
Machine Learning Algorithms and Applications in
Health Care

by

Matthew Sobiesk

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Sloan School of Management

September 6, 2021

Certified by .
Dimitris Bertsimas

Boeing Professor of Operations Research
Thesis Supervisor

Accepted by. .
Georgia Perakis

William F. Pounds Professor of Management Science
Co-director, Operations Research Center

2

Machine Learning Algorithms and Applications in Health

Care

by

Matthew Sobiesk

Submitted to the Sloan School of Management
on September 6, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

There have been many recent advances in machine learning, resulting in models
which have had major impact in a variety of disciplines. Some of the best performing
models are black boxes, which are not directly interpretable by humans. However,
in some applications such as health care it is vital to use interpretable models to
understand why the model is making its predictions, to ensure that using them to
inform decision making will not unexpectedly harm the people it should instead
be helping. This leads to the question of whether a trade off between predictive
accuracy and interpretability exists, and how we can improve interpretable models’
performances to reduce such trade offs if they do.

In the first chapter, we show that optimal decision trees are equivalent in terms of
modeling power to neural networks. Specifically, given a neural network (feedforward,
convolutional, or recurrent), we construct a decision tree with hyperplane splits that
has identical in-sample performance. Building on previous research showing that
given a decision tree, we can construct a feedforward neural network with the same in-
sample performance, we prove the two methods are equivalent. We further compare
decision trees and neural networks empirically on data from [31] and find that they
have comparable performance.

In the second chapter, we propose a new machine learning method called Opti-
mal Predictive Clustering (OPC). The method uses optimization with strong warm
starts to simultaneously cluster data points and learn cluster-specific logistic regres-
sion models. It is designed to combine strong predictive performance, scalability,
and interpretability. We then empirically compare OPC to a wide variety of other

3

methods such as Optimal Regression Trees with Linear Predictors (ORT-L) and XG-
Boost. We find that our method performs on par with cutting edge interpretable
methods, and that it enhances an ensemble of methods to achieve the best out-of-
sample performance across all models.

In the third chapter, we predict one year transplant outcomes for lung, liver,
and kidney data to investigate whether predicted post-transplant outcomes should
be included in the organ allocation system of organs other than lungs. We find that
the models do not differentiate one-year graft survival or failure outcomes effectively
enough to be useful components of the organ allocation process. We then theorize
about possible reasons for this failure, including the actual transplant procedure
having a large effect on the one-year graft outcome or the potential need for additional
data, like genetic information.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research

4

Acknowledgments

I would like to start by thanking my advisor, Dimitris Bertsimas, for his mentorship,

encouragement, and support over the course of my studies. As an undergraduate

at Cornell, a professor told me that I should seize any chance I could to work with

Dimitris, and now I understand why. His passion, intellect, and drive to make the

world a better place pushed me to be a stronger researcher and inspired my passion

for health care analytics. I will always be grateful for the opportunity to have studied

with him.

My thesis committee members, Rahul Mazumder and Nikos Trichakis, have also

been excellent mentors and collaborators. Both of them are exceptional researchers,

and it has been a joy to work with them. Their insightful comments and feedback

have also been enormously helpful in improving this manuscript.

I am grateful to many more professors at the Operations Research center as well.

I would like to thank Rob Freund for being part of my general exam committee and

providing valuable feedback on the research I presented there, Georgia Perakis for

being a great advisor in planning the ORC IAP Seminar and bringing warmth and

joy to the ORC as a co-director, Patrick Jaillet for being a perpetually friendly and

comforting presence as a co-director as well. I would also like to thank everyone I

have worked alongside as a teaching assistant that I have not previously mentioned,

including Amr Farahat, Carine Simon, Martin Copenhaver, Jónas Jónasson, Anne

Quaadgras, Jordan Levine, and Michelle Li. It has been a pleasure.

I would also like to thank all of the people I have collaborated with in my research.

Yuchen Wang was both very insighful and a joy to work with. Agni Orfanoudaki,

Holly Wiberg, and Lea Kapelevich all taught me much during our SwissRe project,

and were inspirations. Dr. Parsia Vagefi taught me much about transplantation prob-

5

lems, and Basmah Safdar, Gary Desir, and Richard Taylor all provided invaluable

insights in my research into predicting COVID-19 outcomes. I’m also grateful to Ted

Papalexopoulos and Jack Dunn for being available to discuss research quandaries,

brainstorm problem solutions, and just give thoughts and feedback on research ideas

in general.

I would like to thank everyone I was a teaching assistant with, including Hari

Bandi, Jean Pauphilet,Isabelle Bensimon, Kara Keelley, Barry Brundy, Jourdain

Lamperski, Michael Beeler, Yee Sian Ng, Michael Li, Vasileios Digalakis, and Zhen

Lin. I’d also like to thank my fellow collaborators for the 2020 ORC IAP seminar

Jessamyn Liu and Galit Lukin – they were a pleasure to work with.

I also want to thank my other friends at the ORC, including Arthur Delarue,

Jackie Baek, Will Ma, Emma Gibson, Emily Meigs, Leann Thayaparan, Kayla

Cummings, Rebecca Zhang, Sharon Xu, Peter Cohen, Xiaoyue Gong, Patricio Fon-

cea,Andy Zheng, Nihal Koduri, Nick Renegar, Elisabeth Paulson, Julia Yan, Kevin

Zhang, Jordan Lamperski, Velibor Mišić, Martin Copenhaver, Jack Dunn, Daisy

Zhao, Colin Pawlowski, Nishanth Mundru, Brad Sturt, Hussein Hazimeh, and Daisy

Zhao. All of you have motivated me to become a better researcher with your incred-

ible minds and brightened my day just by being wonderful people.

I would also like to thank other friends from my time at MIT, including members

of the MIT Gymnastics team, Qi Yang, Zhao Jinglong, Vishal Patil, Julie Tagaki,

Rohan Chitnis, Fred Koehler, Elaine McVay, Derek Leung, Andrea Carney, and

Stephanie Chen.

I would also like to thank my teachers and professors I collaborated with, in

particular David Ruppert, Chris Arney, and Jamol Pender. I had my first research

experiences with David and Chris, and I am so grateful for my time with them. I

am also especially grateful to Jamol Pender for convincing me to apply to MIT in

6

the first place – without that push, none of this would have been possible.

Finally, I want to thank my family for their endless love and support. Throughout

my years of graduate school I have laughed, cried, and strategized with them, and

they have been with me every step of the way. I truly could not have done this

without their support.

7

8

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Main Contributions . 21

2 The equivalence of neural networks and optimal decision trees 25

2.1 Introduction . 25

2.2 Related Work . 33

2.3 Mathematical Formulation of Neural Networks and Optimal Decision

Trees . 35

2.3.1 Feedforward Neural Networks 35

2.3.2 Convolutional Neural Networks 39

2.3.3 Recurrent Neural Networks 41

2.3.4 Optimal Classification and Regression Trees 42

2.4 Feedforward Neural Networks and Optimal Trees 45

2.4.1 Perceptron Classification FNNs and OCT-Hs 45

2.4.2 Perceptron Regression FNNs and ORT-Hs 51

2.4.3 Rectified Linear Unit Classification FNNs and OCT-Hs 52

2.4.4 Rectified Linear Unit Regression FNNs and ORT-Hs 61

9

2.5 Convolutional Neural Networks and Optimal Trees 61

2.5.1 Perceptron Classification CNNs and OCT-Hs 62

2.5.2 Perceptron Regression CNNs and ORT-Hs 62

2.5.3 Rectified Linear Unit Classification CNNs and OCT-Hs 63

2.5.4 Rectified Linear Unit Regression CNNs and ORT-Hs 66

2.6 Recurrent Neural Networks and Optimal Trees 70

2.6.1 Perceptron Classification RNNs and OCT-Hs 70

2.6.2 Perceptron Regression RNNs and ORT-Hs 79

2.6.3 Rectified Linear Unit Classification RNNs and OCT-Hs . . . 79

2.6.4 Rectified Linear Unit Regression RNNs and ORT-Hs 85

2.7 Computational Results with Real World Data Sets 85

2.8 Conclusion . 90

3 Optimal Predictive Clustering 91

3.1 Introduction . 91

3.1.1 Literature . 93

3.1.2 Contribution . 96

3.1.3 Structure . 98

3.2 The approaches . 98

3.2.1 Approach 1 – OPC-BigM . 98

3.2.2 Approach 2 – OPC-CP . 103

3.3 Performance . 106

3.3.1 Data Preprocessing and Model Validation 106

3.3.2 Performance on synthetic datasets 108

3.3.3 Performance on real-world datasets 111

3.4 Scalability . 115

10

3.5 Interpretability . 117

3.5.1 How to interpret the OPC model 117

3.5.2 Housing Dataset Results . 118

3.5.3 Wine Quality Dataset Results 122

3.6 Conclusions . 128

4 On the Limitations of Predicting Post Transplant Outcomes 129

4.1 Introduction . 129

4.2 Data and Exclusion Criteria . 130

4.2.1 Liver Data . 131

4.2.2 Lung Data . 131

4.2.3 Kidney Data . 132

4.3 Observations, Dependent and Independent Variables 133

4.3.1 Liver Data . 133

4.3.2 Lung Data . 133

4.3.3 Kidney Data . 134

4.4 Methods . 135

4.4.1 Predictive methods . 135

4.4.2 Model Calibration . 136

4.4.3 Out-of-sample AUC . 136

4.4.4 Disclaimer . 137

4.5 Results . 137

4.5.1 Liver Data . 137

4.5.2 Lung Data . 138

4.5.3 Kidney Data . 138

4.6 Discussion . 139

11

5 Conclusion 143

12

List of Figures

2-1 An example of a feedforward neural network. 27

2-2 A sample decision tree. 28

2-3 A sample decision tree with hyperplane splits. 29

2-4 An example of a classification feedforward neural network. 37

2-5 An OCT-H of depth 2. Data in the four leaf nodes are classified as

𝑜1, 𝑜2, 𝑜3, and 𝑜4. 45

2-6 The first split of decision tree 𝒯1. 47

2-7 The first two depths of tree 𝒯1. 47

2-8 An FNN with the perceptron activation function performing an XOR

operation. 50

2-9 The reformulation of the Figure 2-8 neural network into a decision tree. 50

2-10 The decision tree 𝒯2 we are building up to depth 𝑁1. 53

2-11 Subtree 𝒯2,2(y1) of depth 𝑁2 is concatenated to the corresponding

branch of the subtree depicted in Figure 2-10, resulting in a subtree

of depth 𝑁1 +𝑁2. 54

2-12 The resulting subtree 𝒯2,2(y1) for y1 = (0, . . . ,W𝑇
1,𝑁1

x+ 𝑏1,𝑁1) 55

2-13 The subtree 𝒯2,𝑂(y𝐿) . 56

2-14 A ReLU FNN. 57

13

2-15 The reformulation of the Figure 2-14 FNN into a classification tree.

The labels 𝐴,𝐵1, . . . , 𝐸16 are as follows: 57

2-16 Subtree 𝒯2,𝐿(y𝐿−1) is the last subtree built when we create the re-

gression subtree. When concatenated onto the rest of the tree, we

have built a tree of depth
∑︀𝐿

ℓ=1𝑁ℓ. Note that the leaves have linear

functions W𝑇
𝑂y𝐿 + b𝑂 as outputs. 62

2-17 The first split of classification tree 𝒯4,1. 65

2-18 The decision tree 𝒯4,1 we are building up to depth 2. The identity of

the maximum hyperplane so far is from left to right: 3, 2, 3 and 1. . 65

2-19 The resulting tree 𝒯4,1. 67

2-20 The subtree 𝒯4,2(P1) up to depth 𝑘2 68

2-21 Subtree 𝒯4,𝐿(y𝐿−1) is the last subtree built when we create the re-

gression subtree. When concatenated onto the rest of the tree, we

have built a tree of depth
∑︀𝐿

ℓ=1𝑁ℓ. Note that the leaves have linear

functions W𝑇
𝑂y𝐿 + b𝑂 as outputs. 69

2-22 The first split of decision tree 𝒯5. 71

2-23 The tree 𝒯5 up to depth 2. 72

2-24 The decision tree 𝒯5 we are building up to depth 𝑁1. 72

2-25 Subtree 𝒯5,2(y1,1) of depth 𝑁1 is concatenated to the corresponding

branch of the subtree depicted in Figure 2-24, resulting in a subtree

of depth 2𝑁1. 74

2-26 The resulting subtree 𝒯5,2(y1,1) for y1,1 = (0, . . . , 0, 1)𝑇 75

2-27 A RNN with the perceptron activation function. 76

2-28 The resulting tree 𝒯5 . 77

2-29 The decision tree 𝒯6 we are building up to depth 𝑁1. 80

14

2-30 Subtree 𝒯6,2(y1,1) of depth 𝑁1 is concatenated to the corresponding

branch of the subtree depicted in Figure 2-29, resulting in a subtree

of depth 2𝑁1 . 82

2-31 The resulting subtree 𝒯6,2(y1,1) for y1,1 = (0, . . . , 0,W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 . 82

2-32 The subtree 𝒯6,𝑂(y1) . 83

2-33 Subtree 𝒯6,𝐿(y𝑇 *−1,1) is the last subtree built when we create the re-

gression subtree. When concatenated onto the rest of the tree, we

have built a tree of depth 𝑇 * × 𝑁1. Note that the leaves have linear

functions W𝑇
𝑂y𝑇 *,1 + b𝑂 as outputs. 86

3-1 Out-of-sample performance of the model with increasing levels of noise

stratified by number of variables in the simulated data. 110

3-2 Out-of-sample performance of the model with increasing levels of noise

stratified by number of points in the simulated data. 111

3-3 ORT-L for predicting house values. 122

3-4 The Optimal Tree for predicting wine quality. 126

15

16

List of Tables

2.1 Summary of the relationship of classification NNs and OCT-Hs. . . . 31

2.2 Summary of the relationship of regression NNs and ORT-Hs. 32

2.3 The data sets used and their parameters. 87

2.4 Data sets with equivalent ReLU NNs, and the number of nodes in the

single hidden layer of those networks. 𝑁1 was chosen so an OCT-H of

depth 8 would be equivalent. 88

2.5 Accuracy of FNNs, OCT-Hs and OCTs. 89

3.1 Comparison of major machine learning methods relative to each other

across the metrics of performance (out-of-sample 𝑅2), scalability and

interpretability. 1 is the best, while 7 is the worst. 92

3.2 Comparison of major machine learning methods and OPC relative

to each other across the metrics of performance (out-of-sample 𝑅2),

scalability and interpretability. 1 is the best, and 9 is the worst. . . . 97

3.3 Average out-of-sample 𝑅2 of OPC-BigM on the synthetic data. 109

3.4 Average out-of-sample 𝑅2 of all methods on real-world datasets 112

3.5 Average out-of-sample 𝑅2 of K-Means++ with regression, Nested re-

gression, and OPC on real-world datasets. Bolded values are the high-

est values in a given row. 114

17

3.6 Model performance when just choosing a single 𝑘 value and training

the OPC model using that choice. 115

3.7 Training times of OPC on synthetic data. 116

3.8 Training times of the all methods on real-world datasets. 116

3.9 The meaning of each variable in the housing dataset, which has 505

data points. 119

3.10 Information about the centroid of each cluster and the number of data

points within it. 119

3.11 Characteristics of the centroids of each cluster found using inspection. 120

3.12 Characteristics of the centroids of each cluster found algorithmically. . 121

3.13 Coefficients of the linear regression in each cluster. 121

3.14 Coefficients of the linear regression in each leaf. 123

3.15 Information about the centroids of each cluster and the number of

data points within it. 124

3.16 Characteristics of the centroids of each cluster found using inspection. 125

3.17 Characteristics of the centroids of each cluster found algorithmically. . 125

3.18 Coefficients of the regression in each cluster. 126

3.19 Coefficients of the linear regression in each leaf. 127

4.1 Results for liver transplant models. 137

4.2 Results for lung transplant models. 138

4.3 Results for kidney transplant models. 139

18

Chapter 1

Introduction

1.1 Motivation

The development of powerful training methodologies like gradient boosting and

stochastic gradient descent combined with increased computational power has re-

sulted in a new age of high performing machine learning methods such as neural net-

works and XGBoost ([72],[55],[78],[24]). These methods have performed extremely

well across a variety of disciplines ([40],[45],[65],[25],[5],[93],[68],[87]), but lack inter-

pretability. However, in a variety of applications such as health care, interpretability

is a crucial requirement for models, in order to build trust and ensure that they do not

learn spurious connections from the data that could result in dangerous consequences

such as incorrect treatments being prescribed to patients. This raises several impor-

tant questions. Is there a tradeoff between having having models with high predictive

performance versus models that are interpretable? And if there is such a tradeoff,

how significant is it? This thesis is concerned with both theoretical and empirical

comparisons of how black-box and interpretable methods perform relative to each

19

other, and the application of such methods in the health care domain. It is outlined

as follows.

Chapters 2 and 3 both focus on the investigation of interpretable methods and

comparisons of their performance to that of black box models. Chapter 2 begins with

a theoretical comparison of decision trees and neural networks. Since decision trees

are one of the most interpretable and widely used machine learning methods, under-

standing their performance relative to neural networks provides useful information

on the interpretability-performance trade-off, and helps identify areas where inter-

pretable methods can be used without a major loss in predictive ability. Through

constructive proofs we show how to build decision trees with hyperplane splits that

have equivalent performance to neural networks, followed by an empirical comparison

of decision trees with neural networks across a variety of domains.

In Chapter 3, we propose a novel interpretable machine learning technique called

Optimal Predictive Clustering (OPC). This method uses mixed integer optimization

with strong warm starts to simultaneously cluster data points and learn cluster-

specific logistic regression models, and is designed to achieve performance at the

same level as cutting edge predictive methods like Optimal Regression Trees with

Lasso Predictors (ORL-L) while being faster to train. We empirically compare both

the predictive performance, training speed, and interpretability of the method to a

wide variety of others, including both interpretable methods like ORT-L and model

trees and black box methods like XGBoost. We further investigate the benefits of

including OPC models in ensembles alongside the other methods, to see how they

can improve upon the state-of-the-art for predictions overall.

In Chapter 4 we predict one year graft survival for transplant recipients. With

the Organ Procurement and Transplantation Network planning on instituting “more

equitable system of allocating deceased donor organs,” there will likely be renewed

20

debate about whether predicted port-transplant outcomes should be included in the

organ allocation system of organs other than lungs. We therefore analyze liver,

kidney, and lung transplant recipient-donor pairs to understand how well these post-

transplant outcomes can be predicted, and how useful such predictions would be as

part of an organ allocation system.

Having performed theoretical comparisons of interpretable and black box models

in Chapter 2, a methodological proposal for a new interpretable model in Chapter 3,

and empirical comparisons in Chapters 2-4, we offer concluding remarks in Chapter

5.

1.2 Main Contributions

Our contributions in this thesis can be summarized as follows, listed by chapter.

Chapter 2: The equivalence of neural networks and optimal decision

trees

In this chapter, we investigate the modeling power of neural networks in com-

parison with optimal classification and regression trees with hyperplanes (OCT-Hs

and ORT-Hs). We show that a variety of neural networks (feedforward, convolu-

tional and recurrent) can be transformed to decision trees with hyperplanes with the

same accuracy in the training set, showing that OCT-Hs and ORT-Hs are at least

as powerful as neural networks. Combined with a result from Sethi ([80]), we show

that OCT-Hs and neural networks are equivalent in terms of modeling power. We

further compared the performance of optimal classification trees and neural networks

empirically. Our contributions include:

• A unique constructive proof that explains how given a neural network one can

21

build an equivalent decision tree with hyperplane splits, linking two of the

most popular and widely utilized machine learning methods more deeply than

their categorization as universal approximators and shedding new light on their

strengths and weaknesses.

• Given that our construction of trees that emulate a given neural network ne-

cessitates the construction of deep trees, we further compared the performance

of shallower OCT-Hs and FNNs on twelve well known data sets, and find that

the two methods have very similar performances even without theoretical guar-

antees of equivalence. In 11 out of the 12 data sets the equivalent FNNs and

the OCT-H have very similar accuracy. Moreover, in these data sets OCT and

OCT-H also have very similar accuracy. In seven out of twelve data sets, the

trees perform as well as much larger neural networks. This indicates that there

is indeed merit to using OCT-Hs in practice.

• Given that OCT-Hs have an edge in interpretability compared to neural net-

works, without loss of modeling power, decision trees are therefore arguably

the method of choice in applications where interpretability is key.

Chapter 3: Optimal Predictive Clustering

In this chapter we combine clustering algorithms and linear regression to propose

Optimal Predictive Clustering (OPC). By solving a mixed-integer optimization prob-

lem utilizing strong warm starts, we are able to find near-optimal clusters at high

speeds while learning effective cluster-specific regression models. We also cluster

points using both X and y values, which allows the clusters we find to be bet-

ter suited for prediction tasks. We compare OPC, Lasso regression, Classification

and Regression Trees (CART), Optimal Regression Trees (ORT, ORT-L), XGBoost,

22

Clus, and Model Trees on 20 real-world datasets and show that OPC achieves strong

performance in the following ways:

• Performance: We demonstrate that OPC increases out-of-sample 𝑅2 by 0.019

(3.11%) on average compared to ORT-L on 20 datasets from UCI and LIACC

Machine Learning Repository ([30],[96]). Furthermore, OPC increases out-of-

sample 𝑅2 by 0.134 (27.21% improvement) on average over Lasso regression and

by 0.059 (10.37% improvement) on average over Clus on the same 20 datasets.

An ensemble built from all the methods also increases out-of-sample 𝑅2 by

0.007 (1.10% improvement) on average over Model Trees and by 0.007 (1.10%

improvement) on average over XGBoost.

• Scalability: We show the average time to solve the first version of OPC is

about 800 seconds on the same 20 datasets, which is ∼30× faster than ORT-L.

Furthermore, the maximum time to solve large scale problems (𝑛 ∼ 70000,

𝑝 ∼ 30) is under 2000 seconds.

• Interpretability: We show how to use the centroids the proposed method

finds to create profiles of points in a given cluster and understand why it

makes the predictions it does. We further compare OPC with ORT-L in two

real world datasets, showing there is no significant loss in interpretability when

using the proposed method.

Chapter 4: On the Limitations of Predicting Post Transplant Outcomes

In this chapter we train cutting edge machine learning methods on the UNOS

liver, lung, and kidney transplantation data to predict whether a organ will still be

functioning in one year or not. Since the Organ Procurement and Transplantation

23

Network (OPTN) is trying to define a new continuous distribution model, which is

intended to be a “more equitable system of allocating deceased donor organs,” there

will likely be discussion of which factors should be included in the system. Predicted

post-transplant survival is a likely candidate for inclusion, as it is already used as

a factor in lung allocations. The investigation in this chapter therefore uses data

from the OPTN to see how well these post-transplant outcomes can be predicted

for several organs using the current data, to better understand their usefulness if

included in the allocation process. We show the following:

• The best AUCs we achieved for the different organs are overall low, at 0.66 for

the liver data, 0.62 for lung data, and 0.67 for kidney data.

• Since the highest AUC overall was 0.67, when it comes to allocation these

models would very frequently misclassify or fail to stratify the patient who has a

higher post-transplant survival compared to one who has a lower chance of post-

graft across all organs. It therefore is questionable whether post-transplant

survival predictions should be used to stratify patients or as a factor in organ

allocation decisions for now.

• The machine learning methods used to predict post-transplant survival are

state-of-the-art modeling techniques, which have been applied effectively in

the transplant area (ex. in defining MELD or the OPOM score ([100],[11])).

We therefore argue that the main issue is with the data, and discuss several

potential ways of addressing this issue.

24

Chapter 2

The equivalence of neural networks

and optimal decision trees

2.1 Introduction

Neural networks, a supervised learning technique, have become one of the most

widely used machine learning techniques today. Historically, one can trace the be-

ginnings of neural networks to 1943. That year, [62] proposed to model neurons with

simple electronic circuits, mirroring the fact that neurons, like circuits, either acti-

vate or not. Following this paper, there were more developments in the field, such

as the creation of a system that could learn how to classify input data known as the

Perceptron ([75]), the development of backpropagation, a technique to train neural

networks ([99], [76]), the proof that multilayer feedforward neural networks are uni-

versal approximators ([53], [47]), and many more. Increased computational power,

advances in optimization (stochastic gradient methods), and the massive availabil-

ity of data sets have also lead to the development of a methodology known as deep

25

learning, which involves training large neural networks with many hidden layers. For

a survey in developments in neural networks and deep learning, see [72], [55], and

[78].

Generally, a neural network’s architecture is defined by

• 𝐿 hidden layers, indexed ℓ = 1, . . . , 𝐿, and one output layer.

• Hidden layer ℓ consisting of 𝑁ℓ nodes, indexed 𝑖 = 1, . . . , 𝑁ℓ.

• An output layer consisting of q nodes, indexed 𝑖 = 1, . . . , 𝑞.

• Some non-linear function 𝜑(𝑥) associated with the hidden layers.

• Some function 𝜑𝑂(𝑥) associated with the output layer.

An example of a feedforward neural network can be seen in Figure 2-1. It has

2 hidden layers, with 𝑁1 = 2 nodes in the first hidden layer and 𝑁2 = 3 nodes

in the second. One of the major innovations that took place in neural networks

was an increase in variety in the 𝜑(·) functions used. While earlier versions such

as the Perceptron used an indicator function 𝜑(𝑥) = 1{𝑥 ≥ 0}, to try to capture

the binary way neurons either fired or did not, some more recent choices such as

𝜑(𝑥) = max(𝑥, 0) have also been used to create effective neural networks with high

predictive accuracy.

Deep learning has had some great successes across a variety of applications. For

example, it revolutionized image recognition ([87], [40], [45]), with competitors in the

ImageNet Large Scale Visual Recognition Challenge almost exclusively using deep

learning in their programs ([77], [52]). It has also been very successful in machine

translation, and other forms of natural language processing – Google Translate im-

proved dramatically when it began to use deep learning in its translation algorithms

26

x

𝑦1,1 = 𝜑(4𝑥1 + 2𝑥2 + 3)

𝑦1,2 = 𝜑(−𝑥1 + 4𝑥2 − 1)

𝑦2,1 = 𝜑(𝑦1,1 − 7𝑦1,2 − 5)

𝑦2,2 = 𝜑(2𝑦1,1 + 𝑦1,2 + 4)

𝑦2,3 = 𝜑(3𝑦1,1 − 3𝑦1,2 + 1)

𝑦𝑂,1 = 𝜑𝑂(4𝑦2,1 − 𝑦2,2 − 5𝑦2,3 + 1)

Figure 2-1: An example of a feedforward neural network.

([65], [25], [5], [93]). Additionally, speech recognition technology has markedly im-

proved with the inclusion of deep learning ([37], [39]).

These examples, however, represent only a fraction of the applications neural

networks are used in. With high profile successes, over 2 million results in a search

on Google scholar on the topic “neural network articles” ([38]), and influential articles

in the field garnering thousands of citations, it is clear that neural networks are an

integral part of the field of artificial intelligence nowadays. However, neural networks

face some challenges alongside their strengths and successes. They rely on heuristics

in their training process, like dropout ([91], [103], [46]) and early stopping ([73],

[104]). While neural networks often work well, it is unclear when they work well,

why they work well, and if they do not work well how to improve them. Importantly,

given that they have thousands to tens of thousands of parameters, they are not

interpretable by humans.

In contrast with neural networks, classification and regression trees are highly

interpretable ([6]). In the words of Leo Breiman, “On interpretability, trees rate an

A+” ([18]). Trees partition the covariates separately, thus dividing the input data

points into disjoint sets that are easily interpretable by humans. An example of this

can be seen in Figure 2-2. Based on two covariates, body temperature (𝑥1) and

blood glucose (HbA1c) (𝑥2), we want to classify whether a person is healthy. The

27

tree in Figure 2-2 classifies a person as healthy (Class 1) if (𝑥1 < 97) or (𝑥1 > 97 and

𝑥2 < 6.9) and a person as not healthy (Class 0) if 𝑥1 > 97 and 𝑥2 > 6.9. The fact

that the decision at each node is based on a single variable makes it very clear why

a given path is taken, which is why decision trees are easy to use and understand,

even when they have larger depths.

