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ABSTRACT

A mathematical model is developed using analytical techniques to

determine the longitudinal and vertical distributions of velocities and

salinities, averaged over a tidal period, for mixed but partially stratified

estuaries. The flow field is assumed laterally homogeneous and the estuary

width and depth are assumed to be functions of the longitudinal coordinate

only. Required inputs to the model include the salt intrusion length, the

ocean boundary salinity, the distribution of the depth-averaged salinity

and the freshwater discharge.

The governing equations included in the model are the vertical and

longitudinal equations of motion, continuity, salt conservation and an

equation of state. The key assumption is that the longitudinal salinity

gradient is independent of depth. This decouples these equations and thus

permits an analytical solution to be found.

Using data from laboratory flume tests from the U.S. Army Waterways

Experiment Station and the Delft Hydraulics Laboratory, and field surveys

from the James River Estuary, the model solutions are used to find corre-

lations for the mean vertical transfer coefficients of mass and momentum

with gross characteristics of the estuary. These correlations, plus the

results from a one-dimensional numerical model, permit this analytical

model to be used as a predictor of the velocity and salinity profiles in

estuaries and to relate changes in freshwater discharge to possible changes

in the location of shoaling zones.
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I. Introduction

1.1 Estuaries as Natural Resources

Coastal zones and estuaries, in particular, provide major resources

for both the economic and social well-being of modern man. In recogni-

tion of these valuable resources, increased efforts are being made to in-

sure and protect them from needless deterioration and neglect. To aid in

these efforts a more complete understanding of the complex inter-

relationships between the biological, chemical and physical mechanisms

of estuaries needs to be developed.

Estuaries are being used as sinks for industrial and municipal

wastes. When properly balanced with assimilative capacities, this may

be a practical use of these water bodies. However, careful attention

must be given to the types and amounts of effluents discharged, in order

to avoid conflicts with their great potential for biological productivity

and recreation by man.

In order to achieve this balance of uses, a thorough understanding

of the complex circulation patters of salt and freshwater in the estuaries

is needed.

1.2 Estuarine Circulation - A General Description

An estuary is defined as a body of water connecting a source of

freshwater with a tidal sea or bay and extends over the length of tidal

action. Natural estuaries, with their irregular boundaries, have highly

complex patterns of circulation of the salt and freshwater masses con-

tained within them. The compounded influences of the factors involved,

i.e., the complex geometry, the tidal flows, the mixing induced L them

13



and by the density differences makes estuarine behavior a very difficult

subject for analytical description.

Figure 1.1 is a representation of a typical estuary as might be

found on the eastern seaboard of the United States. This estuary receives

freshwater flows from several rivers and streams and terminates in a bay

or the ocean. Perhaps the most striking feature is the irregular

boundaries. There are turns and embayments as well as a nonuniform ex-

pansion from the narrow section at its inland end to the wide section at

the sea boundary. Hence, local eddying and flow reversals must be ex-

pected throughout the flow field, and in general, the velocity will have

time-varying components in the longitudinal, lateral and vertical

directions. However, the predominant direction for the velocity is along

the longitudinal axis, periodically changing direction with the tide.

Certain sections of the estuary can have strong lateral components during

portions of a tidal period.

The influence of tides makes the flow in estuaries unsteady in time,

both within a tidal period, and during longer lunar phases. The season-

al variation in the rates of freshwater inflow will also contribute an

additional long-term dynamic unsteadiness to estuarine flows.

One of the most important factors influencing the complex cir-

culation is the density difference between the river discharge at the

head, and the ocean salinity at the mouth. Density currents resulting

from these differences are often major components of the total circula-

tion, and must be included in a realistic model of the flow field.

14
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For some estuaries, the effects of surface winds or Coriolis

accelerations may be a significant influence on the circulation. However,

in general, these factors are of secondary importance when compared with

the effects of complex geometry, tidal mixing and density differences

and will not be considered further in the present development.

1.3 Estuary Modeling Techniques

The purpose of building models of estuaries is to represent the

complex circulation of the prototype in a simplified form which can be

tested and studied to determine the possible consequences of modifica-

tions of controlling factors on the natural circulation. Examples of

such changes could include the dredging of a navigation channel, the

diversion of freshwater inflow to other basins, or the placement of a

diffuser for the heated condenser water of an electric power station.

The former might seriously alter the salinity distribution while the

latter could obviously influence normal biological cycles. Recourse

to various types of models must be made to provide estimates of the

impact of such changes.

There are two main methods for modeling estuaries; physical and

mathematical models. Only a very brief review of these techniques is

needed here since Tracor (1971) has recently presented a complete

survey of this field.

1.3.1 Physical Models

A Physical hydraulic model provides direct visual observation of

flow. They can also be carefully instrumented for detailed measurements

of the velocity field, water surface elevations and dissolved or

16



suspended substances. Physical models of estuaries are distorted due

to large prototype dimensions. Vertical scales are frequently 1:100

while horizontal scales may be 1:1000. This results in a 1:10 dis-

tortion of all cross-sections. General usage has shown that in spite

of this distortion, these models can be made to reproduce many details

of the circulation as well as of the distribution of salinity.

At the present time, physical models of estuaries are the most

important technique for determining the effects of changes in the proto-

type. Their great expense and slow building and operating times are

drawbacks which sophisticated mathematical models may avoid. However,

one can expect these physical models to continue to be important tools

for estuarine analysis for a long time to come.

1.3.2 Mathematical Models

The movement of water and the distribution of dissolved substances

in estuaries are governed by physical laws for which there are known

mathematical descriptions. In many cases, where various simplifying

assumptions can be made, these mathematical descriptions can be written

as equations for which there are known solutions. Depending upon the

solution technique, these models are referred to as either numerical or

analytical models. A numerical solution implies replacing the governing

differential equations with approximate forms which can be solved by

computer. An analytical solution is an exact solution of the original

equation,by integration, with no subsequent approximations.

The application of analytical models to problems of estuarine cir-

culation is limited by the mathematical complexity of the governing

17



equations. In order to reduce these equations to a form which can be

solved analytically, various assumptions may be introduced which often

render the final solutions very limited in application. However, there

are several analytical estuary models which can yield meaningful results.

In general, these analytical models describe conditions averaged

over one or more tidal cycles. Thus, they serve a limited function if

changes within a tidal period are of interest. This will of course

depend on the problems being considered. Analytical models are also

usually restricted to one or two space dimensions, e.g., to depth and

lateral, lateral and longitudinal, or depth and longitudinal directions.

Finally, these analytical models are restricted to problems for which

simple boundary conditions can be prescribed.

Until the advent of the modern high speed computer, analytical

models were the only mathematical technique for describing estuarine

circulation. Numerous models of tidal flushing, salinity distribution

and tidal motions, had been developed. Many of these models continue

to have application today in conjunction with the more powerful

numerical methods. These models have also played an important role in

clarifying the physical understanding of the important processes and in

deriving the proper equations to be included in the newer models.

The greater part of the recent literature on estuarine modeling

pertained to numerical mathematical models. These models use advanced

computer techniques to find solutions to the governing equations of mo-

tion and of mass conservation. One-, two- and three-dimensional models

have been developed, the latter however only in a very preliminary form.

18



An important feature of these models is their ability to handle the un-

steady case, i.e., within a tidal period. Thus, the averaging over a

tidal period which was required for most analytical models is not re-

quired for numerical models.

At the present time, the numerical models available for engineering

applications are of either the unsteady one- or two-dimensional type.

A one-dimensional model averages all dependent variables over the cross-

sectional area, and thus yields changes in mean values with time and along

the longitudinal axis. These models can be used to predict water surface

elevation, mean currents, and mean salinities. They can also be used

with certain reservations to determine the cross-sectional mean concen-

tration of a non-conservative water quality parameter, such as dissolved

oxygen or biochemical oxygen demand .

Two-dimensional numerical models usually allow variations along the

lateral as well as along the longitudinal axis. In this case, the only

averaging is with depth. Again, these models can predict currents, water

quality parameters, etc. These models are more complex than the one-

dimensional case with regard to the computational techniques required.

1.4 Objectives of this Study

The techniques for estuarine modeling described in the preceeding

sections suggest a possible combined approach. Physical models can be

used with mathematical models to analyse different scales of cir-

culation problems. Also, analytical models can be used with numerical

models to increase the number of spatial dimensions of the solution.

19



This investigation develops a two-dimensional analytical model of

estuarine circulation including vertical and longidudinal distributions

of velocity and salinity. All equations are averaged over one or more

tidal periods. This model can be coupled with a one-dimensional numerical

model which is not time-averaged, but is averaged over a cross-section.

The ability to calculate vertical variations of the important flow

parameters is often a useful tool for solving estuarine problems.

Vertical salinity stratification is a key element in the circulation

pattern of an estuary. Models which can predict the effects of changing

geometry, freshwater inflows, etc., on this stratification are of great

value. The modeling of vertical velocity profiles is another useful

model capability. Many problems of shoaling in estuaries can only be

properly studied with a knowledge of the vertical distribution of

velocity.

If a model similar to the one described above is to have practical

application as a predictive tool, all parameters included in the solution

technique must be determinable in advance. Thus, an important part of

the objectives of this study is to obtain relationships between the

various time-averaged coefficients of turbulent diffusion and eddy

viscosity included in the model and the gross parameters of estuarine

circulation.

1.5 Synopsis of the Study

The analytical model described in the previous section can be used

to find the longitudinal and vertical distributions of velocity and

salinity for partially stratified or well mixed estuaries. All model

20



results are for conditions averaged over a tidal period. Certain coeffi-

cients of mixing included in the mathematical equations of the model

have been correlated with various parameters for the estuary in question

from field and laboratory experiments. Proper application of this model

requires a coupling with a one-dimensional unsteady numerical model.

The model has been developed and tested with data from laboratory

flumes and field surveys. Results indicate the model has practical

application in the prediction of salinity stratification and shoaling

changes as might result from the engineering modifications of the

factors which control estuarine circulation.
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II. Previous Investigations

2.1 Analysis of Recorded Data

The last twenty-five years have been a period of active interest in

the description and theoretical analysis of the circulation and mixing

characteristics of estuaries. A large body of literature has evolved

covering results from field surveys, laboratory experiments and theoretical

analysis. These publications are as diverse as the estuaries they dis-

cuss, and this chapter will not attempt to review them all. A very ex-

cellent survey of this work is presented by Bowden (1966). The present

review is restricted to those articles which discuss the vertical dis-

tributions of velocity and salinity for partially stratified estuaries.

Pritchard (1952) describes the circulation in the Chesapeake Bay

estuarine system, and in particular, in the James River estuary. Data

from an extensive program of field surveys are discussed, in which

salinities, temperatures and velocities were measured at several depths

and stations and averaged over one or more tidal periods. The resulting

net circulation and salinity distributions are typical for partially

stratified conditions. A basic feature of this net circulation is

a reversal in the vertical distribution of the time-averaged horizontal

velocity. In the surface region, extending to about middepth, the net

flow is towards the ocean, while the bottom region has flow in the

opposite direction, towards the river end of the estuary. The depth

integral of this velocity is equal to the net discharge of freshwater.

Although two regions can be identified for the velocity, the vertical

salinity distribution can not be separated into two distinct zones. In

22



partially stratified estuaries, there is a continuous increase in

salinity from the surface to the bottom, without a noticable point of

discontinuity.

Pritchard (1952, 1954) also identifies several interesting features

of the longitudinal salinity gradient. For all depths, there is an

increase in salinity from the freshwater region to the boundary salinity

at the ocean end. In addition, over most of the estuary this longitud-

inal salinity gradient is nearly independent of depth, i.e., vertical

position. This latter feature does not hold very near the ocean

boundary or where the salinity goes to zero, upstream.

Pritchard (1954) discusses the various terms in the equation of

salt conservation and uses the James River data to back-calculate the

relative order of these terms. In this analysis, the velocity and

salinity are written as the sum of three terms

u =U + U tt + u 2.1

S + S + s, 2.2
t

where U is a mean velocity for one or more tidal periods, Ut is a one-

dimensional tidal velocity (assumed perodic) and u' is a random

fluctuation due to turbulence. A similar set of definitions is made

for the salinity.

The salt conservation equation averaged over a tidal period is

written

23



-+ U 9S + V - = -- (K -- + -- (K S) 2.3
t x Dy 9x x x y y y

where U and V are the mean components of velocity in the horizontal and

vertical directions, x and y, respectively. K and K are identified
x y

as mean coefficients of eddy diffusivity where K represents the
x Dx ' -

cross-product of the turbulent terms u's' averaged over a tidal period.

Similarly, K replaces v's'. The bar over the products represents
y y

the time-average over the tidal period. All other cross-products are

assumed uncorrelated, and hence zero. The above equation assumes homo-

geneous conditions in the lateral direction.

9S
For the period of study, Pritchard found the -y term to be small,

indicating that the freshwater inflows to the James River estuary were

nearly steady. The horizontal advection U Dx was found to be much

larger than the horizontal eddy diffusion (K -) and also larger than
9x x 9x

9S
the vertical advection V y except near middepth. With these considera-

tions, a simplified mass balance can be written

U - + V - = - (K ). 2-4
9x _y y y gy

Pritchard (1956) then developed the equations of motion for a simple

partially stratified estuary using the same James River data as cited

before. Surface shear due to wind is neglected. The longitudinal con-

servation of momentum equation, averaged over a tidal period, is
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9U -9U 1u'u' 3v'u' _W'U' 2 5 U x + y +Ut -9x 0 5x x 9y z ~

where p is the hydrostatic pressure,p the density, w' the turbulent

fluctuation of the lateral velocity component (z axis). By analogy with

the conservation of salt equation, Pritchard argues that only the ver-

tical eddy diffusion of momentun D v'u' needs to be retained. The time-
y

averaged field acceleration terms for the James River data are also small.

Finally, the acceleration resulting from the tidal component of the

velocity Ut Dxt is an order smaller than the terms on the right-hand-

side of the equation. Using similar arguments, the lateral momentum

equation is written

0 1 p + fU W'u'2.
p Bz 3

where f is the Coriolis parameter. Using appropriate boundary conditions,

equations 2.5 and 2.6 are solved for the distributions of the turbulent

mementum flux terms, averaged over a tidal period. The results indicate

that the mean fluxes are zero at the surface and near the bottom, with

a somewhat parabolic distribution having a maximum near middepth.

2.2 Analytical Modeling of Circulation

The net circulation averaged over a tidal 'period described by

Pritchard (1952, 1954, 1956) has been used by several investigators

as a basis for the development of analytical models. These models have

several applications, an important one being the analysis of shoaling

zones in estuaries. Simmons (1955) and others have identified a
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relationship between locations where the net horizontal velocity at

the bottom of a channel reverses direction and zones of high rates of

shoaling. Thus, analytical models which can predict the location of

this reversal, called a "null point", have practical engineering

applications.

Abbott (1960) examines the role of the longitudinal salinity

gradient in determining the direction of the net, near bottom drift

velocity. Using the assumptions of Pritchard(1956), the longitudinal

momentum equation, averaged over a tidal period,is written

1-j dh h 0-y xy0y_S xy _ )d 2.7
p Dy g dx + g x

where T is the mean shear and h0 is the mean water level. Assuming

zero surface stress, this equation is integrated over the depth and

the mean stress on the bed is found

Iho
Txb=gh(i I -) -p ) 2.8 Tyb = 2 x 2.8

where h(x,z) is the local water depth. Abbott also shows that this bed

shear, for an oscillating flow, is in the same direction as the drift

velocity

Txyb ~ U 2.9

From 2.8 it is seen that the drift velocity will be either positive or

negative when

1 P > 0 2.10
-- h ( x ) < -2
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In order to apply this criterion, accurate measurements of the mean
Dh

surface slope and the mean density gradient 3- are needed , the

former being a difficult parameter to determine in most cases. Abbott

assumes the salinity gradient to be independent of depth. Data of this

type is used to test the criterion for the Thames and Mersey estuaries.

For the Thames, using data reported by Inglis and Allen (1957), no

reversal in drift velocity is predicted by this method, although the

field studies indicate the existence of a null point. Abbott suggests

an additional momentum flux must be present in this case, perhaps a non-

linear tidal convection. In the case of the Mersey, a null point

is predicted near the location observed in field studies. Here the

model appears to reflect the physical processes involved rather well.

Hansen and Rattray (1965) present an analytical model of estuarine

circulation averaged over one or more tidal periods. A simultaneous

solution of the equations of mass and momentum conservation, assuming

geometric similarity of velocity and salinity profiles and lateral

homogeniety is developed. The estuary is divided into three regions

inner, central and outer, for which different assumptions about salinity

gradients and mixing coefficients are made. The equations included in

the model are:

momentum = -- (pD ) 2.113x 3y 3

=pg 2.12
Dy
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continuity U + V - 0 2.13
x y

0s s 2.13

mass U-+ V - - (K - ) + (K 2.14
3x y 3x x 3x 3y y y

state p = p (1 + aS) 2.15

where D is the eddy viscosity and a is a conversion factor for salinity.

The boundary conditions include zero velocity at the bottom, known stress

at the surface, net flow equal to river discharge and zero net salt flux.

Hansen and Rattray do not discuss the differences between the classically

defined eddy viscosities and eddy diffusivities and the eddy coefficients

which appear in their equations for conditions averaged over a tidal

period. These differences are examined in detail in the next chapter of

the present analysis. For the purposes of this review, it is important

to note that all eddy coefficients introduced into the equations include

neglected terms, terms resulting from averaging over a tidal period,

as well as the averages of the turbulent cross-products.

For the central or middle region of the estuary, the authors assume

that the longitudinal salinity gradient is independent of both depth

and longitudinal position. The velocities are assumed only dependent

upon depth, and thus similar at different stations. The vertical eddy

coefficients, D and K are held constant with depth and the horizontal
y

eddy diffusivity K is related to the freshwater velocity
x

d (K U2.16
-(K ) = U
dx xf
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With the above assumptions, solutions can be found for the vertical

distributions of velocity and salinity. Except for the possible variation

in K , the solution is independent of longitudinal position. For the

condition of zero for the net surface wind stress, two dimensionless

parameters determine the vertical velocity and salinity profiles

3
gaS h K K

R = __ ,M =_ _ 2.1
a DK 2 2

xo U h
f

where S and K are S and K at x = 0 respectively, and IT is theo xo x f

freshwater velocity. By a proper choice of values for R and M,

the solution can be fitted fairly well to some of Pritchard's James

River data.

