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Abstract

Materials discovery is critical for dealing with societal problems, but is a tedious
process requiring substantial time and energy to accumulate knowledge. Compu-
tational techniques have accelerated understanding of material structure and prop-
erties, answering the question "What" materials to make for a specific application.
These techniques have shifted the bottleneck in materials design to the synthesis
and processing of materials, posing the question "How" to make a specified material.
Zeolites are microporous, crystalline aluminosilicates described by this paradigm.
Their relevance for chemical and "green" applications has led to sustained interest
for many decades with substantial progress made in predicting hypothetical zeo-
lites with databases of thousands of energetically favorable structures. However,
only 255 of these structures have been synthesized and far fewer, approximately
20, are commercially viable pointing to synthesis as the major bottleneck in zeolite
discovery and design. This thesis aims to improve the understanding of synthesis-
structure relationships in zeolite materials through the use of data driven synthesis
tools. It is guided by three questions: 1) How can zeolite synthesis data be au-
tomatically extracted on a large scale? 2) How can coupling of data-driven, first
principles, and experimental approaches accelerate understanding of structure and
processing relationships in zeolite materials? 3) In what ways can this data and
discovered relationships be used to engineer improved zeolite materials?

Data driven synthesis planning requires large amounts of data to develop hypothe-
ses about underlying trends and train machine learning (ML) models. The zeolite
literature provides thousands of records of synthesis routes and the resulting zeolite
structure but requires advanced information extraction techniques to obtain. This
thesis utilizes and builds upon a natural language processing (NLP) pipeline to ex-
tract and format this data on realistic timescales. Algorithmic improvements for this
pipeline along with additional components targeted specifically to unique linguistic
components of zeolite literature are developed along with a researcher-computer
interaction framework designed to optimize both extraction accuracy and efficiency
by fixing mistakes made by the extraction algorithm. This extraction algorithm re-
sults in five, highly curated datasets related to zeolite synthesis representing the
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largest collection of zeolite synthesis routes to the author’s knowledge.

These datasets are used to study zeolite synthesis starting with organic structure di-
recting agent (OSDA) design. Determining which OSDA molecule templates which
zeolite structure is a difficult problem. The author extracts a dataset of known
OSDA-zeolite pairs from the literature to study these relationships. Using an ad-
vanced featurization schemes for the OSDA, relationships between OSDAs and cer-
tain zeolite structures can be established. These relationships help answer thesis
question two. A generative model is trained on the extracted data and validated
through simulation to suggest potential OSDAs for a given zeolite structure provid-
ing tools to accelerate OSDA design addressing thesis question 3.

OSDAs are very important in zeolite formation but the rest of the hydrothermal vari-
ables also play a large role. This thesis utilizes failed experiment data to study the
probability of zeolite crystallization and interprets the model results through Shap-
ley values to determine impacts of specific hydrothermal synthesis variables. Using
multi-fidelity data and Bayesian inference, zeolite crystallization curves are studied
to determine nucleation and crystal growth behavior. Both of these tasks are done
in pursuit of thesis question two. An additional generative model that predicts hy-
drothermal synthesis conditions given an OSDA-zeolite pair is developed presenting
another tool to guide zeolite development looking to answer thesis question 3.

Finally, the thesis suggests high potential areas for future research and further ex-
ploration using the extracted data. It concludes with a brief commentary on the
publication process and the necessity of data extraction.

Thesis Supervisor: Elsa Olivetti
Title: Esther and Harold E. Edgerton Associate Professor
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higher scores are better. The different data splits are described in the

main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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Chapter 1

Introduction to Zeolites and Data

Driven Synthesis

This chapter serves as an introduction to the thesis by providing the necessary back-

ground, motivation, and scientific gaps. First, background on zeolite structure,

chemistry, and synthesis is provided followed by a summary of current applica-

tions of computational tools and data science in zeolite and inorganic synthesis as

a whole. The chapter ends with an explicit explanation of the knowledge gaps this

thesis aims to fill and an outline of proposed research activities to answer the thesis

questions posed.

1.1 Zeolites

Catalysts are enabling materials; they are used in 95% of industrial chemical reac-

tions1 making them vital for progress in all chemical-related industries including

food, energy, transportation, environmental conservation, healthcare and new ma-

terial design.2 This thesis examines zeolite materials, an important industrial het-

erogeneous catalyst. Zeolites are microporous, crystalline aluminosilicates with a

wide range of applications in the chemical and petroleum industries even beyond
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heterogeneous catalysis such as adsorption, separation, and ion exchange.3,4 Be-

yond the chemical industries, zeolites have several important environmental and

renewable energy applications including biomass conversion, CO2 capture and con-

version, NOx abatement, and water purification.5 The topological features of the

zeolite such as pore structure, framework type, and heteroatom composition deter-

mine its performance in the target application.6,7 As such, it is desirable to control

the synthesis of a zeolite morphology specifically towards a target application.

1.1.1 A Brief History

Form the Greek words ’zein’ for boil and ’lithos’ for stone, zeolites were first discov-

ered naturally by Cronstedt in 17568 and first synthesized by Sainte-Claire Deville

in 1862.9 However, most consider the founding fathers of the zeolite field to be

Richard Barrer, who synthesized zeolite P and Q in 1948 by converting mineral

phases in strong salt solutions at high temperatures,10–12 and Robert Milton, who

synthesized zeolites A, B, C, and X in the early 1950s using more reactive alumi-

nosilicate gels.13,14

From there, the field expanded rapidly in the following decades. In 1961, two

groups (Barrer/Denny and Kerr/Kokotailo) discovered the effect of using quater-

nary ammonium cations to template zeolite structures.15,16 In 1967, researchers

discovered these organic cations, specifically tetraethylammonium, could be used

to make high-silica zeolites in the form of zeolite 𝛽.17 The 1970s and 80s saw the

invention of common industrial zeolite materials including ZSM-518 and silicate19

along with the discovery of the fluoride ion as an alternative mineralizer,20 advances

in the understanding of zeolite crystallization,21–23 breakthroughs in the use of poly-

meric templates,24,25 and advances in the characterization of zeolite structures in-

cluding NMR26 and Raman spectroscopy.27 The 1990s and 2000s ushered in compu-

tational modeling to the zeolite field28–31 and heteroatom substitution for Si and Al

including Ge,32 Ga,33 Mn,34 Zn,35 and Ti.36 The most recent decade has seen many

advances in synthesis strategies including predesigned organic templates,37,38 tar-
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geted heteroatom substitution,39,40 topotactic transformations,41,42 and inter-zeolite

transitions.43 To date, 255 unique zeolite topologies have been confirmed by the In-

ternational Zeolite Association.44

1.1.2 Zeolite Chemistry and Structure

The fundamental unit of zeolites is the TO4 tetrahedron, called the primary building

unit, where T is a framework atom, typically Si or Al. Each pair of framework atoms

is linked by an oxygen atom, building up a three-dimensional structure through cor-

ner sharing of the tetrahedron. While the placement of Si and Al on the framework

sites is typically disordered, zeolites obey Löwenstein’s Rule45 which states that Al-

O-Al linkages will not occur, allowing the Si/Al ratio in a zeolite to vary from 1 to

infinity. To balance the negative charge associated with the AlO4
- tetrahedron, al-

kali cations are incorporated into the structure along with absorbed water molecules

giving an empirical formula Ax/n[Si1-xAlxO2]*mH2O where x can vary from 0 to 0.5

and n is the charge of the cation.46

The linkage of primary tetrahedron results in secondary structures called secondary

building units (SBU).47 There are 23 known SBUs48 containing a maximum of 16

T atoms that occur in zeolite frameworks. The zeolite unit cell always contains

an integer number of SBUs.49 These SBUs can be combined into larger structures

called composite building units (CBU). These units are defined by the number of T

atoms in each face of the CBU.50

Through combinations of CBUs, the macroscopic framework structure and pore ge-

ometry of the zeolite is defined. Channels extend infinitely through the zeolite

structure and are defined to have at least one face large enough for guest species to

pass through. Zeolites also have cavities,51 which are similar to channels in the abil-

ity for guest molecules to penetrate the structure, but are not infinitely extended.

Channels and cavities are described by the dimensionality of the pore and size of

the rings comprising the openings. Typical zeolite channel opening range from 3-15
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Å, allowing a wide selection of molecules to pass through.44

Figure 1-1. Various size scales of building units for the FAU zeolite structure. a)
Primary building units, TO4 tetrahedron linked by a corner sharing oxygen atom. b)
Secondary building units (SBU), the two shown are 4 and 6. c) Composite building
units (CBU), d6r and sod. d) Macroscale FAU structure (referred to as a framework)

Each unique zeolite framework is given a three letter code by the International

Zeolite Association (IZA).44 The code only refers to the connectivity of atoms in

the zeolite framework. It does not define the composition, T atom distribution, cell

dimensions, or symmetry. This leads to materials with the same three letter code

but different compositions and framework density (FD), defined as the number of T

atoms per 1000 Å3. Besides providing an easy way to discriminate zeolite structures

from dense aluminosilicates, FD is related to the pore volume and the volume within

the zeolite accessible to outside species. Materials with different compositions and

FDs can have different properties even if they share the same zeolite framework.48

Within this thesis the terminology zeolite structure, zeolite phase, zeolite topology,

and zeolite morphology all refer to the unique zeolite framework coded by the

IZA.

Conventional zeolite frameworks use Si and Al as the framework elements. How-

ever, the zeolite field often considers materials with zeolite topologies and different

chemistries as part of zeolite research. Technically, these structures are referred to a

zeotypes but are often also referred to as zeolites. Common zeotype chemistries in-

clude aluminophosphates, borosilicates, germanosilicates, and titanosilicates. This

thesis considers all types of zeolites and zeotypes and does not usually distinguish

between the two.
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1.1.3 Hydrothermal Synthesis of Zeolites

The most common way to synthesize a zeolite is with a hydrothermal approach.

Hydrothermal synthesis crystallizes a material from solution at high temperature

and pressure using water as the solvent. Zeolites are typically synthesized in a

basic environment to mineralize the Si and Al source materials. Other reactants

include alkali cations for charge neutralization and organic structure directing agent

(OSDA) molecules.52 A typical zeolite synthesis route is visualized in Figure 1-2.

First, element sources such as Al and Si are mixed in a basic solution until they form

an aluminosilicate gel. This gel is aged then placed in reactors and crystallized in

a furnace. A convenient way to describe the zeolite synthesis space is breaking it

down into two components: an organic piece and an inorganic piece.

Figure 1-2. Example of a typical hydrothermal zeolite synthesis. The values and
source materials come from ref.53

The organic piece is concerned with OSDA selection. The OSDA molecule acts as

template for the structure of the zeolite. During synthesis, silicon and aluminum

tetrahedra form around the OSDA constructing a zeolite structure with pores corre-

sponding to the OSDA.54 The relationship between the OSDA and the synthesized

zeolite structure is complex and hard to predict, depending on the size, shape,

flexibility, functional groups, and charge density of the OSDA.55 Often these OSDA

molecules are custom made in a pre-hydrothermal synthesis step, although it is also

common to use commercial organic compounds for some zeolite structures.

The inorganic piece of zeolite synthesis encompasses all other synthesis variables

outside of OSDA selection. There are many variables that play an important role in
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determining if a zeolite will crystallize and which structure it will have, although the

effects of all these parameters are not well understood. All the compositional vari-

ables including the amounts of Si, Al, alkali cations, OSDA, F, additional framework

elements such as Ge, Ti, or B, and water play a role. Additionally, all the synthesis

conditions, aging time and temperature, crystallization time and temperature, agi-

tation of the reactor, reactor size, and pH are important factors to the nature of the

product. Finally, the choice of source materials matters as well. Beyond choice of

the OSDA, the choice of Si and Al source materials also affect the product formed as

properties including precursor surface area and impurity concentration affects the

nucleation and growth of zeolite phases.56 There are many studies examine these

synthesis variables’ affect on the zeolite product, shown in Table 1.1, but most of

the studies are limited to examining the effect of single variables on a constrained

zeolite system.

Table 1.1. Selected examples of relationships between a synthesis parameter and a
zeolite structure or property found in the literature.

Synthesis Parameter Zeolite Relationship Ref.
Na Conc. FAU/LTA High [Na] favors LTA 57

Aging Time FAU/LTA Long aging times favor FAU 57,58

Si Source FAU Impurity level impacts nucleation
and crystal size

59

Presence of Ge IWW Ge stabilizes small SBUs leading to
large pores

60

OSDA Global Size, shape, charge distribution
responsible for pore shape

55,61

Si/Al ratio MFI Particle size increase with Si/Al 62

Crystal Temp *BEA Crystal size increase with temp 63

1.1.4 Thermodynamics and Kinetics of Zeolite Synthesis

When considering the thermodynamics, typically only pure-silica systems are con-

sidered. Most zeolites are 6-14 kJ mol-1 less enthalpically stable than quartz, the

most stable, ground-state phase.64 Typical silica sources, including amorphous sili-

cas and silica glasses, have very similar enthalpy values to zeolites. These sources

will have higher entropy values making it unclear whether free energy will favor
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the formation of zeolites from the precursors. Since the thermal energy at a typical

synthesis temperature (100-200 ∘C) is 3.1 kJ mol-1 which is quite close to the en-

ergetic differences between silica precursors, zeolites, and quartz, thermodynamic

arguments alone can rarely be used to predict the outcomes of a zeolite synthe-

sis.65

Due to these small energetic differences in the reaction, kinetics plays a key role

in zeolite formation. There are a few generally accepted phenomena that are con-

sistent across all hydrothermal zeolite syntheses. Zeolite crystallization, shown in

Figure 1-3, is described as a three step process: order evolution, nucleation, and

crystal growth.66

Figure 1-3. General kinetic assembly of zeolite crystals. From ref.66

When reactants are first mixed, a gel is formed called the primary amorphous phase.

This phase is colloidal, non-equilibrated, and highly disordered. After a period

of time, a steady-state intermediate phase forms called the secondary amorphous
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phase. This phase exhibits local ordering, and equilibrium distributions of alumi-

nosilicate anions are established.67 Formation of the secondary amorphous phase is

very important as the local ordering leads to clusters of critical size as described in

classical nucleation theory. However, thus far in published research, the formation

of this phase has proven difficult to measure and predict. While it is possible to mea-

sure when the secondary phase has formed with a combination of X-ray diffraction

and solid state NMR,68 it is time-consuming and not typically performed for inter-

mediate materials. Another complication is that these kinetic processes can overlap

making the boundaries between order evolution and nucleation unclear.66

Nucleation occurs when locally ordered clusters reach a critical size, consistent with

nucleation theory. In contrast to dense materials, zeolites have much larger surface

area, leading to the belief that other energetic terms play a role.69 While there

is some disagreement,70 zeolite nucleation is typically considered to be heteroge-

neous, occurring on amorphous particles in the gel.71 These amorphous particles

are hard to characterize limiting understanding of the nucleation process. In addi-

tion, the forming and breaking of T-O-T bonds, responsible for the nucleus growth,

are affected by cations in the system through complex interactions that are hard to

predict.66

After nucleation, zeolite crystals grow into macroscopic sizes observable with vi-

sual inspection. Zeolites usually grow linearly in time with the rate dependent on

temperature, concentration, cation type, and composition.72 Zeolites have been ob-

served to grow at a much slower rate than salts and simple molecular compounds.73

A layer-by-layer adsorption model, limited by the nucleation of a new layer, agrees

well with experimental observations made for several types of zeolites.74

The small energetic differences, role of kinetics, and large parameter space make

predictions of zeolite products from synthesis variables difficult. Synthesis param-

eters will interact and correlate affecting the kinetics and products formed. Due to

this complexity, researchers are typically limited to applying domain heuristics and
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trial-and–error to synthesis which thus far has limited global, fundamental under-

standing.

1.2 Computational Advances in Zeolite Design

Computational tools have been widely used to study zeolite materials in the past

decade. However, each of these approaches has left a gap in the research of zeolites

that needs to be addressed.

1.2.1 Theoretical Zeolite Structures

By enumerating the possible combination of tetrahedral building units,75 researchers

are able to explore the zeolite structural space very efficiently, generating almost 3

million potential zeolite structures.76 These structures have their pure silicon ver-

sion’s energy minimized using General Utility Lattice Program (GULP)77 calcula-

tions with the Sanders-Leslie-Catlow78 and van Beest-Kramer-van Santen79 inter-

atomic potentials. Of these structures, 314k ( 15%) have energy within +30 kJ/mol

Si relative to quartz the same region as most of the known zeolites.76,80 All of these

structures are available in public databases,76,80 and can be queried to find hypo-

thetical zeolites suitable for selected applications.81 These databases have existed

for 10+ years, but only 255 zeolite structures have ever been synthesized44 and

far fewer are commercially available.82 This highlights the synthesis bottleneck in

zeolite development and deployment.

1.2.2 Simulation-based OSDA Design

Another recent methodological improvement in accelerating zeolite discovery is the

computational design of OSDAs with simulation. In simulations, the OSDA is placed

within the porosity of the zeolite.38,83 Then molecular dynamic simulations cal-

culate the energy of the system using either density functional theory or atomic

potentials to determine forces.84–87 Lowering this energy (often called "binding en-
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ergy") indicates better templating ability of that OSDA with that specific zeolite

structure and can be experimentally confirmed.88,89 An additional improvement is

selecting an OSDA to mimic the transition states of industrially relevant catalytic

reactions.90,91 This approach also uses DFT to calculate the energy of the transition

state inside of the zeolite.

Although simulations are far faster than experimentally searching OSDA space, they

are still too time consuming to be fully implemented into design pipelines. Replac-

ing the DFT force calculation with machine learning can increase efficiency but the

search space remains incredibly large.92,93 To truly evaluate the search space, all

suitable organic molecules need to be compared with all zeolite structures as bind-

ing energy alone cannot predict template suitability due to non-selective OSDAs.

This is an incredibly vast space that cannot be comprehensively searched with sim-

ulation alone. Another compounding factor is the chemistry of zeolites. Almost all

simulation approaches only consider zeolites in their pure silica forms, but chem-

istry can play a large role on the stability of the formed zeolite. Incorporating addi-

tional elements exponentially increases the search space again. To advance OSDA

design and accelerate zeolite development, additional, more efficient and compre-

hensive techniques are needed to supplement current simulation efforts.

