Kg

y- Stage-3

31

17

540

Fe(
= &gt;tage-7

90

1 J

610

PdC™ - Stage -3

75
102

372
437

5)

3 y- scage-15

93

506

AiCl,-Stage-4  Rb-Stage-3

oN

A7¢ 241

50)



-67-

5.5. ConclusionsandComments

Possible shapes of the Fermi surfaces for graphite intercalation

compounds are sliced ellipsoids formed by zone folding of a graphite

like constant energy surface along the c-axis, with possible warping

similar to that of pure graphite. The ellipsoidal Fermi surfaces for

acceptor compounds have large cross sectional areas perpendicular to

the c-axis (880 Tesla in FeCl ;-stage 7 at the maxima, fig. 4.12) and

an anisotropy of greater than 16 obtained from the angular dependence

of the Shubnikov-de Haas oscillations. The donor compound C,Rb shows

lower anisotropy namely about 3 for the ellipsoidal Fermi surface.

In figure 4.10 the lines are extrapolated to negative frequencies.

A possible interpretation of the negative frequencies could be the

joining of two pieces of ellipsoidal Fermi surface as is illustrated

in figure 4.11. However, to check the slicing model one needs more

resolution on the power spectra and improved data analysis on a variety

of graphite intercalation compounds. Therefore, the slicing model

remains a suggestion for further research.

Since the ellipsoidal Fermi surfaces are highly anisotropic in

acceptor compounds, large angle measurements of Shubnikov-de Haas

frequencies (in particular from 75° to 90°) are essential for

determining the anisotropy of the Fermi surfaces.

An improvement is possible in the geometry of the sample in the

magnetic field as shown in figure 3.1. At 6 = 0, one is measuring

the transverse magnetoresistance, whereas at 6 = 90°, the measurements

correspond to the longitudinal magnetoresistance. For any angle
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between zero and 90°, there would be a mixed configuration. An

expression for the contribution of jth carrier to the magnetoresistance

(as explained in the previous chapter) is

Nhe a 5

0D

 nN

U.=

{
11 ru, ru. T | chi! v 1 - 1D cos [Teh I. do. (r)LB") sev; - T Sri

r=

2m2kT
hw.

In general, Lis B, and Th are different for the transverse and

longitudinal cases. Therefore, the transverse and longitudinal

magnetoresistance should be measured separately if one is interested

in 2 and Tp which contain information on the mechanism of electron

scattering and the magnitude of energy level broadening, respectively.

The modified geometries are illustrated in figures 5.1 and 5.2 for

longitudinal and transverse configurations, respectively.

Data reduction should be improved also. Since the RSI program

could only accommodate 1024 points for computation of the power spectra,

there is a trade-off between the resolution of the frequencies and

the maximum frequencies deduced from the data. This limitation is

surmountable by using a program capable of handling more points for

computation of power spectra.

With the help of band calculations for graphite intercalation

compounds, one could attempt a more detailed analysis of the

Shubnikov-de Haas frequencies.
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A possible extension of the present project is to study the

temperature dependence of the Shubnikov-de Haas frequencies which

provides direct information on the values of the effective masses.

The effect of pressure is to increase the electronic interaction

between layers of graphite and intercalant. Thus, one can obtain

information on the nature of interaction between layers by studying

the pressure dependence of the Shubnikov-de Haas frequencies.
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APPENDIX I

DERIVATION OF ANISOTROPY ESTIMATION FORMULA

k2+k2  k2
A simple calculation shows that for the ellipsoid 2 + i E

X z

the following resolution holds for v(0) and v(6) (cross sections at

zero and 6 angle, respectively) as shown in the figure.

2(0) _ 2 do Lsn2
1a) = / cos®0 + — sin®®

m
2 _ Z

where© = —=
m,

Defining

lo]

'e =)
2

2

cos”8, + sin“, _ v2(0)
g2 v2(8:)

2 Jit ana wad . . |

and minimizing it with respect to =

01 fs7] k
Si nz oy i C 0520 i” :-~ si n? 0 ;

v2(0)v2 Ji} = (0

results the estimate for the anisotropy € which is:

— 1/2
i] w i

} sin 6,
—————————————

oes HEA) - C0S%6.
;
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