For the inner and outer portions of the estuary, near the river

and ocean end respectively, different assumptions about eddy coefficients

are made. The solutions in these regions still require similarity of

velocity and salinity profiles.

Hansen (1966) proposes a non-similarity solution for a similar set

of governing equations. Again, the longitudinal dependence of the ve-

locities and salinities is determined by the longitudinal variation of

the horizontal eddy diffusivity. However, Pritchard (1952) shows that

the longitudinal eddy flux of salt is the smallest term in the time-

averaged salt balance. Hansen is thus using the weakest term in the

model to provide the longitudinal dependence.

McGregor (1972) develops an analytical model of the net, non-tidal

bottom transport velocity for an estuary. This model is similar to
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other studies in that a longitudinal force balance includes only the

pressure gradient and the vertical eddy stress gradient. For the pressure

gradient, both a surface slope and density gradient are evaluated from

recorded data for the Humber estuary. The solution technique introduces

a number of empirical constants for fitting these distributions, as well

as an empirical expression for the mean eddy viscosity. By proper

fitting of the numerous constants, McGregor is able to match the net

bottom velocity zero points with the shoaling zones for the Humber.

The analysis is a good illustration of the roles of the surface slope,

salinity gradient and river discharge in determining thb zones of

high rates of shoaling. However, due to the need to fit several con-

stants to previous data, the model is of limited predictive capability.

2.3 Turbulent Diffusion

As shown in the previous section, mathematical modeling introduces

coefficients of turbulent diffusion for mass and momentum. There have

been a few investigations which have attempted to measure these coef-

ficients and relate them to the mean properties of the flow field.

Kent and Pritchard (1959) analyse the vertical eddy flux of salt

for the James River. A mixing length concept, similar to Prandtl's

classic mixing length theory of turbulence, is applied in this analysis.

Following Prandtl's arguments, a mixing length can be defined such that

2 2 v s 2.18

Ty 9y
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where n is a constant, k is the mixing length, v's' is the vertical eddy

salt flux, -- is the vertical gradient of mean velocity and -- the
9y 3

vertical gradient of mean salinity, all averaged over a tidal period.

This k is defined as the observed mixing length, and refers to the actual

stratified flow for the estuary. For the unstratified case, an adiabatic

mixing length is defined from earlier work by Montgomery (1943)

P h (h-y) 2.19

where K is Von Karman's constant and h is water depth. Kent and Pritchard

find that the observed and adiabatic mixing lengths can be best related

by the expression

k = k (1 + R.) 2.20
CC 1

where is some unknown proportionality factor and R is the local

Richardson number

P 9y

R = U 12 2.21

The observed mixing length is calculated from the extensive James

River data. The velocities and salinities are averaged over one or

more tidal periods and therefore a tidal mean mixing length is determined.

Although agreement between the observed and theoretical mixing length

is good, an improvement is found when an additional term for the wind

waves is included.
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Pritchard (1960) extends the mixing length theory to include the defining

of an eddy diffusivity

K = Zu* 2.22
y

where k is the mixing length developed by Kent and Pritchard (1959) and

u* is a characteristic velocity. u* is related to the tidal current at

middepth, Ut, by similar mixing length arguments

u* =U y(h-y) (1 + AR.)~1 2.23
h 2

The eddy diffusivity can therefore be written

2
U2 2

K = h-y) (1 + R.) 2.24
y h3  1

The Richardson number is approximated as

t 2y

(0.7 U )

For the James River estuary, A was found to be 0.276 and 'n was 8.59x10-3

An eddy diffusivity computed from the above relationships represents the

net, non-tidal eddy processes. No discussions are presented which attempt

to relate this net eddy diffusivity to the real time tidal eddy coeffici-

ent.

Bowden (1960) analyses velocity and salinity data for the Mersey

Estuary. Effective values for the vertical eddy diffusivity and eddy

viscosity, averaged over a tidal period, for five depths at a single

station are determined. Values for the mean eddy viscosity are
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backfigured from a time-averaged longitudinal equation of motion which

considers only the pressure gradient and vertical eddy diffusions of

momentum. According to Bowden's analysis, for the particular conditions

studied, the effective eddy viscosities for the tidal time-average are

about one-tenth as large as those expected for a non-stratified flow.

The coefficients of vertical eddy diffusivity are determined from

a salt balance equation which considers only the horizontal advection

and the vertical eddy diffusion. In this case, estimates of both the

time-averaged and tidal varying coefficients are made. The diffusivities

averaged over a tidal period are, in general, smaller than the non-aver-

aged coefficients. Again, Bowden concludes that the salinity stratifica-

tion yielded eddy diffusivities smaller than would be expected for a

neutrally stable fluid. In addition, the values for the mean eddy

viscosities are found to be greater at all depths than the mean ver-

tical eddy diffusivities.

Bowden (1963) and more recently, Bowden and Gilligan (1971) have

studied additional data for the Mersey Estuary. As in the previous

studies, mean values for the eddy coefficients are computed from the

field data. When the ratio of eddy viscosity to vertical eddy diffusivity

is plotted against a local Richardson number, a distribution similar to

that of Munk and Anderson (1948) is found. Thus, it appears that

although the mean coefficients, averaged over a tidal period, yield

smaller values than the non-averaged coefficients, they may still be

related empirically to a local Richardson number and therefore the

degree of vertical stratification.
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Harleman and Ippen (1967) analyse data from a laboratory investigation

of estuarine dynamics. A large salinity flume with a tidal and a river

control at either end was used to model partially stratified estuaries.

Extensive velocity and salinity data were recorded and used to backfigure

vertical eddy diffusivities from the time-averaged salt balance equation.

In this analysis, the horizontal eddy diffusion is neglected. Both a

vertical and horizontal dependence is found for the vertical eddy dif-

fusivity. Maximum values at each longitudinal station occur at about

middepth, with a somewhat parabolic decrease towards the surface and

bottom. In addition, the coefficients decreased from a maximum at

the ocean boundary to a minimum far upstream. Using the relationships

of Pritchard (1960), mean vertical eddy coefficients were computed for

the same set of flume data. These equations, developed for the James

River estuary, yield vertical and longitudinal variations of the eddy

coefficients very similar to the backfigured experimental results.

Pritchard's equations did, however, produce slightly smaller values at

all stations for these eddy diffusivities.

For both the work of Bowden and Harleman and Ippen, eddy coefficients

for equations averaged over a tidal period are backfigured from recorded

data. Various terms are neglected from the complete set of governing

equations in these analyses, and therefore, the resulting coefficients

must include the effects of these neglected terms. These coefficients

are not simply the averages over a tidal period of the actual eddy

coefficients which relate to the turbulent fluctuations. These argu-

ments are developed in greater detail in the following sections of

this report.
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III Theoretical Considerations

3.1 Statement of the Problem

The analytical models of Abbott (1960), McGregor (1971) and Hansen

and Rattray (1965), although limited by the solution techniques, point

out the possible advantages from proceeding in a parallel manner to

model time-averaged vertical velocity and salinity distributions. These

models include, for the longitudinal equation of motion, only the

pressure gradient, which contains the salinity gradient, and the eddy

transport of momentum. The velocity distributions determined from this

equation include all of the important features of measured net velocities.

It may therefore be concluded that this simplified balance of forces

describes the essential mechanisms of time-averaged circulation.

There are two important disadvantages of the Hansen and Rattray

model. The first is the necessity of dividing an estuary into several

regions, each having a unique mathematical model and solution. Within

each of these regions the solutions maintain geometric similarity.

In real estuaries, however, there is a continuous transformation of

velocity and salinity profiles along the longitudinal axis. Therefore,

a solution without implicit similarity assumptions is a preferable

technique.

The second feature of the Hansen and Rattray model which may

be considered a weakness is the strong dependence on the coefficient

of horizontal eddy diffusivity. Numerous investigators have shown

the horizontal eddy flux of salt to be a minor term in the salt bal-

ance for estuaries. Eddy coefficients are difficult parameters to

measure, and even more difficult to predict, especially when averaged
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over a tidal period. Thus, until a more detailed understanding of

eddy processes in stratified fluids is achieved, it seems reasonable

to include only the most important of these eddy flux terms in estuary

models.

The objective of the present study is to develop an analytical

model of time-average. estuarine circulation which will avoid the less

tractable features of the previous models described above. The govern-

ing equations are similar to Hansen and Rattray's model, which was

originally suggested by Pritchard's analysis of the James River

estuary. A solution technique which is continuous over the entire

length of an estuary is desired and which makes no assumptions about

similarity of velocity or salinity profiles. Only the vertical eddy

flux of salt and momentum are included, and thus only two eddy

coefficients need to be specified. In order to provide the analytical

solution with a predictive capabality, empirical correlations for

these two parameters with gross characteristics of the flow field are

sought, as a fundamental feature of the complete solution.

3.2 Governing Equations

3.2.1 Introduction

The model equations describing the circulation and distribution

of salinity are the equations of mQtion, of continuity, of conserva-

tion of salt and an equation of state. The model is reduced to the

longitudinal and vertical dimensions by assuming lateral homogeneity.

Figure 3.1 is a definition sketch showing the orientation of the

coordinate system with the x - axis positive towards the head of the
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estuary (upstream) and the y - axis positive downward. An additional

simplification is made restricting the width b(x) and the mean water

level h(x) to be functions of the longitudinal coordinate only. An

inflow of freshwater Qf occurs at the far upstream end.

3.2.2 Equations of Motion

For the conditions described, the conservation of momentum for

the longitudinal direction can be written

ub + + =uvb 1 -1  b 3.1

Dt Dx y p x

where u = velocity in longitudinal direction

v = velocity in vertical direction

t = time

p = density

p = pressure

x = longitudinal direction

y = vertical direction

b = width

This equation is a balance of forces for the estuary at any time in

a tidal period, i.e., before time-averaging. The viscous frictional

terms and Coriolis forces have been neglected. In addition, the

approximation of Boussinesq has been applied to neglect density varia-

tions in all but the bouyancy terms. The pressure is for the fluid

only, atmospheric pressure being assumed zero.

For the conservation of momentum in the vertical direction,

hydrostatic conditions are assumed. Thus, inertial and convective
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accelerations are neglected. The vertical equation of motion can

therefore be written

0 = 1 9 + g 3.2
p 3y

where g is the acceleration of gravity.

3.2.3 Equations of Water and Salt Conservation

For incompressible flow, the two-dimensional equation of continuity

is

Bub 3vb+u v = 0. 3.3
Dx Dy

The conservation of salt equation, before time-averaging, and

neglecting molecular diffusion is

Dsb +usb +vsb = 3.4
+ + = 3.Dt Dx Dy

where s is the salinity and is a function of x, y, and t.

3.2.4 Time-Averaging of Equations

There are three time scales of interest for the model being con-

sidered. Turbulent fluctuations of the dependent variables may be

assumed to take place within a few minutes. These variables also have

a diurnal or semi-diurnal component due to the tidal motion. Finally,

slow variations over several tidal periods can result from the changing

freshwater inflows and monthly changes in tidal amplitude. Following

the classical methods, the dependent variables are written as the sum

of a mean and turbulent component, i.e., within the first time scale

mentioned,
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U = u + U'

v = v + v t

p = p + p'

p = p + p'

where the prime refers to the turbulent component. These equations

are substituted into the governing equations 3.1 - 3.4 and averaged

9ub 2 b uvb lp u, b _u'v'b
- + -- + - = - b -% 3.6dt dx dy p dy Ox Oy

0 = - - + g 3.7- Dy
p"

ub+ =vb 
3.8

Dx 3y

9sb + usb + vsb _ u's'b -v's'b 39
9t 3x Dy Dx 9y

The eddy fluxes of momentum and salt, u' ,2 v'u', u's', and v's' are

usually written as the product of an eddy coefficient and the mean

gradient of the quantity being transported. For example, u,2 may be

replaced by E U, where E would be a horizontal eddy viscocity.

However, for the purpose of the present analysis the introduction of

eddy coefficients will be postponed until time-averaging over a tidal

period is introduced.
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In order to facilitate the tidal time-averaging, the mean de-

pendent variables are divided into two components, a tidal mean, and

a tidal varying term

u = U + U
t

V V + v
t

S S + st 3.10

P= PM+ pt

p = P + pt

where U is the mean horizontal velocity for a tidal period and ut is

the harmonic component for the same tidal period, etc. As with the

turbulent components, the average of a harmonic term, e.g., ut, st, over

a tidal period is zero by definition. Equations 3.10 are substituted

into equations 3.6 - 3.9 and averaged over a tidal period

2
<u 2>b D<u v >DUb +Ub +<t DUVb t t

+t +x x +y + y

-1 P D<u , 2>b D<u'v'>b
b - - 3.11p 3x xym

0 = 1 + g 3.12
Pm yT

BUb BVb
+ = 0 3.13

9x Dy
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Sb USb t<utst>b 3VSb 3<v t st>b
at+ x + Dx + y + a

3<u's'>b D<v's'>b 3.14
Dx 3y

where < > indicates averaging over a tidal period.

From the analysis of the James River data, Pritchard (1954, 1956)

argues that the dominant terms in the longitudinal equation of motion

3.11 are the pressure gradient and the vertical eddy flux of momentum,

all other terms being of second order. This assumption is included

in the present development. In a later section it will be shown that

the neglected terms are indeed small for the cases studied. For the

salt balance 3.14 the tidal cross-products and horizontal eddy flux are

neglected by similar arguments. The reduced equations are further

simplified by introducing mean eddy coefficients for the remaining

turbulent terms

--- (D ) 3.15
3y 9y y Dy

- _ _ -- ( ) 3.16
Dy 3y (Ky y

These definitions for D and K are convenient with regard to reducing
y y

the mathematical complexity of the model. However, they are strictly

artificial in that they do not preserve the mechanisms of turbulent

mixing, i.e., tidal activity, in their formulation. In particular,

equation 3.15 relates the net turbulent momentum flux <u'v'> to the
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net, non-tidal velocity U. By purely physical arguments this flux

should be related to the tidal velocity ut. This apparent inconsistancy

is partially resolved in Chapter V where D is correlated with the tidal

velocity. The equations are now written

0 - L = -+ 1)(bD -) 3.17
p Dx b y y y

0 = + g 3.18

Ub+ 0 3.19

9Sb 9bUS +bVS 3.20
t Dx + y y y Dy

The value and distributions of the mean eddy coefficients are

unknown. If a solution to the above set of equations can be shown to

match recorded data by proper fitting of D and K , one must assume
y y

that either all the neglected terms are zero, or more probably, that

these neglected terms have been absorbed into these coefficients. A

comparison of equations 3.15 and 3.16 with the classical definitions

of eddy viscosity and eddy diffusivity clearly shows the difference

in the meaning of these terms

-- (<Ey9 ->) / (D 3.21
y y
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(<k >) D (K ). 3.22
ay y Dy Dy y y

More specifically, D and K are not simply E and k averaged over a
y y y y

tidal period.

3.2.5 Equation of State

The effect of temperature on the relationshp between density and

salinity is not included in this model. A simple linear empirical ex-

pression is used

S= n (1 +4 CV() 3.23

where p is a reference density and a is a conversion constant. The

range of temperatures encountered in estuaries does not require a

more complex expression, in light of other model assumptions.

3.3 Additional Assumptions

The governing equations developed in the preceeding sections can

not be solved analytically in their present form. Previous investiga-

tors have introduced similarity assumptions for the velocity and

salinity distributions as well as restrictions on the longitudinal

salinity gradient. As stated in a preceeding section, the present

investigation seeks to avoid the limitations of a similarity solution.

However, as will be developed in the following sections, the longitud-

inal salinity gradient will be modified to allow an analytical solution

to be found.

The Pritchard (1952, 1954) investigation of the James River re-

vealed that for the stations and conditions of the survey, the
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longitudinal salinity gradient did not vary appreciably with vertical

position. Harleman and Ippen (1967) showed a similar pattern for the

analysis of data from a laboratory flume. Taken to the extreme, this

observed feature suggests that the longitudinal salinity gradient may

be assumed independent of its vertical position, i.e.,

~S ) 9S3.24

although

S= S(x,y).

Introducing equation 3.24 into the set of governing equations

3.17 - 3.20 results in equations, which although now solvable analytical-

ly, no longer describe exactly the presumed physical mode of the net

circulation. A close fit of velocity or salinity profiles between

field or experimental data and the theoretical solutions can suggest

the validity of the above assumption only within the context of all

the other assumptions made in developing these equations.

SThe longitudinal salinity gradient is replaced in equations

3.17 - 3.20 with the longitudinal gradient of a depth averaged salinity

Sd. Next, a steady-state condition is assumed for the initial develop-

ment of the solution. This condition will be removed in later sections,

and an unsteady solution will be presented. In addition, the two

mean eddy coefficients D and K are assumed independent of vertical
y y

position. These coefficients have been shown to represent the rather

complex effects of time-averaging and of the neglecting of terms
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considered of smaller order. The vertical dependence of these

coefficients is not known, although several investigators have attempted

to analyse these terms from experimental and field observations, as

discussed in Chapter II. Thus, D and K are assumed to be independent
y y

of y, and are replaced with effective coefficients for the entire depth

of flow, D and K, respectively.

3.4 Synthesis of Governing Equations

The synthesis of the original model equations, modified by the

assumptions discussed in section 3.3 begins with the equation of

hydrostatic pressure

1 DP
0 - + g. 3.12

m

Equation 3.12 is intergrated in y

-y
P = p g dy 3.25

~ho

and differentiated in x

.y
P 6P Dho lyDM
x ~4m x + g dy 3.26

'ho

applying Leibnitz' rule and the Boussinesq approximation. Equation

3.26 is next substituted into the longitudinal equation of motion

which now has assumed that D (x,y) can be replaced with D(x)

1 9P 2 U
= D9--- 

3.27
M 9x
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After substitution of 3.26

y
aho 9 PM 2

- + g dy = D U
9 Dx P ax 3y 2 3.28

JhO

and differentiation in y, yields

30 3
_ m -D 3 3U 3.29

p 3x3m xy

The equation of state 3.23 is next introduced into equaiton 3.29

5 D 3 3.303

The steady-state salt conservation equation, with K (x,y)
y

replaced with K(x) can be written

@USb +VSb 2 S 3.31
__X- + y = bK Dy2

This equation can also be written

DS 3S a 2U - + V - = K 2 3.32
ay

since

S (Ub + 0 3.33
x Dy

from continuity 3.19.