1.2.3 Early Machine Learning Studies

A few studies have used machine learning (ML) to study zeolite materials. Some

of these early studies used ML to predict the zeolite structure from crystallographic

data94,95 and model mechanical properties.96 A handful of studies have looked at

zeolite synthesis with ML but have been limited to very small regions of the zeo-

lite synthesis space92,97,98 or OSDA-free synthesis99 which ignores a very complex

aspect of zeolite synthesis necessary for complete understanding of important sys-

tems. Other types of porous materials have successfully incorporated ML into re-

search100–103 indicating that ML has high potential to improve zeolite synthesis, but

it will require large amounts of data and more complicated modeling that can ac-
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count for the complexity of zeolite synthesis.

1.3 Data Driven Synthesis

While the computation prediction of materials structures and properties for in-

organic materials has been largely successful resulting in many large structure-

property databases,104–106 the prediction of materials synthesis has lagged behind.

While structure and property design is often driven by first principle approaches

and mathematical models,81,107,108 synthesis design is often done heuristically with

domain knowledge accumulated over years in each material domain making the

synthesis of novel materials difficult. This results in synthesis as the primary bottle-

neck for materials design in most systems.109

1.3.1 Organic Synthesis Planning

Attempts to generate synthesis routes for organic materials has proven effective.

Building upon the concept of retrosynthesis, it is possible to treat organic chemistry

as a graph with connections between organic molecule that can be transformed into

each other.110 Organic materials with specific properties can be generated,111–113

and the organic chemistry graph searched until readily available organic precursors

are found.114,115 ML can be used to assist in accelerating organic synthesis through

prediction of reaction outcomes,116 generation of suitable reaction conditions,117

and incorporation into high throughput experimental systems.118 Models have also

been created to gauge the synthesizability of molecules119 which helps researchers

screen for practical molecules for an application.

1.3.2 Inorganic Synthesis Planning

In contrast to organic molecules, inorganic materials rarely have well-defined inter-

mediate materials, preventing the graph-based approach. Instead other techniques

are required to accelerate materials synthesis. Some recent approaches include ML-
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assisted high throughput experimentation120–122 and in situ approaches that char-

acterize123–125 and manipulate reaction pathways.126

Another promising approach for inorganic synthesis planning uses natural language

processing (NLP) to extract synthesis data from materials science journal articles.127,128

Millions of chemistry and materials science articles exist describing synthesis routes,

however this data is almost always unstructured, typically in the form of text and

tables. NLP aims to understand, interpret, and structure human language.129 With

NLP, it is possible to extract the synthesis information contained within journal ar-

ticles and convert it to more structured formats suitable for database construction,

data mining, and ML. Figure 1-4 shows this extraction flow from scientific journal

articles to synthesis databases to synthesis planning tools.

Several software tools exist to extract chemistry and materials science data from

the literature using NLP.130,131 Previous work in the Olivetti group has resulted in

"Version 1" of a NLP pipeline that extracts operations, materials, amounts, condi-

tions, and targets from synthesis sections of journal articles.127,128,132 This pipeline

has been successfully applied to study the synthesis conditions and trends of sev-

eral inorganic systems including metal oxides,127,128 titania,127,133 MnO2,133 per-

ovskites,132 metal-insulator transition materials,134 solid-state battery electrolytes,135

and alternative cement binders.136 In addition, other groups have used NLP to

study the Curie and Néel temperatures for magnetic materials,137 dye-sensitized

solar cells,138 nanomaterials,139 metal-oxide frameworks,140 and solid-state synthe-

sis.141,142 These pipelines can be combined with ML and experimental studies to

inform the synthesis of novel systems and discover synthesis routes to new materi-

als.

1.4 The Knowledge Gap

Researchers’ lack of predictive ability to design synthesis routes aimed at achieving

specific zeolite structures is a major bottleneck in zeolite discovery and deployment
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Figure 1-4. Automatic extraction pipeline of synthesis data from journal articles.
Reproduced from ref.128

due to the knowledge gaps in the relationships between synthesis parameters and

structure. While some advanced synthesis strategies for zeolites have been devel-

oped in recent years including transition state mimicking,90,91 interzeolite transfor-

mations,43,143 and high throughput flow synthesis,144,145 there are still many gaps in

the fundamental relationships between synthesis parameters and the resulting zeo-

lite structure. ML shows great promise in modeling materials synthesis, but previous

studies that apply ML to the synthesis of zeolites have had a limited effect due to the

lack of data and simplification of the modeling. Automatically extracting data from

29



the literature will increase the zeolite dataset size by several orders of magnitude

enabling the study of global zeolite synthesis, highlighting additional relationships

between synthesis parameters and zeolite structures while suggesting potential syn-

thesis pathways to new and optimized zeolite materials. This data combined with

more complicated ML models will enable study of the complex interactions in zeo-

lite synthesis between the composition, OSDA, reaction conditions, and individual

precursors leading to a better understanding of zeolite crystallization.

1.5 Research Plan and Hypotheses

This thesis aims to answer three primary questions related to accelerating the syn-

thesis of zeolite materials:

1. How can zeolite synthesis data be automatically extracted on a large scale?

2. How can coupling of data-driven, first principles, and experimental ap-

proaches accelerate understanding of structure and processing relation-

ships in zeolite materials?

3. In what ways can this data and discovered relationships be used to engineer

improved zeolite materials?

In pursuit of answering these questions, this thesis tests several hypothesis that are

elaborated on and tested in the following chapters. First in chapter 3, an auto-

matic extraction pipeline for zeolite synthesis data is proposed and tested. Next in

chapter 4, relationships between OSDAs and zeolites found in the literature are ex-

plored, and models are developed to predict new OSDAs for a given zeolite. Finally

in chapter 5, crystallization trends are explored across the inorganic zeolite param-

eter space, and models are developed to predict regions of the synthesis space that

will produce zeolites.
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Chapter 2

Methodology

2.1 Introduction

This chapter describes the data science tools and techniques necessary for this the-

sis. It describes terminology, mathematical fundamentals, and algorithms behind

these techniques while also describing their practical implementation. While not di-

rectly related to answering the questions posed in the thesis, this chapter describes

techniques and methodology necessary to understand the thesis work.

2.2 Natural Language Processing

NLP is a sub-field of ML that focuses on gaining insight from human language. In

the context of this thesis, NLP is used to extract information from scientific text

related to zeolite synthesis.

2.2.1 Text Representation

Before running ML models, text data needs to be converted into a machine-readable

format. While many methods exist to accomplish this task,1–3 this thesis utilizes a

class of algorithms called word embeddings. Word embeddings map a corpus of
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text to a vector space in which words sharing linguistic similarity share a close

proximity in the learned vector space. An example within a materials context are

the words "ethanol" and "acetone". Both are commonly observed solvents and ap-

pear in very similar linguistic contexts indicating the words will be clustered within

the word embedding vector space. Common word embedding algorithms utilized

within this thesis include Word2Vec,4 FastText,5 ELMO,6 and BERT.7 These algo-

rithms are trained in a "semi-supervised" manner that does not require labeled

training data making them an efficient method for embedding materials-domain

informed features in downstream modeling.8,9

2.2.2 Section Identification

Another important NLP task identifies which section of a paper a "chunk" of text be-

longs. This is a multi-class classification problem with possible labels of "Abstract",

"Introduction", "Synthesis", "Non-Synthesis Methods", "Results", "Conclusion", and

"null". This thesis takes a hybrid approach to determining which label has the high-

est probability described in detail in section 3.2.1. The ML component is a recur-

rent neural network with gated recurrent units.10 The final layer is a softmax over

the possible classes, and the chunk of text’s label is assigned based on the high-

est predicted probability. This model is trained on approximately 1,000 manually

annotated paragraphs.11

2.2.3 Named Entity Recognition

Named entity recognition (NER) is an NLP subtask that attempts to locate and

classify important words and phrases within a chunk of text. In the context of

materials synthesis, these words are the important components of the synthesis

including the target material, precursors, operations, reaction conditions, amounts

of materials, and material properties. NER is a sequence-to-sequence task. The

model processes a sentence at a time, taking in the vectorized words and outputting

a label for each word. This model uses a similar model architecture as Section
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Identification with a recurrent neural network with gated recurrent units10 and

final softmax activation layer. The model is trained on 600 manually annotated

synthesis section described in detail in section 3.2.1.

2.3 Machine Learning Applied to Materials Science

2.3.1 Materials Domain Considerations

ML applied in the materials domains presents many unique challenges. Materials

synthesis data is often both sparse and scarce,12 with very large, sparsely populated

input spaces and relatively few instances compared with other common application

domains of ML. ML models also typically need to be interpretable. It is often not

enough to predict a structure or property with a "black box" model. Rather under-

standing and scientific advancement dictates the need to understand "why" a model

makes certain decisions. A final highlighted consideration is the incorporation of

domain knowledge into the modeling process. Materials synthesis is governed by

thermodynamics and kinetics which provide meaningful relationships and equa-

tions. These types of domain considerations can often be incorporated into models

through model selection and design as well as featurization schemes to develop

physically meaningful models.13

2.3.2 Materials Informatics

Simply put, materials informatics is the application of ML to the materials domain.

In addition to the unique attributes of materials data science highlighted above,

a major component of materials informatics is the featurization of data. Since

datasets in materials are typically small, featurization provides the model addi-

tional information to help learn useful models with less data. The best featurization

scheme depends on the problem and dataset itself. A common approach for inor-

ganic materials represents a composition as a weighted average of its atoms’ atomic

properties.14–16 Featurization schemes for materials structures include aggregated
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structural properties, crystal structure coordinates, and graph-based representa-

tions.17,18 Organic molecule featurization (often referred to as ChemInformatics)

is often based on the three-dimensional structure of the molecule either vectoriza-

tion schemes including molecular fingerprints19,20 and WHIM21 or aggregation of

molecular properties such as molecular volume, surface area, charge, etc.22 Another

commonly used organic featurization scheme is to feed the molecules as SMILES23

strings directly to large neural network models where the molecule is mapped to a

continuous latent space.24

2.3.3 Generative Modeling

Generative ML models describe the inverse of traditional ML models. Traditional ML

models describe P(𝑌 |𝑋 = 𝑥) whereas generative ML models describe P(𝑋|𝑌 = 𝑦)

where X describes the input space and Y describes the target outcome.25 Given a

target outcome, generative models can be sampled to generate novel inputs from

the conditional probability. This situation often more accurately describes the cir-

cumstances within synthesis design where the target structure is known and the

model can generate synthesis routes conditional on that structure.

One common type of generative model used in this thesis is a conditional variational

autoencoder (CVAE).26 A CVAE model consists of an encoder modeling P(𝑧|𝑥) that

converts input X into a latent space Z and a decoder modeling P(𝑋|𝑧, 𝑦) that con-

verts the latent variable z back to the original input space conditioned on target

variable y. This model is trained using two quantities in the loss function, the re-

construction loss which encourages the decoder to reconstruct data similar to the

original training data and the Kullback-Leibler divergence (KL-divergence) which

encourages the encoder to learn the correct Gaussian distribution over the training

data.27 Once trained, the decoder can be used to generate new input data.
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2.3.4 Bayesian Inference

Bayesian inference derives from Bayes Rule which states:

P(𝐻|𝐷) =
P(𝐷|𝐻)P(𝐻)

P(𝐷)

where P(𝐻) is the prior probability or the original belief about hypothesis, H,

P(𝐷|𝐻) is the likelihood or the probability of seeing the observed data, D given

the current hypothesis, P(𝐷) is referred to as evidence and does not change with

H and is typically ignored in the inference process, and P(𝐻|𝐷) is the posterior

probability and the main quantity of interest. It is the probability of the hypothesis

conditioned on the observed data. P(𝐻|𝐷) is typically a better estimation of a pro-

cess than P(𝐻), the original prior distribution, since it also incorporates data into

the prediction. P(𝐻|𝐷) can be updated sequentially as new data becomes avail-

able.28 This approach is used in Chapter 5 to study the crystallization behavior of

zeolites.

2.4 Conclusion

This chapter summarizes the important NLP and ML techniques utilized in the fol-

lowing chapters. Rather than formal definitions and mathematical rigor, the inten-

tion is to provide context for the methodologies and a solid foundation for under-

standing the results of this thesis.
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Chapter 3

Zeolite Data Extraction

The chapter’s content is primarily derived from "A Machine Learning Approach to

Zeolite Synthesis Enabled by Automatic Literature Data Extraction" by Zach Jensen

et al. appearing in ACS Central Science in 2019.1 The chapter discusses the intersec-

tion of automatic and manual data extraction along with data cleaning techniques.

This chapter answers the first question guiding this thesis by developing techniques

for accurate and efficient data extraction from the scientific zeolite literature.

3.1 Introduction

Before using data driven tools to study zeolite synthesis, zeolite synthesis data must

be gathered in sufficient quantity and accuracy to describe the underlying trends

in the synthesis. This data comes from experimental results. Previous studies have

looked at individual zeolite systems to predict synthesis-structure relationships2,3

but are limited by a lack of data. Global data driven approaches to study zeolite

synthesis requires large amounts of data. Due to historical interest in zeolites both

academically and industrial, there is over 60 years of scientific literature regard-

ing zeolite synthesis. However, this data is very unstructured and heterogeneous,

located in the text, tables, figures, and supplemental sections of journal articles re-
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quiring advanced NLP and text-mining tools to extract and format the data. The

goal of data extraction is to compile datasets on zeolite synthesis and use that data

to gain insights into zeolites through data mining, illustrated in Figure 3-1. Useful

synthesis information for zeolites consists of gel composition, aging and crystal-

lization conditions, precursor selection, OSDA selection, and the resulting zeolite

structure. This chapter discusses the extraction of zeolite synthesis data from the

scientific literature for use in data driven studies of zeolite synthesis.

Automated Extraction 
from Articles

Compiled
Hydrothermal Syntheses

Machine Learned Insights
for Zeolites

Figure 3-1. Demonstration of the research flow from automated data extraction to
compilation of zeolite datasets to discovering insights on zeolite synthesis with data
mining and machine learning.

3.2 Automatic Extraction Techniques

Comprehensive data extraction from the literature requires automated techniques

to deal with the size of the corpus related to zeolite materials. A literature search

using the Scopus data base4 for the keywords "zeolite", "osda", "molecular sieve",

and "aluminophosphate" returns approximately 130,000 journal articles at the time

of this thesis. Determining which of these papers contains relevant zeolite synthesis

data and extracting that data on realistic timescales requires utilizing the increased

speed and pattern recognition of a computer.
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3.2.1 Natural Language Processing Pipeline Improvements

A well documented NLP pipeline forms the backbone of the zeolite extraction pro-

cess.5–8 This thesis builds on and improves this pipeline in several important ways.

Publisher Specific Text Parsing

The first pipeline step after downloading a journal article is parsing the text from

the HTML or XML file. This parsing involves removing unnecessary markup tags

and correctly associating section labels with the corresponding paragraphs. Due to

inconsistency in the formatting of the HTML or XML file, specific parsing rules for

each publisher need to be established separately to increase the completeness of the

parsed text.9

Hybrid Rule-based/Machine Learning Section Classifier

Section classification is an integral part of the NLP pipeline. It classifies each para-

graph in a paper as a abstract, introduction, synthesis, characterization, results,

conclusion, or Null type paragraph. This section classification has been improved

and is comprised of two components: a rule-based classification built on the section

headers of the paragraph and a ML classifier with inputs of the section’s word em-

beddings and a context vector that describes the section’s location within the paper.

This hybrid model improves on both the accuracy and speed of section classification

and is detailed in Mahbub et al.10

The classification algorithm first attempts to classify each section based on its sec-

tion heading e.g. "Introduction", "Experimental", "Results", etc. linked during the

parsing phase. The classification rules are designed to have very high precision

so any section that has a somewhat ambiguous section header is passed on by the

rule-based classification. Some sections cannot be classified with this rule-based

approach e.g. sections with "Experimental" as section name which can refer to the

synthesis or characterization label and sections from papers without section head-

ings. These sections are classified using a recurrent neural network classifier with
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the section’s Word2Vec embeddings11 pretrained on a materials science corpus and

a context vector that describes the location of the paragraph within the paper as

inputs.

This classifier is trained on approximately 1,000 manually annotated sections and

tested on an additional set of 300 sections. The hybrid approach gives an average

F1 score of 0.96 across all sections and a F1 score of 0.9 for synthesis sections,

an improvement of 0.04 and 0.03 F1 score on all sections and synthesis sections

respectively from previous pipeline versions.8

Token Annotation Schema

An NER models, referred to as token classification, identifies important aspects of a

paper’s synthesis section including target materials, lab operations, precursors, and

synthesis conditions.7 Token classification is enabled by annotation, hand-labeling

of synthesis recipes that are used to train the NER model. These annotations are

expensive, requiring Ph.D. levels of domain knowledge to perform accurately re-

sulting in small datasets. Improving the quality of the annotation and the efficiency

of annotation greatly impacts the overall token classification performance.12 A new

annotation procedure has been developed that splits the annotations by task rather

than by paper, allowing annotators to focus on a single annotation task, for exam-

ple all operations within all annotated papers. This approach increases annotation

speed and consistency.13

3.2.2 Table Extraction

The zeolite literature extensively uses tables in describing experimental synthesis

results. Tables are extracted from HTML and XML journal articles into a hierar-

chical JSON structure suitable for data mining. Rule-based approaches determine

the correct position of the table’s column and row headers along with any nested

headers. Using annotated data from the main NLP pipeline, each word in the row

and column headers are classified and the orientation of the table is determined by
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the frequency of materials vs properties. "Entities" refer to the materials or samples

within the table and "Attribute" refers to a property of that sample. The header

that contains the most materials is considered the "Entities" orientation either row

or column. Zeolite tables very commonly have samples on one axis and synthesis

ratios on the other. Rule-based approaches to recognize the most commonly used

synthesis ratios are also employed to determine the table orientation. Once the ori-

entation is set, all the "attribute" values for each "entity" are extracted and stored

in an easily accessible, hierarchical structure. Table captions and footers are also

extracted as well as and sub/sup-script references within the table. Each reference

is linked back to the corresponding footer entry which can be further mined for

additional data.1

3.2.3 Regular Expression Matching

Some important components of zeolite synthesis have text representations that are

difficult for the main pipeline to parse and extract properly. Regular expression

(Regex) matching is used to deal with these problematic components. Composi-

tional ratios are the main variables best approached with Regex. Regex is used to

search the text of a zeolite paper to scan for commonly used elements (Si, Al, H2O)

and common separators (:, /) in compositional ratios. After locating the ratio, the

type of numeric value (number, range, or variable) is determined. If the type is a

number, it can be assumed that every synthesis route found in the paper will have

that value. If the type is a variable (x, y, etc.), typically that means the actual values

of each tested sample are given in one of the paper’s tables. If the type is a range,

it often indicates that the unique synthesis routes are given elsewhere in the paper,

either in table or text.1

Another usage of Regex is in determining zeolite structures and OSDAs. While the

main pipeline can recognize target materials and precursors broadly, it does not

know how to differentiate between zeolite materials and precursors specific to zeo-

lite synthesis mainly the OSDA. However, zeolites and OSDAs both have consistent
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and predictable naming schemes making Regex suitable for identifying them from

other materials. Zeolites structures are given three capital letter codes by the IZA

which refers to a unique crystal structure.14 In addition, individual zeolite materials

often follow the naming convention XXX-Y where X refers to capital letters and Y

is a number. This consistency in naming can be exploited with Regex to identify

zeolites mentions in the literature. OSDAs also follow typical naming patterns for

OSDAs. There are many sub-strings that are common across the OSDA literature in-

cluding "amine", "ammonium", "cyclo" and "N,N". In addition, many OSDAs contain

the sub-string Y1,Y2 where both Y1 and Y2 are integers. This type of sub-string is

rarely found in inorganic materials.15

3.2.4 Automatic Filtering with Domain Knowledge

Manually verifying the accuracy of the extracted data is time consuming so any au-

tomatic filtering is very valuable. Basing automatic filters on domain knowledge

is a useful and logical choice. Bounds can be set on specific variables or pairs of

variables. For example, the molar ratio of the fluoride ion (F-) and the OSDA is

often close to one since the F- and OSDA charge balance to neutral in the case of a

mono-charged OSDA (seen in Figure 3-2.16–18 Large deviations in this molar ratio

may indicate erroneous data extraction. Another example is filtering out zeolite

structure names that often appear in other scientific contexts such as "Beta" and

"Omega". A final example filters based on the quantity of information extracted

from a paper. Both small and large amounts of extracted data can indicate poten-

tial errors. Only extracting a single zeolite or precursor can indicate information is

missing. Often it indicates additional information regarding the synthesis is located

in the Supplementary Information section of the paper which is not directly accessi-

ble to the extraction algorithm. Similarly, extracting large amounts of data can also

indicate problems especially around OSDAs. The extraction algorithm performs

poorly at distinguishing OSDAs from other types of organic molecules. Articles that

contain many organic molecules typically are not relevant zeolite papers but rather
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focus on the synthesis of many organic molecules.
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Figure 3-2. Pairwise plot of gel composition data automatically extracted from
zeolite tables found in literature.