𝑥1 < 97

1 𝑥2 < 6.9

1 0

Y N

Y N

Figure 2-2: A sample decision tree.

Originally proposed by [18] CART is a greedy method for building trees that

results in suboptimal trees. However, there has recently been significant progress

in finding trees that are near optimal ([7, 8]). Combining mixed integer optimiza-

tion and local search methods, the authors find optimal classification trees (OCTs)

and optimal regression trees (ORTs) that significantly improve upon CART, while

remaining computationally tractable. Furthermore, their approach allows one to

consider hyperplane splits, leading to optimal classification trees with hyperplanes

(OCT-Hs) and optimal regression trees with hyperplanes (ORT-Hs), which gener-

alize support vector machines. These trees give comparable results in a variety of

real world datasets with boosted trees and improve upon random forests, two widely

used black box methods ([8]). OCT-Hs and ORT-Hs are less interpretable than

28

trees whose splits rely on only one variable (OCTs and ORTs), but are still more

interpretable than neural networks. An example of this can be seen in Figure 2-3.

Based on the same two covariates as before, body temperature (𝑥1) and blood glu-

cose (HbA1c) (𝑥2), we again want to classify whether a person is healthy. The tree

in Figure 2-3 classifies a person as healthy (Class 1) if (0.4𝑥1 + 1.5𝑥2 < 46.7.7) and

(0.9𝑥1 − 6𝑥2 < 53.1) and a person as not healthy (Class 0) otherwise. While the

hyperplane splits make the tree less interpretable, but it is still fairly clear why a

point is sorted to a given leaf node.

0.4𝑥1 + 1.5𝑥2 < 46.7.7

0.9𝑥1 − 6𝑥2 < 53.1 0

1 0

Y N

Y N

Figure 2-3: A sample decision tree with hyperplane splits.

In this paper, we investigate the modeling power of neural networks in comparison

with OCT-Hs and ORT-Hs. We prove that a variety of neural networks (feedforward,

convolutional and recurrent) can be transformed to classification and regression trees

with hyperplanes with the same accuracy in the training set, showing that OCT-Hs

and ORT-Hs are at least as powerful as neural networks. This work complements

that of Sethi, who showed that decision trees can be transformed into neural networks

with no loss in accuracy ([80]). We therefore know that OCT-Hs and neural networks

are exactly equivalent in terms of the functions they can model. Given that our

29

constructions necessitate the construction of decision trees of significant depth, we

explored the practical implication of these findings. We report a comparison of

OCT-Hs and neural networks on twelve well known data sets and show that the two

methods exhibit remarkably close accuracy.

Contributions

Our contributions include:

1. We show that a given classification neural network is equivalent in terms of

modeling power to an OCT-H. In Table 2.1 we show the parameters of our

construction and the section our construction appears in.

2. We show that a given regression neural network can be transformed to an ORT-

H. In Table 2.2 we show the parameters of our construction and the section

our construction appears in.

3. We show in Section 2.7 that neural networks trained in the machine learning

framework TensorFlow and OCT-Hs trained in the Julia programming lan-

guage have comparable out-of-sample performance in classifying data in twelve

different data sets, and in one of them OCT-H has an edge in performance.

We feel that these findings are significant for the following reasons:

1. They link two of the most popular and widely utilized machine learning meth-

ods more deeply than their categorization as universal approximators, shedding

new light on their strengths and weaknesses.

2. Given that OCT-Hs have an edge in interpretability compared to neural net-

works, without loss of modeling power, decision trees might be the method

30

Given Model Given Parameters At least as powerful model New Model Parameters Section

Classification
Feedfor-
ward Neural
Network

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = 1{𝑥 ≥ 0}

OCT-H • Depth
𝑁1

2.4.1

Classification
Feedfor-
ward Neural
Network

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = max(𝑥, 0)

OCT-H • Depth 𝑞− 1+
𝐿∑︀

ℓ=1

𝑁ℓ
2.4.3

Classification
Convolu-
tional Neural
Network

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = 1{𝑥 ≥ 0}

OCT-H • Depth
𝑁1

2.5.1

Classification
Convolu-
tional Neural
Network

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = max(𝑥, 0)

OCT-H • Depth 𝑞− 1+
𝐿∑︀

ℓ=1

𝑁ℓ
2.5.3

Classification
Recurrent
Neural Net-
work

• Takes input sequence of
length 𝑇 *

• 1 hidden layer

• 𝑁1 nodes in that hidden
layer

• 𝜑(𝑥) = 1{𝑥 ≥ 0}

OCT-H • Depth 𝑇 *×𝑁1
2.6.1

Classification
Recurrent
Neural Net-
work

• Takes input sequence of
length 𝑇 *

• 1 hidden layer

• 𝑁1 nodes in each hidden
layer

• 𝜑(𝑥) = max(𝑥, 0)

OCT-H • Depth 𝑞−1+𝑇 *×𝑁1
2.6.3

Table 2.1: Summary of the relationship of classification NNs and OCT-Hs.

31

Given Model Given Parameters At least as powerful model New Model Parameters Section

Regression
Feedfor-
ward Neural
Network

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = 1{𝑥 ≥ 0}

ORT-H • Depth
𝑁1

2.4.2

Regression
Feedfor-
ward Neural
Network

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = max(𝑥, 0)

ORT-H • Depth
𝐿∑︀

ℓ=1

𝑁ℓ
2.4.4

Regression
Convolutional
Neural Net-
work

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = 1{𝑥 ≥ 0}

ORT-H • Depth
𝑁1

2.5.2

Regression
Convolutional
Neural Net-
work

• L hidden layers

• 𝑁ℓ nodes in each hidden
layer

• 𝜑(𝑥) = max(𝑥, 0)

ORT-H • Depth
𝐿∑︀

ℓ=1

𝑁ℓ
2.5.4

Regression
Recurrent
Neural Net-
work

• Takes input sequence of
length 𝑇 *

• 1 hidden layer

• 𝑁1 nodes in that hidden
layer

• 𝜑(𝑥) = 1{𝑥 ≥ 0}

ORT-H • Depth 𝑇 *×𝑁1
2.6.2

Regression
Recurrent
Neural Net-
work

• Takes input sequence of
length 𝑇 *

• 1 hidden layer

• 𝑁1 nodes in each hidden
layer

• 𝜑(𝑥) = max(𝑥, 0)

ORT-H • Depth 𝑇 * ×𝑁1
2.6.4

Table 2.2: Summary of the relationship of regression NNs and ORT-Hs.

32

of choice in applications where interpretability matters. This does not mean

that we feel OCT-Hs will replace deep learning – just that in cases where

interpretability is paramount, OCT-Hs have an advantage in that regard.

3. Given the success of stochastic gradient methods in neural networks, it might

be worthwhile to investigate their application in the design of optimal trees.

Conversely, given the success of mixed integer optimization and local search

methods in optimal trees, it might be worthwhile to investigate their application

in neural networks.

The structure of the rest of the paper is as follows. In Section 2.2, we discuss

related literature comparing decision trees and neural networks. In Section 2.3, we

review the mathematical structure of the neural networks we consider, as well as

decision trees. In Sections 2.4, 2.5 and 2.6, we prove that we can transform feedfor-

ward, convolutional and recurrent neural networks into decision trees, respectively.

In Section 2.7, we compare the classification accuracies of comparable decision trees

and neural networks on twelve data sets. Lastly, in Section 2.8, we include our

concluding remarks.

2.2 Related Work

The relationship of neural networks and decision trees as models and their similarities

in performance have received a great deal of attention. Both models are universal

approximators, allowing the two methods to be used to approximate each other

([58]). There have also been several papers comparing their performance in a purely

empirical manner ([23], [1]).

One significant result in comparing the two techniques was the proof that a

33

decision tree can be transformed into an equivalent neural network ([80], [81]). Based

on this transformation, there has been research investigating using decision trees

as warm starts for neural networks ([50], [48]), and constructing neural network

architectures based on decision trees and forests ([74], [66], [57]).

While there has been some work on transforming a neural network into an equiv-

alent decision tree, the converse of Sethi’s work, the networks involved have been

small scale and the process is generally by inspection ([85]). There has been ad-

ditional research into how to extract decision trees ([83]) and decision rules ([94],

[97], [86], [84]) from neural networks, but the resultant models are not equivalent to

the original networks, although they generally have comparable performance out-of-

sample.

Lastly, there has also been some experimentation in designing decision trees and

forests with non-deterministic splits, and comparing those models with neural net-

works ([82], [51], [35], [14]). A non-deterministic split is typically viewed as calcu-

lating the probability a point goes a particular direction at a split, and is usually

represented as the output of a sigmoid function. While these models have the ad-

vantage of being continuous models, meaning that one can use stochastic gradient

descent methods to train them, they lack the interpretability of decision trees with

hard splits.

Our paper differs from this past work in the following ways:

1. Our proof that a decision tree can express the same function as a neural network

is constructive, exact, and works for neural networks of any size or depth.

2. The splits in the tree we build are deterministic, not probabilistic.

3. We build a single decision tree, and not a less interpretable forest.

34

4. We cover a greater variety of network types (feedforward, convolutional, and

recurrent), as opposed to just focusing on the feedforward case.

5. We discuss the ReLU activation function in addition to the perceptron activa-

tion function, which was not mentioned in much of the earlier work.

2.3 Mathematical Formulation of Neural Networks

and Optimal Decision Trees

In this section, we describe the mathematical structure of the different types of neural

networks and optimal classification and regression trees we consider in this paper.

2.3.1 Feedforward Neural Networks

A classification feedforward neural network (FNN) is trained on input and output

pairs (x𝑗, 𝑜𝑗), x𝑗 ∈ R𝑁0 and 𝑜𝑗 ∈ {1, . . . , 𝑞}, 𝑗 = 1, . . . , 𝑁 . The output 𝑜𝑗 represents

the class the point x𝑗 belongs to. The characteristics of FNNs are:

• There are 𝐿 hidden layers. Hidden layer ℓ = 1, . . . , 𝐿 consists of𝑁ℓ nodes. Node

𝑛ℓ,𝑖, 𝑖 = 1, . . . , 𝑁ℓ, in hidden layer ℓ is characterized by a vector Wℓ,𝑖 ∈ R𝑁ℓ−1

and scalar 𝑏ℓ,𝑖 ∈ R. The node computes

𝑦ℓ,𝑖 = 𝜑(W𝑇
ℓ,𝑖yℓ−1 + 𝑏ℓ,𝑖),

where 𝜑(𝑥) is a nonlinear function, and yℓ−1 is the vector of outputs of the

hidden layer ℓ− 1. We define y0 , x, the input of the FNN.

• There is one output layer that consists of 𝑞 nodes. Node 𝑖, 𝑖 = 1, . . . , 𝑞 in the

35

output layer is characterized by W𝑂,𝑖 ∈ R𝑁𝐿 and scalar 𝑏𝑂,𝑖 ∈ R. Unlike in the

hidden layers, the output layer’s activation function 𝜑𝑂(𝑥) is a vector valued

function, where

𝑦𝑂,𝑖 = 𝜑𝑂(W
𝑇
𝑂y𝐿 + b𝑂)𝑖, 𝑖 = 1, . . . , 𝑞. (2.1)

For ease of notation in the diagrams, we will define

𝜑𝑂(W
𝑇
𝑂,𝑖y𝐿 + 𝑏𝑂,𝑖) = 𝜑𝑂(W

𝑇
𝑂y𝐿 + 𝑏𝑂)𝑖, 𝑖 = 1, . . . , 𝑞.

Note that 𝜑𝑂(𝑥) need not be the same as 𝜑(𝑥) applied element-wise to the

vector y𝐿.

• The final prediction of the network is found by calculating

𝑘 = arg-lex-max𝑖=1,...,𝑞(𝑦𝑂,𝑖). The lexicographic maximum means that in case

of a tie, the smallest index 𝑘 is our choice. We then use 𝑘 as our predicted

class value.

An example of a classification feedforward neural network is depicted in Figure

2-4. Here, we have 2 hidden layers, with 3 nodes in the first hidden layer, 4 nodes

in the second, and 2 nodes in the output layer. Also note that each node in this

network has its own unique weights Wℓ,𝑖 and 𝑏ℓ,𝑖 (which we have to solve for in the

training process), and that the nodes in one layer have directed edges leading to all

the nodes in the next layer (a trait known as being “fully connected”).

Two potential choices for the activation function 𝜑(·) are the perceptron activation

function, where

𝜑(𝑥) = 1{𝑥 ≥ 0}, (2.2)

and the rectified linear unit or ReLU, where

36

x

𝑦1,1 = 𝜑(W′
1,1x+ 𝑏1,1)

𝑦1,2 = 𝜑(W′
1,2x+ 𝑏1,2)

𝑦1,3 = 𝜑(W′
1,3x+ 𝑏1,3)

𝑦2,1 = 𝜑(W′
2,1y1 + 𝑏2,1)

𝑦2,2 = 𝜑(W′
2,2y1 + 𝑏2,2)

𝑦2,3 = 𝜑(W′
2,3y1 + 𝑏2,3)

𝑦2,4 = 𝜑(W′
2,4y1 + 𝑏2,4)

𝑦𝑂,1 = 𝜑𝑂(W
′
O,1y2 + 𝑏𝑂,1)

𝑦𝑂,2 = 𝜑𝑂(W
′
O,2y2 + 𝑏𝑂,2)

Figure 2-4: An example of a classification feedforward neural network.

𝜑(𝑥) = max(𝑥, 0). (2.3)

If (2.5) is chosen as the activation function, then (𝜑𝑂(x))𝑖 = 1{𝑥𝑖 ≥ 0}. If (2.6) is

chosen as the activation function, then 𝜑𝑂(x) is defined as

(𝜑𝑂(x))𝑖 =

⎧⎪⎨⎪⎩
1, where 𝑖 = argmax𝑖=1,...,𝑁0

(𝑥𝑖),

0, otherwise.
(2.4)

A regression FNN is defined in much the same way as the above, with a two minor

differences. First, the training data pairs are (x𝑗,o𝑗), 𝑗 = 1, . . . , 𝑁 , where x𝑗 ∈ R𝑁0

and o𝑗 ∈ R𝑞. Second, 𝜑𝑂(x) is the identity function, so the network simply outputs

W𝑇
𝑂y𝐿 + b𝑂.

When using neural networks, the standard goal is to solve for weight matrices and

bias vectors Wℓ and bℓ, ℓ = 1, . . . , 𝐿,𝑂. This is usually done by minimizing some

loss function using stochastic gradient descent ([16], [56]), and is typically augmented

with techniques like early stopping ([73], [104]) and dropout ([91], [103], [46]). Due

to the heuristic nature of these methods, we are not guaranteed an optimal solution

for Wℓ and bℓ, ℓ = 1, . . . , 𝐿,𝑂.

37

Two potential choices for the activation function 𝜑(·) are the perceptron activation

function, where

𝜑(𝑥) = 1{𝑥 ≥ 0}, (2.5)

and the rectified linear unit or ReLU, where

𝜑(𝑥) = max(𝑥, 0). (2.6)

If (2.5) is chosen as the activation function, then (𝜑𝑂(x))𝑖 = 1{𝑥𝑖 ≥ 0}. If (2.6) is

chosen as the activation function, then 𝜑𝑂(x) is defined as

(𝜑𝑂(x))𝑖 =

⎧⎪⎨⎪⎩
1, where 𝑖 = argmax𝑖=1,...,𝑁0

(𝑥𝑖),

0, otherwise.
(2.7)

A regression FNN is defined in much the same way as the above, with a two minor

differences. First, the training data pairs are (x𝑗,o𝑗), 𝑗 = 1, . . . , 𝑁 , where x𝑗 ∈ R𝑁0

and o𝑗 ∈ R𝑞. Second, 𝜑𝑂(x) is the identity function, so the network simply outputs

W𝑇
𝑂y𝐿 + b𝑂.

When using neural networks, the standard goal is to solve for weight matrices and

bias vectors Wℓ and bℓ, ℓ = 1, . . . , 𝐿,𝑂. This is usually done by minimizing some

loss function using stochastic gradient descent ([16], [56]), and is typically augmented

with techniques like early stopping ([73], [104]) and dropout ([91], [103], [46]). Due

to the heuristic nature of these methods, we are not guaranteed an optimal solution

for Wℓ and bℓ, ℓ = 1, . . . , 𝐿,𝑂.

38

2.3.2 Convolutional Neural Networks

A convolutional neural network (CNN) ([78], [37]) is designed to be especially effec-

tive at classifying images, so its architecture is meant to exploit the traits of image

data. CNNs use three types of hidden layers: convolutional, pooling and regular lay-

ers. It is is trained on input and output pairs (x𝑗, 𝑜𝑗), 𝑗 = 1, . . . , 𝑁 , where x𝑗 ∈ R𝑁0

and 𝑜𝑗 ∈ {1, . . . , 𝑞}, 𝑗 = 1, . . . , 𝑁 . The output 𝑜𝑗 represents the class the point x𝑗

belongs to. Their characteristics are as follows.

• There are 𝐿 hidden layers in the network. The first 𝐿𝑐 are pairs of convolutional

layers and pooling layers, while the remaining 𝐿−𝐿𝑐 are regular hidden layers

like those in Section 2.3.1.

• The convolutional and the regular hidden layers each have 𝑁ℓ nodes, ℓ =

1, . . . , 𝐿𝑐, 𝐿𝑐 + 1, . . . , 𝐿. Node 𝑛ℓ,𝑖, 𝑖 = 1, . . . , 𝑁ℓ, ℓ = 1, . . . , 𝐿 is characterized

by a vector Wℓ,𝑖 ∈ R𝑁ℓ−1 and scalar 𝑏ℓ,𝑖 ∈ R. The node computes

𝑦ℓ,𝑖 =

⎧⎪⎨⎪⎩
𝜑(W𝑇

ℓ,𝑖Pℓ−1 + 𝑏ℓ,𝑖), if ℓ = 1, . . . , 𝐿𝑐,

𝜑(W𝑇
ℓ,𝑖yℓ−1 + 𝑏ℓ,𝑖), if ℓ = 𝐿𝑐 + 1, . . . , 𝐿,

where 𝜑(𝑥) is a nonlinear function, Pℓ−1 is the vector of outputs of the previous

pooling layer, ℓ = 1, . . . , 𝐿𝑐 and yℓ−1 is the vector of outputs of the previous

regular hidden layer ℓ = 𝐿𝑐 + 1, . . . , 𝐿.

• We define P0 , x

• The pooling layers all have 𝑅ℓ nodes, ℓ = 1, . . . , 𝐿𝑐, with the property that

39

𝑘ℓ =
𝑁ℓ

𝑅ℓ
is an integer. Node 𝑝ℓ,𝑖, 𝑖 = 1, . . . , 𝑅ℓ, in a pooling layer computes

𝑃ℓ,𝑖 = 𝜓(𝑦ℓ,𝑚, 𝑚 ∈ 𝑆ℓ,𝑖),

where 𝜓(·) is some function, yℓ is the vector of outputs of the previous convo-

lutional layer, and 𝑆ℓ,𝑖 is the collection of indices that affect the computation

of 𝑃ℓ,𝑖. The sets 𝑆ℓ,𝑖 have the properties

1. ∪𝑅ℓ
𝑖=1𝑆ℓ,𝑖 = {1, . . . , 𝑁ℓ}

2. 𝑆ℓ,𝑖 ∩ 𝑆ℓ,𝑗 = ∅

3. |𝑆ℓ,𝑖| = 𝑘ℓ, 𝑖 = 1, . . . , 𝑅ℓ

The most commonly used pooling layer type is the max pooling layer that

calculates:

𝑃ℓ,𝑖 = max
𝑚∈𝑆ℓ,𝑖

(𝑦ℓ,𝑚), 𝑖 = 1, . . . , 𝑅ℓ. (2.8)

• The output layer consists of 𝑞 nodes. A node in the output layer is characterized

by W𝑂,𝑖 ∈ R𝑁𝐿 and scalar 𝑏𝑂,𝑖 ∈ R. The node computes 𝑦𝑂,𝑖 = 𝜑𝑂(W
𝑇
𝑂,𝑖y𝐿 +

𝑏𝑂,𝑖) as defined in Eq. (2.1), where 𝜑𝑂(𝑥) is some function, which need not be

𝜑(𝑥) applied element-wise to an input vector.

• The final prediction of the network is found by calculating

𝑘 = arg-lex-max𝑖=1,...,𝑞(𝑦𝑂,𝑖). The lexicographic maximum means that in case

of a tie, the smallest index 𝑘 is our choice. We then use 𝑘 as our predicted

class value.

A regression CNN is defined in much the same way as the above, with a two minor

differences. First, the training data pairs are (x𝑗,o𝑗), 𝑗 = 1, . . . , 𝑁 , where x𝑗 ∈ R𝑁0

40

and o𝑗 ∈ R𝑞. Second, 𝜑𝑂(x) is the identity function, so the network simply outputs

W𝑇
𝑂y𝐿 + b𝑂.

2.3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are specialized to be able to handle sequential

input data ([60]). In general, it is expected that the data have the same dimensions

at each step in the sequence, but that the sequence can be of arbitrary length. For

this paper, though, we will assume with some loss of generality both that the data

have the same dimensions at each step in the sequence and that every potential input

sequence has length 𝑇 *. The way that a simple RNN works is that the network has

a single hidden layer that processes the data in a sequential manner over a series

of time steps 𝑡 = 1, . . . , 𝑇 *. It “remembers” past inputs by using the hidden layer

output at time step 𝑡 as an input into the hidden layer at time step 𝑡+1. As a result

of this, the network structure of RNNs contains self loops, unlike FNNs and CNNs.

At the final time step 𝑇 *, and given output function 𝜑𝑂(·) and output weights

W𝑂 ∈ R𝑛1×𝑞 and b𝑂 ∈ R𝑞, we then calculate y𝑂, where 𝑦𝑂,𝑖 = 𝜑𝑂(W
𝑇
𝑂,𝑖y𝑇 *,1 + 𝑏𝑂,𝑖)

for 𝑖 = 1, . . . , 𝑞. This classification prediction can be viewed in some cases as the

network predicting the next value in the given sequence.

A recurrent neural network is trained on the input sequence and output pair

((x𝑡,𝑗)𝑡=1,...,𝑇 * , 𝑜𝑗), 𝑗 = 1, . . . , 𝑁 , where x𝑡 ∈ R𝑁0 , 𝑡 = 1, . . . , 𝑇 *, and 𝑜𝑗 ∈ {1, . . . , 𝑞}

is the class the sequence (x𝑡,𝑗)𝑡=1,...,𝑇 * is in. Their characteristics are as follows.

• There is one hidden layer and one output layer. The hidden layer contains 𝑁1

nodes, 𝑖 = 1, . . . , 𝑁1. Node 𝑛1,𝑖 is characterized by vectors W𝑔,𝑖 ∈ R𝑁0 and

41

Wℎ,𝑖 ∈ R𝑁1 , and scalar 𝑏1,𝑖. It computes

𝑦𝑡,1,𝑖 = 𝜑(W𝑇
𝑔,𝑖x𝑡 +Wℎ,𝑖y𝑡−1,1 + 𝑏1,𝑖),

where 𝜑(𝑥) is some non-linear function, and y𝑡−1,1 is the vector of outputs of

the hidden layer in the previous time step.

• We define y0,1 as the zero vector 0 ∈ R𝑁1 .

• The output layer consists of 𝑞 nodes, 𝑖 = 1, . . . , 𝑞. A node in the output

layer is characterized by W𝑂,𝑖 ∈ R𝑁1 and scalar 𝑏𝑂,𝑖 ∈ R. It computes 𝑦𝑂,𝑖 =

𝜑𝑂(W
𝑇
𝑂,𝑖y𝑇 *,1+𝑏𝑂,𝑖) as defined in Eq. (2.1), where 𝜑𝑂(𝑥) is some function that

need not be the same as 𝜑(𝑥) applied element-wise to the vector y𝐿.

• The final prediction of the network is found by calculating

𝑘 = arg-lex-max𝑖=1,...,𝑞(𝑦𝑂,𝑖). The lexicographic maximum means that in case

of a tie, the smallest index 𝑘 is our choice. We then use 𝑘 as our predicted

class value.

A regression RNN is defined in much the same way as the above, with a two minor

differences. First, the training data inputs are ((x𝑡,𝑗)𝑡=1,...,𝑇 * ,o𝑗), 𝑗 = 1, . . . , 𝑁 , where

x𝑡 ∈ R𝑁0 , 𝑡 = 1, . . . , 𝑇 *, and o𝑗 ∈ R𝑞. Second, 𝜑𝑂(x) is the identity function, so the

network simply outputs W𝑇
𝑂y𝑇 *,1 + b𝑂.

2.3.4 Optimal Classification and Regression Trees

Given training input data in R𝑁0 , a classification tree partitions the space into disjoint

subspaces. Following this it assigns a classification value to each subspace. Once this

is complete, given an input data point the tree sorts it into a subspace, and the class

42

value associated with this subspace is the tree’s prediction for the point’s class value.

The decision tree is trained on input and output pairs (x𝑗, 𝑜𝑗), 𝑗 = 1, . . . , 𝑁 , where

x𝑗 ∈ R𝑁0 and 𝑜𝑗 ∈ {1, . . . , 𝑞} is the class x𝑗 is in. Its characteristics are as follows.

• It has depth 𝑁1, where the depth is the maximum number of split nodes in a

tree one visits before reaching a leaf node that contains an output value.

• The maximal tree of depth 𝑁1 has 𝑇 = 2𝑁1+1 − 1 nodes.

• Nodes 1 through ⌊𝑇/2⌋ of this maximal tree are split nodes, otherwise known

as branch nodes, while nodes ⌊𝑇/2⌋+ 1 through 𝑇 are leaf nodes.

• Each branch node 𝑖, 𝑖 = 1, . . . , ⌊𝑇/2⌋ is assigned split parameters w𝑖, 𝑏𝑖, where

w𝑖 ∈ R𝑁0 and 𝑏𝑖 ∈ R.

• Given input x, at a given node 𝑖 we calculate w𝑇
𝑖 x+ 𝑏𝑖.

• If w𝑇
𝑖 x + 𝑏𝑖 < 0, we take the left branch of the split to a new tree node;

otherwise, we take the right branch.

• Once we have passed through at most 𝑁1 different nodes, we arrive at a leaf

node.

• Each leaf node is assigned a classification value 𝑘 ∈ {1, . . . , 𝑞} that it uses as

the predicted class for all points sorted to it.

• Thus, if x is assigned to leaf node 𝑟 with classification value 𝑘𝑟, 𝑟 ∈ {⌊𝑇/2⌋+

1, . . . , 𝑇} and 𝑘𝑟 ∈ {1, . . . , 𝑞}, the network outputs 𝑘𝑟 as the classification value

for x.

43

In the past, split parameters w𝑖, 𝑏𝑖 for the branch nodes and the classification

values 𝑘𝑟 for the leaf nodes were found using greedy methods like CART, which

result in suboptimal solutions and are only able to handle splits based on a single

parameter of x. This would mean that exactly one entry of w𝑖 could be nonzero

for all 𝑖 = 1, . . . , ⌊𝑇/2⌋. As shown in [8], if one uses mixed integer optimization

and local search methods to solve for split parameters and leaf classification values

given a maximum tree depth 𝑁1, one is capable of finding a near optimal tree in a

computationally tractable manner. Furthermore, these optimal classification trees

are able to use hyperplane based splits that can take into account all parameters of x

at a given split, instead of just a single one. These traits allow optimal decision trees

with hyperplane splits to be more flexible models while increasing their accuracy in

classifying training data, at the cost of making them a bit less interpretable. Optimal

classification trees with splits that are parallel to the axis are denoted as OCT and

with hyperplane splits as OCT-H.

