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THE COUPLED TRANSPORT OF WATER AND HEAT IN A VERTICAL

SOIL COLUMN UNDER ATMOSPHERIC EXCITATION

ABSTRACT

The purpose of this work is to develop a detailed, physically-

based model of the response of the land surface to atmospheric forcing.

The coupled, nonlinear partial differential equations

governing mass and heat transport in the soil are derived. The theory

of Philip and de Vries is re-cast in terms of the soil water matric

potential, accounting for soil inhomogeneities and hysteresis of the

moisture retention process. An existing model of hysteresis is modified

to incorporate the effect of temperature and to facilitate numerical

analysis.

The Galerkin finite element method is applied in the development

of a numerical algorithm for the solution of the governing equations.

The numerical procedure is coded in FORTRAN for computer solution and

several examples are run in order to test the method. The various modes

of mass and heat transport are simulated accurately. A proposed proce-

dure for the evaluation of non-linear storage coefficients in the

numerical scheme yields excellent mass and energy balances.
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NOTATION

A, global mass storage matrix associated with $

A global energy storage matrix associated with $

a negative of C

B, global mass storage matrix associated with T

B2 global energy storage matrix associated with T

C overall volumetric heat capacity of porous medium

CD temperature coefficient of isothermal diffusivity

Cd bulk volumetric heat capacity of porous medium

CK temperature coefficient of hydraulic conductivity

C temperature coefficient of matric potential

C global mass conductance matrix associated with

C global energy conductance matrix associated with $

c specific heat of liquid water

c specific heat of water vapor at constant pressure

S1-C 6 mass equation coefficients defined in (4.3)

D molecular diffugion coefficient of water vapor in
air (= 5.8xlO~ 7 T2 . 3 )

D global mass conductance matrix associated with T
-bl

D global energy conductance matrix associated with T

9



D v temperature diffusivity of vapor in ip-T systemTv

D v matric head diffusivity of vapor in $-T system

d -d5 energy equation coefficients defined in (4.4)

E global vector for gravity flow term in mass equation-l

E global vector for gravity flow term in heat equation-=2

e rate of evaporation from the land surface

F root sink vector in mass equation
-1

f vapor diffusion correction factor for liquid islands

G portion of grad $ due to variations of R and s

g acceleration of gravity

H sensible heat transport up from land surface

h relative humidity

I net longwave back radiation from surface

I net incident shortwave radiation
s

K(O,T) hydraulic conductivity

Ka atmospheric vapor transport coefficient

K r() relative hydraulic conductivity function

K value of hydraulic conductivity at 8=Ou, T=T0

KT(T) temperature correction for hydraulic conductivity

k unit vector in positive z direction
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L(T) latent heat of vaporization

L L evaluated at T = T
0 0

n total porosity

PF value of pF referenced to T = T

pF base-10 logarithm of negative matric head in cm.

Q-M volumetric vertical water flux, excluding root flow

Q boundary mass flux vector

-q2 boundary heat flux vector

general flux term

Rh heat flux

mass flux of liquid water

_gm total mass flux of water in medium

mass flux of water in root system "continuum"

gyV mass flux of water vapor

R gas constant of water vapor

R wetting history vector

R surface runoff rate
s

r precipitation rate

S volumetric root moisture sink term

Sh volumetric heat storage

S total volumetric water storage
m
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S . S at local node number i

S Sm at time tk
m M

s vector of all soil parameters needed to define main
wetting curve

T absolute (Kelvin) temperature

T Galerkin approximation of T field

T. value of T at node j

Tr temperature of precipitation

T reference value of T
0

Tk vector of T.'s at time tk

tk time at end of k'th time step

U union symbol

W differential heat of wetting

z vertical coordinate, datum at land surface

at air phase tortuosity factor

Y specific gravity of liquid water

A length of element e

F- surface retention water depth

E 0 surface retention capacity

temperature gradient enhancement factor for vapor diffusion

0 volumetric liquid water content

12



o volumetric air content
a

od(-) main drying curve
d

ok maximum value of 6 at which liquid phase is effectively
discontinuous

U ''saturation" 6 after drying and re-wetting

o () main wetting curve

ok value of 6 at time tk

A effective thermal conductivity A

A0  effective thermal conductivity in O-T system

effective thermal conductivity in $-T system

A hypothetical thermal conductivity in absence of water mass
* transport

P dynamic viscosity of liquid water

pa water vapor density at z = a above surface

Pk density of liquid water

Pv density of water vapor

p saturation water vapor density over free water

Ek volume of water stored in element at time tk

a interfacial surface tension between air and water

T bulk volumetric storage of water in roots

total potential of soil water

e. , $. trial function associated with element e and local node i
i~
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TP matric potential referenced to T = T0, i.e.,T =ea(T-To)

Tk value of T at time tk

TP effective reversal value of ' for computation of current
0 scanning curve

matric potential

Galerkin approximation of $ field

$P. value of $ at node j
J

k
P vector of $P's at step k

e
W. trial function associated with element e, node j
J
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Chapter 1

INTRODUCTION

1.1 Motivation for this Study

The climate and weather at all scales on Earth is the result

of the dynamic interaction of the atmosphere with the oceans, with the

land surface, and with "outer space." Interest in the special role of

the land surface as an atmospheric boundary is the motivation for the

work described in this document, which is part of a larger study,

"A Dynamic Land Surface Boundary Condition for Climate Models," being

conducted at M.I.T. with the support of the National Science Foundation.

The purpose of that study is to develop simple, physically-based param-

eterizations of the transport of (water) mass, heat, and momentum across

the land surface for use in global numerical models of atmospheric

general circulation.

The behavior of those simplified land surface models will be

validated by comparison with a detailed mathematical model of the coupled

physics of the soil, the vegetation, and the atmospheric boundary layer,

driven by a stochastic model of the atmosphere. This physical system,

which is considered to be one-dimensional (in the vertical direction),

is depicted in Figure 1.1. This report describes the detailed "primitive"

equation model of the soil component of this system. The soil column may

be loosely defined as a vertical section of earth extending downward

from the land surface either to the water table or to a depth beyond

which the water mass and heat fluxes are negligible.
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1.2 Goals and Scope

The first goal of the present work is to present a general

mathematical statement of the physics of water and heat transport in the

soil boundary layer. Chapters 2 and 3 deal with this problem. The

second goal is to outline a numerical algorithm for the solution of the

governing equations and to demonstrate its validity. These issues are

treated in Chapters 4 and 5.

In formulating a general mathematical statement, the approach

will be to consider all physical effects that might be important in

natural environments. Hysteresis in the moisture retention curve, vapor

transport, and temperature effects are therefore included. Subsequent

work will address the question of simplifications of these general

equations. It is precisely the purpose of this model to justify the sim-

plification process, as the complex governing equations do not submit

readily to an a priori scale analysis.

The role of vegetation is not treated in detail here. In order

that the soil model be compatible with a mathematical model of the vegetal

canopy, however, a general moisture sink (root extraction) term has been

included in the derivation of the equations.

This work should have applications beyond studies of the

planetary boundary layer. The theoretical presentation provides a

convenient synthesis of much of the previous work. The numerical model

will be a useful tool for the simulation of many soil physical processes,

especially those involving coupled moisture and heat fields and/or vapor

effects - situations for which general numerical codes are not readily

17



available.

1.3 Review of Relevant Literature

The development, during the first half of this century, of the

isothermal theory of moisture flow in unsaturated soil is described by

Swartzendruber (1969) and by Philip (1957). They credit Buckingham,

followed by L. A. Richards, W. Gardner, E. C. Childs, N. Collis-George

and others for their early contributions. The 1950's saw systematic

application of the established theory to particular problems, the most

well-known, perhaps, being the work of J. R. Philip on the infiltration

process. Today, the Richards equation of liquid continuity, or a

variant thereof, is probably the most widely used tool for the analysis

of moisture transport in soil.

Philip and de Vries (1957) extended the isothermal theory of

liquid water flow by incorporating vapor flow and clarifying the effect

of temperature gradients in a synthesis of several divergent areas of

research. They also presented a heat conduction equation that included

the transport of latent heat by diffusing water vapor. Shortly there-

after, de Vries (1958) presented a more general heat equation, which

accounted for many secondary storage and transport mechanisms and incor-

porated a new method for the calculation of effective thermal conduCtivi-

ty.

The theory of moisture transport in porous media has been

complicated by the well-known existence of a hysteretic relationship

between the moisture potential and the moisture content. A physical

18



theory explaining this phenomenon qualitatively in terms of capillarity

was set forth by Miller and Miller (1956). The "independent domain"

theory for hysteretic phenomena, developed by L. Neel and D. H. Everett,

was first applied to soil moisture retention by Poulovassilis (1962).

Subsequent developments along this line of attack are described by

Mualem (1973). An important step was the suggestion of Philip (1964)

that a similarity assumption be invoked. During recent years, Y. Mualem

has made several contributions in this area, simplifying the formulation

and maximizing the use of information to the point where the independent

domain model and related models have become potentially powerful tools

for the analysis of soil moisture flow problems.

Although models of hysteresis have been incorporated in several

numerical simulations of soil water dynamics, a complete theoretical

treatment of the applicability of the various flow equations in the

presence of hysteresis has apparently not yet been given. Childs (1964)

has made an important contribution, demonstrating that the commonly-

employed soil moisture diffusivity must be modified to account for

hysteresis. Very little has been written on the theory of hysteresis in

the presence of temperature variations.

Several analytic solutions of the non-linear moisture equations

have been derived. Philip (1957) has presented a quasi-analytic method

for analyzing infiltration into a soil of constant moisture content.

Gardner (1958), using a particular soil parameterization, solved the

problem of steady flow of water from a fixed water table to the surface,

where it evaporates. Covey (1963) has solved a transient evaporation

19



problem using an exponential diffusivity function. Eagleson (1978),

using Philip's method, has defined effective diffusivities in terms of

an empirical model of the soil properties in order to solve problems of

infiltration and exfiltration for constant initial conditions.

Analytic solutions typically involve idealized assumptions

concerning initial conditions, homogeneity, hysteresis, etc.

Nevertheless, they are very useful in generic studies of moisture trans-

port processes and in situations where detailed computation would be

prohibitive.

The limitations inherent in the analytic solutions, together

with the rapid growth of the capabilities of the digital computer, have

led many investigators to seek numerical solutions of the flow equations.

An early numerical solution was Klute's (1952) treatment of non-linear

unidirectional moisture diffusion, neglecting gravity. A more general

approach to infiltration, which allows for layered soils, was presented

by Hanks and Bowers (1962). Hysteresis was incorporated into an analysis

of redistribution after infiltration by Rubin (1967), and later by many

others. Freeze (1969) presents a review of various solutions obtained

during the 1960's.

Two- and three-dimensional numerical models have been developed

to study the areal response of the coupled saturated zone-unsaturated

zone system by Rubin (1968), Freeze (1971), Neuman, et al. (1975),

Narasimhan and Witherspoon (1977), and others.

20



Sasamori (1970) used the theory of Philip and de Vries (1957)

to model the coupled transport of heat and moisture in the soil for his

landmark study of the interaction of the earth and atmosphere surface

boundary layers. The numerical model was used to simulate a

(precipitation-free) period of evaporation from the soil, and did not

include the hysteresis effect. Furthermore, it employed the some-

what limited 0-based formulation of the conservation equations. Vauclin,

et al. (1977) have used the (isothermal) Richards equation for liquid

flow, and a simple heat diffusion equation, in order to study evapora-

tion. Thermal properties were dependent upon moisture content, providing

one coupling mechanism.

Sophocleous (1979) has attempted to convert the Philip and

de Vries theory to a matric head-based formulation and has presented

the results of some simulation experiments. It appears, however, that

his new system of equations is incorrectly formulated (Milly, 1979). In

particular, the expression for moisture flow due to temperature gradients

is in error. Hysteresis was not considered.

21



Chapter 2

THE PHYSICS OF WATER AND HEAT TRANSPORT IN POROUS MEDIA

2.1 Introduction

A physically-based analysis of water and heat transport

processes in the soil must begin with derivation of the governing equa-

tions and accompanying boundary and initial conditions from established

principles. This is the objective of this chapter. The development is

presented for heterogeneous, non-deforming, isotropic media exhibiting

hysteresis. The coupled partial differential equations governing the

distributions of temperature and water mass in the porous medium are

derived by application of the conservation principle to water and heat

at macroscopic scale. This gives

3=- -q (2.1)
at-

where E is the amount of "substance" (e.g., water or enthalpy) per unit

volume [XL 3], and q is the local average flux of substance [XL 2T ].

X represents the units of the substance.

Expressions are given for the storage and flux terms as

functions of the relevant dependent variables. Substitution into the

general conservation equation (2.1) then yields the mass and heat con-

servation equations. Various mathematical manipulations are then inves-

tigated in an attempt to express the equations in diffusion forms, which

are potentially more useful. Two pairs of dependent variables are

22



considered - ( , T) and (0, T).

This chapter draws heavily on the works of Philip and de Vries

(1957) and of de Vries (1958), although several extensions and modifica-

tions of these works are proposed. In particular, a system based on the

dependent variables $ and T is presented, along with one employing 0 and

T as proposed by Philip and de Vries (1957). The proposed systems of

equations are valid for inhomogeneous and hysteretic soils when applied

with care. The possibility of water uptake by a plant root system is

included. Combination of the basic heat equation and the mass equation

yields two other forms of the heat equation, one of which is equivalent

to that given by de Vries (1958). A physically-small mathematical error

in his equation is noted.

Following the derivation of the governing equations, the proper

boundary and initial conditions for a one-dimensional (vertical) soil

system are presented. All of the processes possible at the land surface

(infiltration with or without ponding, evaporation and the accompanying

heat transfers) are considered. The saturated zone is modeled dynamical-

ly as a linear storage reservoir. The conditions necessary to allow

modeling of domain discontinuities are given.

The chapter closes with a discussion of the differences

between $-based and 0-based forms of the conservation equations.

2.2 Derivation of the Governing Equations

2.2.1 Mass Conservation

Let S be defined as the total (liquid plus vapor) water
m
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storage per unit volume of the porous medium. The units of S are

equivalent volume of liquid water per unit bulk volume of the medium.

We then have

= [p06+ Pva + P T] = total mass of water -3
p Sv a k unit bulk volume

or

p
S =0+ - e + T (2.2)

M PX a

where

. mass of water vapor [g cm- 3
v dunit volume of air

liquid density mass of liquid water -3
- unit volume of liquid water

volume of liquid water in the soil
unit bulk volume

volume of air in the soil
a unit bulk volume

T _volume of liquid water stored in roots
unit bulk volume

The first term in (2.2) is thus storage in the liquid phase, the second

is water vapor storage in the air-filled portion of the medium, and the

third is root storage. In this work, 0 refers to total soil liquid

content, including the portion that is sometimes referred to as "resi-

dual" moisture content. The liquid water is assumed incompressible.

The flux of liquid in an unsaturated porous medium is

described by the Buckingham-Darcy equation (Swartzendruber, 1969). This

relation, for isotropic media, is

/P = - K V4 (2.3)
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in which

liquid mass flow rate in soil [g cm- 2 s- 1
RY unit bulk cross-sectional area[

K = hydraulic conductivity [cm s ]

= total potential [cm]

The total potential 4 is a measure of the local energy level of the

water. It is conveniently resolved into a gravity term and a matric,

or "pressure," term,

D = + z (2.4)

where the z-coordinate is the elevation relative to an arbitrary fixed

datum (positive upward). When the presence of solutes is important,

there is another component, the osmotic potential, on the right-hand side

of Eq. (2.4).

The quantity, $, the matric head, is fully determined by the

liquid moisture content, the temperature, the soil properties, and (in

the general case of hysteretic soils) the wetting history of the parti-

cular point in the medium. This dependence is discussed in Chapter 3.

Keeping in mind the possibility of hysteresis, as well as the possible

spatial variability (heterogeneity) of the soil, we shall write

$ = $(O, T; R; s) (2.5)

where T is temperature and R and s are vectors providing all the

requisite information about wetting history and soil properties, respec-

tively. Their physical significance is dealt with in Chapter 3.
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Substitution of Equation (2.4) into (2.3) yields

q /P = - KV$ - Kk (2.6)

where k is the unit vector in the z direction. Since K is ordinarily.

discontinuous where s is discontinuous, the use of Equations (2.3) and

(2.6) will be restricted to media in which the properties are either

constant or continuously varying in space.

The "simple theory" of vapor flow in porous media is an

intuitive extension of Fick's law to the macroscopic scale of a porous

material. It is written (Philip and de Vries, 1957)

_gv = Da v a a Vp (2.7)

where

= vapor mass flow rate in soil -2 -1
v unit bulk cross-sectional area [g cm s ]

Da = molecular diffusion coefficient of water vapor in

2 -1air [cm s ]

v = mass flow factor, a correction for the difference in

boundary conditions governing air and vapor

a = tortuosity of the air-filled pore space

The mass flow factor, which is normally very close to unity, will be

neglected here. The tortuosity, which is less than unity, accounts for

the effect of the increased path length that results from the irregular

geometry of the pore space. The proportion of the bulk cross-section

available for flow is assumed to be identical to 0
a
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The water vapor density in the air phase is found by Edlefson

and Anderson (1943, p. 145) to be

Pv p POh = p0(T) exp(ig/RT) (2.8)

in which

p (T) is the saturation vapor density over a free, flat

water surface [g cm 3

h is the relative humidity of air

g is the acceleration of gravity [cm s 2

R is the water vapor gas constant [erg g K~]

Equation (2.8) is a direct consequence of the assumption of thermody-

namic equilibrium between the liquid and vapor phases, and is valid for

practically all natural soil systems.

The continuity of pv($, T) allows us to expand the gradient in

Equation (2.7) to obtain (setting v = 1)

ap Dp
v =-D aea VI + VT (2.9)

-v a a ( IT $

in which the vertical bar indicates which variable is to be held constant

in the differentiation. Philip and de Vries (1957) use 6 and T in this

expansion and assume that h is a function only of 6, obtaining

dpo 
dh

Vp =h VT + p - V
v dT 0odO8

In fact, the temperature dependence of h may be significant. We shall

retain the more general Equation (2.9), but follow the same subsequent
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steps proposed by Philip and de Vries (1957).

Consider now the case of a discontinuous liquid phase, i.e.,

0 < 0 ,c where 8k is the highest value of 0 for which K = 0. Philip and

de Vries (1957) argue that the isolated liquid islands act as short-

circuits for the thermally-induced vapor flux, effectively increasing

the cross-section available for transport to include the liquid phase.

(They rejected a similar correction for the flux due to matric head

gradients, apparently because the necessary head gradients across the

liquid islands would be too large.) The increased cross-section is

incorporated by replacing 6a in the VT term of Equation (2.9) by (a +0).

Note that this change is rather small, since 0 < ek'

A second correction to Equation (2.9) is made by Philip and

de Vries (1957) to account for the fact that the average magnitude of

the temperature gradient in the air-filled pores exceeds the magnitude

of the macroscopic gradient, due to the difference in thermal conductiv-

ity among the various phases. They introduce

(VT)a

= VT a (2.10)

as the necessary correction, (VT)a being the average temperature gradient

in the air phase, the effect of tortuosity included.

The modified version of Equation (2.9) is

q =-D a.0 V$ - D (a + 0) C VT (2.11)
-v a a p T a a DT

which is valid for 0 < ek'
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Finally, Philip and de Vries (1957) propose a generalization

of Equation (2.11) for the range of 0 where the liquid phase is contin-

uous. In this situation, the quantity (0a + 0) in Equation (2.11) is

replaced by (6a + f'6), where f' goes to zero as 0 goes to zero. The

proposed form of f' is linear with 0a in this regime. The final expres-

sion for vapor flux is

=q - D ct P -I D f C VT (2.12)
a a $ a 3T

= - p WD V$ - p DI VT
P, $v k Tv

in which

n < a- k

f = o (2.13)

a n - 0k k

D 3
D = D a v - matric head diffusivity of vapor 1$v P pt, a 3$ T [cm s

D 9P
D a V temperature diffusivity of vapor in

Z 14)2 -1 -lI - T system [cm s K ]

The validity of this model of vapor transport has not been

exhaustively demonstrated, although Philip and de Vries (1957) cite

several experiments that support it. The interaction of the 4)- and

T-fields on the microscopic (pore-scale) level is deserving of further

theoretical work, in conjunction with careful analyses of the existing

experimental data. Most likely, further experiments will be required.
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Rather than open this Pandora's box of micro-scale physics, we shall

accept the present theory as the proper formulation of the process

dynamics.

At this point, we can define the total mass flux in the medium,

using (2.6) and (2.12), to be

_qlo c1~,/k I q/lpt + rp

v-(K + D V - DTvT - Kk + -r/p (2.14)

where

_ water mass flow rate in plant root system [g cm-s -1
r unit bulk cross-sectional area

Substitution of (2.2) and (2.14) into (2.1) yields the

continuity equation of water mass,

+ - + T)= V-[(K + D) V$ + D VT + Kk - ar/ k~t' Pt a 4iv Tv

(2.15)

Considering mass conservation in the root system, we also have

-T -(ar d) + S (2.16)

where S is the volumetric uptake of water from the soil by the plant

roots, i.e.,

S = volume of liquid extracted from soil per unit time
unit bulk volume

Combination of (2.15) and (2.16) yields
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(i + aY -- +--= V-[ (K +D )Vp+ Dq
at -+=-[(K + ) VIP +TDv VT + Kk] -S (2.17)

where use has been made of the fact that

a at

2.2.2 Heat Conservation

Let Sh denote the total heat content per unit volume of porous

medium. Then the expression of de Vries (1958), generalized for a

hysteretic soil, is

S h= (Cd + c p Pva + c p 0)(T - T )

t r dO
+ L p -p W - dT (2.18)ov a , dT

t
0

in which

Cd is the heat capacity of dry soil plus roots, bulk

volume basis [cal cm-3 ,K -

c is the specific heat of water vapor at constant pressure
p

[cal g-1 *K1]

-l -lC is the specific heat of liquid water [cal g *K ]

T is the arbitrary reference temperature [*K]

L is the latent heat of vaporization, L, evaluated at T = T

[cal g~ 1]

where

L is the latent heat of vaporization [cal g-1]
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and

W is the differential heat of wetting [cal g~ ]

The differential heat of wetting, W, is the amount of heat released when

a small amount of free water is added to the soil matrix (Edlefson and

Anderson, 1943). Note that Cd is taken to include all organic material,

living roots in particular. The heat capacity of air is neglected.

Following the general approach of de Vries (1958), we tenta-

tively express the heat flux as

h *XVT + Lqy + c (T - T ) q + c (T - T) + c (T - T)

(2.19)

in which

-2 -l

ah is the heat flux in the medium [cal cm s ]

is the thermal conductivity of bulk medium [cal cm~ 1

s51 *K -]

The first term in (2.19) is simple conduction in all phases of the

medium, the second is latent heat transport (convection) in the vapor

phase,while the remaining terms represent the sensible heat convected

by vapor, soil liquid, and root water. Convection of air, as well as

radiative transfer, is considered negligible.

The basic thermodynamic relation

L + c (T - T ) = L + c (T - T0) (2.20)
o p o
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may be used to convert Equation (2.19) to

= *VT + L + c (T - TO) (2.21)

where has been defined in Equation (2.14). Let us substitute for qV

using (2.12). This yields

= - (X + p LD) VT - p LDk V$ + c (T - T ) q (2.22)

The two terms multiplying VT are not strictly additive (de Vries, 1958),

as was assumed in the statement of Equation (2.19). The two effects

interact, resulting in an effective thermal conductivity, XA, which de-

pends strongly on 0, as discussed in Chapter 3. We therefore replace

Equation (2.22) with the following:

= - A VT - p9 LD v V$P + c (T - T0 ) -% (2.23)

The substitution of Equations (2.18) and (2.23) into (2.1)

yields the heat conservation equation,

C 3+ [L +c (T -T )6 V

+ [c p (T - T .) - p W - c p( - T ) - L V t

V [XAT+ p LD v V$ - c (T - T_) qm (2.24)

in which

C = Cd + cppvaa + c kpke

= bulk heat capacity [cal cm 3 *K1]

33



Two more equivalent forms of the heat equation may be

generated by application of the mass conservation equation (2.17). Let

us first assume that the temporal variations in the amount of water

stored in the root system are negligible. Then, from Equation (2.16),

S = V.( r/Pi) (2.25)

This may be used to eliminate S from Equation (2.17) for use in the

development below.

Multiplying Equation (2.17) by the quantity

p [L + c (T - T )]
S p o

and subtracting the result from Equation (2.24), we obtain

C 3T (P L + pzU) at

= V-[XiVT + p kLD v V0 - ckqlm-VT + LV--q (2.26)

Multiplying Equation (2.17) instead by p kc (T - T0 ) and

subtracting from Equation (2.24), we find a third variant of the heat

equation, which is

C T + LOa - (p L + p W) =V-[XT + p LD Vi] - c -VT
at a at v k W t P $v k pmL

(2.27)

On the interior of a suitable space-time domain D, Equation

(2.17) and either (2.24) or one of its variants, together with the
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appropriate diagnostic equations, constitute a mathematical model of the

coupled distributions of the soil state variables. A problem arises in

the flux relations (2.14) and (2.23) when either a diffusivity or K is

discontinuous in space, or in Equation (2.24), for instance, when some

of the storage coefficients may be discontinuous. Assuming that the

boundary conditions, the initial conditions, and the extraction term, S,

are smooth functions, the only sources of discontinuities in the equations

already derived are spatial discontinuities in 0 resulting from the

juxtaposition of different soil types. For convenience in dealing with

this problem, we shall restrict D to be a domain on whose interior the

soil properties are continuous. Such sub-domains may then be linked

through the appropriate boundary conditions to describe an overall

system.

2.2.3 The $-T System

It is standard practice to express moisture and heat flow

equations in diffusion form. The equation usually used to describe

water flow in a porous medium, which neglects temperature and vapor

effects, is ordinarily written in terms of a single dependent variable,

either $ (e.g., Whisler and Klute, 1965) or 0 (e.g., Klute, 1952). The

classical heat equation is naturally expressed in terms of T. Philip

and de Vries (1957), and then de Vries (1958), proposed coupled heat

and mass conservation equations with 0 and T as the dependent variables.

In this section, the conservation equations derived in the

previous sections will be written with i and T as dependent variables.
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In the following section, we will present the equations in terms of 6

and T.

In the storage terms of Equation (2.17), both at and are

to be expressed in terms of and 3T Expansion of -v , using

Equation (2.8), yields

v v 3 + v 2.28)
at a IT t 3T at

Now consider the other time derivative, t. We assume that 6

may be expressed as

6 = 0(', T; R; s) (2.29)

which is simply an inverse of Equation (2.5). Formal differentiation

of (2.29) yields

36 3+ 3T r o 3R ns 3s

It a$ t 3TI at . 3R. at . s. at
T $ = =

(2.30)

(The variables to be held constant in a partial differentiation will be

indicated only when they may be ambiguous due to the use of different

sets of dependent variables.) In this study, the porous medium is

assumed to be non-deforming, so the last summation is dropped. It is

quite reasonable to assume the differentiability of (2.29)

with respect to its arguments, so the first two terms in (2.30) are

valid. The nature of R, the wetting history, is one of the subjects of

Chapter 3. Here, it is sufficient to note that R is constant as long
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as a wetting reversal does not occur. When there is a reversal, R has

a discontinuity. We must therefore restrict the use of (2.30) to time

periods during which no reversal occurs. This summation is thus zero.

We now substitute the expansion

=e D 31T + T _L (2.31)

and Equation (2.28) into the basic mass conservation equation (2.17) to

obtain

a1v~ Ga ~v P v Do e 30 ] 3T
+_ __ __ _t _ aT + 5 vI a

P -+ + -+ -

= V-[(K + D) V$ + DT VT + Kk] - S (2.32)

This is a non-linear second-order partial differential equation relating

the time derivatives and gradients of the two dependent variables, $ and

T, in an expression of the principle of mass conservation.

The same approach may be used on the various heat equations.

They become (from 2.24)

C + [L + (T T)] 9- + [c p(T T) pQW p (T - T )

2-e 3T - )]cLT + [L + c(T - T ) -cpo [L3 p 0 a 3$ T

+ [c P (T - T P W - c p (T-) - L p -o + p pv o ov (T -T Tt

V.[ T+ p k LD p VI - cjT - T 0 _q] (2.33)
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(from 2.26)

P(L + W) I ( L+W) -O -2 3T Dt3 t
IC-k$II t 1 T]

= V- [X4 VT + p LD VI)] - co -VT + LV-q (2.34)

(from 2.27)

C + L 0 - (pW + Pv 'C a @T v 3T Dt

+ L D6 - (pZW + pv L) 3
T V T

= V-[X4 VT + p LD v4)] - cm-VT (2.35)

Equations (2.32) through. (2.35) are valid subject to the

restrictions placed on the earlier equations from which they are derived,

and to the assumptions required by the subsequent derivations.

In particular, the domain of validity must contain no discontinuities

in soil properties and no points at which a wetting reversal occurs

during the time of interest. Note, however, that the wetting history

may be discontinuous spatially.

All of the equations developed in this section for unsaturated

media are equally valid for saturated media when elastic storage can be

neglected. This condition is met when the saturated region communicates

freely with an unsaturated region. In this case, many of the terms in

Equations (2.32) through (2.35), including all of the storage terms in

the moisture equation, go to zero.
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The restriction that no wetting reversal occur is rather

limiting. It can, however, be dealt with in an approximate way by

discretizing the time domain and assuming that changes in wetting history

occur in finite regions of space at particular points in time. The

solution at the end of one time period provides the initial condition

for the following period. Such an approximation is depicted schematic-

ally in Figure 2.1 for infiltration into a previously drying soil. The

smooth and step-like solid curves are the actual and approximated charac-

teristics of the point at which @ = 0. Boundary and initial conditions

are employed to match the regions along the vertical and horizontal

dashed lines, respectively.

2.2.4 The O-T System

As an alternative to the $-T formulation outlined above, we

may express the heat and mass continuity equations in terms of 0 and T.

The LHS of Equation (2.17) becomes

LHS= 1 - -- + -- + ( t (2.36)
p p ae T @t T_ a t

The time derivative has been expanded above by assuming that, at

each point inside the domain of interest, $ = $(O, T) (and therefore

p = p (6, T)) is single-valued, i.e., there are no temporal discontinu-v v

ities in wetting history, and that is finite.36

We now consider the moisture fluxes. The gradient of $,

appearing in the moisture flux expression, can be expanded in a fashion
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wetting

drying

z=O

t3

t 2

t I

to

z=-L

5

4

3

2

z=O

(a)
z=-L

( b)

Figure 2.1

SCHEMATIC DIAGRAMS OF INFILTRATION, BEGINNING AT TIME t , INTO
A PREVIOUSLY DRYING, HOMOGENEOUS SOIL COLUMN OF LENGTH L.
(a.) BOUNDARY BETWEEN WETTING AND DRYING, SEPARATING TWO
TIME-SPACE DOMAINS WITHIN WHICH EQS. (2.32) THROUGH (2.35) ARE
VALID. (b.) AN APPROXIMATION OF THE WETTING BOUNDARY AND THE
ASSOCIATED REGIONS (1-5) OF VALIDITY OF THE ($, T) EQUATIONS.
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analogous to (2.30),

n

V$ = V6 + VT+ 1 VR + X vs. (2.37)
T 0 i=1 i=1 ai

Since the domain has been restricted to one in which s is continuous,

the last term is well-defined. The third term requires that wetting

history be continuous in space. In a non-hysteretic, homogeneous soil,

(2.37) reduces to

VT VO + 2 VT (2.38)

which is the relation used by Philip and de Vries (1957). An expression

similar to (2.37), but neglecting the effects of temperature and inhomo-

geneity, was suggested by Childs (1964).