However, automatic filtering should be handled with caution. Zeolites are tradi-

tionally synthesized with Si/Al > 1, OSDA/Si < 1, and H2O/Si > 100 as seen

in Figure 3-2, but these limits can be exceeded especially in the case of zeotype

systems including aluminophosphates and silicogermanates.19 Rather than setting

rigid, deterministic filters, it is often better in practice to flag unexpected values for

manual review.

3.3 Human Computer Interaction

Extracting a dataset with 100% accuracy (relative to a manually extracted dataset)

necessitates manually checking the data. Even the best ML models will produce

errors. Obtaining datasets with high accuracy while keeping reasonable extraction

efficiency high requires optimal interaction between the extraction algorithms and

human data checking. An example of the benefits of a similar human-computer
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interaction is chess, where average-players with average computers can routinely

defeat world-class human players or supercomputers if the average player-computer

pairing understands how to optimally interact.20,21 Similarly, well-designed human

computer interaction in data extraction can accomplish more than a human or com-

puter alone.

Optimal cooperation in data extraction requires comprehensive knowledge of both

the strengths of extraction algorithms and the extraction domain. Extraction algo-

rithms are extremely fast and reliable at pattern recognition. Combining this speed

with domain knowledge allows extremely fast extraction of the necessary synthe-

sis information. However, the computer is very poor at understanding the broader

context of the extracted data. This is where the researcher participates supplying

the necessary context to make the correct associations within the data.

Figure 3-3. Example of workload split in data extraction between the computa-
tional extraction algorithm (red) and the human checker (blue). Text comes from
ref.22

A simple example associates OSDAs with the proper zeolite structure, a simple task

when an article only contains a single OSDA and single zeolite but oftentimes that

is not the case. Figure 3-3 demonstrates a typical example of this workload split

by highlighting a zeolite synthesis paragraph22 with the tasks performed by the

computer versus the human. First, the computer algorithms extracts all the iden-

tifiable pieces of the synthesis including the zeolite structure (PKU-23), the OSDAs

(dimethylaminopyridine and 1-benzyl-4-dimethylaminopyridinium), and the pre-
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cursors (TEOS, GeO2, HF). However, the computer struggles to understand how

the information connects so the researcher provides that context to maintain an

accurate dataset. In this example, the researcher determines that the two OSDAs

make the same zeolite structure, PKU-23, with the same precursors rather than a

different interpretation, i.e. both OSDAs are used in a single, dual-OSDA synthesis

route. Using this approach leads to efficient and accurate datasets. Section 3.6

attempts to quantify the effectiveness and efficiency of this approach.

3.4 Data Featurization

Most of the extracted data is not directly suitable for use in data analysis and ML

and first needs to undergo featurization. Important data components requiring

featurization include the OSDA, zeolite structures, and inorganic precursors.

3.4.1 OSDA Featurization

Multiple OSDA featurization schemes are used in this thesis. The first step in

any featurization normalizes all of the literature given OSDA names to canonical

SMILES strings. This is done through a combination of Python packages including

ChemSpider,23 PubChem,24 and CIRpy.25 SMILES strings form the basis for more

advanced featurization.

The first featurization approach is to calculate OSDA features using DFT. SMILES

strings are converted to 3-dimensional representations using molSimplify26 with

the Kier Flexibility index27 and atomic coordinates obtained through force field

optimization. The volume and surface area are calculated using ORCA 4.1.28

Another featurization scheme accounts for the different conformations of a molecule.

For each OSDA, 2,000 gas phase conformers are generated, embedded, and opti-

mized with the MMFF94 force field29 using the Python package RDkit.30 Average

descriptors across the 2,000 conformers are calculated as well as descriptors cor-
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responding to the conformer with minimum energy. Descriptors calculated include

surface area, volume, number of rotatable bonds, and molecular charge. Weighted

holistic invariant molecular (WHIM) descriptors31 are also included which com-

press three-dimensional information about a molecules size, shape, symmetry, and

atom distribution into a one-dimensional vector of fixed length. Additionally, the

nConf2032 descriptor of flexibility is also calculated.

The final featurization scheme utilized is neural network featurization used in gen-

erative modeling and compression of the OSDA feature space. Each character in a

SMILES string is one-hot encoded and fed through three convolutional neural net-

work layers. The representation is then flattened into a one-dimensional vector of

fixed size. This vector can then be utilized in generative modeling or as input to

traditional machine learning models.

3.4.2 Zeolite Featurization

Zeolite materials extracted from the literature are first normalized to their IZA struc-

tural code using string matching with manual confirmation if no match is found.

Each structure is then featurized with a variety of structural properties scraped

from the IZA website14 including framework density, maximum ring size, channel

dimensionality, maximum included volume of a sphere, accessible volume, maxi-

mum channel cross-sectional area, and minimum channel cross-sectional area. For

modeling, these features are combined into a single vector. Unsuccessful synthesis

products are also extracted and normalized to account for author specificity e.g.

"dense" vs "cristobalite". Unsuccessful synthesis products are given a "-1" for each of

the properties listed above.

3.4.3 Precursor Featurization

Extracted precursors are normalized into broader buckets that describe which el-

ement the precursor is providing to the synthesis e.g. Ludox AS-30 becomes col-
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loidal silica. Each synthesis route is represented by a one-hot encoded vector of the

shape, number of elements x maximum(precursors per element) that represents all

the precursors used for a synthesis route.

3.5 Extracted Datasets

The following section describes five major datasets that were extracted during this

thesis. The Germanium zeotype and interzeolite conversion dataset applications

are discussed in section 3.7.1 and 3.7.2 respectively. The OSDA-zeolite pair dataset

is examined in chapter 4 while the inorganic zeolite and zeolite crystallization

datasets are utilized in chapter 5.

3.5.1 Germanium Zeotype Dataset

This data set contains hydrothermal synthesis routes for Germanium-containing

zeotypes. Important characteristics include:

• 238 papers, 1,638 synthesis routes

• Successful and Unsuccessful Synthesis Routes (1,214 vs 424)

• Synthesis - quantitative gel composition, crystallization temperature and time

• OSDA - given name, SMILES string, DFT Calculated Features (volume, surface

area, Kier flexibility index)

• Zeolite - given name, IZA code, IZA featurization

• Scope - Germanium zeotype literature

• Availability - https://github.com/olivettigroup/table_extractor

3.5.2 Interzeolite Conversion Dataset

This data set contains successful interzeolite conversions. Important characteristics

include:
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• 211 papers, 243 unique interzeolite transformations

• Successful transformations only

• Features - Type of transformation, starting zeolite, transformed zeolite

• Scope - Interzeolite transformations

• Availability - https://www.nature.com/articles/s41563-019-0486-1?proof=

t#Sec9

3.5.3 OSDA-Zeolite Pair Dataset

This data set contains OSDA-zeolite pairs found in the zeolite literature. Important

characteristics include:

• 1,384 papers, 5,663 synthesis routes

• 758 unique OSDA molecules, 205 zeolite structures

• Synthesis - qualitative

• OSDA - given name, SMILES string, Full RDKit conformer featurization

• Zeolite - given name, IZA code, IZA featurization

• Scope - entire zeolite literature

• Availability - https://github.com/olivettigroup/OSDA_Generator

3.5.4 Inorganic Zeolite Dataset

This data set contains full hydrothermal synthesis routes across entire zeolite liter-

ature. Important Characteristics include:

• 3,096 papers, 23,925 synthesis routes

• Successful and Unsuccessful Synthesis Routes

• Synthesis - quantitative gel composition, aging conditions (time and temper-

ature), crystallization conditions (time, temperature, and rotation)
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• OSDA - given name, SMILES string, Full RDKit conformer featurization

• Zeolite - given name, IZA code, IZA featurization, some properties (Si/Al prod-

uct, percent crystallinity, crystal size)

• Scope - entire zeolite literature

• Availability - To be made public with publication.

3.5.5 Zeolite Crystallization Dataset

This data set contains crystallization data across the zeolite literature. Important

Characteristics include:

• 128 papers, 291 crystallization curves, 1,986 data point

• Synthesis - quantitative gel composition, aging conditions (time and temper-

ature), crystallization conditions (time, temperature, and rotation)

• Crystallization - kinetic parameters fit to experimental data, a, b, and kg

• OSDA - SMILES string

• Zeolite - IZA code, percent crystallinity

• Scope - entire zeolite literature

• Availability - To be made public with publication.

3.6 Quantifying Thesis Question 1

What does it mean to extract zeolite synthesis data automatically? What does it

mean to extract zeolite synthesis data on a large scale? Both of these questions are

difficult to answer in a quantitative way but make up the fundamental aspects of the

first thesis questions. The following are suggested ways of evaluating these ques-

tions. All suggestions are rather imprecise and should be interpreted as suggested

benchmarks.
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As discussed in section 3-3, accurate data extraction requires some manual cleaning.

One way to quantify the level and benefit of automation in the extraction process is

to compare the time spent cleaning the data compared with a hypothetical situation

in which all the extraction is performed manually. Datasets 3.5.3 and 3.5.4 required

the majority of the data cleaning which occurred over approximately a five month

period. Both datasets were reduced from the original 130,000 papers relating to

zeolites to approximately 10,000 by the automatic extraction algorithms. Assuming

a typical work week of 40 hours, the dataset cleaning took approximately 850 hours

or about 5 minutes per paper. In contrast, if each paper had to be fully read, assum-

ing an average time of 30 minutes would result in about 5,000 hours or 625 eight

hour work days to extract the same information. This difference represents approx-

imately an 80% increase in extraction efficiency using automated techniques.

The "large scale" nature of the question is easier to answer. Datasets 3.5.3 and 3.5.4

are the largest known datasets related to zeolite synthesis at 5,663 and 23,925

synthesis routes respectively. For comparison, the latest Verified Zeolite Synthesis33

dataset contains 109 synthesis routes. For additional comparison, a recent effort

to extract synthesis conditions automatically resulted in a dataset of approximately

20,000 synthesis routes of solid-state synthesis, a much broader field than zeo-

lites.9

A final consideration is the comprehensiveness of the data extraction. Are there

ways we can quantify how much data may have been missed? One metric is ex-

amining the number of zeolites that end up in the final dataset. 203 of 255 known

zeolite structures are found in dataset 3.5.4. Of the missing 52, 16 are natural ze-

olites with no synthetic analogue, leaving the rest of the 36 or 14% of the known

zeolites as missed in the extraction. The majority of the missing zeolites are unique

zeotype chemistries with only one or two known synthetic routes. Another way

to evaluate comprehensiveness is to attempt to quantify how much additional data

may exist that is not captured by the approach. Articles related to zeolite synthesis

can be found with a search service such as Web of Science34 and then compared
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to the extracted datasets to determine if the articles are in the dataset, missing

from the dataset and contain useful zeolite synthesis information, or missing but

correctly omitted from the dataset. By combining articles found in the dataset and

articles correctly omitted, a Bernoulli experiment can be performed by sampling

the articles from Web of Science. An article sampled from the Web of Science list

that contains useful zeolite synthesis information but is missing from the dataset is

a success within the context of the Bernoulli experiment. Table 3.1 shows the re-

sults of sampling 20 articles randomly from the 1,000 most relevant search results

using "zeolite" and "synthesis" as keywords. 7 of the 20 sampled articles (35%) are

"missing" from the dataset. However, all but one are not the fault of the extrac-

tion algorithm but rather institutional constraints outside of the author’s control.

Ignoring these uncontrollable elements, only 1 out of 14 sampled articles (7%) are

"missing" from the data. Running a statistical test with the null hypothesis that no

less than 5% of available articles are missing from the dataset and the alternative

hypothesis that greater than 5% of articles are missing results in a p-value of 0.51

indicating the null hypothesis cannot be rejected. Constructing the statistical test

with a reversed hypothesis would provide more certainty but requires far more sam-

pling. All of the metrics described in this section are inexact and have author bias

built in, however they start to quantitatively answer the first question posed in the

thesis.

3.7 Early Applications

This section describes two early applications of extracted zeolite data. These ap-

plications and the following studies in the rest of the thesis fall into two broad

categories: synthesis-structure predictions and theory/simulation validation.
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Table 3.1. Sampling journal articles to determine comprehensiveness of the data
extraction of dataset 3.5.4. 20 samples taken randomly from the 1000 most rele-
vant search results in Web of Science34 looking for "zeolite" and "synthesis" within
an article’s topics. T&D stands for Text and Data Mining Agreement.

Title Result Comments Ref
1 CO2 adsorption behavior of microwave.. In Dataset 35

2 Co-based MOR/ZSM-5 composite... Nothing New 36

3 An efficient one-pot synthesis of.. Nothing New 37

4 Fe3O4@zeolite-SO3H as a magnetically.. Nothing New 38

5 Seed-Assisted, OSDA-Free, Solvent-Free.. Missed No access 39

6 Synthesis of a heulandite-type zeolite.. Missed PDF only 40

7 Controlled and rapid growth of MTT.. In Dataset 41

8 One pot fusion route for the synthesis.. Missing No access 42

9 Synthesis of Na-A zeolite from 10 A.. Nothing New 43

10 Expansion of the ADOR Strategy for.. In Dataset 44

11 Synthesis of ZSM-5 zeolite with small.. Missing No T&D 45

12 Hydrogenation of carbon monoxide.. Nothing New 46

13 The effect of ultrasound on Na–A.. Missing No T&D 47

14 Fast synthesis of submicron ZSM-5.. Missing 48

15 Enhancement of thermal conductivity.. Nothing New 49

16 Fast synthesis of thin Silicalite-1 zeolite.. Nothing New 50

17 Synthesis of Nanocrystalline MFI.. Nothing New 51

18 Synthesis and Characterization of.. Missing No T&D 52

19 Synthesis of Hollow Zeolite Composite.. Nothing New 53

20 Silicalite-1 Encapsulated Fe Particles.. Nothing New 54

3.7.1 Synthesis-Structure Predictions for Germanium-containing

Zeotypes

Germanium addition into zeolites is responsible for the synthesis of many new zeo-

lite structures, especially extra-large zeolite frameworks, over the past two decades.55

Because of germanium’s known correlation with the structure of zeolites, germa-

nium zeotypes are an example that allows for demonstration of the usefulness of

the extraction pipeline and basic synthesis-structure predictions across a large com-

position and OSDA space. Figure 3-4 demonstrates the research process for this

section. Data is extracted and combined from multiple sources within a zeolite

journal article, then modeled to predict structural properties from the synthesis.

This section is taken from Zach Jensen et al.1
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Si:0.5Ge:5H2O
Si:1.5SDA:3H2O          Si      Ge

S1    1.0     2.0
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Figure 3-4. Schematic overview of zeolite data engineering including (1) literature
extraction from sources such as NLP from body text, parsing of html tables, and
regex matching between text and tables, (2) regression modeling, and (3) zeolite
structure prediction.
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Figure 3-5a shows the wide range of structural variability in germanium-containing

zeotypes with medium-, large-, and extra-large pore materials spanning framework

densities from 7.5 to 19 T atoms/1000 Å3. Germanium has a larger nonbonding

radius relative to silicon and is capable of forming smaller bond angles with oxy-

gen. Germanium inclusion results in the increased stabilization of small-ring sec-

ondary building units (SBUs), including double four-membered rings (D4R), three-

membered rings (3MR), and double three-membered rings (D3R).56,57 These units

give rise to zeotype structures with low framework densities and large pores. The

extracted data can give rise to new insights including the clustering of extra-large

pore structures into three areas corresponding to low, intermediate, and high frame-

work densities (purple triangles, yellow diamonds, and red squares respectively in

Figure 3-5a). Materials with framework densities less than 10 T atoms/1000 Å3

correspond to pure germanium zeotypes referred to as germanates. Materials with

densities ranging between 11 and 14 T atoms/1000 Å3 correspond to structures

with some of the biggest pore zeolites including ITQ-3356 (Ring Size=18) and ITQ-

4458 (Ring Size=18) that have only been obtained with Si/Ge < 4. Extra-large

pore zeotypes with framework densities ranging from 15.5 to 16.5 T atoms/1000

Å3 correspond to Assembly-Disassembly-Organization-Resassembly (ADOR) precur-

sors including UTL and CTH with germanium placed within the D4R units between

the siliceous layers.59,60 These precursors have been exploited to access new zeolite

structures by disassembling the interlayer germanium-oxygen bonds and reorga-

nized into a new structure (i.e. the ADOR method).61,62

The germanium dataset also demonstrates some correlation between various syn-

thesis elements. Figure 3-5b depicts one of these close relationships between the

amounts of germanium and the fluoride ion. The fluoride ion stabilizes small-ring

SBUs in a similar fashion to germanium giving rise to a trade-off relationships be-

tween the amounts of germanium and fluoride required to stabilize a particular ze-

olite structure.64 As a consequence, zeolites with large amounts of germanium can

be synthesized with simple OSDAs and small to no amounts of fluoride, although
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Figure 3-5. Germanium-containing zeolite data extracted with our pipeline.
a) Framework density clusters corresponding to different classes of germanium-
containing zeolites. b) Tradeoff between Ge content and the amount of F− ions re-
quired to stabilize different zeolites. The three letter codes refer to specific zeolite
framework structures defined by the IZA. ADOR is an interzeolite transformation
synthesis method.63

these materials have lower hydrothermal stability. For examples, BEC and IWR ze-

olites can be synthesized with Si/Ge < 5 using simple OSDA molecules including

tetraethylammonium and hexamethonium without fluoride.65,66 In contrast, syn-

thesizing more stable forms of zeolite structures with less germanium content re-

quires the use of fluoride often in combination with more complicated, often large

OSDAs.67,68 The data visualization also identifies areas of interest for future study.