Equation 3.32 is further simplified by introducing the assumption

that the longitudinal salinity gradient Dx can be replaced with a

gradient of the depth averaged salinity D-4. The same procedure is

applied to equation 3.31. The resulting system of governing equations
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can be written

3S 3
d 3 U

go = D 3 3.34
9y

DUb Vb
+ 3 = 0 3.35

BSd 2

x y 2 3.36

A st-ream fimrt-inn Rti~qfvinv, tlip Aniition of rontinnitv 3.35 is

defined

T 1 DT V 1 DT
b y b @x 3.37

and thus the equations are reduced to

aSd D 4_T
gob 4 3.38

aS 2
DT d T 9S 3 2s

+ - bK
9y x Dx Dy y 2 3.39

3.5 Boundary Conditions

The set of governing equations, (3.38 and 3.39) includes a fourth

order equation for the stream function requiring four boundary con-

ditions and a second order equation for salinity, subject to two

boundary conditions. These governing equations describe the dynamics

of an estuary averaged over a tidal period. The boundary conditions,
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as well, should be mean conditions for this averaged system. With

the assumption of steady-state, any control volume defined by two

vertical boundaries, the mean water sufface, and the bottom must

maintain a constant quantity of salt and have a net through-flow of

water equal to the freshwater discharge. No flux of water or salt can

occur at a horizontal boundary, i.e., the surface or bottom. Frictional

stresses can be applied at both the surface and bottom and the condition

of no slip of the horizontal velocity on the bottom should also be

considered. These various boundary conditions are examined in the

following paragraphs and a set of conditions is selected for in-

clusion in the analytical model.

Considering first the equation of conservation of momentum 3.34,

four boundary conditions are needed. Surface wind stresses are neglec-

ted, and since the mean eddy coefficient D has a finite value at the

surface by assumption, the vertical gradient of the net horizontal

velocity y- must be made zero for zero surface stress. At the bottom

y = h, two possible conditions for the horizontal velocity are con-

sidered. A no-slip or U = 0 condition must apply for a precise model

of the actual flow. However, for the rough natural bottoms, or

even in laboratory flumes, the turbulent velocities are very large

near the bed, going to zero in a very thin layer which can be neglected

in the analytical model. If the net velocity is to have its maximum

value just above this thin layer, a condition of zero gradient, = 0,
Dy

at the bottom is the appropriate model boundary condition. An analysis

of the laboratory flume tests in Chapter IV will show that this latter
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condition of negligible stress results in a closer fit of the math-

ematical model to experimental and field velocities. However, for

the purpose of examining the behavior of these two possible approaches,

solutions for both are developed in this chapter.

The remaining two conditions for the stream function are specified

by the requirement that the integral of the net horizontal velocity over

the depth must equal the freshwater discharge per unit width, qf/b.

By assigning the stream function a zero value at the bottom, its

surface value must equal Q,.

These boundary conditions for the equation of motion 3.38 may

be summarized as follows:

DU 2T
y =0, - 0, =Dy y 2

y = h, U = 0, = 0
yy

DU D2T
y =h, - -= 0, - --- =

ay y 2

0 zero surface

stress

zero bottom

velocity

0 zero bottom

stress

-h -h

f/b =U dy=1 D dy = 1 {- T + T
b 9y b h

- 0 -0

therefore

y = h, T = 0

y = 0, = Qf
conservation of

freshwater
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Two boundary conditions are needed to satisfy the salt balance

equation 3.39. Ideally, these conditions should specify a zero flux

of salt at the surface and the bottom. As the vertical velocity V

9S
is zero at these boundaries, the flux reduces to K- where K is

S
non-zero. Thus, a condition that is zero at the surface and bottom

will satisfy the zero flux requirements. The form of the solution of

equation 3.39, however, does not permit the specification of the

gradient of the salinity at two boundaries. This restriction will be

fully explained in section 3.7. The consequence of this limitation is

that a condition of zero gradient is specified at either of the two

boundaries and a second non-gradient condition for salinity is intro-

duced. If the salt balance equation is an accurate description of the

physical processes, a computed gradient at the other boundary, which

has no specified condition, should also be zero.

The alternate boundary condition for the salt balance is a

statement that the depth averaged salinity must equal a prescribed

value, Sd. This mean salinity Sd also appears in the modified long-

itudinal salinity gradient. . This condition, with either a

zero gradient at the surface or at the bottom, completes the boundary

conditions for the model. These final conditions are written

y = 0, = 0 zero flux at

surface

or

y = h, = 0 zero flux at
y

bottom
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'h
I h S dy = Sd. specification of

140 mean salinity

3.6 Non-Dimensionalization of Equations

As with most problems of fluid dynamics, it is convenient to

develop analytical solutions in a non-dimensional form in order to

permit generalized discussions of results. The choice of terms intro-

duced to non-dimensionalize the various dependent and independent

variables, although somewhat arbitrary, should recognize the possible

difficulties in quantifying these new parameters. The following

defintions will be shown to satisfy this condition:

T S

Qf o 3.40

S
0

where L. is the mean intrusion length, defined as the distance from

the ocean boundary to a point where the time-averaged, depth averaged

salinity is one percent of the ocean salinity. S is the ocean

salinity, h is the depth of the mean water level and Qf is the fresh-

water discharge, as previously noted.

These quantities are introduced into equations 3.38 and 3.39

g as0 0ed DQf D4

L. Db 4 4 3.41
1 hb 30
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Qf 39) so 96d

I

Qf spo bKS 2

L lf h ln 2 2
1 h DT

The set of boundary conditions developed in section 3.5 is represented

by

2
Dl0

> = , )

= 0

= 0

3.43

ri2 = , = 0 2

=0

0, 2

and

fl-= 0 ,
I 0

T1 = ,

1

6

01'

= 0

= 0

3.44
0

S

3.7 Analytical Solution for Steady-State Conditions

The steady-state equations of motion and salt conservation, in

dimensionless form are

4
g Sh b 36 4{ o } __ d 9 4 3.45
L. DQ f 4
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,, bKL 2
39 d 38 _ i 3

DrI 56 3 ~ Q fh 2 3.46

wherein i), e, ed, and n are all dimensionless variables. These equations

can be further simplified by defining two coefficients,

gotS h b

I L DQ 3.47
i f

KL.b
C2 f 3.48

Equation 3.45 can be solved for the stream function T by integrating with

y four times

8d 4 3 2

=-C 1 24+ a 1 + a2 + a 3- + a4

where a1 , a2 , a3, and a are all functions of E, and are evaluated from

the boundary conditions. This determination will be presented for two

cases, depending upon the choice of boundary conditions.

case 1: zero bottom velocity

For this case, the boundary conditions are

D2
2i = 0, 9p = 1, r1 = 0

3.50

= 0, = 0, e = 1

and therefore
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3 3ed
ai 3 + -C1 E8 13C

a 3 1 C d
3 2 48 1

,2 = 0

3.51

a = 1 -

Substituting these values into 3.49 yields

9= d + 1 4 3 ) p 2 dl - p T + 2 pj fl - pI + 1 + (p l(l-I -- 3.52

case 2: zero bottom stress

For this case, the boundary

2

2 0,

D2
= 0

and therefore

= 1,

S= 0,

1 -- da = C d

C 1 d
a3 2 4 W -

conditions are

p= 0

-i l

a
2

a
4

= 0

3.54

= 1.

Substituting these values into 3.49 yields

d{ 4 +23 -1 4}
-4 T + 2-P 3 p + 1.

The difference between the stream function for the two cases is

36C
I 2 d 1

9E 2)4
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The solution of the salt balance equation 3.46 is dependent upon the

stream function 4 and therefore on the choice of case 1 or case 2. How-

ever, the general solution can also be developed in terms of an un-

specified stream function. A dummy variable f(jn) is defined

335

and substituted into a modified form of equation 3.46

Df B(E,n) f A(Jj)

all C 2(V) IC2()37

where

KL.b

C2 Qf h'

Equation 3.57 is multiplied by an intergration factor

exp (f - dn)
C
2

and the solution for 3.57 is shown by Wylie (1960) to be

f( ,T1) = exp (f B d) exp (f - B du) da
2 2 2 3.58

B
+ b ( ) exp (f dn)

C
2
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wherein bI () must be evaluated from the boundary condition. At this

point it is clear that only one gradient condition for salinity may be

included, as noted in section 3.5. There is no reason to expect that

the choice of boundary for specifying = 0, i.e., f(E ,I) = 0, is

important. Thus, for convenience this condition will be applied at the

surface, 11 = 0, and this determines that b 1 () = 0.

A second condition is needed to specify the salinity from equation

3.56,

S J f (I,) da + b2 (). 3.59

This condition,stated in equations 3.44, is that the depth average of the

salinity must equal a known value, 6d '

b2 d - fl f f(En) dii dn 3.60

and thus

= f (E,n) dn + 0d - fl ff( ,n) dn dn. 3.61

Equation 3.61, although awkward in appearance if written in terms

of the stream function, may be evaluated easily by numerical intergration

using a digital computer.

3.8 Inputs for Solution

In the development of the solutions for the stream function and

salinity, several parameters have been introduced and assumed known

a priori. These parameters are reviewed in this section and possible

sources of quantitative evaluation are discussed.
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The depth average of the salinity, averaged over a tidal period,

S and its longitudinal gradient must both be specified in the
d Dx

solutions. For the purpose of evaluating the model from recorded data,

these parameters can be simply backfigured from the measurements. How-

ever, in order for the analytical model to have a predictive capability,

these terms must be predictable themselves. There have been numerous

semi-empirical fits for this one-dimensional salinity distribution,

Harleman and Ippen (1961), McGregor (1972) and others. However, a recent-

ly developed numerical model by Thatcher and Harleman (1972) nPrmits

one to compute a one-dimensional unsteady salinity distribution. This

approach results in a general, non-empirical analysis for this input

parameter. A summary of their model, and the details of its coupling

with the analytical two-dimensional solution are presented in Chapter V

The intrusion length can also be evaluated by their technique,.

The freshwater inflow and ocean boundary salinity are considered

to be fundamental quantities, as are the depth and width distributions.

The remaining two quantities needed to evaluate the analytical

solution are the eddy coefficients, K and D. Nothing can be said

about these terms prior to their evaluation from recorded data. The

procedure for their determination is to fit the analytical solutions for

velocity and salinity with flume and field data and to pick the best

fit values for K and D by trial and error. Since the stream function

is dependent only on D, this procedure is not too cumbersome, even though

the salinity is dependent on both D and K. This process of back- cal-

culating D and K from recorded data is repeated for several data sets.
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The resulting distributions of these coefficients are then correlated

with parameters characteristic of the flow conditions, as is shown in

Chapter IV.

In summary, the parameters needed to evaluate the analytical

solutions for velocity and salinity, except for the coefficients D and

K, may be determined either from recorded data or a numerical model.

The former method is used first to appraise the model and to back-figure

values for D and K. The latter method, a coupling with a numerical

model demonstrates the predictive capabilities of the analytical model.

3.9 Theoretical Velocity and Salinity Profiles

3.9.1 Velocity Profiles

For the condition of zero horizontal velocity at the bottom, the

dimensionless stream function, equation 3.52, is

= 1 24 ( - + 2'n -)Ti -n + 1 + (n 21)(1- 24 3.52

where

4
gaS h b

1 L.D O
i 'f

The horizontal velocity, normalized by the freshwater velocity U =Qf

is

U 31J __
0d 1 3 2-- - - (- 4'n + 6-n - 1) -1

U f 0 Dn E 24

DE) C3.62

1 -6 C- 2 3
2 B 24)( -)

59



and the vertical velocity normalized by this same factor is

L L C 32 29V i 4 iL 1 d 4 3 2 d 1
2 = 4 2 (2 24. 3.63

Table 3.1

Model Parameters for Figures 3.2 - 3.4

S
0

h

b

ed

d

2

D

K

29.2

160

.5

.75

.75

.66

- .97

-2.86

.24x10-3

.18x10 3

ppt

ft

ft

ft

ft 2/sec

ft 2/sec

The broken lines in figures 3.2 and 3.3 illustrate these velocity

profiles for representative values of input parameters listed in Table

3.1. The horizontal velocity profile, figure 3.2, clearly shows the

boundary conditions of zero gradient at the surface and zero velocity at
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the bottom. The flow reversal, with seaward flow in the top region

and landward flow in the bottom region is also demonstrated. The inter-

gral of this profile is equal to 1.0 which is a net discharge of the

freshwater inflow. Figure 3.3 shows the vertical velocity profile for

the same conditions. This velocity is zero at the surface and bottom,

and directed downward throughout the depth. From the form of equation

3.63 it is apparent that the direction of the vertical velocity2 depends

on the sign of the second derivative of the salinity gradient

a point which will be further discussed in section 4.2.2. The maximum

value of this velocity occurs near mid-depth.

The second case for the bottom boundary condition is that the vertical

gradient of the horizontal velocity is zero, as stated in equation 3.55.

ed 1 4 3
2 24 1- T + 2n -n} - n + 1. 3.55

Proceeding in a similar manner,

U 9$ - d C1 4n3 + 2 36U ~ 6 dl2 { -40
3  + 60 2  - 1 }- 1 3.64

and

L L C 32
V - i.P i 1 d 4 3
Uf h 9C h 24 2{- +2 -r1}. 3.65

These profiles are shown as solid lines on figures 3.2 and 3.3. For

this case, both the horizontal velocity U and the vertical velocity

V are symetric about the mid-depth, y/h = 0.5. In addition, the hor-

izontal velocity is symetric about a vertical coordinate of U/U = 1.0.
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The mean eddy coefficient D, as well as all other input parameters,

is the same for both cases plotted in figures 3.2 and 3.3. Thus, for

the same value of D, the boundary condition of zero bottom velocity

results in a significant reduction in both the horizontal and the

vertical velocities over most of the depth. This means that the choice

of boundary condition will influence the best-fit values of D for a

given set of experimental or field data.

3.9.2 Salinity Profiles

The model solution for the vertical salinity distribution is given

as

0(5,0) = f f(E,n) da + ed - f(,) dn dr 3.61

0
where

f (Er) = exp I f { 2 dl} - t exp { da dn

and

K( ) L.b(E)
C()= 3.62

2 Qf h(E)

Using the same data from Table 3.1, as in the example for the velocity

profile, figure 3.4 illustrates the salinity profile for zero bottom

velocity (broken line) and zero bottom stress (solid line). It is clear

from these figures that the choice of velocity boundary condition also

influences the vertical salinity distribution if the same value of K

is used.

In obtaining equation 3.61 for the salinity distribution, an

assumption of zero vertical gradient at the surface was made. Figure
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3.4 shows that at the bottom, y/h = 1.0, -- is also almost zero. Thus,
y

it would seem that the governing equations are satisfying the conser-

vation of salt at the horizontal boundaries of the model.

A computer program for evaluating the velocity and salinity dis-

tributions is discussed in appendix 1.
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IV Evaluation of Steady-State Solution

4.1 Introduction

The analytical solution for velocity and salinity distribution de-

veloped in Chapter II is evaluated with laboratory data from the Vicksburg

salinity flume, the Delft Hydraulic Laboratory salinity flume and the

James River field study. This combined set of data covers a wide range of

flow conditions and degrees of salinity stratification, some of which may

partially invalidate model assumptions. These latter studies help to de-

fine the limits of model application. For each case studied, a best-fit

value for the two mean eddy coefficients is found at each longitudinal

station. All of these cases are assumed to be in a steady-state condi-

tion, i.e., values for velocity and salinity for successive tidal cycles

are assumed the same. This assumption is valid for the flume studies by

experimental design. For the James River study, steady-state can only

be an approximate condition, depending upon the freshwater hydrograph.

4.2 W.E.S. Flume

4.2.1 Description of Flume

The laboratory flume of the Corps of Engineers, U.S. Army, Vicksburg

Waterways Experiment Station (WES), is described in detail in a WES re-

port (1955). The flume, schematically shown in figure 4.1, is a lucite

channel 327 ft. long, 0.75 ft. wide and 1.5 ft. in total depth. At the

ocean end there is a tidal reservoir which can maintain a constant salinity

and a periodic surface level. The opposite end has a freshwater reservoir.

Roughness is achieved by 1/4 inch strips attached to the side walls on

2 inch centers. Different estuarine conditions are modeled by varying

the freshwater inflow, the tidal amplitude and the basin salinity.
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Detailed one-dimensional results are presented by Ippen and Harleman (1961)

for numerous tests and conditions. Harleman and Ippen (1967) present

two-dimensional analysis of three tests showing the average over a tidal

period of the vertical velocity and salinity profiles for several long-

itudinal stations. Table 4.1 summarizes the flume conditions for these

three runs.

4.2.2 Evaluation of Bottom Boundary Condition - WES 16

The depth-averaged time-averaged longitudinal salinity distribution

and its first and second derivatives is a required input to the analytical

model. For the purpose of evaluating the model solutions and determining

the eddy coefficients, this salinity distribution is determined from the

recorded data. An analytical function is passed through the data points,

and its first and second derivatives computed using a spline computer

program, outlined in appendix 2. Figure 4.2a shows the depth-averaged,

time-averaged longitudinal salinity distribution for WES 16. The ex-

perimental points are the depth-averages of the vertical profiles shown

in Plate 11 of Harleman and Ippen (1967), and the smooth curve is the

fitted spline function. The first and second derivatives for this func-

tion are plotted in figures 4.2b and 4.2c respectively. As stated pre-

viously, the inflection point shown in figure 4.2c determines the long-

itudinal position where the vertical velocity changes its direction.