Decision trees in general can be used for regression as well. Here the training

data are (x𝑗,o𝑗), 𝑗 = 1, . . . , 𝑁 , where x𝑗 ∈ R𝑁0 and o𝑗 ∈ R𝑞. The splits are the

same as before, but there are two different possibilities for what kind of output to

associate with the leaf nodes. One version involves each leaf having a single point

estimate output value 𝑦𝑟𝑂 associated with it (typically the mean of all the outputs of

data points sorted to that leaf node), for 𝑟 = ⌊𝑇/2⌋ + 1, . . . , 𝑇 . The other is when

there is a different linear function defined by weights W𝑟
𝑂,b

𝑟
𝑂 at each node 𝑟, where

W𝑟
𝑂 ∈ R𝑁0×𝑞 and b𝑟

𝑂 ∈ R𝑞. This linear function is applied to all the points sorted to

the 𝑟th leaf in order to to make the prediction (W𝑟
𝑂)

𝑇x + b𝑟
𝑂 as the point’s output

value for 𝑟 = ⌊𝑇/2⌋ + 1, . . . , 𝑇 . Current optimal tree implementations are able to

solve for optimal regression trees when 𝑞 = 1. Optimal regression trees with splits

that are parallel to the axis are denoted with ORT and with hyperplane splits with

44

ORT-H.

Figure 2-5 contains an example of a classification tree of depth 2. The split in

first node is based on whether w𝑇
1 x < 𝑏1 or not, and the splits in nodes second and

third nodes are respectively based on whether w𝑇
2 x < 𝑏2 or not or whether w𝑇

3 x < 𝑏3

or not.

w𝑇
1 x < 𝑏1

w𝑇
2 x < 𝑏2 w𝑇

3 x < 𝑏3

𝑜1 𝑜2 𝑜3 𝑜4

Y N

Y N Y N

Figure 2-5: An OCT-H of depth 2. Data in the four leaf nodes are classified as
𝑜1, 𝑜2, 𝑜3, and 𝑜4.

2.4 Feedforward Neural Networks and Optimal Trees

In this section, we construct an OCT-H (ORT-H) that can classify training data at

least as well as a classification (regression) feedforward neural network (FNN) with

perceptron or Rectified Linear Unit activation functions.

2.4.1 Perceptron Classification FNNs and OCT-Hs

The key result of this section is as follows.

45

Theorem 1. An OCT-H with maximum depth 𝑁1 can classify the data in a train-

ing set at least as well as a given classification FNN with the perceptron activation

function (2.5) and 𝑁1 nodes in the first hidden layer.

Proof. Our proof is constructive. We are given a FNN 𝒩1 with the following char-

acteristics:

• The perceptron activation function as defined in (2.5).

• Output function 𝜑𝑂(x) : [0, 1]
𝑞 → [0, 1]𝑞.

• 𝐿 hidden layers and one output layer, indexed ℓ = 1, . . . , 𝐿,𝑂.

• 𝑁ℓ nodes in each layer, indexed 𝑖 = 1, . . . , 𝑁ℓ.

• 𝑞 nodes in the output layer, indexed 𝑖 = 1, . . . , 𝑞.

• Node 𝑛ℓ,𝑖 defined by Wℓ,𝑖, 𝑏ℓ,𝑖.

We construct a classification tree 𝒯1 with hyperplane splits of maximum depth 𝑁1

that makes the same predictions as 𝒩1. This construction relies on the fact that a

FNN with the perceptron activation function and 𝑁1 nodes in the first hidden layer

has at most 2𝑁1 distinct outputs from the first hidden layer, which means the entire

network has at most 2𝑁1 distinct output values. We can therefore assign the 2𝑁1

outputs of the network to each of the 2𝑁1 leaf nodes of the tree. It follows that an

OCT-H of maximum depth 𝑁1 has at least the same classification accuracy as 𝒩1.

To construct 𝒯1, given the inequality from the first node in the first hidden layer

of 𝒩1 defined by the weight vector W1,1 and bias scalar 𝑏1,1, we define the first split

as

46

W𝑇
1,1x+ 𝑏1,1 < 0, (2.9)

which results in the simple split seen in Figure 2-6.

W𝑇
1,1x+ 𝑏1,1 < 0

.

Y N

Figure 2-6: The first split of decision tree 𝒯1.

Independent of whether inequality (2.9) is satisfied or not, the second split is

given by

W𝑇
1,2x+ 𝑏1,2 < 0.

Figure 2-7 provides a visualization of the new branches we added to the tree in Figure

2-6.

W𝑇
1,1x+ 𝑏1,1 < 0

W𝑇
1,2x+ 𝑏1,2 < 0 W𝑇

1,2x+ 𝑏1,2 < 0

.

Y N

Y N Y N

Figure 2-7: The first two depths of tree 𝒯1.

We continue this process for all 𝑁1 nodes in the first hidden layer, building a

47

decision tree of depth 𝑁1, with every split at depth 𝑁1 being given by

W𝑇
1,𝑁1

x+ 𝑏1,𝑁1 < 0.

Having defined the splits of the tree 𝒯1, we now outline how to find the class

value associated with each of the tree’s leaves. Suppose that input x is assigned to

the 𝑟th leaf node of tree 𝒯1, 𝑟 = 1, . . . , 2𝑁1 . Define ℐ1,𝑟 as

ℐ1,𝑟 = {𝑖 | W𝑇
1,𝑖x+ 𝑏1,𝑖 ≥ 0},

which is the set of all depths 𝑖 of tree 𝒯1 where the inequality W𝑇
1,𝑖x + 𝑏1,𝑖 ≥ 0 is

satisfied by an input x sorted to the 𝑟th leaf node. Likewise define ℐ2,𝑟 as

ℐ2,𝑟 = {𝑖 | W𝑇
1,𝑖x+ 𝑏1,𝑖 < 0}.

We know that in the neural network the first hidden layer outputs are

1{W′
1,𝑖x+ 𝑏1,𝑖 ≥ 0} = 1 for 𝑖 ∈ ℐ1,𝑟 and 1{W2,𝑖x+ 𝑏2,𝑖 ≥ 0} = 0 for 𝑖 ∈ ℐ2,𝑟.

To complete the construction of 𝒯1, we need to assign a classification value to

every leaf of 𝒯1. Given an input x of 𝒩1, there are 2𝑁1 possible binary vectors that

the first hidden layer of 𝒩1 could output. These 2𝑁1 vectors, by our construction

of 𝒯1, exactly correspond to the 2𝑁1 leaves of 𝒯1. Given y𝑟
1, the output of the first

hidden layer associated with leaf node 𝑟, the final prediction of 𝒩1 will be 𝑘(y𝑟
1),

which is calculated deterministically given the y𝑟
1 vector and the Wℓ,𝑖, 𝑏ℓ,𝑖 values by

using the process outlined in Section 2.3.1. In every node 𝑟 of the tree we assign

the classification value 𝑘(y𝑟
1), the classification value associated with the first hidden

48

layer output.

We next show that the output of 𝒯1 is the same as the output of 𝒩1 for input

data point x. To see this, if x is input into 𝒩1, the first hidden layer outputs y1(x),

resulting in the final network output 𝑘(y1). However, in the decision tree, x is

assigned to the leaf node where y𝑟
1 = y1(x), and is once again assigned output value

𝑘(y𝑟
1) = 𝑘(y1) by construction. Thus, for a given data point x, the network and the

tree predict the same classification value.

Since an OCT-H does at least as well as 𝒯1 in classifying the training data, it

must do at least as well as 𝒩1 too. Thus, by construction, we have that an optimal

decision tree with maximum depth 𝑁1 can classify data in a training set at least as

well as the given FNN with perceptron activation function, 𝐿 ≥ 1 hidden layers, and

𝑁1 nodes in the first hidden layer, completing the proof of the theorem.

We remark that

1. The construction of tree 𝒯1 is independent of 𝐿, the number of hidden layers.

2. While the output function 𝜑𝑂(x) affects the values for classification, the con-

struction of 𝒯1 is not affected by 𝜑𝑂(x); only the output values of the leaves of

𝒯1 are affected by 𝜑𝑂(x).

3. With this result, we have that any perceptron neural network can be modeled

as a decision tree with hyperplane splits. Combined with the result from [80]

that any decision tree can be modeled as a perceptron neural network, the two

techniques must have the exact same modeling ability, indicating that they are

equivalent.

We next present an example of how to perform the above procedure. The neural

49

network we are working with was trained on data (X,o) and is shown in Figure 2-8,

and the resultant decision tree is shown in Figure 2-9.

Figure 2-8: An FNN with the perceptron activation function performing an XOR
operation.

𝑥1 + 𝑥2 − 0.5 < 0

𝑥1 − 0.8𝑥2 + 0.3 < 0 𝑥1 − 0.8𝑥2 + 0.3 < 0

0 1 1 0

Y N

Y N Y N

Figure 2-9: The reformulation of the Figure 2-8 neural network into a decision tree.

The network in Figure 2-8 is an XOR network; it outputs one if 𝑥1+𝑥2− 0.5 ≥ 0

and 𝑥1 − 0.8𝑥2 + 0.3 < 0, or if 𝑥1 + 𝑥2 − 0.5 < 0 and 𝑥1 − 0.8𝑥2 + 0.3 ≥ 0, and zero

otherwise. We can reformulate it into the tree in Figure 2-9 by defining the split at

the first node of the decision tree as

𝑥1 + 𝑥2 − 0.5 < 0.

Likewise, after that we define the split at both nodes at depth two of the decision

tree as

𝑥1 − 0.8𝑥2 + 0.3 < 0.

50

We then decide which output values to assign to which leaf nodes by tracing what

a given data point’s path down the tree would be. For example, take some point

like x = (0.3, 1), which takes the right path at the first node in the decision tree,

and then the left path at the second node. Then we have that 𝑦1,1 = 1 and 𝑦1,2 = 0.

Inputing these values into the second layer of the neural network gives 𝑦2,1 = 1 and

𝑦2,2 = 0. Finally, inputting those values into the final node of the network results

in 𝑦𝑂,1 = 1, so we assign that value to the leaf node x arrives at. By using this

method, we assign output values of one to the second and third leaf nodes, and zeros

elsewhere. Thus, the tree we construct classifies the given data in the same way as

the neural network. By solving for an optimal tree with depth 2 over the data (X,o),

we must do at least as well on the data as the Figure 2-9 tree by the optimality of the

final OCT-H. Thus, the optimal tree does at least as well as the Figure 2-8 neural

network as well.

We feel that the construction gives insights into the workings of a perceptron

neural network. One can imagine that such a network has the first layer nodes

serving as the splits for a given decision tree, with the remaining hidden layers and

the output layer just serving as a particularly complex way of solving for the leaf

node values.

2.4.2 Perceptron Regression FNNs and ORT-Hs

The only difference between a regression FNN with the perceptron activation function

and a classification FNN with the perceptron activation function in the construction

of the network is that 𝜑𝑂(y𝐿) ∈ R𝑞. Because the first hidden layer of such a regression

FNN can output at most 2𝑁1 unique vectors, there are only 2𝑁1 possible output

vectors of the network. In this case, one can modify the proof in Section 2.4.1 by

51

assigning these 2𝑁1 unique vectors to the leaf nodes of the decision tree in the place

of classification values. With this adjustment, extending Theorem 1 to regression

FNNs with perceptron activation functions is straightforward.

2.4.3 Rectified Linear Unit Classification FNNs and OCT-Hs

In this section, we show that given a classification FNN with ReLU activation func-

tions, we can construct a classification tree with hyperplane splits that can classify

the given training data at least as well as the given FNN. Unlike in Section 2.4.1,

we are dealing with a continuous as opposed to a discrete activation function, which

requires a different process to construct an equivalent decision tree.

The theorem is as follows.

Theorem 2. An OCT-H with maximum depth 𝑞− 1 +
∑︀𝐿

ℓ=1𝑁ℓ can classify data in

a training set at least as well as a given classification FNN with the rectified linear

unit activation function (2.6), 𝐿 hidden layers, 𝑁ℓ nodes in layer ℓ = 1, . . . , 𝐿, and

𝑞 nodes in the output layer.

Proof. We are given a FNN 𝒩2 with the following characteristics:

• The rectified linear unit activation function, as defined in (2.6).

• 𝐿 hidden layers and one output layer, indexed ℓ = 1, . . . , 𝐿,𝑂.

• 𝑁ℓ nodes in each layer, indexed 𝑖 = 1, . . . , 𝑁ℓ.

• 𝑞 nodes in the output layer, indexed 𝑖 = 1, . . . , 𝑞.

• Node 𝑛ℓ,𝑖 defined by Wℓ,𝑖, 𝑏ℓ,𝑖.

52

W𝑇
1,1x+ 𝑏1,1 < 0

W𝑇
1,2x+ 𝑏1,2 < 0 W𝑇

1,2x+ 𝑏1,2 < 0

W𝑇
1,𝑁1

x+ 𝑏1,𝑁1 < 0 W𝑇
1,𝑁1

x+ 𝑏1,𝑁1 < 0 W𝑇
1,𝑁1

x+ 𝑏1,𝑁1 < 0 W𝑇
1,𝑁1

x+ 𝑏1,𝑁1 < 0

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N

.

Figure 2-10: The decision tree 𝒯2 we are building up to depth 𝑁1.

We construct a classification tree 𝒯2 with hyperplane splits of maximum depth 𝑞 −

1 +
∑︀𝐿

ℓ=1𝑁ℓ that makes the same predictions as 𝒩2. It follows that an OCT-H of

maximum depth 𝑞− 1+
∑︀𝐿

ℓ=1𝑁ℓ has at least the same classification accuracy as 𝒩2.

We build the tree up to depth 𝑁1 exactly the same way as in the proof in Section

2.4.1. This part of the tree is shown in Figure 2-10. This is the subtree that simulates

the output of 𝒩2 after the first hidden layer.

After depth 𝑁1, there are 2𝑁1 branches, as shown in Figure 2-10. Note that there

are 2𝑁1 possible output vectors y1 of the first layer of 𝒩2,

(0, . . . , 0)𝑇 , (W𝑇
1,1x+ 𝑏1,1, . . . , 0)

𝑇 , . . . , (W𝑇
1,1x+ 𝑏1,1, . . . ,W

𝑇
1,𝑁1

x+ 𝑏1,𝑁1)
𝑇 ,

as each node of the first layer 𝒩2 computes

y1,𝑖 = max{W𝑇
1,𝑖x+ 𝑏1,𝑖, 0}, 𝑖 = 1, . . . , 𝑁1.

These 2𝑁1 possible values of y1 correspond to the 2𝑁1 branches in the tree 𝒯2

shown in Figure 2-10. In each of these branches we have implicitly calculated the

53

W𝑇
2,1y1 + 𝑏2,1 < 0

W𝑇
2,2y1 + 𝑏2,2 < 0 W𝑇

2,2y1 + 𝑏2,2 < 0

W𝑇
2,𝑁2

y1 + 𝑏2,𝑁2
< 0 W𝑇

2,𝑁2
y1 + 𝑏2,𝑁2

< 0 W𝑇
2,𝑁2

y1 + 𝑏2,𝑁2
< 0 W𝑇

2,𝑁2
y1 + 𝑏2,𝑁2

< 0

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N

.

Figure 2-11: Subtree 𝒯2,2(y1) of depth 𝑁2 is concatenated to the corresponding
branch of the subtree depicted in Figure 2-10, resulting in a subtree of depth 𝑁1+𝑁2.

corresponding y1 values. For example, the first branch corresponds to (0, . . . , 0)𝑇 ,

the second corresponds to (0, . . . , 0,W𝑇
1,𝑁1

x+ 𝑏1,𝑁1)
𝑇 , etc.

We then model the second layer of 𝒩2 by constructing after each branch a new

subtree of depth 𝑁2 as in Figure 2-10, but with the corresponding value of y1 playing

the role of x. In the subtree 𝒯2,2(y1) in Figure 2-11 we substitute in the corresponding

value of y1 as a linear function of x. For example, if y1 = (0, . . . , 0,W𝑇
1,𝑁1

x+ 𝑏1,𝑁1),

then subtree 𝒯2,2(y1) is depicted in Figure 2-12.

Given that at each branch we know exactly y1, as an explicit function of x, 𝒯2,2(y1)

is a decision tree where all inequalities are explicitly written as linear functions of x.

Continuing in this way we model the output vector yℓ of the ℓth hidden layer of 𝒩2

as a classification tree by propagating the values of y1, y2,. . . , y𝐿 as explicit linear

functions of x.

We model the output layer similarly by observing that in this layer we calculate

argmax𝑖=1,...,𝑞(W
𝑇
𝑂,𝑖y𝐿 + 𝑏𝑂,𝑖) (2.10)

in order to find the output class. The construction of the subtree 𝒯2,𝑂(y𝐿) is depicted

54

A

B B

C C C C

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N
.

Figure 2-12: The resulting subtree 𝒯2,2(y1) for y1 = (0, . . . ,W𝑇
1,𝑁1

x + 𝑏1,𝑁1). A, B,
C are as follows:

• A is W𝑇
2,1(0, . . . ,W

𝑇
1,𝑁1

x+ 𝑏1,𝑁1)
𝑇 + 𝑏2,1 < 0.

• B is W𝑇
2,2(0, . . . ,W

𝑇
1,𝑁1

x+ 𝑏1,𝑁1)
𝑇 + 𝑏2,2 < 0.

• C is W𝑇
2,𝑁2

(0, . . . ,W𝑇
1,𝑁1

x+ 𝑏1,𝑁1)
𝑇 + 𝑏2,𝑁2 < 0.

in Figure 2-13.

We simulate the calculation of (2.10) with 𝒯2,𝑂(y𝐿) in the following manner.

Node A checks whether W𝑇
𝑂,1y𝐿 + 𝑏𝑂,1 or W𝑇

𝑂,2y𝐿 + 𝑏𝑂,2 is larger. Node B1 checks

whether W𝑇
𝑂,2y𝐿+ 𝑏𝑂,2 or W𝑇

𝑂,3y𝐿+ 𝑏𝑂,3 is larger conditioned that W𝑇
𝑂,2y𝐿+ 𝑏𝑂,2 >

W𝑇
𝑂,1y𝐿 + 𝑏𝑂,1. Node B2 checks whether W𝑇

𝑂,1y𝐿 + 𝑏𝑂,1 or W𝑇
𝑂,3y𝐿 + 𝑏𝑂,3 is larger

conditioned that W𝑇
𝑂,1y𝐿 + 𝑏𝑂,1 > W𝑇

𝑂,2y𝐿 + 𝑏𝑂,2, and so on. Each branch of the

tree thus explicitly calculates which output node outputs the highest value (using a

lexicographic decision rule in case of ties). We can then assign the class associated

with that node as the output for the appropriate leaf nodes of 𝒯2,𝑂(y𝐿). Since at

each branch we know y𝐿 as an explicit function of x, we also have that 𝒯2,𝑂(y𝐿) is a

decision tree where all inequalities are explicitly written linear functions of x as well.

By the construction of 𝒯2, the output value of 𝒯2 is the same as 𝒩2 given an input

55

A

B1 B2

C1 C2 C3 C4

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N
.

Figure 2-13: The subtree 𝒯2,𝑂(y𝐿). The labels 𝐴,𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝐶3, 𝐶4 are as follows:

• A is (W𝑂,1 −W𝑂,2)
𝑇y𝐿 + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐵1 is (W𝑂,2 −W𝑂,3)
𝑇y𝐿 + 𝑏𝑂,2 − 𝑏𝑂,3 < 0.

• 𝐵2 is (W𝑂,1 −W𝑂,3)
𝑇y𝐿 + 𝑏𝑂,1 − 𝑏𝑂,3 < 0.

• 𝐶1 is (W𝑂,𝑞−1 −W𝑂,𝑞)
𝑇y𝐿 + 𝑏𝑂,𝑞−1 − 𝑏𝑂,𝑞 < 0.

• 𝐶2 is (W𝑂,5 −W𝑂,𝑞)
𝑇y𝐿 + 𝑏𝑂,5 − 𝑏𝑂,𝑞 < 0.

• 𝐶3 is (W𝑂,3 −W𝑂,𝑞)
𝑇y𝐿 + 𝑏𝑂,3 − 𝑏𝑂,𝑞 < 0.

• 𝐶4 is (W𝑂,1 −W𝑂,𝑞)
𝑇y𝐿 + 𝑏𝑂,1 − 𝑏𝑂,𝑞 < 0.

56

vector x. Since 𝒯2 is a classification tree with hyperplanes, it follows that an OCT-H

has at least as good accuracy as 𝒯2, completing the proof of the theorem.

We next present an example of the construction. The FNN with the ReLu activa-

tion function is shown in Figure 2-14, using the output function defined in Eq.(2.7),

and the resulting classification tree with hyperplane splits is shown in Figure 2-15.

x

𝑦1,1 = max(W𝑇
1,1x+ 𝑏1,1, 0)

𝑦1,2 = max(W𝑇
1,2x+ 𝑏1,2, 0)

𝑦2,1 = max(W𝑇
2,1y1 + 𝑏2,1, 0)

𝑦2,2 = max(W𝑇
2,2y1 + 𝑏2,2, 0)

𝑦𝑂,1 = 𝜑𝑂(W
𝑇
𝑂,1y2 + 𝑏𝑂,1)

𝑦𝑂,2 = 𝜑𝑂(W
𝑇
𝑂,2y2 + 𝑏𝑂,2)

Figure 2-14: A ReLU FNN.

Figure 2-15: The reformulation of the Figure 2-14 FNN into a classification tree.
The labels 𝐴,𝐵1, . . . , 𝐸16 are as follows:

57

• 𝐴 is W𝑇
1,1x+ 𝑏1,1 < 0.

• 𝐵1 is W𝑇
1,2x+ 𝑏1,2 < 0.

• 𝐵2 is W𝑇
1,2x+ 𝑏1,2 < 0.

• 𝐶1 is 𝑏2,1 < 0.

• 𝐶2 is (𝑊2,1)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,1 < 0.

• 𝐶3 is (𝑊2,1)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,1 < 0.

• 𝐶4 is (𝑊2,1)1 × (W𝑇
1,1x+ 𝑏1,1) + (𝑊2,1)2 × (W𝑇

1,2x+ 𝑏1,2) + 𝑏2,1 < 0.

• 𝐷1 is 𝑏2,2 < 0.

• 𝐷2 is 𝑏2,2 < 0.

• 𝐷3 is (𝑊2,2)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,2 < 0.

• 𝐷4 is (𝑊2,2)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,2 < 0.

• 𝐷5 is (𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,2 < 0.

• 𝐷6 is (𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,2 < 0.

• 𝐷7 is (𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1) + (𝑊2,2)2 × (W𝑇

1,2x+ 𝑏1,2) + 𝑏2,2 < 0.

• 𝐷8 is (𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1) + (𝑊2,2)2 × (W𝑇

1,2x+ 𝑏1,2) + 𝑏2,2 < 0.

• 𝐸1 is 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸2 is ((𝑊𝑂,1)2 − (𝑊𝑂,2)2)× (𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸3 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× (𝑏2,1) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

58

• 𝐸4 is ((𝑊𝑂,1)1− (𝑊𝑂,1)1)× (𝑏2,1)+((𝑊𝑂,1)2− (𝑊𝑂,2)2)× (𝑏2,2)+𝑏𝑂,1−𝑏𝑂,2 < 0.

• 𝐸5 is 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸6 is ((𝑊𝑂,1)2 − (𝑊𝑂,1)2)× ((𝑊2,2)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸7 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,1)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,1) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸8 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,1)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,1)

+ ((𝑊𝑂,1)2 − (𝑊𝑂,2)2)× ((𝑊2,2)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸9 is 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸10 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸11 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,1)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,1) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸12 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,1)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,1)

+ ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1) + 𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸13 is 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸14 is ((𝑊𝑂,1)2 − (𝑊𝑂,2)2)× ((𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1)

+ (𝑊2,2)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸15 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1)× ((𝑊2,1)1 × (W𝑇
1,1x+ 𝑏1,1)

+ (𝑊2,1)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,1) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

• 𝐸16 is ((𝑊𝑂,1)1 − (𝑊𝑂,2)1) × ((𝑊2,1)1 × (W𝑇
1,1x + 𝑏1,1) + (𝑊2,1)2 × (W𝑇

1,2x +

𝑏1,2) + 𝑏2,1) + ((𝑊𝑂,1)2 − (𝑊𝑂,2)2)× ((𝑊2,2)1 × (W𝑇
1,1x+ 𝑏1,1)

+ (𝑊2,2)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,2) + 𝑏𝑂,1 − 𝑏𝑂,2 < 0.

59

We start by defining the first split of the tree as

W𝑇
1,1x+ 𝑏1,1 < 0,

and then both splits at depth 2 of the tree as

W𝑇
1,2x+ 𝑏1,2 < 0.

Through these splits, we model the first hidden layer of the neural network as a

classification tree. However, at depth 3 we start modeling the second hidden layer

with splits in the tree, so we must define y1 values as linear functions of x based on

the path taken down the tree. For example, for an input x to get to node 𝐶1, it must

have taken the 𝑌 branch at 𝐴 and the 𝑌 branch at 𝐵1, which means that if it were

input into the neural network it would have a first hidden layer output of (0, 0)𝑇 .

Thus, the split at 𝐶1 is defined as

W𝑇
2,1y1 + 𝑏2,1 < 0 ⇐⇒ W𝑇

2,1(0, 0)
𝑇 + 𝑏2,1 < 0 ⇐⇒ 𝑏2,1 < 0.

Next, for an input x to get to node 𝐶2, it must have taken the 𝑌 branch at 𝐴

and the 𝑁 branch at 𝐵1, which means that if it were input into the neural network,

it would have a first hidden layer output of (0,W𝑇
1,2x+ 𝑏1,2)

𝑇 . Thus, the split at 𝐶2

is defined as follows:

W𝑇
2,1y1 + 𝑏2,1 < 0 ⇐⇒ W𝑇

2,1(0,W
𝑇
1,2x+ 𝑏1,2)

𝑇 + 𝑏2,1 < 0

⇐⇒ (𝑊2,1)2 × (W𝑇
1,2x+ 𝑏1,2) + 𝑏2,1 < 0.

This process continues for all the remaining split nodes of the tree. After that, we

60

must find which classification value the network assigns to the input. Based on our

construction of splits at depth 5, an input takes the Y path if the network output

is (0, 1)𝑇 , indicating a classification value 𝑘 of 2. Likewise, an input takes the N

path if the network output is (1, 0)𝑇 , indicating a classification value 𝑘 of 1. We

therefore assign these values to the corresponding leaf nodes of the tree, completing

the construction.

2.4.4 Rectified Linear Unit Regression FNNs and ORT-Hs

If the network is a regression neural network with the rectified linear unit activation

function 𝒩2 instead of a classification neural network, meaning it outputs W𝑇
𝑂y𝐿 +

b𝑂 ∈ R𝑞, we are also able to build a regression tree 𝒯2 to make the same predictions

as the neural network. We build the same decision tree as in the proof of Theorem

2 in Section 2.4.3 by building subtrees up until subtree 𝒯2,𝐿(y𝐿−1), the subtree with

splits based on weights and biases W𝐿,𝑖, 𝑏𝐿,𝑖, 𝑖 = 1, . . . , 𝑁𝐿. This results in a tree of

depth
∑︀𝐿

ℓ=1𝑁ℓ. Then, for each leaf node of this tree we assign the linear function

W𝑇
𝑂y𝐿+b𝑂 as the output value, where by the construction of the tree y𝐿 is a linear

function of x. Through this process, 𝒯2 calculates the same output as 𝒩2 given an

input vector x. Since 𝒯2 is a regression tree with hyperplane splits, it follows that an

ORT-H has at least as good accuracy as 𝒯2, completing this extension of Theorem

2. An example of the final subtree is depicted in Figure 2-16.

2.5 Convolutional Neural Networks and Optimal Trees

In this section, we construct an OCT-H (ORT-H) that can classify training data at

least as well as a classification (regression) convolutional neural network (CNN) with

61

W𝑇
𝐿,1y𝐿−1 + 𝑏𝐿,1 < 0

...