For example, Figure 3-5b shows several cases for germanium zeotypes including

ITQ-22 (IWW) where an OSDA and corresponding synthesis route has not been dis-

covered that yields a germanium-free, high-silica version of the zeolite69 providing

opportunities for researchers to study this topic.

This dataset also allows ML modeling linking the synthesis with the structure of the

resulting zeolite. The framework density is modeled as a function of the gel compo-

sition, crystallization conditions, and OSDA volume using a random forest ensemble

model. Figure 3-6a evaluates the five fold cross validation accuracy of the model

through a parity plot where the color hue corresponds to the frequency of data

points. The root mean squared error (RMSE) is 0.98 T atoms/1000 Å3 compared

with the standard deviation of framework density in our data of 1.76 T atoms/1000

Å3. The model’s RMSE and r-squared value (see Figure 3-6) indicate the model is
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capable of mapping synthesis conditions to the resulting zeolite structure’s frame-

work density allowing predictions of synthesis conditions for zeolites with high and

low framework densities.
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Figure 3-6. Random forest regression model predicting zeolite framework density
from synthesis conditions. a) Cross-validation results for the random forest model
showing the actual experimental versus model predicted values for framework den-
sity. b) A single decision tree regression model trained to predict framework density.
Samples values correspond to the percentage of data passing through a node. Den-
sity refers to the average framework density value passing through each node. Vol
SDA = the volume of the OSDA

Beyond accurately modeling the relationship, tree models also provide human in-

terpretability. Figure 3-6 examines a single decision tree model trained on the ger-

manium dataset to predict framework density. By following the nodes on the tree,

synthesis routes to zeolites with specified pore structures can be determined. The

top nodes in the tree also correspond to the the more important synthesis param-

eters for influencing pore size including Si/Ge ratio, H2O/T (T is the sum of all

framework elements), and the volume of the OSDA. As validation, most germanium

containing zeotypes featuring a low framework density reported in the literature re-

quire Si/Ge ratios of 1-2, H2O/T < 5, and large, bulky OSDA molecules, all in good

agreement with the model.70,71 While some of these heuristics may be evident to

domain experts, this example represents the first instance of ML decision guidance

across the zeolite literature and the potential for modeling synthesis-structure rela-

tionships.
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3.7.2 Theory Validation for Diffusionless Interzeolite Conversions

and Intergrowths

Another valuable use for extracted zeolite data is the validation of theory and simu-

lations. Theory and simulations need to explain and predict observed phenomena to

provide value. By comparing against data extracted from the entirety of the zeolite

literature, theories can be much more rigorously tested than by single experimental

studies while also developing better understanding of their limitations by identi-

fying outliers. This section demonstrates the usefulness of comparing theory with

extracted data through a study on interzeolite transformations based on the data

extraction contribution to the journal article, Daniel Schwalbe-Koda et al.72

Interzeolite conversion is the process of transforming one zeolite into a different

zeolite. Often the second zeolite is difficult to synthesize with traditional hydrother-

mal routes making the interzeolite conversion attractive. There are several differ-

ent types of interzeolite conversions including competing phases,73 recrystalliza-

tion,74 intergrowth,75 and diffusionless.76,77 Despite the usefulness of these tran-

sitions,63,78,79 no clear way existed to predict which zeolite can be converted into

another. To address this problem, researchers hypothesized that similarity metrics

computed for the graph-based representation of two zeolite structures could predict

the potential of interzeolite transformation.72 To validate the hypothesis, the thesis

author searched a corpus of over 70,000 journal articles related to zeolites looking

for occurrences of multiple zeolites and interzeolite keywords such as "intergrowth",

"topological", "reconstruction", and "ADOR" leading to a dataset of 540 papers that

was manually checked to confirm the zeolite pairs and type of transformation.

Figure 3-7 shows the graph similarity metrics, D-measure and SOAP distance, for all

of the extracted zeolite pairs broken up into transformation type (CR-Recrystallization,

CO-Competing Phases, DL-Diffusionless, IG-Intergrowth). The literature data clearly

demonstrates the theory’s predictive capabilities for diffusionless and intergrowth

transformation while underscoring the lack of predictive ability for recrystalliza-
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tion and competing phases. It also found one outlier (red star) which is confirmed

as the LTA-IFY diffusionless transformation which requires extremely high pressure

(3 GPa).80 This outlier helps demonstrate the limits of this model under extreme

synthesis conditions.

3.8 Conclusion

Data extraction serves a vital role in the study of zeolite synthesis with data driven

tools. Without extraction on a large scale from the literature, it is extremely difficult

to gain meaningful insights into global zeolite synthesis. This chapter highlights

the techniques and innovations within the information extraction space necessary

to extract large amounts of zeolite synthesis data from the literature answering

question one proposed in this thesis.
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Figure 3-7. Graph similarity (D-measure and SOAP distance) for all of the extracted
literature interzeolite transformations. The small range of the distributions for dif-
fusionless (DL) and intergrowth (IG) transformation confirms the theory’s ability to
predict pairings based on graph similarity. The star represents the only exception
found in the literature. Taken from Daniel Schwalbe-Koda et al.72
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Chapter 4

Organic Zeolite Synthesis Planning

This chapter’s content derives from "Discovering Relationships between OSDAs and

Zeolites through Data Mining and Generative Neural Networks" by Zach Jensen et

al. appearing in ACS Central Science in 2021.1. The chapter discusses the applica-

tion of data mining, chemical informatics, and generative neural networking to the

organic aspects of zeolite synthesis planning. The chapter aims to partially answer

thesis question two and three by advancing the understanding around OSDA design

and creating models to generate novel OSDA-zeolites pairs.

4.1 Introduction

OSDA molecules play a crucial role in zeolite synthesis. They can provide different

effects within the synthesis from charge balancing and space filling to a templating,

lock-and-key relationship2 resulting in a wide range of OSDA specificity with some

OSDAs able to crystallize many different zeolites while others only direct the forma-

tion of a limited number of phases. The size, flexibility, hydrophilicity, and charge of

the OSDA, among other factors, all play an important role in zeolite crystallization

kinetics and phase specificity making a priori predictions of suitable OSDA-zeolite

pairs very challenging.3–5 Two main options for prediction existed before this the-
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sis: experimental heuristics and density functional theory (DFT) simulations. Ex-

perimental heuristics are inexact, making prediction and OSDA design from them

extremely difficult (see 4.2).3 Simulation approaches are very expensive and time

consuming requiring DFT and molecular dynamics simulations to suggest candidate

OSDAs for a specific zeolite.6–8 Beyond cost, these simulations are limited to a single

zeolite system and focus only on pure silica zeolite systems.

This chapter aims to add a third, data driven option to OSDA design. The author

examines a comprehensive dataset of experimental OSDA-zeolite pairs found in

the literature and uses structural descriptors of the OSDA molecules to explain the

relationships observed between OSDAs and specific zeolite structures. The chapter

also contains a generative neural network modeling approach that moves beyond

explaining the literature data and moves towards generating novel OSDA-zeolite

pairs.

4.2 Characteristics of Literature OSDAs

The OSDA-zeolite pairs dataset (see 3.5.3) contains OSDA molecules, the resulting

zeolite structures formed, and the elements used in the gel chemistry. It contains

758 distinct OSDA molecules and 205 zeolite phases found in the literature between

the years 1966 to 2020.

Figure 4-1 summarizes some of the important properties possessed by literature

OSDAs. Figure 4-1a shows the average conformer molecular volume distribution

of the OSDAs. These values range from approximately 30 to 1000 Å3. Larger OS-

DAs are related to the synthesis of zeolites rather than aluminophosphate (AlPO)

zeotypes which agrees with experimentally observed lack of correlation between

the OSDA and the pores/cages of an AlPO material.3 Large-pore AlPO materials

have limited stability compared to their aluminosilicate counterparts which mostly

precludes studies using bulky OSDAs in their synthesis.
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Figure 4-1. Overview of literature OSDAs. (a–c) Average conformer molecular
volume, OSDA specificity, and charge distributions for all OSDAs in the data set.
(d) Shows the five OSDAs known to make the most zeolite structures. (e) Shows
the five zeolites that can be made with the most OSDAs.

OSDA specificity is also an important consideration in selecting OSDA-zeolite pairs.

Figure 4-1b shows the majority of the ODSAs have high specificity, producing fewer

than 5 zeolite phases, while some outliers are capable of making more than 20

phases. These lower specificity OSDAs are typically small and simple alkylam-

monium cations, such as tetramethylammonium (TMA), tetramethylammonium

(TEA), and hexamethonium shown in Figure 4-1d. These low specificity molecules

typically act as space-filling molecules that provide charge balance to the frame-

work and generally do not provide a true templating effect. Some feature high

flexibility with many rotatable bonds, such as hexamethonium, which allows dif-

ferent conformations of the molecule to act as an OSDA for different zeolites. The

zeolite structure also plays a role in determining OSDA specificity. The literature

data shows that some zeolites including MFI, MTW, *BEA, CHA, and MOR (Fig-

ure 4-1)e can be made with a large number of OSDA molecules. These zeolites

are among the most widely used industrial application (along with FAU and FER),
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therby having more research efforts to improve their physicochemical properties

and cost effectiveness.9

Ionic charge number and distribution within an OSDA plays an important role in

the nucleation and crystallization processes. The charges, often together with al-

kali cations, position the negatively charged heteroatoms (Al, B) in specific frame-

work positions. Heteroatom position can drastically alter the catalytic properties of

the materials.10–12. In zeolite synthesis, most OSDAs contain one or two positive

charges, generally in the form of mono- or dicationic species (Figure 4-1c).3–5 In

contrast, AlPO materials are preferentially synthesized using neutral amines as OS-

DAs (blue bar in 0 charge in Figure 4-1c, which are protonated in the neutral or

acidic media of the typical AlPO material synthesis gel.

The literature data also allows testing of conventional heuristics in the field to de-

termine if they possess predictive power. Experimental heuristics connect the OSDA

size with increasing zeolite pore size and increasing OSDA rigidity with increasing

specificity or formation of fewer zeolite phases.3 Figure 4-2 examines these two

heuristics across the dataset by looking at framework density (lower framework

density, higher zeolite pore size) against average conformer molecular volume for

the OSDA-zeolite pairs in (a) and the number of zeolites formed against nConf2013

for each molecule which measures a molecule’s flexibility (higher nCon20, higher

flexibility) in (b). It is clear from the lack of observed relationship that these heuris-

tics to not provide predictive power to design new OSDAs for specific zeolites and

more advanced informatics are needed to understand the relationship.

4.3 Correlation between OSDAs and Zeolite Structures

4.3.1 WHIM Descriptors

Weighted holistic invariant molecular (WHIM)14 descriptors contain information

about the size, shape, symmetry, and atom distribution of a molecule and are depen-
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Figure 4-2. Simple relationships describing conventional heuristics used in zeolite
synthesis. The lack of correlation indicates more advanced featurization is required
to understand relationships between OSDAs and zeolites. (a) Framework density
vs average conformer OSDA volume (b) Number of zeolites formed vs nConf20.

dent on its three-dimensional conformation. Different conformations can have dras-

tically different WHIM representations depending on the flexibility of the molecule.

For example, a long linear molecule can either stretch out or fold, giving two dif-

ferent three-dimensional representations, demonstrated in Figure 4-3. This varying

three-dimensional representation for each molecule is accounted for by calculating

the average conformer WHIM descriptor.

WHIM is high-dimensional descriptor (114 length), so principal component analy-

sis (PCA) is used to reduce the dimensionality and enable visualization. The first

principal component (PCA 1) accounts for 58% of the variance and correlates with

the volume of the molecule. The second and third principal component axes ac-

count for 15% and 13% of the variance respectively. Correlations between OSDAs

and zeolites can be visualized using the first three principal component axes.

4.3.2 Correlation in Cage-based Zeolites

Cage-based zeolites have strong correlation between the three-dimensional struc-

ture of the OSDA and the shape of the cage. Five cage-based, small-pore zeolites,

LEV, CHA, AEI, LTA, and AFX (Figure 4-4a), are selected and examined through
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Figure 4-3. Examples of conformer effects for several selected OSDAs. The con-
formers are plotted in the WHIM space compressed into two-dimensions through
principal component analysis. The OSDAs are selected to represent a variety of both
flexible and inflexible molecules.

WHIM featurization and PCA analysis in Figure 4-4b,c. Gel composition also affects

the relationship between OSDAs and zeolites so the visualized data is limited to

only conventional zeolite chemistry.

For these five zeolites, Figure 4-4 shows each zeolite is associated with specific and

distinct OSDA characteristics. Differences are observed between locations of the

clusters, particularly in PCA 2 and PCA 3, likely due to the differences in the zeo-

lite’s cage size and shape which require different molecular structures. The location

of the clusters within the compressed WHIM space is meaningful demonstrated by

the overlap between CHA and AEI (blue diamonds and red circles in Figure 4-4.

This suggests the OSDAs used to synthesize these two structures are structurally

similar. In fact, some of the molecules can be used to make either CHA or AEI de-

pending on the synthesis conditions. This relationship is explained by the structural

similarity of AEI and CHA including a cage-like three-dimensional small-pore sys-

tem and identical framework density (15.1 T/1000 Å3). However, the cavities are
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Figure 4-4. Principal component analysis (PCA) WHIM vector representation of
OSDA molecules used in five cage-based small-pore zeolite systems. PCA 1, 2, and
3 represent the first three principal component axes. The gray points represent all
of the OSDAs extracted from the literature.

specific to each zeolite, elongated and symmetrical for CHA (11.7 x 10.2 Å) and

basket-cage-like for AEI (12.6 x 11.2 Å) which explains why some OSDAs preferen-

tially facilitate the crystallization of either CHA or AEI selectively.

The zeolite structure and stability also plays a role in the affect of the OSDA. The OS-

DAs for LTA show larger variability across the compressed WHIM space than those of

the other zeolite structure (purple crosses in Figure 4-4). The synthesis of high-silica

LTA preferentially uses large aromatic molecules,15,16 while low-silica LTA utilizes

small organic molecules including tetramethylammonium and diethyldimethylam-

monium which act as pore fillers in combination with alkali cations. In contrast,

CHA and AEI have significantly reduced cluster variance compared with LTA indi-

cating the need for OSDAs to provide a true templating effect across the range of

known chemistry.
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4.3.3 Correlation in Large-pore Zeolites

To examine the generalization of the WHIM approach, selected large-pore zeolites

(FAU, EMT, BEC, ISV, CON) are also examined in Figure 4-5. Similar to the cage-

based, small-pore zeolites, the relationship in the WHIM space also depends on the

zeolite. FAU and EMT do not exhibit well defined regions due to difficulty in finding

a suitable template for their large cavities and the role inorganic species play in the

formation of these phases.17–19 Other large pore systems including BEC, IWV, ISV,

and CON show much better defined structural clusters in the WHIM space indicating

the importance of the OSDA in these systems. This generalization to large-pore

systems helps illustrate the robustness of the WHIM space approach.

Figure 4-5. PCA WHIM vector representation of OSDA molecules used in six large-
pore zeolite systems.

4.4 Novel OSDA-Zeolite Pair Generation

Beyond explaining the OSDA-zeolite pairs observed in the literature, this thesis also

aims to predict and generate new OSDA-zeolite pairs. This objective is towards

answering thesis question 3 by generating new OSDAs for hypothetical zeolites and

better OSDAs for existing zeolites.
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4.4.1 Generative Neural Network for novel OSDA prediction

A generative neural network model published by Kotsias et al.20 is adapted to sug-

gest alternative molecules for use as OSDAs. The model is trained on the literature

data to output an OSDA’s SMILES string given a zeolite phase and gel chemistry as

input, shown in Figure 4-6. This model requires a large quantity of data to train

a useful model, which is enabled by size and scope of the automated data extrac-

tion.21

Figure 4-6. Schematic of the generative neural network modeling process.

This generative neural network borrows heavily in both architecture and training

protocol from Kotsias et al.20 The zeolite structure and gel chemistry inputs are

fed through six dense layers of 256 units with ReLU activation followed by three

unidirectional LSTM layers consisting of 256 units and ending with a feedforward

dense layer with 35 units with a softmax activation. Batch normalization is used on

the first dense and LSTM layers. The model is trained for 100 epochs on a variety

of train/test splits to test various aspects of the generative model (see 4.4.2) using

the "teacher’s forcing method."22 Adam algorithm is used for optimization with a

batch size of 128 and an exponentially decaying learning rate starting at 10−3 and

ending at 10−6. Up to 100 different noncanonical versions of each OSDA’s SMILES

string are generated to augment the dataset, resulting in approximately 150,000

training data points depending on train/test split. This type of data augmentation

has shown increased accuracy in organic molecule generative models.23
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4.4.2 Model Metrics

To test the generative modeling approach, multiple models are trained using differ-

ent train/test splits:

1. Training and test split is chosen at random with 80% of the data used to train

and 20% used to test.

2. All data points resulting in CHA are isolated in the test set. Number of training

points-5,398, Number of testing points-265(5%).

3. All data points resulting in AEI are isolated in the test set. Number of training

points-5,555, Number of testing points-108(2%).