Substitution of (2.36) and (2.37) into the mass conservation

equation (2.17) yields

1 - +( P GP a t p T aI k0 Pea v1)a

= v- (K+D ) ] Ve + (K + D ) + D] VT
$L IPV $ I v aT TV

+ (K + D v) G + Kk} S (2.39)

in which

n
r s

G = VR + vs (2.40)
=1 1R i a, i 1
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In order to reformulate the heat equations, we first adopt a

new expression for the heat flux,

q = - D VT - p 9LD V + c (T -T ) q (2.41)
-hVT- p 6Lv o -m

in which A is analogous to A defined earlier, but represents the

effective thermal conductivity in the O-T system. The individual compo-

nents of (2.23) and (2.41) are therefore not identical, although their

sums are. The diffusivity Dev is the analogue of D v and is given by

D = D (2.42)
Ov $pv 3 T (.2

This is derived by expanding V$ in Equation (2.12).

In the e-T system, Equation (2.24) is

{C + [L + c (T - T )] Da T
0 p 0 a DT Dg) t

+ [L + c (T - T )] v + c p (T - T) - p W
0 p 0 a _ 6T T 19

- c p (T - T ) - L P -

= V-[A VT + p LD v Ve - c (T - T ) q ] (2.43)

Equation (2.26) becomes

aT e6C-g - (P L + p W) -L = V- [A VT + p LD0 V0] - c&-VT + L V-

(2.44)

and Equation (2.27) is equivalent to
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8
t3 -- -

6 7
t2 - - 4~ - - ~ ~- 5-

4 5
ti

2 3
t 2

z=O z=-L

Figure 2.2

AN APPROXIMATION OF THE WETTING BOUNDARY AND THE ASSOCIATED REGIONS
(1-8) OF VALIDITY OF THE (e, T) EQUATIONS, (2.39) AND (2.43) THROUGH
(2.45), FOR THE INFILTRATION PROCESS OF FIGURE 2.1.
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C+L + LO -pL - pkW1--
3T T

- V. [ VT + p LDOv V] - c q,-VT (2.45)

Equation (2.45) is the form of the heat equation that should

correspond to Equation (16) of de Vries (1958). In fact, there is a

slight discrepancy, which apparently results from that author omitting

the term p DTv VT*VL. It turns out that Equation (2.45) is more

compact, combining two of de Vries' transport terms into one.

The domain of validity for the O-T equations must have no

discontinuities in soil properties, no spatial or temporal discontinu-

ities in wetting history, and no regions in which is infinite. The last

restriction limits applicability to unsaturated soils.

For the wetting process considered earlier (Figure 2.1), the

necessary sub-domain divisions for use of the O-T equations are depicted

in Figure 2.2.

2.2.5 Simplifications for Relatively Moist Media

Many terms in the equations derived in the preceding sections

are often negligible for practical analyses. In this section, a simpli-

fied system is derived by neglecting mass and energy transport in the

vapor phase. As can be seen from an analysis of the transport coeffi-

cients (Chapter 3), this is a good approximation for sufficiently moist

media; exact criteria will depend on the medium in question.

Neglecting mass storage and flux in the vapor phase, we
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obtain the usual mass conservation equation of soil physics with an

added sink term

-=V-(KV$ + Kk) - S (2.46)

The expression for heat storage is

Sh d + C p 0)(T - T ) (2.47)

and the heat flux is given by

h= - XVT + c,(T - To)(qm + qr) (2.48)

where X does not allow for vapor distillation. The heat conservation

equation is thus

3T T )
C @ + c p (T T

= V(XVT) - c P (T - T ) V *_m/pk + cr/pp)

- c (q + qr) - VT (2.49)

Applying mass continuity in Equation (2.49), we obtain

C T =VXT) - c (q. + q) - VT (2.50)

The expansions used in Sections 2.2.3 and 2.2.4 may be applied

to these equations in order to obtain $-T and 0-T systems.

In Equations (2.48) and (2.49), X may be replaced by an

effective conductivity, A , which includes heat transport by vapor
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distillation. The effective value is the one that would be measured

experimentally, and it is just as easily computed theoretically as is A .

2.3 Boundary and Initial Conditions for Vertical Flow

2.3.1 Surface Boundary Conditions

We now consider the specification of boundary conditions for

the equations developed in the previous sections. In particular, we

consider a natural soil system in which horizontal flow is negligible.

An idealized bare (i.e., non-vegetated) soil surface is assumed.

(Accordingly, root water flow is now neglected.) The idealization con-

sists of the following additional assumptions:

1. The land surface is approximately horizontal, and all

mass and energy flow is normal thereto.

2. The interface between soil and atmosphere is a smooth flat

plane. This surface is treated as a radiation source and

sink, and as a momentum sink. (See Geiger, 1975, p. 18,

for the extreme extinction depths of solar radiation in

soil.) Since vapor flux is allowed within the soil, it is

not necessary to confine evaporation (that is, phase

change to vapor) to the surface.

3. Excess rainfall is stored on the surface up to a depth co.

Further excess is discharged from the system as surface

runoff.

4. There is no lateral surface inflow to the system,
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With the surface described above, it is possible to outline

the various states (boundary conditions) that may come to be.

Considering a sufficiently intense and lengthy rainstorm, followed by

a sufficiently long period of high potential evaporation, we may dis-

tinguish the following states of the surface:

A. Precipitation begins. At first, infiltration proceeds

at the precipitation rate and there is no surface reten-

tion or runoff. The moisture content near the surface of

the soil increases.

B. When the soil surface reaches saturation, the rate of

infiltration decreases, eventually approaching the satura-

tion value of K. Ponding of water on the surface results.

C. Surface retention storage capacity is filled. All further

excess precipitation is discharged as surface runoff.

D. Rainfall ends. Surface retention is depleted from above

by evaporation and from below by infiltration.

E. Surface storage is exhausted. Evaporation from the soil

proceeds at the potential rate.

F. The soil becomes so dry at the surface that moist air in

equilibrium with it has relative humidity h significantly

less than unity (Equation 2.8).

G. Eventually, another rainfall will return the system to

state A.
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Of course, not all of these states need occur for all

meteorological input series. This conceptual model is similar to that

proposed by Hillel (1977).

We now proceed to define mathematically the boundary conditions

implied by states A through F above.

A. Unsaturated infiltration. This condition is simply expressed by

k-(n /pZ) = - r (2.51)

where the coordinate, z, is measured relative to the land surface, and

r = precipitation rate [cm s 1]

The flux of heat into the soil is given by an energy balance

at the land surface,

_k-h z=0 s +1 + H - p c (Tr - T0) r (2.52)

in which

_h q at surface (given by Equation (2.23) or (2.41))
0z= -2 -1

[cal cm s I

Is = net shortwave radiation reaching surface from sky

-2 -l
[cal cm s ]

-2 -l
I = net longwave radiation leaving surface [cal cm s ]

-2 -l
H = sensible heat transfer upwards [cal cm s ]

Tr = temperature of precipitation [*K]

(may be assumed equal to ambient air temperature)
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B. Saturated infiltration with rainfall. The pressure head is non-

negative and equal to the depth of ponded water,

= e(2.53)
z=0

where e is the water depth [cm], whose growth is described by

= r + (*/pk)z=-k (2.54)

The heat flux boundary condition is derived by considering a

heat balance for the ponded water, where the control volume has its top

at the moving water surface and its bottom at an infinitesimally small

depth beneath the ground surface.

Considering the shallow depth of the ponded water and the

mixing induced by falling raindrops, the temperature of the water will

be constant over z and equal to the soil temperature at z = 0. This

holds well even after the rain has ceased (Geiger, 1975, p. 190).

a- [c p e(T - T)] c p (T T)r + ko-gh H + I -I
at o ZO 0P r 0-~ s k

z=' z=0 (2.55)

where

I = the total shortwave radiation absorbed by the water and

by the surface of the soil

I = the net longwave back radiation leaving the water surface.

Combining (2.54) and (2.55), we obtain the surface heat flux
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T
k -h = c k t

z=0 z=0

+ c -_q ( T =
Iz0O

- Y. p (Tr -T )
z=0

0 
TS 9s ,

C. Surface retention full. The pressure head is given by

11Z=0

= E= e0

The heat balance yields

= [cZp2 ,s(T
z=0

- T0)] - c p ,(Tr - T ) r

+ H - I +1, + c p (T
s % % %z=0

-T ) R
0 5

(2.58)

where R is the surface runoff rate [cm s1]. Applying the mass conti-

nuity principle to the ponded water, we obtain

Sz=
z=0

+ c -gm z=0

-c ,p (Tr - T
z=0

T) +H-Is +1I (2.59)

which is the same as Equation (2.56).

D. Surface retention depletion without rainfall. The pressure head

at the ground surface is

,
z=0

(2.60)
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where

de = k(q /pg)=dt - -Tn O -e (2.61)

and e [cm s 1] is the actual rate of evaporation (vertical vapor flux

above the ground surface), given by the flux-gradient relation

(2.62)e = - Ka (pa - v z=0)/P

in which

K a = a vapor transport coefficient [cm s 1]

Pa = water vapor density at height z = a [g cm3 ]

The heat balance now includes an evaporation term:

a [ kp (T T -Rh - [L + c (T
[c p z=0 z=0 0 p z=0

-H + I s+ I 9s1+ +1

0 

T )] p e

(2.63)

In combination with (2.60) and (2.20), (2.61) leads to

k- q =j c+ c (T -T )k-q
z=0 It z= z=0 0 - z=0

+ I, + P Le

+ H - I
s

(2.64)

E. Potential rate evaporation from soil surface. The mass flux condition

is

k-(q/p )z= e
- m ki Qz=0

(2.65)

with e given by Equation (2.62).
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The heat balance is

k-% = [L + c (T - T k-q
I z=0 0 z=0 , I z=0

+ H - I + I
s

k -h Iz= = p YLe + c p (T z=0
-T0)e + H - s + 1

F. Soil-limited evaporation. Although this stage is often modeled

differently than the previous one, the equations derived for stage E

are also valid here. This is true because the concept of potential

evaporation has not been introduced.

2.3.2 The Bottom Boundary Conditions

If there is an unconfined aquifer (saturated zone), then the

lower boundary condition on moisture may be expressed

= 0 (2.68)
I Z=z=z

5

where |zs I is the depth to the water table. Significant variation of zs

with time is a possibility in many systems. We may simulate this fluc-

tuation by assuming a linear storage model for the aquifer

dz
5

n - = -k(q/p )dt - Zz=z
s

- (z - z )
s5

z = elevation of water table [cm]
5

= groundwater discharge coefficient [sl ]

z = base water table elevation [cm]
0

52

or

(2.66)

(2.67)

in which
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The last term in Equation (2.69) is lateral discharge from (to) the

aquifer.

When it is known a priori that all infiltrated water eventually

evaporates, and that there is no deep source of water for the soil zone,

then the phreatic aquifer need not be modeled. In this case, the bound-

ary condition is specified at a depth JzMJ, at which no moisture flow

occurs,

kq =0 (2.70)

|ZM

The lower heat boundary condition may be specified at a depth

IzTI where VP and VT are negligible (see 2.23)

k-qh = c(T-T ) k- (2.71)
Z=ZT 

T

In general, either IzM or IzT! may be greater.

2.3.3 Initial Conditions

The initial values of $(z) or 6(z), as well as T(z), must be

specified over the appropriate range of z. In addition, for hysteretic

soils, the relevant wetting history information R(z) must be given. The

initial conditions are all specified at some time t = t at the beginning

of the time domain of interest.

2.3.4 Sub-domain Matching Conditions

Since we have restricted the governing equations to be
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applicable only for domains in which certain continuity conditions are

satisfied, it may not be possible to describe a particular problem in

terms of a single set of dependent variables defined over the entire

region. Instead, it will be necessary to apply the appropriate equations

within each valid sub-domain and to match these individual solutions by

applying physical principles along the discontinuity. As an example,

consider the case of a texturally stratified soil in which a discontinu-

ity in soil properties exists along some surface F. The curve r splits

the domain of interest into two sub-domains, D and D . Then we define

$ (or 8) and T fields within each domain and invoke the heat and mass

equations.

(1) (1)
H($ ,T ) =0 on D (2.72a)

(1) (1)
M($' ,T ) =0 on D (2.72b)

(2) (2)_H ()T )- 0 onD2 (2.72c)

M( (2), T (2 ) - 0 on D (2.72d)

where the superscript indexes the sub-domain and H and M represent the

conservation equations. Portions of the boundaries of D and D2 will

already have boundary conditions specified, since they lie on the bound-

ary of D. Along F, however, additional conditions must be applied to

link the sub-domains. These are obtained by requiring the continuity

of temperature and pressure head, as well as normal mass and heat fluxes,

across P. Mathematically, on r,

T(1) = T (2) (2.73a)
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(1) _ (2) (2,73b)

(1) (2)
nh = (2 n (2.73c)

(1) (2)
-qm -n = qm e n (2.73d)

where n is the unit vector normal to r.

The procedure described above can be generalized to any number

of sub-domains. Furthermore, r may be a moving boundary, such as a

surface on which a wetting reversal is occurring.

The problem of a time discontinuity at some time t (where

initial conditions have been given at time to < t 1) is treated by solving

the system from t = t to t = t1 and then starting from t = t1 with the

initial conditions given by the final solution from the previous time

period.

2.4 Discussion of )- versus 0-based Systems

There are several significant differences between the $-based

and 0-based equations. These are briefly reviewed here.

Applicability. The use of $ preserves the validity of the derived

equations in saturated media. The 6-based equations employ the deriva-

tive , which becomes infinite in saturated media, so $ must then be

used. Note that saturation may occur not only beneath the water table,

but also in the cases of surface ponding and minor, temporary "perched

water tables" that result from certain media discontinuities.

Sub-domain transitions. Whenever R or s is discontinuous, the separate

sub-domains must be matched as described in Section 2.3.4. The matching
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(1) (2)
condition $ = (2 is mathematically simpler when $ is the dependent

variable than when 0 is. Note also that for discontinuous s, 6 will

itself be discontinuous, which is an undesirable attribute for a depen-

dent variable.

Flux expressions. The mass flux expressions (and the convective heat

flux terms) are somewhat simpler when V$ instead of VO is used (e.g.,

Equation (2.32) versus (2.39)). This is due to the term G, which

represents that part of the gradient of $ resulting from gradients in

s and R. However, if s and R are constant within a sub-domain, this

distinction disappears.

Storage expressions. Moisture and heat storage terms are more

conveniently expressed in terms of 0. When $ is used, time changes in

0 must be separated into those due to and T' (e.g., Equation

T $~lJ
(2.25) versus (2.38)).

Finally, we note that the choice between $p and 6 is not

necessarily required; in theory, we can have "the best of both worlds."

Retention of both e and $ as well as pv in the particular terms where

they arise naturally from the physics is also correct (e.g., Equation

(2.15)). Exclusive use of one or the other in the derivatives is a

mathematical technique that results in equations that may submit more

readily to analysis.

In the following chapters, $ will be treated as a dependent

variable, and 0 will be considered a variable parameter whose value is

determined by the state variables (1,T,R) through a diagnostic relation.
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Chapter 3

THE STORAGE AND TRANSPORT COEFFICIENTS OF WATER

AND HEAT IN POROUS MEDIA

3.1 Introduction

The various conservation equations derived in Chapter 2 are

different expressions of only two independent prognostic (i.e., containing

time derivatives) equations, those of mass and heat conservation. They

contain more than two variables, however, since the storage and transport

coefficients are not constants, but are functions of the state variables.

This chapter contains the definitions of the diagnostic (i.e., lacking

time derivatives) equations, which express the dependence of the conser-

vation equation coefficients on a set of state variables.

Due to the complications of hysteresis, more than two state

variables are required to describe the system dynamics properly. Indeed,

the state set is potentially infinite-dimensional. This issue is dealt

with first. A proposed model of the water retention process gives rise

to the appropriate state set and, in effect, provides the extra prognos-

tic relation necessary to predict the time path of the state set.

Having selected a complete state set, we proceed to define,

as functions of the state variables, the other variables appearing in

the conservation equations. These definitions constitute the necessary

set of diagnostic equations.

In order to facilitate the computer modeling of moisture and

heat transport in the soil, we seek analytical expressions defining the
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diagnostic relations. Such formulations allow the experimental variation

of soil properties in a simulation model with a minimum of effort. Given

good mathematical models of the relevant physical properties of the soil,

the behavior of all types of soils can be reproduced simply by varying a

finite number of parameters.

The parameters of these models may also provide an objective

means for hydrologic classification of soils, since there is a one-to-one

correspondence between a particular soil and its parameters in a well-

defined model. However, the usefulness of such a scheme would not be

great unless the parameters could be related directly to some intrinsic,

measurable characteristic of the soil. Direct physical significance of

the parameters might therefore be considered another attribute of a good

soil parameterization.

The macroscopic (hence, integrated, derived or statistical)

nature of many of the important variables makes purely theoretical

analyses of them difficult or impossible. Conceptual and empirical models

therefore arise out of necessity. For the purposes of simulation, any

distinction along these lines is immaterial. Provided a model is suffi-

ciently complex to reproduce reasonably well all types of soil behavior,

yet is simple enough to be manageable computationally, its origin is not

critical. In general, a theoretical model is used here when a realistic

one exists. Otherwise, a conceptual or empirical model is used.
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3.2 The Retention of Water in a Porous Medium

3.2.1 A Qualitative Physical Description of Water Retention

The matric (or pressure) potential, i, is a variable employed

in soil science to describe the energy level of liquid water within an

unsaturated porous medium. The quantity g$ is the amount of work that

must be done to move a unit mass of water, isothermally and reversibly,

from a porous medium to the free (flat surface) state. The datum for $

is thus conventionally specified as free liquid water at a fixed temper-

ature, T0, and at atmospheric pressure. Units of $ are [cm].

The sum of matric plus gravity head may be viewed as a

potential, the gradient of which is proportional to the force that causes

liquid flow. This mechanical definition is suggestive of, and consistent

with, the flux-gradient equation (2.3) when inertial terms are small,

the net driving force on a "particle" of water being balanced by

(velocity-proportional) viscous dissipation of energy (Philip, 1960).

In thermodynamic terms, $ is related to the specific differen-

tial Gibbs free energy function. Its gradient is thus a measure of the

magnitude of local thermodynamic disequilibrium.

The forces ordinarily considered to be the determinants of $

in unsaturated media are capillarity, which is manifested in the pressure

differences across curved air-water interfaces under surface tension,

and adsorption, which involves the relatively short-distance interaction

of water with the surface of the solid (mineral) phase of the medium.

The magnitudes of these forces are determined by the microscopic distrib-

ution of water in the medium, by the temperature, and by the nature of the
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medium itself. The term "matric" potential satisfactorily accounts for

both capillarity and adsorption as inseparable facets of the interaction

of water with the soil matrix.

In saturated media, the term "pressure" potential is preferable,

being more justifiable physically. We follow convention in using the

same symbol, $, in saturated media. The resulting continuity between

saturated and unsaturated regimes is quite convenient.

In relatively moist media, the effect of capillarity is

dominant in determining $. Only the largest pores are air-filled, and

the air-water interface has relatively small curvature. The pressure

in the water just beneath the interface is (Bear, 1977)

+ 2a
w a r

c
(3.1)

in which

p = pressure in water

Pa = pressure in air

a = interfacial surface tension

r harmonic mean radius of curvature of the
c

interface, negative for a concave water

surface

In this situation, i is given by

-2
[dynes cm 2

-2
[dynes cm ]

[dynes cm~1

[cm]

(3.2)
k = p /Y =

w rcY

where
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y = p g = specific gravity of liquid water [dyne cm -3]

and, in accordance with the definition of a datum for $, we have set

Pa = 0. (It is assumed that the air pressure within the soil is in

static equilibrium with the atmosphere.)

The amount of water retained at a given level of $ in the

capillary regime is thus determined by the distribution of the larger

pore sizes. It follows that soil structure - the nature of aggregation

of the soil - is a strong factor in determining the relation between $

and 6 for large 6.

As water is removed from the medium, the remaining water is,

on the average, increasingly closer to the soild soil surfaces. The

effect of adsorption thus takes over at low values of 6 (and of 4). In

the adsorption regime, the moisture content at fixed $ for any soil is

correlated with the specific surface of the medium and can therefore be

considered a function of soil texture.

Hillel (1971), on the basis of these considerations, describes

how soil moisture characteristics (functions $(6) for a particular soil

at a fixed temperature and fixed wetting history) typically differ for

various soils. The influence of texture is shown in Figure 3.1. For

fixed $, the clayey (high specific surface) soil retains more water than

a soil with fewer fine particles. In contrast, a well-sorted sand loses

practically all of its water when a critical pressure (y$) corresponding

to the characteristic pore size is reached. Note also that heavier (more

clay-like) soils tend to have larger porosities.
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o \ Cloyey soil

Sandy soil

Water Content

Figure 3.1

THE INFLUENCE OF SOIL TEXTURE ON MOISTURE RETENTION

(After Hillel, 1971.)

Compacted soil

0

A ggregated soil

Water Content

Figure 3.2

THE INFLUENCE OF SOIL STRUCTURE ON MOISTURE RETENTION

(After Hillel, 1971.)
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The influence of soil structure (Figure 3.2) is limited to

the capillary regime, since a rearrangement of the soil particles of a

given soil cannot result in a texture change. A well-aggregated soil

behaves somewhat like a sand in the capillary regime, while a compacted,

structureless version of the same soil exhibits a more gradual slope of

the moisture characteristic.

The value of $ at the boundary between the capillary and

adsorption regimes, if indeed such a boundary can be defined, has not

been clearly determined. Miller and Miller (1955) suggest that the

capillary theory of soil water is valid "at least in the coarse-silt-to-

sand range, assuming agriculturally useful levels of available water are

present." This qualification implies that*P is above the wilting point,

about -15,000 cm. This corresponds to a pF of 4.2, where pF is defined

by

pF = log1 0(-$), 1 in cm. (3.3)

Buckman and Brady (1969) place the division between capillary and

hygroscopic (adsorbed) water at about pF = 4.5. Hillel (1971) states

that capillarity is dominant below pF = 3.0, while adsorption is increas-

ingly important at higher pF.

Carman and Raal (1951) observed that the condensation and

adsorption of freon gas on packed (porous) powders exceeded that on loose

powders for pF up to around 6.0. They interpreted the data as implying

that capillarity must also play a role in retention even at such large
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pF. Philip and de Vries (1957) extended this conclusion, assuming that

the results held for water and that they implied that capillarity fully

determines moisture retention for pF below about 6.0.

McQueen and Miller (1974) argue that the probable absence of

tensile strength, especially in natural water, is reason to limit the

validity of capillary theory to positive absolute pressures. The

probability of vaporization at low, positive absolute pressures further

limits the theory. The resultant conclusion is that capillarity is

important only below pF ~ 3.0.

In actuality, the interaction of capillarity and adsorption is

usually important (Edlefson and Anderson, 1943). Close to the soil par-

ticles, the adsorptive force fields are strong and, as a result, the

pressure is "hydrostatically" distributed. The total (capillary plus

adsorption) potential is constant locally, though the individual compo-

nents vary over short (microscale) distances. Pressure will therefore be

lowest at the air-water interface (i.e., farthest from the solid surface),

and this is where the capillary formula is most likely to hold.

Since it is not clear, say, what range of pF may be treated

using capillary theories, we shall be careful not to assume a particular

model of soil behavior without attempting to find experimental justifica-

tion. It will be seen, however, that the lack of knowledge concerning

real soil properties necessitates the extrapolation of theoretical models

beyond the ideal conditions of their formulation.
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3.2.2 Hysteresis in the Moisture Retention Process

Hysteresis of the soil moisture characteristic is a non-

uniqueness of the "functions" $(0) and 0() for a particular soil at

fixed temperature. When a completely water-saturated porous medium is

dried continuously to complete dryness, the matric potential decreases

monotonically from zero to some value near i = -10 (pF = 7). (Although

the exact maximum pF may depend on the particular soil and the defini-

tion of complete dryness, we may arbitrarily define 6 = 0 at pF = 7.0

and consider any liquid that is more tightly bound to be part of the

solid phase of the medium. This approach is justified since the soil

is never subjected to stresses greater than those equivalent to pF = 7,

corresponding to a relative humidity, by Equation (2.8) of about 10- 3.

This initial drying process is depicted by curve A in Figure 3.3.

Upon re-wetting (curve B), it is observed that curve A is not

re-traced. The liquid content during re-wetting is less than that during

drying for a large range of $. In particular, for $ = 0, the soil does

not return to full saturation, as the presence of entrapped air reduces

the pore space available for water. Only after a long period of time

(on the order of weeks) does the entrapped air dissolve and diffuse out

of the system, allowing complete water-saturation (Adam and Corey, 1968).

If the soil is re-dried before the air is removed, a curve

like C is traced. Subsequent complete drying and wetting proceeds along

the cycle of curves B and C, which are termed the main wetting and drying

curves, respectively. When wetting reversals occur anywhere other than

at the common endpoints of curves B and C, they result in scanning curves,
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THE HYSTERETIC SOIL-WATER RETENTION PROCESS

A first drying curve
B main wetting curve
C main drying curve
D primary wetting curve
E primary drying curve
F secondary drying curve
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such as D, E, and F in Figure 3.3. Curves D and E are primary wetting

and drying (scanning) curves, while F is a -secondary drying (scanning)

curve. It is apparent from Figure 3.3 that the relation between moisture

content, G, and matric potential, $, at any time is dependent upon the

wetting history of the medium.

Several explanations for the hysteretic behavior of the soil

moisture characteristic have been suggested. The most popular model,

which has been quite successful, explains the phenomenon in terms of

capillarity and the so-called ink-bottle effect. In simplest terms,

it states that at least some pores (relatively large intergranular voids

connected by smaller passages) drain and refill at different capillary

pressures (hence, matric heads). Miller and Miller (1956) recognized

this effect as a natural implication of the capillary theory of moisture

retention in soils.

Figure 3.4a shows how hysteresis in a single pore could occur,

and Figure 3.4b exhibits a hypothetical pair of wetting and drying

curves for the pore. The radius of the pore corresponds to p = -5 cm.

When $ reaches this value, the pore suddenly fills and the air-water

interface migrates up into the next pore, where a new equilibrium is

reached. The "neck" connecting these two pores has a radius correspond-

ing to i = -15 cm, so a similar jump (termed a Haines jump after the

investigator who observed the phenomenon experimentally) occurs when

$ is lowered to that value. The aggregated (macroscopic) interaction

of all such pores then determines the behavior of the medium, as shown

67



I II

P=-5cm P=-IOcm

GRADUAL EMPTYING

FILLING

GRADUAL FILLING

Pz-lOcm

(a)

VIV

- - -------IV

-15- 5

(b)

Figure 3.4

(a) "INK BOTTLE" HYSTERESIS IN A SINGLE PORE. (After Miller and
Miller, 1956.); (b) THE ASSOCIATED "MOISTURE RETENTION CURVE"
FOR THE SINGLE PORE.

lII

P=-I m

SUDDEN SUDDEN EMPTYING

VI

P=-5cm

IV

P=-15cm

8'

I -

0*

(Cm)



in Figure 3.3.

Hillel (1971) mentions three other possible contributors to

hysteresis. The first is the contact angle (or raindrop) effect, which

is the dependency of the angle of contact between the air-water interface

and the solid phase on the motion of the interface. Entrapped air and

swelling and shrinking are further sources of hysteresis.

3.2.3 An Empirical Model of the Main Wetting Curve

For the purpose of simulation, we seek a representation of the

hysteretic soil moisture absorption/desorption process discussed in the

previous sections. In this section, a mathematical expression for the

main wetting curve (curve B of Fig. 3.3) is chosen. In the next section,

a model that expresses the main drying curves and all scanning curves in

terms of the main wetting curve is presented. This model of Mualem (1977)

is modified in this study to account for temperature effects to the first

order.

Many empirically-based analytical forms for the isothermal

soil moisture characteristic have been proposed. A representative,

though far from exhaustive, sampling of them is reviewed here.

Brooks and Corey (1964, 1966), having analyzed the desorption

curves for many consolidated rock samples, found that the relation between

$ and 0 could be expressed as

= b 6 n 7-X 0 > 0r (3.4)
r

in which
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b= the bubbling potential [cm]

0 = the residual moisture content
r

X = a fitted parameter

The empirical constants $lb' r, and X have varying degrees of physical

significance. The potential, $b, is the value of $ at which air is

first drawn through the sample during dewatering in the laboratory. It

is important to note that as 0 -+ n, $ - 0, so Eq. (3.4) should not be

used when 14'I < I$b1. The residual moisture content (related

to 0 of Chapter 2) is a measure of the amount of water retained at some

arbitrary value of pF. In practice, the value of 6r is simply chosen to

minimize, in some sense, the error in Equation (3.4).

Since Eq. (3.4) predicts that 4 + - o as 0 -* , this model is

unusuable for 0 0 or smaller. For the data of Brooks and Corey (1966),
r

this neglected water fills 10 to 30% of the pore space, a consequence of

the fact that $ was not lowered beyond -500 cm in their experiments,

Mualem (1976a) fitted the published data for 45 soils to the

Brooks and Corey model. Residual moisture contents ranged from 0.01 to

0.28, but were mostly less than 0.10. In general, Mualem's data included

lower values of $, which reduced the value of 6 that would fit the data.

Nevertheless, the selection of model parameters was apparently biased

by the varying degree of data in the low 0 range. Typical values of

model parameters for the entire (pF < 7) characteristic are therefore

not available, and Eq. (3.4) has not been extensively verified for low

moisture contents.
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Equation (3.4) is extremely useful nevertheless. Its simple

form allows the integration of various relations (to be discussed later)

in order to obtain a relative hydraulic conductivity function in a

manageable mathematical form. The various analytic expressions are use-

ful in exact solutions of the isothermal liquid flow problem. Eagleson

(1978), for instance, has used a soil model based, in part, on Eq. (3.4)

to approximate analytically the long-term average of moisture transfers

across the ground surface.

King (1965) included the region of water content near saturation

in his model of the main wetting and drying curves. The proposed relation

is

n[cosh[($/$0) + ] 1 (3.5)
cosh[($ 0) + Y

in which 6, c, , e, and y are the parameters. Using this formula,

King (1965) fit data well for several soil types, but for 1p$ only up to

100 cm. The form of Eq. (3.5) brings analytical dividends in that it is

invertible and differentiable. Gillham, et al. (1976) used a modified

form of Equation (3.5) in a computer simulation. Serious drawbacks of

the model include the number of parameters and the difficulty of deter-

mining them for a given soil, as well as the limited range of p over

which it has been tested.