Harleman and Ippen (1967) backfigured vertical velocities using

graphical intergration of the equation of continuity. Figure 4.2d shows

these vertical velocities with the corresponding velocities from the

analytical solution. The agreement in direction, and more significantly,

location of the reversal in direction (between 40 and 80) confirms the
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Table 4.1

Summary of WES Salinity Flume Conditions

Flume depth at msl = 0.5 ft. Tidal Period = 600 sec

Length of Flume = 327 ft. Flume Width = 0.75 ft.

Test No. Tidal Basin Tidal Basin Freshwater Intrusion

Salinity, ppt Amplitude, ft. Velocity, ft 2/sec Length, ft.

11 26.4 0.05 0.056 140.

14 29.7 0.10 0.020 180.

16 29.2 0.05 0.020 160.
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observation that the inflection point of the first derivative of the

salinity determines this location. The large difference in magnitude

between the vertical velocities at station 5 is probably due to the fact

that in both the graphical technique of Harleman and Ippen and the spline

function of the present analysis, difficulty is encountered at the end

points, where extrapolation becomes necessary. Consequently, all analyti-

cal results at the upstream or downstream ends of observed or predicted

salinity distributions must be viewed with a considerable degree of caution.

Having found the longitudinal salinity distribution function and

using the values for the other input parameters from table 4.1, the an-

alytical model can be evaluated for different values of the eddy coeffi-

cients. Two solutions sets are shown, depending upon the choice of bottom

boundary condition for the horizontal velocity. The computations are

carried out on a digital computer, as is outlined in appendix 1.

Case 1 - Zero Bottom Velocity

The equations for the model solutions for velocity and salinity are

given in Chapter III. Figure 4.3d and figure 4.3b show

the best-fit comparisons of model and experimental velocity profiles for

5 stations, 5, 40, 80, 120 and 160 feet from the ocean end for WES test

16. At each station, a different value for the eddy coefficient D is

used, as listed in table 4.2. At station 5, very close to the ocean

reservoir of the flume, entrance effects, as well as the influence of

extrapolated gradients, probably are responsible for the higher values

of D for both cases. At the remaining stations, the values of the eddy

coefficients do not vary much with the longitudinal position. From the

figures, 4.3a - 4.3b, it is seen that the condition of zero bottom stress,
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case 2, gives a better fit to the experimental data. Figures 4 .3c - 4.3d

show the comparisons of salinity profiles for the same flume test. Clearly,

the choice of velocity boundary condition has little effect on the salinity

profiles. Table 4.3 lists the best-fit values of the eddy coefficient of

salt K for the WES test No. 16 for the two cases. Again, except for

station 5, 5 feet from the flume entrance, the eddy coefficients do not

vary much along the length of the flume.

Based upon an evaluation of figures 4.3a - 4.3d as well as similar

plots for other WES tests, case 2, which states that at the bottom the

vertical gradient of the longitudinal velocity is zero, was chosen as

the most suitable boundary condition. In making this selection, certain

emphasis was placed on modeling the net velocities just above the bed

(which this case handles better than the condition of zero bottom velocity)

for the purposes of analyzing sediment transport problems. All remaining

comparisons of experimental and analytical velocity and salinity profiles

are for this zero gradient condition, case 2. Table 4.4 illustrates the

comparison of computed and experimental velocity and salinity distribu-

tions for WES test 16 for the zero gradient boundary condition. All

data in this table except the values for D and K are dimensionless, the

latter having units of ft 2/sec. Appendix 3 contains the complete tab-

ulated summary of WES test 16, as well as the data for the other tests

analysed in this study.

4.2.3 WES Test 14 and 11

The other two WES tests used to evaluate the analytical model are

examples of a more stratified flow, test 11, and a less stratified flow,

test 14. Figures 4.4a - 4.4b illustrate experimental and model agreement
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Table 4.2

Best-Fit Values for D for WES-16

Case 1 Case 2

u=0, y=h 9U-O, y=h
Station D, 2/ -3

D, Ft 2/sec x 10 D, Ft /sec x 10

5 .2 .35

40 .11 .24

80 .12 .26

120 .12 .24

160 .12 .22

Table 4.3

Best-Fit Values for K for WES-16

Case 1 Case 2

Station u=0, y=h, y=h

K, Ft 2/sec x 10-3 K, Ft /sec x 10-3

5 .07 .18

40 .17 .18

80 .15 .17

120 .15 .21

160 .15 .18
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for velocity and salinity at station 80 for both tests. In figure 4.4b

(test 11) the salinity gradient at the botton y/h = 1.0 has an appreciable

slope, indicating that perhaps the model assumptions are not as valid for

this degree of stratification. The tables in appendix 3 summarize the

results for these two tests.

4.3 Delft Flume

4.3.1 Description of Flume

At the Delft Hydraulics Laboratory an experimental investigation of

salinity intrusion in estuaries similar to the Vicksburg studies has been

carried out. The details of flume design and measurement technique are

reported in Delft (1970). Table 4.5 lists the basic Delft flume dimen-

sions with those of the Vicksburg flume for comparison. For the Delft

Table 4.5

Delft and Vicksburg Flume Dimensions

Delft Vicksburg

Length, ft. 546 327

Depth, ft. (msl) .7 .5

Width, ft. 2.0 .75

Roughness (bottom) (side)

test the bottom roughness was achieved by vertical bars .5 x .5 cm in

cross-section attached to the flume bottom. By changing the number of

bars the roughness could be varied for different runs.

Four Delft tests were analysed with the analytical model. All the

tests were for steady-state conditions and the longitudinal salinity
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distribution was backfigured from the recorded data as was done for the

WES tests. Table 4.6 summarizes the flow conditions for these four tests.

Tabulated detailed results can be found in appendix 3 which document the

agreement between experimental data and best-fit analytical solutions for

these Delft tests. Figures 4.5 - 4.8 illustrate these results at a cen-

tral section of the salinity regime.

4.4 James River Estuary

The Chesapeake Bay Institute 1950 survey of the James River estuary

is described by Pritchard and Kent (1953). Velocity and salinity data,

av er _'ge d Sve -%eralI t id a 1er i dsaepeetdfrtrelniui

stations, shown in figure 4.9. Table 4.7 summarizes the flow conditions

for the three periods of the survey.

Table 4.7

James River Estuary - Flow Conditions

3
Date 0 , m /sec L., m S ,ppt

18-23 June 124. 90,900 24

26 June-9 July 104. 94,127 24

17-21 July 130. 90,000 24

The data in the field survey report did not include sufficient long-

itudinal salinity stations for direct estimates of the intrusion lengths

and ocean salinity (Chesapeake Bay salinity). The ocean salinity was

estimated from an unpublished report by the U.S. Army, Waterways Exper-

iment Station, describing the salinity verification of a hydraulic model

of the James River estuary. The intrusion lengths were determined from

Lee (1970), figure 14.10 which plots intrusion length as a function of
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Table 4.6

Summary of Delft Salinity Flume Conditions

Flume depth at msl = .216 m Basin Salinity = 30 ppt.

Length of Flume = 179.16 m Tidal Period = 560.4 sec

Flume Width = .672 m

Test No. Roughness Tidal Amplitude Freshwater Intrusion

m 1/2/sec m Discharge m3 /sec Length, m

117 28.5 .0125 - .0029 51.

116 25.3 .0125 - .0029 51.

121 19.0 .0125 - .00145 54.

122 19.0 .0125 - .00181 51.

0

I



freshwater discharge.

The depth of mean water was assumed to be 7.5 meters for all three

stations, and the mean widths were determined from the CBI report as

follows:

station mean width, m

J-11 3000.

J-17 2350.

J-24 1640.

Tables in appendix 3 present the comparison between field measurement

and analytical solution for velocity and salinity with depth. Figure 4.10

illustrates this comparison at J-17 for 26 June-7 July. The difference

between computed and actual velocities over most of the depth is probably

due to several factors, including the uncertainity of time-averaged field

measurements, and more importantly, the simplifying assumption of constant

width with depth for the analytic solution. The salinity profiles for

this same station show better agreement than the velocities. However,

there appears to be a sharp vertical gradient near middepth for the field

data which is not observed for the analytical solution. This difference

may be a result of the same factors cited before for the velocity profile.

In general, the analytical model, although clearly capable of re-

producing flume conditions more exactly, does not appear to break down

for the prototype conditions and scales exemplified by the James River

estuary.

4.5 Comments on Neglected Terms and Other Model Assumptions

In the development of the governing set of model equations, the time-

averaged convective terms have been neglected from the longitudinal
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equation of motion, leaving the pressure gradient balanced by the vertical

eddy diffusion of momentum

U + V -= I-D + D D-24.1
5x . y p 5x 2

neglected

These neglected terms can now be computed from equations 3.64 and 3.65

and compared with the remaining terms to determine the reasonableness of

the assumtpion. This comparison is shown in table 4.8 for WES test No. 16.

At all stations and depths the neglected terms are smaller than the re-

maining terms, but there are several places, e.g., stations 40 and 80 at

middepth where these terms, and especially the vertical convection V
y

is of relatively important size. The non-neglible order of these terms

indicates that the mean eddy coefficient D is an ambiguous parameter,

including both convective and diffusive components. Table 4.9 shows

a similar comparison of the order of the convective terms for Delft test

116 and the James River estuary, 26 June-7 July. Again, the neglected

terms are consistently smaller than the pressure gradient-turbulent dif-

fusion terms, but of significant size at about middepth.

A second important model assumption is that the longitudinal salinity

as
gradient is independent of its vertical position, and thus longitudinal

salinity profiles at different depths are assumed parallel. Figures 4.11,

4.12, and 4.13 illustrate these profiles for WES 16, Delft 116 and James

River 26 June-7 July, respectively. This assumption appears to be quite

reasonable from about x/L. = .25 to x/L. = .60 and rather questionable up-

stream and downstream of this region. However, the tabulated analysis of
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Table 4.8

Comparison of Size of Neglected Terms from Longitudinal

Equation of Motion for WES Test 16

-4 2
(all values x 104 ft/sec )

2 U

2
y

6.
3.
1.
-1.
-3.
-6.

x/L. = 0.5
1

y/h

n.
.2
.4
.6
.8

1.

U
U-
x

-. 9
-. 6
-. 1
-. 02
-. 3
-. 6

U
V

.0
-. 3
-. 6
-. 6
-. 3
.0

x/L. = 0.75

10.
6.
2.

-2.
-6.
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C).
.2
.4
.6
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1.

-1.3
-. 9
-. 2
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-. 4
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-.8
-.8
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x

.3

.2
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-. 02

.03

.08

y/h
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.6
.8

1.0
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U
V- U
y

.0
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.2

.2

.07

.0
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.0

.6
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.6
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Table 4.9

Comparison of Size of Neglected Terms for Longitudinal Equation

of Motion for James River and Delft Flume

James River 26 June - 7 July

x/L. = .29

U V-

Delft Flume T-116

x/L. = .29
1

2

y 2

-6 2
(x 10 m /sec)

y/h U- V- D-

-4 2
(x 10 m /sec)

.0 16.2

.7 .4 9.7

.9 3.2

.9 -3.2

.6 .4 -9.7

.0 -16.2

0. .1

.2 .07

.4 .02

.6 .0

.8 .0

1. .02

95

y/h

1.10.

.2

.4

.6

.8

.1

.08

1. 1.

.0 4.8

.02 2.9

.05 1.

.05 -1.

.02 -2.9

.0 -4.8
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the various flume tests seem to indicate that the analytical solution

is not very sensitive to violations of this assumption, since good ex-

perimental-analytical comparisons are found over the entire salinity

region.

4.6 Analysis of Time-Averaged Eddy Coefficients

In the preceeding section best-fit values for the time-averaged

eddy coefficients D and K were determined for 10 tests including 3 proto-

type field studies. These tests covered a wide range of density strati-

fications and hydraulic conditions. The coefficients of mean momentum

flux and mean salt flux for these tests show a varying degree of long-

itudinal variation as summarized in table 4.10. As is discussed in sec-

tion 4.2.2, the upstream and downstream ends of the salinity distribution

have been eliminated from this table. This procedure removes errors

introduced by faulty analytical extrapolation of the spline function

used to compute first and second derivatives of the longitudinal salinity

distribution. To facilitate cross-comparisons between flume tests, the

units of the eddy coefficients are all given in the MKS system in this

table.

The longitudinal variations of the mean eddy coefficients shown in

table 4.10 suggest that although D and K are functions of x, this de-

pendence is of secondary importance. By introducing the additional

assumption that these mean eddy coefficients may be replaced with effec-

tive constant values for the entire longitudinal distance of the salinity

regime, correlations of these coefficients are greatly simplified.

Table 4.11 lists the arithemetic mean values for the various tests an-

alysed, defined as D and K. The ratio of freshwater velocity Uf to
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Table 4.10

Longitudinal Variation of Mean Eddy Coefficients

Test/Station, x /L D,m2/sec x 10 K,m 2/sec x 10

WES 11

WES 14

WES 16

.29

.22

.44

.66

.25

.50

.75

DELFT 117 .29
.43
.57
.71
.86

DELFT 116 .29
.43
.57
.71
.86

DELFT 121 .28
.41
.54
.67
.81
.94

DELFT 122 .29
.43
.57
.71

James River

18-23 June .30

26 June-
7 July .30

17-21 July .30

.29

.19

.26

.28

.22

.24

.22

.56

.60

.68

.64

.84

.64

.64

.84
.68
.92

.72

.76

.84

.80
1.12
1.04

.72

.76

.76

.84

.12

.35

.48

.26

.17

.16

.20

.15

.17

.13

.18

.22

.20

.15

.13

.18

.34

.06
.15
.06
.15
.11
.15

.11

.15

.06

.18

2.1

3.1

2.1

7.5

6.5

6.5
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Table 4.11

Mean Values of Eddy Coefficients

- - U /u
Test D K f /

m /sec x m~/sec x 10

WES 11 .29 .12 .13
14 .24 .36 .029

16 .23 .18 .047

DELFT 117 .66 .17 .14
116 .74 .20 .15
121 .88 .11 .09
122 .77 .13 .11

James River

18-23 June 7.5 2.1 .0085

26 June-

7 July 6.5 3.1 .007

17-21 July 6.5 2.1 .009
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maximum flood velocity at the ocean boundary u is also shown in table

4.11. This velocity ratio is a significant parameter for defining flow

conditions and degrees of stratification, as will be shown in the following

discussion.

Figure 4.14 demonstrates the effect of using K and 5 in the place of

the local best-fit values for Delft test 116. It is clearly seen in this

example that the constant coefficients yield quite useful results for the

velocity and salinity distributions. This example is typical of the in-

fluence of this new assumption, and similar results can be shown for the

other tests analysed.

The significance of being able to use constant values for D and K,

i.e., D and K, is that only two unknown parameters need now be specified

in order to apply the analytical model to a given set of estuarine con-

ditions, i.e., freshwater discharge, ocean salinity, depth, etc. All

other model parameters can be readily determined with the possible ex-

ception of the longitudinal salinity distribution. This latter input can

be computed with the aid of a one-dimensional numerical model, as pre-

viously discussed in Chapter III. The determination of K and D for input

to the model is made by using an empirical correlation of these con-

stant coefficients with the gross characteristics of the estuarine system.

The set of governing equations developed in Chapter III can be written

C d _ _ D4J 4.2
1 9TI 4

and

36 2Ded ___

_ d + e C=( ) 2 4.3
D DED6 D r 2 2
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where C1 , C2, h, b, Qf, D, and K are all functions of the longitudinal

coordinate t.

Following the arguments presented above for using constant values of

D (E) D and K (E) K, the dimensionless form of the governing equations

suggests that a possible pair of useful parameters for correlating K and

D is

4
gaS h b

00 0 4.4
SL. O D

1 'fo

and

K L.b

C2  Q h
fo o

where the zero subscript, e.g., b , h0 , refers to the downstream limit

or ocean boundary of the estuary. All terms in these new terms are

assumed constant over the longitudinal and vertical dimensions, and the

only unknown parameters are K and P.

The values of K and D should be a function of the degree of mixing

of the flow field which is in turn a function of the tidal activity. In

recognition of this dynamic relationship of the physical system being

modeled, C and C2 have been correlated with a characteristic non-time-

averaged tidal velocity. To be consistent with the definitions above, this

velocity is specified as the maximum entrance flood velocity u0, non-

Qfo
dimensionalized by the freshwater velocity at this same boundary h b

0 0

Q /b h U
_ fo 00 _ fo 4.5

3 u u
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The value of the maximum flood velocity is considered to be a depth

averaged term, as might be estimated from a table of tide currents, or

some other similar hydrographic reference.

Tables 4.12a, 4.12b, and 4.12c summarize the computations of C ,

C2, and C3 for the estuaries included in this development. Figures 4.15

and 4.16 show the correlation of C with C3 and C2 with C3. In general,

this straight forward technique of using dimensionless groups defined by

the equations, yields seemingly significant correlations. No explanation

is readily available to explain the point for WES 16 on figure 4.15,

although the complex manipulation of the data could easily have introduced

an improper value for one of the component parameters.

It is significant in figures 4.15 and 4.16 that both laboratory flume

tests and prototype field surveys follow the same correlations. In

addition, the range of degrees of stratification include the highly strat-

ified Delft tests 121 and 122 as well as the nearly well mixed middle

reaches of the James River estuary. Thus, this empirical approach to

evaluating the effective coefficients of mean eddy flux, D and K is

apparently applicable to naturally occuring estuarine conditions.

By a simple rearrangement of terms, the unfamiliar parameters C and

C2 can be shown to be equivalent to the products of several more conven-

tional quantities.