4. All data points are used to train the model.

Splits 1, 2, and 3 are used to evaluate model performance while split 4 is used to

look at the case studies in sections 4.4.3 and 4.4.4. Holding out an entire zeolite

structure from training (splits 2 and 3) test the model’s capability of suggesting new

OSDA candidates for previously unseen zeolites and can confirm the model is not

memorizing OSDA/zeolite pairs, which can occur when randomly splitting. CHA

and AEI are chosen due to their cage-like structure which correlates well with OSDA

structure ( 4.3.2), industrial relevance, and presence of enough data to construct a

large enough test set for benchmarking.

Evaluating generative models is difficult due to the lack of well-defined metrics.24

Fortunately, the organic generative modeling space has benchmark platforms, Molec-

ular Sets (MOSES),25 that can be adopted to OSDA generation to evaluate the

general quality of the model. Table 4.1 shows the MOSES benchmarks for mod-

els trained on train/test splits 1, 2, and 3. The reference values refer to a model

trained to predict organic molecules from their properties for drug discovery and

design using the same generative model architecture.20 While the reference mod-

eling task is different, comparing it with OSDA models gives an idea of state-of-
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the-art performance on a related learning task. Comparing to the baseline, our

models perform better in fraction of valid molecules (Valid) indicating the model

generates real, physical molecules at a very high rate. The fraction of generated

molecules not present in the training set (Novelty) is also comparable to the base-

line for two of the three train/test splits indicating that the model generates novel

molecules not present in the training data. Scaffold similarity (Scaff), similarity to

nearest neighbors (SNN), and internal diversity (IntDiv) also exceed or match the

baseline performance demonstrating the model generates structurally similar and

closely related molecules while also remaining chemically diverse. The model un-

der performs the baseline in the number of unique molecules in 1,000 generations

(Unique@1k). This is because molecules suitable for use as OSDAs encompass a

much small subspace than organic chemistry as a whole. Since the model is trained

to generate OSDA-like molecules, the search space is much smaller than in the

benchmark task and therefore the number of unique molecules is expected to be

lower. A final benchmark considered is the ability to generated the exact molecule

used in the test set (Reconstructibility). While high reconstructibility may appear

beneficial, training a model to optimize reconstructibility can produce highly deter-

ministic models not suitable to the generation task. Overall, the model performs

better or comparable to the baseline across the many of the examined metrics and

across the three train/test splits demonstrating the model’s overall ability and po-

tential application on new zeolite systems.

The negative log-likelihood (NLL) of sampling different molecules can also be used

to evaluate model performance (Figure 4-7). The closer the NLL distribution is to

zero, the model deterministic the model becomes. All three of the train/test splits

have smaller mean NLL (3.9, 3.3, and 4.1) than our benchmark model20 (15.9)

reinforcing the idea of OSDAs encompassing a smaller search space. Differences in

distributions between the training and testing NLLs can indicate overfitting espe-

cially if the training distribution is closer to zero, and therefore more determinis-

tic.26 Figure 4-7 does not indicate that there is significant overfitting in any of the

85



Table 4.1. Benchmarking using the MOSES25 standard for several different models
trained on different train/test splits. Upward arrows indicate that higher scores are
better. The different data splits are described in the main text.

Metrics Random CHA Out AEI Out Reference20

Valid ↑ 0.994 0.993 0.999 0.881
Unique@1k ↑ 0.114 0.019 0.028 0.996
FCD ↓ 2.468 4.593 9.683 7.981
SNN ↑ 0.566 0.610 0.365 0.341
Frag ↑ 0.850 0.824 0.766 0.920
Scaff ↑ 0.387 0.196 0.061 0.094
IntDiv ↑ 0.891 0.877 0.852 0.845
Novelty ↑ 0.835 0.741 0.537 0.878
Reconstructibility - 0.013 0.158 0.125 <0.001

train/test splits.

Figure 4-7. The NLL values for the test sets of three different models, random,
leave out CHA, and leave out AEI. Differences in training and test set distributions
can be an indication of model overfitting which is not observed for our models. Dis-
tributions closer to zero correspond to more deterministic output while the variance
of the distribution relates to the uniformity of sampling the chemical space.

It is also important to demonstrate the model’s ability to generate different molecules

for different zeolite inputs rather than generalizing across all zeolite structures.

Molecules generated for SFW are compared with molecules generated for LAU.

LAU is structurally very different than SFW, having a higher framework density

(18 T/1000 Å3), a 1-dimensional, 10-membered ring channel, and no composite

building units in common with SFW. LAU is also chemically distinct, typically being
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synthesized as an M-(Al/Ga)PO (M=Co, Mn, Zn, Fe)-type material27,28 while SFW

is a conventional zeolite.29,30 There is a clear difference in the WHIM distributions

of the molecules generated for the two systems indicating the model’s abililty to

distinguish between the structures during prediction (Figure 4-8a). Figure 4-8b

shows the distributions of the minimum distance in the WHIM space to a known

SFW or LAU OSDA. OSDAs for LAU with conventional zeolite chemistry are also

generated to compare the effect chemistry has on the model. As expected, having

similar chemistry shifts the generated distributions closer together although they

are are still distinct.

Figure 4-8. Differences in Distributions between SFW and LAU generated OSDAs.
a) shows the differences in WHIM distributions between SFW OSDAs generated
with zeolite chemistry and LAU OSDAs generated with M-AlPO (M=Co, Fe, Zn,
Mn) chemistry. b) Distributions to the nearest SFW and LAU literature OSDA in the
WHIM space for generated molecules with SFW zeolite, LAU aluminophosphate,
and LAU zeolite seed conditions. These results indicate the model generates differ-
ent molecule distributions for zeolites that are structurally very different. They also
indicates that chemistry plays an important role in the generated molecules where
similar chemistry indicates more similar distributions.

It is also important to understand the model’s limitations. Figure 4-9 shows the
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binding energies of OSDAs generated for SFW and OSDAs from the entire zeolite

literature. These distributions are very similar, indicating the model may have a

limited ability to predict OSDAs specific to each zeolite system. However, the model

matches the literature distribution, containing molecules known to be suitable OS-

DAs. These results, taken together with the discussion above about SFW and LAU,

demonstrate the model’s ability to generate different OSDA suggestions by inject-

ing chemical noise into the OSDA space while matching the performance of known

literature OSDAs. It also indicates that generated molecules may have potential as

OSDAs for several similar zeolite systems.

-16 -14 -12 -10 -8 -6 -4 -2 0
Binding Energy (kJ/mol SiO2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

sit
y

Existing OSDAs
Generated OSDAs

Figure 4-9. Distribution of binding energy with SFW for the generated molecules
and all literature OSDAs (for all zeolites). Matching the literature indicates our
model is able to inject chemical noise into the OSDA space although it casts doubt
on the model’s ability to distinguish OSDAs for specific zeolite systems.
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4.4.3 Model Test Case Study: CHA

The first case study examines CHA, a cage-based, small-pore zeolite featured in 4.3.2,

due to its industrial relevance. 408 unique OSDAs are generated for CHA from a to-

tal of 10,000 samples drawn from the model using the CHA structure and a variety

of zeolite gel chemistries as the zeolite and chemistry inputs respectively.

The generated OSDAs are filtered by comparing to the industry standard for CHA,

N,N,N-trimethyladamantammonium (TMAda). 57 of the 468 generated OSDA molecules

fall within an ellipsoid of centered around TMAda spanning 5% of the range along

the first three principal component within the PCA-reduced WHIM space (Figure 4-

10a,b) 11 additional OSDAs reported to synthesize CHA and 24 other OSDAs re-

ported for other zeolite structures also fall within this TMAda-centered ellipsoid.

Organic molecules within this ellipsoid are expected to be structurally similar to

TMAda and therefore may be a suitable alternative OSDA for CHA.

Figure 4-10. Comparing literature OSDAs and generated OSDAs of a CHA zeolite.
(a) Shows the position of TMAda (shown with the blue star) relative to the rest of
the OSDAs in the PCA WHIM space. (b) A zoomed in view of the ellipse surrounding
it. (c) The blue square contains literature CHA OSDAs that fall within the ellipse.
(d) The orange square contains examples of generated OSDAs for CHA that fall
within the ellipse.
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Figure 4-10 shows the filtering process and some of the resulting generated organic

molecules suggested for CHA (Figure 4-10d). Qualitatively, the generated OSDAs

contain many similar features as the OSDAs found in the literature for CHA (Fig-

ure 4-10c). For instance, different adamantyl-type, rigid molecules are predicted

(row 1 in Figure 4-10d), in good agreement TMAda, considered as the most effec-

tive template to stabilize the CHA cavity.31–33 Beyond adamantyl-type molecules,

different alkyl-substituted spiro and piperidinium molecules are generated (row 2

and 3 respectively in Figure 4-10d) presenting similar structural features as some

reported CHA OSDAs. In addition, two simple tetraalkylammonium cations are

generated (row 4 in Figure 4-10d) which are similar to a recent report that uses

tetraethylammonium to synthesize CHA in its silicoaluminate form.34. The model

also generated other categories of molecules not directly seen in the literature (row

5 in Figure 4-10) but that possess commonly observed features including a single

positively charged nitrogen atom and cyclic structures. These molecules demon-

strate the model’s ability to add domain and data-informed chemical noise into the

OSDA space that allows intelligent prediction of potential OSDA candidates.

4.4.4 Model Test Case Study: SFW

The second case study examines SFW zeolite, a much less studied zeolite than CHA

with only three known literature OSDAs that has high potential impact as a catalyst

for NOx.29,30 SFW is structurally similar to CHA being cage-based with the gme cage

replacing the cha cage and the same framework density (15.1 T/1000 Å−3). This

simulates testing the model on a hypothetical zeolites while allowing verification

through the limited literature examples. Because there are fewer known molecules

to compare with, molecular mechanic simulations calculate the binding energy of

the generated molecules with the SFW framework35,36 to gauge the model’s predic-

tive performance.

These simulations demonstrate that many of the generated molecules are suitable

candidates for SFW. 60% of the generated OSDAs have binding energies within the
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Figure 4-11. OSDAs for SFW obtained from literature and generated by our model.
(a) PCA-reduced WHIM locations for the three OSDAs known to make SFW (blue
stars) and five selected molecules generated by our model (orange stars). (b) Mini-
mum conformer binding energy with SFW for the three literature OSDAs. (c) Bind-
ing energy with SFW for the five selected generated molecules.

range of the literature SFW OSDAs (-9.98 to -7.48 kJ/mol SiO2). Additionally, 7%

have lower binding energies than the known OSDAs. Figure 4-11a shows the gener-

ated OSDAs for SFW in the PCA-reduced WHIM space. The blue stars represent the

literature OSDAs that synthesize SFW, N-ethyl-N-(2,4,4-trimethylcyclopentyl)pyrrolidinium,

N-ethyl-N-(3,3,5-trimethylcyclohexyl)pyrrolidinium, and N,N-diethyl-5,8-dimethyl-

azonium bicyclo[3.2.2]nonane, while the orange points represent the generated

molecules. Figure 4-11b shows the structure and binding energy with SFW for each

of the three literature OSDAs. Five of the generated molecules are shown in Fig-

ure 4-11c and analyzed further. Molecules 1, 2, and 3 are structurally similar to

the literature OSDAs and have even lower binding energies. As with the literature

OSDAs, two of these molecules fit inside the SFW cage.29,30 These binding ener-

gies demonstrate the relationship between distance in the WHIM space and OSDA

potential. It also demonstrates the model’s ability to generate similarly structured

molecules with known OSDAs with potentially greater templating ability. Molecules
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4 and 5 are chosen due to their strong binding energies while being structurally

dissimilar to the known OSDAs. Molecule 4 is significantly larger than the litera-

ture OSDAs indicating that a single, well-fitting OSDA per cage could also provide

a strong templating effect towards SFW. Molecule 5 is significantly smaller than

the literature OSDAs, requiring packing more molecules into the cage. These two

molecules demonstrate the model’s ability to suggest molecules that are dissimilar

from existing OSDAs, potentially finding new OSDA families and providing addi-

tional value beyond taking distance metrics in the WHIM space.

4.5 Conclusion

In summary, this chapter highlights characteristics of OSDAs found in the zeolite lit-

erature, correlates OSDA molecules with specific zeolites through WHIM featuriza-

tion to partially answer thesis questions two. It also predicts new OSDA-zeolite pairs

through generative modeling partially answering thesis question three by providing

researchers with tools that are potentially useful for accelerating OSDA design for

zeolites.
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Chapter 5

Inorganic Zeolite Synthesis

Planning

This chapter examines the rest of the zeolite synthesis space outside of OSDA de-

sign. It uses a number of data science techniques to answer questions two and three

of the thesis, How can coupling of data-driven, first principles, and experimental

approaches accelerate understanding of structure and processing relationships in

zeolite materials? and In what ways can this data and discovered relationships be

used to engineer improved zeolite materials?, by providing insight into how synthe-

sis variables affect the crystallization of zeolites. It provides a number of ML models

that can be used to help plan and expedite zeolite synthesis.

5.1 Introduction

While the previous chapter joins a growing body of research aimed at advancing

and accelerating OSDA designs,1–3 there has been much less attention paid to ex-

ploring and understanding the influence of other synthesis parameters using similar

simulation and data driven tools. OSDA design plays a crucial role in determining

the achievable subset of zeolite structures, but the majority of OSDAs are not ex-
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clusively selective for a single zeolite structure.3,4 This lack of selectivity requires

design around these additional synthesis parameters, referred to in this thesis as

"inorganic" variables, to synthesize the desired phase. Many studies have examined

aspects of the zeolite synthesis space individually including compositional gel ra-

tios (Si/Al, Na/Si, OSDA/Si, H2O/Si, etc),5–8 aging conditions,9–11 crystallization

conditions,12–14 and precursor selection15–17 for specific OSDA system, but general

knowledge of these effects is lacking.

Zeolite crystallization is a complex process frustrating efforts to decouple the effects

of many varying inorganic parameters. Most zeolites are metastable with energies

approximately 30 kJ mol-1 greater than the ground state found in quartz.18,19 This

energetic disadvantage makes synthesizing a crystalline, porous zeolite rather than

a dense crystalline or amorphous aluminosilicate uncertain and delicate. When a

zeolite is formed, the crystallization process typically results in a characteristic "S"

curve of crystallization time versus percent crystallinity that can be fit with experi-

mental data.20–24 Equation 5.1 is a common expression for the crystallization curve,

referred to as the Gualtieri model.25

𝛼 =
1

1 + 𝑒𝑥𝑝{− 𝑡−𝑎
𝑏
}
* {1− 𝑒𝑥𝑝(−(𝑘g𝑡)

n)} (5.1)

This equation treats the relationship between crystallinity (𝛼) and crystallization

time (t) as combination of distinct nucleation and crystallization phenomena. The

left hand side of the equation corresponds to the number of nuclei in the system at

time t, modeled as a cumulative Gaussian distribution. The right side is the common

Avrami equation for crystal growth.26 The model constants are fit using experimen-

tal data and have physical meaning within zeolite crystallization. The constant a is

the inverse of the nucleation rate with 𝑘n = 1
𝑎
, while b is the standard deviation in

the Gaussian nucleation probability equation and is related to the nucleation mech-

anism, kg is the growth rate constant, and n is the growth dimensionality usually

inferred from an SEM micrograph. This equation has been applied to numerous ex-
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perimental studies in the porous materials space27–30 although no sizable datasets

of kinetic parameters exist for zeolites.

Data science has shown promise in studying reaction outcomes and modeling syn-

thesis in both zeolites and chemistry more broadly. Many efforts have been made in

the organic domain to classify reaction outcomes31–33 and predict crystallinity.34,35

Efforts in the zeolite field have primarily centered around suitable ODSA design,1,3,36

although predicting reaction outcomes from the inorganic variables has also been

successful in narrowly defined synthesis spaces including OSDA-free synthesis,37

germanium-zeotypes,38 ZSM-43,39 LTA,40 ITQ-21,41 and zeolite Beta.42 However,

all of these studies are limited in scope to a specific zeolite sub-domain and stop

short of predicting the full crystallization behavior due to lack of data and simplis-

tic modeling choices. To expand the scope of crystallization modeling, more com-

prehensive data is needed. These data are provided by text extraction techniques

highlighted in Chapter 3.

This chapter studies the impact of the inorganic synthesis variables on the crystal-

lization behavior and reaction products in zeolite synthesis. The author models the

probability of crystallization for a synthesis route and uses model interpretability to

gain insight into the factors that determine the reaction outcome. The author then

examines how the crystallization behavior of zeolites progresses by fitting kinetic

equations to extracted crystallization curves and then modeling the behavior of un-

seen synthesis routes using a combined ML/Bayesian inference approach. Finally,

the author generates potential synthesis routes for specific OSDA-zeolite pairs using

generative modeling.

5.2 Characteristics of Zeolite Synthesis Data

Dataset 3.5.4 is the main dataset used in this chapter. This dataset contains com-

prehensive synthesis data on zeolite synthesis including gel composition, reaction

conditions (aging, crystallization, pH, reactor size), precursors, and OSDAs. It also
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includes the result of the zeolite synthesis including the zeolite materials and struc-

tures (or lack thereof) formed for each synthesis route and, in some instances, zeo-

lite properties including Si/Al ratio in the product, crystal size, percent crystallinity,

and BET surface area. The dataset consists of 23,925 synthesis routes from 3,096

journal articles spanning the years 1966-2021. It contains data on 921 unique

OSDA molecules, 233 zeolite structures, and 1,022 unique materials. The extracted

gel composition contains 51 different gel components including Si, Al, P, Na, K, F,

Ge, Ti, B, Ga, V, OSDA, H2O, and additional solvents.

Figure 5-1a-d shows a breakdown of some common observations across the dataset.