McQueen and Miller (1974) studied the relationship between

i and e for pF up to 7 (completely dry media). They concluded that pF

can be represented empirically as a piecewise linear function of e for

values of 0 not near saturation. The three segments proposed are as
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follows:

1) pF 5.0 - 7.0, "tightly adsorbed" segment

2) pF 2.5 - 5.0, adsorbed film segment

3) pF 0.0 - 3.0, capillary segment.

From statistical analyses of hundreds of samples, McQueen &

Miller (1974) hypothesized the existence of common pF-axis intercepts

for each linear segment for all soils. Estimated values of these inter-

cepts are 7.0, 6.25, and 2.9 for segments 1, 2, and 3, respectively.

It is also assumed that segments 1 and 2 join at pF = 5.0, where clay

hydration occurs. If the absence of data for pF less than 2.5, it is

suggested that segments 2 and 3 be joined at pF = 2.5. The curve near

saturation is to be drawn in subjectively, using any available informa-

tion about b. As presented, the model can be used to define completely

the moisture characteristic on the basis of a single data point, prefer-

ably in the range between pF = 2.5 and pF = 5.0 (e.g., the permanent

wilting percentage, pF = 4.2).

Disadvantages of the piecewise log-linear model are its

discontinuous slope, d , and the probable over-specification of the

curve that was necessary in order to achieve the goal of minimal data

requirements.

The proposed form of the main wetting curve to be used in

this study is based on the approach of McQueen and Miller (1974) in

that it makes use of the approximate linear relation between 0 and pF

over certain ranges. In its simplest form, the proposed model may be

written
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s -pF pF0 < pF < 7

0 (pF) = a s * pF pF < pF < pF (3.6)
w 2_ i

0 pF < pFmiU - min

The significance of the various parameters is clear from Figure 3.5.

Recall that 6u is somewhat less than n (Fig. 3.3). The results of Mualem

(1974) support a value of 0.9 for 0 u/n.

If desired, it is possible to introduce continuity and an

arbitrary degree of curvature at the points pF0 and pFmin by generalizing

Eq. (3.6) to the form

e 1 M(a 1 -s 1 pF) M(a 2 -s 2 pF)
0 (pF) - ln[e + e ]

1 M'(a 2 -s 2 pF) M'0u
, W n[e + e ]+ 6U (3.7)

In the limit as M and M' go to infinity, Eq. (3.7) becomes exactly

equivalent to (3.6). Equation (3.7) might be preferred to (3.6) because

of its increased versatility and its continuous differentiability at pF

and pF . .

The curvature at pF . is a relatively small effect, and the

saturated region is conveniently modeled with-L equal to zero. For

these reasons, we let M' go to infinity in this study. The main wetting

curve is then described by

1 M(a -s pF) M(a2-s pF)ln[e + e 2 2 pF < pF < 7
M min- -

Sw(pF) = (3.8)

0 pF < pFm
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Equation (3.8) is expressible, redefining the constants, as

q1E q2
F kn[p (-$) + p 9 (-$) ] pF. < pF < 7

0 (pF) = M lmin -- - (3.9)

w u pF < pF.

in which

2
P 1  p2  (3.10)

q= -s 1 M log e q2 = s2 M log e

A typical set of curves is shown for different values of M in Figure 3.6.

Values of the parameters are determined easily from a minimal

amount of information.

3.2.4 A Conceptual Model of Hysteresis

In recent years, a series of papers (Mualem, 1973, 1974, 1977;

Mualem and Dagan, 1975) has described a set of models that may be used

to model mathematically the phenomenon of hysteresis in the soil moisture

retention process. The basic conceptual model (Mualem, 1974) accounts

for the capillary hysteresis effect described in Section 3.2.2.

Mualem (1974) hypothesized that a porous medium could be

modeled as a continuous set of pore groups. Each pore group is defined

by r, the radius of the pore openings, and p, the radius of the pores

themselves. The relative volume of the medium occupied by a pore group

is given by the distribution function f(r, p). That is, f(r, p) drdp is

the proportion of the bulk medium occupied by the pore group having

opening sizes between r and r + dr and having pore radii between p and

p + dp.

Following Mualem (1974), we normalize r and p to a zero-one

interval,
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r m n
r =R R (3.11)

max min

p -R .
P-R (3.12)R -R.

max min

The values R . and R are thus related to full saturation and completemin max

dryness, respectively.

The behavior of a pore is taken to be fully defined by f(r, P).

In particular, it is independent of the states of the surrounding pores.

This is called the "independent domain model."

The volumetric liquid content of the medium is obtained at any

time by integrating the pore group distribution function over the portion

of the unit square in r - p space that corresponds to the wetted pores.

The extent of this region defines the wetting history of the medium.

As an example, consider wetting the medium from complete

dryness (i.e., wetting along the main wetting curve). The process of

wetting is defined by an increase in the equilibrium radius of curvature

of the air-water interface, R. When this radius increases from R to

R + dR, the groups whose pore radii are between R and R + dR are wetted.

This main wetting process is represented by the Mualem diagram of Figure

3.7, in which the shaded domain represents saturated pores.

Now consider the main drying curve. When the soil drains from

R + dR to R, only the groups with pore radii p between R and R + dR and

with opening radii r less than R are emptied (Figure 3.8).

Any subsequent reversals result in more complex saturation

regions. Figure 3.9 shows how two primary scanning curves and one higher

order curve appear on the diagram.
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THE WETTED DOMAINS DURING SCANNING PROCESSES. (After Mualem, 1974.)
(a.) PRIMARY DRYING AFTER REVERSAL AT R . (b.) PRIMARY WETTING
AFTER REVERSAL AT R . (c.) SIXTH ORDER WETTING PROCESS. NOTE THAT

R 1< R < R6 < R5 < R3< R1
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Note in particular that for a high order scanning curve,

alternate successive values of the reversal radius R are either mono-

tonically increasing or decreasing, depending on the direction of the

reversal. If, in the example in Figure 3.9c, wetting proceeds to a point

where R exceeds R5, then the last wet/dry loop is effectively erased from

the memory of the medium. We see that the number of variables necessary

to define the state of the system fluctuates. Theoretically, it is

possible for the state vector to become arbitrarily large, although one

might intuitively limit its size on the basis of the system dynamics.

Mualem (1974) used a simplified form of the pore group

distribution function. It is

f(r, p) = h(r) k(p)

which constitutes the similarity hypothesis. In a subsequent paper

(Mualem, 1977), he proposed an extended similarity hypothesis in the

form

f(r, p) = h(r) h(p) (3.13)

Using the extended similarity hypothesis, Mualem (1977) showed that a

universal hysteresis function could be derived. On the basis of one

main curve, the other main curve and all scanning curves can be defined.

The advantage of this model is that it greatly reduces the amount of

information (data or parameters) necessary to define fully the water

retention behavior of a soil.
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The independent domain models described above fail when pore

behavior is governed by surrounding pores. This occurs when there is

significant hysteresis for $ > $b. The dependent domain model (Mualem

and Dagan, 1975) was developed and tested as a generalization of the

independent domain model in order to deal with this problem.

Unfortunately, the extended similarity hypothesis, which reduces the

amount of information needed to describe hysteresis, has not yet been

validated for the dependent domain model. In this study, the independent

domain model is used.

The use of a conceptual model based on the capillary model of

moisture retention to predict the behavior of hysteresis in the "adsorp-

tion regime,"where pF is, say, greater than 4, is open to question.

Nevertheless, Mualem (1977) has found that this model is very good for

pF up to 6, the highest value with which he worked. Whatever the physical

explanation, it appears that the independent domain theory should be

quite adequate for low moisture contents.

The cumulative integral of h(R) is defined as

R

H(R) = h(r) dr (3.14)

0

Since, by definition, h(r) is non-negative, the function H(R) is mono-

tonically increasing. When the medium is fully wetted,

80



l1

S= u = f f(r, P) drdp

0 0

f f h(r) h(P) drdp

0 0

= [H(l)] 2

whence

H(l) = el/2 (3.15)u

In general, the main wetting process is described (see Figure

3.7) by

R 1

e (R) = fh(P) dp fh(r) dr
w JJ

0 0

= H(R) H(l) (3.16)

whence

H(R) = -1/2 Q (R) (3.17)
u w

Similarly, the main drying curve (Figure 3.8 and curve C of

Figure 3.3) is given by

a (R) = H(l) H(R) + H(R)[H(l) - H(R)] = [201/2 - H(R)] H(R) (3.18)
d u

Mualem (1977), assuming the $-R relation to be a one-to-one

function, replaces R in the above equations by 1P. But constancy of R

implies only constant moisture percentage, thus in a system in which the

temperature varies, this simple substitution is improper. In this work,
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we shall generalize Mualem's model to account for temperature effects.

We assume (see the discussion of temperature effects in Section 3.3.2)

that the temperature dependence of i has the form

1DI2 a = -C constant (3.19)
$aT T'R =4 -

Integration of Equation (3.19) yields the relation

T 4 e a(T-T0) = constant for fixed R (3.20)

We may thus substitute T for R in Equations (3.17) and (3.18)

to obtain

H(T) = 0-1/2 6 (T) (3.21)
u w

and

e (T) = [201/2 - H(P)] H() = [2 - 6~1 6 ()] 6 (Y) (3.22)d u U w w

A primary drying curve (Figure 3.9a and curve E of Fig. 3.3) is

described by

8(o R1 R) = H(l) H(R) + H(R)[H(R1 ) - H(R)] (3.23)

where the notation indicates that the normalized capillary radius

increased (wetting) from 0 to R1, and decreased (drying) to R. Using

Eqs. (3.16) and (3.17), and replacing R by Y, we obtain

0() = 1w (T) { + 6~1 (0  ) -0 (T)]} (3.24)T. T w U w wmin
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In a similar manner, the primary wetting curve (Fig. 3.9b and

curve D of Fig. 3.3) is derived. It is

max ) H(l) H(R) + H(R1 )[H(l) - H(R)]

= 6 (T) + e (T )[l - 0~ e (F)] (3.25)
S w 1 u W

Routine application of the theory yields all of the higher

order scanning curves (e.g., Fig. 3.9c and curve F of Fig. 3.3). As

noted earlier, however, the introduction of higher order scanning curves

poses serious operational problems as a result of the variable and

potentially large state set. As a first approximation to the simulation

of the second and higher order scanning curves, the Mualem model will

be simplified in this study. As an expedient, it will be assumed that

the higher order curves are coincident with the primary curves. Although

this contradicts the theory, it allows quite accurate modeling of the

most important effects of hysteresis without the computational difficul-

ties inherent in describing the more detailed behavior. We treat high

order scanning curves by assuming them to lie on a primary curve for

the appropriate process (drying or wetting). For wetting, then,

6('' ) 0( max T ) (3.26)
1 o

The value of T0 is defined by the constraint that

6( max 1 (3.27)
0

where 01 is the value of 0 (corresponding to 'P1) when the last reversal

occurred. Using Equation (3.25) to solve for 0w ('o ) ('P itself is not
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needed), we have

w (T0) = u 01e -w l)][eu - w 1)] (3.28)

The approximation for the higher order drying scanning curves

is

e(... 1
0 

) (3.29)
min

where, using Eq. (3.24),

0w (To = W 1 u 1w 1) - 1] (3.30)

We now summarize the proposed model of the soil moisture

retention process. Although Eq. (3.9) was introduced for isothermal

conditions, we may generalize it, using the argument preceding Eq. (3.20),

to obtain

Main Wetting Curve

1 ln[p (-) + p2 (-T) ]

0w (T) =

u

pF min < PF < 7

PF < pFmin

where

PF = log(-T) = pF + a(T - T 0) log e

and the reference temperature, T0, in Eq. (3.20) is the temperature at

which the parameters of Eq. (3.9) are defined. We may take it to be the

same T as that introduced in Eq. (2.18).
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The derived curves are repeated below:

Main Drying Curve

6( = [2 - 61 0 (T)] 6 el)
d u w w

Primary Drying. Scanning Curve

( .
min

o1 ) = (') f1 + 61 [6 (P ) - 6 (T)]}
= w u w 1 w

Primary Wetting Scanning Curve

max = 0 ( ) + 8 (T )[1 - 6~1 0 (')]
T1 w w u w

Higher Order Drying Scanning Curve

(... T 1(
min

0 
)

where

ow ('o) = 6w (1l) + 6u [1 Ow('l )-1 - 1
HWghe 0 w ti1 Scanin u 1 w 1

Higher Order Wetting Scanning Curve

e(... T 1 ) =8 max
T

)

6 w(T0 ) = 6 [ - 0w ( 1 )][O - ( )]1

We now clarify the meaning of R, the wetting history, which

was introduced in Chapter 2. As mentioned earlier, the dimension of R
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increases as the wetting history becomes more complex, assuming the

general model of Mualem (1974). With the approximation that high order

scanning curves lie on primary curves, the state set is truncated. Given

the present value of and one other number, it is possible to compute

the present value of e. This single state variable is the value 'P at

which the last reversal from a main curve occurred. For a higher order

curve, YP is artificial and is calculated as discussed earlier. For

a main curve, ' is either T . or ' . Thus, any curve can be repre-
o min max

sented as a primary scanning curve. It is a wetting curve if ' > T

and drying if ' < ' P

The complete state set may now be considered to consist of

i (or T), T and ' . The vector R, in this study, therefore has only one

component - P0.

3.3 Hydraulic Conductivity

3.3.1 Introductory Remarks

Equation (2.3) states that when a head gradient is applied to

a partially saturated porous medium, the resulting liquid flow rate is

directly proportional to the magnitude of the applied gradient. In fact,

many deviations from linearity have been reported. Swartzendruber (1969)

reviews in detail the experimental observations, their suggested causes,

and the implications for problem-solving, noting that some flow systems

may be quite insensitive to the observed non-proportionalities.

Furthermore, the Buckingham-Darcy equation (2.3) is the foundation of

virtually all modern, physically-based studies of liquid transport in
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the soil. It is not the purpose of this study to break new ground on

the non-proportionality question.

The hydraulic conductivity, K, is a function of both 6 and T

(or $ and T). The temperature effect is apparently attributable to the

temperature dependence of viscosity, as will be discussed in Section

3.3.3. The isothermal hydraulic conductivity exhibits little or no

hysteresis when expressed as a function of 6. Obviously, the hysteresis

in the relation between e and $ results in significant hysteresis of K

when it is expressed as a function of 1.

For a fixed temperature, K has its maximum value at saturation

and decreases monotonically over many orders of magnitude upon desatura-

-2 -3 -l
tion. Hillel (1971) gives typical saturation K's of 10 to 10 cm s

-4 -7 -l
for sandy soils and 10 to 10 cm s for clayey soils.

The conductivity effectively reaches zero when only a small

amount of adsorbed liquid remains. At these very low moisture contents,

vapor diffusion takes over as the dominant water transport mechanism.

Rose (1963), offering data from several media, suggests that the value

of moisture content at which liquid flow becomes negligible, which we

have denoted by 0k, corresponds to a relative humidity of h = 0.6, i.e.,

k 6(pF 5.85)

The capillary model of water retention has been applied by

several soil scientists and petroleum engineers to the calculation of

hydraulic conductivity. The basic approach is to extract pore-size

distribution information from the soil moisture characteristic, then to
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apply viscous flow theory, and finally to aggregate the behavior of

individual pores to describe the overall medium. Variations on this

theme result in the models of Childs and Collis-George (1950), Burdine

(1953), Marshall (1958), Millington and Quirk (1959), Kunze, et al.

(1968), and Mualem (1976a). Mualem and Dagan (1978) present a unified

derivation of several of these models.

These models of hydraulic conductivity, which are based on

surface tension, viscous flow theory, are open to the same criticism

as the capillary hysteresis conceptual model already presented. At low

moisture contents, adsorption forces become important, so the capillary

theory is incomplete. Furthermore, the physical properties of tightly-

bound water may differ significantly from those of free water (Carman,

1953), resulting in such effects as non-linearity in the flux-gradient

relation (Miller and Low, 1963). Hillel (1971) writes

"The results of these [surface tension, viscous flow]
theories, while more generally applicable than those
based on earlier models, still appear to be valid only
for certain coarse materials in which capillary hysteresis
phenomena predominate."

Nevertheless, the experimental results of those investigators

mentioned above, together with the evidence from other tests (Brooks

and Corey, 1964, 1966; Jackson, et al., 1965; Green and Corey, 1971;

Jackson, 1972) support the general use of such models in practical

applications. As Jackson, et al. (1965) note,

"The agreement between the experimental and theoretical
values at these low water contents may be fortuitous,
but the fact that they are of the same order of magnitude
lends confidence to the calculation of conductivities at
water contents where measurement is extremely difficult."
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In the next section, a method for calculating the relative

hydraulic conductivity at constant temperature is presented. The sub-

sequent section deals with the temperature effect and summarizes the

model of hydraulic conductivity used in this work.

3.3.2 Calculation of Relative Hydraulic Conductivity

Mualem (1976a) compared the measured conductivities for 45 soils

with the values calculated by several methods. The best overall perfor-

mance was yielded by a model proposed in that paper. It is
S
e 2 1

1/2[f dS 2 ] dS K ( (S (3.38)

0 o

K (6) = = relative hydraulic conductivity
r K(eu)

a - 0 k
S = = "effective" saturation (3.39)
e 6 - euk

S = dummy integration variable for S

It should be noted that the exponent of S , left undetermined

in the derivation, has been chosen to give the best fit for the 45 soils.

A similar advantage was not granted, for instance, to the Millington-

Quirk method, which nevertheless performed rather well. Since the most

systematic test and validation of any model appear to be that of Mualem

(19 7 6 a), Eq. (3.38) will be used in this analysis.

As mentioned earlier, the hysteresis in the K(O) relation is

usually small (Talsma, 1970; Rogers and Klute, 1971; Nielsen and Biggar,
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1961; Topp and Miller, 1966; Youngs, 1964; Elrick and Bowman, 1964).

Mualem (1976b) examines the hysteresis of the hydraulic conductivity

both theoretically and experimentally. In both cases, the results indi-

cate only a small non-uniqueness of K(O). Since hysteresis is negligible,

it must be possible to integrate Eq. (3.38) using any curve of the

hysteretic $(0) family. For convenience, the main wetting curve, Eq.

(3.31), is used.

In order to evaluate (3.38) for fixed temperature, it is

necessary to invert (3.31) and to perform the indicated integration.

For M going to infinity, these operations can be done analytically.

Otherwise, a numerical scheme must be used.

3.3.3 Temperature Effects

The temperature dependencies of K and i, for fixed 6, are

implied by the surface tension, viscous flow model (Miller and Miller,

1956; Childs and Collis-George, 1950) of soil water as

1 av 1 dcy 1 dp YC = - - (3.49)
a GeadT pP, dT

and

C ~ K =-1 dp + I dp (3.50)
K K 3T p p dT p dT

where

C =the temperature coefficient of $[K1

CK = the temperature coefficient of K [*K ]

p = the dynamic viscosity [dyne s cm- 2
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For pure, free water at 20'C, the quantities in (3.49) and (3.50),

estimated from data on CY (T), P (T), and P (T) (Eagleson, 1970), are

1 da - -1.9 x 10-13 K1
cy dT

1 dy ~ 2.5 x 10-2 OK-1
y dT

1 ~ -2.1 x 10~4 *K-1

P dT

According to (3.49) and (3.50), these would imply

C ~ -1.7 x 10-3 0K_1 (3.51)

and

CK ~ 2.5 x 10-2 -1 (3.52)

Experimental validation of (3.51) and (3.52) is far from

complete. Equation (3.52) appears valid for saturated sands

(Swartzendruber, 1969). For unsaturated media, it has been easier to

study the temperature dependence of the isothermal liquid diffusivity

defined by

D = K
T

We would expect

C DD S C + C ~2.3 x 10-2 o*K-1 (3.53)
D D T K $

assuming that (3.51) and (3.52) hold. Jackson (1963) presents data that

support (3.53) for three moderately wet, heavy-textured soils. A
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further investigation (Jackson, 1965), which carefully separates out the

simultaneous vapor transport, shows that this dependence holds approxi-

mately for very dry media containing little more than an adsorbed mono-

layer of water (pF ~ 6.3). For even drier soil, the value of CD increases

three- or four-fold.

The experiments on D essentially verify the equation

C + C ~ 1 do 1 AP (3.54)
K a dT p dT

Assuming that there are not, purely by coincidence, significant equal and

opposite errors in (3.49) and (3.50), we have an experimental validation

of

CK~ -
K ydT

Since the surface tension effect is much smaller, significant (but less

than a factor of ten) departures from (3.49) may occur.

Many investigators have attempted to determine the temperature

dependence of $. The results of virtually every one refute (3.49), and

yet the observed data suggest no consistent alternative to it. Jury and

Miller (1974) give data suggesting a C on the order of -10-2 ,K~1 for

a wet sand, as do Taylor and Stewart (1960) for a silt loam. The data of

Taylor (1958) give even larger magnitudes. Campbell and Gardner (1971),

reporting on four heavy-textured soils, give data corresponding to magni-

tudes of C ranging from 10-3 to 10-2 0K 1, but having positive and

negative signs, even for a single soil at different $ and T. The most

negative values of C for a given soil, in that study, are obtained at
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the lower heads (pF > 4), while positive or less negative values result

for pF < 4. Among different soils, correlation to soil type appears

rather weak. Kijne and Taylor (1964) give data for a silt loam that

suggest consistently positive C,, on the order of 101 OK , for pF from

3 to 5.

Faced with the inconsistencies of the $1(T) data, as well as

their apparent contradiction of the diffusivity data, we shall tentative-

ly accept the hypothesis expressed in (3.49) and (3.50). Further careful

experimental and theoretical analyses of these temperature effects are

needed. Inasmuch as C is uncertain, the sensitivity of transport

processes in the soil to its value should be examined.

We may now express the hydraulic conductivity as a function of

and T. It is

K(0, T) = K Kr (0) KT(T)

in which

K = K(e = 6uT = T ) = saturated reference conductivity

[cm s1]

K (T) = = temperature correction of hydraulic
T p(T)

conductivity

where the density effect is considered negligible compared to the

viscosity effect.

93



3.4 Tortuosity

Due to the presence of the soil matrix, the effective

diffusion coefficient of a gas in a porous medium is lower than that in

free air. The reduction is a result both of the reduced cross-

sectional area for flow and of the tortuosity of the diffusion path.

Lai, et al. (1976) discussed previous studies of gas diffusion in

porous media and performed field measurements of the process. Their

data support the use of a reduction factor, a ea in Eq. (2.12),

given by

0 a =a 5/3

Thus,

0 
= 2/3 (3.55)

-a

3.5 Thermal Properties

3.5.1 Heat Capacity

The (bulk) heat capacity of a unit volume of soil is the

weighted average of the capacities of the constituents. Thus, in the

definition of C following Eq. (2.24), we have

C = Cd + c pv 0a + c kPk (3.56)

According to de Vries (1966), the dry heat capacity is estimated well

for most soils from the relation

Cd = 0.466 + 0.600 (cal g~1 C~-) (3.57)dm o
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in which

6M is the volume fraction of soil minerals

o is the volume fraction of organic matter

Note that

1 - n = 6 + em o

so we may eliminate 6M from (3.57) to obtain

Cd = 0.4 6 (1-n) + 0.14 00 (3.58)

3.5.2 Thermal Conductivity

It can be shown that the two conductivities, and X ,

defined in Chapter 2, are virtually the same; the minor distinction

need not be discussed here. We shall henceforth use the symbol X

without a superscript, with the understanding that it may be used

in either the ($, T) or the (0, T) system.

A physical theory for the calculation of the effective

thermal conductivity of a partially saturated porous medium has

been developed by de Vries (1966). The theory has its roots in the

work of Maxwell and Lord Rayleigh, who calculated the effective

electrical conductivity of a non-homogeneous medium. The details of

this model will not be presented here. It has been applied by several

workers with varying degrees of success (Jury and Miller, 1974;

Wierenga, et al., 1969; Hadas, 1977; Sepaskhah and Boersma, 1979;
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Kimball, et al., 1976). The seemingly ad hoc introduction of various

corrections to the theory makes it undesirable for this study, in

which a simple, but general, representation of A is sought. It should

be remembered, however, that some elements of this theory appear in

this paper, e.g., the factor C in Eq. (2.10).

Both experimental and theoretical work have established the

general nature of the dependence of A on 0 and T. For constant

temperature, the thermal conductivity increases rapidly as the medium

is initially wetted. The formation of water rings between adjacent

soil particles accounts for this rapid increase in thermal conductivity.

At some moisture content around the field capacity (pF ~ 2.5), the

rate of increase becomes significantly lower, assuming the temperature

has a value normally encountered in natural environments. Conductivity

is a maximum at saturation.

The temperature dependence of A enters through the effect

of vapor diffusion (and transport of latent heat). This effect

becomes significant above 400C, where the saturated vapor pressure

becomes sufficiently large to affect the overall heat transport process.

We shall neglect it here.

As an approximate representation of the thermal behavior of

most soils, we shall adopt the following piecewise linear relation:

+A0)(-) 0 e1 1 0 Of f
A() = -f0 < n (3.59)

1 i (2 ~1l n-O ) f f _
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in which

O = e at field capacity = 0 (PF = 2.5)

X = dry thermal confuctivity of medium (cal cm' s OCi)
-l -1 -l

X2 = saturated thermal conductivity (cal cm s 1C )

X = an intermediate value of X.

-4 -4 -1Typical values of X are in the range of 3 x 10 to 7 x 10 cal cm

*C1, while X2 is about an order of magnitude larger. The value X is

about midway between the other two.

3.5.3 The Thermal Gradient Ratio, 4

The value of 4 is a by-product of the theory of de Vries (1966)

for the calculation of X. Philip and de Vries (1957) give values of 4

at 20C for various values of n and 6, and for quartz and non-quartz

soil minerals. (Quartz is the only common mineral with a thermal conduc-

tivity different from the norm.) The values range from 1.3 (n = 0.7,

e = 0.1) to 3.2 (n = 0.3, e = 0). It appears that a value of 4 = 2 will

suffice as an approximate value for most situations.

3.5.4 The Heat of Wetting

The heat of wetting is given (Edlefson and Anderson, 1943,

p. 237; de Vries, 1958) by

W =-j 1 g($ - T 2T) (3.60)

in which

j = mechanical equivalent of heat = 4.18 x 10 erg/cal.
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Chapter 4

NUMERICAL SOLUTION OF THE MASS AND HEAT
CONSERVATION EQUATIONS

4.1 Introduction

This chapter outlines a numerical scheme for the solution, in

one dimension, of the conservation equations derived in Chapter 2, sub-

ject to given initial and boundary conditions. The application of

Galerkin's method of weighted residuals converts the partial differen-

tial equations to a system of non-linear ordinary differential equations

whose unknowns are the values of the state variables at a finite number

of points. Boundary conditions are easily applied at this stage. A

finite difference approximation is introduced to evaluate the time

derivatives, resulting in a completely algebraic system of equations.

This final system, which is still non-linear, is solved by an iterative

series of successive linearizations.

4.2 Application of Galerkin's Method of Weighted Residuals

4.2.1 Preliminaries

In Chapter 2, several expressions of mass and heat conservation

were presented. Those chosen for use in this study are based on the

dependent (state) variables i and T. The mass conservation equation is

(2.32) and the heat equation is (2.33). The versatility of the ($, T)

system has already been discussed. The particular choice of Equation

(2.33), rather than (2.34) or (2.35), is based both on the symmetric

nature of the matrices resulting from the numerical methods, and on its

direct physical significance.
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Introducing new notation for the coefficients in the

continuity equations, we have, from (2.32),

M($,T) =c + c - (c3 + c + c5) + c1 at 2 (c- z 3 az 4a
(4.1)

and, from (2.33),

HT) = d + d - (d3 + d a+ d5 )= 0 (4.2)

where the one-dimensional equations have been adopted. M(-,-) and

H(-,-) are differential operators. The coefficients in (4.1) and (4.2)

are defined below:

p v
c=(1 - -- )

pv
S= (1- --)

2 Pt

C = K + D v

c =DI
4 Tv

E a pv

T T

o a pv
Pk DT

-K

=s
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(4.3e)

(4.3f)
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= [L + c (T - T)] 0 - + [e p (T - TW) - Wd10 p o a I

-c pp (T-T) - L o T(4.4a)

p3

d = C+[L +c(T-T)]0 Va|
o 0 p o a D

(4.4b)

+ [ck pk (T - T0 ) - pW - c p (T - T) - L0pv

d3 = pk L D + c P (T - T0) (K + D ) (4.4c)

d = X + c p (T-T)D, (4.4d)

d5  =ck pk (T - T) [K - S (z') dz'] (4.4e)

-L

The coefficients d3, d4, and d5 are obtained from (2.33) by

use of the one-dimensional versions of (2.14) and (2.25). The depth L

is at least as great as the depth of the root zone.

Before applying the finite element method, we shall define

the solution domain and its discretization. We are concerned with the

flow of moisture and heat inside the region bounded by the land surface

(z = 0) and some arbitrary depth, z = -L (Figure 4.1).
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Figure 4.1

FINITE ELEMENT GRID FOR ANALYSIS OF ONE-DIMENSIONAL

MASS AND HEAT TRANSPORT

101

T(/I/e m/e n//t/W-' I

I



We divide this domain into N-1 elements (sub-domains), bounded by

N nodes. An arbitrary numbering system to be adopted here assigns

the index 1 to the lowest node, 2 to the second, and so on up to the

top node, N. The element numbering system is the same, except that

the top element is, of course, number N-i.

We shall seek approximate solutions of (4.1) and (4.2)

having the form (Neuman, et al., 1975)

N
$(z,t) = $ (t) U e* (z) (4.5)

j=1 e

and

N
T(z,t) = T (t) U w. (z) (4.6)

j=1 e

where $ and T are the approximate solutions. The moisture potential

and temperature at the j'th node are given by $. and T. respectively.
J J

The trial function, w (z), is non-zero only on element e. Its

value varies linearly from unity at node j to zero at the other end of

the element (Figure 4.2).

4.2.2 Application to a Single Element

Ordinarily, one applies Galerkin's method directly over the

entire region of interest. In the present development, we will apply

Galerkin's method instead to each element separately, and then

combine the local, or element, equations by matching boundary conditions

among the elements, obtaining a global system of equations.
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This is done for two reasons. The first reason is the inapplicability

of the governing equations at various discontinuities. This issue is

discussed in Section 2.3.4. Secondly, this approach clarifies the

evaluation of the global coefficient matrices, a task that is often

a notational nightmare. It can be shown that the equations resulting

from either approach are identical.

Let us define some notation to facilitate manipulations on

the element level. We denote the trial functions locally by

e

e

e
e

e
We+1

(4.7)

(4.8)

We therefore have

e
1

ze+ - zze+l z
z e -1ze

z - z
e e
2 z e+1 - ze

ze+ z
e

z -z e

Ae

(4.9)

in which A is the length of element e.

Inside a single element, (4.5) and (4.6) simplify, as a

e
result of the definition of ., to

e e e e(4.10)* 1 $1 + 2 2 (.0
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and

T = e + T2  P2 (4.11)

in which e e
1 e 2

-e -e
and T E Te 2 Te+l

In the following treatment of the local equations, the superscript e

may now be dropped, as it appears on all variables. The subscripts are

understood to denote the local nodal numbering system of the element.