4
agS h b oS gh h h u u 4

00 0 0 0 00 04.61 -2 L - U
1 L. D u i D fo
fo

and
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Table 4.12 a

Computation of Correlation Constants for WES Tests

g = 32.2 ft 2/sec

a = 0.75

Test S

pp

b = 0.75 ft.
0

h = 0.5 ft.
0

L. QfO
t ft ft /sec

u
0

ft/sec

uS gh4 b

S= 0 0 0

Li Qfo D

2 -3
ft /sec x 10

K L b 0

2 O hTo o

K
2 -3

ft /sec x 10

11 26.4 140. .021 .43 .31 .13 32.8 1.3 .13

14 29.7 180. .0075 .70 .26 .39 111.2 14.2 .029

16 29.2 160. .0075 .43 .25 .19 119.5 6.1 .047

U3 fo
C3 =u

0

C C
2 3



Table 4.12 b

Computation of Correlation Constants for Delft Tests

agS hb L.b U
0 

= 9.8 m2/sec b = .672 m C = 0 0 1 0 fo o1 Q L - 2 Qh 0 3 u0

a = 0.75 h = .216 m
0

Test S L. Qf u R C 1C
0 1 0 2 -4 2 -41 2 3

ppt m m 3 /sec m/sec m2 /sec x 10 m2 /sec x 104

117 30. 51. .0029 .142 .66 .17 32.8 1.2 .14

116 30. 51. .0029 .130 .74 .20 29.2 1.1 .15

121 30. 54. .00145 .106 .88 .11 45.8 1.4 .09

122 30. 51. .00181 .108 .77 .13 44.2 1.1 .11



Table 4.12 c

Computation of Correlation Constants for James River Survey

4
2 s =300Gmb0gS hb K L b Uf

g = 9.8 m2/sec b0 = 3000 m _ = _ 2 _ 0 h 3
Qf L. D fo 0 0

t = 0.75 h = 8 m
0

Date S L. Q u D K C C 3

m 3 / m 2 -4 2 4 2 3
ppt m m /sec r/sec m /sec x 10 m /sec x l0

18-23 June 24 90,900. 124. .6 7.5 2.1. 361. 58. .0085

26 June-
7 July 24 94,130 104. .6 6.5 3.1 272. 105. .007

17-21 July 24 90,900 130. .6 6.5 2.1 313. 55. .009
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These latter groupings more clearly show that the dynamics of the net

circulation and net salinity distribution are dependent upon scale ratios,
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V Analysis of Transient Flume Study Using Coupled One and Two
Dimensional Models

5.1 Description of Transient Test Procedure

The WES salinity flume described in Chapter IV has been used to

evaluate the transient behavior of estuaries as well as the steady-state

conditions discussed previously. WES test 42 was conducted with a

transient freshwater inflow, decreased in discrete steps for 25 consecu-

tive tidal cycles, starting from a steady-state initial condition. All

other flume variables, including tidal amplitude and ocean salinity

were maintained constant during the course of the test, as indicated

in table 5.1

Table 5.1

Summary of Flume Conditions for WES Transient Test 42

depth, msl .5 ft.

width .75 ft.

length 327. ft.

tidal amplitude .05 ft.

tidal period 600. sec

roughness (side wall), n .02 ft. 1 / 6

initial freshwater discharge .025 ft. 3/sec

final freshwater discharge .00652 ft3 /sec

The test was begun by running 23 cycles at a freshwater inflow of

.025 ft 3/sec and thus permitting an equilibrium initial condition to be

reached. For the following 25 cycles, the freshwater inflow was decreased

.00077 ft 3/sec at the end of each cycle. Measurements of velocity were
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made for cycle 1 (last steady-state cycle prior to decreasing inflow)

and cycle 25 for three depths, .05, .25, and .45 ft., at five stations,

5, 40, 80, 120 and 160 ft. from the ocean end at one minute intervals for

both cycles. Similar times, depths and stations were used in measuring

salinities for cycles 1, 6, 14 and 24.

5.2 Discussion of One-Dimensional Numerical Model and Results for Transient

Test

The numerical computation of the one-dimensional longitudinal salinity

distribution was carried out with a model presented by Thatcher and

Harleman (1972). This model is a real-time simultaneous solution of

the one-dimensional (longitudinal) equations of momentum, continuity,

state, and salt conservation. Real-time refers to time variations

within a tidal period, unlike the analytical two-dimensional model,

which is averaged over a tidal period. Since the numerical model can

handle boundary conditions which change with successive tidal cycles,

e.g., tidal amplitude, freshwater inflow, etc., it can compute the tran-

sient or natural behavior of real estuaries. Finally, the numerical

model has been developed for variable area estuaries, a condition which

is not required for the constant width salinity flume considered in

this discussion.

The governing equations for the numerical model are:

continuity equation

bh =5
b + - q = 0 5.13t 3x
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momentum equation

-Q -Q - Ad -
-- g+ U + -+ g A + g p+ g 0 5.2
Dt x Dx Dx P A 2RhAC Rh

where

d = distance from the surface to the centroid of the cross-section

b = channel width

h = mean water level depth

Q = discharge, averaged over the cross-section

q = lateral inflow per unit length

U = longitudinal velocity, averaged over the cross-section

A = cross-sectional area

g = acceleration of gravity

Rh = hydraulic radius =A

b + 2(h + I)

' = surface elevation relative to local mean water level

C = chezy coefficient

salt equation

BAS 3QS = 53+ ---- = -- (EA ) 5.3
at qx x x

where

S = salinity, averaged over the cross-section

E = coefficient of longitudinal dispersion
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equation of state

p = 0.75 S + 1,000. - 5.4

where

S = salinity in parts per thousand

3
p = density in kg/m3

The coefficient of longitudinal dispersion E is related by

Thatcher and Harleman to the local longitudinal salinity gradient ,

0

E(x,t) = K + ET 5.5

0 5 0
where S - and x = x/L, S being the ocean salinity and L the length

00

of the estuary. ET is the dispersion coefficient applicable to a com-

pletely mixed region, where -- = 0 or to the freshwater tidal region
9x

upstream of the limit of salinity intrusion,

ET = 77 n URh 5/6  5.6

where n is the Manning's coefficient.

Thatcher and Harleman have found a correlation for the dispersion

parameter K and the stratification as represented by the estuary number

EDI

P 2

T D
E = D 5.7

D -
Qf T

where PT is the tidal prism defined as the volume of water entering on
u

the flood tide. FD is the densimetric Froude number, 0

gh
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wherein u is the maximum flood velocity at the entrance and Ap is

the change in density over the entire length of the estuary.

The dispersion parameter K is normalized by the maximum flood
K1  K1

velocity and the length of the estuary . The correlation of L
U L U L

0 0

with the estuary number ED includes data from five WES steady-state

flume tests, and several studies of variable area estuaries for both

quasi-steady-state and transient conditions. Figure 5.1 shows this

correlation. Since all parameters except K1 can be computed directly,

this correlation can be used LU cUmpute the changing value 0f Lhe dis-

persion parameter K1 , and therefore the dispersion coefficient E(x,t)

for the transient study.

Using boundary conditions of known tidal amplitude and flood tide

salinity at the ocean end, the numerical model computes the elevations

'n, discharges Q and salinities S for discrete time steps at discrete

points along the flume length. Finite difference techniques are used

to find the numerical solution, combining both explicit and implicit

methods.

Table 5.2 summarizes the flume conditions which are the input to

the numerical model.
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Table 5.2

W.E.S. Transient Test 42 Flume Conditions

tidal period 600 sec.

flume length 327 ft.

width 0.75 ft.

depth, msl 0.05 ft.

Manning's n .02 ft.1/6

ocean salinity 29.0 ppt

tidal amplitude .05 ft.

The value for the freshwater inflow varied from the initial discharge

of 0.025 ft 3/sec to a final value at the 25th cycle of .00652 ft 3/sec

as discussed. The dispersion parameter K1 was taken from figure 5.1

which yielded a value of .31 for cycle 1 and a value of .21 for cycle

25. Figures 5.2, 5.3 and 5.4 illustrate the numerical solution for the

one-dimensional salinities at stations 40, 80 and 120 for the 25 tran-

sient cycles of WES test 42. The very good agreement between experimental

data (the crosses) and the computed salinities shows the capabilities

of the numerical program. These figures, 5.2 - 5.4 also show the effect

of a decreasing freshwater inflow on the distribution of salinity in

the flume. A steady increase in salt level and length of salinity intru-

sion is seen to be a result of this type of freshwater hydrograph. The

effects of this flow pattern on the vertical profiles of velocity and

salinity as well as its influence on sediment transport are examined in

the following sections of this chapter.
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5.3 Analytical Solution for Unsteady Flow Conditions

The analytical model presented in Chapter III was developed for

estuaries in a steady-state condition, i.e., influencing factors such

as tidal amplitude and freshwater inflow remain constant for successive

tidal cycles. For the analysis of the transient flume test, or for more

realistic natural conditions, an additional term is included in the

equation of salt conservation, 3.32

2
9S + U S +7 9 S _ 3 2 S.

U V 
S 

"- 2 xt 3x 3 y 2

where DS is the average over a single tidal period of the temporal change
Dt

9S
in salinity S(x,y,t). For steady-state conditions, t is zero, but this

is not the case for transient conditions, since it varies by definition

from one cycle to the next. The other model equations are unchanged

with the note that the freshwater discharge 0 is now a variable and has

a different value with each tidal cycle. However, the momentum equations

remain the same as for the steady state because both temporal and con-

vective accelerations can be neglected.

In order to solve this modified set of model equations, an assumption

is introduced for the term which is similar to that made for the

term in equation 5.8. Since it has been shown reasonable to assume that

9 f(y), this same substitution, 9 f(y) (and thus can be replaced

with ) is introduced,

122



DS 9Sd DS 2
+ U + V = K . 5.9

9t 9x 9y 92

Equation 5.9 is non-dimensionalized with the same terms used in the

steady-state analysis with the addition of the tidal period T, T = t/T.

L.bhDO 90 KL b 2
1 d _ $ d 9i$9 i 15.10

+ - 5.10
Qf T 9T 9 D 9 D Dn Qf h 92

Using the same boundary conditions and solutiQn technique discussed in

Chapter III, the unsteady model, including equation 5.10 yields the

following expression for the two-dimensional salinity,

1

0(T,) = ff (,n) di + 0 d - jff(,n) dndn 5.11

where

f (TI) = exp (f PE dn)f f(C ) d I exp (f- d-C dr)}dn
D C2 49r C2 9C2

5.12

and
L.bh

C = 1
QfT

The equation for the stream function is unchanged.

5.4 Two-Dimensional Experimental and Analytical Results for Transient
Flume Study

As with the analysis of the steady-state flume tests discussed in

Chapter IV, the application of the analytical model to this transient

flume study begins with the computation of the one-dimensional longitudinal

salinity distribution. In this case, to illustrate the predictive possi-

bilities of the coupled one-and two- dimensional models, the Thatcher
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and Harleman (1972) numerical model is used to compute this needed dis-

tribution. The values for salinity from the real-time model are averaged

over each of the 25 transient tidal cycles. This same technique is

Sd
employed to find the change in mean salinity . Figure 5.5 illustrates

the experimental and computed time-averaged, one-dimensional salinity

distribution for cycles 1, 14 and 24. Except at station 5, where flume

entrance effects are present, the agreement between the averaged numerical

results and the averaged experimental data is very good, a further

confirmation of the numerical model. As with the previous flume analysis,

the first and second spacial derivatives of this mean salinity are

determined with the spline technique outlined in appendix 2.

The other necessary inputs to the analytical model include the flume

dimensions, intrusion lengths, and eddy coefficients D and K. These

latter terms were taken from the steady-state correlation shown in figures

4.15 and 4.16. Table 5.3 summarizes the inputs to the two-dimensional

model for cycles in which experimental data are available. Figures 5.6

and 5.7 illustrate the comparison between experimental and computed

velocities for cycles 1 and 25. The circled crosses indicate experimental

points which are probably inaccurate and should be discounted. In

general, the analytical results, using values for D taken from the steady-

state correlations, yield very acceptable results for this transient

test. Figure 5.8 shows the comparison of salinity profiles. Again,

using values of K from the steady-state correlations appears to give

quite good fits of the distributions of salinity.

As discussed in section 5.3, the analytical model for the transient
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Table 5.3

Summary of Inputs to Two-Dimensional Model for WES Transient Test 42

h = 0.5 ft.

max. flood
velocity, u , ft/sec

.41

.41

.41

.42

U /uo

.16

.13

.10

.05

.04

b = 0.75 ft.

L., ft

110.

112.

120.

145.

3
Qf/ft /sec

.025

.021

.015

.0073

S = .29 ppt

-3 2
5,xlO ft /sec

.41

.41

.41

.39

-3 2
K,xlO ft /sec

.14

.15

.16

.19

150. .0065

Cycle

1

6

14

24

.37 .2025 .42
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d

flume conditions includes a ,7t term in the salt balance equation. It is

interesting to examine the importance of including this term in the

model, at least with regard to the scales found in a laboratory flume.

Table 5.4 lists the computed values of the salinities for cycle 6 at

station 40 for model solutions with and without the unsteady term.

Table 5.4

Effect of Term in Salt Balance
t

WES 42 Station 40 Cycle 6

Depth, y/h S, ppt (with -) S,ppt (-t neglected)

0 5.17 5.28

.2 6.42 6.51

.4 9.86 9.92

.6 14.75 14.74

.8 20.20 20.10

1. 25.52 25.30

The maximum difference of .22 ppt is not a significant quantity con-

sidering the model assumptions and other departures from the natural

system. Thus, it would seem that perhaps the steady-state salt balance

equation could be used to model this transient salinity phenomenon.

However, it should be noted that this flume test has a 70 per cent

change in freshwater discharge in 25 cycles, and the Delaware estuary

can have the same change in about 10 tidal cycles. Without additional

analysis, it is therefore uncertain as to whether the unsteady terms
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can be neglected for applications of this model to real estuaries.

5.5 Influence of Transient Flume Conditions on Shoaling Characteristics

An important feature of the two-dimensional modeling of the time-

averaged velocity profiles is the identification of the longitudinal

position where the net bottom velocity changes direction and goes

through a zero value. This point is commonly called the "null-point",

and has been shown by Simmons (1965), and others, to be a zone of high

rates of shoaling in estuarine channels, as previously discussed in

Chapter II. Figure 5.9 illustrates the features of this null-point and

shows that it is equivalent to the point where the net landward flow

of salt water ceases.

Since the vertical structure of the net velocity field is strongly

dependent upon the magnitude of freshwater inflow, the null-point must

also exhibit a dependence on these discharges. Figure 5.10 shows how

the null-point, as determined from the analytical model, moves upstream

as the freshwater inflow is decreased over the 25 cycles of the transient

flume study. The null-point can be found analytically from the equation

for the horizontal velocity,

3O C
U 0d d1 3 2

-- -{- 4n + 6n -1}1-1 36U f D 24

At the bottom, 1n = 1, a condition of zero velocity must satisfy an

equation which states that

3O CDOd C1
1 = - dl

where is the non-dimensional one-dimensional salinity gradient, and
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The fact that U/U is zero implies that the net density current is just

equal and opposite to the freshwater velocity, since U contains both of

these components in its definition.
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VI The Savannah Estuary - An Analytical Investigation of Estuarine Shoaling

The shoaling problems of the Savannah Estuary have been carefully

reviewed by Simmons (1965) and Harleman and Ippen (1969). Both hydraulic

models and field investigations have shown a relationship between the

longitudinal location of maximum shoaling and a null point as indicated

in figure 6.1. Figure 6.2 is a location map for the estuary. From

these figures it is seen that immediately downstream of Savannah Harbor,

between stations 120 and 130, a zone of very high shoaling is located

by comparison with the rest of the estuary. In addition, for the model

data shown in figure 6.1, with a freshwater flow equal to 7,000 cfs,

the null point also occurs between these two stations.

In their report, Harleman and Ippen present the time-and depth-

averaged longitudinal salinity distributions from the model for fresh-

water flows of 7,000 cfs and 16,000 cfs, shown in figure 6.3 (their

figure 13). With these curves, and the correlation for eddy coefficients

presented in Chapter IV, it is possible to apply the analytical model

developed in Chapter III to this estuary and thus further investigate the

null point dependence on freshwater flow rates.

Table 6.1 summarizes the data input to the analytical model for both

the 7,000 cfs and 16,000 cfs freshwater flow rates. Following the arguments

of Harleman and Ippen, the discharge through the navigation channel is

estimated atthree-fourths of the total freshwater discharge, i.e., 5250 cfs

and 12,000 cfs respectively. The value of 2 knots for the maximum flood

velocity is taken from the Coast and Geodetic Tidal Current Tables.

The values for the spacial derivatives of the one-dimensional long-

itudinal salinity distribution were computed using the spline program
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outlined in appendix 2.

Figure 6.4 illustrates the analytical results for the null point

for the two freshwater flows. The connected circles are the computed

values and the crosses are the hydraulic model data, as reported by

Harleman and Ippen. The fairly close agreement between computed and

experimental values indicates that the Savannah estuary prototype scales

and conditions do not seriously violate the assumptions of the analytical

model.

In figure 6.4 it is seen that the null point shifts downstream about

1,000 feet when the freshwater discharge is increased to 16,000 cfs.

Qualitative results of this nature illustrate the usefulness of the

analytical model in the analysis of the many factors which determine the

circulation patterns in estuaries. When used in conjunction with a

numerical model, as discussed in Chapter V, or a hydraulic model, as in

the present illustration, this analytical model should prove to be a

valuable aid to engineering analysis.

Table 6.1

Savannah Estuary & Inputs to Analytical Model

S = 30 ppt h = 27 ft.

u - 2 knots b = 2,000 ft.

o = 16,000 cfs Qf = 7,000 cfs

L. = 85,000 ft. L. = 100,000 ft.

U /u = .066 U / u = .029
fo f o

- -3 2 - -3 2DS = 12.2 x 10 ft /sec D =12.8 x 10 ft /sec
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VII Summary and Conclusions

7.1 Objectives

The importance of estuaries in the complex schemes of the natural

environment demands that man gain a more fundamental understanding of the

dynamics of these water bodies. The ecological stress threatening es-

tuaries as a result of increasing coastal development can only be an-

swered with the knowledge derived from intensive research and analysis.

A small part of this needed understanding can be realized from the de-

velopment of mathematical models of estuarine circulation and dynamics.

The development of a mathematical model requires the understanding of

the physics of the natural system being modeled. Thus, the record of

these model developments is in fact the history of man's increasing

knowledge of these coastal systems.

The present study seeks a method of predicting the patterns of cir-

culation and salinity distribution for the somewhat restrictive condition

resulting from time-averaging these processes over a tidal period.

Longitudinal and vertical variations only, are considered, and thus

lateral spacial averaging is also implied. Although these limiting con-

ditions exclude the modeling of the tidal varying properties characteristic

of estuaries, several important problems can be examined with such a model.