Figure 5-1a shows the most commonly observed zeolite structures. Aggregating all

amorphous and dense crystalline phases accounts for approximately 25% of the

dataset. The most common zeolite is MFI, unsurprising due to the academic and

industrial relevance of several important materials with the MFI structure includ-

ing ZSM-5, silicalite-1, and TS-1. The remaining nine consist of other industri-

ally important and well-studied zeolites often with multiple zeotype chemistries in-

cluding CHA, *BEA, AFI, and FAU.43 Figure 5-1b shows the most common zeotype

chemistries. Conventional zeolite synthesis (Si-Al or pure Si framework) makes up

the majority of the data. Other common zeotypes including aluminophosphates

(AlPO), germanosilicates, titanosilicates, borosilicates, and other metal containing

structures (Fe, Co, V, Zn, Sn, etc) also have a significant amount of the synthesis

routes. Figure 5-1c shows the breakdown of the number of OSDAs used in a syn-

thesis route. Using one type of OSDA molecule (1) is by far the most common,

accounting for approximately 80% of the data. OSDA-free (0) and dual OSDA (2)

synthesis account for most of the remaining synthesis routes while triple OSDA (3)

systems are rarely observed. Figure 5-1d shows the most commonly observed pre-

cursor materials utilized in zeolite synthesis. NaOH is the most observed precursor,

used as a source of Na and the OH- mineralizer. Others in the top 10 include TEOS

and Ludox AS-40 as Si sources, GeO2 for Ge, HF and NH4F for F- anion, phospho-

ric acid for P in AlPO systems, and sodium aluminate and aluminum isopropoxide
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(AIP) for Al. There is a large variety in precursors with 44 unique source for Si and

32 for Al.

a) b)

c) d)

e)

f) g)

Figure 5-1. Overview of the extracted zeolite synthesis dataset. a) Most commonly
observed zeolite structures. b) Most commonly observed chemistries. c) Number
of synthesis routes that utilize that number of OSDAs. d) Most commonly observed
precursors. e) Observed ranges for several import gel composition variables. f)
Difference between conventional zeolite chemistry and AlPO-type observed in the
Si/Al ratio and crystallization temperature. g) Frequency of successful synthesis
starting from different Si precursors

Figure 5-1e shows the distribution and range of several important gel compositional

ratios including Si/Al, Si/Ge, H2O/Si, Na/Si, K/Si, F/Si, and OSDA/Si. Common

Si/Al values typically range from 5 to 40 although a significant number of the syn-

thesis routes take place above or below this range. While conventional zeolite syn-

thesis typically occurs with Si/Al > 1, values below 1 exist in the dataset due to the

presence of AlPO and other zeotype synthesis routes.44 The bottom four ratios rep-

resent the common inorganic and organic structure directing agents compositional

ratios along with the F- mineralizer. As is seen, these ratios with Si are typically

below 1 but outliers do exist. OSDA-free synthesis often uses an abundance of

cations including Na and K to provide a structure directing effect in the absence of

an OSDA.45–48 F- and OSDA abundance often occurs in germanosilicates where both

the F- and OSDA play a crucial role in the formation of large pore zeolites.49,50
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Visualizing trends allows basic insight into the data. Figure 5-1f shows the differ-

ence in the Si/Al ratio and crystallization temperature between conventional zeolite

and AlPO synthesis routes. As expected, the Si/Al ratio is significantly higher for

conventional zeolites due to Lowestein’s rule.51 AlPO synthesis often follows a for-

mula of SixAlP1-x with x varied from 0 to 1.44 This explains the high density of

AlPO synthesis routes with low Si/Al ratios. A difference is also observed in the

crystallization temperatures. Conventional zeolites synthesis generally occurs at

lower temperatures than AlPO synthesis with very few AlPO synthesis routes below

130°C. In contrast, many stable zeolite phases can be synthesized at 100°C which is

observed by the second density peak. Additionally, we look at trends within the ex-

tracted precursors. Figure 5-1g shows the normalized frequency that a Si precursor

results in a successful zeolite synthesis from the extracted data. The left five-most

precursors are the most likely to be successful while the right four precursors the

least likely across the 44 Si precursors. While no direct thermodynamic or kinetic

information can directly be taken from this analysis, it is useful to examine this type

of relationship from a frequentist approach to help guide precursor choice.

5.3 Modeling Crystallization Probability

This section describes modeling the crystallization probability i.e. trying to answer

"if" a zeolite will form at specific synthesis conditions or if the product will be an

amorphous or dense crystalline phase. The crystallization probability should not

be confused with the percent crystallinity of a zeolite sample which is the focus

of section 5.4. Crystallization probability is modeled as a classification problem

between "successful" and "failed" synthesis routes.

5.3.1 "Failed" Synthesis Data

The lack of negative or "failed" data presents major problems in data driven syn-

thesis and science as a whole. This data gap leads to positive results bias52 where
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the vast majority of data available in the literature contains positive results bias-

ing perceptions of chemistry and hindering scientific progress.53,54 Having access to

negative results can greatly advance understanding of a system and accelerate ma-

terials discovery.55,56 Fortunately, zeolites are a rare sub-domain where researchers

often publish negative results, amorphous or dense crystalline phases, alongside

successful zeolite crystallization. This negative data is captured through the data

extraction process and then can be modeled to determine whether a synthesis route

will be successful. The inclusion of negative data in the zeolite field does not re-

move bias from the data however. Certainly there is still positive results bias within

the zeolite literature somewhat masked by the inclusion of some negative data. This

bias is hard to quantify but needs to be kept in mind when interpreting results in

this thesis chapter.

Synthesis routes from dataset 3.5.4 are converted into either "successful" or "failed"

based on the text-extracted products. If the extracted products contain a word from

a manually curated list of negatives including "amorphous", "dense", "quartz", etc,

the synthesis is considered "failed". All other syntheses are "successful" including

multiphase zeolite products and "zeolite-like" products that do not have official IZA

structure codes such as ITQ-21 and ASU-14. This choice also affects the overall

analysis and other rational choices exist such as classifying multiphase zeolite prod-

ucts as "failed." Overall, there are 19,275 synthesis routes with 13,537 "successful"

and 5,738 "failed" synthesis used for the classification model. Figure 5-2 shows the

breakdown of different subgroups within these two class labels. "Sucessful" makes

up the two most common subgroups, single zeolite and multiphase products. The

rest are "failed" syntheses. Among the "failed" syntheses, "amorphous" is by far the

most common product followed by "dense" and a long tail of much less frequent

intermediate phases including "layered" and "lamellar" and dense crystalline phases

including "quartz" and "tridymite" for zeolite synthesis and "berlinite" for AlPO syn-

thesis. "Magadiite" is a sodium silicate mineral sometimes used as a zeolite precur-

sor indicating that a zeolite never formed with that synthesis route.
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Figure 5-2. Breakdown of the most common "Successful" and "Failed" extracted
products in dataset 3.5.4

5.3.2 Model Description, Optimization, and Performance

This data is used in a classification model to predict crystallization probability,

whether a zeolite synthesis will be successful. Figure 5-3 shows the model schematic.

Each synthesis route consists of four input categories: gel composition, reaction

conditions, precursors, and OSDA. Gel composition is the normalized molar ratios

of each synthesis element. There are 51 different gel components including Si, Al,

P, Na, K, F, Ge, Ti, B, Ga, V, OSDA, H2O, and additional solvents. Gel composition

is a sparse input since most gel components are zero for any individual synthesis

route. Reaction conditions comprise aging time, aging temperature, crystallization

time, crystallization temperature, rotating or static reactor, seeding behavior, and

presence of microwaves. Precursors are featurized according to section 3.4.3 and

converted into a continuous two-dimensional representation by an autoencoder.

OSDAs are featurized according to section 3.4.1 using the neural network method.

Each OSDA (up to three) utilized in the synthesis is converted to a two dimen-
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sional latent representation with an autoencoder and combined to give a six length

representation for each OSDA system. These four inputs feed into a classification

algorithm that predicts the probability of a successful zeolite crystallization. Model

probability above 0.5 is interpreted as "successful".

Zeolite
or

Failed
Classification

Algorithm

Si/Al
Na/Si

H2O/Si

N+

Si
O

OO

O

Time
Temp
Aging

Figure 5-3. Schematic of classification approach to modeling crystallization proba-
bility.

Two train/validation/test split schemes are used for optimization and performance

evaluation of the algorithm. The first splits 10% of the data randomly into test set

and an additional 10% of the remaining data into validation set for optimization

of the model’s hyperparameters. The remaining data comprises the training data.

The second split holds out 10% of the unique OSDAs systems in the data as the test

set and an additional 10% of OSDAs for the validation. This split ensures that the

model is tested on never before seen OSDA systems, mimicking performance on a

newly discovered OSDA. Both of these splits incorporate a 10-fold cross validation

loop so every data point is tested in exactly one fold. The results are aggregated
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together to examine classifier performance.

Within each fold, five different classification algorithms are trained to compare per-

formance: a dummy classifier, logistic regression, deep neural network, random

forest, and XGBoost. The algorithms are optimized using a Bayesian optimization

search algorithm57,58 to find the optimal set of hyperparameters maximizing the

macro F1 score across the validation set. Each hyperparameter space is unique to

the specific classification algorithm. For example, random forest hyperparameters

include the number of trees in the ensemble, classes weighting scheme, and mini-

mum samples to consider for an ending leaf.

Figure 5-4 shows the classification performance of the five different classification

algorithms evaluated after optimization for the two different train/test splits. The

results displayed are the result of aggregating all predictions over the ten-fold cross

validation. As expected, the random split performs better as the model potentially

sees more information about the OSDA system of each synthesis route. However,

even in the OSDA split, all the algorithms are substantially better than the dummy

classifier (random guessing based on distribution) indicating the model is capable

of providing value on unseen OSDAs. Of the five classification algorithms, the tree

models, random forest and XGBoost, have the best performance on both train/test

splits with an area under the curve (AUC) score of 0.89 and 0.9 respectively for

random split and 0.68 and 0.71 for the OSDA split. These metrics indicate these

algorithms can provide robust predictions both in an interpolation context and on

new, previously unseen systems.

5.3.3 Model Interpretability

Beyond providing accurate predictions, the classification model can also provide

insight into why it makes certain predictions and the relative importance of each of

the synthesis variables. For each prediction, Shapley (Shap) values are calculated

which use a game theory approach to determining each feature’s contribution to the
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Figure 5-4. Classification performance across different train/test splits and algo-
rithm types for the crystallization probability model.

model prediction.59–61 These values can provide insight into the crystallization pro-

cess. Shap value calculations are done on the XGBoost model using one randomly

held out test set for all figures.

Figure 5-5a shows the Shap values for all synthesis routes sorted by the maximum

absolute impact on the the model output. The color represents the relative value of

that feature value. Crystallization time has the largest impact of any synthesis vari-

able. There are a number of low crystallization time values that have a significant

negative impact on the synthesis result. This result agrees with intuition as nu-

cleation and growth often takes longer timescales for zeolite crystallization. Aging

time also has a strong impact on model output although there is not a easily identifi-

able trend for high or low aging time values. Crystallization temperature is another

important synthesis variable that generally agrees with intuition. Higher crystalliza-

tion temperatures are generally correlated positively with crystallization percentage

except for a scattering of synthesis routes with high crystallization temperature but

very negative impact on the crystallization probability. Too high of temperatures

results in dense crystalline phases62 which may be responsible for these results. Fi-

nally, several compositional variable have interesting trends as well. F, Ge, and Na

are all important gel components that can play a stabilizing role in certain zeolite

structures.63–65 As such, higher values are generally associated with higher crystal-
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lization probability. H2O shows the opposite trend with high values associated with

lower crystallization probability due to the difficulty in synthesizing zeolites at low

concentrations.66

a) b)

Figure 5-5. High level visualization that demonstrate particular features’ impacts
on the crystallization probability model. a) Top 15 features ranked by maximum
absolute impact on a sample. b) Impact of specific features on 15 selected samples
from the test set. Dotted lines indicate the sample was misclassified by the model.

The decision plot also provides an interesting visualization for examining synthesis

routes with Shap values. The plot accounts for the impact of individual features

by tracing the path from the expected value of the data to the model’s output crys-

tallization probability. Solid lines correspond to correct predictions from the model

while dashed lines are errors. Figure 5-5b shows this plot for fifteen synthesis route.

Obvious trends affecting crystallinity across many samples will show up in this type

of plot. The disorganized and random behavior observed between the synthesis

routes indicates there are many different routes to achieving crystallinity in zeolites

suggesting it is probably beneficial to examine subsets of the zeolite synthesis space

and even individual synthesis routes.

5.3.4 Test Case: TMAda

The complex nature of the synthesis space often necessitates examining synthesis

routes on a individual basis to gain insight. This thesis examines one specific OSDA

system, N,N,N-trimethyladamantammonium (TMAda), although the following type
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of analysis could be applied to any subset of the zeolite synthesis space. TMAda

is chosen as a parallel to section 4.4.3, the industrial relevance of its main zeolite

product CHA, and the abundance of both successful and failed synthesis routes in

the data.

Figure 5-6 shows the most important synthesis variables’ influence on four selected

TMAda synthesis routes. The Shap values for each synthesis route are presented as

arrows with orange as a positive influence on crystallization probability and blue a

negative impact. While whether a high or low value for each synthesis parameter

is causing the effect cannot be directly interpreted from these plots, it is often pos-

sible to infer from zeolite domain knowledge. Figure 5-6a shows a successful CHA

synthesis route67 correctly predicted by the model to be successful with high con-

fidence (0.915). Several important synthesis variables, Al content, crystallization

time, the precursors (FAU zeolite), and rotation all have a positive influence on the

crystallization. The only negative is the OSDA amount with a minor influence. Fig-

ure 5-6b shows a failed synthesis resulting in an amorphous phase65 also predicted

correctly by the model (0.308). This system is a pure Si framework with K cations.

The lack of Al has a strong negative influence on the prediction along with the pre-

cursor selection (Fumed silica and KOH). FAU zeolite is typically a better precursor

than different types of amorphous silicas68 which helps explain the positive pre-

cursor influence in a and negative in b. This underscores the complexity of zeolite

synthesis and how Shap values provide tools to start unraveling these relationships

for individual synthesis routes.

Synthesis routes with less predicted certainty are also potentially interesting. Fig-

ure 5-6c shows a synthesis route correctly predicted but right on the edge of the clas-

sification threshold (0.495) resulting in a mixed AFI and dense crystalline phase.69

Examining the Shap values potentially gives an indication of how improvements

could yield a pure zeolite phase. From the Shap values, the model would predict

a crystalline phase except for OSDA content. This synthesis route uses a very low

OSDA/Si ratio, 0.03. Raising the ratio could be a way to accomplish a pure zeo-
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CHA
Si/0.05Al/0.4OSDA/16H2O

150°C for 168 hrs w/ stirring
FAU zeolite

Amorphous
Si/0.1K/0.15OSDA/44H2O

Age 2 hrs, 150°C for 72 hrs wo/ stirring
Fumed silica, KOH

AFI+dense
Si/0.06Na/0.35OSDA/12H2O

Seed, 180°C for 24 hrs wo/ stirring
Fumed silica, NaOH

amorphous (misclassified)
Si/0.75F/0.75OSDA/10H2O

Seed, Age 12 hrs, 150°C for 8 hrs w/ stirring
TEOS, HF

a) b)

d)c)

Figure 5-6. Shap values for four synthesis routes using TMAda. a) Successful
CHA synthesis route.67 b) A failed amorphous route.65 c) A failed synthesis route
resulting in AFI mixed with dense crystalline phase.69 This route is very close to
the prediction threshold. d) A failed amorphous synthesis route misclassified as a
successful synthesis.70

lite phase. Figure 5-6d shows an incorrectly classified failed synthesis route that

the model predicts as successful.70 The Shap values provide insight into which syn-

thesis variables confuse the model. The crystallization time for this route is low,

only 8 hours. The same synthesis route at 24 and 96 hours yield a pure zeolite

phase (STT) indicating the model does not put enough negative impact on the low

crystallization time for this synthesis route.70

Aggregating the results from these four synthesis routes provides insight as well,

although with only four points the results need to be investigated further. In all

four systems, having Al in the framework is a positive on crystallization probability

while a pure Si framework is a substantial negative. This reinforces the idea that
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aluminum can help stabilize zeolite frameworks.71,72 Crystallization temperature

also has interesting commonalities between synthesis routes. When the crystal-

lization temperature is 150°C (b and d), it has a considerable negative effect on

crystallization probability. For the higher temperature systems, it does not seem to

play a large role. This could indicate that zeolites in the TMAda system are best

synthesized with a higher crystallization temperature.

5.4 Crystallization Curve Modeling

The previous section investigated crystallization probability, attempting to answer

"if" a zeolite will form. This section informs "how" a zeolite will crystallize by exam-

ining the evolution of crystallizinity with time. It examines zeolite crystallization

behavior as a function of the synthesis variables and combines multiple types of

crystallization data into a Bayesian inference framework.

5.4.1 Crystallization Curve Data

Crystallization data exists in two forms in the literature, as quantitative data form-

ing the characteristic "S" curve typically found in article Figures and qualitative

data that describes the outcome of a synthesis route such as "Amorphous", "Dense",

"ZSM-5", and "SSZ-13+amorphous" typically found in text and tables. A huge

difference in data volume between the quantitative and qualitative crystallization

data exists due to considerable characterization efforts required to quantify the en-

tire crystallization curve and the considerable efforts required to extract that data

from article figures. The quantitative data consists of 291 crystallization curves

(dataset 3.5.5 while the qualitative data, found in dataset 3.5.4, is orders of magni-

tude larger with approximately 20,000 synthesis routes but without detailed crys-

tallization information. However, using a Bayesian inference approach, both types

of data can be used to create a model that predicts the crystallization behavior.

This usage of two datasets with different levels of data quality is often called multi-
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fidelity data and has been used effectively in the materials space to study property

correlation and crystallinity.73–75

a) b)

c)

Figure 5-7. Demonstration of the two types of crystallization data found in the
literature. a) Quantitative data from ref.76 b) Quantitative data from ref.77 c) Qual-
itative data from ref.78

5.4.2 Gualtieri Model Fit

The first step in the modeling process determines a, b, and kg for each extracted

curve by fitting the extracted experimental data with the Gualtieri model. The fit

is performed across the extracted crystallization curves using the SciPy package79

with a dogbox implementation of least squares optimization.80,81 0.001 to infinity

acts as the bounds for all three kinetic parameters. n is assumed to be 3 unless that

results in a poor fit in which case n = 1 and 2 are computed in addition. Poorly fit

curves (low R2 score) are revisited manually to improve the parameters.

Figure 5-8 shows the fitting process with data from ref.76 and the R2 values for
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a) b)

c)

R2: 0.996
a: 84.43
b: 12.60
k: 0.14

R2: 0.999
a: 111.10
b: 5.13
k: 0.14

α= 1
1 + exp t−a

b }∗ {1−exp(−(kgt)n)}}

−

Figure 5-8. Crystallization scheme and results a) Experimental data from ref.76. b)
Fitted experimental results using the Gualtieri model. c) R2 scores from all 291 fits.

the data overall.The experimental data fits very well to the Gualtieri model with a

median R2 of 0.990 and R2 for 90% of curves above 0.90. Figure 5-9 shows the a, b,

and kg values for all the extracted curves. All three parameters have dense clusters

at low values with some large outliers although b and kg display this much more

strongly than a. These values are used as the "true" parameters in the following

modeling.