Following Galerkin's method of weighted residuals (Pinder

and Gray, 1977, p. 57) for each element, we require that the residuals

obtained by substituting $ and T into M and H be orthogonal to the set

of trial functions.

Mathematically,

fM (,T) dz = 0 i = 1,2 (4.12)

A

T H ( $, T) 4. dz = 0 i = 1,2 (4.13)

The subsequent steps necessary to convert (4.12) and (4.13)

into computationally practical forms will be illustrated here only for

the mass equation. The heat equation is, by analogy, similar.
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Let us substitute (4.1) into (4.12), using (4.10) and (4.11).

This yields

[c + c2  T (c + C + c5 ) + c6  . dz = 0

A
i = 1, 2 (4.14)

We next apply integration by parts to the third term, which

may be recognized as the flux divergence.

(c + c2  T i dz + (c3 N + c4 3{ + c dz

A A
z2 z2

+ c6  i dz = ( + c + c i i = 1, 2

z z

(4.15)

in which the z's are the element end points, subscripted according to

the local numbering system. Checking the definitions of c3, c4 and c5'

we see that (4.15) defines Qm implicitly as

Qm = (.q +g) * k/pt (4.16)

The primed trial function denotes the z-derivative.

We substitute $ and T into (4.15). This yields the following

pair of equations:

2 2

c 1 dz + T c 2 ji dz

=-l j=l1

2 2
+ c3 4 dz + T. c 4 dz

+ Jc5  dz + c6 4 dz= -Qm ] i = 1, 2 (4.17)
f 5 1 6 Iz 1
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In Equation (4.17), the primed state variables are time derivatives.

Equations (4.17), with i = 1, 2, can be interpreted as approximate mass

conservation relations for nodes 1 and 2. Their sum is a mass conserva-

tion condition for the element.

4.2.3 Evaluation of Element Matrix Integrals

The integrals in (4.17) remain to be evaluated. If the 'c'

coefficients were constant in an element, this would be a trivial opera-

tion, since the $'s are simple linear functions. In general, however,

the c's are functions of the state variables. A standard integration

procedure, which will be used here, is the functional coefficient scheme

(Pinder and Gray, 1977, p. 132). The coefficient is assumed to vary

linearly within the element. Its value at the nodes is given by

cml = cQP,
m = 1, 2, ... , 6 (4.18)

cm2 =cm( 2 , T2

If c is discontinuous at a node, it is evaluated as the limit of c

that is approached from inside the element.

Given this form for the variation of the c's, we may proceed

to evaluate the integrals in (4.17), using the definitions (4.9). Taking

the first one as an example, we have

fc 1 . . dz = c f $j. . dz + c 2 f 2 . . dz (4.19)

where, in general,
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i= j = k

$k . P. dz

J l K
(4.20)

otherwise

The result is similar for the integrals containing c2 '

Now consider the second type of integral appearing in (4.17).

It is

2
c3 C dz = I 3k k dz

f 3 ~k=1 kf ]
(4.21)

in which

A
4k dz = A=

2A

j

ij

(4.22)

The integrals containing c4 are similar.

The gravity flow term is given by

with

A

2
c~ dz X ckck4

f 5 =l c5k k #

k=k

$k $~ dz = A = 2
~ 1

dz

i = 1

(4.24)

i = 2

The sink term is

2

fC 6 i dz = '6k f k i dz
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where

f1
A

k dz=

6

Finally, we may evaluate the

QM

-_Qm lz 2 _ zl

- { z, 1Q

i= k

(4.26)

i# k

right-hand-side term. It is

i4.

(4.27)

i = 2

2

Having evaluated the coefficients in

that system of equations in matrix form:

A A2 B1 B2 Tv

A A ~~ [j +TA21 A22 i +21 B22 

D 11 D12 T 1E 1F 1

D 21 D 22 T 2E2F
21 22

(4.17), we now rewrite

C 11 C 12 :1
C 21 C 22 I2-

Qm 1z j 
(4.28)

z2

These equations, combined with the corresponding heat equations, consti-

tute a set of four ordinary differential equations for the four state

variables - $P1 , $2 , Tl, and T2'

4.2.4 Application of Boundary Conditions

In a problem where flux boundary conditions are prescribed,

the relevant Q's are substituted into the right-hand-side vector, and

the four unknown states are found by integrating the system. On the
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other hand, if one or more of the states is fixed at a node (first-type

boundary condition), the equation(s) containing the (unknown) flux

through that node is (are) eliminated from the system of equations, keep-

ing the solution uniquely determined. After solution, the neglected

equations may be used to determine boundary fluxes.

4.2.5 Linking Elements Together

We now describe how the subdomains are linked together to

obtain a global system of equations. Recall that the boundaries separat-

ing individual elements are points at which discontinuities may occur.

Coupling will be accomplished through the matching of boundary conditions

at the discontinuities (Section 2.3.4). We will illustrate this linkage

for a pair of elements. The extension to several elements should be

obvious by induction.

First of all, we note that Equation (4.28) will hold for each

element. Since we are now dealing with more than one element, the

element superscript will be reintroduced. It will take on values of 1

and 2. Recall that both node (local or global) and element indices

increase in the positive z direction.

The coupling conditions (2.73a) and (2.73b) give us

-1 -2

T = T
2 1

while condition (2.73d), given continuity of 3 , yields
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1 2

z2 1y

Reintroducing the global index for the coordinate z and for the state

variables, and adding together the second row of (4.28) for element 1

and the first row for element 2, we obtain

1 1 r B1 B1 -
FillA 12 ] ] 11 2 12 0 Tj

A21 A22 + A 2 A 2 + B21 B22 + Bl2 B 2 TV

212 1 121 22 1 2 2

_0 A2 A22 0 B 21 B T

1 1 - - -1 - -
C C12 0 D 1 D12 0 T 1

F 11 1 2 2 1 1 2 2
+ 21 22 + 1 C 1C2 2 + 21 D22 + 1 D1D2 T2

1 2 2 D 2
+ LC2 C22 3 + D21 D22J1 1

E F1  Q

11 2 1 12 mI
+ E E + F F = 0 (4.29)

2 1 2 1
E2 F 2  m

z3

Once again, we see that the total number of unknowns (6) is

equal to the number of equations (3 each from the mass and heat conserva-

tion conditions). The boundary conditions may be applied as described in

the previous section.

The extension of this procedure to cover N nodes (N-1 elements)

is straightforward. The final pair of matrix equations is

I
A1 ) + B T + C + +D T +E + F = (4.30)
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and

A2 1+ 2 :2 Y+ 2 1 + D2 T +E2 =2 (4.31)

The elements of the heat equation, (4.31), are implied by analogy with

those defined for the mass equation.

Note that the matrices appearing in (4.30) and (4.31) are all

symmetric and tridiagonal. This will be an important factor in choosing

a solution strategy. Recall also that there are strong non-linearities

embodied in the coefficient matrices and in the vectors. The problem

of integrating (4.30) and (4.31) is thus non-trivial.

In the following developments, we shall not deal explicitly

with the boundary conditions. They are easily incorporated as described

earlier.

4.3 Approximation of the Time Derivatives

The time derivatives in (4.30) and (4.31) are evaluated by

finite difference. In this work, a fully implicit, backward difference

scheme is used. This means that all terms other than the time derivative

are evaluated at the end of the time step:

k_ k-1 Tk -Tk-l
k+B- k +k k k k ÷k+Fknk (.2A + B + C + D T + E + F =Q (4.32)=1 At =1 At =1 =1- -i-;- l

in which At is the time increment. An implicit integration scheme is

usually much more stable than an explicit one. The heat equation is

treated in the same fashion.

Let us rewrite (4.32) considering _$k to be the unknown. This

yields
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1 k k k 1 k k k 1 k k-l 1 k k-1
(.t-A( +) i = -( + ) + + t T

k k k (433)
-E - F +-1 -l -

Similarly, for the heat equation, we have

1 k k k 1 k k k 1 k-1
(At - 2  +2 - 2 + 2) + AA 2

1 k k-i k k
At :R2 T -2 + 22 (4.34)

4.4 Iterative Solution Strategy

The following iterative strategy is proposed for the solution

of (4.33) and (4.34):

1. Extrapolate the solutions for the last two time steps (k-2

k k
and k-1) forward to obtain an estimate of I and T . (If this is the

first time step, only the k-i "solution" is available - it is the initial

k k
condition. In this case, we can assume L and T are given by the ini-

tial conditions, for a first guess.)

2. Use the estimated states to evaluate all components (except

k
) in (4.33). Solve the resulting tridiagonal matrix equation for 4.

esimts fk k3. Use the latest estimates of k and T to evaluate (4.34)

k
and solve for T

4. Repeat steps 2 and 3 until some convergence criterion is

met.

With this algorithm, we never need to solve a matrix equation

any more complex than one in which the matrix is tridiagonal. A very
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fast procedure exists for the solution of such equations (Pinder and Gray,

p. 23, 1977).

Note that it is possible to incorporate any of the boundary

conditions, including the non-linear ones, described in Section 2.3.1,

into this iterative procedure, using the methods of Section 4.2.4.

4.5 Treatment of Hysteresis and Soil Discontinuities

The use of Equations (4.1) and (4.2) has been restricted

(Section 2.2.3) to domains on which and other storage parameters are

continuous in time, and on which the various conductivities and diffu-

sivities are continuous in space. In general, this will require that no

discontinuities in the relevant soil properties occur inside a particular

domain, and that no temporal reversals in wetting history occur during

the time period of interest. These restrictions were illustrated in

Figure 2.1. To them we add the convenient modeling assumption that the

wetting history is spatially continuous within the domain. Although this

is theoretically inconsistentwith the approximations used for $ and T, it

appears justifiable if the length of the domain is small compared to the

scale of the phenomenon under study. Alternatively, one could allow

wetting discontinuities inside elements, but this would complicate the

evaluation of the integrals in the element matrices as the interior

discontinuities would invalidate the direct use of the functional coeffi-

cient scheme described in Section 4.2.3.

The "domains" on which the conservation equations are to be

applied may now be identified. Spatially, they are simply the individual

elements of the finite element discretization. As demonstrated in general
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terms in Section 2.3.4 and for the finite element model in Section 4.2.5,

these domains are coupled through matching of boundary conditions.

Temporal discontinuities are allowed to occur between time steps.

The hysteresis model described in Section 3.2.4 is applied at

each node of each element in order to determine the values of 6 and dO

at all time. Since we have chosen to keep the wetting history spatially

continuous, we will require that a wetting reversal occur instantaneously

(between time steps) throughout an entire element. The reversal moisture

content may vary continuously in the element. A wetting reversal will

be assumed to occur at time tk in element e if the (space) average

moisture content in the element at time tk is greater (less) than the

average content at time t k-1, where the element was previously drying

(wetting). The reversal actually computed, then, will precede the

adoption of a new scanning curve by one time step.

An alternative to this procedure would be to choose the proper

scanning curve each iteration on the basis of the most recently calcu-

lated moisture contents for the present time step. The lag would then

be avoided. Preliminary numerical experiments with this more rigorous

procedure yielded approximately the same results. Apparently, the rather

samll time step required by the system non-linearities also minimizes

the error in the time-lagged hysteresis procedure.

4.6 Lumping the Storage Matrices

Several investigators (e.g., Neuman, et al., 1975; Mercer and

Faust, 1976) have found that the form of the storage matrices (i.e., A
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and B in Eqs. (4.30) and (4.31)) generated by the Galerkin method often

lead to numerical difficulties. A commonly accepted means of overcoming

these problems is to diagonalize, or lump, the storage matrix.

Preliminary results of this study confirmed the superiority of a

diagonalized storage matrix, which has therefore been adopted in this

work.

Consider the first matrix of Eq. (4.28). Using (4.17), (4.19)

and (4.20), we obtain

Aci c12 ci c1 2]
A1 A12 4 + 1- 2 -12 + 1-2A' A2

L:: A~ Aci+ c12 ci+ c2
A 21 A22 L12 +12 12 + j

In the present work, the following modification is introduced:

A A- cli 0
A1 A12 2

= A (4.35)

A 0 c12
A21 A22- - 2-

A similar modification is used in evaluating the other storage matrices.

4.7 Mass and Energy Balances; Evaluation of
dTP

4.7.1 General Balance Considerations

Consider now the finite element equations resulting from the

application of Galerkin's method to a single element. In matrix form,

these equations (for mass or heat) are given by (4.28). Using (4.17)

and the results of Section 4.2.3, together with the lumped storage

assumption, we obtain
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Ac 1 1

2

10

-k - k-1- [Ac 1  T _ -l-
0 t 1 +1 At1

Ik + k- + Tk _ k- Ac 1 2  2 - 2 0 Ac2 2  2 2
2 _ L At L -2 --At

C 3 1 + C32

2A

c 3 1 + C 3 2
2A

(C +
2 51 c5 2)

1 (c + c

C 3 1  C + c C+c
31 32 k 41 42 --k

2 2A 2A 1

C3 + C3 -l c4 + c4 C4 + c42 -231 ___ +C 42 241 423 =k
2A J L 2 J L 2A2A JLT2_

A6 (2c 6 1 + c62)

+ I
S (c 6 1 + 2c6 2 )

~mZl

~mJ
z 2

(4.36)

Addition of the two lines of (4.36) results in the cancellation

of the internal flux terms, yielding

1 (k_ k11 + C12 -k -k-l) + c21 -k k-1 + c22 -k +k-1)A[-21 1 1 2 2()2 2 (T1 - T1 2 2 +

+ At-A [(c 6 1 + c 6 2 )j = L m - m] - At (4.37)

2

In physical terms, this is equivalent to a mass balance for the element

over one time step:

(length of element) x (average storage change)

+ (duration of time step) x (length of element) x (average sink strength)

= (duration of time step) x (sum of inward flux rates)
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Assume that the sink terms and boundary fluxes are defined as

constants (e.g., time averages) for the duration of the time step. Then,

the only mass balance error resulting from Eq. (4.37) will result from

the failure of the first term to describe exactly the storage change in

the element. We proceed to illustrate the origin of this error.

We define the water mass stored in an element at time step k

as follows:

-f- (S + S 2 ) (4.38)

where S has been defined in Eq. (2.2). The subscripts 1 and 2 denote,

as usual, the local (element) node index. Using Eq. (2.2) together with

-k -k -k -k
the values 1 2 T, and T it is possible to evaluate (4.38).

We now write an expression for the change in storage during a

time step. It is

k k-1 A k k-1 k k-1
- (Sm - S ml+ S -2 S )2 (4.39)

With our definition of element storage, then, the change in storage is

a simple linear combination of the changes in the nodal values of S .
m

Comparing (4.37) and (4.39), we identify

k k-1 = (.k - ,k-1) + (k - k1) (440)Smi -Smi Cli i - i )+C2i (Ti -Ti (.0

where we recognize the possibility that the expression in (4.37) may not

be exactly equivalent to (4.39), the "actual" storage change defined

here. Recall that the c coefficients are defined, essentially, as
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SSM1
= IT 

(4.41)

m
C 2 DT

(The node index will be omitted in the following development.) Thus, if

c and c2 were constant in time, (4.40) would be an exact relation. Due

to the non-linearity of storage as a function of $ and T, however, a

finite mass balance error will, in general, result. The magnitude of

this error for a given problem can be estimated by the use of a Taylor

series.

4.7.2 An Improved Estimate of -
dT

In the present problem, we have chosen (Section 4.3) to

evaluate the coefficients in (4.36), including c1 and c2, at the k time

level, i.e., at the end of the time step. In most situations, the quan-

tity de , which appears in both c1 and c2 (see (4.3a), (4.3b) and (3.20)),

is by far the largest source of non-linearity and, hence, of error in

(4.40). This is also true in the heat equation. By designing a special

dO
scheme to evaluate d , we should be able to reduce the balance error

significantly.

Let us for the moment treat c1 and c2 as though their

dO
variability were fully attributable to i.e.

A dO
C=c 2 d

Ade

= 

2 c 2d'jFY
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in which c1 and ^2 are "relatively constant." Then (from (4.41)),
tk

k k-i _ d dLcI- aT, dT (4.42)
m m + fl .dT T c2 dP DTd4

tk-l

According to our finite difference approximations,

k k-i

Dt At

T T k - k-i

lit At

i.e., the derivatives are constant. Then, (4.42) yields

k k-l-k -k-l -k -Tk- tk

Sk k-i [ -k- -^-T4-i tk dT (4.43)
MS + At 2 At f dT

tk-1
where the approximation sign results from the removal of c1 and c2

(which are not entirely constant) from the integral. The integral is
tkk

dT dO di ~1
dT= f dT dT

tk-i Tk-l

Tkk

~ At d d

Tk _Tk-l f - d

k1'

= At k k _ ek-1
k _ k- -

It follows that a more exact expression than (4.40) with the

c's simply evaluated at time tk can be used. It is

k k-I - r8k e k-1 -k-( ^ k k- k-1S - S = C1(Tk T](- - $ ) + C2[(Tk Tk-(1 - T )

dO
We have thus determined an "optimal" expression for dj during a time
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step. The coefficients c1 and c2 are still evaluated at the k time level,

dO
while the effective value of d is an average over the time step before

time t . As before, the coefficients must be evaluated on the basis of

a last estimate of the system state at time tk in the iterative process

outlined in Section 4.4.

dO
Where appears in d1 and d2 , the heat storage coefficients,

it will be evaluated by means of the same procedure.

4.7.3 Saturation Conditions

Following the lead of Neuman, et al. (1975), we recognize that

the saturated regions will respond instantaneously to their boundary

conditions, the storage coefficient being zero. In order to deal with

nodes that might de-saturate during a given time step, it is convenient

to lower Tk-1 to the bubbling pressure at saturated nodes at the begin-

ning of a time step. Neuman, et al. (1975) show that this modification

results in an equivalent statement of the original problem, and is

therefore justifiable. In the present work, it was found that this

procedure stabilized an otherwise non-converging iteration cycle in the

numerical algorithm.

4.8 A FORTRAN Code for Execution of the Numerical Model

The numerical method described in this chapter has been coded

in the FORTRAN language for computer execution. The program,

SPLaSHWaTrl, is documented in Appendix A. The FORTRAN listing appears

in Appendix B.
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Chapter 5

TESTS OF THE NUMERICAL METHOD

5.1 Introduction

The purpose of this chapter is to evaluate the performance

of the numerical procedure outlined in Chapter 4. A related purpose

is to examine the validity of certain models of the soil properties

proposed in Chapter 3.

We may identify three criteria for the evaluation of the

numerical procedure. The first is accuracy, which we shall loosely

define as the ability of the numerical model to reproduce satis-

factorily the true solution to a mathematical statement of a prob-

lem. More specific definitions of accuracy are stability -- the

ability of a procedure to dampen errors in a solution as computations

progress -- and convergence -- the tendency toward perfect accuracy

that results from finer spatial and temporal discretization. For

the complex, non-linear problem treated here, analytical demonstrations

of stability and convergence appear difficult, thus we shall infer

that the method is stable and convergent if it is accurate in a

representative set of applications.

A second criterion is consistency, defined herein as the

successful preservation of total mass and energy by the numerical

scheme. This issue has already been addressed theoretically in

dO
Section 4.7. The method proposed there for evaluation of -O willdT~
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be evaluated in this chapter.

Convergence of the iterative solution procedure at each

time step will be defined as the automatic termination of the

iterative scheme presented in Section 4.4, i.e., the decay toward

zero of the difference between successive iterations. Though this

is not the traditional usage of "convergence" (see above), we shall

employ it here. Successful completion of a simulation run implies

convergence for that problem.

The validity of the numerical model, and of the soil property

representations, will be evaluated in terms of the criteria set

forth above. An attempt is made to isolate the question of validity

of the numerical model from that of validity of the physical theory.

The latter is judged sufficiently well-established for application.

This isolation is accomplished by comparing the numerical solutions

to solutions obtained analytically or quasi-analytically, thereby

avoiding the complication of data uncertainty. The exception is the

example of hysteretic redistribution given in Section 5.3, a problem

for which no analytic solution has yet been given in the literature.

Since analytic solutions of the entire set of equations are

not available, it is necessary to test different features of the

numerical model separately. Having established the validity of the

model for simulating various processes independently, it will be

assumed that the model may be used for more complex situations. The

demonstrated ability to handle strong non-linearities (Section 5.2)

and highly-coupled problems (Section 5.5) helps justify this assumption.
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5.2 Isothermal Infiltration into Yolo Light Clay

The problem of infiltration into Yolo light clay was solved

by Philip (1957) using a "quasi-analytic" solution procedure. His

classic example has since become a standard against which many

subsequent solutions have been compared.

This problem is solved here neglecting the vapor and

thermal effects, in order to be consistent with Philip's solution.

The governing equation is thus

dO t 3
0 Dt 3z

K 
+ 1)

with the following boundary and initial conditions:

= -600 cm

=0 cm

= -600 cm

0

0

0

0 > z > -50 cm

z= 0

z = -50 cm

Although Philip (1957) considers a semi-infinite medium, we may use

a finite column for times before the wetting front nears the lower

boundary.

Haverkamp et al. (1977) have fitted equations closely to

the data describing the Yolo light clay. Their expression for the

moisture retention curve is

( 274.2
0.124 + 274.

739 + (ln(-i))4

e = I

t0. 495

$ <-1 cm

$ > -l cm
(5..1)
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The relative hydraulic conductivity is given as

124.6
KrM = 124.6 + (-p)4 (5.2)

These functions are illustrated by the circles in Figures 5.1 and 5.2.

-5 -l
Saturated conductivity is given as 1.23 x10 cms

Equation (3.8) was also fitted to the 0($) data used by

Haverkamp et al. (1977). The parameters used are

a = 0.690 s = 0.172

a2 = 0.375 s2 = 0.0536

M = 38 e = 0.495
u

This relation is plotted in Figure 5.1 for comparison with Eq. (5.1).

Note that the main difference is due to the inability of (3.8) to

reproduce the observed curve near saturation.

Using Eq. (3.38) and Eq. (3.8) with the parameters above,

we may derive numerically a relative hydraulic conductivity function.

This is plotted in Fig. 5.2 for comparison with (5.2). Note the

rather large discrepancy in the drier region. This is not unusual

for a derived conductivity function.

The numerical model was used to simulate this isothermal

infiltration problem. The top 5 cm. was divided into ten equal-sized

elements; the next 25 cm. into twenty-five elements; and the bottom

20 cm. into ten elements. The time step size in this and subsequent

examples was controlled automatically by a rule that sought to keep the
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number of iterations required for convergence near some pre-specified

number from 2 to 10.

The solution computed using (5.1) and (5.2) is plotted in

Figure 5.3. The agreement with Philip's solution is very good.

Computation time was about 38 seconds on an IBM 370/168 machine for

the entire simulation. The mass balance error (defined as the relative

difference between cumulative inflow and total storage change) was

about 0.5 per cent. The consistency could be improved by reducing

the convergence criterion, with a consequent increase in computation

time.

This problem was also solved without the special scheme for

dO
evaluation of . Given the same total execution time, the mass

balance error increased by almost an order of magnitude.

The problem was also solved using the soil properties

defined by (3.8) and (3.38). The solution, plotted in Figure 5.4,

is rather good, especially when one considers the error in the cal-

culated relative conductivity function shown in Figure 5.2. Note that

the numerical solution incorrectly predicts saturation to a significant

depth; this is a result of the "corner" at saturation given by (3.8)..

Despite this error in the shape of the front, the depth of the front

is rather well predicted.

Finally, we consider the problem of ponded water at the

surface, corresponding to a boundary condition of positive matric

potential at the surface. A solution is again given by Philip (1958).

For this problem, we use Equations (5.1) and (5.2) to represent the
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soil properties. The surface boundary condition is changed to

$= 25 cm t >0 z= 0

The solution is plotted in Figure 5.5. Agreement with the quasi-

analytic solution is very good.

5.3 Isothermal Infiltration and Redistribution in Uplands Sand

Staple (1969) studied the problem of soil moisture

redistribution following infiltration into an initially-dry sand

both experimentally and numerically. His main wetting curve for

Uplands sand was fitted to Equation (3.8). Using (3.8), the scanning

curves were derived using the model presented in Section 3.2.4, and

the relative conductivity function was derived using Equation (3.38).

These soil properties are plotted in Figure 5.6. Two of the primary

drying scanning curves are shown. Saturated conductivity is

2.15 x 10'ms'.

The experiment performed by Staple (1969) was to allow one

inch of water to infiltrate "with a head not exceeding a depth of

1 cm" into sand that was very dry initially. Infiltrated water was

then allowed to percolate downward in the column and measurements

were made. (Unfortunately, the time of the infiltration phase was not

given.) The following initial and boundary conditions were employed here:

$ = -2.25 x 106 cm t= 0 >z>-30 cm

$ =0.5 cm t > t>0 z= 0

qk= 0 t>ti z= 0

$ = -2.25 x 10 cm t > 0 z = -30 cm
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where t. is the time at which the cumulative infiltration is equal

to 2.54 cm of water. A uniform finite element discretization of 1 cm.

was employed.

The solution to this problem, using the properties in

Figure 5.6, is plotted in Figure 5.7 for two values of the redis-

tribution time, t - t.. (The value of t. was 222 seconds.) The

profiles are in general agreement, though the shapes of the fronts

are not predicted especially well. The anomalously high moisture

content at the surface at 90 seconds is apparently related to

swelling of the soil, a phenomenon that was neglected in the formulation

of the model. The other errors are probably attributable to

approximations in the soil property data.

The same problem was also solved by assuming that drainage

occurred along the main wetting curve, i.e., hysteresis was neglected.

The results appear in Figure 5.8, where it is apparent that redis-

tribution proceeds much too quickly. Some insight into the difference

between Figures 5.7 and 5.8 may be gained by examining the moisture

retention curves in Figure 5.6. When hysteresis is neglected,

drainage of the wetted region proceeds along the lower curve, the

main wetting curve, and much water is released readily to seep into

the lower depths. When hysteresis is properly modeled, drainage

occurs along the drying curves, which specify more moisture retention

at a given value of pF. The wetted region thus drains more slowly.

It should be noted that infiltration into a very dry sand
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is one of the more difficult problems in numerical modeling of soil

water dynamics, often presenting serious problems with respect to

accuracy and stability (Narasimhan and Witherspoon, 1978). Nevertheless,

the present model handled the infiltration stage in this example quite

well.

5.4 Advection and Dispersion of Heat in a Uniform Moisture Flow

Having looked at some problems in which the moisture field

is subjected to large changes in boundary conditions, or stresses, we

now turn to a problem in which the thermal regime is highly stressed.

We consider the problem of advection and dispersion of heat in a

saturated porous medium with a large flow rate. Though the rather

extreme example to be proposed is not likely to occur in a natural

environment, it does serve as a test of the model's validity.

In a non-elastic, homogeneous, saturated porous medium the

one-dimensional heat conservation equation reduces to

C _T )2T T
C-t = c q

in which q. is the vertical component of 3, and all of the coefficients

are constants. Let these coefficients take the following values:

C = 9.79 x 10 cal cm-3 K-1

A = 3.6 x 10 cal cm~1s 1K 1

-4 -2 -1 -1
cj,= -9.98 x10 cal cm s K

The thermal properties, C and A, have values typical for soils, while
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the advection term, q , represents a strong liquid flow. It is

well-known (e.g., Pinder and Gray, 1977, p. 148) that the advection

term is the source of difficulty in solving this equation with finite

difference and finite element methods, so this extreme example was

chosen.

The problem statement is completed with the following

initial and boundary conditions:

T = T t = 0 0> z > -50cm
0

3T
-A- + c q (T - T =c q (T - T t > 0 z= 0

az Y, 0 0

-- = 0 t > 0 z= -50cm
az

in which

T = 20 0C
0

T = 21 0C.

Note that the surface boundary condition is a statement of a specified

heat flux at the surface. It is a non-homogeneous, mixed-type

boundary condition. Physically, this problem represents a sudden

rise to T of the temperature of the liquid supplied to the soil at

its surface.

For a semi-infinite domain, the solution to this problem

can be found by application of Fourier transforms. Defining

D = -
C

and

ckqy

u =C
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and recalling that we have defined z negative downward from the

surface, we may write the analytic solution to this problem as

T =T + 1(T -T)ferfc - - -z+ut+D)
T=Tf -7 lo utV~) D uJo 2 1 2 D u

(-u' -z+ut) 4 u t) -z-ut)2
.exp(D u erfc2Dj + 2  t2(5.3)

in which erfc is the complementary error function and exp is the

exponential function.

The problem was solved numerically using the same dis-

cretization as for the Yolo light clay examples. The time step

size ranged from an initial value of 10 seconds to a final value

of about 500 seconds. The solution is plotted, along with (5.3),

in Fig. 5.9. The agreement is excellent. The relative error in

the heat balance was less than 107 for this linear problem.

5.5 Coupled Diffusion of Heat and Vapor in a Very Dry Porous Medium

The final example presented here is designed to test the

ability of the model to simulate properly the dynamics of vapor-

dominated systems with strong coupling between moisture and heat

fields.

A very dry soil column at some equilibrium temperature and

matric potential (and therefore vapor density) is subjected to a

sudden increase in vapor density at one end, while the temperature is

held at its original value. The other end is closed to heat and
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moisture flow. Vapor will diffuse into the column, condense, and

release latent heat. There will thus be a temporary rise in the tem-

perature of the medium, though it will eventually return to the

value at the boundary as heat diffuses back out of the column.

In the absence of liquid flow, and using the "simple theory"

of vapor transport described in Chapter 2, the governing equations

reduce to

2
0 a p v Pv 2 P
6 v + a --_ = (5.4)

P at k at 2

DT 36 2T
C-p -L = X (5.5)
at k at az2

in which

D
D* = a

pk a

The heat of wetting has not been included; it is equivalent

mathematically to L. Expanding the e derivative,

_ 3 v + 36 T
t -pv at DT at

T v

this system may be written as a pair of nonlinear diffusion

equations in two unknowns, coupled through their storage terms,
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Va +P 3 2 r Pv 3e 3T+ [i + q1 ~ lD
Pk P pv T 3t Pk )3TI 3t

TI v

2
L Tjp

= 2PV (5.6)
3z2

C - PDe DT3 ,
ZL-T 3t t p 3t

Pv vT

= T 2 (5.7)
Dz2

For small perturbations about a basic state--the initial

conditions--we may linearize Eqs. (5.6) and (5.7) by evaluating the

coefficients at the basic state. Crank (1956, p. 306) has shown how

a dependent variable transformation may then be used to convert these

equations to a pair of independent diffusion equations. For further

details, the reader is directed to that reference, which also contains

the solutions to the resulting diffusion equations.

The boundary and initial conditions are
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p =

t = 0 0 > z > -5 cm
T =T*

t > 0 z= 0
T = T*

v= 0
z

t > 0 z = -5 cm
3T 0
3z

In the numerical model, conditions on pv are implemented by applying

the appropriate conditions on 4. The following numerical values were

employed for the analytic solution:

-6 -3
P* = 6.342 x10 g cm

-7 -3
Ap = 6.67 x10 g cm

T* = 200C

General expressions described in Chapter 3 and employed in the numerical

model were used to evaluate the coefficients in (5.6) and (5.7), given

the initial conditions and typical parameter values, for use in the

analytic solution. The same parameters were used as input to the

numerical model, which did not use the linearization. A ten-element

discretization was used.