An interesting example of this latter set of model applications is the

occurence of zones of shoaling and of turbidity in estuarine channels as

a consequence of the modification of the natural freshwater inflow patterns.

The coupled growth in mathematical model development and physical under-

standing through physical models and field work has made serious engineering
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analysis possible which can be applied successfully to this problem.

7.2 Summary

The model of the time-averaged longitudinal and vertical distributions

of velocity and salinity developed in this study employs an analytical

solution to the four basic equations describing these parameters.

1. Equations of motion. These equations state the conservation of

longitudinal and vertical momentum. The assumption is made that, for

the mean force balance, averaged over a tidal period, the only important

terms are the following: the pressure gradient and buoyancy for the

vertical equation, and the balance between the pressure gradient and the

vertical flux of momentum for the longitudinal equation of motion.

2. Equation of water conservation. The continuity equation for an

incompressible fluid is used in the model.

3. Equation of salt conservation. The two-dimensional equation of

the conservation of dissolved salt is included in the model in which the

horizontal and vertical convection is balanced by the vertical eddy

diffusion only. Thus, the transport by horizontal eddying has been neg-

lected.

4. Equation of state. The relationship between density and salinity

is approximated by a linear function which neglects temperature effects.

In seeking an analytical solution to the above set of equations,

several additional assumptions are introduced. The longitudinal salinity

gradient has been shown by field and laboratory analysis to be nearly

independent of depth. This observation is included in the model by

replacing the actual longitudinal salinity gradient x (xy) with the
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sd
gradient of the depth averaged salinity D (x). The second important

assumption is that the mean vertical eddy coefficients of momentum D (x,y)

and salt K (x,y) may be replaced with effective coefficients independent

of depth, D(x) and K(x).

With the above assumptions and a set of generally accepted boundary

conditions, an analytical solution is found using simple methods of nu-

merical intergration. This solution is studied with data from several

flume tests and three field studies. A result of this analysis is that

accurate profiles of velocity and salinity can be obtained when the eddy

coefficients D(x) and K(x) are assumed as constants, D and K, independent

of both x and y. These modified coefficients have been correlated with

the ratio of freshwater velocity and maximum flood tide velocity at the

entrance of the estuary, incorporating two dimensionless terms which may

be derived from the governing equations.

The model, including the correlations for the eddy coefficients, has

been successfully applied to a transient flume study wherein the freshwater

inflow varied over a period of 25 tidal cycles. In this regard, the model

was coupled with the results from a one-dimensional non-time-averaged

numerical model of salinity intrusion. Used in this manner, the two models

represent an important combined approach to the analysis of estuarine

systems.

Finally, the two-dimensional analytical model has correctly described

the relationship known to exist between the zones of shoaling and levels

of freshwater inflow for the Savannah estuary.
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7.3 Future Work

The present model is neither the first attempt, nor should it be the

final answer to the mathematical formulation of the physics governing

estuarine circulation and diffusion. Immediate improvements and refine-

ments might best be directed towards a more sophisticated approach to

the determination of the eddy coefficients, rather than the essentially

empirical technique of the present study. A significant improvement in

the details of the vertical structure of velocity and salinity is directly

dependent on the more accurage representation of these coefficients.

Ultimately, a real-time two-dimensional, or even three-dimensional

model, may be developed, using numerical methods with large, high speed

computers. For the proper evaluation of these models of the future, as

well as the present analytical schemes, much more laboratory, and es-

pecially, field data are needed. The present oceanographical data banks

are often collections of observations which do not lend themselves to

direct comparison to mathematical models. A greater feedback between

model builder and field observer must be iniated to promote rapid progress

in this study of estuaries.
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Appendix 1

The Computer Program for Two-Dimensional Analytical Estuary Model

The analytical solutions for velocity and salinity development in

Chapter III include several complex integrals which are evaluated by nu-

merical intergration techniques. From a computational point of view, the

model is very simple and requires only a limited amount of time and storage.

Both an IBM 370/155 using Fortran IV, G level, Mod 3 and a HP 2114B

using HP Basic have been employed in this study. To illustrate the rela-

tive simplicity of the computational scheme, the HP Basic program is pre-

sented in this appendixV

Program inputs:

S,M,N the normalized one-dimensional salinity and its first and

second derivatives. These parameters are usually determined

from the SPLINE program described in appendix 2.

D,K the eddy coefficients, normally taken from the correlations

presented in Chapter IV.

Ul the freshwater velocity, Q f/bh (constant for constant b and h).

Hl the depth of msl.

S$ the ocean salinity.

L the salinity intrusion length.

For each longitudinal station, the model begins with the computation

of the dimensionless groups C1 and C2. Then, at each discrete depth a

horizontal and vertical velocity is found. With these parameters known,

the numerical intergration of the salinity function is carried out, a com-

putation requiring four nested integrals. Finally, the salinity is com-

puted and printed with the horizontal and vertical velocities.
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In HP basic, the program is as follows:

620 DIM S[5 1 ,M[5 ] ,N[ 5] ,K[5 1 ,D[ 5] ,A[ 11] ,B( 11] ,H[ 11]
650 MAT READ S
652 MAT READ M
654 MAT READ N
656 MAT READ K
658 MAT READ D
660 READ U1,H1,S0,L1
670 FOR J=1 TO 5
672 LET C2=K[JI*LI/(UI*Hlt2)
674 LET C1:1.00000E-03*.75*S0*32.2*H1l3/(L1*D[J]*U1)
676 FOR I=1 TO 11
678 LET Y=.1*(I-1)
680 LET A[I]=(M[J]*(1+CI*M[JI/24*(4*Yt3-6*YT2+1)))/C2
682 LET B[(I](-CI*N[J1/24*(Y T4-2*Yt3+Y))/C2
690 NEXT I
691 PRINT
692 PRINT
693 PRINT "Y/H"," U/UF"," V/UF"," S/SO"
694 PRINT "------------------------------
695 PRINT
700 LET T2=T4=T6=T8H3:0
702 FOR I=2 TO 11
704 LET T1=T2
706 LET T2=T2+5.0000OE-02*(B[I]+B[I-I I
708 LET T3=T4
710 LET T4=T4+5.00000E-02*(A[I]*EXP(-T2)+A[I-1]*EXP(-TI))
712 LET T5=T6
714 LET T6=T6+5.OOOOOE-02*(EXP(T2)*T4+EXP(Tl)*T3)
716 LET H[I-1]:T5
718 LET T7=T8
720 LET T8:T8+5.00000E-02*(TG+T5)
722 NEXT I
730 LET H[11]=T6
750 FOR I:1 TO 11
752 LET Y=.1*(I-1)
760 LET H4=H[I]+S[JJ-T8
762 LET H3=H3+H4
768 LET U=A[I]*C2/M[JI
770 LET V:B[I]*C2*HI/LI
780 PRINT Y,U,VH4
782 NEXT I
784 LET H3=H3/11
786 PRINT H3
790 NEXT J
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DATA
DATA
DATA
DATA
DA TA
DATA
DATA
DATA
E ND

. 81, 66, .37,. 13 ,2.00000E-02
-.51,-.97,-1.17,-.69,-.21
-1.4,-2.9,1.2,2.6,1.3
2.30000E-04,2.30000E-04,2.30000E-04
2.30000E-04,2.30000E-04
1.40000E-04,1.40000E-04,1.40000E-04
I .40000E-04,1.40000E-04
-2.00000E- 02,.5 ,29 .7,182

A sample of the output from this program is given below. All values

are dimensionless, and y/h = 0 is at the surface.

U/UF V/UF S/So

4.73864
4.52927
3.961
3.12355
2.10664

-. 106637
-1.12355
-1.961
-2.5 29 27
-2.73864

0
-2.76591E-03
-5.23296E-03
-7.16431E-03
-8.39079E-03
-8.81089E-03
-8.39079E-03
-7.1643 1E-03
-5..23296E-03
-2.7659 1E-03
0
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820
822
824
826
827
828
829
830
900

Y/H

0
.1
.2
.3
.4
.5
.6
.7
.81
.9

.8 10 679

.774508

.775924

.780085

.786747

.795527

.805925

.817347

.829136

.840626

.851212

.860432

-----------------------



Appendix 2

The Computer Program for Spline Interpolation of One-Dimensional Salinity

Gradients

The first and second spacial derivatives of the one-dimensional

longitudinal salinity distribution, which are inputs to the analytical

model described in appendix 1, are computed with a spline interpolation

routine. The spline program, written here in HP Basic, was adapted from

the M.I.T. Information Processing Center Program, described in their

bulletin AP-72. As stated in AP-72:

The spline fit curve is a mathematical expression for

the shape taken by an idealized spline (a thin wood or

metal strip) passing through the given points........

The spline curve is a piecewise cubic with continuous

first and second derivatives. Thus, it can give good

approximations to the first and second derivatives of

the function in addition to the function values.

Program inputs:

Y the 1-D salinities, normalized by the ocean salinity

LI the salinity intrusion length, ft.

T the distance between values of salinity, y (T is constant in

this case, but can also be a variable.)

S the distance between points where interpolated salinities are

to be found.

N the number of points where salinities are given

M the number of points where interpolation is carried out.
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2 INPUT NM,S,T,LI
3 DIM X[21 ],Z[21 1 ,A[21 ] ,B[21 ] ,C[211 ,D[ 21] ,E[ 21] ,W[2,21]
4 LET 7[1]zX[1]:0
5 FOR I:2 TO M
6 LET Z[I]=7[I-1]+S/LI
7 NEXT I
8 DIM Y[5]
9 PRINT "X","MEAN SAL.","DS/DX","D2S/DX2"
10 PRINT "------------------------------------
11 FOR 1=2 TO N
12 LET X[I]=X[I-1]+T/L1
13 NEXT I
14 PRINT
15 MAT READ Y
16 LET SI=T/L1
17 LET NO=N-1
18 LET W[1,11-.5
19 LET W'[2,1]=0
20 FOR I=2 TO NO
22 LET F:(Y[I+1 I-Y[I I)/SI-(Y[I I-Y[ I-I] )/S1
23 LET S4:SI*.166667
24 LET \2=(SI+SI)*.333333-S4*W[I,I-1]
25 LET 11,I]=(Sl*.166667)/W2
26 LET W[ 2,1] =(F--S4*W[ 2,I-1] )/W2
27 NEXT I
36 LET E[N]=(.5*W[2,NO])/(1+.5*W[1,N0])
40 FOR I:2 TO N
45 LET K:N+1-I
50 LET E[K ]=[2,K]-W[1,K]*E[K+1]
55 NEXT I
60 FOR I=1 TO M
65 LET ZI=Z[I]
70 LET K=2
75 IF (Z1-X[1)<0 THEN 80
76 IF (ZI-X[1]):0 THEN 300
77 IF (7-X[II)>0 THEN 85
80 IF 71<(1.1*X[1]-.1*X[2]) THEN 400
82 GOTO 300
85 LET K=N
87 IF (71-X[N])<0 THEN 96
88 IF (Z2-X[N])=0 THEN 300
90 IF (71-X[N])>0 THEN 93
93 IF ZI>(1.*X[N]-.1*X[N-1]) THEN 400
94 GOTO 300
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96
100
110
111
115
1 20
121
122
125
126
130
135
300
301
305
310
315
320
325
330
335
340
345
350
351
355
360

REM
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET
LET

LET M2:2
LET 113:N
R EM
LET K= (M
IF (M3>(
IF (ZI-X
IF (Z1-X
IF (ZI-X
LET M3:K
GOTO 110
LET M2=K
GOTO 110

AND
THEN
THEN
THE N

X2=XK ]-71
X3=X2T2
Z3:7-X[K- 1

Z4=Z3t2
S2=SI*2
S3=SI*.166667
E1=E[ K I
E2=E[K- 1]
YI=
Y2=
A[I
A I
B[I
C[I

NEXT I
FOR I:
LET Z[

I
I

(M3<(M2+.1))
125
300
130

THEN 300

Y[ K] /S1
Y[K-1 ]/SI
]=(E2*X3*X2+E1*Z4*Z3)*.166667/SI
]=A[ I ]+(YI-EI*S3)*73+(Y2-E2*S3)*X2
]= (E*Z4-E2*X3)/S2+YI-Y2-(EI-E2)*S3
]=(E2*X2+EI*Z3)/SI

TO M
I =Z[ I I*L1

PRINT Z[I],A[I],B[I],C[I
NEXT I
GOTO 500
PRINT " OUT OF RANGE, X=";Z1
GOTO 300
DATA .91,.77,.532,.2,4.00000E-02,0
END
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3+M2) /2
M2-.*1))
[K1 )<0
[KD:)0
rKDI>0

+1

3
3
3

65
71
73

375
376
377
400
410
452
500



An example of the spline program output is given below. The values

of x are in feet, and the other terms are dimensionless.

?5,5,40,40,160
X

0
40
80
120
160

MEAN SAL.

.91

.77

.532

.2
4.00000E-02

DS/DX

-. 441
-. 70875
-1.26
-1.09125
-.278999

READY
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-. 714
-1.428
-2.982
4.332
2.166



Appendix 3

Tables of Computed and Experimental Velocity and Salinity Distributions

The following tables present the comparison of computed and experi-

mental velocity and salinity distributions for the flume tests and field

data evaluated in Chapter IV. The units of the eddy coefficients D and K

are as stated in the table; all other terms are dimensionless.
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TABLE Al

LOMPUT L ANU EXPERIMENTAL VELOCITY

WES TEST

A/Ll =

ANP SALINITY DISTRIBUTIONS

11

0,c4

S 6A= 6.i6

D= k,39t-j3

J4/DX MEAN=

SQ FT/EC.

-1.291- D2S/DX2 MEAN= ".713

K= C.17E-03 SQ FT/SEC

EXP U/UF

2.55
1 .26
1.90
1.bv
1.0 
1.91
(. 75
w.48
%,.o18

-Qo.12
-U 942

COMP U/UF

2.4r-
2.32
2.11
1.80
1.41
1 o* C.
0. 59

-G .11
-0.32
-,1.4(-

EXP S/St" COMP S/S'

0.37
,.. 39
0.45
0*53
0.59
A.67
I .75
C. 82
0.87
10 9c,
0.92

C.44
'.44
C .47
-. 51
.5 7

r.63
e.7r

".78
C.85

'.93

1, f

U,

Y/-s

~i

L

k tvs v
oeu 5vi
o.00

%.o0 75
L o di.
L .9 vi
1. 0 J'



TABLE A2

CUMPUTEV AN) LXPERIMENTAL VELOCITY

WES TEST

X/LI =

AND SALINITY DISTRIBUTIONS

11

C.29

S MtAN= u.367 J /DX MEAN= -1.022 C2S/DX2 MEAN= 1.425

D= D.31L-o3 SQ FT/.rC K= 0.13E-03 SQ FT/SEC

EXP U/UF

3.L8
2.82
2.20 )
1.62
1.24
- 78

0.56
0.25

-0.10
-0.42
-Uo.68

COMP U/UF

2.40
2.32
2.11
1.79
1.41

0.59
0.21

-0.11
-s.32
-0.*40

EXP S/S COMP S/st

0.12
0.14
0.16
0.20
0*28
0.37
0.46
0.53
0.57
0.60
0.61

*.15
*16
.19
.23

'.28
U 34

o.4l
C.48
%.55
C.62
U .68

~J1

Glu

L0o
4.2A0

.o 0 0 

L. 9u u

I.0 * 'k

I - - -.- I .. ....... ..1.



TABLE A3

CUMPUTtU A4J kXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 11

X/LI = C. 57

S MEAN= .1-+ J$/DX MEAN= -0.717 O2S/DX2 MEAN= '.713

U= .22E-v3 SQ FT/,>cC K=' C.7E-)3 SQ FT/SEC

LXP U/UF

4.18
4.16
2.10
".;7
1.6'+.

C.32
- *.12 ~
-0.49
-0.74

COMP U/UF

2.38
2.30

1.78
1.41
1.00
0.59
C.22

-0.09
-0.30
-. o38

EXp S/SC COMP S/Sr

0.03

0.4 

0.08
i018
0.26
0029
0.93r

0.1
S. 2

0.7

r.15
. 19

r,23
V- .27

.3

f-A
UL
00

Y/H

(d.4J0

%.5I0'Jtoa. ui-
id. 9 

1.950
L.06uw

m



TABLE A4

CuMPUTEU ANU LEXPERIME&TAL VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 14

(/LI = C.22

SMtAN= t.760

D= ..zuE-C'3

Jl/DX MEAN=

SQ FT/4'r_

-O0838 02S/DX2 MEAN= -i.837

K= Cl.38E-03 SQ FT/SEC

EXP U/UF

5.5.)
5.9 

3.60
03 

20%

-1.0 U
-2.4.
-3.4C,
-4.2 o

COMP U/UF

5.30
5. 6
4.40
3.44
2.27
1 .Q(1C(

-0.27
-1.44
-2.o4f'7
-3.06
-3.30

EXP S/S COMP S/S!

0.72
t.72
0.73
0.74
0.o75
0.76
,)077
0.78
n.79

0.80
O.8C

C .72
(.73
p.73
0,74

0. 75
'.76
077

r.78
.79

r.8(
"" ,8-

Hn
kof

Y/H

oLd Lg

. uA

d.,J'v
e.u

L*7v

9.9Lo
-. v



TABLE A5

LuMPUTEU AN) LXPERIMENTAL VELOCITY

WES TEST

X/LI =

AND SALINITY OfSTAI8011NS

14

0 o 44

S MtAN= o. 5 26 Ji/DX MEAN-i -1#397 029/0X2 MEAN* -44256

K= 0*52E-'03 SQ FT/SEC

C.'
0

tXP U/UF

5.20

-6 * 30,

3.80

-3o30

GOmP U/UF

6.12
5.83
5.06
3#91
2.52
1.0 1~

-0,52
-1.91
-3.06
-3.83
-4.12

6xp S/A0

0.45
0.46
0*49
o a*,c
0.53
0#.54
(y# 55~
r,. 56

0.58
0#58

CONP $/$,

C,48
C .48

040

C.52
"'.54
(1#56

r.519
V.6^

Y/H

LJ 3V'C

5 3t, U

v*91.0 i

I .1Aj0

mm

U= L.28E-u3 SQ FT/iEG



TABLE A6

CuMPUTtL ANU EXPERIMEJT4L VELOCITY AND SALINITY DISTRIBUTIONS

WES TEST 14

X/LI = 0.66

Z MEAN= i.198 JW/DX MEAN= -1.242

SQ FT/4ec

Y/H EXP U/UF

5.6h.
5. 3-j
4. 6v

3 3~LJ3.3 L

U'o 6C

-1.s5
-2.3J

,.0j

7i@.4
.1 9'j

1.0 

1.30

K= C.28E-r3

COMP U/UF

5.25

4.37
3.41
2.26

-0 *26

-1.41
-2.37
-3.01
-3.25

D2S/DX2 MEAN= 5.663

SQ FT/SEC

EXP S/Sf COMP S/Si

0.13
V 14
i 15
0.16

0.17

.22

.26
o.27

*.14
9*.14

.15

.16
".18

,.2 2

.23

.25
0.26
.27

------ -77

D= ,.30E-C3



T A F, EA7

S'APIJT r- r AN!C EXPF IMENTAL VELVCITY AND SALT NJI Y r IST!I BTLTT- NS

WES TEST It

X/t T.