Since all subsequent modeling efforts are based on the parameters extracted from

this fitting process, it is worth discussing potential problems with fitting the data

and with the Gualtieri model more generally. The first set of problems are numeri-

cal. Due to the difficulty in characterization of the early stages of nucleation,82 there

are often not enough data points at low 𝛼 values to accurately determine a and b

resulting in a range of a and b values that do not affect the goodness of fit (R2)
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a)

b)

Figure 5-9. a, b, and kg histograms for the 291 extracted curves. a) Full histograms.
b) Zoomed in on dense areas.

to the data. Instead of evaluating trends in the parameters themselves, it is often

better to calculate properties of the curves numerically such as crystallization time

to 𝛼= 0.1, 0.5, 0.9 and difference in time between 𝛼= 0.1 and 𝛼= 0.9. The second

set of problems involve the Gualtieri model and its assumptions. The assumption of

a normal distribution to model the probability of nucleation may be too simplistic

for certain types of synthesis routes. Synthesis routes that utilize seeds, other crys-

talline zeolites as precursors, or age prior to crystallization may already have nuclei

present at the start of the crystallization step.83 Other probability distributions such

as an exponential distribution may better describe the nucleation behavior for such

synthesis routes.
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5.4.3 Crystallization Prior Modeling

The first modeling step predicts a, b, and kg as a function of the synthesis route

using ML. Difficulties arise since data is very limited (291) and zeolite synthesis is

a very complex feature space. This input spans similar variables as the previous

section with gel chemistry, reaction conditions, precursors, and OSDAs with an ad-

ditional variable, the zeolite structure undergoing crystallization represented with

a compressed latent representation learned with an autoencoder similar to the pre-

cursors and OSDA inputs. The gel composition is also compressed to a five length

vector using PCA to reduce the dimensionality of the input space. The first five

principal components account for 95% of the variance in the gel composition space.

Three separate models are trained with the same input space for a, b, and kg inde-

pendently. The ML model is a random forest model that utilizes jackknife variance

estimates to quantify uncertainty.84,85 This uncertainty estimate is important for the

Bayesian inference described in the subsequent section. Since the three parame-

ters are related, the model’s hyperparameters are tuned simultaneously using the

area between the current predicted curve and the true curve as the optimization

function. Through the modeling section, the ML and Bayesian inference predic-

tions are compared to randomly sampling a, b, and kg values from their underlying

distributions described in Figure 5-9.

Figure 5-10 shows the results from the ML model running a leave-one-out cross val-

idation. As hypothesized, the model performs poorly on this small dataset with R2

scores of 0.21, 0.03, and -0.19 for a, b, and kg respectively. However, the model does

perform better than randomly sampling the distributions which gives R2 values of

-1.45, -0.27, and -1.98 for a, b, and kg. This performance difference is also high-

lighted by comparing the difference in area between the true and predicted curves.

This metric tests the models ability to mimic the shape and location of the crystal-

lization curve more broadly rather than looking at each kinetic parameter individu-

ally. The ML-learned prior has a statistically significant lower distribution relative to

the random sampling with a p-value of 2.7E-7 using a Kolmogorov-Smirnov test.86
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This metric demonstrates again the value provided by the ML model as opposed to

random sampling.

Random Sampling ML Prior

RMSE: 56
R2: 0.21

RMSE: 33
R2: 0.03

RMSE: 32
R2: -0.19

Figure 5-10. True versus predicted values for a, b, and kg from the ML model and
randomly sampled. The area difference is difference in area between the predicted
curve and the true curve for the two different schemes.

5.4.4 Bayesian Inference for Posterior Estimate

As expected due to the difficult nature of the data and input space, the ML pre-

diction alone provides a poor estimate of the crystallization curves although better

than simply sampling the underlying distribution. Luckily, there is another source

of data, the qualitative data that can help improve predictions. This data is incor-

porated into a Bayesian inference framework shown in Equation 5.2.

P(𝑎, 𝑏, 𝑘g|𝑡, 𝛼, 𝑠𝑦𝑛𝑠) ∝ P(𝑡, 𝛼|𝑎, 𝑏, 𝑘g, 𝑠𝑦𝑛𝑠) * P(𝑎, 𝑏, 𝑘g|𝑠𝑦𝑛𝑠) (5.2)

The right most term in Equation 5.2 is the prior distribution or the original estimate

of a, b, and kg without incorporating the qualitative data. The previous section

ML modeling acts as our prior or the probability of a, b, and kg conditioned on

the synthesis route with the model prediction as the mean of a normal distribu-

tion and the uncertainty estimate as the standard deviation. The qualitative data,

crystallization time (t) and 𝛼, are incorporated in the likelihood distribution, the

middle term, which quantifies the probability of t and 𝛼 given the predicted a, b,
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and kg values. The 𝛼 value of each qualitative point is estimated based on its text

representation. For pure zeolites, amorphous samples, amorphous+zeolite, and

zeolite+amorphous, 𝛼 ≃ 1.0, 0, 0.33, and 0.66 respectively. Only synthesis route

with a single observed zeolite structure are considered. The prior and likelihood are

combined into the posterior, the probability of a, b, and kg conditioned on both the

synthesis route and the qualitative data. The posterior calculations are performed

using PyMC3.87 Figure 5-11 demonstrates this process on data from ref.76

α= 1
1 + exp t−a

b }∗ {1−exp(−(kgt)n)}}

− P (H|D) = P (D|H)P (H)
P (D)

Fit Prior Posterior

Figure 5-11. Progression of crystallization modeling from Gualtieri fit to ML prior
modeling to posterior estimation using qualitative data.

Figure 5-12 shows the prediction results for the posterior estimates of a, b, and kg.

The posterior is sampled 1,000 times with the mean used as the prediction of a, b,

and kg. The posterior predicts a and b better than the prior although interestingly

worse for kg. Similar to the prior modeling, the posterior performs worst on the

prediction of kg. This trouble could be from the structure of the extracted kg with

several very large outliers seen in Figure 5-9. A similar area comparison also reveals

the posterior improves the prediction. The posterior area difference distribution is

lower than the prior distribution with a p-value of 2.4E-8. These results indicate

that including the posterior calculation improves the ability to predict crystallization

curves although it is still quite challenging.
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Random Sampling ML Prior Posterior 

RMSE: 49
R2: 0.38

RMSE: 31
R2: 0.12

RMSE: 51
R2: -2.03

Figure 5-12. Comparison to true versus predicted parameters for the posterior
estimate.

5.4.5 Crystallization Trends Across Data

This Bayesian inference framework is run across all unique syntheses resulting in a

pure phase zeolite structure compiling a dataset of approximately 10,000 predicted

crystallization curves. Rather than compare against a, b, and kg directly, it is bet-

ter to numerically compute values from the predicted crystallization curves. Two

important values are the crystallization time to 10% crystallinity (𝛼 = 0.1) which

can loosely be considered the nucleation time and the crystallization time from 10%

crystallinity to 90% crystallinity which can be considered the growth period. Similar

to the findings in the previous section, the relationships between the crystallization

behavior is very complex making evaluation on specific systems typically necessary.

However, there are some general observations that can be made.

Figure 5-13 demonstrates some of these general trends in both nucleation and

growth for several synthesis conditions. Aging time shows a clear trend with high

aging times correlated with both fast nucleation and growth conditions. Aging typ-

ically helps order the gel phase and pre-promote nucleation so this finding agrees

with intuition.10,83,88 Other synthesis conditions like the use of microwaves and

seed also has a strong impact on increasing nucleation speed. Microwaves appear

to also speed the growth process while seeding appears to play a much smaller

role in growth than nucleation. Other variables such as rotation, appear to have a

much smaller impact on specific nucleation and growth values at least in a general
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context.

a)

b)

Figure 5-13. General trends between crystallization parameters and synthesis con-
ditions. a) Synthesis variables compared with the time it takes the synthesis to
reach 10% crystallinity. b) Synthesis variables compared with the time it takes for
the system to growth from 10% to 90% crystallinity.

Taken together with the previous section on modeling crystallization probability,

researchers can use this Bayesian modeling approach to gain insight into specific

zeolite systems of interest. It looks at the "how" aspect of zeolite crystallization,

predicting the behavior from a synthesis system known to crystallize into a zeo-

lite. Another interesting aspect of Bayesian inference is the iterative nature. Data

can continuously added until the prediction reaches suitable accuracy and enough

knowledge is gained about the system. This type of Bayesian model could be incor-

porated with experiments to target specific areas of zeolite synthesis with unknown

kinetics.
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5.5 Generative Modeling of Inorganic Conditions

The previous two sections helped explain the crystallization behavior of a given zeo-

lite synthesis route. One remaining question is what synthesis route should be used

to make a specific zeolite. This section provides tools to help answer that question

through the use of generative modeling to predict potential synthesis routes given

a specific zeolite and OSDA pair.

5.5.1 Model Description and Optimization

The generative model is a series of CVAEs that each predict an aspect of the syn-

thesis route conditioned on the given OSDA-zeolite pair as well as the previous

CVAE output as shown in Figure 5-14. First, the model generates the synthesis

components best suited for the OSDA-zeolite pair. This limits the chemical space

by narrowing to a specific zeotype such as conventional Si-Al zeolites, AlPO, or

germanosilicates. It also predicts additional synthesis components such as alkali

cations and F- as a mineralizer and binary reaction variables such as aging, re-

actor rotation, and seed usage. Second, the model predicts the gel composition

conditioned on the selected synthesis components. Third, the model predicts the

reaction conditions such as aging behavior, crystallization time, and crystallization

temperature conditioned on the gel composition. Finally, the model predicts suit-

able precursors. Each model is conditioned on an OSDA-zeolite pair featurized as

described in section 3.4.1 and 3.4.2. The sequential nature of the modeling process

has precedent in predicting reaction conditions89 and has significant benefits com-

pared to an all-in-one model. Sequential modeling allows for easier, independent

optimization of each model. It also allows users control over which parts of the syn-

thesis process to model and incorporate their own domain expertise and intution

into the model. For example, a researcher may have strong intuition that an OSDA-

zeolite pair is best suited for AlPO chemistry. Rather than generating the synthesis

components, they can input their intuition about the chemical environment directly

into step 2 of the model and generate suitable gel composition, reaction conditions,
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and precursors. This flexibility to input domain knowledge directly would not exist

in an all-in-one model.

Si? Si?

Al? Al?

Ge? Ge?

F? F?

N+

Latent

N+
Si/Al Si/Al

Na/Si Na/Si

F/Si F/Si

Si/Ge Si/Ge

Latent

N+
Age Age

°C °C

hrs hrs

rot? rot?

Latent

N+
Pre.1 Pre.1

Pre.2 Pre.2

Pre.3 Pre.3

Pre.4 Pre.4

Latent

1. Synthesis Components

2. Gel Composition

3. Reaction Conditions

4. Precursors

Figure 5-14. Schematic of the sequential CVAE models that comprise the inorganic
conditions generative model.

Each of the CVAE models are deep neural networks utilizing a multi-term loss func-

tion consisting of a reconstruction and KL divergence term. For synthesis com-

ponents and precursors, the reconstruction loss term is binary crossentropy while

mean squared error is used for gel composition and reaction conditions. For syn-

thesis components, gel composition, and reaction conditions, both the encoder and

decoder are comprised of two fully connected, dense layers. The precursor model,

due to its three-dimensional representation, utilizes three convolutional layers in

the encoder and three recurrent, GRU layers for the decoder. All layers utilize the

Relu activation function except for the ouptut layer of each model which is treated

as a hyperparameter. Each model is trained independently using the default Adam

optimizer with a batch size of 64 for 100 epochs. Training uses early stopping
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criteria by monitoring loss on a held out validation set with patience value of 10.

The models are implemented in Keras v2.2.4 with TensorflowGPU v1.15.0 as the

backend and trained using two NVIDIA Titan Xp GPUs.

Synthesis components, gel composition, and reaction conditions are optimized over

beta (relative weighting of reconstruction versus KL divergence), the latent space

dimensionality, prior standard deviation, and final layer activation function. Precur-

sors has additional hyperparameters connected to the convolutional and recurrent

layer including the recurrent dimension, convolutional window, and convolution fil-

ters. Defining a metric to optimize over is difficult because the the hyperparameter

beta is included in the loss function. Instead, performance metrics are devised based

on overall reconstruction and probability. This performance metric is a weighted av-

erage of F1/RMSE values multiplied by the Wasserstein distance of the generated

versus true distribution for each feature. This metric punishes the model for being

far away from the test points as well as not recreating the literature distribution for

each feature overall. Each model is optimizing using Bayesian optimization for 20

iterations with this metric as a function of the hyperparameters.

5.5.2 Model Performance

To evaluate model performance, a ten-fold cross validation is run with 10% of the

OSDA systems withheld from each fold as a test set. These predictions are aggre-

gated together and compared to the actual literature distributions for each part of

the synthesis route. Each aspect of the synthesis route can be evaluated separately

because of the sequential nature of the model.

Figure 5-15 evaluates the synthesis component part (Step 1) of the model. Because

of the probabilistic nature of generating predictions, the best practice is typically

to aggregate predictions to examine the most probable generated values. For each

test point, 1,000 samples are generated. The most commonly generated synthesis

components are then compared to the actually utilized synthesis components. Fig-
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ure 5-15a shows a histogram of the percentage of overlap between the most com-

monly generated and true synthesis components. For example, if the true synthesis

route uses Si, Al, Na, and H2O and the four most frequently generated synthesis

components are Si, Na, K, and H2O, the overlap is 3 out of 4 (0.75). The majority of

synthesis routes have at least 50% of the components correctly predicted with the

plurality between 80-90%. Figure 5-15b shows the most common correctly identi-

fied synthesis components. All of the top five are very common especially "sda1" and

"H2O" with only OSDA-free synthesis and a small amount of solvothermal synthesis

routes not having these variables.

Correctly Classified

False Negatives False Positives

a) b)

c) d)

Figure 5-15. Overview of the synthesis component aspect of the generative model.
a) Histogram of percentage of synthesis components correctly classified for each
synthesis route. b) The most common correctly classified synthesis components. c)
The most common synthesis components that are missed by the model d) The most
common incorrectly generated components from the model.

Figure 5-15c-d show some of the model’s common mistakes. Figure 5-15c shows

the most common literature synthesis components that the model fails to generate.
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Aging time is sparsely recorded in the literature with many authors not providing

adequate data which may be limiting model performance. P, F, and Na are concern-

ing since AlPO systems behave quite differently than conventional zeolites while F

and Na often play a structure directing role in addition to mineralizing and charge

balance.63,65 Figure 5-15d shows the most common incorrectly generated synthesis

components. Interestingly, there is some overlap between false negatives and false

positives with rotation, Na, and F appearing in multiple lists. Rotation is another

sparsely reported variable. The model assumes any synthesis route without a re-

ported rotation occurred at static conditions which may lead to erroneous results.

This may be an example of bias in the reporting of synthesis data affecting model

results.

Figure 5-16 examines the performance of the model on gel composition (Step 2).

Several important compositional ratios are examined including Si/Al, Al/P, K/Si,

H2O/Si, Si/Ge, Na/Si, F/Si, and OSDA/Si. Blue distributions are the extracted lit-

erature values and orange distributions are from the CVAE model. Ideally, the two

distributions for each ratio should be approximately equal. We observe relatively

good agreement between the literature and generated distributions for the major-

ity of the ratios. The least agreement comes from Si/Ge which may be partially

explained by the lack of understanding about the effect of Ge on zeolite struc-

ture.90,91

Figure 5-17 examines the model performance on the two most important reaction

conditions (Step 3): crystallization time and crystallization temperature. The model

appears to match the literature distributions reasonably well although the peaked

nature of the literature distributions is not reflected and most apparent for crys-

tallization temperature where the generated distribution smooths out the peaks

observed in the literature values. This smoothing phenomenon is not necessarily

bad as the peaked nature of the literature data is due to bias rather than underlying

kinetic factors. Researchers are much more likely to choose 5 or 10°C increments

rather than test on a continuous temperature scale. Instead the model learns a
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Literature Generated

Figure 5-16. Aggregated performance of several important gel composition ratios.

similar type distribution smoothed over the crystallization temperature space, po-

tentially resulting in predictions that are rooted more in underlying kinetic factors

than human bias.
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Figure 5-17. Aggregated performance of crystallization time and temperature.

Precursor generation is the final piece of the generative pipeline. Figure 5-18a and

b show the most common precursors sets generated by the model and observed

in the literature respectively (Step 4). A number of the most common precursor

sets overlap including "HF, TEOS", "colloidal silica, sodium aluminate", "Al(NO3)3,
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NaOH, fumed silica", "GeO2, HF, TEOS", and "aluminum isopropoxide, phosphoric

acid" indicating the model generates similar precursor distributions from the litera-

ture data. Figure 5-18c and d show the model performance on Si and Al precursors.

Si and Al precursors are typically the most important choice92 as most other syn-

thesis components have only one or two popular precursor choices while Si and Al

have 44 and 32 respectively. For each synthesis route, 100 different precursor sets

are generated and aggregated based on the provided synthesis component. Start-

ing with the most popular generated precursor, the sorted precursor list is traversed

until the exact match from the literature is found. In this scheme, "first" indicates

the most popular generated precursor was the literature precursor, "second" indi-

cates the second most popular generated precursor matched the literature and so

on for "third" through "fifth." "More/none" indicates the literature precursor is not

in the top five most frequently generated precursors. Figure 5-18c and d indicate

the model’s generations mimic the literature used precursors with high accuracy

for both Si and Al precursors. A plurality of generated synthesis routes match the

literature precursor as the most frequently generated precursor for both Si and Al

while 85% and 80% fall within the top five most commonly generated for Si and Al

respectively. This demonstrates the accurate performance of the precursor piece of

the model.