The numerical and analytic solutions for temperature and

vapor density are shown in Fig. 5.10. The agreement is good. The small

errors are probably attributable to the spatial discretization scheme,
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to the non-linearities neglected in the analytic solution, and to the

somewhat different treatments of vapor transport (simple theory and

theory of Philip and de Vries). Mass and heat balance errors were both

on the order of 10~ at the end of the simulation.

The same problem was run using the standard method for

de
evaluating 7T. The energy balance errors were about the same, as might

be expected, since energy storage is essentially linear in this problem.

The mass balance error, however, was increased to about 10-2 given

the same execution time. Therefore, the method proposed in Section

4.7.2 for evaluating the storage coefficient reduces the mass balance

error by two orders of magnitude.

5.6 Summary

The numerical model described in Chapter 4 has been subjected

to a variety of tests for validity. These tests included some ex-

tremely nonlinear problems and a problem in which the heat and moisture

fields were strongly coupled. The physical processes of liquid and

vapor transport, and of heat transport (sensible and latent) by con-

duction and by advection, were all simulated using the model. In

addition, the models of soil properties developed in Chapter 3 were

tested.

In all cases, the numerical model converged to solutions that

preserve mass and heat well. Comparisons to several analytic and quasi-

analytic solutions demonstrate that the model is very accurate.

A new method for iterative estimation of the storage coef-

ficients in the numerical model appears to yield significant improve-
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ments in mass and energy balances compared to traditional tech-

niques. Further investigation of this procedure is warranted.
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Chapter 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FURTHER RESEARCH

6.1 Summary

A general mathematical description of the coupled dynamics

of moisture and heat flow in porous media has been presented. The

Philip and de Vries (1957) formulation has been re-cast in terms of

matric potential, accounting for the complications of hysteresis and

of soil heterogeneities. A practical model for simulating hysteresis,

based on the work of Mualem (1977), has been proposed. In addition,

a suggested extension of Mualem's theory allows incorporation of the

effects of temperature on moisture retention.

A numerical (finite element) method for the solution of the

general conservation equations has been outlined. It includes a new

procedure for evaluating the storage coefficients that appears to offer

very large improvements in mass and energy balances in nonlinear prob-

lems.

A FORTRAN computer code has been developed in order to execute

the complex numerical solution procedure. The numerical method and the

computer code have been shown to perform well in simulating highly-

coupled, hysteresis-affected, or very nonlinear problems. Comparisons

to analytic solutions verified that the model will simulate correctly

the transport of mass in both the liquid and vapor phases and the trans-

port of sensible and latent heat by conduction and by advection. The

mass and energy balance properties of the model are excellent.

147



6.2 Conclusions

The myriad experimental and theoretical studies conducted by

soil scientists, hydrologists, geologists, physicists, etc. during the

past years have supplied us with much information about transport

processes in porous media. Although there remain even today basic

physical questions that are not entirely resolved, it appears possible

to synthesize the available knowledge into a coherent theoretical

framework that will allow us to study systematically the dynamics of

coupled mass-energy systems in soils that interact with the wide

spectrum of naturally-occurring climates and vegetal systems. The

exposition of such a framework and the demonstration of its viability

are the goals toward which the present work has been directed.

6.3 Recommendations for Further Research

The theory presented in this work has been precise, but

cumbersome. Physically-based studies of large-scale, complex systems--

such as the air-land-sea system that provides us with weather and climate--

cannot be expected to incorporate the exact physical details of

millions of tiny system components. Even if an "infinite" computer

were available, the problem of managing data would easily overwhelm us,

and the assessment of initial conditions would be hopeless.

Clearly, simplified representations of the soil column and

of its aggregate areal response to atmospheric forcing must be devel-

oped. Employing the model developed in this paper as the apparatus

for a potentially infinite number of experiments on the "true" phys-

ical system, it should be possible to develop parameterizations that
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faithfully reproduce the behavior of the one-dimensional system.

Another major problem is that of studying the interaction

of the soil with the overlying vegetation and atmosphere. Tied in

with this is the question of how properly to treat the problem of

areal inhomogeneity of soil and vegetal response. Analysis of these

problems would probably be facilitated by the development of simpli-

fied models of the components, such as the soil parameterization

that has been mentioned in the preceding paragraph.
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APPENDIX A

DOCUMENTATION OF SPLaSHWaTrl

A.1 Introduction and Contents

This appendix provides documentation of the computer code for

execution of the numerical algorithm outlined in Chapter 4. The computer

program is named "SPLaSHWaTrl", an acronym for "Simulation Program for

Land Surface Heat and Water Transport, Edition 1."

We first present the large-scale organization of SPLaSHWaTrl,

which is defined roughly by the main program of the code. The concept

of a simulation period is introduced as a fundamental element in the

main program.

In order that various computational tasks be executed, the

main program calls many subroutines. Ideally, each subroutine has a

well-defined role in the algorithm. The purpose of each subroutine is

described in Section A.3.

Execution of SPLaSHWaTrl requires the definition of an input

file containing all of the system parameters, initial conditions and

boundary conditions. The format of the input file is presented in

Section A.4.

Finally, some listings of sample input and output files are

given. Such examples can be helpful when a user must debug the program,

possibly after a change to a new computer system or when modifications of

the code have been made. These listings constitute Section A.5.
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An extensive list of definitions of the FORTRAN variables used

in SPLaSHWaTrl is given in the main program listing (Appendix B). For

the user's convenience, much of the documentation contained in this appen-

dix is also found in the comment statements of the program listing.

A.2 Structure of SPLaSHWaTrl - An Overview

A.2.1 The Simulation Period

The fundamental time period for specification of boundary

conditions in a simulation is the "simulation period." By definition,

a simulation period is a time interval during which the specified surface

boundary conditions are constant. In the current version, the user may

specify either the average mass flux rate or the matric potential at the

surface during the simulation period. Similarly, the other condition may

be expressed either as a given heat flux or as a known temperature.

In general, a simulation period will consist of more than one

time step. The time step size is controlled automatically by the program.

Considerations of "accuracy" and numerical "convergence," as defined in

Chapter 5, limit the size of the time step.

A.2.2 Flow of Control in the Main Program

The structure of the main program of SPLaSHWaTrl is illustrated

in Fig. A.l. After initial input and computations, the specified simula-

tion periods are modeled sequentially by looping through the remainder

of the program, once for each period. Inside a given simulation period,

a time step loop is executed as many times as necessary to reach the end
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Initialization

Begin a new simulation period. C

>Begin a new time step.

Set up and solve mass equation for a new estimate of PP.

yes Isothermal
problem?

no

Set up and solve heat equation for a new estimate of TT.

Has PP yes Isothermal yes
converged? problem?

no no

Prepare 0 Max. no.noHsT
. for new of iterations cnegd

iteration. reached?

yes yes

Compute moisture content and optional mass and energy balances.

Has time
no reached end of sim- ye

ulation period?

Figure A.l. Flowchart for SPLaSHWaTrl Main Program.
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of the period, given the constraints on the time step size.

For a given time step (Section 4.4), the mass and energy

equations are solved alternately to obtain successive estimates of matric

potential and temperature at the end of the current time step. For iso-

thermal problems of moisture transport, the heat equation is omitted.

When convergence of the calculated solution is obtained (or

if a specified maximum number of iterations is exceeded), the new moisture

contents are calculated and mass and energy balances are calculated, if

desired. If the time has reached the end of the current simulation period,

a new period is begun. Otherwise, a new time step follows.

Further details of the operation of the main program may be

found in the program listing. Documentation of the various subprograms

is presented in the following section and in the program listing.

A.3 SPLaSHWaTrl Subprograms

A.3.1 INIT2

This subroutine is called only once, at the start of execution,

in order to perform the initial calculations and input and output opera-

tions. Specifically, it performs the following operations:

1. Set the values of constants.

2. Read the option codes, simulation parameters, initial

conditions, element information, etc.

3. Write initial output as requested.

4. Call SOILI2 to get soil parameters.

5. Initialize PP, TT, X, XOLD; initialize mass and energy
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balance variables, time variables.

A.3.2 NEWPR2

This subroutine begins a new simulation period by reading the

duration and the boundary conditions. Optionally, an initial

time step length for the period may be specified (see Section A.3.3).

If NBCP (NBCT) equals one, a specified matric head (temperature) equal

to BCP (BCT) is applied as the surface boundary condition. If NBCP (NBCT)

equals two, a surface mass (heat) flux of BCP (BCT) is indicated.

Program execution is terminated in this subroutine when a

negative duration is specified for a simulation period.

The simulation period number, NPER, is incremented during each

call, and the time at the end of the period, TEND, is computed. The time

step counter is set to zero.

A.3.3 NWSTP2

This subroutine is called by the main program to begin a new

time step. It computes a new time step length, updates the wetting

history, computes estimates (by extrapolation) of the solution for the

new time step, and updates various vectors. ENTRY NEWIT2, contained in

this subprogram, is called at the start of subsequent iterations in the

same time step. It increments KIT, the iteration counter, and updates

PPOLD and TTOLD.

The length of the first time step in a simulation period may

be specified as DLT in input to NEWPR2 (Section A.3.2). For other time

steps, or if DLT is less than zero, the new value is calculated by an
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algorithm that tends to maintain the number of iterations per time step

near a specified value, ITDES. If KIT from the last time step exceeds

ITDES, the value of DELT is reduced by a factor of the square of their

ratio. If KIT is less than ITDES, the time step length is increased by

a factor of 1.2. If necessary, the value of DELT is reduced to prevent

the time step from overshooting the end of the simulation period.

A.3.4 PPRAM2

For both nodes of each element, PPRAM2 computes the values of

the coefficients and the gravity term in the mass conservation equation.

This will allow the various discontinuities that may occur across element

boundaries. The components of the coefficients that depend only on and

T are continuous at node points and may therefore be calculated using the

global node index; these computations are inside the first DO loop. In

the second loop, the mass equation coefficients are calculated using the

element and local node indices.

dO
The evaluation of de may be performed in two ways. If J9 has

been given as zero, it is simply computed as the derivative of the current

scanning curve, evaluated at the end of the time step (using the latest

estimates of $ and T). If J9 is equal to one and a significant change in

$ occurs, the iterative method described in Section 4.7 is employed.

If the isothermal liquid flow option is invoked (124 = 3),

many unnecessary computations in PPRAM2 are skipped.

A.3.5 TPRAM2

This subroutine calculates the coefficients of the heat

equation at both nodes of each element. It is analogous to PPRAM2.
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Note that some variables calculated in PPRAM2 (e.g., RHOV) are saved in

storage for use in TPRAM2 so that they need not be recalculated.

A.3.6 MAT2

MAT2 assembles the global coefficient matrices of the Galerkin

expressions for the mass or energy conservation equations.

Three weighting options are provided for evaluation of the

storage matrices. If J3 (J4) is equal to zero, the mass (energy) equation

is evaluated according to the expression generated by the Galerkin method

(e.g., the matrix two lines above (4.35)). When J3 (J4) is equal to two,

the lumping scheme of (4.35) is used. For J3 (J4) equal to one, the

following expression is employed:

C C
A 11 12

A A +0
11 12 3 6

A A 11+ 12
A A 0+
21 22 6 3

Element conductivity terms are evaluated using the functional

coefficient scheme (which results in an arithmetic average) when J8 is

equal to one. A geometric mean is used for J8 equal to two.

A.3.7 EQN2

This subroutine performs the finite difference of the time

derivatives and sets up the matrix equation for the matrix solver (Section

4.3). Note that the ordering of the arguments in the CALL statements in

the main program depends on which equation is being solved. The variable

names used in EQN2, therefore, do not always correspond to those in the
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COMMON block, their definition being determined by the CALL statement.

The matrix "SAVE" retains the lines of the matrix equation

corresponding to the end nodes for later calculation of the end fluxes.

A.3.8 PBC2

This subroutine adjusts the matrix equation to account for

boundary conditions. (The boundary conditions are specified by input in

NEWPR2.) PBC2 incorporates the mass boundary condition, and ENTRY TBC2

applies the heat boundary condition. The method for application of

boundary conditions is described in Section 4.2.4.

A type I boundary condition (specified $ or T) at node i is

incorporated as follows:

1. Set i'th element of right-hand side vector equal to known

value of state variable.

2. Set i'th diagonal element of matrix equal to unity. Other

elements in i'th row of matrix set to zero.

3. Use known value of i'th state to evaluate any terms

involving it in other lines of the matrix equation. Move

these known terms to the right-hand-side vector, and

replace the relevant matrix elements with zero. In this

way, the matrix will remain symmetric.

A flux boundary condition is incorporated simply by adding to

or subtracting from the right-hand-side vector the specified flux into

the system at the relevant node. See, for example, Equation (4.29).
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In the current version of SPLaSHWaTrl, a first-type B.C. is

applied to matric head at the bottom of the column by allowing no change

in the initial condition. Heat flux at the bottom of the column is zero

except for advection by moisture flow; there is no temperature gradient.

The surface boundary conditions are applied according to the

rules discussed in Section A.3.2.

A.3.9 SOLVE2

The Thomas algorithm for solution of a tridiagonal matrix

equation is used to solve the mass or energy equation, yielding the values

of matric head or temperature at each node. The algorithm is presented

by Pinder and Gray (p. 23, 1977).

Note that the second argument in SOLVE2 contains the right-

hand-side of the equation when the subroutine is called, while the sub-

routine returns the solution in the same vector.

A.3.10 CHK2

This subroutine checks for convergence of the mass (K = 1)

or energy (K = 2) solution. It returns a value of J = 1 if convergence

is obtained and J = 0 otherwise.

For K = 1, convergence is obtained when the relative difference

between PP and PPOLD,

PP(I) - PPOLD(I)
PP(I)

is less than PERR for all I. For K = 2, the criterion is that TT and

TTOLD differ by no more than TERR for all I.
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A.3.ll RHOZZ2

This subprogram defines three functions of temperature -

saturation vapor density and its derivative and the correction of hydraulic

conductivity for temperature effects.

The vector RZ contains the saturation vapor density values for

integer values of temperature from 0*C to 80*C. Actual values for any T

are found by linear interpolation. The slope, DRZDT, is estimated as the

difference between the two closest values of RZ tabulated (since the

corresponding difference in T is unity).

The temperature correction for hydraulic conductivity is

p(T 0) -
CKTT2 -p(T) , (CKTN * VISCC)

ii(T)

The value of CKTN is calculated by an initial call to this function from

INIT2 (with CKTN = 1). The viscosity is calculated by one of two formulas

depending on whether T is greater than or less than 20'C (CRC Handbook of

Chemistry and Physics, 1979, p. F-51).

A.3.12 BAL2

This subroutine need not be called to complete the execution of

any simulation. If desired, it is called after each time step to produce

an accounting of the mass and energy budget for the simulation. The total

storage of mass and energy is calculated, assuming linear variation of

storage inside elements. Changes in storage for the most recent time

step and for the entire simulation are compared to the corresponding net

fluxesand errors are computed. All balance information is printed out.
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A.3.13 SOILI2

This subroutine performs calculations involving the hydraulic

properties of soils. It uses the models of moisture retention and

hydraulic conductivity presented in Chapter 3. Alternatively, the user

may specify J5 = 1 and supply his own FORTRAN statements at the appro-

priate lines in the code; in this case, hysteresis is not allowed.

The first entry point, SOILI2, is used in a one-time call

from INIT2 to initialize various soil variables. For each soil type,

a set of parameters that determine its hydraulic behavior is read. The

parameters of Eq. (3.8) are derived from the input variables by a fitting

procedure.

The input variables are u, the negative of the wetting

equivalent of the bubbling potential, the moisture content at the wilting

point, the parameter M, the PF intercept of the capillary segment of the

main wetting curve, and the saturated hydraulic conductivity at reference

temperature T0. The PF-intercept of the adsorption segment of the main

wetting curve is taken as 7.0, and the PF at the wilting point is 4.2.

PFK, the maximum value of PF at which the liquid phase is discontinuous,

is set equal to 5.85.

Given the input parameters, SOILI2 makes initial estimates of

a1 , a2 , s, and s2, assuming that M is infinite (Figs. 3.5 and 3.6). The

parameters a and a2 are then adjusted iteratively to fit the main wetting

curve at saturation and at the wilting point, using the finite value of M.

In order that the relative hydraulic conductivity integral

(3.38) may be evaluated, the main wetting curve is approximated by a
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piecewise linear relation between 0 and PF. Thus,w

PF = PFR.
j ,k

- SSj (e w - XR jk)

XR. <06 <XR.
j3,k w- j,k+l

PFR. < PF < PFR.
j,k+l - j,k

k = 1, 2, ... , 8

for soil type j, where

0 (PFR. ) = XR.
w j,k j,k

PFR. - PFR.
Ss _ jk j,k+l
j,k XR. - XR.

J,k+l j,k

k = 1, 2, ... , 9

The PFR and XR are chosen such that
J,k j,k

a - s PFR
lj lj jk+l k=
0 (PFR. )
w j,k+1

1, 2, ... , 7

in which a and s are the soil parameters a, and s1 for soil type j.

The values of Rk are 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 for k = 1,

2, ... , 7, respectively. In addition,

PFR.XR. = .
3,1 kj

XR. =0.
3,9 uj

= PFK

PFR. = log (PB.)j,9 g10(PB.

where 6 e ' . and PB.u are 0 , and PB for soil j.

Using this representation for T(0w), we may evaluate the

integrals appearing in (3.38). In general,

S 0
dS' - 10-PF dO
(S')
0 ek
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Substituting our piecewise expression for PF and integrating, we obtain

S

dS [(0 - 0k ) {n 10] my1 SS .(PR71. - PR. 1)
f ( u k j,9 311 ,
0

+ SS. (PWET PR1\) PR < PWET < PR.
j3,m j,m j,m+l - m

in which

PFR.
PR. . -10

and

PWET = (6)
w

Defining

m -1-11
ENT. = 55. .(PR 1 - PR.1 )

j, ,1 j,i+1 j,1

we then have, from (3.38)

1/2 -1 -1 -1 -1 2
K (0) = S {[ENT. + Ss. (PWET - PR.)] ENT. }
r e j,m-1 im 3,M j.,8

PR < PWET < PR
j,m+1 -jm

The quantities PR, ENT, etc., are calculated,as outlined above,

by a call to SOILI2 before the actual start of the simulation. Later

calls to ENTRY SOIL32 are used to calculate hydraulic conductivity during

a simulation (see below).

ENTRY SOIL12 is called (for J5 not equal to 1) at the beginning

of a new time step. It updates the wetting history, if necessary, of any

element. If the change in average moisture content during the most recent
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time step was in the opposite direction of that during the previous time

step, the history is updated, following the procedure described in Section

3.3.

A call to ENTRY SOIL22 will calculate moisture content and,

if KODE equals 2, the slope of the current scanning curve. Equations

(3.36) and (3.37), along with (3.8), are used for this purpose. They

may be differentiated, using (3.34) and (3.35), to obtain the formulas

for the slopes. When J5 equals unity, hysteresis is ignored, and the

moisture characteristic and its slope are defined by user-supplied

FORTRAN statements.

ENTRY SOIL32 calculates the relative hydraulic conductivity,

given the moisture content, using the formula given above. It first deter-

mines in which interval the moisture content falls, then uses a modified

Newton-Raphson algorithm to find the corresponding value of PF and, hence,

PWET. The formula is then used. If J5 is equal to one, a user-supplied

FORTRAN statement is used to express Kr as a function either of e or of

i (or T).

The liquid island enhancement factor for vapor flow is

calculated in SOIL32 using Eq. (2.13).

A.3.14 XWET

XWET is a function subprogram that computes the moisture

content of the main wetting curve as a function of PF and the soil index.

It uses Eq. (3.38).
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A.4 Input Data for SPLaSHWaTrl

The input data required for running the current version of

the numerical simulation model are listed in Table A.l., Definitions

of most of the FORTRAN variables are given in the comment statements

at the beginning of the main program (Appendix B). The remaining

variables, which are all in record type 6, are defined in subroutine

SOILI2.

The number of type-7 records is one more than the desired

number of simulation periods. In the last record, a negative value

for DURTN should be entered; this will terminate execution. (The

other variables in that record will then be ignored.)

Subroutine in
which READ occurs

INIT2

INIT2

INIT2

INIT2

INIT2

SOILI2

NEWPR2

Record
type

1

2

3

4

5

6

No. of
records Format

1 2512

1

1

NN

NL

912

6G10 .0

3G10.0, 50X

4G10.0, 40X

NS 6G10.0, 20X

7 see text 6G10.O0

Variable names

11-125

Jl-J9

NN, NS, PERR, TERR,
TZERO, ITDES

Z(I),2 P (1) , T (I)

IS(L), IH(L),XWRE(L,l),
XWRE(L,2)

J, POR(J), PB(J),
XWILT(J), EM(J),
CKSAT(J), PFINTl(J)

DURTN, DLT, NBCP, BCP,
NBCT, BCT

TABLE A.l. Input Format for SPLaSHWaTrl
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A.5 Two Examples: Input and Output

A.5.1 Example 1

The first example given here is the problem of coupled heat

and vapor diffusion examined in Section 5.5. The input and output are

given for two 500-second simulation periods. Note that, although the

boundary conditions do not change, it is convenient to use separate

simulation periods in order to obtain output at desired times.

Example 1 Input

........... 000000000
0000 0000 0..................

00

00

0

o(4) C4)

I q

N ON

. U)
00

C') C')C C') C' C') C) C') C) C a; C) I-

Ln * e n o to0 n- - -* *- *- *- *- V- V- 0 N* NG C')QQ C' C' C' '

1-Ue) 000. r tlOi)Oe eI . . . . . . . . . . 000

01
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0
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C4

0
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1-O
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OUTPUT OPTIONS -- 1=ACTION 0=NO ACTION

OUTPUT OPTIONS IU 1
SIMULATION OPTIONS 12 1
OTHER SIMULATION SCALARS 13 1
NODE AND ELEMENT INFORMATION 14 1
INPUT SOIL INFORMATION 15 1
COMPUTED SOIL PARAMETERS 16 1
SIMULATION PERIOD PARAMETERS 17 1
MATRIC POTENTIAL is 0

-1 - NEVER
0 - EVERY SIMULATION PERIOD
1 - EVERY TIME STEP
2 - EVERY ITERATION

TEMPERATURE SOLUTION 19 0
(SAME.CODE AS FOR 18)

MOISTURE CONTENT I10 0
-1 - NEVER

0 - EVERY SIMULATION PERIOD
1 - EVERY TIME STEP

MASS BALANCE INFORMATION Ill 0
(SAME CODE AS FOR I10)

ENERGY BALANCE INFORMATION 112 0
(SAME CODE AS FOR I10)

NOT IN USE 113 0 0
NOT IN USE 114 0 r
NOT IN USE 115 0
NOT IN USE 116 0
MOISTURE EQUATION COEFFICIENTS 117 0
MOISTURE EQUATION MATRICES 118 0
MOISTURE EQUATION 119 0
TEMPERATURE EQUATION COEFFICIENTS 120 0
TEMPERATURE EQUATION MATRICES 121 0
TEMPERATURE EQUATION 122 0
WRITE SOLUTION ON FILE 123 EACH PERIOD 123 8
IF EQUAL TO 3, USE ISOTHERMAL EQUATION 124 0
NOT IN USE 125 0

SIMULATION OPTIONS

NOT IN USE - 0
NOT IN USE d2 0
MASS LUMPING OPTION J3 2
ENERGY LUMPING OPTION J4 2
USE ALTERNATE RETENTION CURVE J5 0
NOT IN USE J6 0



NOT IN USE
NOT IN USE
ITERATIVE MOISTURE CAPACITY SCHEME

OTHER SIMULATION SCALARS

NUMBER OF NODES
NUMBER OF ELEMENTS
NUMBER OF SOIL TYPES
MOISTURE CONVERGENCE CRITERION
TEMP. CONVERGENCE CRITERION
REFERENCE TEMPERATURE
DESIRED NO. OF ITERATIONS

11
10
1

o.10-02
0.10-04 DEG CELSIUS

20. DEG CELSIUS
5

NODAL DATA
N=== D==P=

NODE Z P T
- -----------------

1
2
3
4
5
6
7
8
9

10
11

-5.00
-4.50
-4.00
-3.50
-3.00
-2.50
-2.00
-1.50
-1.00
-0.50
0.0

-1379139.
-1379139.
-1379139.
-1379139.
-1379139.
-1379139.
-1379139.
-1379139.
-1379139.
-1379139.
-1379139.

20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0

INPUT SOIL PARAMETERS

SOIL TYPE POR PB XWILT EM CKSAT.. PFINT1...

0.50 10. 0.06 80. 0.10D-02

COMPUTED SOIL PARAMETERS

J7 0
i8 0
J9 1

4.0000



SOIL TYPE Al A2 Si S2 XK.

1 0.66667 0.13999 0.16667 0.02000 0.02299

SOIL TYPE 1

XR 0.23D-01
PFR 0.59D+01
PR -0.71D+06
SS 0.50D+02

ENT -0.11D-05

0.55D-01
0.42D+01

-0.1 7D+05
0.4 9D+02

-0.1 7D-05

0.59D-01
0.41D+01

-0.1 1D+05
0.47D+02

-0. 21D-05

0.610-01
0.40D+01

-0.94D+04
0.45D+02

-0.24D-05

0.62D-01
0.39D+01

-0.86D+04
0.430+02

-0.25D-05

0.62D-01
0.390+01

-0.8 1D+04
0.42D+02

-0.27D-05

0.63D-01
0.390+01

-0.77D+04
0.41D+02

-0.27D-05

0.63D-01
0.39D+01

-0. 76D+04
0.66D+01

-0.15D-01

ELEMENT DATA

ELEMENT IS IH X(L,1) X(L,2) XWRE(L.1) XWRE(L.2) XOLD

1
2
3
4
5
6
7
8
9

10

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172

0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172
0.0172

SIMULATION PERIOD NUMBER 1

DURATION
START TIME
END TIME
NBCP
BCP
NBCT
BCT

500.00 SECONDS
0.0 SECONDS
0.500D+03 SECONDS
1

-0.12D+07
I
0.20D+02

H

0.500+00
0.10D+01

-0. 10 D+02



MASS BALANCE INFORMATION

DATA FOR CURRENT TIME STEP

SURFACE FLUX RATE
BOTTOM FLUX RATE
NET FLUX RATE
RATE OF STORAGE CHANGE

PERCENT ERROR

-0.95175D-07
-0.48668D-11
0.95170D-07
0.951210-07

CM/S
CM/S
CM/S
CM/S

-0.05124

CUMULATIVE DATA

NET TOTAL FLUX
TOTAL STORAGE CHANGE

0.27902D-03 CM
0.27895D-03 CM

PERCENT ERROR

ENERGY BALANCE INFORMATION

DATA FOR CURRENT TIME STEP

SURFACE FLUX RATE
BOTTOM FLUX RATE
NET FLUX RATE
RATE OF STORAGE CHANGE

PERCENT ERROR

CUMULATIVE DATA

NET TOTAL FLUX
TOTAL STORAGE CHANGE

PERCENT ERROR

MATRIC HEAD

-0.11401D-04 CAL/CM2-S
-0.367760-14 CAL/CM2-S
0.11401D-04 CAL/CM2-S
0.11401D-04 CAL/CM2-S

-0.00002

0.97591D-02 CAL/CM2
0.97567D-02 CAL/CM2

-0.02430

-1379139.00
-1379136.35
-1241223.30

2 -1379138.37
7 -1379133.94

3 -1379138.14
8 -1379095.30

4 -1379137.77
9 -1378251.36

5 -1379137.20
10 -1364372.29

-0.02281

1
6

11

Ln



TEMPERATURE

20.00075022518
20.00338896120
20.00000000000

2 20.00083794392
7 20.00477655602

3 20.00111127388
8 20.00651587249

4 20.00159871587
9 20.00851060970

5 20.00234237771
10 20.00955013690

MOISTURE CONTENT

0.017198004
0.017198026
0.017198066
0.017203731

1
4
6
9

2
1
2
1

0.017198009
0.017198026
0.017198105
0.017203731

2
4
7
9

1
2
1
2

0.017198009
0.017198043
0.017198105
0.017291659

2
5
7
10

2
1
2
1

0.017198015
0.017198043
0.017198379
0.017291659

3
5
8
10

1
2
1
2

0. 017198015
0.017198066
0.017198379
0.018113153

SIMULATION PERIOD NUMBER 2

500.00
0.500D+03
0. 1 OOD+04
1

-0.12D+07
1
0. 20D+02

SECONDS
SECONDS
SECONDS

MASS BALANCE INFORMATION

DATA FOR CURRENT TIME STEP

SURFACE FLUX RATE
BOTTOM FLUX RATE
NET FLUX RATE
RATE OF STORAGE CHANGE

PERCENT ERROR

-0.86276D-07
-0.71493D-11
0.86269D-07
0.86258D-07

-0.01267

CUMULATIVE DATA

1
6

11

1
3
6
8

1
2
1
2

DURATION
START TIME
END TIME
NBCP
BCP
NBCT
BCT

CM/S
CM/S
CM/S
CM/S



NET TOTAL FLUX
TOTAL STORAGE CHANGE

PERCENT ERROR

ENERGY BALANCE INFORMATION

DATA FOR CURRENT TIME STEP

SURFACE FLUX RATE
BOTTOM FLUX RATE
NET FLUX RATE
RATE OF STORAGE CHANGE

PERCENT ERROR

CUMULATIVE DATA

NET TOTAL FLUX
TOTAL STORAGE CHANGE

0.32 407D-03 CM
0.32401D-03 CM

-0.02076

-0.769710-05 CAL/CM2-S
-0.211080-13 CAL/CM2-S
0.769710-05 CAL/CM2-S
0.76971D-05 CAL/CM2-S

-0.00004

0.14294D-01 CAL/CM2
0.142920-01 CAL/CM2

PERCENT ERROR

MATRIC HEAD

-1379139.00
-1379133.77
-1241223.30

TEMPERATURE

1 20.00295556862
6 20.00585498169

11 20.00000000000

2 -1379136.77
7 -1379118.83

2 20.00307317122
7 20.00708498899

3 -1379136.35
8 -1378898.38

3 20.00342594424
8 20.00847181009

4 -1379135.91
9 -1376189.12

4 20.00401146737
9 20.00977018176

5 -1379135.28
10 -1352587.32

5 20.00482450747
10 20.00921351084

MOISTURE CONTENT

1 2 0.017198058 2 1 0.017198058

-0.01661

1
6

11

-i

2 2 0.017198067 3 1 0.0171980671 1 0.017198042



3 2 0.017198080
6 1 0.017198125
8 2 0.017216759

4 1 0.017198080
6 2 0.017198241
9 1 0.017216759

4 2 0.017198098
7 1 0.017198241
9 2 0.017367005

5 1 0.017198098
7 2 0.017199653

10 1 0.017367005

5 2 0.017198125
8 1 0.017199653

10 2 0.018113153

00



A.5.2 Example 2

The second example simulates isothermal infiltration into

Yolo light clay using (5.1) and (5.2). This is the problem whose

solution is plotted in Figure 5.3. Simulation periods ending at

103 sec. and 10 sec. are used. The computed soil parameters,

although included in the output, are irrelevant, as the hydraulic

functions were specified explicitly in SOILI2.