...
W𝑇

𝐿,𝑁𝐿
y𝐿−1 + 𝑏𝐿,𝑁𝐿

< 0 W𝑇
𝐿,𝑁𝐿

y𝐿−1 + 𝑏𝐿,𝑁𝐿
< 0

W𝑇
𝑂y𝐿 + b𝑂 W𝑇

𝑂y𝐿 + b𝑂 W𝑇
𝑂y𝐿 + b𝑂 W𝑇

𝑂y𝐿 + b𝑂

Y N

Y N Y N

. . .

.

. . .

. . .

Figure 2-16: Subtree 𝒯2,𝐿(y𝐿−1) is the last subtree built when we create the regression
subtree. When concatenated onto the rest of the tree, we have built a tree of depth∑︀𝐿

ℓ=1𝑁ℓ. Note that the leaves have linear functions W𝑇
𝑂y𝐿 + b𝑂 as outputs.

perceptron or Rectified Linear Unit activation functions.

2.5.1 Perceptron Classification CNNs and OCT-Hs

For the case of a CNN with the perceptron activation function, as in Section 2.4.1,

the output of the neural network follows deterministically given the output of the

first hidden layer, regardless of convolutional or pooling layers. Thus, the fact that an

OCT-H of depth 𝑁1 can classify training data at least as well as a given classification

CNN with the perceptron activation function, max pooling layers, and 𝑁1 nodes in

the first hidden layer follows directly from Theorem 1.

2.5.2 Perceptron Regression CNNs and ORT-Hs

One can also extend the result in Section 2.5.1 to the case of a regression CNN

with the perceptron activation function, where 𝜑𝑂(y𝐿) ∈ R𝑞. To do this, note that

because the first hidden layer can output at most 2𝑁1 unique vectors there are only

62

2𝑁1 possible output values of the network. In this case, one can modify the proof

of Theorem 1 by assigning these 2𝑁1 unique values to the leaf nodes of the decision

tree in the place of classification values. With this adjustment, extending the above

proof to regression CNNs with perceptron activation functions is straightforward.

2.5.3 Rectified Linear Unit Classification CNNs and OCT-Hs

While Theorem 1 could be applied directly in Section 2.5.1, the addition of pooling

layers implies that the OCT-H construction given in Theorem 2 does not apply to

CNNs with ReLU activation functions. This is because while the proof in Section

2.4.3 takes into account functions of the form

max(W𝑇x+ 𝑏, 0)

in its construction, pooling layers involve functions of the form

max(max(W𝑇
1 x+ 𝑏1, 0), . . . ,max(W𝑇

𝑛x+ 𝑏𝑛, 0)),

which requires additional steps to be transformed into linear splits at branch nodes.

The next theorem illustrates the OCT-H construction for this case.

Theorem 3. An OCT-H with depth 𝑞 − 1 +
∑︀𝐿

ℓ=1𝑁ℓ can classify training data at

least as well as a given CNN with the rectified linear unit activation function (2.6),

max pooling layers as defined in (2.8), and output function defined in Eq. (2.7).

Proof. Our proof is constructive. We are given a CNN 𝒩4 as described in Section

2.3.2 with the following characteristics:

• The rectified linear unit activation function defined in (2.6).

63

• The output function as defined in (2.7).

• 𝐿 hidden layers and one output layer, indexed ℓ = 1, . . . , 𝐿.

• Max pooling layers as defined in (2.8).

• 𝑁ℓ nodes in each hidden layer, indexed 𝑖 = 1, . . . , 𝑁ℓ.

• Node 𝑛ℓ,𝑖 defined by Wℓ,𝑖, 𝑏ℓ,𝑖.

• 𝐿𝑐 pooling layers.

• 𝑅ℓ nodes in pooling layer, indexed 𝑖 = 1, . . . , 𝑅ℓ.

• Each node in a pooling layer takes as input a set 𝑆ℓ,𝑖 of nodes from the previous

convolutional layer with the properties defined in Section 2.3.2.

• 𝑞 nodes in the output layer.

We now construct a decision tree 𝒯4 with hyperplane splits of maximum depth 𝑞 −

1 +
∑︀𝐿

ℓ=1𝑁ℓ that makes the same predictions as 𝒩4. It follows that an OCT-H of

maximum depth 𝑞− 1+
∑︀𝐿

ℓ=1𝑁ℓ has at least the same classification accuracy as 𝒩4.

First, we construct a subtree 𝒯4,1 with splits based on the output of first node in

the first pooling layer 𝑃1,1 as defined in Eq. (2.8). Without loss of generality, assume

that 𝑆1,1 = {1, . . . , 𝑘1}. Then the first split of 𝒯4,1 is

(W1,1 −W1,2)
𝑇x+ (𝑏1,1 − 𝑏1,2) < 0. (2.11)

It is depicted in Figure 2-17, and determines whether the maximum among the first

two hyperplanes is W𝑇
1,1x+ 𝑏1,1 or W𝑇

1,2x+ 𝑏1,2.

64

(W1,1 −W1,2)
𝑇x+ (𝑏1,1 − 𝑏1,2) < 0

...

...

Y N

Figure 2-17: The first split of classification tree 𝒯4,1.

If Inequality (2.11) holds, then we next to check whether

(W1,2 −W1,3)
𝑇x+ (𝑏1,2 − 𝑏1,3) < 0,

while if Inequality (2.11) does not hold, we need to check whether

(W1,1 −W1,3)
𝑇x+ (𝑏1,1 − 𝑏1,3) < 0,

thus forming the hyperplane splits for 𝒯4,1 at depth 2 depicted in Figure 2-18.

(W1,1 −W1,2)
𝑇x+ (𝑏1,1 − 𝑏1,2) < 0

(W1,2 −W1,3)
𝑇x+ (𝑏1,2 − 𝑏1,3) < 0 (W1,1 −W1,3)

𝑇x+ (𝑏1,1 − 𝑏1,3) < 0

...

...

...

...

Y N

Y N Y N

Figure 2-18: The decision tree 𝒯4,1 we are building up to depth 2. The identity of
the maximum hyperplane so far is from left to right: 3, 2, 3 and 1.

At depth 𝑘1 − 1 tree 𝒯4,1 will determine the identity of 𝑖*

𝑖* = arg max
𝑖=1,...,𝑘1

(W𝑇
1,𝑖x+ 𝑏1,𝑖).

After the (𝑘1 − 1)th hyperplane split, we append to 𝒯4,1 the final hyperplane split

W𝑇
1,𝑖*x+ 𝑏1,𝑖* < 0,

65

at the appropriate node. The tree 𝒯4,1 is depicted in Figure 2-19. It has depth 𝑘1

and the construction is complete.

Following this, we repeat this process for all nodes in the first hidden and pooling

layers, building a tree of depth 𝑁1 that can be used to calculate the output of the

pooling layer P1. In each of the branches at depth𝑁1 of this new subtree we implicitly

calculate the corresponding P1 values. For example, the first branch corresponds to

(0, . . . , 0)𝑇 , the second corresponds to (0, . . . , 0,max𝑖=(𝑅1−1)𝑘1+1,...,𝑅1𝑘1(W
𝑇
1,𝑖x+𝑏1,𝑖))

𝑇 ,

etc.

We then model the second hidden layer of 𝒩4 by constructing after each branch

a new subtree of depth 𝑘2 as in Figure 2-20, but using the corresponding value of

P1 instead of x in the splits. We call this subtree 𝒯4,2(P1), as it is the first of the

subtrees created based on the neural network hidden layer two weights and P1.

We use the same process for adapting the remaining convolutional layer – pooling

layer pairs. After we have finished modeling those pairs of layers, the process of

modeling the remaining hidden layers and the output layer nodes as a decision tree

is exactly the same as it was in the proof of Theorem 2. This once again results in

the construction of a tree with splits based deterministically on x.

By the construction of 𝒯4, 𝒯4 calculates the same output as 𝒩4 given an input

vector x. Since 𝒯4 is a decision tree with hyperplane splits, it follows that an optimal

tree has at least as good accuracy as 𝒯4, proving the theorem.

2.5.4 Rectified Linear Unit Regression CNNs and ORT-Hs

If the given CNN is a regression neural network with the rectified linear unit ac-

tivation function 𝒩4 instead of a classification neural network, meaning it outputs

W𝑇
𝑂y𝐿 + b𝑂 ∈ R𝑞, we are also able to build a regression tree 𝒯4 to make the same

66

A

B1 B2

C1 C2 C3 C4

Y N

Y N Y N

...

...

...

...

𝐷𝑘 𝐷𝑘−1 𝐷𝑘 𝐷10 𝐷𝑘 𝐷3 𝐷𝑘 𝐷1

Y N Y N Y N Y N

Y N Y N Y N Y N Y N Y N Y N Y N

.

Figure 2-19: The resulting tree 𝒯4,1. The labels 𝐴, 𝐵1, . . . , 𝐶4 and 𝐷𝑖* are as follows:

• 𝐴 is (W1,1 −W1,2)
𝑇x+ (𝑏1,1 − 𝑏1,2) < 0

• 𝐵1 is (W1,2 −W1,3)
𝑇x+ (𝑏1,2 − 𝑏1,3) < 0

• 𝐵2 is (W1,1 −W1,3)
𝑇x+ (𝑏1,1 − 𝑏1,3) < 0

• 𝐶1 is (W1,𝑘1−1 −W1,𝑘1)
𝑇x+ (𝑏1,𝑘1−1 − 𝑏1,𝑘1) < 0

• 𝐶2 is (W1,10 −W1,𝑘1)
𝑇x+ (𝑏1,10 − 𝑏1,𝑘1) < 0

• 𝐶3 is (W1,3 −W1,𝑘1)
𝑇x+ (𝑏1,3 − 𝑏1,𝑘1) < 0

• 𝐶4 is (W1,1 −W1,𝑘1)
𝑇x+ (𝑏1,1 − 𝑏1,𝑘1) < 0

• 𝐷𝑖* is W𝑇
1,𝑖*x+ 𝑏1,𝑖* < 0.

67

Figure 2-20: The subtree 𝒯4,2(P1) up to depth 𝑘2. The labels A, B1, . . . , D are as
follows:

• 𝐴 is (W2,1 −W2,2)
𝑇P1 + (𝑏2,1 − 𝑏2,2) < 0

• 𝐵1 is (W2,2 −W2,3)
𝑇P1 + (𝑏2,2 − 𝑏2,3) < 0

• 𝐵2 is (W2,1 −W2,3)
𝑇P1 + (𝑏2,1 − 𝑏2,3) < 0

• 𝐶1 is (W2,𝑘2−1 −W2,𝑘2)
𝑇P1 + (𝑏2,𝑘2−1 − 𝑏2,𝑘2) < 0

• 𝐶2 is (W2,10 −W2,𝑘2)
𝑇P1 + (𝑏2,10 − 𝑏2,𝑘2) < 0

• 𝐶3 is (W2,3 −W2,𝑘2)
𝑇P1 + (𝑏2,3 − 𝑏2,𝑘2) < 0

• 𝐶4 is (W2,1 −W2,𝑘2)
𝑇P1 + (𝑏2,1 − 𝑏2,𝑘2) < 0

• 𝐷 is W𝑇
2,𝑖*P1 + 𝑏2,𝑖* < 0

68

W𝑇
𝐿,1y𝐿−1 + 𝑏𝐿,1 < 0

...

...
W𝑇

𝐿,𝑁𝐿
y𝐿−1 + 𝑏𝐿,𝑁𝐿

< 0 W𝑇
𝐿,𝑁𝐿

y𝐿−1 + 𝑏𝐿,𝑁𝐿
< 0

W𝑇
𝑂y𝐿 + b𝑂 W𝑇

𝑂y𝐿 + b𝑂 W𝑇
𝑂y𝐿 + b𝑂 W𝑇

𝑂y𝐿 + b𝑂

Y N

Y N Y N

. . .

.

. . .

. . .

Figure 2-21: Subtree 𝒯4,𝐿(y𝐿−1) is the last subtree built when we create the regression
subtree. When concatenated onto the rest of the tree, we have built a tree of depth∑︀𝐿

ℓ=1𝑁ℓ. Note that the leaves have linear functions W𝑇
𝑂y𝐿 + b𝑂 as outputs.

predictions as the neural network. We build the same decision tree as in the proof

of Theorem 3 in Section 2.5.3 by building subtrees up until subtree 𝒯4,𝐿(y𝐿−1), the

subtree with splits based on weights and biases W𝐿,𝑖, 𝑏𝐿,𝑖, 𝑖 = 1, . . . , 𝑁𝐿. This results

in a tree of depth
∑︀𝐿

ℓ=1𝑁ℓ. Then, for each leaf node of this tree we assign the linear

function W𝑇
𝑂y𝐿 + b𝑂 as the output value, where by the construction of the tree y𝐿

is a linear function of x. Through this process, 𝒯4 calculates the same output as

𝒩4 given an input vector x. Since 𝒯4 is a regression tree with hyperplane splits, it

follows that an ORT-H has at least as good accuracy as 𝒯4, completing this extension

of Theorem 4. An example of the final subtree is depicted in Figure 2-21.

69

2.6 Recurrent Neural Networks and Optimal Trees

In this section, we construct an OCT-H (ORT-H) that can be used to classify training

data at least as well as a classification (regression) recurrent neural network (RNN)

with perceptron or Rectified Linear Unit activation functions.

2.6.1 Perceptron Classification RNNs and OCT-Hs

The key result in this section is as follows.

Theorem 4. An OCT-H with maximum depth 𝑇 * ×𝑁1 can classify sequential data

with 𝑇 * terms per sequence in a training set at least as well as a given classification

RNN with the perceptron activation function, one hidden layer containing 𝑁1 nodes,

and q nodes in the output layer.

Proof. Our proof is constructive. We are given a classification RNN 𝒩5 as described

in Section 2.3.3 with the following specifications:

• The perceptron activation function as defined in (2.5).

• Output function 𝜑𝑂(y𝑂) : [0, 1]
𝑞 → [0, 1]𝑞.

• One hidden layer and one output layer.

• 𝑁1 nodes in the hidden layer, indexed 𝑖 = 1, . . . , 𝑁1.

• 𝑞 nodes in the output layer, indexed 𝑖 = 1, . . . , 𝑞.

• Node 𝑛1,𝑖 characterized by W𝑔,𝑖,Wℎ,𝑖, 𝑏1,𝑖.

70

W𝑇
𝑔,1x1 + 𝑏1,1 < 0

.

Y N

Figure 2-22: The first split of decision tree 𝒯5.

Using 𝒩5, we construct a decision tree 𝒯5 with hyperplanes and maximum depth

𝑇 * × 𝑁1 that can be used to make the same predictions as the network. It follows

that an OCT-H of maximum depth 𝑇 * × 𝑁1 has at least the same classification

accuracy as 𝒩5.

First, for ease of notation we define x* as

x* = (x1,x2, . . . ,x𝑇 *)𝑇 , (2.12)

which is the concatenation of all the vectors in the input sequence (x𝑡)𝑡∈{1,...,𝑇 *}.

Then we define the first split of 𝒯5 as

(W𝑔,1,0, . . . ,0)x
* + 𝑏1,1 = W𝑇

𝑔,1x1 + 𝑏1,1 < 0, (2.13)

where (W𝑔,1,0, . . . ,0) is the concatenation of W𝑔,1 horizontally with 𝑇 * − 1 zero

vectors 0 with the same dimensions as W𝑔,1. This results in the simple split seen in

Figure 2-22.

Independent of whether inequality (2.13) is satisfied or not, the second split is

given by

(W𝑔,2,0, . . . ,0)x
* + 𝑏1,2 = W𝑇

1,2x1 + 𝑏1,2 < 0,

71

W𝑇
𝑔,1x1 + 𝑏1,1 < 0

W𝑇
𝑔,2x1 + 𝑏1,2 < 0 W𝑇

𝑔,2x1 + 𝑏1,2 < 0

.

Y N

Y N Y N

Figure 2-23: The tree 𝒯5 up to depth 2.

W𝑇
𝑔,1x1 + 𝑏1,1 < 0

W𝑇
𝑔,2x1 + 𝑏1,2 < 0 W𝑇

𝑔,2x1 + 𝑏1,2 < 0

W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0 W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0 W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0 W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N

.

Figure 2-24: The decision tree 𝒯5 we are building up to depth 𝑁1.

where (W𝑔,2,0, . . . ,0) is the concatenation of W𝑔,2 horizontally with 𝑇 * − 1 zero

vectors 0 with the same dimensions as W𝑔,2. Figure 2-23 provides a visualization of

the new branches we added to the tree in Figure 2-22.

We continue this process for all 𝑁1 nodes in the first hidden layer, building a

decision tree of depth 𝑁1, with every split at depth 𝑁1 being given by

W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0.

The resultant subtree is shown in Figure 2-24. This is the subtree that simulates the

output of the hidden layer 𝒩5 after the first time step.

After depth 𝑁1, there are 2𝑁1 branches, as shown in Figure 2-24. Note that there

are 2𝑁1 possible output vectors y1,1 of the first hidden layer of 𝒩5,

72

(0, . . . , 0)𝑇 , (1, . . . , 0)𝑇 , . . . , (1, . . . , 1)𝑇 .

These 2𝑁1 possible values of y1,1 correspond to the 2𝑁1 branches in the tree 𝒯5

shown in Figure 2-24. In each of these branches we have implicitly calculated the

corresponding y1,1 values. For example, the first branch corresponds to (0, . . . , 0)𝑇 ,

the second corresponds to (0, . . . , 0, 1)𝑇 , etc.

We then model 𝒩5 at the second time step by constructing after each branch a

new subtree of depth 𝑁1 as in Figure 2-25, but with the corresponding value of y1,1

being used as a constant value in addition to x2. Thus, the first split of this new

subtree is

(0,W𝑔,1,0, . . . ,0)x
* +W𝑇

ℎ,1y1,1 + 𝑏1,1 = W𝑇
𝑔,1x2 +W𝑇

ℎ,1y1,1 + 𝑏1,1 < 0.

This process continues for the remaining nodes of the first hidden layer shown in

Figure 2-25, resulting in the subtree in Figure 2-25. In this subtree 𝒯5,2(y1,1) we sub-

stitute in the corresponding binary vector y1,1. For example, if y1,1 = (0, . . . , 0, 1)𝑇 ,

then subtree 𝒯5,2((0, . . . , 0, 1)
𝑇) is depicted in Figure 2-26.

Given that at each branch we know exactly y1,1, 𝒯5,2(y1,1) is a decision tree where

all inequalities are explicitly written as linear functions of x*. Continuing in this way

we model the output vector y𝑡,1 of the 𝑡th time step of 𝒩5 as a classification tree by

defining y𝑡,1 based on the path taken down the previous subtree. At the 𝑡th subtree,

the weights of the x𝑡 vector contained in the vector x* are W𝑔,1, and the rest are

zero.

To complete the construction of 𝒯5, we need to assign a classification value for

73

A

B B

C C C C

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N
.

Figure 2-25: Subtree 𝒯5,2(y1,1) of depth 𝑁1 is concatenated to the corresponding
branch of the subtree depicted in Figure 2-24, resulting in a subtree of depth 2𝑁1.
The splits are as follows:

• A is W𝑇
𝑔,1x2 +W𝑇

ℎ,1y1,1 + 𝑏1,1 < 0.

• B is W𝑇
𝑔,2x2 +W𝑇

ℎ,2y1,1 + 𝑏1,2 < 0.

• C is W𝑇
𝑔,𝑁1

x2 +W𝑇
ℎ,𝑁1

y1,1 + 𝑏1,𝑁1 < 0.

74

A

B B

C C C C

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N
.

Figure 2-26: The resulting subtree 𝒯5,2(y1,1) for y1,1 = (0, . . . , 0, 1)𝑇 . The labels of
A, B, C are as follows:

• A is W𝑇
𝑔,1x2 +W𝑇

ℎ,1(0, . . . , 0, 1)
𝑇 + 𝑏1,1 < 0.

• B is W𝑇
𝑔,2x2 +W𝑇

ℎ,2(0, . . . , 0, 1)
𝑇 + 𝑏1,2 < 0.

• C is W𝑇
𝑔,𝑁1

x2 +W𝑇
ℎ,𝑁1

(0, . . . , 0, 1)𝑇 + 𝑏1,𝑁1 < 0.

every leaf of 𝒯5. At time step 𝑇 *, there are 2𝑁1 possible binary vectors that the

first hidden layer of 𝒩5 could output. These 2𝑁1 vectors, by our construction of

𝒯5, exactly correspond to the 2𝑁1 leaves of the final subtree of 𝒯5. Given y𝑟
𝑇 *,1, the

output of the first hidden layer associated with leaf node 𝑟, the final prediction of

𝒩5 will be 𝑘(y𝑟
𝑇 *,1), which is calculated deterministically given the y𝑟

𝑇 *,1 vector and

the W𝑂,𝑖, 𝑏𝑂,𝑖 values by using the process outlined in Section 2.3.3. In every node 𝑟

of the tree we assign the classification value 𝑘(y𝑟
𝑇 *,1).

We next show that the output of 𝒯5 is the same as the output of 𝒩5 for input

data sequence x𝑡, 𝑡 = 1, . . . , 𝑇 *. To see this, if x𝑡 is input into 𝒩5, the hidden layer

outputs y1,1(x1) at the first time step, y2,1(x2,y1,1) at the second time step, and so

on, until at last the sequence is assigned classification value 𝑘(y𝑇 *,1). However, by

the construction of the tree, the point x* is sorted down the paths corresponding to

75

y1,1(x1), y2,1(x2,y1,1), and so on, until it is sorted to the leaf node where y𝑟
𝑇 *,1 =

y𝑇 *,1(x
*), and is once again assigned 𝑘(y𝑟

𝑇 *,1) = 𝑘(y𝑇 *,1) by construction. Thus, for

a given data sequence x𝑡, 𝑡 = 1, . . . , 𝑇 *, the network and the tree predict the same

classification value.

Since an OCT-H does at least as well as 𝒯5 in classifying the training data, it

must do at least as well as 𝒩5 too. Thus, by construction, we have that an optimal

decision tree with maximum depth 𝑇 *×𝑁1 can classify data in a training set at least

as well as the given FNN with the perceptron activation function and one hidden

layer with 𝑁1 nodes in it, completing the proof of the theorem.

We next present an example of how to perform the above procedure. The neural

network we are working with was trained on data ((X𝑡)𝑡=1,...,𝑇 * ,o), where 𝑇 * = 2,

and is shown in Figure 2-27. The resultant decision tree is shown in Figure 2-28.

Figure 2-27: A RNN with the perceptron activation function.

The reformulation process is as follows. We assume the input to the tree is of the

form

x* = (𝑥1,1, 𝑥1,2, 𝑥2,1, 𝑥2,2)
𝑇

We define the first split of the decision tree as

76

A

B1 B2

C1 C2 C3 C4

Y N

Y N Y N

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

Y N Y N Y N Y N

Y N Y N Y N Y N Y N Y N Y N Y N

Figure 2-28: The resulting tree 𝒯5. The labels 𝐴, 𝐵1, . . . , 𝐷8 are as follows:

• 𝐴 is 1.7𝑥1,1 + 1.7𝑥1,2 + 0𝑥2,1 + 0𝑥2,2 − 0.5 < 0

• 𝐵1 is 0.8𝑥1,1 − 1.2𝑥1,2 + 0𝑥2,1 + 0𝑥2,2 + 0.1 < 0

• 𝐵2 is 0.8𝑥1,1 − 1.2𝑥1,2 + 0𝑥2,1 + 0𝑥2,2 + 0.1 < 0

• 𝐶1 is 0𝑥1,1 + 0𝑥1,2 + 1.7𝑥2,1 + 1.7𝑥2,2 + 1 · 0− 3 · 0− 0.5 < 0

• 𝐶2 is 0𝑥1,1 + 0𝑥1,2 + 1.7𝑥2,1 + 1.7𝑥2,2 + 1 · 0− 3 · 1− 0.5 < 0

• 𝐶3 is 0𝑥1,1 + 0𝑥1,2 + 1.7𝑥2,1 + 1.7𝑥2,2 + 1 · 1− 3 · 0− 0.5 < 0

• 𝐶4 is 0𝑥1,1 + 0𝑥1,2 + 1.7𝑥2,1 + 1.7𝑥2,2 + 1 · 1− 3 · 1− 0.5 < 0

• 𝐷1 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 0− 1 · 0 + 0.1 < 0

• 𝐷2 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 0− 1 · 0 + 0.1 < 0

• 𝐷3 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 0− 1 · 1 + 0.1 < 0

• 𝐷4 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 0− 1 · 1 + 0.1 < 0

• 𝐷5 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 1− 1 · 0 + 0.1 < 0

• 𝐷5 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 1− 1 · 0 + 0.1 < 0

• 𝐷7 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 1− 1 · 1 + 0.1 < 0

• 𝐷8 is 0𝑥1,1 − 0𝑥1,2 + 0.8𝑥2,1 + 1.2𝑥2,2 + 0.1 · 1− 1 · 1 + 0.1 < 0

77

11.7𝑥1,1 + 1.7𝑥1,2 + 0𝑥2,1 + 0𝑥2,2 − 0.5 < 0,

and then both splits at depth two as

0.8𝑥1,1 − 1.2𝑥1,2 + 0𝑥2,1 + 0𝑥2,2 + 0.1 < 0.

With these splits, we model the first time step in the RNN. However, at depth

3 we start modeling the second time step, so the y1,1 values must be taken into

account. For example, for an input x* to get to node 𝐶1, it must have taken the

𝑌 branch at 𝐴 and the 𝑌 branch at 𝐵1, which means that if it were input into the

neural network it would have y1,1 = (0, 0)𝑇 . Thus, the split at 𝐶1 is defined as

0𝑥1,1 + 0𝑥1,2 + 1.7𝑥2,1 + 1.7𝑥2,2 + 1 · 0− 3 · 0− 0.5 < 0

Next, for an input x to get to node 𝐶2, it must have taken the 𝑌 branch at 𝐴

and the 𝑁 branch at 𝐵1, which means that if it were input into the neural network,

it would have a first hidden layer output of (0, 1)𝑇 . Thus, the split at 𝐶2 is defined

as follows:

0𝑥1,1 + 0𝑥1,2 + 1.7𝑥2,1 + 1.7𝑥2,2 + 1 · 0− 3 · 1− 0.5 < 0

This process continues for all the remaining split nodes of the tree. After that,

we must find which classification value the network assigns to the input. Based on

our construction of splits, after depth 4 we are able to find the value of y𝑇 *,1 that the

hidden layer of the neural network would output at the final time step. For example,

an input x* that takes the Y branch at both C1 and D1 must have y𝑇 *,1 = (0, 0)𝑇 .

We can then use this vector to find the appropriate output value to assign to the leaf

78

node. Continuing the previous example, in the neural network inputting (0, 0)𝑇 into

the output layer results in a network output of (0, 1)𝑇 , so we assign the class value

2 to the left-most leaf node. This process continues for all the leaf nodes of the tree,

completing the construction.

2.6.2 Perceptron Regression RNNs and ORT-Hs

In the case where we have a regression RNN with the perceptron activation function

function, meaning 𝜑𝑂(y𝐿) ∈ R𝑞 , then because the first hidden layer can output at

most 2𝑁1 unique vectors there are only 2𝑁1 possible output values of the network. In

this case, one can modify the proof of Theorem 4 in Section 2.6.1 by assigning these

2𝑁1 unique values to the leaf nodes of the decision tree in the place of classification

values in each of the final subtrees. With this adjustment, extending the above proof

to regression RNNs with perceptron activation functions is straightforward.

2.6.3 Rectified Linear Unit Classification RNNs and OCT-Hs

In this section, we show that given a RNN with Rectified Linear Unit activation

functions, we can construct an ORT-H that can be used to classify given training

data at least as well as that network. The theorem is as follows.