DS/nX MEFANx -. 971 D7V0/X2 Mt; AN= -?.359

rn 0,246-03

fXP U/UF

A.4C
6.00

2.00
0.50

- 0.70

-2.50
-3.10
-3.20

CQ 'I/E

CV4MP 'j/li

5.3 4

4.68
3.4
2. 37

-0.37
-1. 54

-3.* 

xx O.1j'-03 SO FT/SEC

EXP S/SO

0.52
0.53

0.57
C. 60
C.64

C.72
0.77
0. A 0
C. 84

CLMP S/SO

0.53
0.54

0. 55
0.57
0 * 60
0.64
0.68
0.72
0.77

0.84

Y/H

0.0 coo
0.100
0. 200
0. 300
0.400
0.*, 0
0. 600
0.700
0. 00
0.q00
1.000

C MA N = 7.66



TABL$ A8

C;MPlJTP ANC EXPIRIMENTAL VELr'C ITY ANr) SALINITY DISTRTILTI2NS

W7. T S17

S V'"TA .- 0*367

X/L I = 0.50

DS/DX MEAN= -1. n2S/0X2 MErAN=

D= 0.2f'E-03 SO FT/SFC K= 0.17F-03 SO rT/S'C

EXr 'J/UF

7.20

3.rO
I .8b
0.30

-1.00
-2.00
-3.00
-3 *.Q0
-3.15C

C MP i/UF

6.16

5.00
3, 03
2.53
1.00

-0. 53
-1.: 3
-3. Oq
-3.97
-4.16

EXP S/SO CCMP S/SO

0.24
C. 25
0926
C. 29
0. 31
0.35
C. 3
C.43
0 47
C. 52
0 0 4

0.23
0. 2-
0.26
0,20
0.32
0.36
0. 0
0.44
0* .8
0. 0
0.52

16

(7N
w~

1.275

Y/H

0. C00
0.100
0. 200
0.300
0. 0o
0. 0 C(
0.6 00
0. '00
0. FO
0. 00
.con



TA8LE A9

C0%P1T'~' A" -XPPP I IFTAL V1L1C NTY AN SALI NITY C IS TR Y AUT TONS

WES TEST 16

X/LI = 0.75

c w '74= 0.121

0= 0.24E-03

r0/3x AFANu -J.6S0

Sn FT/SEC K= 0.21E-03

02S/DX2 M'-AN= 2.558

SQ F T/SEC

rxp 1i/0IF

4.40
4.10
3 .60
2.90

1.00
0.10

-0.10
-1.60
-220
-2.30

CimP lliC

6930
4.12
3.61
2 .07
1.9 7
1.00
0002

-0. 97
-1.E I
-2.12
-2.30

EXP S/sO Comp S/SO

0.08
0.08
C.1 I
C. 10

C. 13
0. 1'

C. 15

0.17
C.1 I

0.08
0.0';
0.00
0.10
0.11
0.13
0. 14
0. IF,
0.16
0.17
0.018

1-a

Y/H

0.000
0. 100
0.,00
0. 300

0.700
0. 400
0.0 o)
1.000



TAPL.F A10

COPU'D AND FXPJ.RIMENTAL VELrCITY

DELFT TEST

X/L =

ANIC SALINITY OISTRIBUT IONS

117

0 . 2 9

' M E AN= 0.503 r-S/DX MEAN= C2S/CX2 MEAN= 0.8P0

0- 0.6E-04 so m/sEc K= 0.15E-04 SQ M/SEC

IXP J/UF

2.66
2*1.A5
2.01
I.0 Q

CI -
1.26
1.02
0./p
0.15

-0.23
0 . I"0

(CMP U/UF

2.45
2.31
2.09
1.e2
1..1 
1.17
0.e3
0.49
0.1.8

-0. 09
-0.31
-0.45

CXP S/so CJMP S/Sl)

0.09
0.21
0.31
0.40
0 9, "6
0.53
0.5n
0.65

0.80
0.86
0.89

0.20
0.22
0. ?6
0.31
0.37
0.44
0.51
C. 5
0.66
0.74
C. 8 1
0.99

ON'
LA

Y/H

0.077
0.154
0.?31
0.308
0. 3435

0.539
0.61 
0.03
0.770
0.847
0.924



TAMLE All

IND ,XPEIjM-NTAL VEVCIV

S MEAN= 0.375

AND SALINITY

DELFT TEST 117

X/LJ ' 0.43

rSIOX MeAN= -0Q91*2

DISTRIBUTIONS

C2S/DX? MEAN= -O.6?7

n= 0.60r-04 SQ M/SEC Kz 0. 1E-04 SQ M/SEC

C1'MP J/UF

2.19
2.00
1.75
1,46
1. 16

q 84
0.53
0.25

-0.*00
-wo. 20
-0.32

EXP S/sc CJMP s/s)

0.04
0,06
0.14

0.33

0.45
0.51
0.58
0.64
0.71
0,78

0 . 0 .
0.10
0.13
0. 17
0.23
0. 23
0. 36
0,44
0.5?
C.6 1
0.70
0.78

cH

Y/H

0o077
0.154
0.231
0.308
C.3135
0.462
0. 53 1
0.616
0.693
C. 7"0
0.847
0.924

x p U/Uc

2.47
2.3'
2.03
1.61
1.?6

1.361,38
1.0 
0.'1
0.23
-0.20
-0.1-1

One

-. 1- --- 11---F11RmR -- . -- - -- I- -- , 11 - - -1-1 1 11-11-1 1 , , I , I 
mw

r ln TE CC



ii

T AL E A12

OMPfj T O AND LXP.RP IMEPTAL VELOCITY AND SALINITY D!STRIBUTIrlNs

DELFT TEST 117

X/LI = 0.57

S M-AN= 0 . ?4o

P - 064 9E.-04

1.33
1.:
1. 3
1.36

1 .;" ?
0,6

0. '

DS/rX mcEAN= -0. 916

SQ M/SEC

CCIMP U/UF

2.05
1. 4
j.70

1.37
1.12
0. P,
0.63
0. 40
0. 2 1
0. 01

-0.05

C2S/CX2 MEAN= 1.970

SQ W/SEC

X s/So

0.02
0.03
0. 0L
0 .03
0.16
0.24
0.31
0.36
0.42
0.46
0.51
0. 593

CoJMP S/SO

-0.00
0.02
C. 0
0. 10
0.15
0. 20
0.26
0.32
0.38
0.43

0.4
0. -

0. 077
0.3154
0.231
C. 308
0. 3fl
0.462
00
0. El S
0 . '33
0. "7 0
C. 4.7
0. 2

K= 0.13E-01

Y /H



TAHLE A13

rompUTED AND fXP R IMENTAL VEL2CITY ANro SAL IITY !ISTRIBUTUMNS

DELFT TEST 117

X/LI = 0.71

! 0.l6 DS/CX MFAN= -0.562 !2S/X2 MEAN= 0.102

C-* 0. 64r--0 so M/SEC K= 0.19E-04 SO V/SEC

CEMP IJ/UF

1.8 ~
1. 92
1.32

1.11

0.9 

0.31
0. 1 l
o.oc

EXP S/so CJMP S/s

0.01
0*02
0.02
0.03
0.05
0.10
0.17
0.21
0.25
0*30
0*34
0.39

-0.03
-0.02

0.00
0.03
0.06
0.10
0.14
0.13
0.23
0. 2P
0.33
0. 3?

Y/"

c .077
0.15 4
0,231
0.309
0.395

f) .tW24 7

C. "n23C.7'0
0 .* +7
C.A24

~XP U/JF

2.30
1.80
1.'s
1.3?
1.0

0.'% E

0.10

m



TAPLE A14

IND EXPtRIMENTAL VEL"CITY ANC SAL !IITY D!STRIBLTIMNS

DELFT TF!T 117

X/L I = 0.F5

- WEAN= 0.0r") OS/OX PtCAK= -0.303 C2S/0X2 MEAN= 2.235

D,) 0. S f- -04 SQ M/SEr

1.56
1.66
1.A2

1.2

1.03
0. 3
0.4 ce,
0. 33
C. 63
0. 8

CC"rVP U/10:

1. 47

1. 30

1.0
I * 0 40.94

0.70
0.1 1
0.53
0. 4,

-- XP S/SO CJlwP S/So

0.01
0.01
0.01
0.01
0.01
0.02
0.04
0.07
0.12

0.16
0. 1-?

-0.
-0.
-0.

0.
0.
0.
0.
C.
0.
0.
0.
0.

02
01
01
01
02
0
06
09
10
12
14
16

Y/H

So m/Sc

0).0'77

0. ?31
0. 3p
0.35
C "4) *
0.-3-
0 . 61 )

.'3
0.7'0
r, 0 7
c2 z,

?'C' tUTE r

Kat 0.22F-04



TAFLF A15

C.,MPLJTEr AND EXPEPIMENTA L VEL CCITY AN C SAL INITY DI STRIBUTI-NS

DFLFT TFST 116

X/LI = 0.29

S MEAN= 0.4-1 DS/nX WEAK= -1.038 C25/X2 MEAN= -0.336

1)= 0.E-04 SQ M/SEC K' 0.20E-04 SO M/SEC

EXP /UF

2.0
2, 6P
2.26
2.02
1.66
1037
1-12

0.923

0.37

-0.35 '

CCMP U/UF

741

2.07
1.s0
1.50
1. 17

0.,50
0.20

-0.07
-0.28
-0.41

xP S/so

0. Ot6
0 .13
0.25
0.34
0*42
0.50
0.56
0 .63
0.6q
0*75
0.81
0. q5

COMP S/sr

0, 16
0. l8
0.22
0.26
0.32
0.33

0.3

0.61
C. 6 '
0. 7 8
0. 36

1-'

0

Y/H

0.077
0. 154
0.?31
0. 308
C.385
00.4672
0.539
0.616 E
0.A3
0.770
0.F47
0.c2 4

m



TARLE A16

AND EXPERtMCNTAL VELrCITY

DELFT TEST

X/LT =

ANC SALINI T Y DISTPIRUTIC1NS

116

0.43

OS/CX MEAN= -0.167 C2S/DX2 MEAN= 1.390

0.64E-04
I-a

I-A

So M/SEC K= 0.15E-04 S) M/SC

CrPP U/UF

2.32
2.19
1.9C

1.7 41. 46
1.16
0. P4
0.53
0. 25
0.00

-0.19
-0.32

iXP S/so C"mp S/SO

0.03
0.04
0.07
0.16
0.25
0.33
0.40
0. 45
0.50
0.5A
0.62
0.70

0.02

0.0,
0. 09
0.13
0.19
0.25
0,32

0. i00, -t

C .9 ',-7

0. 6 1
0. ;7

, MEAN= 0.315

Y/ 

0.0,77
0. 154
0.231
0. 308
0.385
0.462

0.616
0. 193
C.770
0.047
0."24

rXP tI/UF

2.46
2.*46
2.23

1.36
1.13

0.61
0. f2
0. f-2

-. 6 .

rc 10PUkt I'-D



TAnLE A17

VP PXP.'RIMENTAL VEL(CITY ANO SALIUTY r)!STRI9UT!JNS

DFLFT TEST 116

X/LI = 0. 97

S MON 0.V'4 0-/OX MEAN= -0.135 L2S/DX2 MEAN=

~Th ~
I-a
-.4

SQ M/SLC K= 0.13E-04 SQ M/SEC

EXP U / IF

1.60
1.'3
1.,3
1.30
1,e2
1.56
1.33

0..'1.
0.91

0.22
-0.1?

CCMP U/UF

1.76
1.69

1.43
1.27
1.00
0. 1
0.73
0. 57
0.42
0.31
0.24

EXP S/SO

0.01
0.02
0.02
0.04

0.09
0.17

0.24
0.30
0*34
0.3
042

0.4 P

COWP S/So

-0.01
0.00
0.03
0.06
0.10
0.15
C. iq

0.30
0. 35
0.40
0. 6

Y/H

0.1540. 211
0.231
0.300

0.530

o, 6') 3
C.T70
.0. A7

0.24



____________________ L. ______________________ __________________________________

TARL A18

ANC EXPER iMENTAL VFLDh.ITY ANC SAL !NITY r)TSTR IUTIO'NS

DtLFT TES1 116

X/LI 0.71

S MEAN= 0.13

O= 0.697-04

nS/X MFAK= -0.568

So M/SFC K= Oa."PE-04

02S/CX2 MEAN= 0.?76

SQ M/SEC

rXP tj/UF

1466
1.'6
1.73
1.'3
1.33
1.21
1.32

0.3 ,
0,66
04*P
O.'3

CCMP U/UF

1.73
1.6 ~
1.5 ~
1.641

1.09
0.91
0.7C'
0.5

0.34
0.27

EXP S/SO

0.01
0.01
0.02
0.02
0.03
0.06
0.10
0. 15

.Q *J
0.22
0.25
0.28

C]MP S/SJ

-C, 03

-0.02
-C. 00
0.02
0.0
C. 07
0.10
0,13
0.17
0.20
0.24
0. 2?

C CA O IT r

H

Y /H

C. C
.1-54

0.231
0. 3090* 3 l

0.462

0.616
0. 6r 3
0. 770
0.847
C.q24



TAP-LE A19

AMD EXPP IM'NTAL VELtCITY ANr SALINITY O!STRIBUTIONS

DELFT TEST 116

X/LI = 0. '95

DS/nX PEANx -0.3q7 C2S/DX2 MEAN=

0 , O.2F-04

r X' li/UPF

1.39
1. .2

1 0 21.2 0

1.02

04 1

S, m/SEC

C.'MP U/UF

1. 3P
1.34
1.2&
1.21
1.13
1.04
0.9
0.P7
0.79,
0.72
0. A6
0. t2

K1 0.34E-04

xp S/so

0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.03

0.0

0.10

SQ P/SEC

CdMP S/Sa

-0.01
-0.01
-0.00

0.00
0.01
0.02
0.03
0.04
0.05
0.04

0.01

CO U T -no

) mr--I= 0.03? 1.935

Y/H

0.077
0. 154
0.231
0* 30
0.3S5
0.462
0. 53;
C . 61 A

0.770
C.P47
0. *P24 7



TAOLE A20

AND fXP-;RIMENTAL VEL1CITY AND SALINITY DISTRIRUTIONS

DFLFT TEST 121

X/LI = 0. 27

S MEAN= 0.552 OS/DX MEAN= -0.940 2?S/CX2 MEAN=

D= 0.72 -04

t XP U/iF

3.66
3. 44

2.15

1,22
0.2 5

-0.32

C , 9p.

SO M/SEC K-: 0.59-C5

CGMP U/UF

3.1 l

2.65
2. 24
1.*77
1. 26
0.74
0.23

-0.25
-0.69
-0.98
-1.19

SQ to/SEC

EXP S/SO CJMP S/SO

0.118
0.23
0.34
0.44
0.51
0.59
0.6
0.76

0.89

0. 17
0.21
0,27
0. 34
0.43
0, 52
C.61
C. 69
0.76
0.82
C. 98
00.42

1.627

Y /H

0.077

0.231
0.308
0.35

0. 53q
0. AllA
0.53
0. 770
0 .7Vi.
0. c47



TABLE A21

C4nDUr!fl AND EXPEI:IM.NTAL VrL'CITY ANC SALINITY )ISTRIBUTIONS

DEIFT TFST 121

X/LI 0.41

S PEAN= 0..4?5 S/CX' MEAN= -1.023 E2S/DX2 MEAN= -2.718

-= 0. '6-0L so PA/SEC K= 0.15F-04 SQ M/SEC

XP i/UF

3,35
3.Z P
3.05

1.9 ce
1.3F
0.