While matching the literature distribution for synthesis variables is important, it by

itself does not demonstrate suitable model performance. The model must also be

capable of generating tailored predictions for specific OSDA-zeolite systems, rather

than just mimicking the underlying literature distribution of synthesis variables. To

test this scenario, the model generates synthesis variables for each specific OSDA

system found in the literature. The average root mean squared error (RMSE) and

Wasserstein distance between each test point and the OSDA system’s distribution

is calculated. These values are compared to the RMSE and Wasserstein distance of

randomly associated OSDA systems and generated points. Figure 5-19 shows this

process for the highlighted synthesis variables. A model that successfully generates
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a) b)

c) d)

85% Found with 5 80% Found with 5

Figure 5-18. Examining the performance of the generative precursor model. a)
Most commonly generated sets of precursors. b) The most common precursor sets
found in the literature. c) Ranking the accuracy of the most common Si precursors
predicted by the model. d) Ranking the accuracy of the most common Al precursors
predicted by the model.

predictions tailored for each set of OSDA conditions should have a majority of RM-

SEs and Wasserstein distances less than (to the left) of the randomized value (thick

black lines). All of the variables examined have a majority of systems with lower

RMSE and Wasserstein distance values than the randomized sample indicating our

model is generating good predictions suitable for each OSDA system. Si/Al and

H2O/Si are the worst performing with approximately 90% and 80% respectively of

the OSDA systems outperforming the random baseline for both RMSE and Wasser-

stein distance. The rest of the variables shown have 100% of the OSDA systems

with better RMSE and Wasserstein distances than the baseline. This indicates the

model learns to generate synthesis routes, especially gel composition for specific

OSDAs very well.
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Figure 5-19. Examining the performance of important compositional ratios condi-
tioned on specific OSDA systems.

Figure 5-20 shows a similar analysis on crystallization time and temperature. The

model has good performance on crystallization temperature with approximately

85% of predictions better than the baseline. Crystallization time though performs

very poorly with only about 35% of predictions beating the baseline. One potential

reason for poor performance could be the inexact nature of crystallization time.

Typically, zeolite synthesis takes on the order of days making the reporting relatively

inaccurate. The literature also contains a wide range of synthesis times from only a

couple of minutes for microwave and accelerated crystallization systems to several

months. The model developed in section 5.4.1 could also be utilized to help get

better predictions of necessary crystallization times.

5.5.3 Novel Zeolite Structures

To test the model’s capability to assist in novel zeolite syntheis, the model’s pre-

dictions on several newly realized zeolite systems are examined. These systems

represent three different design scenarios. PTO, PTY, and ETV are new zeolite struc-

tures with new OSDAs, representing synthesizing a new, hypothetical zeolite with

a newly designed OSDA.93–95 SOV and YFI are new zeolite structures with previ-

ously used OSDA for a different structure, representing the synthesis optimization

within an OSDA system to yield a new structure.96,97 CHA is an old zeolite structure
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Figure 5-20. Examining the performance crystallization time and temperature con-
ditioned on specific OSDA systems.

with new OSDA representing the optimization of the OSDA utilized in the synthesis

of an existing zeolite structure.3 We train a CVAE model, withholding the systems

described above, then generate the synthesis routes and compare with the known

synthesis routes. Figure 5-21a shows this process for ETV.

Since the model runs sequentially, there are multiple options regarding which sets

of predictions to use in subsequent generation steps. To simplify the process, only

three are considered termed "True", "Greedy", and "All". Starting from the genera-

tion of the synthesis components, "True" refers to using the known components used

in the synthesis i.e. for ETV Si, Al, Na, OSDA, and H2O. This skips the model pre-

diction of these elements and represents the case where a researcher already knows

the type of zeolite chemistry for the system. "Greedy" and "All" both involve using

the model to make predictions about the synthesis components. "Greedy" only takes

the most probable set of synthesis elements whereas "All" passes each set generated

by the model. While this selection step could occur at each step in the model, each
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step beyond the synthesis component prediction takes the "All" approach as to not

have a large combinatorial space of selection options.

Figure 5-21c shows the results of generating synthesis components for each of the

six selected systems. 1,000 synthesis element sets are generated for each system

and aggregated to find the most frequently generated synthesis components. The

% of Correct Elements is then taken as the overlap between the most frequently pre-

dicted components and the actual components used in the synthesis. All six selected

systems have at least 60% of their correct synthesis components predicted by the

model. PTO has 7/8 correctly predicted while YFI and CHA both have 5/6 predicted

correctly. The worst, SOV at 60%, is synthesized as a germanosilicate potentially

indicating again the germanium-zeotype interactions are difficult to predict.

To evaluate the gel composition and crystallization conditions, a range is defined

around each true value and probability is calculated based on how many gener-

ated values fall within the range. The ranges are ±5 for Si/Al and Si/Ge, ±0.1 for

Na/Si, K/Si, F/Si, and OSDA/Si, ±10 for H20/Si, ±24 hrs for crystallization time,

and ±10°C for crystallization temperature. Figure 5-21b shows these results aver-

aged across the six systems for each algorithmic split. "True" algorithm appears to

have the best performance indicating the potential benefit of combining researchers’

knowledge with the model. Combining the three algorithms gives the best perfor-

mance. Time appears hard to correctly predict following the similar theme across

multiple models.

Finally, precursors are generated for these systems and compared with the literature

precursors. 1,000 sets of precursors per system are generated and aggregated. Fig-

ure 5-21d shows results for Si and Al precursor prediction. Each bar represents how

frequently that precursor is predicted relative to others providing the same element,

either Si or Al. Across the nine different predictions (SOV does not require Al), six

of them have the correct precursor within the four most frequently generated pre-

cursors out of 44 for Si and 32 for Al. For the systems where precursors were not
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Figure 5-21. Examining the model performance on the six most recently syntheti-
cally confirmed zeolite structures. a) Predicted values vs the real synthesis value for
ETV.95 b) Percentage of generated synthesis routes that fall within a user defined
range around the actually used synthesis route for important selected variables and
the three algorithm choices. c) Percentage of correctly predicted synthesis com-
ponents for each of the six zeolites. d) Ranking the most common silicon and
aluminum precursors for each of the six zeolites.

found, ETV was made using kaolinite as the Al source, a relatively uncommon pre-

cursor. CHA with the new OSDA is made using FAU zeolite as the precursor rather

than an amorphous silicon source. This is also rather uncommon as CHA can be

made with other, more conventional precursors including silica sol and fumed sil-

ica and may indicate the model is slightly overconfident in the ability of the OSDA

or other inorganic structure directing agents to form the CHA structure. Overall

this demonstrates the model’s ability to suggest precursors that are suitable for new

zeolite systems.
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5.6 Conclusion

In summary, this chapter examines the rest of the zeolite synthesis space outside of

OSDA design termed "inorganic" aspects through a data driven lens. It models the

probability of zeolite crystallization enabled through the reporting of negative data

in the zeolite literature and uses Shap values to interpret the impact of different

synthesis variables on the crystallization probability. It also combines high quality,

quantitative crystallization data with qualitative data to model the crystallization

behavior of zeolites. These two tasks help answer question two of the thesis by cor-

relating synthesis variables with the outcomes and process of zeolite crystallization

and providing tools for researchers to examine any known system in the zeolite lit-

erature. Finally, the chapter also provides a generative model capable of suggesting

inorganic synthesis conditions for an OSDA-zeolite pair. This model helps answer

thesis question three by learning from the literature data and providing a tool for

researchers to aid in zeolite design.
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Chapter 6

Outlook and Conclusions

6.1 Future Outlook

This thesis represents a small piece of a rapidly expanding sub-domain of materials

science aimed at accelerating synthesis. At the completion of this thesis, there are

continuing efforts to expand upon the themes outlined including incorporating data

science, simulations, and experiments within a circular pipeline. There are also a

number of recent advances and frontiers in the application of NLP to the materi-

als domain that provide potentially fruitful research endeavors. Finally, it may be

productive to reflect on the nature of publication itself and discuss paths to better

sharing of data between researchers.

6.1.1 Accelerated Zeolite Synthesis Planning

After decades of trial and error, the past decade has seen significant progress in

accelerating zeolite design and development. Many tools have been developed

including hypothetical zeolite databases,1 models and platforms for OSDA selec-

tion,2,3 new synthesis methods,4 and high throughput flow synthesis platforms.5,6

One major remaining question is how best to combine all of these tools in opti-

mal ways to accomplish the ultimate goal, at will zeolite synthesis of any zeolite
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structure.

An increasing body of evidence suggests that ML and data science can provide the

missing link in zeolite synthesis.7 ML is a potential solution to determining fea-

sibility and expanding hypothetical zeolite structures, understanding interactions

between OSDA and zeolites, and increasing the accuracy and speed of zeolite char-

acterization. Succinctly, some of the main challenges are representation learning

for the OSDA and zeolite, mimicking binding energy calculations for non-Si-only

frameworks, and prediction of the zeolite formed given synthesis conditions.

One aspect where this thesis work could be expanded is in the prediction of spe-

cific zeolite structures given a synthesis route. This work predicts whether a zeolite

is formed but stops short of predicting what phase that zeolite will be. This is a

very challenging problem mainly because of the complexity of zeolite representa-

tion. Zeolites are often represented as combinations of structural properties8 or

graph-based representations9 making regression-based models to predict structure

necessarily complex and multi-output. Predicting a specific phase could also be

treated as a classification problem although this presents the problems of a very

large number of potential classes with over 250 known zeolites and the inability to

generalize to novel, hypothetical zeolites. Further efforts into this task will need to

content with this complex zeolite representation without sacrificing the ability to

generalize. Recent efforts to develop metrics of templating ability for OSDA-zeolite

pairs3 will most likely be crucial in compressing the potential zeolite output space

down to only the possible subset of zeolite structures allowing the ML to focus on

predicting on the smaller synthesis space.

Another promising route to understanding zeolite kinetics is high-throughput syn-

thesis. Using active learning that builds on the concept of Bayesian inference,10 the

synthesis space can be efficiently explored, mapping the zeolite phase space and

also providing important kinetic insight. One problem however is the output space

of zeolite synthesis is complex. It is hard to define a single quantity typically needed
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for an optimization process. Research is needed into the best ways to represent the

zeolite structural space within the context of optimization algorithms.

Finally, the extracted datasets provide many opportunities to look at interesting

problems within the zeolite domain including:

• The general effect of using crystalline zeolite precursors instead of amorphous

silica source on structure and crystallization. This behavior is often described

as a recrystallization interzeolite transition and is poorly explained by theories

that describe other types of interzeolite transitions.9

• Ge-free synthesis for structures that only exist as Ge-zeotypes expanding on

previous work11 to predict conditions necessary to synthesis pure Si versions

of structures like IWW.

• Understanding the important relationships in industrial relevant zeotypes such

as titanosilicates.12

• Expanding the datasets to include catalytic properties of the zeolite to start

linking synthesis directly with the desired properties beyond structure.

• Expand the kinetic analysis in section 5.4 to solid-state transformations within

zeolites to predict the phase progression through time.

6.1.2 Use of NLP in Inorganic Materials Synthesis

NLP continues to make impact when applied in the materials domain. Recent in-

novations and trends including transformer models with attention mechanisms13,14

which should improve the text vectorization, section classification, and named en-

tity tasks important for information extraction. However, several challenges ex-

ist within the information extraction space that NLP and ML research could im-

pact.

The current, most important problem in materials information extraction is extract-

ing and linking information from different parts of an article. This problem occurs
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across varying length scales within an article. On a small length scale, current NER

and information associating algorithms only span the context of a single sentence.

This sentence-only-context is problematic for tasks such as identifying target ma-

terials where often sentence level context is inadequate or associating conditions

that are listed in a succeeding sentence to its operation. On a larger scale, diffi-

culty in associating various pieces of data bottlenecks automatic extraction. Ideally,

algorithms would identify individual samples in a paper and associate all relevant

data including composition, synthesis conditions, material structure, microstruc-

ture, and material properties. However, all these pieces of information are located

in different locations within an article making the association very difficult. This

problem is similar to the "Co-reference" task in the NLP domain and is notoriously

difficult.15,16 However, it will be necessary to solve this problem to automatically

extract comprehensive materials datasets with all relevant quantities.

Another issue centers around information extraction from sources even more un-

structured than text, namely Supplementary Information (SI) sections. The vast

majority of publishers structure SI sections of articles as PDFs with essentially no

structure. Authors are free to structure SI sections however they would like, creat-

ing enormous challenges in extracting that information. Currently, most of the data

found within SI sections needs to be extracted manually which can create huge bot-

tlenecks in the information extraction process especially as synthesis sections are

often relegated to the SI. Advances in extraction from PDFs as well as publisher

reforms around the structure and file formats of SI sections could greatly speed up

the extraction process by removing a troublesome road block.

A final important frontier in ML applied to materials literature highlighted in this

thesis is image processing. Many articles present results in figures, often in the form

of graphs, schematics, or micrographs. Application of image processing techniques

on this source of data in a similar fashion as NLP to scientific text could great en-

hance the scope and size of information extraction. Many researchers understand

the scope and opportunity this problem presents and progress has been made in

141



extraction from specific types of images.17,18 However, many questions remain re-

garding generalizing extraction to vastly different types of images found across the

entire materials literature.

6.1.3 Rethinking Publishing and Data Communication

Upon reflection, this thesis exposes a flaw within the publishing and sharing of

scientific data and results. In building the datasets, data was first collected by a

researcher performing experiments who then wrote text describing that data. Then

extraction tools are used to convert this text back into data similar to the original

form. At both steps, converting the data to text and converting the text back to

data, information is lost and corrupted. This framing highlights the inefficiency of

the current process.

Most industries as well as academia have realized the importance of aggregating,

curating, and storing data. A similar realization in the publishing industry could

drastically improve data driven research and the scientific process as a whole.

While writing articles in prose is undoubtedly very valuable, the publication pro-

cess should also require publication of the data behind the written article. Different

scientific domains could have different templates of what data is required. This

data publication would reduce the problem of data sparsity19 and inconsistency of

specific reported quantities.20 It could also reduce and eventually replace the need

for complicated extraction algorithms greatly improving availability and accessibil-

ity for aggregating data and performing research. Direct publication of data would

also increase confidence in the peer review process and help with reproducibility of

scientific studies.

6.2 Conclusions

In this thesis, the synthesis of zeolite materials is studied through data science tech-

niques including NLP, materials informatics, generative modeling, and Bayesian in-
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ference. Five datasets are extracted over the length of this thesis each corresponding

to specific aspects of zeolite synthesis. To the author’s knowledge, these datasets

are the largest and most comprehensive related to zeolite synthesis and are made

publicly available to the research community for use to guide experimental stud-

ies, validate theories/simulations, and supply data driven research. These datasets

are used to study zeolite synthesis including correlating synthesis with structural

properties, examining the relationships between OSDA templates and zeolites, and

studying the effect of synthesis parameters on zeolite crystallization. Finally, mod-

els are also created and made public to predict new potential OSDA-zeolite pairs,

generate hydrothermal synthesis conditions for an OSDA-zeolite pair, classify of suc-

cessful zeolite synthesis, and estimate the crystallization curve for a given zeolite

and synthesis environment. Hopefully the resources and insights developed in this

thesis will help facilitate zeolite design and improve data driven synthesis planning

more broadly.

Revisiting the questions posed at the beginning of this this thesis:

1. How can zeolite synthesis data be automatically extracted on a large scale?

• Adaptation of NLP and text mining tools specifically to target relevant

aspects of zeolite literature.

• Automatic filtering based on domain knowledge and researcher-computer

interaction to optimize extraction accuracy and efficiency.

• Results in the largest collection of known zeolite synthesis data with ap-

proximately an 80% improvement in extraction efficiency.

2. How can coupling of data-driven, first principles, and experimental ap-

proaches accelerate understanding of structure and processing relation-

ships in zeolite materials?

• WHIM representation of OSDAs reveals clusters related to specific of ze-
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olite structures.

• Negative data, ML modeling, and Shap values for interpretability pro-

vide insight into the probability of zeolite crystallization for any synthesis

route.

• Multi-fidelity data and Bayesian inference model the crystallization be-

havior of zeolites.

3. In what ways can this data and discovered relationships be used to engineer

improved zeolite materials?

• Generative model predicts suitable OSDA candidates given a zeolite.

• Generative model predicts suitable reaction chemistry, hydrothermal con-

ditions, and precursors given an OSDA-zeolite pair.
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Chapter 7

Appendix

This appendix briefly summarizes some practical tips and lessons learned over the

course of the thesis.

7.1 Practical Tips for Information Extraction

NLP improvements do not necessarily map well to materials information extraction:

Innovations within the NLP community are vital for improving information extrac-

tion from materials text. However, not every innovation and performance increase

in the NLP literature maps neatly to materials text data. The NLP domain typi-

cally develops models on standard datasets that are both large and well-formatted

whereas materials data is typically neither. NLP models will typically perform worse

when applied to materials text. Extraction speed is another consideration for ma-

terials that is rarely considered when developing NLP models. Caution should be

used when deciding to implement state-of-the-art NLP models to determine the per-

formance increase on materials text and whether a potential decrease in extraction

efficiency is justified by that performance gain.

The more "sample specific" the data is, the more challenging the extraction: As

described in section 3.3, computers are very good at extracting specific values
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and much worse at associating those values correctly. By considering this differ-

ence when forming hypotheses, research plans can be developed that minimize the

amount of associating or manual data cleaning. Domains where only one material

is synthesized per paper is ideal from an extraction context since all quantities can

be grouped together. Obviously this comes at the expense of data quantity. Often

insights can be gained from aggregating data such as examining all extracted tem-

peratures without consideration of the specific sample. These types of extractions

are much easier but can limit insight making it domain and context dependent on

how "sample" focused the data should be.

Material synonyms present a challenge: A major challenge faced in this thesis is

standardizing different names for materials and chemicals so that all different text

versions map to the same object. This is especially pertinent for organic molecules

which have multiple naming conventions. Finding a common representation is es-

sential. For organic molecules this is the SMILES string although this is also not

unique for each molecule. Canonical rules exist for SMILES, but is necessary to

use the same software package to convert to canonical form to ensure consistency.

Some molecules are going to evade software packages which typically requires man-

ual grouping.

7.2 Practical Tips for ML in the Materials Domain

Start simple and build up in complexity: This phrase should be a guiding principle

for ML in general but especially in materials science. Materials data, especially small

datasets, are often not well-suited for complex state-of-the-art ML models. Often

linear models with domain engineered features will out perform complex models

with far easier implementation and shorter training times. Only when simple mod-

els lack predictive ability should more complex models be used.

Test sets need to reflect the model intention: Often in ML, test sets are drawn

randomly from the data, the underlying assumption being the train and test sets
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have identical distributions. This is rarely the case in materials since ML models are

typically used to discover new materials or phenomena. This means randomly held

out tests sets typically over perform the "real" model performance on its given task.

Test sets usually need to mimic some form of extrapolation behavior such as holding

out an entire class of materials or holding out the top X% of a certain property.

Evaluating on these types of test sets will give much more accurate descriptions of

model performance.
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