Theorem 5. An OCT-H with maximum depth 𝑇 *×𝑁1+𝑞−1 can classify sequential

data with 𝑇 * terms per sequence in a training set at least as well as a given clas-

sification RNN with the ReLU activation function, one hidden layer containing 𝑁1

nodes, and q nodes in the output layer.

Proof. Our proof is constructive. We are given that we have a recurrent neural

network 𝒩6 with the following specifications:

79

W𝑇
𝑔,1x1 + 𝑏1,1 < 0

W𝑇
𝑔,2x1 + 𝑏1,2 < 0 W𝑇

𝑔,2x1 + 𝑏1,2 < 0

W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0 W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0 W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0 W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1 < 0

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N

.

Figure 2-29: The decision tree 𝒯6 we are building up to depth 𝑁1.

• The ReLU activation function.

• One hidden layer and one output layer.

• 𝑁1 nodes in the hidden layer, indexed 𝑖 = 1, . . . , 𝑁1.

• 𝑞 nodes in the output layer, indexed 𝑖 = 1, . . . , 𝑞.

• Hidden layer node 𝑛1,𝑖 defined by W𝑔,𝑖,Wℎ,𝑖, 𝑏1,𝑖.

Using 𝒩6, we construct a decision tree 𝒯6 with hyperplanes and maximum depth

𝑇 * ×𝑁1 + 𝑞 − 1 that makes the same predictions as 𝒩6. It follows that an optimal

tree with hyperplanes of maximum depth 𝑇 * × 𝑁1 + 𝑞 − 1 has at least the same

classification accuracy as 𝒩6.

First, for ease of notation we define x* as we did in Eq. (2.12). Then we build

the tree up to depth 𝑁1 exactly as we did in the proof in Section 2.6.1. This part of

the tree is shown in Figure 2-29.

After depth 𝑁1, there are 2𝑁1 branches, as shown in Figure 2-29. Note that there

are 2𝑁1 possible output vectors y1,1 of the hidden layer of 𝒩6 at time step 1,

80

(0, . . . , 0)𝑇 , (W𝑇
𝑔,1x1 + 𝑏1,1, . . . , 0)

𝑇 , . . . , (W𝑇
𝑔,1x1 + 𝑏1,1, . . . ,W

𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 ,

as in each node of the first hidden layer 𝒩6 computes

(y1,1)𝑖 = max{W𝑇
𝑔,𝑖x1 + 𝑏1,𝑖, 0}, 𝑖 = 1, . . . , 𝑁1

at time step 1.

These 2𝑁1 possible values of y1,1 correspond to the 2𝑁1 branches in the tree 𝒯6

shown in Figure 2-29. In each of these branches we have implicitly calculated the

corresponding y1,1 values. For example, the first branch corresponds to (0, . . . , 0)𝑇 ,

the second corresponds to (0, . . . , 0,W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 , etc.

We then model 𝒩6 at the second time step by constructing after each branch a

new subtree of depth 𝑁1 as in Figure 2-25, but with the corresponding value of y1,1

being used as a constant value in addition to x2. Thus, the first split of this new

subtree is

(0,W𝑔,1, . . . ,0)
𝑇x* +W𝑇

ℎ,1y1,1 + 𝑏1,1 = W𝑇
𝑔,1x2 +W𝑇

ℎ,1y1,1 + 𝑏1,1 < 0.

This process continues for the remaining nodes of the first hidden layer, resulting in

the subtree shown in Figure 2-30.

In the subtree 𝒯6,2(y1,1) in Figure 2-30 we substitute in the corresponding bi-

nary vector y1,1. For example, if y1,1 = (0, . . . , 0,W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 , then subtree

𝒯6,2((0, . . . , 0,W
𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇) is depicted in Figure 2-31.

Given that at each branch we know exactly y1,1, 𝒯6,2(y1,1) is a decision tree where

81

A

B B

C C C C

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N
.

Figure 2-30: Subtree 𝒯6,2(y1,1) of depth 𝑁1 is concatenated to the corresponding
branch of the subtree depicted in Figure 2-29, resulting in a subtree of depth 2𝑁1.
The splits are as follows:

• A is W𝑇
𝑔,1x2 +W𝑇

ℎ,1y1,1 + 𝑏1,1 < 0.

• B is W𝑇
𝑔,2x2 +W𝑇

ℎ,2y1,1 + 𝑏1,2 < 0.

• C is W𝑇
𝑔,𝑁1

x2 +W𝑇
ℎ,𝑁1

y1,1 + 𝑏1,𝑁1 < 0.

A

B B

C C C C

Y N

Y N Y N
...

...

...

...

Y N Y N Y N Y N
.

Figure 2-31: The resulting subtree 𝒯6,2(y1,1) for y1,1 = (0, . . . , 0,W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 .

The labels of A, B, C are as follows:

• A is W𝑇
𝑔,1x2 +W𝑇

ℎ,1(0, . . . , 0,W
𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 + 𝑏1,1 < 0.

• B is W𝑇
𝑔,2x2 +W𝑇

ℎ,2(0, . . . , 0,W
𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 + 𝑏1,2 < 0.

• C is W𝑇
𝑔,𝑁1

x2 +W𝑇
ℎ,𝑁1

(0, . . . , 0,W𝑇
𝑔,𝑁1

x1 + 𝑏1,𝑁1)
𝑇 + 𝑏1,𝑁1 < 0.

82

A

B1 B2

C1 C2 C3 C4

Y N

Y N Y N

...

...

...

...

Y N Y N Y N Y N
.

Figure 2-32: The subtree 𝒯6,𝑂(y1) . The labels A, B1, . . . , C4 are as follows:

• 𝐴 is (W𝑂,1 −W𝑂,2)
𝑇y𝑇 *,1 + 𝑏𝑂,1 − 𝑏𝑂,2

• 𝐵1 is (W𝑂,2 −W𝑂,3)
𝑇y𝑇 *,1 + 𝑏𝑂,2 − 𝑏𝑂,3

• 𝐵2 is (W𝑂,1 −W𝑂,3)
𝑇y𝑇 *,1 + 𝑏𝑂,1 − 𝑏𝑂,3

• 𝐶1 is (W𝑂,𝑞−1 −W𝑂,𝑞)
𝑇y𝑇 *,1 + 𝑏𝑂,𝑞−1 − 𝑏𝑂,𝑞

• 𝐶2 is (W𝑂,5 −W𝑂,𝑞)
𝑇y𝑇 *,1 + 𝑏𝑂,5 − 𝑏𝑂,𝑞

• 𝐶3 is (W𝑂,3 −W𝑂,𝑞)
𝑇y𝑇 *,1 + 𝑏𝑂,3 − 𝑏𝑂,𝑞

• 𝐶4 is (W𝑂,1 −W𝑂,𝑞)
𝑇y𝑇 *,1 + 𝑏𝑂,1 − 𝑏𝑂,𝑞

all inequalities are explicitly written as linear functions of x*.

Continuing in this way we model the output vector y𝑡,1 of the 𝑡th time step of 𝒩6

as a classification tree by propagating the values of y1, y2,. . . , y𝐿 as explicit linear

functions of x*.

Following this, we model the output layer of the network the same way we did in

Section 2.4.1, resulting in the subtree seen in Figure 2-32.

Given an output y𝑇 *,1 of the hidden layer of 𝒩6, 𝒩6 calculates the vector W𝑇
𝑂y𝑇 *,1+

b𝑂, and then 𝑘 = argmax𝑖=1,...,𝑞(W
𝑇
𝑂,𝑖y𝑇 *,1 + 𝑏𝑂,𝑖), outputting 𝑘 as the classification

prediction for input x*. We simulate this calculation with a subtree 𝒯6,𝑂(y𝑇 *,1) de-

83

picted in Figure 2-32, in the following manner. Node A checks whether W𝑇
𝑂,1y𝑇 *,1 +

𝑏𝑂,1 or W𝑇
𝑂,2y𝑇 *,1 + 𝑏𝑂,2 is larger. Node B1 checks whether W𝑇

𝑂,2y𝑇 *,1 + 𝑏𝑂,2 or

W𝑇
𝑂,3y𝑇 *,1 + 𝑏𝑂,3 is larger conditioned that W𝑇

𝑂,2y𝑇 *,1 + 𝑏𝑂,2 > W𝑇
𝑂,1y𝑇 *,1 + 𝑏𝑂,1.

Node B2 checks whether W𝑇
𝑂,1y𝑇 *,1 + 𝑏𝑂,1 or W𝑇

𝑂,3y𝑇 *,1 + 𝑏𝑂,3 is larger conditioned

that W𝑇
𝑂,1y𝑇 *,1 + 𝑏𝑂,1 > W𝑇

𝑂,2y𝑇 *,1 + 𝑏𝑂,2, and so on. Each branch of the tree thus

explicitly calculates which output node outputs the highest value (using a lexico-

graphic decision rule in case of ties), and we can then assign the class associated

with that node as the output to the appropriate leaf nodes of 𝒯6,𝑂(y𝑇 *,1). Since at

each branch we know y𝑇 *,1 as an explicit function of x*, we have that 𝒯6,𝑂(y𝑇 *,1) is

a decision tree where all inequalities are explicitly written linear functions of x* as

well.

We next show that 𝒯6 can be used to make the same predictions as 𝒩6 for input

data sequence x𝑡, 𝑡 = 1, . . . , 𝑇 *. To see this, if x𝑡 is input into 𝒩6, the hidden layer

outputs y1,1 at the first time step, y2,1 at the second time step, and so on, until at last

the sequence is assigned classification value 𝑘(y𝑇 *,1). However, by the construction of

the tree, the point x* is sorted down the paths corresponding to y1,1, y2,1, and so on,

until it is sorted to the leaf node corresponding to 𝑘(y𝑇 *,1) by construction. Thus,

for a given data sequence x𝑡, the network and the tree predict the same classification

value.

Since an optimal tree does at least as well as 𝒯6, that means that it must do at

least as well as 𝒩6 too. Thus, by construction, we have that an optimal decision tree

with maximum depth 𝑇 * ×𝑁1 + 𝑞 − 1 can be used to classify data in a training set

at least as well as a given neural network with the perceptron activation function,

1 hidden layer, and 𝑁1 nodes in the first hidden layer, completing the proof of the

theorem.

84

2.6.4 Rectified Linear Unit Regression RNNs and ORT-Hs

Note that if the network is a regression neural network with the rectified linear unit

activation function 𝒩6 instead of a classification neural network, meaning it outputs

W𝑇
𝑂y𝑇 *,1 + b𝑂 ∈ R𝑞, we are also able to build a regression tree 𝒯6 to make the same

predictions as the neural network. We build the same decision tree as in the proof of

Theorem 5 in Section 2.6.3 by building subtrees up until subtree 𝒯6,𝐿(y𝑇 *−1,1). This

results in a tree of depth 𝑇 * × 𝑁1. Then, for each leaf node of this tree we assign

the linear function W𝑇
𝑂y𝑇 *,1 + b𝑂 as the output value, where by the construction

of the tree y𝑇 *,1 is a linear function of x*. Through this process, 𝒯6 calculates the

same output as 𝒩6 given an input x*. Since 𝒯6 is a regression tree with hyperplane

splits, it follows that an ORT-H has at least as good accuracy as 𝒯6, completing this

extension of Theorem 6. An example of the final subtree is depicted in Figure 2-33.

2.7 Computational Results with Real World Data

Sets

In this section, we examine the performance of FNNs and OCT-Hs on twelve data

sets. We trained several different formulations of each model, and compared their

out-of-sample accuracy on twelve data sets.

The twelve data sets we use are an anonymized version of the Framingham heart

study data set developed using the Teaching Dataset provided by the National Heart,

Lung, and Blood Institute, a modified version of the Poker Hand data set from the

UCI Machine Learning Repository, and the Bank Marketing, Covertype, Dota 2

Games Results, Image Segmentation, Letter Recognition, Magic Gamma Telescope,

85

Figure 2-33: Subtree 𝒯6,𝐿(y𝑇 *−1,1) is the last subtree built when we create the regres-
sion subtree. When concatenated onto the rest of the tree, we have built a tree of
depth 𝑇 *×𝑁1. Note that the leaves have linear functions W𝑇

𝑂y𝑇 *,1+b𝑂 as outputs.

Optical Recognition of Handwritten Digits, Skin Segmentation, Sonar – Mines vs.

Rocks, and Thyroid Disease ANN data sets from the UCI Machine Learning Repos-

itory ([59]). In Table 2.3, we describe some details of these data sets.

To train the optimal trees, we used the Optimal Tree software ([8]). For each

data set, we trained and cross validated optimal trees of varying depths with regular

splits and optimal trees with hyperplane splits of the appropriate depths on the data

sets, which was automatically done by the software. Once we had the best OCT

and OCT-H based on the validation process, we calculated the models’ accuracy in

classifying the data in the test set – these out-of-sample accuracies are included as

the “Best OCT” and “Best OCT-H” values in Table 2.5.

To train the neural networks, we used the TensorFlow code. For each neural

network, we trained 50 neural networks with different random starts using grid search

86

Data Set # Parameters # Class Values # Data Points
Bank Marketing 15 2 45,211

Covtype 54 7 581,012
Dota 116 2 102,944

Framingham heart study 15 2 3,658
Image Segmentation 18 7 210
Letter Recognition 16 26 20,000

Magic Gamma Telescope 10 2 19,020
Optical 64 10 3,821
Poker 10 10 625,942

Skin Segmentation 3 2 245,057
Sonar 60 2 208

Thyroid Disease ANN 21 3 3,772

Table 2.3: The data sets used and their parameters.

for the parameters. We then used the parameters with the best performance on a

validation set to obtain the models’ accuracy in classifying the data in the test set.

For activation functions, we use either the weighted sigmoid function (where a

constant parameter within the sigmoid function is increased towards infinity as the

training process goes on, making the function a closer and closer approximation of

a threshold function) and the ReLU function. For the weighted sigmoid function we

train two different variations of neural networks, known as NN1 and NN2 respectively.

1. Smaller neural networks, with 𝑁1 equal to to 4, 6, or 8, and 𝐿 (the num-

ber of hidden layers) equaling 1, 2, 3, 4, or 6. Since these neural networks

have perceptron-like activation functions, based on Theorem 1 we would ex-

pect OCT-Hs to do approximately at least as well as these networks.

2. A version based on the work of [80], with two hidden layers, 𝑁1 equal to the

number of split nodes in a given tree, and 𝑁2 equal to the number of leaf nodes

in that tree. Given that construction, we expect these neural networks to do

87

Data Set 𝑁1

Bank Marketing 7
Covtype 2

Dota 7
Framingham heart study 7

Image Segmentation 2
Magic Gamma Telescope 7

Skin Segmentation 7
Sonar 7

Thyroid Disease ANN 6

Table 2.4: Data sets with equivalent ReLU NNs, and the number of nodes in the
single hidden layer of those networks. 𝑁1 was chosen so an OCT-H of depth 8 would
be equivalent.

approximately at least as well as an OCT-H.

The best out-of-sample accuracies of these models are included in the columns “NN1”

and “NN2” in Table 2.5.

For some of the data sets, it is not practical to train a tree that is deep enough

to be equivalent to even a small ReLU neural network. For example, given a neural

network with a single hidden layer containing five nodes, and trained on the Letter

Recognition data set, by Theorem 2 we would need a tree of depth 29 to ensure

equivalence. Thus, we have also split the ReLU neural networks into the equivalent

case for some data sets, and an inequivalent case for all, respectively called NN3 and

NN4. For the equivalent case, the networks are a single layer, with the number of

nodes in that layer listed in Table 2.4.

For the inequivalent case, we use two hidden layer neural networks with either 5,

50, 500, or 1500 nodes in each layer. These inequivalent cases allow one to understand

the potential performance gains a larger neural network could have on the data. The

best out-of-sample accuracies of these models are included in the columns “NN3”

88

Data Set Train Valid Test Best OCT Best OCTH Best NN1 Best NN2 Best NN3 Best NN4
Bank 27,127 9,042 9,042 89.5% 89.8% 89.2% 89.2% 89.4 % 89.7%

Covtype 348,607 116,203 116,202 76.3 % 74.9 % 72.9 % 75.6% 72.3 % 90.1 %
Dota 55,590 37,060 10,294 55.8 % 57.7% 58.9% 58.5% 58.9% 59.5%

Framingham heart study 2,194 732 732 83.2% 82.9 % 82.4 % 82.1% 82.2% 82.4%
Image Segmentation 124 43 43 88.4% 86.0 % 83.7% 55.8% 81.4% 88.4%
Letter Recognition 12,000 4,000 4,000 67.2 % 81.1 % 55.5% 76.1 % NA 97.0 %

Magic Gamma Telescope 11,414 3,803 3,803 86.3% 86.7% 85.2% 86.0% 87.3 % 87.7%
Optical 2,293 766 764 87.8% 90.7 % 90.1% 93.5% NA 99.0%
Poker 40,686 40,687 544,569 93.2% 94.3% 95.2% 97.2% NA 99.9%

Skin Segmentation 147,035 49,011 49,011 99.8% 99.9 % 99.8% 99.8% 99.9 % 99.9%
Sonar 125 42 41 61.0% 80.5% 80.5 % 73.2% 92.7 % 90.2%

Thyroid Disease ANN 2,264 754 754 99.7% 99.9 % 98.1% 96.6% 98.8% 98.5%

Table 2.5: Accuracy of FNNs, OCT-Hs and OCTs.

and “NN4” in Table 2.5.

The results form Table 2.5 lead to the following conclusions:

1. In 11 out of the 12 data sets (the exception is Sonar) the equivalent FNNs

(NN1 and NN3) and the OCT-H have very similar accuracy. Moreover, in these

data sets OCT and OCT-H also have very similar accuracy.

2. In seven out of twelve data sets, the trees perform as well as much larger

networks (NN4).

3. In Letter Recognition OCT-H has a performance edge both with respect to all

the neural networks and OCT.

4. In Sonar, the neural networks have a significant edge over both OCTs and

OCT-Hs. Based on looking at the trees, it appears that since this is a data set

with a large number of features relative to the number of points in the data

set, the MIP/local search approach is having have trouble identifying the most

important variables to use for splits.

We have proven in the paper that OCT-Hs and FNNs are equivalent in terms of

power. However, the proofs require trees of large depths. These empirical results pro-

89

vide preliminary evidence that OCT-Hs (and OCTs) have comparable performance

even with small depth. This indicates that there is indeed practical merit to use

OCT-Hs in practice. The fact that OCTs gives similar results to FNNs is particu-

larly noteworthy as OCTs are very interpretable.

2.8 Conclusion

In this paper, we showed that optimal decision trees are at least as powerful as neural

networks in terms of modeling power and in the case of classification problems OCT-

Hs and NNs have the same modeling power. While our constructions require deep

trees that may be impractical to compute, we have also found that in twelve data

sets that the modeling power of OCT-Hs and FNNs is indeed very similar even if

the trees have small depth. While more empirical research is needed, we feel these

findings are promising as OCT-Hs and especially OCTs are more interpretable than

FNNs. They bring us closer to a significant objective of machine learning to build

interpretable models with state of the art performance.

90

Chapter 3

Optimal Predictive Clustering

3.1 Introduction

One of the current major goals in machine learning is to create and implement meth-

ods that achieve state-of-the-art performance, are scalable, and are interpretable.

However, none of the currently widely used state-of-the-art regression methods achieve

success in all three metrics at the same time.

Lasso regression ([95]) is a widely used, fast, and fairly interpretable algorithm.

One can solve for the model near-instantaneously, and by analyzing the magnitude

and sign of the coefficients one can get an understanding of how a covariate con-

tributed to the model’s prediction. However, compared to methods such as XGBoost

([24]), it rarely achieves cutting edge performance.

CART ([18]) is a decision tree algorithm that uses a greedy training process to

learn splits in the tree in order to make predictions. Like Lasso regression it scales

very well, and it is even more interpretable, as the path a data point takes down the

tree gives a clear summary of exactly why a certain prediction was made. However,

91

due to the greedy training algorithm, it also has a suboptimal performance compared

to Optimal Regression Trees with Linear Predictions and XGBoost.

Optimal Regression Trees (ORT) and Optimal Regression Trees with Linear Pre-

dictions (ORT-L) ([9]) are both very interpretable decision tree methods like CART.

The two methods differ in the type of prediction they output; ORT outputs point

predictions, while ORT-L uses a Lasso regression model in each leaf to make predic-

tions on data sorted to that leaf. While ORT trains at a reasonably fast speed, it

is not as fast as Lasso regression or CART, and it also does not achieve the strong

performance that ORT-L does. In contrast, ORT-L has cutting edge performance

among interpretable regression methods, but it does not scale very well to larger

datasets (on the scale of 𝑝 ≥ 50 and 𝑛 ≥ 20000).

XGBoost is scalable and performs extremely well on a variety of datasets ([68]).

However, it is not directly interpretable, which we define as a black box method.

Lastly, Clus and Model Trees are two tree-based methods for interpretable cluster-

ing data that incorporate information about the features and the outcome variables

in the training process. Model Trees have cutting edge performance among clustering

for prediction methods and scales well, but does not perform as well as methods like

XGBoost. Table 3.1 summarizes our qualitative ranking of the five methods in the

categories of performance, scalability, and interpretability.

Lasso regression CART ORT ORT-L Clus Model Trees XGBoost

Performance 6 7 5 3 4 2 1

Scalability 1 1 6 7 3 3 3

Interpretability 4 1 1 5 3 5 7

Table 3.1: Comparison of major machine learning methods relative to each other
across the metrics of performance (out-of-sample 𝑅2), scalability and interpretability.
1 is the best, while 7 is the worst.

92

From Table 3.1, we observe all existing methods have weakness in at least one

category. We therefore seek to design a method that has strong performance in

all three categories at the same time. Optimal Predictive Clustering (OPC) is an

algorithm that uses mixed integer optimization (MIO) to simultaneously cluster the

data while learning cluster specific regression models. When clustering the data,

the proposed method takes into account both X and y values, in order to create

clusters better suited to prediction. This process results in Lasso regression models

that are specialized for the data in the cluster they are applied to, which achieve

stronger out-of-sample performance than a single model would. The resulting model

is also interpretable, as we can create profiles for each cluster to understand why the

models make the predictions they do. In addition, it is scalable, as the MIO can be

solved quickly to near optimality using strong warm starts and early stopping. The

warm starts considering both X and y values are generated by a advanced version

of K-Means known as K-Means++ ([3]). In Sections 3.3, 3.4, and 3.5, we show

the resulting method combines strong out-of-sample performance, scalability, and

interpretability.

3.1.1 Literature

Combining clustering and regression algorithms is known as clusterwise linear re-

gression. Originally proposed by [88, 89], it is defined as finding a given number

of clusters of observations such that the overall sum of squared errors within those

clusters is minimized. [88] proposes a stepwise optimal solution which exchanges

points in different clusters step by step to decrease the objective value. [90] and [63]

extend this work to minimize the absolute deviations of the linear regression errors

and provide further algorithmic improvements that speed up the learning process.

93

However, these methods depend a lot on their initialization, which can result in the

algorithm returning sub-optimal solutions.

Other researchers have tried a variety of algorithms and metaheuristics to solve

clusterwise linear regression problems. These include [27] using simulated annealing;

[43] using Variable Neighborhood Search; [4] using a smoothed version of a nonlin-

ear clusterwise linear regression model to iteratively find a solution; and [28], [92],

[64], and [29] all applying mixture models trained using EM algorithms to learn the

clusters and coefficients. However, these methods were either applied to small scale

problems (𝑛 ≤ 500) or involved a small number of clusters (𝑘 ≤ 3), thus raising the

question of how well they scale.

Lastly, [61] and [36] use an iterative algorithm that optimizes over both the sum

of squared errors of the regression and the distance of X values from the centroids

of the clusters they are assigned to. However, their clustering of the data does not

include y values, and they also apply their methods to mainly smaller scale problems

(𝑛 ≤ 10000).

We next describe global optimization solutions to the clusterwise linear regression

problem. [54] propose a nonlinear MIO formulation that maximizes a log-likelihood

function objective and solve the problem without a guarantee of an optimal solution.

[21] propose a mixed logical-quadratic programming formulation that provides a

feasible method for solving the clusterwise regression problem to optimality. In

later work they improve the solution by using branch and bound methods, column

generation, and some other heuristics ([20], [22]). [13] apply linear mixed integer

optimization to both regression and classification problems. [69] and [2] both extend

this formulation to the case when there are multiple potential outputs. [69] use a

mixed integer quadratic program combined with a column generation heuristic to

find a solution, while [2] use a two step optimization framework to first find the

94

number of clusters to use, and then find the solution of their novel MIO. Overall,

none of these global optimization papers consider both the closeness between X and

the cluster centroids and the prediction error of y in their objectives, which can

result in space to improve out-of-sample performance. It is also unclear how well the

proposed formulations and algorithms scale.

There has also been work in using decision trees and random forests to cluster

data using both X and y values. [71] represents an early example of using trees

to cluster data into piecewise linear models, incorporating information about the

standard deviation of the outcome variables into its splitting procedure during the

training process. [98] furthers this work, incorporating techniques to deal effectively

with enumerated attributes and with missing values. [15] adapts the basic top-down

induction of decision trees method towards clustering to define a technique called

Clus. This method uses a greedy training process to build a tree where each leaf is a

cluster, and uses an objective function that maximizes inter-cluster distances, which

is measured by comparing cluster profiles. [79] introduces Model Trees, which use a

split function that takes into account both mean and covariance differences between

the populations in the proposed splits to better identify subgroups in the longitu-

dinal data while training the tree. In [102], the authors train random forests with

special trees that use multivariate outputs, and then use a Partition Around Medoid

(PAM) algorithm on the proximity matrix generated by the forest to create clusters

of similarly expressed genes. Overall, these approaches rely on greedy methods to

train the final models, which only lead to suboptimal solutions.

In summary, results from the literature indicate previous methods lack strong

out-of-sample performance or scalability because they do not approach the globally

optimal solution, do not consider both X and y values, or do not have strong warm

starts. To solve this problem, the proposed method OPC takes into consideration not

95

only the distance between the data and their corresponding centroids, but also the

prediction error, which significantly improves the out-of-sample performance of the

method. OPC also utilizes a strong warm start based on the K-Means++ algorithm,

which improves the scalability of the algorithm.

3.1.2 Contribution

In this paper, we combine ideas from clustering and prediction to propose a new

method called Optimal Predictive Clustering. We model it directly as a MIO and

illustrate two different ways to solve it with appropriate warm starts. Our main

contribution in this paper is the two novel MIO formulations of the clusterwise linear

regression problem that generalize some earlier approaches, alongside faster ways to

solve them. We also show that by creating an ensemble model including all the

other methods we investigate, we are to achieve even better performance that the

individual models and outperforms the ensemble created without OPC. A key part

of this formulation is clustering points based on both X and y values, so that the

clusters are better suited for learning regression models. We further show that this

method achieves strong performance in the following three categories:

1. Performance: We demonstrate that OPC increases out-of-sample 𝑅2 by 0.019

(3.11%) on average compared to ORT-L on 20 datasets from UCI and LIACC

machine learning Repository ([30],[96]). Furthermore, OPC increases out-of-

sample 𝑅2 by 0.134 (27.21% improvement) on average over Lasso regression and

by 0.059 (10.37% improvement) on average over Clus on the same 20 datasets.

An ensemble built from all the methods also increases out-of-sample 𝑅2 by

0.007 (1.10% improvement) on average over Model Trees and by 0.007 (1.10%

improvement) on average over XGBoost.

96

2. Scalability: We show the average time to solve the first version of OPC is

about 800 seconds on the same 20 datasets, which is ∼30× faster than ORT-L.

Furthermore, the maximum time to solve large scale problems (𝑛 ∼ 70000,

𝑝 ∼ 30) is under 2000 seconds.

3. Interpretability: We show how to use the centroids the proposed method

finds to create profiles of points in a given cluster and understand why it

makes the predictions it does. We further compare OPC with ORT-L in two

real world datasets, showing there is no significant loss in interpretability when

using the proposed method.