-0.03
-0.33
-0.78

-1.e0f;

CC-MP U/UF

3.23
3.02
2.68
2.27
1.78
1.26
0.73
0.21

-0.27
-0.60
-1.0 2
-1.23

EXP S/SO

0.12
0.13
0.16
0.24
0.33
0.42
0.5 1
0.60
0.68
0.'3
0.76
0.93

COOP S/SO

0. 13
0.15
0.1
0.2?
0.27
0.33
0.40
0. -t
0. 57
0.66
0. 7i
0. 8

Y/H

0.O77
0.154
0.231
0.308
0.335
0.4(2
0. 39
0. 16

C.770
0 .?47

C.92 q)e

m



TAFLE A22

COPUTED A~ND EXPERIMENTAL VEL.JCITY AN C SALINITY DISTRIBUTIONS

DELFT TEST 121

X/LI = 0. 54

' MEAN= 0.24 DS/CX AtAN= -0.107 CS/CX2 MEAN= 4.428

!= 0.84F-04 so 4/SEC K= 0.59E-05 so M/SEC

[XP tI/UF

2. ' 1
2.64

2.20
2.0
1.52
1 .06
0.(3
0.'0

-0.23
-0.53
.1.04

CCMP U/UF

2. 1;
2. 62
2. 3'
2.02
1.63
1. ?1
0. 78
0.37

-0. 02
-0. 36
-0.62
-0.79

CEXP s/so

0.08
0.08
010
0.12
0.17
0.24
0.32
0.40
0 .4,3
0.53
0.57
0.60

CimP S/SO

0.05
0.08
0. 13
0.19
0. ?4
0.20
0.34
0. 38
0.41
0.43
C. 't5

0.16

I-A

Y/H

C.C77
0.154
0.231
0.308
0.38a
0. e2

o, ;- 3c .161
0 . 69 3
0.770
0.81-7
C.924



TAFLc A23

ND EXPPPIMENTAL VELVCITY INC SALNI TY o!$QIIUTITTNS

DELFT TFST 121

X/LI it 0.6

S MEANx 041'2 DS/DX MFANu -0.746 02S/DX2 M"AN; -2.031

D= 0.9IF-04 SQ M/SEC Kwm 0. 1F-04

EXP UJF

2, 22
2.31
2.22
1.701 IV .- 42

19 '1-2

0 .0p,

-0.34
-0.i6

C'MP ti/UF

2. 55
2.40
2.17

1.8 i19 

0.819
0.45
0.12

-0.17
-0.40
-W. .55

EXP S/So

0.05

0.05o.050.06
0.10
0.14
0.19
0.26
0.31
0,35
0.3e!
0.42

CIMP S/SO

0,02
0.03
0.04
0.07
0.10
0.13
0.17
0.21

0.31
0.36
0.42

Op

SQ M/SEC

y /H

0.0-7-7

0.154
0.?31
0.30 )
0. 395
0.462
0v '3Q
C.'-16
3.63
0.770

0.924

r-40 E f



TA BL r A24

CCDPUT I) AND EXPLPIMENTAL VELJCI TY AND OAL TNI TY DI STR ISUT IONS

%,LFT TEST 121

X/LT = 0.81

S 'EAN= C.0'0 )S/OX MFAN= -0.625 C2S/0X2 M7AN= 3.828

c3= 0.11$-03 so M/SEC Ke 0.17-0 4 SQ M/SEC

EXP 0/1F1

1.73
1."9
1. 6

1 .3 0

1.01

o * 't

0.31
.47

CUMP U/tJF

1.85
1.71
1 . 53
1.33
1. 11
0.89
0.67
0./ (
0. 2q
0.15
0 . 0 5,

I:xp c/so

0.02
0*02
0.02
0.02
0.03
0.04
0.06
0.10
0.14
0.18
0.20

* 0.21

C'?MP S/so

-0.02
-0.01

0.00
0.02
0 0 4
0. 06
0.0.
0.11
0. 1 3
0.16
0. 11
C.2C

H-1

Y/H

0.07*7
0.134
0.231
C. 308
0. 38 5
0.462

0.61S
0.6q3
0.770
0 .84 7
C. 921



TARLE A25

CTInUr f AND EXPRIMENTAL VEL3TCTY ANO SAL IMITY ! TSTR IRUT JONS

QELFT TEST 121

X/. I

MAN= 0.024

0= 0.1QE-03

LS/CX M4fAN= -0,24P;

2Q M/SEC

C2S/XZ MEAN 1.755

SQ M/SC

'XP l'/JF

ItI7

1* 14
03
0,13f,0 3
0.3 c

o 4'
0,23

cCMP I.i/UF

1,41
1937
1.31
1. 23
1,14
1.0

0.8 P
0.77
0, 6q
0,63
0,59

CONP S/$oFXP s/SO

0.01
0.01
0,01
0,01
0,01
0.02
0.0?
0,03
0, 04
0*04

0.06

Y/H

000'"
0. 15't
C.231
0.30R

0.35 C0,462

0.616

00170
0.A47
0. 24

00
00
00
01
01
02
02
03

-0.
-0.

0.
0.
0.

T-.o
"I.

3,04
0.04
0,05
0.0"

m

=0 1;5

K= 0.15E-04



TABLE A26

(CM P UT E 0 AND EXPERIMcNTAL VELrCITY ANC SALINITY DISTRIBUTI-)NS

PF" AN 0, 02

DELFT TEST 122

X/LI 0.21

OS/DX M AN= -1.000

sQ M/sEC K= 0.10F-C4

C2S/0X2 MEAN= 1.016

SQ P/SrC

(>IMP U/UF

2.,5
2. 7"

2.11
1.68
1.23
0.7
0.31

-0.11
-0. i
-0.76
-0.95

FXP S/SO

0.13
0. 16
0.27
r) 37
0.44
0.52
0.61
0.60
0.T8

0.87

CT P S/SI

0, 150.1

0.23
0, 2 ":
0.36
0 . 4 '
C. 5"
0.61
0.69
C. 77
0. 84
C. 10

00

Y/H

0.077
0. 174
0.231
0.308
0. 3P5
0.452

0.59 610.616

0.77 0
0 * 847
O.92"

.XP U/JF

3.31

?.,

2 00
1.e!
1.31

0.03
-0.?'

-0. 3

f',= 0.'72 -0'4



TAFLr A27

C'?,PUIT.) AND EXP-fPIM'NTAL VEtLrCITY ANIC SAL!NITY nTSTRI I'N

DELFT TESt 122

X/LJ = C. 43

EAN= 0.3Aj1 C2S/CX2 mEAN= -1.323

so M/SEC W= 0.15F-04 SO

XP O/UF

2.3 "
2.0 '
2.03 '
2.36

1.3'

0. 0 0.0'
-0.22

Ct'P U/Lr

2.99
2.70
2.42
2.07
1.66
1.22
0.77
0.33

-*0. op
-0.43
-0.71
-0. 89

:XP S/so

o *0uP
0.O9
0.10
0.1'
0.25
0.34
0.43
0.50
0.61
0.67
0.71
0.74

C)MP S/SO

O * 0 I
0.07
C. 10
0. 1'
0.20
0.27
0.35
0. a.
0. 52
0.61
0. 7C
0. 7q

00

R/SFC

Y/H

0.154
0.231
0.a0
0.3-1%

0

C. 643
C.770
C . 4 7

ns/eX mrAN= -i.o22

1) - 0.97 $EU- 04 '



T AI LE A28

C M.PJT:rD ANO E XPEPIM#NTA L VEL -C I TY ANC SAL NJITY D ISTP IRUT IONS

DELFT T'ST 12?

X/L I - 0.7

F w - = 0.220 $S/UX MEAN= -0.921

.)= 0.75r 04 SQ MISErC K= 0.60f-05

C2S/CX2 ME AN-= 4.124

s P/SEC

'7XP ll/UF

2.3C
2.33

.. 4.

1.32
0.e,2

0007
--0.31

CCMP ti/UF

2.52
2.37
2.15
1.86

1.3 i

0.2 
0. 4l

-0.19
-0. 37
-C. 52

E:Xo S/so CIDP S/SO

00 0
0.05
0.0r
0.07
0.1 io
0.16
0.23
0.30
0.39
0.45
0.410
0.53

-0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.

01
0?
07
12
18
23
27
31
34
37
39
40

00)

y /VH

0.0' 1i

0.231
0.303
0 , 30,30. 395
0.462

0.6 3 3C. .1 6)

0.. 7
0. 92C I



TAR-LE A29

AND EXPUPp TM2NTAL VFL1CITY

DKLFT TEST 1M2

0971

FS/QX AFANw -0,697

D'~ rP~t2~.O..t SQ ~1/StC Kx 0,185-05

XP !1/IJF

1,93

1,76
1 3
1,37

0,97
0,4"

-30,08
-3 3

CCMP U/UF

1, 3

1,30
1. 13
0. 87
0, t1
0,37
0.17
0,01

-0,10

0,03
0,02
0,03
Q,03
0, 05
0,07
0.11
Q037

0,27
0,30
0,17

COMP S/s

w7. 4A,'w7,4Q
-7 40

-6.4P
-5,7C

,m4,4 1
-2, 34

C2q 41;

Y/H

r;$/QXP MEAN -1*815

so m/sic

0,Q77

0.231

0. 3 N

0, 462
Co 2

. 35

0 *770
0, e47
o ,9? 4

m

ANQ SALINITY nISTRIBUTINSC 14U1FJT

X/L I

79" M/oQ



TABLE A30

CL.MPUTLU AJU EXPERIMENhIAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 18 JUNE - 23 JUNE

X/LI .19

S MEAN= %.7L7 JS/DX MEAN= -1.419 D2S/DX2 MEAN= -4.148

U= .45-sj3 SQ M/Skl:G K= r,.16E-03 SQ M/SEC

EXP U/UF

29.21
21.23
14. 52
8. 71
.$.* 27

-e. 36
-8.17

-13.97
-18.51
-19. 60
-18.33
-1. 61
-13.43
-1. 70

COMP U/UF

2f0. 39
19. 42
17.62
15.13
12. 19
8.62
4.88
1.Of.

-2.88
-6.62

-10.018
-13. 13
-15.62
-17.42

EXP S/S COMP S/S

0.64
C. 64
C .64
.65

C. 66
C .68
0.71
1) 073

0." * 74
.74

(.75
r 75
c.76
0.76

0.

r .

'I.

C'.

V.

'0.

0.

0.

64
64
65
65
66
68
69
7rt
72
73
75
76
77
78

00
UnI

Y/H

IdaL

L.3 Li
C037
o. 43
tj. 5 u
L.57

'-.77

u.97



TABLE A31

CiMPUTED ANU EXPER I-MENTAL VELOC ITY AND SALINITY DISTRIBUT IONS

JAMES KLVER 18 JUNE - 23 JUNE

X/LI a r.

S MEAN * . 55 jS/DX MEANs C2S/DX2 MEAN= -8.205

u* j.75E-63 SQ M/.6G So M/SFC

aXP U/UF

16.49
130 5w
ii. 52
7.25
4.55
1.42

-e. 13
-5.69
-d.67
1ii.0 * *. 9

-9.95
-1.80
- iI. 81

-OMP U/UF

14.36
13.69
12.45
1 o 74
8.64
6.25
3.68
1.*00

-1.67
-4.25
-6.64
-8.73

-10.45
-11.69

FXP S/SC, COMP S/s;

.') 46
V.46
046

0.46
C. 46
V.47

..

(.51
0.56
Ce.57
0 .57
t. 58
(.58
('059

I.46
l.46

.46
047
*.48
. 49
.51

1.52
C. 54

.55
.56

n 58
0. 59
C.o 6"'

00

(1.17

S.3 1

v*43

,.63
(ol
1.71

Co.9 7

Ka 0.21E-,3



TABLE A32

GOMPUTt) AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES RIVER 18 JUNE - 23 JUNE

(/LI = n.42

S MEAN- u.214 Wi/DX MEAN= -2.851

SQ M/cz r. K= 0.35E-C3

02S/DX2 MEAN= -4.148

SQ M/SEC

EXP U/UF

17.16
7.44
1.98

-1.19
-3.27
-5.16
-6.45
-7.24
-7.74
-7.94
-7.94
-7.94
-7.94
-7.94

COMP U/UF

8.99
8.59
7.85
6.82
5.57
4.14
2.60
1.01)

-,* 6 ;
-2.14
-3.57
-4.82
-5.85
-6*59

EXP S/SO COMP S/Sf

C 17
f. 17
O. 17
0 o 17

*.18
c. 20
0*22
C.24

L.25
0.25
C.25
0.e26

j.

r1.
C.

p.

(.

S.

16
17
17
18
18
19
20
21
22
23
24
25
26
27

I-A

Y/H

(.17

U.37
L.43
(.5

V063
.7 Co

U.97

D= %*p. 012L-40 2



TABLE A33

CuMPUT L) ANU E XPERIIEdT4AL VELOCITY AND SALINITY DISTRIBUTIONS

JAME RiVER 26 JUNE - 7 JULY

X/LI = 0.19

S McANz j.713 J /DX MEAN= -1.342 D2S/DX2 MEAN= -5.311

U= v.35E-t.3 SQ A/C.)Q K= '.26E-(3 SQ M/SEC

EXP U/UF

35.,C
28. 56
21.42
13.63
4.11

-5.41
-11.0 w
-16.01

-del.82 )

-22.72
-24.23
-25. 10
-25.75

LOMP U/UF

28.15
26. 79
24.28
20.79
16.52
11.67
6.44
1. 

-4.43
-9.67

-14.51
-18.78
-22.27
-24.79

EXP S/S' COMP S/Se

C.66
0.67
C*67
(.67
C.68
0.68
(.70
(. 72
C.73
C.74
.75

CL.75

V.76

.67

.67

.67
o.68

.69
r.69

9.7
.71

^.72
*73

0.74
9.75

0.75
-.76

00
00

Y/H

ko L 7

o. 3 

v.43

".7(,.56

L.57

%,.96 3.L(:017



TABLE A34

C MPUTt) AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES A(IVER 26 JUNE - 7 JULY

X/LI = f.29

S MLAN= 4.538 JS/DX MEAN= -2.159

SQa M/SEL, K= U3LE-03

D2S/DX2 MEAN= -11'.622

SQ M/SEC

EXP U/UF

2U.51
17. 12
13.56
9.66
5.93
1.53

-e.,954
-5. 93
-8*64

-11.86
-15.59
-18.47
-19. 83
-19.49

.OMP U/UF

19.43
18.51
16. 81
14.43
11.54
8.24
4.69
1.0 c

-2.68
-6.24
-9.53

-12.43
-14. 80
-16.51

EXP S/SC COMP S/S*

S48
0.49
0.49

.49

(.51
C.52
C.54
C.56
*57

0.57
C.57
0.58
0.59

0.

(t*

S

S

S

a

48
49
49
50
5 ,
51
52
54
55
56
57
58
59
59

I-4
'00

Y/H

L.1 :
(.17

v.37
(o.43
L * 1

4.57
(J.63
(.77

L . 7 7

D= J.65 -,03



TABLE A35

GUMPUTL AND EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES KIVER 26 JUNE - 7 JULY

X/LI = '.41

M EAN= J.21o Jt/DX MEAN= -3.113 D2S/DX2 MEAN= -5.311

SQ M/c, E K= n.45E-C3 SQ M/SEC

cXP U/UF

2.46
il.12
3.19

-,L.*89
-5.09
-6.50
-o.o86
-6.98
-7. V
-7. 81
-9.93

-1.6 

COMP U/UF

11.48
1! .96
9.99
8.64
6.99
5.12
3.10
1. *c

-1. 10
-3.12
-4.99
-6.64
-7.98
-8.96

EXP S/S:

C.18

018
(.18

c. 18

C.19

2 2

023
024
t.24
C.25
f .25
(025

CoMP S/Sn

C' .17
".17

10
*.18
1.19

*.21
.21
.22
.23
.2 4
.25
.25
i.26

I-a
'.0
0

Y/H

L.1L
L9.17

0.3 u

.5u

Lo 5
e.63

L.77
0.83

to.9 V
t.*9 7

U= 0.1602



TABLE A36

UuMPUT ) ANL EXPERIMEiTdAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMEi tiVER 17 JULY - 21 JULY

X/LI = .2

S MLAN= J.687

D= 0.3i6-L3

U./DX MEAN= -1.216

SQ M/a L

02S/DX2 MEAN= -4.746

K= C.26E-03 SQ M/SEC

LXP U/UF

i9. 94
?.3. 71
16.44
9.52
3.63

-1. 90
-7.96

-12.81

-21.98
-26.77
-L9.56
-19.34
-19.04

COMP U/UF

25.02
23.82
21.60
18.51
14.73
10.44
5.81
1. 0

-3. 8 C
-8.44

-12.73
-16.5?'
-19.59
-21.82

EXP S/SO COMP S/Sr

0. 65
*65

0.65

O.66
f. 68

n.72
O. 73

C .74C.74
Pl.74

C.75
0.75

~64
. 64
.64

C . 65
;.66
. 67

1. 6 7
1.68
'. 69

07"
.71
. 72

I. 73
n. 74

I-A

Y/H

(.0 7

u.37
0.43
u.5v
W.57
L.63
S. 70 d

c.77

w.97

77



TABLE, A37

'WMPUTLD ANO LXPERIMENTAL VELOCITY AND SALINITY OISTRIBUTIONS

JAMES RIVER 17 JULY - 21 JULY

A/LI = 0. 3.)

J /DX MEANS 025/OX2 MEAN* -9.491

SQ M/4 s K= 0.21E-03 SQ M/SEC

EXP U/UF

17.76
14. 51
IL. 71
7.U5
4. 2('
.49

-1.90
-4.8 a

-o91
-8.95

-I* 71

-1.15
-V3. 42

COMP U/UF

15. 14
14.43

13.12
11.31
9.08
6.56
3.83
1.0 I

-1.83
-4.56

-9. 30
-11.12
-12. 43

EXP S/S! COMP S/Se

('.45
. 46

0.46
.46

3.47
0*47

U.53
Z.55
0.56
C,57
r,. 57
0.57
C. 58

0.
0.
C.

I.

ri.

r.
C,.
I'.

I.

44
45
45
46
47
48
5r
51
53
55
56
58
59
6:1

I-'

Y/H

.2i4 1

. 7
v.43

.5 7
.57

.71
L.77L o 3
.O9(o
.oo7

SMtANr- t .52v*

um v 06-3



TABLE A38

COMPUTLU AN EXPERIMENTAL VELOCITY AND SALINITY DISTRIBUTIONS

JAMES ?IVER 17 JULY - 21 JULY

X/LI = (.43

S MLAN= W.210 J)/DX MEAN= -2.872 D2S/DX2 MEAN= -4.746

V= t. i -v2

tXP U/UF

17.5f
9.56
.#74

-1. 51
-4.26
-6.06
-7.29
-8.33
-8.99
-9.65

-10.03

-10.31
-1C.31

SQ M/S!CG K= 0.5JE-03

GOMP U/UF

r. 30
9.84
8.97
7.78
6.32
4.66
2.86
1 .

-;.86
-2. 65
-4.32
-5.78
-6.97
-7.84

SQ M/SEC

EXP S/S COMP S/SA

(.17
0.17
0.17
,.17

C. 17
C.18
C.19
C.21

*.22
'.23
(.24
C .24
(.* 24

*25

1* 173.17
.17
.18
.18
.19

3J.2
*.21
*.22

'.23
S.23
S.24
'.25
r 25

Y/H

1.17

L.37
U.43

;. 57
0. 5

V.77
.83
.9u
.9 7

raw- jj a "v