Example 2

CON

0

0

0

U;

0

O
0
In

Input

o0000000000000000000OC00000000000000000000000000*

0 0 Il ) aa;a a; 0L 0)0a ;0 0 0 ;a; 0 IALA) 0; 0; LA ) a ; 0 0;0 a0 0 0LAaLa; 0AL 0 a; L 0A0;0;0
-0 1 1 1 1 1 1 IIIII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1I 1 1 I

-0 Ln q r V A W V V Cl V CO C4 CN C4 CN C4 C4 C4 C4 C4 C-CO ( CCl.-'-O

i 0
V 0

179

0

0

0

0

V-

0

0

0

O0

0

0

O0

O

0



1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0

0 1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
1 1 0.0
I 1 0.0
1 1 0.0

0.495 1.0 0.05 10.0 0.0000123 4.
1.D+03 0.1 1 0.00D+00 1 20.0
9.D+03 -0.1 1 0.00D+00 1 20.0

-1.



OUTPUT OPTIONS -- 1=ACTION O=NO ACTION

OUTPUT OPTIONS I1 1
SIMULATION OPTIONS 12 1
OTHER SIMULATION SCALARS 13 1
NODE AND ELEMENT INFORMATION 14 1
INPUT SOIL INFORMATION 15 1
COMPUTED SOIL PARAMETERS I6 1
SIMULATION PERIOD PARAMETERS 17 1
MATRIC POTENTIAL 18 0

-1 - NEVER
0 - EVERY SIMULATION PERIOD
1 - EVERY TIME STEP
2 - EVERY ITERATION

TEMPERATURE SOLUTION 19 -1
(SAME CODE AS FOR 18)

MOISTURE CONTENT I10 0
-1 - NEVER

0 - EVERY SIMULATION PERIOD
1 - EVERY TIME STEP

MASS BALANCE INFORMATION Ill 0
(SAME CODE AS FOR 110)

ENERGY BALANCE INFORMATION 112 -1
(SAME CODE AS FOR I10)

NOT IN USE 113 0
NOT IN USE 114 0 z
NOT IN USE 115 0
NOT IN USE 116 0
MOISTURE EQUATION COEFFICIENTS 117 0
MOISTURE EQUATION MATRICES I18 0
MOISTURE EQUATION 119 0
TEMPERATURE EQUATION COEFFICIENTS 120 0
TEMPERATURE EQUATION MATRICES 121 0
TEMPERATURE EQUATION 122 0
WRITE SOLUTION ON FILE 123 EACH PERIOD 123 0
IF EQUAL TO 3, USE ISOTHERMAL EQUATION 124 3
NOT IN USE 125 0

SIMULATION OPTIONS

NOT IN USE i 0
NOT IN USE 12 0
MASS LUMPING OPTION d3 2
ENERGY LUMPING OPTION J4 0
USE ALTERNATE RETENTION CURVE J5 1
NOT IN USE J6 0



NOT IN USE J7 0
NOT IN USE d8 0
ITERATIVE MOISTURE CAPACITY SCHEME J9 1

OTHER SIMULATION SCALARS

NUMBER OF NODES 46
NUMBER OF ELEMENTS 45
NUMBER OF SOIL TYPES 1
MOISTURE CONVERGENCE CRITERION 0.5D-01
TEMP. CONVERGENCE CRITERION 0.ID+00 DEG CELSIUS
REFERENCE TEMPERATURE 20. DEG CELSIUS
DESIRED NO. OF ITERATIONS 2

NODAL DATA

NODE Z P T
------------------------

1 -50.00 -600. 20.0
2 -48.00 -600. 20.0
3 -46.00 -600. 20.0
4 -44.00 -600. 20.0
5 -42.00 -600. 20.0
6 -40.00 -600. 20.0
7 -38.00 -600. 20.0
8 -36.00 -600. 20.0
9 -34.00 -600. 20.0
10 -32.00 -600. 20.0
11 -30.00 -600. 20.0
12 -29.00 -600. 20.0
13 -28.00 -600. 20.0
14 -27.00 -600. 20.0
15 -26.00 -600. 20.0
16 -25.00 -600. 20.0
17 -24.00 -600. 20.0
18 -23.00 -600. 20.0
19 -22.00 -600. 20.0
20 -21.00 -600. 20.0
21 -20.00 -600. 20.0
22 -19.00 -600. 20.0
23 -18.00 -600. 20.0
24 -17.00 -600. 20.0
25 -16.00 -600. 20.0
26 -15.00 -600. 20.0



27 -14.00 -600. 20.0
28 -13.00 -600. 20.0
29 -12.00 -600. 20.0
30 -11.00 -600. 20.0
31 -10.00 -600. 20.0
32 -9.00 -600. 20.0
33 -8.00 -600. 20.0
34 -7.00 -600. 20.0
35 -6.00 -600. 20.0
36 -5.00 -600. 20.0
37 -4.50 -600. 20.0
38 -4.00 -600. 20.0
39 -3.50 -600. 20.0
40 -3.00 -600. 20.0
41 -2.50 -600. 20.0
42 -2.00 -600. 20.0
43 -1.50 -600. 20.0
44 -1.00 -600. 20.0
45 -0.50 -600. 20.0
46 0.0 -600. 20.0

INPUT SOIL PARAMETERS

SOIL TYPE POR PB XWILT EM CKSAT . PFINT1
-------------------------------------------------

1 0.49 1. 0.05 10. 0.12D-04 4.0000

COMPUTED SOIL PARAMETERS

SOIL TYPE Al A2 Si S2 XK.

1 0.49367 0.06202 0.12375 0.01786 -0.02822

SOIL TYPE 1

XR -0.28D-01 -0.280-01 -0.28D-01 -0.28D-01 -0.280-01 -0.28D-01 -0.28D-01 -0.28D-01 0.49D+00
PFR 0.59D+01 0.59D+01 0.59D+01 0.59D+01 0.59D+01 0.590+01 0.590+01 0.59D+01 0.0.
PR -0.710+06 -0.71D+06 -0.71D+06 -0.71D+06 -0.710+06 -0.71D+06 -0.71D+06 -0.710+06 -0.100+01
SS 0.31D+02 0.310+02 0.31D+02 0.310+02 0.310+02 0.310+02 0.31D+02 0.11D+02

ENT -0.10D-16 -0.21D-16 -0.31D-16 -0.41D-16 -0.520-16 -0.62D-16 -0.73D-16 -0.89D-01



ELEMENT DATA

ELEMENT IS IH X(L,1) X(L,2) XWRE(L.1) XWRE(L.21 XOLD
------- --------------------------------- ----------- ----

1 1 1 0.2376 0.2376 0.0 0.0 0.2376
2 1 1 0.2376 0.2376 0.0 0.0 0.2376
3 1 1 0.2376 0.2376 0.0 0.0 0.2376
4 1 1 0.2376 0.2376 0.0 0.0 0.2376
5 1 1 0.2376 0.2376 0.0 0.0 0.2376
6 1 1 0.2376 0.2376 0.0 0.0 0.2376
7 1 1 0.2376 0.2376 0.0 0.0 0.2376
8 1 1 0.2376 0.2376 0.0 0.0 0.2376
9 1 1 0.2376 0.2376 0.0 0.0 0.2376

10 1 1 0.2376 0.2376 0.0 0.0 0.2376
11 1 1 0.2376 0.2376 0.0 0.0 0.2376
12 1 1 0.2376 0.2376 0.0 0.0 0.2376
13 1 1 0.2376 0.2376 0.0 0.0 0.2376
14 1 1 0.2376 0.2376 0.0 0.0 0.2376
15 1 1 0.2376 0.2376 0.0 0.0 0.2376
16 1 1 0.2376 0.2376 0.0 0.0 0.2376
17 1 1 0.2376 0.2376 0.0 0.0 0.2376
18 1 1 0.2376 0.2376 0.0 0.0 0.2376
19 1 1 0.2376 0.2376 0.0 0.0 0.2376
20 1 1 0.2376 0.2376 0.0 0.0 0.2376
21 1 1 0.2376 0.2376 0.0 0.0 0.2376
22 1 1 0.2376 0.2376 0.0 0.0 0.2376
23 1 1 0.2376 0.2376 0.0 0.0 0.2376
24 1 1 0.2376 0.2376 0.0 0.0 0.2376
25 1 1 0.2376 0.2376 0.0 0.0 0.2376
26 1 1 0.2376 0.2376 0.0 0.0 0.2376
27 1 1 0.2376 0.2376 0.0 0.0 0.2376
28 1 1 0.2376 0.2376 0.0 0.0 0.2376
29 1 1 0.2376 0.2376 0.0 0.0 0.2376
30 1 1 0.2376 0.2376 0.0 0.0 0.2376
31 1 1 0.2376 0.2376 0.0 0.0 0.2376
32 1 1 0.2376 0.2376 0.0 0.0 0.2376
33 1 1 0.2376 0.2376 0.0 0.0 0.2376
34 1 1 0.2376 0.2376 0.0 0.0 0.2376
35 1 1 0.2376 0.2376 0.0 0.0 0.2376
36 1 1 0.2376 0.2376 0.0 0.0 0.2376
37 1 1 0.2376 0.2376 0.0 0.0 0.2376
38 1 1 0.2376 0.2376 0.0 0.0 0.2376
39 1 1 0.2376 0.2376 0.0 0.0 0.2376
40 1 1 0.2376 0.2376 0.0 0.0 0.2376
41 1 1 0.2376 0.2376 0.0 0.0 0.2376
42 1 1 0.2376 0.2376 0.0 0.0 0.2376
43 1 1 0.2376 0.2376 0.0 0.0 0.2376
44 1 1 0.2376 0.2376 0.0 0.0 0.2376
45 1 1 0.2376 0.2376 0.0 0.0 0.2376



SIMULATION PERIOD NUMBER 1

DURATION
START TIME
END TIME
NBCP
BCP
NBCT
BCT

1000.00
0.0
0.1OOD+04
1
0.0
1
0.20D+02

SECONDS
SECONDS
SECONDS

MASS BALANCE INFORMATION

DATA FOR CURRENT TIME STEP

SURFACE FLUX RATE
BOTTOM FLUX RATE
NET FLUX RATE
RATE OF STORAGE CHANGE

PERCENT ERROR

CUMULATIVE DATA

NET TOTAL FLUX
TOTAL STORAGE CHANGE

PERCENT ERROR

-0-19876D-03
-0.18513D-07
0.19875D-03
O.19824D-03

CM/S
CM/S
CM/S
CM/S

-0.25290

0.44452D+00 CM
0.44092D+00 CM

-0.81632

MATRIC HEAD

-599.97
-599.97
-599-97
-599.97
-599.97
-599.97
-599-97
-599.95
-332.72

0.0

-j1

1
6

11
16
21
26
31
36
41
46

2
7
12
17
22
27
32
37
42

-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-599.74
-140.61

3
8

13
18
23
28
33
38
43

-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-598.20
-55.41

4
9

14
19
24
29
34
39
44

-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-587.48
-23.20

5
10
15
20
25
30
35
40
45

-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-525.73

-8.86



MOISTURE CONTENT

0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600050
0.237601780
0.238641359
0.270117908
0.451660433

1 2
4 1
6 2
9 1

11 2
14 1
16 2
19 1
21 2
24 1
26 2
29 1
31 2
34 1
36 2
39 1
41 2
44 1

0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600050
0.237618976
0.238641359
0.328994923
0.451660433

2
4
7
9

12
14
17
19
22
24
27
29
32
34
37
39
42
44

1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600108
1 0.237618976
2 0.244282830
1 0.328994923
2 0.483968231

2
5
7
10
12
15
17
20
22
25
27
30
32
35
37
40
42
45

2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600108
2 0.237745811
1 0.244282830
2 0.398499993
1 0.483968231

3 1 0.237600048
5 2 0.237600048
8 1 0.237600048

10 2 0.237600048
13 1 0.237600048
15 2 0.237600048
18 1 0.237600048
20 2 0.237600048
23 1 0.237600048
25 2 0.237600048
28 1 0.237600048
30 2 0.237600048
33 1 0.237600048
35 2 0.237601780
38 1 0.2377458.11
40 2 0.270117908
43 1 0.398499993
45 2 0.495000000

SIMULATION PERIOD NUMBER 2

9000.00 SECONDS
0.100D+04 SECONDS
0.100D+05 SECONDS
1
0.0
1
0.20D+02

MASS BALANCE INFORMATION

DATA FOR CURRENT TIME STEP

SURFACE FLUX RATE
BOTTOM FLUX RATE
NET FLUX RATE

-0.67074D-04 CM/S
-0-18513D-07 CM/S
0.670560-04 CM/S

1 1
3 2
6 1
8 2

11 1
13 2
16 1
18 2
21 1
23 2
26 1
28 2
31 1
33 2
36 1
38 2
41 1
43 2

00ONA

DURATION
START TIME
END TIME
NBCP
BCP
NBCT
BCT



RATE OF STORAGE CHANGE 0.66924D-04 CM/S

PERCENT ERROR

CUMULATIVE DATA

NET TOTAL FLUX
TOTAL STORAGE CHANGE

PERCENT ERROR

0.13138D+o1 CM
0.13045D+01 CM

-0.71319

MATRIC HEAD

-599.97
-599.97
-599.97
-599.97
-599.97
-599.97
-591.37
-78.61
-14.76

0.0

MOISTURE CONTENT

0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600057
0.237600308
0.237633848
0.238314139
0.273712816
0.372825898
0.443295867
0.470381922
0.492134519

1
4
6
9

11
14
16
19
21
24
26
29
31
34
36
39
41
44

0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600048
0.237600057
0.237601410
0.237633848
0.240626903
0.273712816
0.400747672
0.443295867
0.479777386
0.492134519

2 1 0.237600048
4 2 0.237600048
7 1 0.237600048
9 2 0.237600048
12 1 0.237600048
14 2 0.237600048
17 1 0.237600048
19 2 0.237600048
22 1 0.237600048
24 2 0.237600096
27 1 0.237601410
29 2 0.237759005
32 1 0.240626903
34 2 0.318481380
37 1 0.400747672
39 2 0.458426553
42 1 0.479777386
44 2 0.494772514

2
5
7
10
12
15
17
20
22
25
27
30
32
35
37
40
42
45

2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600048
1 0.237600048
2 0.237600049
1 0.237600096
2 0.237606955
1 0.237759005
2 0.249236664
1 0.318481380
2 0.424261999
1 0.458426553
2 0.487002868
1 0.494772514

3 1 0.237600048
5 2 0.237600048
8 1 0.237600048

10 2 0.237600048
13 1 0.237600048
15 2 0.237600048
18 1 0.237600048
20 2 0.237600048
23 1 0.237600049
25 2 0.237600308
28 1 0.237606955
30 2 0.238314139
33 1 0.249236664
35 2 0.372825898
38 1 0.424261999
40 2 0.470381922
43 1 0.487002868
45 2 0.495000000

-0.19633

1
6

11
16
21
26
31
36
41
46

00

2
7

12
17
22
27
32
37
42

-599.97
-599.97
-599.97
-599.97
-599.97
-599.96
-564.65
-53.68
-10.71

3
8
13
18
23
28
33
38
43

-599.97
-599.97
-599.97
-599.97
-599.97
-599.89
-478.68
-37.81
-7.45

4
9

14
19
24
29
34
39
44

-599.97
-599.97
-599.97
-599.97
-599.97
-599.56
-313.85
-27.32
-4.71

5
10
15
20
25
30
35
40
45

-599.97
-599.97
-599.97
-599.97
-599.97
-598.04
-162.24

-20.05
-2.27

1 1
3 2
6 1
8 2

11 1
13 2
16 1
18 2
21 1
23 2
26 1
28 2
31 1
33 2
36 1
38 2
41 1
43 2
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C MAI00020
C SPLASHWATR1 MAI00030
C ----------- MAI00040
C MAI00050
C MAI00060
C SIMULATION PROGRAM FOR LAND SURFACE HEAT AND WATER TRANSPORT. MAI00070
C EDITION 1. MAI00080
C MAI00090
C 23 JUNE 1980 MAI00100
c MAI00110

C MAI00130
C MAI00140
C THIS COMPUTER PROGRAM SIMULATES THE ONE-DIMENSIONAL FLOW OF MAI00150
C MOISTURE AND HEAT IN A VERTICAL SOIL COLUMN BY SOLVING THE MAI00160
C PRIMITIVE EQUATIONS OF MASS AND HEAT CONSERVATION USING THE MAI00170
C GALERKIN FINITE ELEMENT METHOD. THIS PRELIMINARY VERSION OF MAI00180
C THE PROGRAM WAS USED TO SOLVE THE EXAMPLE PROBLEMS IN CHAPTER MAI00190
C 5 OF P.C.D. MILLY, "THE COUPLED TRANSPORT OF WATER AND HEAT IN MAI00200
C A VERTICAL SOIL COLUMN UNDER ATMOSPHERIC EXCITATION." S.M. THESIS. MAI00210
C M.I.T. DEPARTMENT OF CIVIL ENGINEERING, 1980. ALL REFERENCES CON- MAI00220
C TAINED IN THIS DOCUMENTATION PERTAIN TO THAT THESIS. WHICH CONTAINS MAI00230
C AN OUTLINE OF THE NUMERICAL METHOD EMPLOYED HERE (CHAPTER 4). MAI00240
C MA100250
C MAI00260

C MAI00290
C LIST OF VARIABLES CONTAINED IN UNNAMED COMMON BLOCK MAI00300
C MAI00310

C NAME DESCRIPTION MAI00330

C(NN,2)

D(NN,2)
B1 (NL,2)
B7(NL,2)
CK(NL,2)
C1 (NL,2)
C2(NL,2)
C3(NL,2)
C4(NL,2)
C5(NL,2)
DXDP(NL 2)

CONDUCTIVITY MATRIX ASSOCIATED WITH MATRIC HEAD MAI00350
(DIAGONAL ELEMENTS ARE STORED IN C(I.1). ABOVE- MA100360
DIAGONAL ELEMENTS IN C(I.2). NO OTHER ELEMENTS OF MAI00370
THIS OR OTHER SYMMETRIC. TRIDIAGONAL MATRICES NEED TOMAI00380
BE STORED. MAI00390
CONDUCTIVITY MATRIX ASSOCIATED WITH TEMPERATURE MAI00400
VOLUMETRIC AIR CONTENT OF MEDIUM MAI00410
"HYDRAULIC CONDUCTIVITY" ASSOCIATED WITH VAPOR PHASE MA100420
HYDRAULIC CONDUCTIVITY FOR LIQUID FLOW MAI00430
STORAGE COEFFICIENT ASSOCIATED WITH MATRIC HEAD MAI00440
STORAGE COEFFICIENT ASSOCIATED TEMPERATURE MAI00450
CONDUCTIVITY TERM ASSOCIATED WITH MATRIC HEAD MAI00460
CONDUCTIVITY TERM ASSOCIATED WITH TEMPERATURE MAI00470
"CONSTANT" VECTOR TERM MAI00480
RATE OF CHANGE OF MOISTURE CONTENT WITH RESPECT TO MAI00490
CAPITAL "PSI" MAI00500



EF(NL,2)
X(NL,2)
XX(NL,2)

XWRE(NL 2)

B3(NN)

B4(NN)

COR(NN)

P(NN)

PFU(NN)
PP(NN)

PPOLD(NN)
RHOV(NN)
T (NN)
TT(NN)

TTOLD(NN)
Z(NN)
DELTA(NL)
XOLD(NL)

POR(NS)

BCP

BCT

CPLGE
CPSI
DELT
DELTO
D LOGE
DLN10
DLT

DURTN
PERR
PN

RHOL
ST
STI

0

LIQUID ISLAND ENHANCEMENT FACTOR FOR VAPOR FLOW
MOISTURE CONTENT AT BEGINNING OF NEW TIME STEP
MOISTURE CONTENT AT END OF CURRENT TIME STEP
(UPDATED ITERATIVELY)
VALUE OF THE MAIN WETTING FUNCTION EVALUATED AT
THE EFFECTIVE REVERSAL VALUE OF CAPITAL "PSI"
DERIVATIVE OF VAPOR DENSITY WITH RESPECT TO MATRIC
HEAD, THE TEMPERATURE BEING HELD CONSTANT
DERIVATIVE OF VAPOR DENSITY WITH RESPECT TO
TEMPERATURE, THE MATRIC HEAD BEING HELD CONSTANT
THE TEMPERATURE CORRECTION FACTOR THAT CONVERTS
MATRIC HEAD TO CAPITAL "PSIO
THE MATRIC HEAD AT THE BEGINNING OF THE CURRENT
TIME STEP
LOGARITHM TO THE BASE 10 OF CAPITAL "PSI"
THE MATRIC HEAD AT THE END OF THE CURRENT TIME STEP.
CALCULATED ITERATIVELY
VALUE OF PP FROM THE LAST ITERATION
VAPOR DENSITY
TEMPERATURE AT THE START OF THE CURRENT TIME STEP
TEMPERATURE AT THE END OF THE CURRENT TIME STEP.
CALCULATED ITERATIVELY
VALUE OF TT FROM LAST ITERATION
Z-COORDINATE OF NODE
LENGTH OF ELEMENT
AVERAGE MOISTURE CONTENT IN ELEMENT AT START OF LAST
TIME STEP
MAXIMUM MOISTURE CONTENT REACHED UPON RE-WETTING
A PREVIOUSLY DRY SOIL. DENOTED BY THETA-SUB-U
IN MILLY (1980), IT IS APPROXIMATELY
NINE-TENTHS OF TOTAL POROSITY
VALUE OF SPECIFIED MATRIC HEAD OR OF MASS FLUX AT
SURFACE BOUNDARY
VALUE OF TEMPERATURE OR OF HEAT FLUX AT SURFACE
BOUNDARY
PRODUCT OF CPSI AND LOG BASE 10 OF E
TEMPERATURE COEFFICIENT OF MATRIC HEAD
DURATION OF CURRENT TIME STEP
DURATION OF LAST TIME STEP
LOG BASE 10 OF E
NATURAL LOG OF TEN
POSSIBLE INPUT VALUE OF DELT FOR FIRST TIME STEP OF
A SIMULATION PERIOD
DURATION OF CURRENT SIMULATION PERIOD
CONVERGENCE CRITERION FOR MATRIC HEAD
SPECIFIED VALUE OF MATRIC HEAD WHEN FIRST-TYPE B.C.
IS USED
DENSITY OF LIQUID WATER
CURRENT TOTAL ENTHALPY STORAGE
INITIAL VALUE OF ST AT START OF ENTIRE SIMULATION

MAI00510
MAI00520
MAI00530
MAI00540
MAI00550
MAI00560
MAI00570
MAI00580
MAI00590
MAI00600
MAI00610
MAI00620
MAI00630
MAI00640
MAI00650
MAI00660
MAI00670
MAI00680
MAI00690
MAI00700
MAI00710
MAI00720
MAI00730
MAI00740
MAI00750
MAI00760
MAI00770
MAI00780
MAI00790
MAI00800
MAI00810
MAI00820
MAI00830
MAI00840
MAI00850
MAI00860
MAI00870
MAI00880
MAI00890
MAI00900
MAI00910
MAI00920
MAI00930
MAI00940
MAI00950
MAI00960
MAI00970
MAI.00980
MAI00990
MAI01000



SX
SXI
TEND

TERR
TFLUX
THETA
TIME
TSAVE1

TSAVE2
TZERO
XFLUX
ZETA

C IH(NL)
C
C IS(NL)
C I1 - 125
C Ii
C 12
C 13
C 14
C 15
C 16
C 17
C 18

19
110

I 1
112
113
114
115
116
117
118
119
120
121
122
123

CURRENT TOTAL WATER STORAGE
INITIAL VALUE OF SX
TIME TO BE REACHED AT THE END OF THE CURRENT
SIMULATION PERIOD
CONVERGENCE CRITERION FOR TEMPERATURE
CUMULATIVE NET INFLUX OF HEAT THROUGH BOUNDARIES
NOT IN USE
TIME ELAPSED SINCE START OF SIMULATION
TEMPERATURE AT END OF TIME STEP AT BOTTOM OF COLUMN
SAVED FOR LATER USE IN TBC2
NOT IN USE
REFERENCE TEMPERATURE
CUMULATIVE NET INFLUX OF WATER THROUGH BOUNDARIES
TEMPERATURE GRADIENT ENHANCEMENT FACTOR FOR VAPOR
FLOW
WETTING DIRECTION VARIABLE - 1 IF WETTING.
2 IF DRYING
SOIL TYPE OF ELEMENT
OUTPUT OPTIONS (1=ACTION: OuNO ACTION)
OUTPUT OPTIONS
SIMULATIONS OPTIONS (J1-d9)
OTHER SIMULATION SCALARS
NODE AND ELEMENT INFORMATION
INPUT SOIL INFORMATION
COMPUTED SOIL PARAMETERS
SIMULATION PERIOD PARAMETERS
MATRIC POTENTIAL

-1 - NEVER
0 - EVERY SIMULATION PERIOD
1 - EVERY TIME STEP
2 - EVERY ITERATION

TEMPERATURE (SAME CODE AS FOR 18)
MOISTURE CONTENT

-1 - NEVER
0 - EVERY SIMULATION PERIOD
1 - EVERY TIME STEP

MASS BALANCE INFORMATION (SAME CODE AS FOR I10)
ENERGY BALANCE INFORMATION (SAME CODE AS FOR I10)
NOT IN USE
NOT IN USE
NOT IN USE
NOT IN USE
MOISTURE EQUATION COEFFICIENTS
MOISTURE EQUATION MATRICES
MOISTURE EQUATION
TEMPERATURE EQUATION COEFFICIENTS
TEMPERATURE EQUATION MATRICES
TEMPERATURE EQUATION
IF NON-ZERO, WRITE SOLUTION AT END OF PERIOD ON
FILE 123

MAI01010
MAI01020
MAI01030
MAI01040
MAI01050
MAI01060
MAI01070
MAIO1080
MAI01090
MAI01 100
MAI01 110
MAIOI 120
MAIOl 130
MAIOl 140
MAIOl 150
MAIOl 160
MAI01 170
MAIOl 180
MAIOl 190
MAIO1200
MAI01 210
MAI01220
MAI01230
MAI01240
MAI01250
MAI01260
MAI01270
MA101280
MAIOl 290
MAI01300
MAI01 310
MAI01320
MAI01330
MAI01340
MAI01350
MAI01360
MAI01370
MAI01380
MAI01390
MAI01400
MAI01 410
MAI01420
MAI01430
MAI01440
MAI01450
MAI01460
MAI01470
MAI01480
MAI01490
MAI01500



C 124 IF EQUAL TO 3, SOLVE ISOTHERMAL MOISTURE EQUATION MA101510
C 125 NOT IN USE MAI01520
C J1 - J9 SIMULATION OPTIONS (1=ACTION; O=NO ACTIONS) MA101530
C dl NOT IN USE MAI01540

C J2 NOT IN USE MAI01550
C U3 EQUALS 1 OR 2 FOR A MASS LUMPING OPTION MAI01560
C d4 EQUALS 1 OR 2 FOR AN ENERGY LUMPING OPTION MAI01570
C J5 ALTERNATE WETTING CURVE EXPRESSION TO BE USED MAI01580
C U6 NOT IN USE MAI01590
C J7 NOT IN USE MAI01600

C J8 IF EQUAL TO 2, USE GEOMETRIC MEAN FOR ELEMENT MAI01610
C INTEGRATION OF CONDUCTIVITY TERMS MA101620
C U9 NOT IN USE MAI01630
C ITDES TARGET NUMBER OF ITERATIONS PER TIME STEP MA101640
C KIT CURRENT ITERATION NUMBER MAI01650
C KK NOT IN USE MAI01660
C KT TIME STEP NUMBER MAI01670
C NBCP TYPE OF SURFACE B.C. ON MATRIC POTENTIAL MAI01680
C NBCT TYPE OF SURFACE B.C. ON TEMPERATURE MA101690
C NL NUMBER OF ELEMENTS MAI01700
C NN NUMBER OF NODES MAI01710
C NPER NUMBER OF SIMULATION PERIOD MAI01720
C NS NUMBER OF SOIL TYPES MAI01730
C NSTEPS NOT IN USE .. MAI01740
C********** *************************************************************MAIO1 750

C MAI01770
C COMMON AND DIMENSION STATEMENTS MAI01780
C MAI01790

IMPLICIT REAL*8(A-H,O-Z) MAI01810
COMMON C(46,2),D(46,2) MAI01820
COMMON B1(45,2),B7(45,2),CK(45.2).C1(45.2),C2(45.2).C3(45.2). MAI01830
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2).X(45.2).XX(45.2),XWRE(45.2) MAI01840
COMMON B3(46),B4(46),COR(46), MAI01850
*DELTA(46),P(46), MAI01860
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). MA101870
*TT(46),TTOLD(46),Z(46) MAI01880
COMMON XOLD(45) MAI01890
COMMON POR(44) MAI01900
COMMON BCP,BCT,CPLGE,CPSI,DELT.DELTO.DLOGEDLN1O.OLT.DURTN.PERR. MAI01910
*PN,RHOL,ST,STI,SX,SXI,TEND,TERR.TFLUX.THETA.TIME.TSAVE1.TSAVE2. MAI01920
*TZERO,XFLUX,ZETA MAI01930
COMMON IH(46),IS(46) MAI01940
COMMON I1,I2,I3,14,15,I6,I7,I8,19.110.111.112.113.114,115.116,117.MAI01950
*I18,119,I20,I21,I22,I23,I24,I25.,l.J2.U3.U4.d5.J6.J7.d8,d9.ITDES. MAI01960
*KIT,KK,KT,NBCP,NBCT,NL,NN,NPER.NS.NSTEPS . MAI01970

DIMENSION A(46,2),B(46,2) MAI01990
C MA102000



C A(NN,2) STORAGE MATRIX ASSOCIATED WITH MATRIC HEAD MAIO2010

C B(NN,2) STORAGE MATRIX ASSOCIATED WITH TEMPERATURE ... MAI02020

C MAI02040
C PERFORM INITIALIZATIONS. MAI02050

C MAI02060
CALL INIT2 MAI02070

C MAI02080

C MAIO2100
C BEGIN A NEW SIMULATION PERIOD. MAIO2110

C MAI02120
10 CALL NEWPR2 MAI02130

C .. MAI02140

C MAIO2160
C BEGIN A NEW TIME STEP. MAIO2170
C MAIO2180

20 CALL NWSTP2 MAIO2190
C MAI02200
C************ ************ ****** ****** ********** ****************.*******MAI0221 0

C MAI02230

C MAI02240
C MAI02250
C THE MAIN ITERATION LOOP FOLLOWS. THE MASS AND HEAT MAI02260
C CONSERVATION EQUATIONS ARE SOLVED ALTERNATELY UNTIL MAI02270
C SOME PRE-SPECIFIED DEGREE OF CONVERGENCE IS OBTAINED. MAI02280
C SEE SECTION 4.4. MAI02290