For scalability, OPC is faster than ORT and ORT-L but slower than other meth-

ods. The performance of OPC is stronger than the rest methods except XGBoost

and Model Trees, and an ensemble built using all the models achieves better per-

formance than Model Trees and the ensemble without OPC as well. Finally, OPC’s

interpretability is similar to that of Lasso regression and ORT-L. Table 3.2 summa-

rizes our qualitative ranking of the nine methods.

Lasso regression CART ORT ORT-L Clus Model Trees XGBoost OPC Ensemble

Performance 8 9 7 5 6 3 2 4 1

Scalability 1 1 7 8 3 3 3 6 8

Interpretability 4 1 1 5 3 5 8 5 8

Table 3.2: Comparison of major machine learning methods and OPC relative to
each other across the metrics of performance (out-of-sample 𝑅2), scalability and
interpretability. 1 is the best, and 9 is the worst.

97

3.1.3 Structure

The paper is structured as follows. In Section 3.2, we describe how to find an opti-

mal clustering of points for prediction using MIO. Then we present two algorithms

to solve the optimization problem using warm starts. In Section 3.3, we show exper-

imentally on synthetic data that the algorithm recovers the truth. We also present

computational results on 20 real-world datasets and compare it with other methods

including Lasso regression, CART, Optimal Regression Trees (ORT, ORT-L), and

XGBoost. In Section 3.4, we compare the training times of these methods to that of

OPC on both synthetic data and real-world datasets. In Section 3.5, we discuss how

to interpret the results of the proposed method. We then go through two real-world

examples of this process, while comparing the proposed method’s interpretability to

that of ORT-L. We conclude in Section 3.6,

3.2 The approaches

In this section, we describe two ways of solving a MIO to find an optimal clustering

of points for prediction.

3.2.1 Approach 1 – OPC-BigM

In this section, we first describe how we apply a MIO to find an optimal clustering

of points for prediction. After that, we illustrate how to find a strong warm start to

speed up the optimization process. Lastly, we describe how we tune the algorithm’s

hyper-parameters.

We are given data (x𝑖, 𝑦𝑖), 𝑖 ∈ [𝑛], where [𝑛] = {1, . . . , 𝑛}, with x𝑖 ∈ R𝑝 and

𝑦𝑖 ∈ R. For categorical variables, we use one-hot encoding to transform them into a

98

set of binary variables, and if there are missing values we can impute using methods

described in [12]. We normalize the data by applying the transformation

�̂�𝑖𝑗 :=
𝑥𝑖𝑗 −𝑚𝑗

𝜎𝑗
, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝], (3.1)

where 𝑚𝑗 and 𝜎𝑗 are the mean and standard deviation of dimension 𝑗 of the training

samples.

If we want to use clusters for prediction, one direct way is

1. Use K-Means to find the centroids for each cluster.

2. In each cluster, run a linear (Lasso) regression based on the y value.

3. When there is a new data point, assign it to the cluster with the closest centroid,

then use the linear function for that cluster to predict the y value.

However, this only leads to a locally-optimal solution and also does not consider the

y values. In order to achieve a globally optimal solution for this prediction problem,

the objective function of the optimization problem should include:

1. The prediction error.

2. The distance between data and corresponding centroids.

We use a hyper-parameter 𝛼 to decide the trade-off between them in the objective

function.

To define the clusters in the MIO, assume we want to partition 𝑛 points into 𝐾

clusters. For each observation 𝑖, we introduce indicator variables 𝑧𝑖𝑘 = 1 {𝑥𝑖 is in cluster 𝑘}

to track the points assigned to each cluster. We force each point to be assigned to

99

exactly one cluster by adding the constraint:

∑︁
𝑘∈[𝐾]

𝑧𝑖𝑘 = 1, 𝑖 ∈ [𝑛]. (3.2)

We also force each cluster to have at least 𝑁min points:

∑︁
𝑖∈[𝑛]

𝑧𝑖𝑘 ≥ 𝑁min, 𝑘 ∈ [𝐾]. (3.3)

Define the centroid of cluster 𝑘 as

hk = (ℎ𝑘,1, . . . , ℎ𝑘,𝑝)
′, 𝑘 ∈ [𝐾]. (3.4)

We add auxiliary variables li = (𝑙𝑖,1, . . . , 𝑙𝑖,𝑝)
′ to represent the centroid of the cluster

point 𝑖 belongs to. We apply constraints

ℎ𝑘,𝑗 − 𝑙𝑖,𝑗 ≥ −(1− 𝑧𝑖𝑘)𝑀1, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝], 𝑘 ∈ [𝐾], (3.5)

ℎ𝑘,𝑗 − 𝑙𝑖,𝑗 ≤ (1− 𝑧𝑖𝑘)𝑀1, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝], 𝑘 ∈ [𝐾], (3.6)

to enforce ℎ𝑘,𝑗 = 𝑙𝑖,𝑗 ⇐⇒ 𝑧𝑖,𝑘 = 1, ∀𝑖, 𝑗, 𝑘 where 𝑀1 is a sufficiently large

number so that the constraint ℎ𝑘,𝑗 − 𝑙𝑖,𝑗 ∈ [−𝑀1,𝑀1] does not restrict the values

ℎ𝑘,𝑗 − 𝑙𝑖,𝑗 can take in any meaningful way. It can be chosen either through empirical

experimentation or by using methods such as those found in [10].

In each cluster, we want to use regression to make a prediction. We introduce

variables ck = (𝑐𝑘,1, . . . , 𝑐𝑘,𝑝)
′, 𝑑𝑘 as the coefficients and intercept for the regression

model in cluster 𝑘. We add auxiliary variables 𝑔𝑖 to represent the predicted value for

100

point 𝑖. We apply constraints

𝑔𝑖 −
∑︁
𝑗∈[𝑝]

𝑥𝑖,𝑗𝑐𝑘,𝑗 − 𝑑𝑘 ≥ −(1− 𝑧𝑖𝑘)𝑀2, 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾], (3.7)

𝑔𝑖 −
∑︁
𝑗∈[𝑝]

𝑥𝑖,𝑗𝑐𝑘,𝑗 − 𝑑𝑘 ≤ (1− 𝑧𝑖𝑘)𝑀2, 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾], (3.8)

enforcing 𝑔𝑖 =
∑︀

𝑗∈[𝑝] 𝑥𝑖,𝑗𝑐𝑘,𝑗 + 𝑑𝑘 ⇐⇒ 𝑧𝑖,𝑘 = 1, ∀𝑖, 𝑗, 𝑘 where 𝑀2 is a sufficiently

large number. We further apply L2 regularization to the coefficients 𝑐𝑘,𝑗 weighted by

hyper-parameter 𝜆.

Putting all of this together gives the following MIO formulation for finding opti-

mal clusters for prediction, which we call the OPC model:

min
∑︁
𝑖∈[𝑛]

⎡⎣∑︁
𝑗∈[𝑝]

𝛼(𝑥𝑖,𝑗 − 𝑙𝑖,𝑗)
2 + (1− 𝛼)(𝑦𝑖 − 𝑔𝑖)

2

⎤⎦+ 𝜆
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑝]

𝑐2𝑘,𝑗 (3.9)

s.t.
∑︁
𝑘∈[𝐾]

𝑧𝑖𝑘 = 1, 𝑖 ∈ [𝑛],

∑︁
𝑖∈[𝑛]

𝑧𝑖𝑘 ≥ 𝑁min, 𝑘 ∈ [𝐾],

ℎ𝑘,𝑗 − 𝑙𝑖,𝑗 ≥ −(1− 𝑧𝑖𝑘)𝑀1, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝], 𝑘 ∈ [𝐾],

ℎ𝑘,𝑗 − 𝑙𝑖,𝑗 ≤ (1− 𝑧𝑖𝑘)𝑀1, 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝], 𝑘 ∈ [𝐾],

𝑔𝑖 −
∑︁
𝑗∈[𝑝]

𝑥𝑖,𝑗𝑐𝑘,𝑗 − 𝑑𝑘 ≥ −(1− 𝑧𝑖𝑘)𝑀2, 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾],

𝑔𝑖 −
∑︁
𝑗∈[𝑝]

𝑥𝑖,𝑗𝑐𝑘,𝑗 − 𝑑𝑘 ≤ (1− 𝑧𝑖𝑘)𝑀2, 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾],

𝑧𝑖𝑘 ∈ {0, 1} , 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾].

Solving this MIO to optimality can be time consuming. We propose the following

101

algorithm and use the solution as a warm start. For each number of clusters 𝑘 and

tuning parameter 𝛼 we want to tune over, we cluster [𝛼X, (1 − 𝛼)y] into 𝑘 clusters

using K-Means++ and train Lasso regression models within each one. We then

compare the performance of each of these models on the validation set, and then

find the 𝑘* and 𝛼* parameters where the model performs the best on the validation

set. We lastly use these 𝑘* and 𝛼* values to calculate warm starts for the cluster

assignments, cluster centroids, and regression coefficients for the MIO.

Algorithm 1 Find warm starts for OPC
1: Select potential numbers of clusters 𝐾 ∈ {𝐾1, 𝐾2, 𝐾3, . . . , 𝐾𝑖} and potential

trade-off parameters 𝛼 ∈ {𝛼1, . . . , 𝛼𝑗} to tune over.
2: for 𝐾 = 𝐾1, . . . , 𝐾𝑖 do
3: for 𝛼 = 𝛼1, . . . , 𝛼𝑗 do
4: Multiply the original X by 𝛼 and add (1− 𝛼)y as a new column.
5: Run the K-Means++ algorithm to find 𝐾 clusters for [𝛼X,(1− 𝛼)y]
6: Get the centroids of each cluster, and then remove the y column
7: Reweight the remaining 𝛼X values in the cluster centroids by 1

𝛼

8: Re-assign points to the new cluster centroids
9: Run a Lasso regression in each cluster

10: end for
11: end for
12: Identify the solution (𝐾*, 𝛼*) with largest 𝑅2 on the validation set.
13: Multiply the original X by 𝛼* and add (1− 𝛼*)y as a new column.
14: Run the K-Means++ algorithm to find 𝐾* clusters for [𝛼*X,(1− 𝛼*)y]
15: Get the centroids of each cluster, and then remove the y column
16: Reweight the 𝛼*X values remaining in the cluster centroids by 1

𝛼* to get the
centroid h*

𝑗 for each cluster 𝑗
17: Re-assign points to the new cluster centroids and get cluster assignments z*

18: Run a Lasso regression in each cluster 𝑗 and get coefficients c*𝑗 , 𝑑
*
𝑗

19: Return 𝐾*, 𝛼*, z*,h*
𝑗 , c

*
𝑗 , 𝑑

*
𝑗 (𝑗 ∈ [𝐾*])

Once the process in Algorithm 1 is completed, the resultant output is used as a

warm start to solve problem (9).

102

3.2.2 Approach 2 – OPC-CP

An alternative version of the optimization problem we want to solve for OPC is as

follows.

min
Z

min
h,c,d

∑︁
𝑖∈[𝑛]

⎡⎣∑︁
𝑗∈[𝑝]

𝛼(𝑥𝑖,𝑗 −
𝐾∑︁
𝑘=1

𝑧𝑖,𝑘ℎ𝑘,𝑗(Z))
2 + (1− 𝛼)(𝑦𝑖 −

𝐾∑︁
𝑘=1

𝑧𝑖,𝑘(c𝑘(Z)
′x𝑖 + 𝑑𝑘(Z)))

2

⎤⎦
+ 𝜆 * (

𝐾∑︁
𝑘=1

||c𝑘||2 + (𝑑𝑘)
2)

s.t.
∑︁
𝑘∈[𝐾]

𝑧𝑖,𝑘 = 1, 𝑖 ∈ [𝑛],

∑︁
𝑖∈[𝑛]

𝑧𝑖,𝑘 ≥ 𝑁min, 𝑘 ∈ [𝐾],

𝑧𝑖,𝑘 ∈ {0, 1} , 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾].

where as before 𝑧𝑖,𝑘 is one if point i is in cluster k, and 0 otherwise, h is the K by p

matrix of cluster centroids, and the c𝑘, 𝑑𝑘 variables are the linear models associated

with each cluster. We define

h𝑘,𝑗(Z) =

𝑛∑︀
𝑖=1

𝑥𝑖,𝑗𝑧𝑖,𝑘

𝑛∑︀
𝑖=1

𝑧𝑖,𝑘

[𝑑𝑘(Z); c𝑘(Z)] = (X′
𝑘Diag(Z𝑘)

2X𝑘 + 𝜆 * I𝑝+1)
−1X′

𝑘Diag(Z𝑘)
2y

where x𝑖 is the 𝑖th row of matrix X, X𝑘(Z) is the rows of matrix X where 𝑧𝑖,𝑘 = 1

and with a column of one values appended to it, y𝑘(Z) is the rows of vector y where

𝑧𝑖,𝑘 = 1, Diag(Z𝑘) is a square matrix with the entries of the 𝑘th column of Z along

the diagonal and zeros elsewhere, and I𝑝+1 is the (𝑝+ 1)× (𝑝+ 1) identity matrix.

103

We can then define the objective of the above problems as minZ 𝑓(Z), where

𝑓(Z) = min
h,c,d

∑︁
𝑖∈[𝑛]

⎡⎣∑︁
𝑗∈[𝑝]

𝛼(𝑈𝑖,𝑗)
2 + (1− 𝛼)(𝑉𝑖)

2

⎤⎦+ 𝜆 * (
𝐾∑︁
𝑘=1

||c𝑘||2 + (𝑑𝑘)
2)

where

𝑈𝑖,𝑗 = 𝑥𝑖,𝑗 −
𝐾∑︁
𝑘=1

𝑧𝑖,𝑘ℎ𝑘,𝑗(Z)

and

𝑉𝑖 = 𝑦𝑖 −
𝐾∑︁
𝑘=1

𝑧𝑖,𝑘(c𝑘(Z)
′x𝑖 + 𝑑𝑘(Z))

This optimization problem can be solved using cutting planes. We start with the

formulation

min
z,𝑡

𝑡 (3.10)

s.t.
∑︁
𝑘∈[𝐾]

𝑧𝑖𝑘 = 1, 𝑖 ∈ [𝑛],

∑︁
𝑖∈[𝑛]

𝑧𝑖𝑘 ≥ 𝑁min, 𝑘 ∈ [𝐾],

𝑡 >= 0

𝑧𝑖𝑘 ∈ {0, 1} , 𝑖 ∈ [𝑛], 𝑘 ∈ [𝐾].

where an initial solution can be found using the Algorithm 1 warm start pro-

cedure. When we find a solution to the new optimization problem, we then add a

104

constraint of the form

𝑡 ≥ 𝑓(ẑ) +
𝑛∑︁

𝑖=1

𝐾∑︁
𝑘=1

∇𝑓(ẑ)𝑖,𝑘 * (𝑧𝑖,𝑘 − 𝑧𝑖,𝑘)

where ẑ is a solution to the optimization problem that we need to add a constraint

to remove, and ∇𝑓(ẑ)𝑖,𝑘 is the partial derivative of f at the variable 𝑧𝑖,𝑘 at the point

ẑ. These partial derivative of this function is as follows

𝜕𝑓

𝜕𝑧𝑖,𝑘
= −2(

∑︁
𝑗∈[𝑝]

𝛼(𝑥𝑖,𝑗 −
𝐾∑︁
𝑞=1

𝑧𝑖,𝑞ℎ𝑞,𝑗) * (ℎ𝑘,𝑗(Z) + 𝑧𝑖,𝑘
𝜕

𝜕𝑧𝑖*,𝑘
h𝑘,𝑗(Z))

+(1− 𝛼)(𝑦𝑖 −
𝐾∑︁
𝑞=1

𝑧𝑖,𝑞(c𝑞(Z)
′x𝑖 + 𝑑𝑞(Z))) * (c𝑘(Z)′x𝑖 + 𝑑𝑘(Z))

+𝑧𝑖,𝑘
𝜕

𝜕𝑧𝑖*,𝑘
(c𝑘(Z)

′x𝑖 + 𝑑𝑘(Z)))

with the following definitions of the partial derivatives

𝜕

𝜕𝑧𝑖*,𝑘
h𝑘,𝑗(Z) =

𝑥𝑖*,𝑗
𝑛∑︀

𝑖=1

𝑧𝑖,𝑘 −
𝑛∑︀

𝑖=1

𝑥𝑖,𝑗𝑧𝑖,𝑘

(
𝑛∑︀

𝑖=1

𝑧𝑖,𝑘)2

𝜕

𝜕𝑧𝑖*,𝑘
[𝑑𝑘(Z); c𝑘(Z)] = −2𝑧𝑖*,𝑘 * ((X′Z2

𝑘X)−1)′ * x′
𝑖 * x𝑖 * ((X′Z2

𝑘X)−1) *X′Z2
𝑘y

+2 * ((X′Z2
𝑘X))−1 * x′

𝑖 * 𝑦𝑖𝑧𝑖*,𝑘

We continue adding cutting planes until either we find an optimal solution, or we

reach a time limit set at the beginning of the optimization process.

105

3.3 Performance

In this section, we report the performance of OPC on a variety of synthetic and

real-world datasets. In 3.3.1, we discuss data preprocessing methods and the hyper-

parameters we validate for OPC as well as the other ML algorithms we use as bench-

marks. In 3.3.2, we present OPC’s performance on synthetic data and illustrate that

it recovers the true underlying model from the data. In 3.3.3, we present OPC’s

performance on real-world datasets using both solution algorithms and then com-

pare them to the performances of Lasso regression, CART, ORT, ORT-L, XGBoost

methods, Clus, and Model Trees. We also show the benefit of using both X and y

values in the objective function by comparing OPC with methods that do not use

y values, as well as the improvement in performance when combining different OPC

models into an ensemble.

3.3.1 Data Preprocessing and Model Validation

For a given dataset, we partition it into three parts: the training (60%), validation

(20%), and testing sets (20%). The data are all standardized based on the mean and

standard deviation of the combined training and validation sets.

For each of the models, we tune parameters by choosing those that lead to the

best performance of the model on the validation set. Ranges for the parameters

are chosen based on ranges seen in other projects using these methods. For Lasso

regression, we validate regularization parameter 𝜆 using values between 0.0001 and

0.1. For CART, we validate minimum number of points per leaf in {5,10,20,50,100}.

For ORT and ORT-L, we tune both the depth of the tree from 1 to 10 and the

complexity parameters between 0.001 and 0.1 based on the description from [49].

For OPC models, after some experimentation we found that OPC-BigM and OPC-

106

CP had very similar predictive performances but that OPC-BigM finished training

much faster, so we present results for that method for the remainder of the paper. We

use 𝛼 values between 0.03 and 1.0 to investigate a broad range of ways we could wait

the outcomes vs observed features, and 𝐾 values between 𝑛
200

and 𝑛
1000

(for smaller

datasets with 𝑛 ≤ 1500 we validate 𝐾= [1,2,3,4], for 1500 < 𝑛 ≤ 3000 we validate 𝐾

= [3,4,5,6,7]). These 𝑘 sizes were chosen under the assumption that smaller datasets

were likely to have fewer clusters, and larger datasets were likely to have more. We fix

𝑁𝑚𝑖𝑛 to be 10, 𝜆 to be 0.01, and 𝑀1 = 𝑀2 = 1000 based on empirical observations

that these parameters are effective choices across models. The ensemble of all

methods was a weighted average of the predictions of the different models, where

the weights were chosen to give higher performing models more weight compared

to lower performing models. The no-OPC Ensemble had Model Trees, ORL-L, and

XGBoost predictions weighted twice as much as the other predictions (so XGBoost

predictions had a weight of 1/5 vs CART predictions having a coefficient of 1/10),

and in the All-Emsemble OPC also had twice the weight of the lower performing

methods (so OPC predictions had a weight of 1/6 vs 1/12 for models like CART). In

simulation experiments, we fix 𝐾 a range of values centered around the true value,

using [3,4,5,6,7] for 𝑘 = 5, [6, 8, 10,12,14] for 𝑘 = 10, and [12, 16, 20, 24, 28] for

𝑘 = 20. For XGBoost, we tune both the depth of the tree from 1 to 10 and the

learning parameters between 0.1 and 0.5. The Clus package does not allow for

using a separate training and validation set to be defined, so for this method the

two sets are combined into one, and the package automatically cross validates model

parameters and prunes the resulting trees.

All problems except for Clus and Model Trees are solved in parallel using the MIT

Engaging Cluster (Intel Xeon 2.1 GHz) with 1 CPU core and 32GB of memory, and

using the Python and Julia programming languages. Lasso regression and CART

107

models are trained using the sklearn package in Python ([70]). ORT/ORT-L models

are trained using Interpretable AI’s Julia Interface ([49]), which applies the training

algorithms found in Chapters 10 and 11 of [9]. XGBoost models are trained using the

XGBoost package in Python ([24]). The Clus package uses a Java implementation,

and is run on a Macbook Pro with a 3.5 GHz Dual-Core Intel Core i7 processor and

16 GB of memory. The Model Trees were run on that same Macbook Pro using an

implementation in Weka.

In order to avoid outcomes being influenced by one particular split of the data

into training, validation, and test sets, we conduct the experiments five times with

different splits each time. The final out-of-sample 𝑅2 reported is the average of the

five runs.

3.3.2 Performance on synthetic datasets

In this section, we investigate experimentally whether the algorithm converges to the

ground truth we generate using synthetic datasets.

To create the datasets, we generate several different cluster centroids randomly.

We then generate points nearby the centroids by adding noise terms to the centroids

drawn from a normal distribution with mean 0, resulting in a cluster of points around

the centroid. Lastly, we assign random linear regression weights to each cluster and

use them to define 𝑦 values for each point in it. We use the following values of

(𝐾,𝑛, 𝑝) to define the ground truths:

• Number of clusters 𝐾: 5, 10, 20

• Size of the data 𝑛: 1000, 10000, 100000

• Number of variables 𝑝: 10, 25, 40

108

Index 𝐾 𝑝 𝑛 Test 𝑅2 Index 𝐾 𝑝 𝑛 Test 𝑅2

1 5 10 1000 1 15 20 25 10000 1
2 10 10 1000 1 16 5 40 10000 1
3 20 10 1000 1 17 10 40 10000 1
4 5 25 1000 1 18 20 40 10000 1
5 10 25 1000 1 19 5 10 100000 1
6 20 25 1000 1 20 10 10 100000 1
7 5 40 1000 1 21 20 10 100000 1
8 10 40 1000 1 22 5 25 100000 1
9 20 40 1000 1 23 10 25 100000 1
10 5 10 10000 1 24 20 25 100000 1
11 10 10 10000 1 25 5 40 100000 1
12 20 10 10000 1 26 10 40 100000 1
13 5 25 10000 1 27 20 40 100000 1
14 10 25 10000 1

Table 3.3: Average out-of-sample 𝑅2 of OPC-BigM on the synthetic data.

Given this construction, the proposed method should be able to perfectly learn

the true model, as we generate the data to match what the proposed method learns.

The performance of the proposed method is shown in Table 3.3, where the Index

columns are simply a numerical index of the datasets, columns 𝐾, 𝑝, and 𝑛 are

defined as above, and the Test 𝑅2 column contain the test set 𝑅2 of the proposed

method.

Based on the results in Table 3.3, we observe the test 𝑅2 for the method is

1. This illustrates that the proposed method is consistently able to find the ground

truth clusters in the data when such clusters exist. For OPC models, the warm starts

play a key role here because they help our algorithm find the ground truth within

the solving time. Empirically, when we give the optimization solver more than 300

seconds to solve the problem, the final solution does not change. Thus, the algorithm

finds the true optimum in that time span, and uses the rest of the time to guarantee

109

Figure 3-1: Out-of-sample performance of the model with increasing levels of noise
stratified by number of variables in the simulated data.

the optimality. OPC is therefore able to recover the underlying structure of the data

when such a structure exists, aided by using high quality warm starts.

We then experimented with adding noise to the X values of the data, to get

better intuition of how model performance would change when applied to real world

data. This noise was drawn from a uniform random variable Uniform(−𝜖, 𝜖), where

𝜖 = 0, 0.1, 0.2, . . . , 1.9, 2. This resulted in the following performance, aggregated

by number of variables in the data, in Figure 3-1. As one can see, the method is

generally less affected by increasing noise in the higher dimensional datasets. This

makes sense, because in higher dimensional models the noise we add to the data gets

added together in the linear model. Because the noise is Uniform(−𝜖, 𝜖), adding it

together causes the summed noise to tend towards zero, lessening its effect.

110

Figure 3-2: Out-of-sample performance of the model with increasing levels of noise
stratified by number of points in the simulated data.

Next, we analyze the performance of the model aggregated by number of data

points, as seen in Figure 3-2. Here we see a much more striking decrease in per-

formance as the amount of noise increases in all cases, although in general larger

amounts of data still help the model make better inferences.

Overall, we observe in both graphs that for larger 𝑛 and 𝑝 values, the model is

more robust to noise.

3.3.3 Performance on real-world datasets

In this section, we report the out-of-sample 𝑅2 of OPC and other machine learn-

ing methods on 20 real-world datasets obtained from the UCI and LIACC Machine

111

Dataset n p CART Lasso regression ORT ORT-L Clus Model Trees XGBoost OPC No-OPC Ensemble All-Ensemble
housing 505 13 0.730 0.752 0.818 0.831 0.801 0.859 0.866 0.863 0.891 0.898
geographic-origin 1059 68 0.452 0.657 0.467 0.650 0.477 0.637 0.592 0.658 0.664 0.671
wine-quality-red 1598 11 0.298 0.375 0.312 0.378 0.318 0.377 0.424 0.394 0.428 0.428
vote-for-clinton 2703 9 0.323 0.311 0.294 0.398 0.341 0.390 0.417 0.342 0.414 0.413
abalone 4176 7 0.442 0.525 0.469 0.527 0.490 0.551 0.535 0.551 0.555 0.563
wine-quality-white 4897 11 0.251 0.281 0.274 0.334 0.290 0.338 0.432 0.339 0.398 0.403
PTM 5874 16 0.103 0.089 0.161 0.146 0.191 0.235 0.299 0.215 0.270 0.284
PTT 5874 16 0.116 0.092 0.174 0.174 0.184 0.246 0.323 0.230 0.286 0.305
ailerons 7153 40 0.760 0.824 0.752 0.824 0.766 0.846 0.828 0.839 0.843 0.847
cpu-act 8191 21 0.967 0.722 0.968 0.977 0.971 0.979 0.979 0.936 0.978 0.977
cpu-small 8191 12 0.959 0.712 0.962 0.969 0.971 0.975 0.973 0.960 0.972 0.972
kin8nm 8191 8 0.445 0.422 0.518 0.641 0.474 0.615 0.684 0.655 0.684 0.721
elevators 8751 18 0.696 0.829 0.691 0.828 0.460 0.894 0.829 0.864 0.870 0.883
pole 15000 26 0.970 0.474 0.966 0.967 0.972 0.974 0.984 0.911 0.979 0.973
elevatorlarge 16559 17 0.717 0.816 0.707 0.815 0.724 0.895 0.838 0.859 0.875 0.883
energy 19735 29 0.201 0.161 0.218 0.255 0.301 0.294 0.447 0.351 0.390 0.404
californiahousing 20460 8 0.691 0.631 0.747 0.658 0.737 0.759 0.800 0.713 0.781 0.781
censusdomain 22784 16 0.378 0.265 0.397 0.429 0.453 0.580 0.603 0.439 0.570 0.575
CASP 45730 9 0.435 0.283 0.461 0.427 0.484 0.425 0.595 0.475 0.561 0.556
online_video 68784 25 0.954 0.651 0.956 0.961 0.970 0.842 0.988 0.947 0.966 0.965
AVERAGE 0.544 0.494 0.566 0.609 0.569 0.636 0.672 0.627 0.669 0.675

Table 3.4: Average out-of-sample 𝑅2 of all methods on real-world datasets

Learning Repositories. These results can be found in Table 3.4. The abbrevia-

tions PTM and PTT stand for parkinsons-telemonitoring-motor and parkinsons-

telemonitoring-total, two UCI datasets. While none of these datasets contain missing

values, any missing values could be imputed prior to the clustering and prediction

process. In the left column the names of all datasets are listed from smallest 𝑛 to

largest 𝑛. The next two columns to the right show the number of data points 𝑛

and the number of variables 𝑝 in each dataset. The remaining columns contain the

out-of-sample 𝑅2 of all methods.

Based on these results, the ensemble combination of all the methods (All-Ensemble)

has the best average out-of-sample performance of all methods. Compared with Lasso

regression, the ensemble increases out-of-sample 𝑅2 by 0.149 (36.16% improvement)

on average in these datasets. Compared with ORT-L, All-Ensemble outperforms

ORT-L in 19 out of 20 datasets with an average improvement of 0.034 (13.4% im-

provement). Compared with Model Trees, the best performing non-OPC method

that clusters data using both X and y values, All-Ensemble outperforms it on 13

112

datasets with an average improvement of 0.007 (6.1% improvement). Compared

with XGBoost, OPC-Ensemble outperforms it in 8 out of 20 datasets. However,

its average performance is actually still higher than that method’s, with average

improvement of 0.003 (0.4%).

Significantly, the ensemble of methods including OPC outperforms the ensemble

of methods without OPC, with average improvement of 0.006 (0.9%). This shows

that OPC, in addition to being one of the best performing methods on its own, is

useful in conjuction with other methods.

In order to understand the benefit of considering y values when building the clus-

ters, we compare the performance of OPC with other clusterwise regression methods,

in particular those that do not incorporate tree structures (as methods such as Clus

do), in Table 3.5 . A basic algorithm for building a clusterwise regression model is

first running the K-Means++ algorithm to cluster all points, and then building a

Lasso regression model in each cluster. The result of this basic algorithm is shown

in the column named Basic. In [2], the authors propose a new MIO formulation for

multiple response clustering that expanded upon previous formulations. We imple-

ment their algorithm with warm starts, and the result is shown in the column named

Nested regression. The time constraints for solving MIO and the possible number of

clusters are the same as for OPC. The regularization parameter is chosen to be either

0.01 or 0.1. We observe that the [2] result is similar to the basic method. Alongside

this, OPC outperforms the basic method significantly in 10 out of 20 datasets and

performs similarly to the basic method in the others, with an average improvement

of 0.011 (1.79% improvement). Taking y values into account in the clustering is

therefore a useful technique to improve the performance of the method.

In order to understand the sensitivity of the method to the choice of 𝑘, we looked

at the performance of OPC on the Red Wine, Abalone, and Pole datasets when just

113

Dataset Basic Nested regression OPC
housing 0.846 0.846 0.863
geographic-origin 0.634 0.623 0.658
wine-quality-red 0.375 0.38 0.394
vote-for-clinton 0.343 0.335 0.342
abalone 0.55 0.545 0.551
wine-quality-white 0.343 0.343 0.339
PTM 0.216 0.216 0.215
PTT 0.21 0.21 0.23
ailerons 0.841 0.841 0.839
cpu-act 0.929 0.929 0.936
cpu-small 0.959 0.959 0.960
kin8nm 0.629 0.629 0.655
elevators 0.862 0.862 0.864
pole 0.876 0.876 0.911
elevatorlarge 0.857 0.857 0.859
energy 0.331 0.331 0.351
californiahousing 0.711 0.711 0.713
censusdomain 0.44 0.44 0.439
CASP 0.446 0.446 0.475
online_video 0.924 0.924 0.947
AVERAGE 0.616 0.615 0.627

Table 3.5: Average out-of-sample 𝑅2 of K-Means++ with regression, Nested regres-
sion, and OPC on real-world datasets. Bolded values are the highest values in a
given row.

114

Dataset 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7
wine-quality-red 0.276 0.380 0.408 0.389 0.355
abalone 0.524 0.560 0.555 0.554 0.546
pole 0.889 0.902 0.903 0.901 0.911

Table 3.6: Model performance when just choosing a single 𝑘 value and training the
OPC model using that choice.

setting 𝑘 = 3, 4, . . . , 7 instead of cross validating. The out-of-sample results on those

datasets are in Table 3.6.

We see that while there are a couple of large leaps (such as from 𝑘 = 3 to 𝑘 = 4

for the wine-quality-red data set), the model performance does not change much for

most of the incremental changes in 𝑘. Cross validation should therefore be sufficient

to identify optimal choices for the k values.

3.4 Scalability

In order to better understand the scalability of the proposed method, we also measure

how long the training and validation process takes for each dataset. The training

times for OPC on the synthetic data are in Table 3.7. Like Table 3.3, the Index

columns are simply a numerical index of the datasets, and columns 𝐾, 𝑝, and 𝑛

are defined as the number of clusters, the number of variables and the size of the

data. The Time column contains the time it takes to build the various models. For

the majority of the datasets, the OPC training process (including calculating warm

starts and training the optimization formulation) takes less than ten minutes, and

for all datasets it finishes within 3 hours.

Meanwhile, the training times of all methods for the real-world datasets are in

Table 3.8. For these datasets, OPC always finishes running in an hour, finishes faster

115

Index 𝐾 𝑝 𝑛 Time Index 𝐾 𝑝 𝑛 Time
1 5 10 1000 305.2 15 20 25 10000 823.1
2 10 10 1000 316.8 16 5 40 10000 478.0
3 20 10 1000 322.0 17 10 40 10000 692.4
4 5 25 1000 312.6 18 20 40 10000 1095.8
5 10 25 1000 325.2 19 5 10 100000 770.6
6 20 25 1000 353.1 20 10 10 100000 1452.8
7 5 40 1000 318.0 21 20 10 100000 2510.9
8 10 40 1000 340.1 22 5 25 100000 1516.5
9 20 40 1000 380.4 23 10 25 100000 2756.2
10 5 10 10000 348.0 24 20 25 100000 5525.3
11 10 10 10000 404.1 25 5 40 100000 2137.2
12 20 10 10000 518.9 26 10 40 100000 4253.0
13 5 25 10000 411.9 27 20 40 100000 8699.6
14 10 25 10000 546.4

Table 3.7: Training times of OPC on synthetic data.

Dataset 𝑛 𝑝 CART Lasso regression ORT ORT-L Clus Model Trees XGBoost OPC No-OPC Ensemble All-Ensemble
housing 505 13 0.01 0 13.5 1902 0.524 0.054 0.1 357.1 1903 1903
geographic-origin 1059 68 0.173 0 78.8 104134.3 0.773 0.634 0.9 339 104135.3 104135.3
wine-quality-red 1598 11 0.03 0 31.8 2697.9 0.583 0.54 0.3 305.3 2698.9 2698.9
vote-for-clinton 2703 9 0.069 0 93.5 6698.6 0.75 0.422 0.5 339.4 6699.6 6699.6
abalone 4176 7 0.062 0 128.5 2734.6 0.818 0.534 0.5 351.9 2735.6 2735.6
wine-quality-white 4897 11 0.11 0 113.3 6720.6 0.86 0.518 0.8 477.9 6721.6 6721.6
PTM 5874 16 0.29 0.1 431.5 8432.6 1.161 0.924 1.6 676.1 8433.6 8433.6
PTT 5874 16 0.311 0.1 352.7 10815.6 1.25 0.604 1.6 665.3 10816.6 10816.6
ailerons 7153 40 0.261 0.5 765.6 7300.3 1.801 1.786 2 702.2 7301.3 7301.3
cpu-act 8191 21 0.394 0 771.2 25221.8 1.393 1.77 2 661.4 25222.8 25222.8
cpu-small 8191 12 0.252 0 536.7 14242.2 1.218 0.802 1.4 689.2 14243.2 14243.2
kin8nm 8191 8 0.246 0 786.8 25759.9 1.175 1.734 1.5 720.9 25760.9 25760.9
elevators 8751 18 0.249 0.3 470.5 1399.8 1.044 1.172 1.5 873.8 1400.8 1400.8
pole 15000 26 0.279 0.2 1762.8 38081.1 1.44 1.974 2.9 1009.1 38082.1 38082.1
elevatorlarge 16559 17 0.465 0.6 1506.2 5084.9 2.043 3.226 2.2 907.2 5085.9 5085.9
energy 19735 29 1.874 0.4 2003.2 87423.9 3.097 3.71 5.1 1219.5 87424.9 87424.9
californiahousing 20460 8 0.545 0.1 2209.6 28424.2 1.941 1.442 2.4 1075.3 28425.2 28425.2
censusdomain 22784 16 1.421 0.2 1616.9 49912.7 2.651 2.47 4.9 1317.6 49913.7 49913.7
CASP 45730 9 1.7 1.96 5781.4 75781.3 6.546 3.146 6.6 1589 75782.3 75782.3
online_video 68784 25 1.576 1.8 17933 10100.9 1.821 5.748 10.2 1995.1 17934 17934
AVERAGE 0.51585 0.313 1869.375 25643.46 1.64445 1.6605 2.45 813.615 26036.065 26036.065

Table 3.8: Training times of the all methods on real-world datasets.

116

than ORT on average, and often finishes running an order of magnitude faster than

ORT-L. Thus, the method achieves both strong out-of-sample performance and faster

training times than comparable methods. It is still, however, slower than XGBoost

and Model Trees (which finish running in seconds), as well as CART and Lasso

regression (which finish running almost instantaneously). Aggregating the ensemble

models generally takes a second or less, so the main time constraint with them is

training the other models to include in the ensemble in parallel.

3.5 Interpretability

3.5.1 How to interpret the OPC model

Interpreting the results of OPC is a two-step process. First, we can analyze the

clusters to create a profile of which points are sorted to which cluster. After that, we

can study the regression coefficients to understand the particular model being used

within a cluster.

To perform the first step, we can better understand why a point is sorted to a

given cluster by comparing the centroids of the clusters. By looking at the differences

in feature values for each centroid, we can find the key features that cause a point

to be sorted to one cluster over another. Given that empirically we have found that

the model can learn the variations in the data effectively using a small number of

clusters, this process is easily scalable. This process can be done by inspection, or

algorithmically. The inspection approach is self explanatory – a person can look at

all of the cluster centroids and find differences within them, and use these differences

to interpret the points assigned to a particular cluster. For the algorithmic approach,

one can look at the cluster centroids feature by feature, sort them, and identify which

117

centroids have larger or smaller average values for each category.

Then, once a point is assigned to a given cluster, we can investigate the coefficients

of that cluster’s regression model. By analyzing their magnitude and sign, we’re

able to understand how different features contribute to the final prediction. Thus,

obtaining a prediction for a new data point is mainly deciding which cluster profile it

is most similar to and then using a simple and easily understandable cluster-specific

model to make a prediction.

One can clearly see the process is interpretable. To illustrate this, in the following

subsections, we will walk through two examples of this process to show empirically

how interpretable the method is. We will also compare OPC models with ORT-L

trees trained on the same datasets, to show how the proposed method does not lose

a significant amount of interpretability compared to decision tree models.

3.5.2 Housing Dataset Results

In this section, we illustrate how to interpret the OPC model on a real-world example

about predicting housing values from [44]. We also compare the interpretability of

OPC with ORT-L. There are 505 samples and 13 variables in this dataset. The

description of each variable is shown in Table 3.9. The target is to predict the

housing value in suburbs of Boston.

For the hyper-parameters of OPC we use 𝛼 between 0.03 and 1.0 and 𝐾 between

3 and 7. We fix 𝑁𝑚𝑖𝑛 to be 10 and 𝜆 to be 0.01. After we run the OPC algorithm,

it returns 6 clusters and the final out-of-sample 𝑅2 is 0.921. The information about

each cluster OPC finds is shown in Table 3.10. Each row represents the centroid of

a given cluster and the last row shows the number of data points in the cluster.

In this model, we observe that all data points are nearly equally separated between

118

Variable Meaning
CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq.ft
INDUS Proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
N0X Nitric oxides concentration (parts per 10 million)
RM Average number of rooms per dwelling
AGE Proportion of owner-occupied units built prior to 1940
DIS Weighted distances to five Boston employment centres
RAD Index of accessibility to radial highways
TAX Full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(𝐵𝑘 − 0.63)2 where Bk is the proportion of blacks by town
LSTAT Percentage of lower status of the population

Table 3.9: The meaning of each variable in the housing dataset, which has 505 data
points.

Centroid 1 Centroid 2 Centroid 3 Centroid 4 Centroid 5 Centroid 6
CRIM 19.09 0.96 7.18 0.20 0.05 0.89
ZN 0.00 0.34 0.00 6.25 60.29 20.06
INDUS 18.49 15.86 18.10 7.30 3.40 6.00
CHAS 0.00 0.12 0.09 0.05 0.00 0.18
N0X 0.68 0.62 0.67 0.48 0.42 0.51
RM 5.79 5.89 6.22 6.19 6.66 7.31
AGE 94.17 92.10 86.53 55.29 28.27 63.27
DIS 1.79 2.56 2.35 4.61 7.25 3.60
RAD 23.20 4.46 24.00 4.62 3.84 6.16
TAX 667.80 371.92 666.00 292.67 312.64 294.47
PTRATIO 20.20 18.44 20.20 18.42 16.99 16.38
B 212.65 353.71 358.77 390.38 390.15 388.38
LSTAT 23.86 16.97 15.29 10.15 5.89 5.30
Housing value 12.10 17.98 19.51 22.54 29.33 36.34
Number of data in this cluster 45 74 60 125 58 42

Table 3.10: Information about the centroid of each cluster and the number of data
points within it.

119

Characteristics of the house

Centroid 1 Extremely high crime rate, old house, close to employment centers,
high property-tax rate, larger population of people classified as lower status

Centroid 2 Old house, less rooms in the house
Centroid 3 High crime rate, high property-tax rate
Centroid 4 Normal house

Centroid 5 Very large house, far from employment centres, better education environment,
less lower status population, new house

Centroid 6 Large house, More rooms in the house, better education environment,
much less lower status population, low property-tax rate

Table 3.11: Characteristics of the centroids of each cluster found using inspection.

clusters. There are also significant differences between the average housing values of

each cluster. Looking at the centroids closely, we observe that each cluster can be

interpreted as representing a specific type of house. In Table 3.11, we describe the

characteristics of each centroid that we find using inspection, while in Table 3.12, we

describe the characteristics we find using an algorithmic approach. As one can see,

the two methods get nearly identical results, illustrating that extracting insights from

the model does not require human inspection, but can be achieved automatically and

algorithmically. When a new house comes, the model first indicates which type of

house this new house is most similar to based on the distance to each centroid. After

it is assigned to a specific cluster, we use linear regression to predict the exact housing

value of this new house. The coefficients of linear regression in each cluster are shown

in Table 3.13. In different clusters, variables have different levels of importance. For

Cluster 1, CRIM, N0X and AGE are the most important variables in the Lasso

regression, as they have the largest magnitude. For Cluster 6, however, the most

important coefficients are INDUS, AGE, DIS, TAX, PTRATIO and LSTAT.

As a comparison, we also train an ORT-L model on this data. We tune both the

depth of the tree from 1 to 10 and the complexity parameter to be between 0.001 and

120

Characteristics of the house

Centroid 1
Highest crime rate, lowest number of rooms, highest property tax, oldest houses,
closest to employment centers, highest population of people classified
as lower status, lowest proportion of tracts bounding Charles

Centroid 2 Second oldest houses, second lowest number of rooms in the house,
second highest proportion of tracts bounding the Charles

Centroid 3
Second highest crime rate, second highest property-tax rate, second lowest
distance to Boston employment centers, second highest proportion of
non-retail business acres per town

Centroid 4 Second lowest crime rate, second lowest age of house, lowest property tax rate,
second highest distance from the Boston employment centers

Centroid 5
Second highest number of rooms, lowest crime rate, newest houses, furthest
distance from Boston employment centers, second lowest proportion of lower
status population

Centroid 6 Largest number of rooms in the house, lowest pupil teacher ratio, lowest
proportion of lower status population, second lowest property-tax rate

Table 3.12: Characteristics of the centroids of each cluster found algorithmically.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
CRIM -0.081 0.000 -0.363 0 0 0.000
ZN 0 0 0 0 0.053 -0.023
INDUS 0 0.066 0 -0.144 0 0.459
CHAS 0 0.691 3.453 0 3.107 0
N0X -38.996 -12.999 -30.585 -3.823 0 0
RM -0.530 4.241 -1.855 5.964 11.397 9.409
AGE 0.109 0 0 -0.045 -0.006 -0.116
DIS 0 -0.217 -4.769 -0.954 -0.520 -1.561
RAD 0 0 0 0.010 0 0
TAX 0 -0.003 0 -0.011 -0.003 -0.020
PTRATIO 0 -0.871 0 -0.332 0.083 -1.120
B -0.002 0.011 0 0 0 0
LSTAT -0.253 -0.228 -1.303 0 -0.354 -0.696

Table 3.13: Coefficients of the linear regression in each cluster.

121

Figure 3-3: ORT-L for predicting house values.

0.1. The out-of-sample 𝑅2 of this ORT is 0.884. The exact tree is shown in Figure

3-3 and the coefficients of the linear regression model of each leaf are shown in Table

3.14. Similarly to OPC, ORT-L also finds several clusters (leaves). In each leaf, the

prediction is made by a linear regression. However, while the ORT-L’s splits are

easy to follow, the profiles they create at each leaf node are not always as detailed

as the ones created by OPC, as if a variable does not appear in a split, it is basically

ignored by the model. The data are also spread around much more unevenly in the

tree, with some leaves having a single digit number of points while others have many

more. Overall, though, observing a point’s distance from different centroids is not

significantly different from following the path a point takes down the tree, and there

is thus not a significant loss of interpretability.

3.5.3 Wine Quality Dataset Results

In this section, we illustrate how to interpret OPC on another real-world example

about wine quality from [26], and again compare the interpretability of OPC with

122

Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6 Leaf 7 Leaf 8
CRIM 0 0 0 0 0 -0.050 0 -0.029
ZN 0.009 0.004 0.007 0 0 0 0 0
INDUS -0.089 0 0 0 0 0 0 0
CHAS 0.953 -1.680 0 0 0 0 0 0
N0X -7.244 0 0 0 0 0 0 0
RM 4.086 0 0 0 0 -0.499 0 0
AGE -0.037 0 0 0 0 -0.001 0 0
DIS -0.815 0 0 0 0 0 0 0
RAD 0.021 0 0 0 0 0.033 0 0
TAX -0.008 0 0 0 0 0 0 -0.006
PTRATIO -0.564 0 -0.731 0 0 0 0 0
B 0.008 0 0 0 0 0.009 0 0
LSTAT -0.187 0 0 0 0 -0.501 0 0

Table 3.14: Coefficients of the linear regression in each leaf.

ORT-L. There are 1598 samples and 11 variables in this dataset. The target is to

predict the quality of red wine.

We tune both number of clusters 𝐾 from 3 to 7 and 𝛼 between 0.03 and 1.0. We

fix 𝑁𝑚𝑖𝑛 to be 10 and 𝜆 to be 0.01. After we run the OPC algorithm, it returns

4 clusters and the out-of-sample 𝑅2 of OPC is 0.404. The information about each

cluster OPC finds is shown in Table 3.15. Each row represents the centroid for a

given cluster and the last row shows the number of data points in each cluster.

In this model, we observe all data points are once again nearly equally spread

among each cluster. There is also a significant difference between the average wine

quality values of each cluster. Looking at the centroids closely, we observe that

each cluster represents a specific type of red wine. In Table 3.16, we describe the

characteristics of each centroid, while in table 3.17, we describe the characteristics

we find using an algorithmic approach. As one can see, the two methods once more

get nearly identical results, further illustrating that interpretable insights can be

123

Centroid 1 Centroid 2 Centroid 3 Centroid 4 Centroid 5
Fixed acidity 8.11 7.96 8.39 8.88 8.84
Volatile acidity 0.58 0.73 0.50 0.41 0.40
Citric acid 0.24 0.17 0.28 0.37 0.41
Residual sugar 2.57 2.56 2.46 2.74 2.76
Chlorides 0.09 0.10 0.09 0.08 0.07
Free sulfur dioxide 17.07 12.23 15.32 14.00 14.00
Total sulfur dioxide 55.96 33.51 40.35 34.18 30.86
Density 1.00 1.00 1.00 1.00 1.00
PH 3.31 3.38 3.31 3.29 3.23
Sulphates 0.62 0.60 0.68 0.74 0.78
Alcohol 9.94 10.20 10.63 11.45 11.95
Quality 5.25 5.34 5.68 6.11 6.55
Amount of data in this cluster 371 330 236 205 136

Table 3.15: Information about the centroids of each cluster and the number of data
points within it.

extracted from the model without human inspection. When we want to make a

prediction about a new wine, the model will first indicate which type of wine this new

wine is most similar to based on the distance to each centroid. After it is assigned

to a specific cluster, we use linear regression to predict the exact quality of this

new wine. The coefficients of the cluster-specific linear regression models are shown

in Table 3.18. We can see in different clusters, different variables are important in

the Lasso regression. For example, alcohol and total sulfur dioxide are the most

important variables in Cluster 1. However, fixed acidity, chlorides, and PH are the

most important variables in Cluster 5.

As a comparison, we also train an ORT-L model. We tune both the depth of the

tree from 1 to 10 and the complexity parameter to be between 0.001 and 0.1. The

out-of-sample 𝑅2 of this ORT-L is 0.376. The tree is shown in Figure 3-4 and the

coefficients of the linear regression model of each leaf are shown in Table 3.19.

Like in the last example, the tree’s splits are easy to follow, but the resulting

profiles are not the most informative compared to the OPC centroid profiles. The

124

Characteristics of the red wine

Centroid 1 High free sulfur dioxide, high total sulfur dioxide,
low sulphates, low alcohol

Centroid 2 High volatile acidity, Low fixed acidity, high sulphates
Centroid 3 Normal Wine
Centroid 4 High fixed acidity, low volatile acidity

Centroid 5 High fixed acidity, low volatile acidity, low pH
high citric acid, low chlorides,high sulphates, high alcohol

Table 3.16: Characteristics of the centroids of each cluster found using inspection.

Characteristics of the wine

Centroid 1 Lowest alcohol content, highest total sulfur dioxide, highest free
sulfur dioxide

Centroid 2
Second lowest alcohol content, second lowest amount of residual sugar,
highest PH, lowest acidity, second lowest sulphates value, lowest free
sulfur dioxide, highest volatile acidity

Centroid 3 Lowest residual sugar level, second highest free and total sulfur
dioxide levels, second highest PH values

Centroid 4
Second highest residual sugar levels, second highest alcohol values,
second highest citric acid level, second lowest PH value, second
lowest volatile acidity, highest fixed acidity

Centroid 5
Highest residual sugar value, highest alcohol content level, lowest
chloride level, lowest PH value, second highest fixed acidity, lowest
volatile acidity, highest sulphate value, highest citric acid values

Table 3.17: Characteristics of the centroids of each cluster found algorithmically.

125

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Fixed acidity 0 0.117 0 0.065 -0.033
Volatile acidity -0.226 -1.404 -0.725 -0.181 -0.679
Citric acid -0.167 0 -0.500 0 0.375
Residual sugar 0.023 0 0.200 0.029 0.035
Chlorides 0 0 -0.655 -1.638 -3.603
Free sulfur dioxide 0 0.014 0.004 0 0
Total sulfur dioxide -0.003 0 0 -0.004 -0.002
Density 8.633 -56.112 0 -107.908 25.898
PH 0 -0.312 -0.156 -0.052 0.364
Sulphates 0 1.872 0.576 1.728 0.096
Alcohol 0.284 0.184 0.154 0.192 0.008

Table 3.18: Coefficients of the regression in each cluster.

Figure 3-4: The Optimal Tree for predicting wine quality.

126

Leaf 1 Leaf 2 Leaf 3 Leaf 4
Fixed acidity 0 0 0 0
Volatile acidity 0 -1.179 -0.939 0
Citric acid -0.1443 0 -0.246 0
Residual sugar 0 -0.013 0.0213 0
Chlorides 0 0 -0.709 0
Free sulfur dioxide 0 0.009 0.002 0
Total sulfur dioxide 0 0 -0.006 0
Density 0 0 -0.435 0
PH 0 -0.652 -0.651 0
Sulphates 0 0 0.203 0
Alcohol 0 0.200 0.351 -0.123

Table 3.19: Coefficients of the linear regression in each leaf.

data are also spread more unevenly in the tree as in the last example, with the

number of points sorted to a particular leaf ranging from 26 to 769. Overall, though,

this process again shows that classifying points based on their distance from different

centroids is still not significantly less interpretable than following the path a point

takes down the tree.

These two real-world examples therefore illustrate how to interpret OPC models.

In summary, OPC first finds which cluster the new data point belongs to and then

uses linear regression to make a prediction. Compared to Optimal Regression Trees,

OPC does not have the apparent geometric structures of splits to differentiate the

clusters. However, given the profiles one can create using the cluster centroids,

OPC provides faster training times and better performance without losing too much

interpretability.

127

3.6 Conclusions

In this paper, we introduced a methodology known as optimal predictive clustering

that generalizes MIO-based approaches to the problem of clusterwise regression. This

method clusters data using both X and y values, while also learning cluster specific

models to make predictions. In terms of performance, scalability and interpretability,

we illustrate OPC is competitive with previous methods, as shown in Table 3.2.

Experiments with synthetic data show strong evidence that OPC can recover

the underlying structure of the data when such a structure exists. For real-world

datasets, we show that the proposed algorithm achieves cutting edge performance

at a reasonable speed. Furthermore, the All-Ensemble increases out-of-sample

𝑅2 by 0.034 (13.4% improvement) on average compared to ORT-L, by 0.007 (6.1%

improvement) compared to Model Trees, and by 0.003 (0.4% improvement) compared

to XGBoost. Through a general description of the interpretation process and two

examples, we also show that OPC maintains interpretability while achieving these

results. The fact that this process can be accomplished algorithmically further

emphasizes the interpretability of the method, as manual inspection is no longer

requires to extract meanings from the clusters.

OPC therefore brings us closer to a current significant objective in machine learn-

ing – to create and implement models with state-of-the-art performance, scalability,

and interpretability.

128

Chapter 4

On the Limitations of Predicting

Post Transplant Outcomes

4.1 Introduction

Although organ transplantation is often a life-saving procedure, the demand for

organs outstrips the supply. Around 13,500 people were added to the transplant

waiting list in 2019 and only around 9000 organs were transplanted that same year.

Therefore, deciding how to allocate the limited number of organs available is a major

challenge.

There are multiple factors one can use to decide who should be offered an organ.

One option is looking at which potential recipient would have the greatest predicted

post-transplant survival time if they received the organ. This approach has some his-

torical precedent, as predicted post-transplant survival is already incorporated into

the Lung Allocation Score ([33]), which is a key factor in deciding who is offered a

donated lung or pair of lungs when one becomes available. Other authors have pro-

129

posed using such a metric for other organs like the liver ([101],[19]). With the Organ

Procurement and Transplantation Network (OPTN) switching over to a continuous

distribution model, which is intended to be a “more equitable system of allocating

deceased donor organs,” there will likely be discussion of how post-transplant survival

could be used as a factor in the system.

However, it is not clear how well one could predict post-transplant survival at

the time of allocation. If one cannot do so accurately enough, then it could be

questionable to base allocation policies on it. In this chapter we seek to explore

the question how well one can predict post-transplant survival for liver, renal, and

lung transplantation using a comprehensive data set and state-of-the-art machine

learning models, to understand the potential value of its inclusion as a factor in the

new allocation system.

We find that overall predicting one-year graft outcomes is a difficult task. The

best performing model across all the organs has an AUC of 0.67, which means the

models do not effectively differentiate recipient-donor pairs who will have successful

grafts from those who will experience a failure event in one year. We therefore

believe that predicted post-transplant survival outcomes should not be included as

a criterion for organ allocation at this time.

4.2 Data and Exclusion Criteria

We obtained data for the different organs from the Organ Procurement and Trans-

plantation Network’s Standard Transplant Analysis and Research (STAR) dataset.