C MAI02300
C MAI02310.
C .. MAI02320

C MAI02340

C DETERMINE THE COEFFICIENTS IN THE MASS CONSERVATION MAI02350
C EQUATION (SECTION 4.2.1). MAI02360
C MAI02370

30 CALL PPRAM2 MAI02380
C .. MAI02390

C MAI02410
C SET UP THE GALERKIN FINITE ELEMENT MATRICES FOR THE MASS MAI02420

C CONSERVATION EQUATION (SECTION 4.2.2). MAI02430
C MAI02440

CALL MAT2(A,B,C,D,PP,C1,C2,C3,C4.CK.DELTA,1,NN.NL.I1B,I24.J2,J3.J4MAI02450
1,j8) MAI02460

C . MAI02470

C MAI02490
C FINITE DIFFERENCE THE TIME DERIVATIVE AND SET UP THE EQUATION MAI02500



C FOR THE MATRIX SOLVER (SECTION 4.3). MAI02510
C MA102520

CALL EQN2(A,BC,D,P,PP.TT,T,DELT.1.NN.NL.124.J2) MAI02530
C .. MA102540

C MAI02560
C INCORPORATE THE BOUNDARY CONDITIONS INTO THE MAI02570
C MATRIX EQUATION (SECTION 4.2.4). MAI02580
C MAI02590

CALL PBC2 MAI02600
C . . MA102610

C MA102630
C SOLVE THE TRIDIAGONAL MASS EQUATION (SECTION 4.4). MAI02640
C MA102650

CALL SOLVE2(C,PP,NN) MAI02660
C MAI02670

C MAI02690
IF(I8.EQ.2.OR.KIT.GT.4*ITDES) WRITE(6.1010) (I.PP(I).I=1.NN) MAI02700

C .. MA102710

C MAI02730
C REPEAT THE SAME SERIES OF OPERATIONS FOR THE HEAT MAI02740
C CONSERVATION EQUATION. THE ISOTHERMAL MOISTURE FLOW OPTION IS MAI02750
C INVOKED WHEN 124 IS EQUAL TO 3, IN WHICH CASE THE HEAT MAI02760
C CONSERVATION EQUATION IS SKIPPED. MAI02770
C . MAI02780

C MAI02800
IF(124.EQ.3) GO TO 40 MAI02810

C ... MA102820

C MAI02840
CALL TPRAM2 MAI02850

C MAI02860

C MAI02880
CALL MAT2(A,B,C,D,TT,C1,C2,C3,C4.C5.DELTA.2.NN.NL.I21,0.J2.J3.4.JMAI02890

18) MAI02900
C . . MAI02910

C MAI02930
CALL EQN2(B,A,D,C,T,TT,PP,PDELT.2.NN.NL.O.J2) MAI02940

C . MAI02950

C MAI02970
CALL TBC2 MAI02980

C . . MAI02990
C*********** *********************************************************MAIO3000



C MA103010

CALL SOLVE2(D,TT,NN) MAIO3020

C MAI03030
C********************************************************MAI03040

C MAI03050
IF(I9.EQ.2) WRITE(6,1020) (I,TT(I).Ix1.NN) MAI03060

C MAI03070

C MAI03090

C CHECK FOR CONVERGENCE (SECTION 4.4). IF CONVERGENCE IS MAI03100
C OBTAINED BRANCH OUT OF THE ITERATION. LOOP (GO TO 60). IF NOT. MAI03110
C PREPARE FOR A NEW ITERATION (GO TO 50). MAI03120

C MAI03130
C MAI03140

40 CALL CHK2(PP,PPOLD,NN,PERR,ICHK.1) MAI03150
IF(ICHK.EQ.0) GO TO 50 MAIO3160
IF(I24.EQ.3) GO TO 60 MAI03170
CALL CHK2(TT,TTOLD,NN,TERR,ICHK.2) MAI03180
IF(ICHK.EQ.0) GO TO 50 MAI03190
GO TO 60 MAIO3200

C . MAI03210

C MAI03230
50 IF(I25.GT.O.AND.KIT.EQ.I25) GO TO 60 MAI03240

CALL NEWIT2 MAI03250
GO TO 30 MAI03260

C .. MAI03270

C MAI03290
C END OF MAIN ITERATION LOOP. MAI03300
C . MAI03310

C MAI03340
C THE ITERATION CYCLE FOR THIS TIME STEP HAS TERMINATED. MAI03350
C COMPUTE NEW VALUES OF MOISTURE CONTENT AND PERFORM MAI03360
C THE DESIRED OUTPUT OPERATIONS. MAI03370
C MAI03380

60 CALL SOIL22(1) MAI03390
DO 70 L=1,NL MAI03400
DO 70 N=1,2 MAI03410

70 X(L,N)=XX(L,N) MAI03420
IF(I8.EQ.1) WRITE(6,1010) (I,PP(I).Iu1.NN) MAI03430
IF(I9.EQ.1) WRITE(6,1020) (ITT(I).I=1.NN) MAI03440
IF(I1O.EQ.1) WRITE(6,1030) ((L.N.X(L.N).N=1.2).Lt1.NL) MAI03450

C MAI03460

C MAI03480
C CALCULATE MASS AND HEAT BALANCES. IF REQUIRED. MAI03490
C MAI03500



IF(Il1.GE.0.OR.I12.GE.0) CALL BAL2(0) MAI03510
C .. MA103520

C MAI03540
C CHECK FOR THE END OF THE CURRENT SIMULATION PERIOD. MAI03550
C IF IT IS NOT THE END, BEGIN A NEW TIME STEP. MAI03560
C MA103570

IF(DABS(TIME-TEND).GT.1.D-10) GO TO 20 MAI03580
C MAI03590

C MAI03610
C IF THE SIMULATION PERIOD HAS ENDED. PERFORM THE DESIRED MAI03620
C OUTPUT OPERATIONS AND BEGIN A NEW SIMULATION PERIOD. MAI03630
C MAI03640

IF(18.EQ.0) WRITE(6,1010) (I,PP(I).I-l.NN) MAI03650
IF(I9.EQ.0) WRITE(6,1020) (I,TT(I).Ic1.NN) MAI03660
IF(I10.EQ.0) WRITE(6,1030) ((L,N,X(L.N).Na1.2).Lal.NL) MAI03670
IF(I23.NE.0) WRITE(I23) PP,TTX.Z.TIME MA103680
GO TO 10 MAI03690

C MAI03700
c . . . .. MAI03710

C MAI03730
C FORMAT STATEMENTS MAI03740
C . . MA103750

C MAI03770
1010 FORMAT(///10X,'MATRIC HEAD'/IOX,11(1H-)//,20(2X.5( MA103780

l13,2X,F14.2,4X)/)) MA103790
1020 FORMAT(///1OX,'TEMPERATURE'/1OX.11(IH-)//,20(2X.5( MAI03800

l13,2X,F14.11.4X)/)) MAI03810
1030 FORMAT(///10X,'MOISTURE CONTENT'/IOX.16(1H-)//.20(2X.5( MAI03820

1213,2X,F11.9,4X)/)) MA103830
END MAI03840

C MAI03850
C . . MA103860



c INI00020
SUBROUTINE INIT2 INIOD030

C . INIO0040
C********** *************************************************************INI00050
C IN100060
C THIS SUBROUTINE IS CALLED ONCE AT THE BEGINNING OF A SIMULATIONINIO0070
C TO PERFORM INITIAL INPUT AND OUTPUT OPERATIONS AND TO INITIALIZE INIO0080
C CERTAIN VARIABLES. INI00090
C INI00100
C********** *************************************************************INIOO1 10
C INIO0120
C COMMON AND DIMENSION STATEMENTS INIO0130
C . . . INIO0140

IMPLICIT REAL*8(A-H,O-Z) INIO0160
COMMON C(46,2),D(46,2) INIO0170
COMMON BI(45,2),B7(45,2),CK(45.2).CI(45.2).C2(45.2).C3(45.2). INIO0180
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2).X(45,2).XX(45.2).XWRE(45.2) INI00190
COMMON B3(46),B4(46),COR(46), INIO0200
*DELTA(46),P(46), IN100210
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). INI00220
*TT(46),TTOLD(46),Z(46) INIO0230
COMMON XOLD(45) INI00240
COMMON POR(44) INI00250
COMMON BCPBCT,CPLGE,CPSI,DELT.DELTO.DLOGE.DLN10.DLT.DURTN.PERR. INI00260
*PN,RHOL,ST,STI,SX,SXI,TEND,TERR.TFLUX.THETATIME.TSAVE1.TSAVE2. INI00270
*TZERO,XFLUX,ZETA INI00280
COMMON IH(46),IS(46) INI00290
COMMON I1,I2,I3,I4,I5,I6,I7,I8.I9.I1o.111.I12.113.114.115.I16.I17.INI00300
*I18,I19,I20,I21,I22,I23,I24,I25.J1.J2.J3.d4.J5.J6.J7.J8.J9.ITDES. INIO0310
*KIT,KK,KT,NBCP,NBCT,NL,NN,NPER.NS.NSTEPS INI00320
COMMON /CKTEE/ CKTN INI00330

C IN100350
C INITIALIZE CONSTANTS. INI00360
C INI00370

DLOGE=0.4342944819DO INI00390
DLN10=2.3025850930DO INI00400
CPSI=-0.0017 INI00410
ZETA=2.0 INI00420
RHOL=0.998 INI00430
CPLGE=CPSI*DLOGE . INI00440

C INI00460
C PERFORM INITIAL INPUT AND OUTPUT OPERATIONS. INI00470
C INI00480

READ(5,1020) 11,12,13,14,I5,I6.17.IB.19.I1O.I11.12.113.114.115. INI00500



*116,I17,118,I19,I20,I21,I22,I23.124,I25.126.127.128.129.130 INIO0510
IF (I1.NE.1) GO TO 10 INI00520
WRITE(6,1030) I1,I2,I3,I4,15,I6.17 INI00530
WRITE(6,1040) 18,I9,I10 INI00540
WRITE(6,1050) Ill,I12,I13,I14,I15.I16.I17,I18 INIO0550
WRITE(6,1060) I19,I20,121,I22,I23.I24.I25 INI00560

10 READ(5,1070) l,J2,d3,d4,J5,J6.J7.U8.09 INI00570
IF(I2.EQ.1) WRITE(6,1080) d1,d2.J3.J4.J5.J6.J7.d8.J9 IN100580
READ (5,1090) NN,NS,PERR,TERR.TZERO.ITDES INt00590
NL=NN-1 IN100600
IF(I3.EQ.1) WRITE(6,1100) NN,NL.NS.PERR.TERR.TZERO.ITDES INI00610
READ(5,1110) (Z(I),P(I),T(I),I=1.NN) INI00620
IF(I4.EQ.1) WRITE(6,1130) (I,Z(I).P(I).T(I),Iz1.NN) INI00630
READ(5,1120) (IS(L),IH(L),(XWRE(L.N).N=1.2).L=1.NL).. INI00640

C INI00660
C COMPUTE ELEMENT LENGTHS AND INITIALIZE PP AND TT. INI00670
C . .INI00680

DO 20 L=1,NL INI00700
20 DELTA(L)=Z(L+1)-Z(L) INI00710

DO 30 I=1,NN INI00720
PP(I)=P(I) INI00730

30 TT(I)=T(I) INI00740

C INI00760
C THE CALL TO SOILI2 WILL READ SOIL PROPERTY DATA AND COMPUTE INI00770
C THE RELEVANT DERIVED QUANTITIES. INI00780
C INI00790

CALL SOILI2 INIO0800
C ... .. INI00810

C INI00830
C COMPUTE INITIAL MOISTURE CONTENTS AND INITIALIZE X AND XOLD. INI00840
C INI00650

CALL SOIL22(1) INI00870
DO 40 L=1,NL INI00880
X(L,1)=XX(L,1) INI00890
X(L,2)=XX(L,2) IN100900

40 XOLD(L)=(X(L,1)+X(L,2))/2. INI00910
IF(I4.EQ.1) WRITE(6,1140) (L,IS(L).IH(L).X(L.1).X(L.2).(XWRE(L.N),INI00920

1N=1,2),XOLD(L),Lz1,NL) . .. INI00930

C INI00950
C INITIALIZE VARIABLES. INI00960
C . INI00970
C**** ****** ************************************************************INI00980

CALL BAL2(1) INI00990
SXI=SX INI01000



STI=ST INIQ1010
XFLUX=0.0 INIO1020
TFLUX=0.0 INIO1030
IF(I24.EQ.3) GO TO 50 INIO1040
CKTN=1.0 INIO1050
CKTN=CKTT2(TZERO) INIO1060

50 DELT=1.0 INIO1070
TIME=0.0 INI01080
NPER= 0 INI01090

C*******************************************************************INIO1 100
C INI01110
C FORMAT STATEMENTS INIO1120
C . . INI01130
C********* ************************************************************NI01 140
1010 FORMAT('1'///,IX,115(1H*)) INIO1150
1020 FORMAT(30I2) INIO1160
1030 FORMAT(///5X,'OUTPUT OPTIONS -- izACTION 0=NO ACTION'./5X. INI01170

139(1H=)//10X,'OUTPUT OPTIONS',26X.'I1 '.11, INIO1180
2/10X, 'SIMULATION OPTIONS',22X,'I2 '.11. INI01190
3/10X, 'OTHER SIMULATION SCALARS'.16X.'I3 '.11, INI01200
4/10X, 'NODE AND ELEMENT INFORMATION'.12X.'I4 '.11. INI01210
5/10X,'INPUT SOIL INFORMATION',18X.'15 '.11, INI0122'0
6/10X,'COMPUTED SOIL PARAMETERS'.16X.'I6 '.1. . INI01230
7/10X, 'SIMULATION PERIOD PARAMETERS'.12X.'I7 '.11) INI01240

1040 FORMAT(10X,'MATRIC POTENTIAL',24X.'I8 '.12, INI01250
1/15X, '-1 - NEVER' INIO1260
2/16X, '0 - EVERY SIMULATION PERIOD' INIO1270
3/16X, 'l - EVERY TIME STEP' INI01280
4/16X,'2 - EVERY ITERATION' INIO1290
6/10X, 'TEMPERATURE SOLUTION',20X.'l9 '.12. INI01300
7/15X,'(SAME CODE AS FOR 18)' INIO1310
8/10X, 'MOISTURE CONTENT',23X,'I10 '.12/15X.'-1 - NEVER'/16X.'0 - EVINIO1320
9ERY SIMULATION PERIOD'/16X,'1 - EVERY TIME STEP') INI01330

1050 FORMAT(10X,'MASS BALANCE INFORMATION'.15X,'I11 '.12. INIO1340
9/15X, '(SAME CODE AS FOR 110)', INIO1350
1/10X, 'ENERGY BALANCE INFORMATION',13X.'112 ',12/15X.'(SAME CODE ASINI01360
1 FOR I10)'/10X,'NOT IN USE',29X.'I13 '.11 INI01370
2/10X, 'NOT IN USE',29X,'I14 ',11. INIO1380
3/10X, 'NOT IN USE',29X,'I15 ',11. INIO1390
4/10X, 'NOT IN USE',29X,'I16 '.I1, INI01400
5/10X, 'MOISTURE EQUATION COEFFICIENTS',9X.'I17 '.11. INI01410
6/1OX,'MOISTURE EQUATION MATRICES'.13X.'I18 '.11) INI01420

1060 FORMAT(IOX,'MOISTURE EQUATION',22X.'I19 ',I1, INI01430
8/10X, 'TEMPERATURE EQUATION COEFFICIENTS'.6X,'I20 '.11. INI01440
9/10X, 'TEMPERATURE EQUATION MATRICES'.1OX.'I21 '.11. INI01450
1/1OX,'TEMPERATURE EQUATION',19X.'I22 '.I1, INI01460
2/lOX, 'WRITE SOLUTION ON FILE 123 EACH PERIOD'.1X.'I23'.I3. INI01470
3/lOX, 'IF EQUAL TO 3, USE ISOTHERMAL EQUATION'.1X.'I24'.13. INI01480
4/10X,'NOT IN'USE',29X,'I25',I3) INI01490

1070 FORMAT(9I2) INIO1500



1080 FORMAT(///5X,'SIMULATION OPTIONS'/5X.18(1Hx)/ INI01510
1/10X, 'NOT IN USE',30X,'J1 '.11. INIO1520
2/10X, 'NOT IN USE',30X,'J2 ',11, INIO1530
3/10X,'MASS LUMPING OPTION',21X.'J3 '.I. INI01540
4/10X,'ENERGY LUMPING OPTION',19X.'J4 '.11, INIO1550
5/10X,'USE ALTERNATE RETENTION CURVE'.11X.'J5 ',11. INI01560
6/10X,'NOT IN USE',30X,'J6 ',11, INIO1570
7/10X, 'NOT IN USE',30X,'J7 ',11, INIO1580
8/10X, 'NOT IN USE',30X,'J8 ',I1, INIO1590
9/10X, 'ITERATIVE MOISTURE CAPACITY SCHEME',6X.'J9 '.11) INI01600

1090 FORMAT(6G10.0) INIO1610
1100 FORMAT(///5X,'OTHER SIMULATION SCALARS'/5X,24(1H=)/ IN101620

1/10X,'NUMBER OF NODES',29X,I3, INIO1630
2/10X, 'NUMBER OF ELEMENTS',26X.13 INIO1640
3/10X, 'NUMBER OF SOIL TYPES',24X.13. INIO1650
4/10X, 'MOISTURE CONVERGENCE CRITERION'.7X.DIO.1. INI01660
5/10X, 'TEMP. CONVERGENCE CRITERION'.IOX.D10.1.' DEG CELSIUS' IN101670
6/lOX, 'REFERENCE TEMPERATURE',16X.FIO.0.'..DEG CELSIUS', INI01680
7/10X, 'DESIRED NO. OF ITERATIONS'.12X.110) IN101690

1110 FORMAT(3G10.0,50X) INIO1700
1120 FORMAT(4G10.0,40X) INIO1710
1130 FORMAT(///5X,'NODAL DATA'/5X,10(IH=)//1OX,'NOOE'.10X. INI01720

1'Z',14X,'P',14X,'T'/lOX,52(1H-)/ INIO1730
o) 2(IOX,13,6X,F8.2,7X,F1O.0,7X,F5.1)) INIO1740
o) 1140 FORMAT(///5X,'ELEMENT DATA'/5X.12(1H=)//10X. IN101750

1'ELEMENT',5X,'IS',5X,'IH',5X,'X(L.1)'.5X.'X(L.2)'.5X.'XWRE(L,1)'.5INI01760
2X,'XWRE(L,2)',5X.'XOLD'/1OX,81(1H-)/(11X.I4,2X.217.2F11.4.F14.4.F11NI01770
34.4,F10.4)) INIO1780
RETURN INIO1790
END . INIO1800



C NEW00020
SUBROUTINE NEWPR2 NEW00030

C . NEW00040

C NEW00060
C THIS SUBROUTINE READS DATA DEFINING THE BOUNDARY CONDITIONS NEW00070
C FOR A NEW SIMULATION PERIOD. (A NEW SIMULATION PERIOD BEGINS NEW00080
C WHENEVER THE BOUNDARY CONDITIONS CHANGE.) IN GENERAL. A SIMULATION NEW00090
C PERIOD WILL CONSIST OF MANY TIME STEPS. NEW00100
C NEW00110

C NEW00130
C COMMON AND DIMENSION STATEMENTS NEW00140
C NEW00150

IMPLICIT REAL*8(A-H,O-Z) NEW00170
COMMON C(46,2),D(46,2) NEW00180
COMMON B1(45,2),B7(45,2),CK(45.2).CI(45.2).C2(45.2).C3(45.2). NEW00190
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2).X(45.2).XX(45.2).XWRE(45.2) NEW00200
COMMON B3(46),B4(46),COR(46), NEW00210
*DELTA(46),P(46), NEW00220
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). NEW00230
*TT(46),TTOLD(46),Z(46) NEW00240
COMMON XOLD(45) NEW00250
COMMON POR(44) NEW00260
COMMON BCP,BCT,CPLGE,CPSI,DELT.DELTO.DLOGE.DLN1O.DLT.DURTN.PERR. NEW00270
*PN,RHOL,ST,STI,SXSXI,TENDTERR.TFLUX.THETA.TIME.TSAVE1.TSAVE2. NEW00280
*TZERO,XFLUX,ZETA NEW00290
COMMON IH(46),IS(46) NEW00300
COMMON I1,I2,I3,I4,I5,I6,I7,I8,19.I10.1 1,I12.I13.114.I15.116.I17.NEW00310
*I1B,I19,I20,I21,I22,I23,I24,125.J1.d2.J3.J4.J5.06.J7.J8.09.ITDES. NEW00320
*KIT,KK,KT,NBCP,NBCT,NL,NN,NPER.NS.NSTEPS. . NEW00330

C NEW00350
C READ PERIOD DURATION, POSSIBLE SUGGESTED INITIAL TIME STEP. NEW00360
C AND BOUNDARY CONDITIONS. PROGRAM EXECUTION IS TERMINATED NEW00370
C WHEN A NEGATIVE DURATION IS SPECIFIED. NEW00380
C . NEW00390

READ(5,1010) DURTN,DLTNBCP,BCP.NBCT.BCT NEW00410
IF (DURTN.LT.0.) STOP NEW00420
NPER=NPER+1 NEW00430
TEND=TIME+DURTN NEW00440
IF(I7.EQ.1) WRITE(6,1020) NPER.DURTN.TIMETEND.NBCP.BCP.NBCT.BCT NEW00450
KT=0 NEW00460
RETURN NEW00470

C NEW00490
C FORMAT STATEMENTS NEW00500



C . . . NEW00510

1010 FORMAT(6G1O.0) NEW00530
1020 FORMAT(////IX,115(1H*)///5X,'SIMULATION PERIOD.NUMBER'.I3./5X.27(1NEW00540

IH=)//IOX, 'DURATION',8X,F9.2.5X.' SECONDS'./10X.'START TIME'.8X.DNEW00550
*12.3,' SECONDS',/10X,'END TIME'.10X.012.3.' SECONDS'. NEW00560
2/10X,'NBCP',17X,I1/10X, NEW00570
3'BCP'.1OXD16.2/1OX,'NBCT',17X.I1/IOX.'BCT'.10X.D16.2) NEW00580
END NEW00590

******* ************ ****** ****** ******* ***** *********** **************NEW00600



C NWS00020
SUBROUTINE NWSTP2 NWS00030

C NWS00040

C NWS00060
C THIS SUBROUTINE IS CALLED BY THE MAIN PROGRAM TO PERFORM NWS00070
C THE COMPUTATIONS NECESSARY AT THE BEGINNING OF EACH TIME STEP. NWS00080
C ENTRY NEWIT2 IS CALLED AT THE START OF EACH SUBSEQUENT ITERATION. NWS00090
C NWS00100

C**************************************.****************************NWSOOI110
C NWS00120

C COMMON AND DIMENSION STATEMENTS NWS00130

C NWS00140

IMPLICIT REAL*8(A-H,O-Z) NWS00160
COMMON C(46,2),D(46,2) NWS00170
COMMON B1(45,2),B7(45,2),CK(45,2).CI(45.2),C2(45.2).C3(45.2), NWS00180
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2),X(45,2).XX(45.2).XWRE(45.2) NWS00190
COMMON B3(46),B4(46),COR(46), NWS00200
*DELTA(46),P(46), NWS00210
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). NWS00220

*TT(46),TTOLD(46),Z(46) NWS00230

0 COMMON XOLD(45) NWS00240
COMMON POR(44) NWS00250
COMMON BCP,BCT,CPLGE,CPSI,DELT.DELTO.DLOGE,DLN1O.DLT.DURTN.PERR. NWS00260
*PN,RHOL,ST,STI,SX,SXI,TEND,TERRTFLUX.THETA.TIME.TSAVE1.TSAVE2. NWS00270

*TZERO,XFLUX,ZETA NWS00280
COMMON IH(46),IS(46) NWS00290

COMMON I1,I2,I3,I4,I5,I6,17,I8,19.110.11,112.113.Ii4.I15.116.117.NWS00300
*I18,I19,l20,I21,I22,I23,124,I25.1 .J2.J3.J4,J5.J6.J7.J8.j9.ITDES. NWS00310
*KIT,KK,KT,NBCP,NBCT,NL,NN,NPER.NS.NSTEPS NWS00320

COMMON /ADHOC/ PB(44) NWS00330

DIMENSION POLD(46),TOLD(46) NWS00340

C NWS00360
C INCREMENT THE TIME STEP NUMBER AND CHOOSE A NEW TIME STEP LENGTH. NWS00370

C THE LENGTH OF THE FIRST TIME STEP OF EACH SIMULATION PERIOD MAY NWS00380
C BE SPECIFIED AS DLT. FOR LATER TIME STEPS. OR IF DLT IS LESS THAN NWS00390
C ZERO, THE NEW VALUE IS CALCULATED BY COMPARING THE NUMBER OF NWS00400

C ITERATIONS REQUIRED FOR THE LAST TIME STEP TO THE DESIRED NWS00410
C NUMBER OF ITERATIONS, ITDES, AND DELT IS ADJUSTED ACCORDINGLY - NWS00420
C INCREASED FOR KIT LESS THAN ITDES, DECREASED FOR KIT GREATER THAN NWS00430

C ITDES. THE TIME STEP IS REDUCED. IF NECESSARY, TO PREVENT THE NWS00440
C TIME STEP FROM OVERSHOOTING THE END OF THE SIMULATION PERIOD. NWS00450

C NWS00460

KT=KT+1 NWS00480
DELTO=DELT NWS00490
IF(KT.EQ.1.AND.DLT.GT.0.) GO TO 20 NWS00500



IF (KIT.GE.ITDES) GO TO 10 NWS00510
DELT=1.2*DELTO NWS00520
GO TO 30 NWS00530

10 DELT=DELTO*ITDES*ITDES/KIT/KIT NWS00540
GO TO 30 NWS00550

20 DELT=DLT NWS00560
30 IF(DELT.GT.TEND-TIME) DELT=TEND-TIME NWS00570

TIME=TIME+DELT NWS00580
IF(I8.GT.0.OR.I9.GT.O.OR.I1O.GT.0.OR.I11.GT.0.OR.I12.GT.0) NWS00590

I WRITE(6,1010) KT,TIME NWS00600

C NWS00620
C UPDATE THE VARIOUS STATE VARIABLES. (THE PURPOSE OF THE MINIMUM NWS00630
C OPERATOR IS DISCUSSED IN SECTION 4.7.3.) NWS00640
C .. NWS00650

DO 40 I=1,NN NWS00670
POLD(I)=P(I) NWS00680
P(I)=DMIN1(PP(I).-PB(1)) NWS00690
IF(I24.EQ.3) GO TO 40 NWS00700
TOLD(I)=T(I) NWS00710
T(I)=TT(I) NWS00720

40 CONTINUE NWS00730
IF(NPER.EQ.1.AND.KT.EQ.1) GO TO 50 . NWS00740

p.. C*********** ***********************************************************NWS0075O
C NWS00760
C UPDATE THE WETTING HISTORY ON THE BASIS OF THE LAST NWS00770
C TIME STEP (EXPLICIT METHOD - SECTION 4.5). NWS00780
C NWS00790

IF (J5.NE.1) CALL SOIL12 NWS00800
C NWS00810

50 KIT=1 NWS00830
IF(I9.EQ.2.OR.110.EQ.2.OR.117.EQ.1.OR. IS.EQ.1.OR.Ilg.EQ.1.OR.120.NWS00840
1EQ.1.OR.I21.EQ.1.OR.I22.EQ.1) WRITE(6.1020) KIT NWS00850

C NWS00870
C ESTIMATE THE MOISTURE POTENTIAL AND TEMPERATURE AT THE END OF THE NWS00880
C NEW TIME STEP BY EXTRAPOLATION FOR THE FIRST ITERATION. NWS00890
C . .. . NWS00900

DO 60 1=1,NN NWS00920
PP(I)=P(I)+(P(I)-POLD(I))*OELT/DELTO NWS00930
PPOLD(I)=PP(I) NWS00940
IF(I24.EQ.3) GO TO 60 NWS00950
TT(I)=T(I)+(T(I)-TOLD(I))*DELT/DELTO NWS00960
TTOLD(I)=TT(I) NWS00970

60 CONTINUE .. .... NWS00980

C NWS01000



C IF THERE IS A FIRST-TYPE BOUNDARY CONDITION AT THE SURFACE, NWS01010
C THE ESTIMATE CAN BE REPLACED BY THE KNOWN VALUE. PN IS SAVED NWS01020
C FOR LATER APPLICATION OF THE BOUNDARY CONDITION. NWS01030
C NWS01040

IF(NBCP.EQ.2) GO TO 70 NWS01060
PN=BCP NWS01070
PP(NN)=BCP NWS01080
PPOLD(NN)=PP(NN) NWS01090

70 RETURN NWS01100
C********** *****************************.******************9******.*******NWS01 110
C********** ************************ *************************************NWSO1 120
C NWS01130

ENTRY NEWIT2 NWS01140
C . NWS01150
C*******************************************W 160
C NWS01170
C NEWIT2 IS CALLED AT THE START OF EACH NEW ITERATION TO NWS01180
C INCREMENT KIT AND TO UPDATE PPOLD AND TTOLD, WHICH ARE SAVED NWS01190
C FOR THE CONVERGENCE CHECK NWS01200
C . . NWS01210

KIT=KIT+1. NWS01230
IF(I9.EQ.2.OR.I10.EQ.2.OR.I17.EQ.1.OR.I18.EQ.1.OR.I19.EQ.1.OR.I20.NWS01240

1EQ.1.OR.I21.EQ.1.OR.I22.EQ.1) WRITE(6.1020) KIT NWS01250
DO 80 I=1,NN NWS01260
PPOLD(I)=PP(I) NWS01270
IF(I24.EQ.3) GO TO 80 NWS01280
TTOLD(I)=TT(I) NWS01290

80 CONTINUE NWS01300
RETURN . NWS01310

C NWS01330
C FORMAT STATEMENTS NWS01340
C .. NWS01350

1010 FORMAT(//1X,115(1H=),//10X,'TIME STEP NUMBER'.I13/10X. 'TOTAL ELAPNWS01370
1SED TIME',2X,D9.3,' SECONDS') NWS01380

1020 FORMAT(//1X,115(1H_)//12X,'ITERATION NO.'.7XI3) NWS01390
END . .. NWS01400



C PPROO020
SUBROUTINE PPRAM2 PPROO030

C PPROO040

C PPROO060
C THE PURPOSE OF THIS SUBROUTINE IS TO CALCULATE THE COEFFICIENTSPPROO070
C OF THE MASS CONSERVATION EQUATION. THESE WILL LATER BE USED IN THE PPR00080
C ASSEMBLY OF THE FINITE ELEMENT MATRICES. SOME OF THESE. STORED AS PPROO090
C VECTORS OR MATRICES, ARE SAVED FOR EVALUATION OF THE HEAT PPR00100
C EQUATION COEFFICIENTS IN SUBROUTINE TRPAM2. PPROO110
C PPROO120

C PPROO140
C THE FOLLOWING VARIABLES AND FUNCTIONS. NOT DEFINED IN THE UNNAMED PPROO150
C COMMON BLOCK. APPEAR IN THIS SUBROUTINE: PPROD160
C .. . PPROO170