The data included the following categories:

• Waitlist information, such as patient demographics, medical lab values, etc.

130

• Deceased-donor information including demographics, medical lab values, cause

of death, etc.

• Transplant information, including which donors were matched to which recip-

ients, cold ischemia time, location codes for the transplant, etc.

• Follow-up information for the patient, such as if the patient’s graft failed or

not, if it failed when it failed, etc.

4.2.1 Liver Data

Waitlist, deceased-donor, transplant, and follow-up information for liver transplants

was obtained for the period January 1st, 2002 to September 5th, 2016 from the

Organ Procurement and Transplantation Network Standard Transplant Analysis and

Research (STAR) dataset. The data were filtered using the exclusion criteria that

the recipient must have been over 18 years old and not have received any previous

transplant, that the donor was deceased, that the transplant involved a whole liver,

and that the recipient received no other organ (ex. a kidney).

4.2.2 Lung Data

Waitlist, deceased-donor, transplant, and follow-up information for lung transplants

was obtained for the period January 1st, 2006 to September 5th, 2016 from the STAR

dataset. The data were filtered using the exclusion criteria that the recipient must

have been over 18 years old and not have received any previous transplant, that the

donor was deceased, that the transplant involved either a single lung or a pair, and

that the recipient received no other organ (ex. a kidney).

131

4.2.3 Kidney Data

Waitlist, deceased-donor, transplant, and follow-up information for kidney trans-

plants was obtained for the period January 1st, 2002 to September 5th, 2016 from

the STAR dataset. The data were filtered using the exclusion criteria that the recip-

ient must have been over 18 years old and not have received any previous transplant,

that the donor was deceased, that the transplant involved a kidney, that the recipient

received no other organ such as a liver, and that the recipient had either one year of

follow up or a recorded date of graft failure or death.

A notable criterion that we do not use for liver and lung data but do use for

kidney data is requiring that the patient have either follow up records for at least

one year past their transplantation date or have a graft failure or death date recorded.

This is because if a liver or lung graft fails, the recipient will either need medical

attention or will die. The first case will result in a medical follow-up visit and a

record of the graft failure existing. The second case will also result in a record, since

the OPTN independently seeks out and obtains information about patient deaths.

We can therefore assume that a liver or lung patient’s graft is still functioning at

the one-year mark if information about the follow up status of a patient ends prior

to a year, but they do not have graft failure or death events recorded. For a kidney

transplant, though, it is possible for the graft to start to fail and the recipient to

just resume the dialysis, without needing to visit a hospital and having the graft

failure event recorded. We therefore require kidney graft recipients to have enough

follow-up information to ensure we can accurately identify their transplant outcome

in one year.

132

4.3 Observations, Dependent and Independent Vari-

ables

4.3.1 Liver Data

An observation corresponded to a donor-recipient pair at the time of transplant. All

such available observations that were not excluded based on the previously discussed

criteria were retrieved and totaled 69,248 observations. For each observation, the

dependent variable was set to 1 if the patient experienced graft failure or died within

one year of their transplant, and to 0 otherwise. A total of 210 independent variables

were recorded for each observation. This included variables in the medical records

at time of transplant such as lab values, as well as additional variables that were cal-

culated from some of the more granular features. Examples of constructed variables

include the change in lab values like bilirubin and serum creatinine from a recipient’s

previous medical appointment to the transplant and the ratio of donor and recipient

BMIs, among others.

Missing values were imputed using OptImpute, a machine learning approach

which has demonstrated the ability to outperform other related extant methods

([12]). 38 features have missing values, with maximum percentage of missing values

per feature being 21.5%. 27.4% of the pairs in the liver data have some missing val-

ues among their features, with up to 8.6% of the features being missing for a given

donor-recipient pair.

4.3.2 Lung Data

An observation corresponded to a donor-recipient pair at the time of transplant. All

such available observations that were not excluded based on the previously discussed

133

criteria were retrieved and totaled 18,096 observations. For each observation, the

dependent variable was set to 1 if the patient experienced graft failure or died within

one year of their transplant, and to 0 otherwise. A total of 148 independent variables

were recorded for each observation. As with the liver data, additional variables were

calculated from some of the more granular features such as the change in lab values

like bilirubin and serum creatinine from a recipient’s previous medical appointment

to the transplant, the ratio of donor and recipient BMIs, etc.

Missing values were again imputed using OptImpute. 44 features have missing

values, with maximum percentage of missing values per feature being 33.3%. 60.7%

of the pairs in the lung data have some missing values among their features, with up

to 20.2% of the features being missing for a given donor-recipient pair.

4.3.3 Kidney Data

An observation corresponded to a donor-recipient pair at the time of transplant. All

such available observations that were not excluded based on the previously discussed

criteria were retrieved and totaled 124,675 observations. For each observation, the

dependent variable was set to 1 if the patient experienced graft failure or died within

one year of their transplant, and to 0 otherwise. A total of 114 independent variables

were recorded for each observation. As with the liver data, additional variables were

calculated from some of the more granular features such as the change in lab values

like bilirubin and serum creatinine from a recipient’s previous medical appointment

to the transplant, the ratio of donor and recipient BMIs, etc.

Missing values were again imputed using OptImpute. 17 features have missing

values, with maximum percentage of features missing being 40.6%. 99.3% of the

pairs in the data have some missing values among their features, but only up to

134

11.4% of the features were missing for a given donor-recipient pair.

4.4 Methods

4.4.1 Predictive methods

The prediction problem was addressed using models that were trained on histori-

cal data. These models included interpretable Optimal Classification Trees (OCTs)

and three popular black box methods called random forests, XGBoost, and neural

networks. OCTs are a state-of-the-art machine learning prediction method that af-

fords interpretability and high prediction accuracy ([7]). On the other hand, random

forests, XGBoost, and neural networks lack interpretability but are also highly ef-

fective and widely used predictive models ([55],[24],[17]). These models predict the

probability of a patient dying or experiencing graft failure within one year (the de-

pendent variable), given his or her characteristics (the independent variables). To

make such predictions, the models were first trained on historical observations of

independent variables and their associated dependent variables. Once trained, the

models predict the dependent variables, given observations of the independent vari-

ables, which were potentially previously unseen by the model.

Beyond these machine learning models, models that were constructed by others

or proposed in the literature were also investigated. For livers this includes the DRI,

which was reported and used in SRTR, and the D-MELD and BAR scores, which

were proposed in the literature ([41],[32],[34]). For lung data the LAS score was used,

and for kidney data KDPI was used ([67]). For these cases logistic regression and

tree models were trained with the scores as features predicting graft failure.

135

4.4.2 Model Calibration

Observations were randomly split into training, validation, and testing sets. Specifi-

cally, 50% of observations were assigned to the training set, 20% to the validation set

and 30% to the testing set. The models were fit on the training set and then the out-

of-sample AUC value for the validation set was computed. The models that yielded

the highest AUC for the validation set were selected and applied to the testing data.

For OCTs and OPTs, depths from 1 to 8 were used in the validation procedure. The

package itself also tunes the complexity parameters and the minimum number of

points per leaf of the tree. For XGBoost, depths from 1 to 8 and eta parameters

from .001 to 3 were used in the validation procedure. For random forests, depths

from 1 to 8 and number of trees from 10 to 1000 were used in the validation proce-

dure. Lastly, for neural networks, the number of hidden layers was tuned from 2 to

6, the number of nodes per hidden layer from 50 to 500, the gradient descent step

size from 0.001 to 1, and regularization parameter from 0.00001 to 1.

4.4.3 Out-of-sample AUC

Performance was evaluated by measuring out-of-sample Area Under the Curve (AUC)

on the testing set. A model’s AUC corresponds to the probability that a randomly

drawn observation whose dependent value was 1 (i.e., a patient who died or expe-

rienced graft failure) has a higher score under that model than a randomly drawn

observation whose dependent values was 0 ([42]). Therefore, the models’ AUC values

measures their ability to differentiate patients who will die or experience graft failure

within one year from ones who will not.

136

4.4.4 Disclaimer

This study used data from the Standard Transplant Analysis and Research (STAR)

dataset. The STAR data system includes data on all donor, wait-listed candidates,

and transplant recipients in the US, submitted by the members of the Organ Pro-

curement and Transplantation Network (OPTN). The Health Resources and Services

Administration (HRSA), U.S. Department of Health and Human Services provides

oversight to the activities of the OPTN contractors.

4.5 Results

4.5.1 Liver Data

The results for the models trained on liver data are as follows in Table 4.1.

Method Out-of-sample R2

D-MELD 0.58

BAR 0.61

DRI 0.54

Random Forest 0.64

XGBoost 0.64

Neural Networks 0.66

OCTs 0.61

Table 4.1: Results for liver transplant models.

For liver transplant recipients, neural networks had the best out-of-sample AUC

for predicting one-year graft failure, followed closely by the other black box models,

137

the OCT model, and the model only using the BAR score. The best AUC is the

low 0.66, indicating there is not very much signal in the liver data for predicting

post-transplant outcomes.

4.5.2 Lung Data

The results for the models trained on lung data are as follows in Table 4.2.

Method Out-of-sample R2

LAS 0.55

Random Forest 0.62

XGBoost 0.61

Neural Networks 0.60

OCTs 0.60

Table 4.2: Results for lung transplant models.

For lung transplant recipients, the best model is the random forest, followed

closely by XGBoost and then the OCT and neural network models. The best AUC

is 0.62, indicating there is not very much signal in the lung data either.

4.5.3 Kidney Data

The results for the models trained on kidney data are as follows in Table 4.3.

138

Method Out-of-sample R2

KDPI 0.57

Random Forest 0.65

XGBoost 0.65

Neural Networks 0.67

OCTs 0.62

Table 4.3: Results for kidney transplant models.

For kidney transplant recipients, the best model is neural networks, followed by

XGBoost and random forests and then the OCT model. The best AUC of any of

the models is another low value, in this case 0.67.

4.6 Discussion

By constructing new models, by evaluating existing models, and by studying com-

prehensive datasets across a variety of organs, a common picture emerged across the

board in this systematic study. An AUC of 0.67 means that when it comes to allo-

cation these models would very frequently misclassify or fail to stratify the patient

who has a higher post-transplant survival compared to one who has a lower chance of

post-graft survival. The models therefore do not effectively predict post-transplant

outcomes for patients.

The machine learning methods used to predict post-transplant survival are state-

of-the-art modeling techniques. Neural networks are amongst the most widely used

machine learning methods with a wide variety of successful applications, and opti-

mal classification trees are a state-of-the-art interpretable machine learning method.

Simpler versions of these models such as logistic regression have been applied ef-

139

fectively in the transplant area (ex. in defining MELD ([100]). Others have also

used these methods to improve upon those earlier successes, such as applying opti-

mal classification trees to predict mortality for patients on the liver transplantation

waiting list ([11]), which was shown to reduce waitlist mortality compared to MELD

in an analysis involving the Liver Simulated Allocation Model (LSAM). However,

the application of these models to post-transplant survival resulted in poor perfor-

mance. This suggests that with the current machine learning technology and data

that are available at the time of allocation, it does not seem plausible that there will

be a model that will be accurate enough to include as part of the decision/allocation

process in the near future.

Our hypothesis is that the key limitation comes from data. Given the successes all

the machine learning methods have had across applications and even within trans-

plantation, it seems unlikely to us that they would be the primary issue. There

are several hypotheses as to why the data at time of transplantation might not be

sufficient for making predictions.

One hypothesis is that the post-transplant outcome could be a very complicated

function of the recipient, donor, and procedure information, and fundamentally at

time of allocation there isn’t any procedure data. Trying to make a prediction about

post-transplant survival outcomes without procedure information might be akin to

trying to predict who will win the Super Bowl at the beginning of the season, prior

to observing how the teams perform or any injuries that might occur. There is data

about the players themselves, but not about how they perform in action, so the

performance of predictive models would be limited. After the regular season there

would probably be much better data for making predictions. Likewise, after surgery,

it would likely be possible to make a much better prediction about post-transplant

outcomes with the data about how the surgery went and any complications a patient

140

experienced after the procedure.

A second hypothesis is that the current data collected about donors and recipi-

ents might not be diverse enough to explain post-transplant outcomes. Other data,

such as biopsies, scans of the patients’ bodies, or genetic information might be cru-

cial influences in post-transplant outcomes. In that case trying to predict survival

outcomes without them would achieve limited success.

Overall, though, the results indicate post-transplant survival predictions should

most likely not be used to stratify patients or as a factor in organ allocation decisions

for now.

141

142

Chapter 5

Conclusion

In this thesis, we have studied various aspects of interpretable machine learning and

its application in the health care domain.

Chapter 2 compares decision trees and neural networks both theoretically and

empirically. We prove that given a neural network one can construct an equivalent

decision tree. In some cases this necessitates decision trees of great depths, so we

further empirically compare the performances of the two methods on a variety of

data sets and find that even without theoretical guarantees the two methods achieve

similar performances in practice. We therefore show that in many applications deci-

sion trees can be used without loss of predictive performance compared to a cutting

edge black box method, but with a significant gain in interpretability.

Chapter 3 proposes a novel machine learning method called Optimal Predic-

tive Clustering (OPC), which simultaneously clusters and learns cluster-specific re-

gression models utilizing a combination of mixed-integer optimization methods and

strong warm starts. We find that OPC achieved a combination of predictive perfor-

mance, scalability, and interpretability that is competitive with other cutting edge

143

interpretable machine learning methods, and that when included in an ensemble

of models alongside other models such as XGBoost and Model Trees it achieves a

predictive performance that outperforms all other methods. The proposed method

therefore improves upon the state-of-the art for both interpretable methods and

overall predictive performance for regression problems.

Chapter 4 investigates how well one can predict transplant outcomes given pre-

transplant information for liver, lung, and kidney transplants. We find that with

the current data and machine learning models that we are unable to train models

that would reliably differentiate between patients who would experience graft failure

within one year and those who would not. We therefore provide important evidence

that post-transplant survival predictions should most likely not be used as a factor

in organ allocation decisions for now.

Together, these chapters illustrate the theoretical and practical effectiveness of

interpretable methods, especially in the health care domain. We hope that the

strengths and efficacy of these interpretable techniques will encourage their scientific

usage and in particular support the overall goal in health care of achieving better

outcomes for patients so that more people can live longer lives with higher quality

of life.

144

Bibliography

[1] M. W. Ahmad, M. Mourshed, and Y. Rezgui. Trees vs Neurons: Comparison
between random forest and ANN for high-resolution prediction of building
energy consumption. Energy and Buildings, 2017.

[2] E. Angün and A. Altınoy. A new mixed-integer linear programming formu-
lation for multiple responses regression clustering. In 2019 6th International
Conference on Control, Decision and Information Technologies (CoDIT), pages
1634–1639, April 2019.

[3] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.
Technical report, Stanford, 2006.

[4] A. M. Bagirov, J. Ugon, and H. G. Mirzayeva. An algorithm for cluster-
wise linear regression based on smoothing techniques. Optimization Letters,
9(2):375–390, Feb 2015.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[6] D. Bertsimas, K. O. Allison, and W. R. Pulleyblank. The Analytics Edge.
Dynamic Ideas, 2016.

[7] D. Bertsimas and J. Dunn. Optimal classification trees. Machine Learning,
pages 1–44, 2017.

[8] D. Bertsimas and J. Dunn. Optimal Trees for Prediction and Prescription.
Dynamic Ideas, 2018.

[9] D. Bertsimas and J. Dunn. Machine Learning under a Modern Optimization
Lens. Dynamic Ideas Press, 2019.

145

[10] D. Bertsimas, A. King, and R. Mazumder. Best subset selection via a modern
optimization lens. Ann. Statist., 44(2):813–852, 04 2016.

[11] D. Bertsimas, J. Kung, N. Trichakis, Y. Wang, R. Hirose, and P. A. Vagefi.
Development and validation of an optimized prediction of mortality for can-
didates awaiting liver transplantation. American Journal of Transplantation,
19(4):1109–1118, 2019.

[12] D. Bertsimas, C. Pawlowski, and Y. Zhuo. From predictive methods to missing
data imputation: an optimization approach. The Journal of Machine Learning
Research, 18(1):7133–7171, 2017.

[13] D. Bertsimas and R. Shioda. Classification and regression via integer optimiza-
tion. Operations Research, 55:252–271, 04 2007.

[14] G. Biau, E. Scornet, and J. Welbl. Neural Random Forests, 2018.

[15] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering
trees, 2000.

[16] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[17] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct 2001.

[18] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
regression trees. CRC press, 1984.

[19] J. Briceño, M. Cruz-Ramírez, M. Prieto, M. Navasa, J. Urbina, R. Orti, M. Á.
Bravo, A. Otero, E. Varo, S. Tome, G. Clemente, R. Bañares, R. Bárcena,
V. Cuervas-Mons, G. Solorzano, C. Vinaixa, A. Rubín, J. Colmenero, A. Val-
divieso, and M. García. Use of artificial intelligence as an innovative donor-
recipient matching model for liver transplantation: Results from a multicenter
Spanish study. Journal of hepatology, J Hepatol. 2014 Nov:1020–8, 11 2014.

[20] R. Carbonneau, G. Caporossi, and P. Hansen. Extensions to the repetitive
branch and bound algorithm for globally optimal clusterwise regression. Com-
puters & Operations Research, 39:2748–, 11 2012.

[21] R. A. Carbonneau, G. Caporossi, and P. Hansen. Globally optimal cluster-
wise regression by mixed logical-quadratic programming. European Journal of
Operational Research, 212:213–222, 2010.

146

[22] R.A. Carbonneau, G. Caporossi, and P. Hansen. Globally optimal clusterwise
regression by column generation enhanced with heuristics, sequencing and end-
ing subset optimization. Journal of Classification, 31(2):219–241, Jul 2014.

[23] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. Proceedings of the 23rd international conference on Ma-
chine learning, 2006.

[24] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA,
2016. Association for Computing Machinery.

[25] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[26] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision Support
Systems, 47(4):547–553, 2009.

[27] W. Desarbo, R. Oliver, and A. Rangaswamy. A simulated annealing method-
ology for clusterwise linear regression. Psychometrika, 54:707–736, 02 1989.

[28] W. S. DeSarbo and W. L. Cron. A maximum likelihood methodology for
clusterwise linear regression. Journal of Classification, 5(2):249–282, Sep 1988.

[29] E. Devijver. Model-based regression clustering for high-dimensional data: ap-
plication to functional data. Advances in Data Analysis and Classification,
11:243–279, 2016.

[30] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017.

[31] D. Dua and C. Graff. UCI machine learning repository, 2017.

[32] P. Dutkowski, C. E. Oberkofler, K. Slankamenac, M. A. Puhan, E. Schadde,
B. Müllhaupt, A. Geier, and P. A. Clavien. Are there better guidelines for
allocation in liver transplantation? Annals of Surgery, 254(5):745–754, 2011.

[33] T. M. Egan, S. Murray, R. T. Bustami, T. H. Shearon, K. P. McCullough,
L. B. Edwards, M. A. Coke, E. R. Garrity, S. C. Sweet, D. A. Heiney, and
F. L. Grover. Development of the new lung allocation system in the united
states. American Journal of Transplantation, 6(5p2):1212–1227, 2006.

147

[34] S. Feng, N. P. Goodrich, J. L. Bragg-Gresham, D. M. Dykstra, J. D. Punch,
M. A. DebRoy, S. M. Greenstein, and R. M. Merion. Characteristics associated
with liver graft failure: The concept of a donor risk index. American Journal
of Transplantation, 6(4):783–790, 2006.

[35] N. Frosst and G. Hinton. Distilling a Neural Network Into a Soft Decision Tree.
arXiv, 2017.

[36] I. Gitman, J. Chen, E. Lei, and A. Dubrawski. Novel prediction techniques
based on clusterwise linear regression. ArXiv, abs/1804.10742, 2018.

[37] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[38] Google. Google search, 2018. Online; accessed 2018-01-11.

[39] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6645–6649. IEEE, 2013.

[40] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidi-
mensional recurrent neural networks. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems
21, pages 545–552. Curran Associates, Inc., 2009.

[41] J. B. Halldorson, R. Bakthavatsalam, O. Fix, J. D. Reyes, and J. D. Perkins.
D-meld, a simple predictor of post liver transplant mortality for optimization of
donor/recipient matching. American Journal of Transplantation, 9(2):318–326,
2009.

[42] J. A. Hanley and B. J. Mcneil. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 143(1):29–36, 1982.

[43] P Hansen and G Caporossi. Variable neighborhood search for least squares
clusterwise regression. 2005.

[44] D. Harrison Jr and D. L. Rubinfeld. Hedonic housing prices and the demand for
clean air. Journal of environmental economics and management, 5(1):81–102,
1978.

[45] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

148

[46] D. P. Helmbold and P. M. Long. On the inductive bias of dropout. Journal of
Machine Learning Research, 16:3403–3454, 2015.

[47] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[48] K. D. Humbird, J. L. Peterson, and R. G. McClarren. Deep neural network
initialization with decision trees. 2018.

[49] LLC Interpretable AI. Interpretable AI documentation, 2019.

[50] I. Ivanova and M. Kubat. Initialization of neural networks by means of decision
trees. Knowledge-Based Systems, 8(6):333–344, 1995.

[51] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulò. Deep neural decision
forests. In IJCAI International Joint Conference on Artificial Intelligence,
2016.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Pro-
cessing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[53] A. Kurenkov. A ‘brief’ history of neural nets and deep learning, part 1, 2015.
Online; accessed 2017-09-10.

[54] K. Lau, P. L. Leung, and K. Tse. A mathematical programming approach to
clusterwise regression model and its extensions. European Journal of Opera-
tional Research, 116:640–652, 1999.

[55] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[56] Y. A. LeCun, L. Bottou, G. B. Orr, and K. Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[57] J. Lee, M. Kang, and J. Kang. Ensemble of binary tree structured deep con-
volutional network for image classification. In 2017 Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference (APSIPA
ASC), pages 1448–1451, Dec 2017.

[58] A. Li, S. Luo, Y. Liu, and H. Yu. The equivalency between a decision tree
for classification and a feedback neural network. Proceedings 7th International
Conference on Signal Processing, 2004. Proceedings. ICSP 04. 2004., 2004.

149

[59] M. Lichman. UCI machine learning repository, 2013.

[60] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[61] N. Manwani and P. S. Sastry. K-Plane regression. CoRR, abs/1211.1513, 2012.

[62] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[63] J. Meier. A fast algorithm for clusterwise linear absolute deviations regression.
Operations-Research-Spektrum, 9(3):187–189, Sep 1987.

[64] C. Meynet and C. Maugis-Rabusseau. A sparse variable selection procedure in
model-based clustering. 2012.

[65] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, page 3, 2010.

[66] V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and D. Comaniciu. Deep
decision network for multi-class image classification. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2240–2248, June
2016.

[67] U.S. Department of Health and Human Services. KDPI calculator. 2017.

[68] R. S. Olson, W. La Cava, Z. Mustahsan, Z. Varik, and J. H. Moore. Data-driven
advice for applying machine learning to bioinformatics problems, 2018.

[69] Y. W. Park, W. Jiang, D. Klabjan, and L. Williams. Algorithms for generalized
clusterwise linear regression. INFORMS Journal on Computing, 29:301–317,
2017.

[70] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[71] J. R. Quinlan. Learning with continuous classes. pages 343–348. World Scien-
tific, 1992.

150

[72] S. Raschka. Single-layer neural networks and gradient descent, 2015. Online;
accessed 2017-09-9.

[73] G. Raskutti, M. J. Wainwright, and B. Yu. Early stopping and non-parametric
regression: an optimal data-dependent stopping rule. Journal of Machine
Learning Research, 15(1):335–366, 2014.

[74] D. L. Richmond, D. Kainmüller, M. Y. Yang, E. W. Myers, and C. Rother.
Relating cascaded random forests to deep convolutional neural networks for
semantic segmentation. CoRR, abs/1507.07583, 2015.

[75] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton project
para. Technical report, Cornell Aeronautical Laboratory, 1957.

[76] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foun-
dations of research. chapter Learning Representations by Back-propagating
Errors, pages 696–699. MIT Press, Cambridge, MA, USA, 1988.

[77] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. Imagenet
large scale visual recognition challenge. CoRR, abs/1409.0575, 2014.

[78] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[79] M. R. Segal. Tree-structured methods for longitudinal data. Journal of the
American Statistical Association, 87(418):407–418, 1992.

[80] I. K. Sethi. Entropy nets: from decision trees to neural networks. Proceedings
of the IEEE, 78(10):1605–1613, Oct 1990.

[81] I. K. Sethi. Decision tree performance enhancement using an artificial neu-
ral network implementation. Artificial Neural Networks and Statistical Pat-
tern Recognition - Old and New Connections Machine Intelligence and Pattern
Recognition, page 71?88, 1991.

[82] I. K. Sethi. Neural implementation of tree classifiers. IEEE Transactions on
Systems, Man, and Cybernetics, 25(8):1243–1249, Aug 1995.

[83] I. K. Sethi and J. H. Yoo. Structure-driven induction of decision tree classifiers
through neural learning. Pattern Recognition, 30(11):1893–1904, 1997.

151

[84] I. K. Sethi, J. H. Yoo, and C. M. Brickman. Extraction of diagnostic rules
using neural networks. [1993] Computer-Based Medical Systems-Proceedings
of the Sixth Annual IEEE Symposium, 1993.

[85] R. Setiono and W. K. Leow. On mapping decision trees and neural networks.
Knowledge-Based Systems, 12(3):95–99, 1999.

[86] R. Setiono and H. Liu. Understanding neural networks via rule extraction. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence
- Volume 1, IJCAI’95, pages 480–485, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[87] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. Convolutional-
Recursive Deep Learning for 3D Object Classification. In Advances in Neural
Information Processing Systems 25. 2012.

[88] H. Späth. Algorithm 39 clusterwise linear regression. Computing, 22(4):367–
373, Dec 1979.

[89] H. Späth. Cluster analysis algorithms for data reduction and classification of
objects. 1980.

[90] H. Späth. Clusterwise linear least absolute deviations regression. Computing,
37(4):371–377, Dec 1986.

[91] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal
of machine learning research, 15(1):1929–1958, 2014.

[92] N. Städler, P. Bühlmann, and S. A. van de Geer. L1-penalization for mixture
regression models. TEST, 19:209–256, 2010.

[93] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems 27,
pages 3104–3112. Curran Associates, Inc., 2014.

[94] S. Thrun. Extracting Rules from Artificial Neural Networks with Distributed
Representations. Advances in Neural Information Processing Systems 7, 1995.

[95] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

152

[96] L. Torgo. LIACC regression data sets, 2019.

[97] G. G. Towell and J. W. Shavlik. Extracting Refined Rules from Knowledge-
Based Neural Networks. Machine Learning, 1993.

[98] Y. Wang and I. Witten. Induction of model trees for predicting continuous
classes. Induction of Model Trees for Predicting Continuous Classes, 01 1997.

[99] P. Werbos. Beyond regression: new tools for prediction and analysis in the
behavioral sciences. PhD thesis, Harvard University, 1974.

[100] R. Wiesner, E. Edwards, R. Freeman, A. Harper, R. Kim, P. Kamath, W. Kre-
mers, J. Lake, T. Howard, R. M. Merion, and et al. Model for end-stage liver
disease (MELD) and allocation of donor livers. Gastroenterology, 124(1):91–96,
2003.

[101] L. R. Wingfield, C. Ceresa, S. Thorogood, J. Fleuriot, and S. Knight. Using
artificial intelligence for predicting survival of individual grafts in liver trans-
plantation: A systematic review. Liver Transplantation, 26(7):922–934, 2020.

[102] Y. Xiao and M. R. Segal. Identification of yeast transcriptional regulation
networks using multivariate random forests. PLoS Comput Biol., 06 2009.

[103] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regular-
ization. arXiv preprint arXiv:1409.2329, 2014.

[104] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial Landmark Detection by Deep
Multi-task Learning. Springer International Publishing, 2014.

153