C NAME DESCRIPTION . .PPROO190

C CKT TEMPERATURE CORRECTION FOR HYDRAULIC CONDUCTIVITY PPR00210
C CKTT2 A FUNCTION THAT RETURNS THE TEMPERATURE CORRECTION PPR00220
C FOR HYDRAULIC CONDUCTIVITY. GIVEN TEMPERATURE PPR00230
C DA DIFFUSION COEFFICIENT OF WATER VAPOR IN AIR PPROO240
C DRZDT2 A FUNCTION THAT RETURNS THE SLOPE OF THE SATURATION PPR00250
C VAPOR DENSITY CURVE. GIVEN TEMPERATURE PPR00260
C GORT GRAVITATIONAL ACCELERATION DIVIDED BY THE PRODUCT OF PPR00270
C THE GAS CONSTANT OF WATER AND THE ABSOLUTE PPR00280
C TEMPERATURE ("G OVER R T") PPR00290
C INT2 SEE DESCRIPTION IN TEXT BELOW PPR00300
C RH RELATIVE HUMIDITY PPR00310
C RHOZZ2 A FUNCTION THAT RETURNS THE VALUE OF THE SATURATION PPR00320
C VAPOR DENSITY, GIVEN THE TEMPERATURE PPR00330
C TK ABSOLUTE (KELVIN) TEMPERATURE PPR00340
C TORT TORTUOSITY OF AIR-FILLED SOIL FRACTION. - . PPR00350

C PPR00370
C COMMON AND DIMENSION STATEMENTS PPROD380
C . . . PPR00390

IMPLICIT REAL*8(A-H,O-Z) PPR00410
COMMON C(46,2),D(46,2) PPR00420
COMMON B1(45,2),B7(45,2),CK(45.2).CI(45.2),C2(45.2).C3(45.2), . PPR00430
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2).X(45,2).XX(45.2).XWRE(45.2) PPR00440
COMMON B3(46),B4(46),COR(46), PPROD450
*DELTA(46),P(46), PPR00460
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). PPROD470
*TT(46),TTOLD(46),Z(46) PPROD480
COMMON XOLD(45) PPR00490
COMMON POR(44) PPR00500



COMMON BCP,BCT,CPLGE,CPSI,DELTDELTO.DLOGE.DLN1O.DLT.DURTN.PERR. PPR00510
*PN,RHOL,STSTI,SX,SXI,TEND,TERR.TFLUX.THETATIME.TSAVE1.TSAVE2, PPROO520

*TZERO,XFLUX,ZETA PPR00530

COMMON IH(46),IS(46) PPR00540

COMMON Il12,I3,I4,I5,16,I7,I8,I9.I10.1l1.I12.113.I14.15.116,I17.PPR00550
*I18,I19,I20,I21,I22,I23,I24,125.,J1.d2.03.04.J5.J6.J7.JB.J9.ITDES. PPR00560

*KIT,KK,KT,NBCP,NBCT,NLNN,NPERNS.NSTEPS PPR00570

DIMENSION CKT(46),DA(46) PPR00580
DIMENSION INT2(46) . PPR00590

IF(I17.EQ.1.AND.I24.NE.3) WRITE(6.1040).. PPR00610

C PPR00630
C CALCULATE THE MOISTURE CONTENT. XX. AND THE SPECIFIC MOISTURE PPR00640
C CAPACITY, DXDP. PPROD650
C PPR00660

CALL SOIL22(2) PPR00670
C . . .. PPR00680

C PPR00700
C CALCULATE THE HYDRAULIC CONDUCTIVITY PPR00710

CALL SOIL32 PPR00720
C .. PPR00730
C*************************************PPR00740
C PPR00750
C IN THE FIRST LOOP, WE COMPUTE THOSE VARIABLES THAT CAN BE PPR00760
C DEFINED UNIQUELY AT EACH NODE, INDEPENDENT OF THE ELEMENT. THESE PPR00770
C WILL DEPEND ONLY ON TEMPERATURE AND MATRIC POTENTIAL. PPR00780
C PPR00790

DO 10 I=1,NN PPROO810
IF(KT.EQ.1) INT2(I)=0 PPROO820
IF(I24.EQ.3) GO TO 10 PPROO830
TK=TT(I)+273.16 PPROO840
CKT(I)=CKTT2(TT(I)) PPROO850
GORT=2.13D-04/TK PPROO860
RH=DEXP(PP( I)*GORT) PPROO870
RHOV(I)=RH*RHOZZ2(TT(I)) PPRO0880
DA(I)=5.8D-07*TK**2.3 PPR00890
COR(I)=DEXP(-CPSI*(TT(I)-TZERO)) PPR00900
B3(I)=RHOV(I)*GORT PPR00910
B4(I)=RH*DRZDT2(TT(I))-B3(I)*PP(I)ITK PPR00920
IF(I17.EQ.1) WRITE(6,1030) I,CKT(I).COR(I).RHOV(I).RHGORT.DA(I). PPR00930
1B3(I),B4(I) PPR00940

10 CONTINUE PPR00950
IF(I17.EQ.1.AND.I24.NE.3) WRITE(6.1010).. . PPROD960

C PPR00980
C IN THE SECOND LOOP, WE COMPUTE VARIABLES THAT ARE DEFINED PPR00990
C AT EACH END (NODE) OF EACH ELEMENT. THIS INCLUDES THE ACTUAL PPR01000



C COEFFICIENTS OF THE MASS EQUATION, DENOTED BY Cl. C2. C3. C4. PPRO1010
C AND CK (INSTEAD OF C5). SEE SECTION 4.1. PPR01020
C THE VECTOR INT2 HAS A VALUE OF ONE AT THE NODES AT WHICH PPRO1030
C THE SPECIAL ITERATIVE METHOD FOR ESTIMATION OF THE STORAGE PPRO1040
C COEFFICIENT IS TO BE INVOKED. IT IS ACTIVATED WHENEVER A SIGNIFICANTPPRO1050
C CHANGE IN MATRIC HEAD OCCURS AT A GIVEN NODE. PPR0106O
C PPRO1070

DO 60 L=1,NL PPRO1090
DO 60 N=1,2 PPRO1100
I=N+L-1 PPRO1110
J=IS( L) PPRO1120
IF(I24.EQ.3) GO TO 20 PPRO1130
CK(L,N)=CK(L,N)*CKT(I) PPRO1140
B1(L,N)=1.11*POR(d)-XX(L,N) PPRO1150
IF(B1(L,N).LE.0.) B1(L.N)=1.D-14 PPRO1160
TORT=B1(L,N)**0.67 PPRO1170
B2=B1(L,N)/RHOL PPRQ1180

20 IF(j9.EQ.0) GO TO 30 PPRO1190
IF (DABS((PP(I)-P(I))/P(I)).GT.1.D-04) INT2(I)a1 PPR01200
IF (PP(I)-P(I).EQ.0.) INT2(I)=0 PPRO1210
IF (INT2(I).EQ.1) DXDP(L,N)=(XX(L.N)-X(L.N))/(PP(I)-p(I)) PPRO1220

30 IF(I24.EQ.3) GO TO 40 PPRO1230
B5=(1.-RHOV(I)/RHOL)*DXDP(L,N)*COR(I) PPRO1240
B7(L,N)=DA(I)*B2*B3(I)*TORT PPRO1250
Cl(L,N)=B5+B2*B3(I) PPRO1260
C2(L,N)=-B5*CPSI*PP(I)+B2*84(I) PPRO1270
C3(L,N)=CK(L,N)+B7(L,N) PPRO1280
C4(L,N)=rA(I)*B4(I)*EF(LN)*ZETA/RHOL PPRO1290
GO TO 50 PPRO1300

40 C1(L,N)=DXDP(L,N) PPRO1310
C3(L,N)=CK(L,N) PPRO1320
GO TO 60 PPRO1330

50 IF(I17.EQ.1) WRITE(6,1020) L,N.XX(L.N).DXDP(L.N).CK(L.N).EF(L.N). PPRO1340
1TORT,C1(L,N),C2(L,N),C3(L,N),C4(L.N) PPRO1350

60 CONTINUE PPRO1360
IF(I17.EQ.1.AND.I24.EQ.3) WRITE(6.1050) ((L.N.XX(L.N).DXDP(L.N). PPRO1370

1CK(LN),N=1,2),L=1,NL) PPRO1380
RETURN PPRO1390

C PPRO1410
C FORMAT STATEMENTS PPRO1420
C PPRO1430

1010 FORMAT(//2X,'L',2X,'N',3X,'XX'.9X.'DXDP.12X.'CK'.8X.'EF. PPRO1450
13X,'TORT',10X, PPRO1460
2'CI',13X,'C2',13X,'C3',13X,'C4') PPRO1470

1020 FORMAT(1X,I2,I3,2XF3.2,1X,2D15.4.2X.F5.2.IX. PPRO1480
1F5.2,1X,4D15.4) PPRO1490

1030 FORMAT(lXI3,2(2X,F6.3),6D15.4) PPRO1500



1040 FORMAT(//3X,'I',4X,'CKT',5X,'COR'.9X.'RHOV',12X.'RH'.12X.'GORT'. PPRO1510
112X,'DA',13X,'3' ,13X,'B4') PPRO1520

1050 FORMAT(//2X,'L',2X,'N',3X,'XX'.9X.'DXDP'.12X.aCK. PPRO1530
1/(1X,12,I3,2X,F3.2,1X,2D15.4)) PPRO1540
END PPRO1550

C****************** ****** ********** ********** *********** *PPRO156O

0T



C********** ***********************************$**********.***************TPROOOIO
C TPROO020

SUBROUTINE TPRAM2 TPROO030

C . TPROO040

C TPROO060

C THIS SUBROUTINE CALCULATES THE COEFFICIENTS OF THE HEAT TPROO070
C CONSERVATION EQUATION. TPR00080

C . TPROO090

C TPROO110

C THE FOLLOWING VARIABLES, NOT DEFINED IN THE MAIN PROGRAM OR IN TPROO120
C SUBROUTINE PPRAM2, ARE USED IN THIS ROUTINE. TPROO130
C TPROO140

C NAME DESCRIPTION TPROO160

C 82(NN) VOLUMETRIC SENSIBLE HEAT CONTENT OF LIQUID WATER TPR00180
C B5(NN) HEAT OF WETTING TIMES DENSITY OF WATER TPROO190

C B6 A PART OF THE HEAT STORAGE COEFFICIENTS TPR00200

C EL(NN) THE LATENT HEAT OF EVAPORATION OF WATER VAPOR TPR00210
C ELCP(NN) THE SUM OF EL AND THE SENSIBLE HEAT OF LIQUID WATER TPR00220
C HC THE VOLUMETRIC HEAT CAPACITY OF BULK POROUS MEDIUM TPR00230
C TCON THE EFFECTIVE THERMAL CONDUCTIVITY OF THE MEDIUM TPR00240
C TK ABSOLUTE (KELVIN) TEMPERATURE . TPR00250

C TPR00270
C COMMON AND DIMENSION STATEMENTS TPR00280
C TPR00290

IMPLICIT REAL*8(A-H,O-Z) TPR00310
COMMON C(46,2),D(46,2) TPR00320
COMMON B1(45,2),B7(45,2),CK(45.2).CI(45.2).C2(45.2).C3(45.2). TPR00330
*C4(45,2),C5(45,2),DXDP(45,2).EF(45.2).X(45.2).XX(45.2).XWRE(45.2) TPR00340
COMMON B3(46),B4(46),COR(46), TPR00350
*DELTA(46),P(46), TPR00360
*PFU(46),PP(46),PPOLO(46),RHOV(46).T(46). TPR00370
*TT(46),TTOLD(46),Z(46) TPR00380
COMMON XOLD(45) TPR00390
COMMON POR(44) TPR00400
COMMON BCPBCT,CPLGE,CPSI,DELT.DELTO.DLOGE.DLN1O.DLT.DURTN.PERR. TPR00410
*PN,RHOL,STSTI,SX,SXI,TEND,TERR.TFLUX.THETA.TIME.TSAVEI.TSAVE2, TPR00420
*TZERO,XFLUX,ZETA TPR00430

COMMON IH(46),IS(46) TPR00440
COMMON I1,12,13,I4,15,I6,I7,I8.19,l10.I111.I12.13.I14.15.116.117.TPR00450
*I18,I19,I20,I21,I22,I23,I24,I25.J1.J2.J3.J4,d5.d6.J7.d8.d9.ITDES. TPR00460
*KIT,KK,KT,NBCP,NBCT,NLNN,NPER.NS.NSTEPS TPR00470
DIMENSION B2(46),B5(46),EL(46).ELCP(46) . .TPR00480

C TPR00500



C JUST AS IN PPRAM2, THERE ARE TWO LOOPS USED IN COMPUTATIONS. THE TPR00510
C FIRST COMPUTES NODAL QUANTITIES THAT ARE THE SAME APPROACHED FROM TPR00520
C EITHER SIDE OF THE NODE. THE SECOND LOOP COMPUTES THOSE THAT ARE TPR00530
C NOT, AND SETS UP THE ACTUAL COEFFICIENTS. TPROO540

C TPR00550

C TPR00570

C FIRST LOOP TPR00580
C . . . TPR00590
C********** ************ ************ ************************************TPR0O600

IF(I20.EQ.1) WRITE(6,1010) TPR00610
DO 10 I=1,NN TPROO620
TK=TT(I)+273.16 TPR00630
EL(I.)=597.3-0.552*(TT(I)-TZERO) TPR00640
ELCP(I)=EL(I)+TT(I)-TZERO TPR00650
W=-981.*PP(I)*(-CPSI*TK+1.)/4.18D+07 TPR00660
W=0.0 TPR00670
B2(I)=RHOL*(TT(I)-TZERO) TPR00680

10 B5(I)=RHOL*W . . TPR00690

C TPR00710
C SECOND LOOP TPR00720
C TPR00730
C********** *********************************************.****************TPROO74O

DO 20 L=1,NL TPR00750
DO 20 N=1,2 TPR00760
I=L+N-1 TPR00770
HC=0.48+RHOL*XX(L,N)+0.448*RHOV(I)*B1(L.N) TPR00780
TCON= (1.+XX(L,N))*2.4D-03 TPR00790
B6=(B2(I)-B5(I)-ELCP(I)*RHOV(I))*COR(I-)*DXDP(L.N) TPR00800
CI(L,N)=ELCP(I)*B1(L,N)*B3(I)+B6 TPROO810
C2(L,N)=HC+ELCP(I)*B1(L,N)*B4(I)-B6*CPSI*PP(I) TPROO820
C3(L,N)=RHOL*EL(I)*B7(L,N)+B2(I)*C3(L.N) TPROO830
C4(L,N)=TCON+B2(I)*C4(L,N) TPROO840
C5(L,N)=B2(I)*CK(L,N) TPROO850

20 IF(I20.EQ.1) WRITE(6,1020) L.N.HC.TCON.C1(L.N).C2(L.N),C3(L.N). TPROO860
1C4(L, N),C5( L,N) TPROO870
TSAVE1=TT(1) TPR00880
TSAVE2=TT(NN) TPROO890
RETURN TPR00900

1010 FORMAT(//5X,'L',2X,'N',9X,'HC'.12X'TCON'.12X.'C'.13X,'C2'.13X.'CTPROO910
13',13X,'C4',13X,'C5') TPR00920

1020 FORMAT(3X,2I3,7D15.4) TPR00930
END . . ... TPROO940

C********** *******************************.***************************TPROQ95O



C MAT00020
SUBROUTINE MAT2(A,BC,D,XC1,C2,C3.C4.C5.DELTA.M.NN.NL.IK.124,d2.JMATOOO30
13,J4,U8) MAT00040

c . . . MAT00050

C MAT00070
C SUBROUTINE MAT2 ASSEMBLES THE GLOBAL COEFFICIENT MATRICES OF MAT00080
C THE GALERKIN EXPRESSIONS FOR THE CONSERVATION EQUATIONS. IT USES MAT00090
C THE FUNCTIONAL COEFFICIENT SCHEME TO EVALUATE THE MATRIX ELEMENTS. MAT00100
C AND EMPLOYS ONE OF SEVERAL MASS WEIGHTING SCHEMES. (SECTION 4.6 MAT00110
C DESCRIBES ONE MASS LUMPING PROCEDURE.) MATO 0120
C . .. MAT00130

C MAT00150
IMPLICIT REAL*8(A-H,O-Z) . MAT00160
DIMENSION A(46,2),B(46,2),C(46.2).D(46.2),CI(45.2).C2(45.2). MAT00170
*C3(45,2),C4(45,2),C5(45,2),DELTA(46).X(46) MAT00180

C .. . ... . MAT00190

C MAT00210
C INITIALIZE THE MATRICES. MAT00220
C .. . MAT00230

DO 20 I=1,NN MAT00250
DO 10 d=1,2 MAT00260
A(I,J)=0.O MAT00270
B(I,d)=O.O MAT00280
C(I,J)=0.0 MAT00290

10 D(I,J)=0.0 MAT00300
20 X(I)=0.0 . . .. . MAT00310

C MAT00330
C EVALUATE MATRICES ACCORDING TO THE SPECIFIED OPTIONS. MAT00340
C MAT00350

IF(J3.EQ.1) GO TO 40 MAT00370
IF(J3.EQ.2) GO TO 60 MAT00380
DO 30 L=1,NL MAT00390
A(L,1)=A(L,1)+(C1(L,1)+C1(L,2)/3.)*DELTA(L)/4. MAT00400
A(L,2)=A(L,2)+(CI(L,1)+C1(L,2))*DELTA(L)/12. . MAT00410

30 A(L+1,1)=A(L+1,1)+(C1(L,1)/3.+C1(L.2))*DELTA(L)/4. MAT00420
GO TO 80 MAT00430

40 DO 50 L=1,NL MAT00440
A(L,1)=A(L,1)+(CI(L,1)+C1(L,2)/2.)*DELTA(L)/3.. MAT00450

50 A(L+1,1)=A(L+1,1)+(CI(L,1)/2.+CI(L.2))*DELTA(L)/3. MAT00460
GO TO 80 MAT00470

60 DO 70 L=1.NL MAT00480
A(L,1)=A(L,1)+CI(L,1)*DELTA(L)/2.. MAT00490

70 A(L+1,1)=A(L+1,1)+Cl(L.2)*DELTA(L)/2. MAT00500



80 IF(I24.EQ.3) GO TO 140 MAT00510
IF(J4.EQ.1) GO TO 100 MAT00520
IF(J4.EQ.2) GO TO 120 MAT00530
DO 90 L=1,NL MAT00540
B(L,1)=B(L,1)+(C2(L,1)+C2(L,2)/3.)*DELTA(L)/4. MAT00550
B(L,2)=8(L,2)+(C2(L,I)+C2(L,2))*DELTA(L)/12. MAT00560

90 B(L+1,1)=B(L+1,1)+(C2(L,1)/3.+C2(L.2))*DELTA(L)/4. MAT00570
GO TO 140 MAT00580

100 DO 110 L=1,NL MAT00590
B(L,I)=B(L,1)+(C2(L,1)+C2(L,2)/2.)*DELTA(L)/3.. MAT00600

110 B(L+1,1)=B(L+1,1)+(C2(L,1)/2.+C2(L.2))*DELTA(L)/3 MAT00610
GO TO 140 MAT00620

120 DO 130 L=1,NL MAT00630
B(L,1)=B(L.1)+C2(L,1)*DELTA(L)/2. MAT00640

130 B(L+1.1)=C2(L,2)*DELTA(L)/2. MAT00650
140 DO 170 L=1.NL MAT00660

IF(J8.EQ.2) GO TO 150 MAT00670
CE=(C3(L,1)+C3(L,2))/2./DELTA(L) MAT00680
GO TO 160 MAT00690

150 CE=DSQRT(C3(L,1)*C3(L,2))/DELTA(L) MAT00700
160 C(L,1)=C(L,1)+CE MAT00710

C(L,2)=C(L,2)-CE MAT00720
170 C(L+1,1)=C(L+1,1)+CE MAT00730

IF(I24.EQ.3) GO TO 190 MAT00740
DO 180 L=1,NL MAT00750
DE=(C4(L,1)+C4(L.2))/2./DELTA(L) MAT00760
D(L,1)=D(L,1)+DE MAT00770
D(L,2)=D(L,2)-DE MAT00780

180 D(L+1,1)=D(L+1,1)+DE MAT00790
190 DO 220 L=1.NL MAT00800

IF(J8.EQ.2) GO TO 200 MAT00810
FE=(C5(L,1)+C5(L,2))/2. MAT00820
GO TO 210 MAT00830

200 FE=DSQRT(C5(LA1)*C5(L,2)) MAT00840
210 X(L)=X(L)-FE MAT00850
220 X(L+1)=X(L+1)+FE MAT00860

IF(M.EQ.2) GO TO 230 MAT00870
IF(IK.EQ.1) WRITE(6,1010) (I,(A(I.J).1J1.2),(B(I.J).J=1.2). MAT00880

*(C(I,J),J=1,2),(D(I,d),J=1,2).X(1).Isl.NN) MAT00890
RETURN MAT00900

230 IF(IK.EQ.1) WRITE(6,1020) (I,(A(I.J).Ju1.2).(B(I.J).J=1.2). MAT00910
*(C(I,J),J=1,2),(D(I,J),J=1,2).X(I).Isl.NN) MAT00920
RETURN MAT00930

c MAT00950
C FORMAT STATEMENTS MAT00960
c .. MAT00970

1010 FORMAT(//10X,'MOISTURE MATRICESV/10X.17(lH-)//5X.'1'.6X.'A(I.1)'.4MAT00990
*X,'A(I,2)',5X,'B(I,1)',4X,'B(I.2)'.5X.'C(I.1)'.4X.'C(I.2)'.SX.'D(IMAT01000



*,1)',4X,'D(I.2)'.5X,'F(I)'/(/3XI4.3X.4(2D10.2.IX).DIO.2)) MATO1010
1020 FORMAT(//10X,'TEMPERATURE MATRICES'/10X.20(1H-)//5X.'I'.6X.'A(I.1)MAT01020

1',4X,'A(I,2)',5X,'8(I,1 )',4X.'8(I.2)'.5X.'C(I..1)'.4X.'C(I.2)'.5X.'MAT01030
2D(I,1)',4X.'D(I,2)',6X,'F(I)'/(/3X.14.3X.4(2010.2.1X).DIO.2)) MAT01040
END . . MAT01050

******** ************ ****** ****** ********* ** * *********** *************MATO1O6O



C EQN00020
SUBROUTINE EQN2(A,B,C,D,P,PPTT.T,DELT.M.NN,NL.I24.J2) EQN00030

C EQN00040

C EQN00060
C THIS SUBROUTINE PERFORMS THE FINITE DIFFERENCE OF THE EQN00070
C TIME DERIVATIVES AND SETS UP THE MATRIX EQUATION FOR THE EQN00080
C MATRIX SOLVER. THESE STEPS ARE DESCRIBED IN SECTION 4.3. EQN00090
C WHEN THIS ROUTINE IS CALLED FROM THE MASS EQUATION LOOP, THE EQN00100
C STATE VARIABLES HAVE THE SAME NAMES INSIDE THIS SUBROUTINE EQN00110
C AS THEY DO IN THE MAIN COMMON BLOCK. THE NAMES ARE REVERSED. EQN00120
C HOWEVER, WHEN THIS ROUTINE IS CALLED FROM THE ENERGY LOOP. EQN00130
C EQN00140

IMPLICIT REAL*8(A-H,O-Z) . EQN00160
DIMENSION A(46,2),B(46,2),C(46,2).D(46.2),P(46).PP(46). EQN00170
1TT(46),T(46) . EQN00180

C EQN00200
C THE MATRIX "SAVEm WILL REMEMBER THE COEFFICIENTS OF THE END NODES EQN00210
C FOR LATER USE IN THE EVALUATION OF END FLUXES EQN00220
C EQN00230

COMMON /MASBAL/ SAVE(2,3,2) . . . EQN00240
C**** ****** ****************************.*********************************EQNOO25O
C EQN00260
C FIRST COMPUTE THE RIGHT-HAND-SIDE VECTOR AND STORE IT IN PP. EQN00270
C . .. EQN00280
C***.****** ************ **************************************************EQNOO29O

IF(I24.EQ.3) GO TO 20 EQN00300
CF2=B(1,1)/DELT EQN00310
CF3=B(1,2)/DELT EQN00320
PP(1)=-PP(1)+(A(1,1)/DELT)*P(1)+(A(1.2)/DELT)*P(2) EQN00330

1-(CF2+D(1,1))*TT(1)-(CF3+D(1,2))*TT(2)+CF2*T(1)+CF3*T(2) EQN00340
DO 10 I=2,NL EQN00350
CF1=B(I-1,2)/DELT EQN00360
CF2=B(I,I)/DELT EQN00370
CF3=B(I,2)/DELT EQN00380

10 PP(I)=-PP(I)+(A(I-1,2)/DELT)*P(I-1) EQN00390
* +(A(I,1)/DELT)*P(I) EQN00400
* +(A(I,2)/DELT)*P(I+I) EQN00410
* -(CF1+D(I-1,2))*TT(I-1) EQN00420
* -(CF2+D(I,1))*TT(I) EQN00430
* -(CF3+D(I,2))*TT(I+1) EQN00440
* +CF1*T(I-1)+CF2*T(I)+CF3*T(I+1) EQN00450
CF1=B(NN-1,2)/DELT EQN00460
CF2=B(NN,1)/DELT EQN00470
PP(NN)=-PP(NN)+(A(NN-i,2)/DELT)*P(NN-1) EQN00480

* +(A(NN,1)/DELT)*P(NN) EQN00490
* -(CF1+D(NN-1,2))*TT(NN-1) EQN00500



* -(CF2+D(NN,1))*TT(NN). EQN00510
* +CF1*T(NN-1)+CF2*T(NN) EQN00520
GO TO 40 EQN00530

20 PP(1)=-PP(1)+(A(1,1)*P(1) + A(1,2)*P(2))/DELT EQN00540
DO 30 I=2,NL EQN00550

30 PP(I)=-PP(I) + (A(I-1,2)*P(I-1)+A(1.1)*P(I)+A(I.2)*P(1+1))/DELT EQN00560
PP(NN)=-PP(NN) + (A(NL.2)*P(NL)+A(NN,1).P(NN))/DELT. . EQN00570

C EQN00590
C NOW COMPUTE THE LEFT-HAND-SIDE MATRIX. EQN00600
C EQN00610

40 DO 50 I=1,NN EQN00630
DO 50 J=1,2 EQN00640

50 C(I,J)=A(I,.J)/DELT+C(I,J) EQN00650

C EQN00670
C SAVE THE EQUATIONS FOR THE TWO END NODES FOR FUTURE EVALUATION EQN00680
C OF THE MASS AND HEAT FLUXES INTO AND OUT OF THE SOIL COLUMN. EQN00690
C . . EQN00700

SAVE(1,1,M)=PP(1) EQN00720
SAVE(1,2,M)=C(1,1) EQN00730
SAVE(1,3,M)=C(1,2) EQN00740
SAVE(2,1,M)=PP(NN) EQN00750
SAVE(2,2,M)=C(NN-1,2) EQN00760
SAVE(2,3,M)=C(NN.1) EQN00770
RETURN EQN00780
END EQN00790

C********** *************************************************************EQNOOBOO



C PBC00020
SUBROUTINE PBC2 PBC00030

C PBC00040

C PBC00060
C THIS SUBROUTINE INCORPORATES THE BOUNDARY CONDITIONS THAT PBC00070
C WERE SPECIFIED IN NEWPR2 ACCORDING TO THE PROCEDURES DESCRIBED PBC00080
C IN SECTION 4.2.4. PBC2 TAKES CARE OF MASS BOUNDARY CONDITIONS. PBC00090
C WHILE ENTRY TBC2 IS FOR THE HEAT BOUNDARY CONDITIONS. PBC00100
C PBC00110
C********** **************************.***********************************PBCOD12O
C PBC00130
C COMMON AND DIMENSION STATEMENTS PBC00140
C PBC00150

IMPLICIT REAL*8(A-H,O-Z) PBC00170
COMMON C(46,2),D(46,2) PBC00180
COMMON B1(45,2),B7(45,2),CK(45.2).CI(45.2).C2(45.2).C3(45.2). PBC00190
*C4(45,2),C5(45,2),DXDP(45,2).EF(45.2).X(45.2).XX(45.2).XWRE(45.2) PBC00200
COMMON B3(46),B4(46),COR(46), PBC00210
*DELTA(46),P(46), PBC00220
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). PBC00230
*TT(46),TTOLD(46).Z(46) PBC00240
COMMON XOLD(45) PBC00250
COMMON POR(44) PBC00260
COMMON BCPBCT,CPLGECPSI,DELT.DELTO.DLOGE.DLN10.DLT.DURTN.PERR. PBC00270
*PN,RHOL,STSTI,SX,SXI,TEND,TERR.TFLUX.THETA.TIME.TSAVE1.TSAVE2. PBC00280
*TZERO,XFLUX,ZETA PBC00290
COMMON IH(46),IS(46) PBC00300
COMMON II.1I2,I3,I4,I5.I6,I7,I8.I9.10.I11 .I12.113.I14.115.I16.117.PBC00310
*I18,I19,I20,I21,I22,I23,I24,I25.J1.J2.3.J4,J5.J6.J7.J8.J9.ITDES. PBC00320
*KIT,KK,KT,NBCP,NBCT,NL,NN,NPER.NS.NSTEPS PBC00330
COMMON /MASBAL/ SAVE(2.3,2) . PBC00340

C PBC00360
C APPLY A TYPE I BOUNDARY CONDITION ON MASS (MATRIC HEAD) AT THE PBC00370
C BOTTOM OF THE COLUMN. PBC00380
C . . PBC00390

PP(1)=P(1) PBC00410
C(1,1)=1.0 PBC00420
PP(2)=PP(2)-C(1,2)*P(1) PBC00430
C(1,2)=O.O .. . PBC00440

C PBC00460
C APPLY THE BOUNDARY CONDITION SPECIFIED BY NBCP AND BCP. PBC00470
c .. PBC00480

IF(NBCP.EQ.2) GO TO 10 PBCO0500



C PBC00520
C TYPE I BOUNDARY CONDITION AT LAND SURFACE. PBC005O0
C PBC00540

PP(NN)=PN PBC00550
C(NN,1)=1.0 PBC00560
PP(NN-1)=PP(NN-1)-C(NN-1,2)*PN PC00570
C(NN-1,2)=0.0 PBC00580
GO TO 20 PBC00590

C PBC00600
C*********** *********************** ************************************PBC00610
C PBC00620
C MASS FLUX BOUNDARY CONDITION AT LAND SURFACE. PBC00630
C PBC00640

10 PP(NN)=PP(NN)-BCP PBC00650
c PBC00660

20 IF(I19.EQ.1) WRITE(6,1010) (I.(C(I.ti).iJ=1.2).PP(I).Iz1,NN) PBC00680
RETURN PBC00690

C PBC00720
- ENTRY TBC2 PBC00730

C-A . PBC00740
oo C***********************************************************************P8C00750

C PBC00760
C APPLY BOUNDARY CONDITIONS ON HEAT. THE BOTTOM CONDITION IS THATPBCOO770
C HEAT LEAVES OR ENTERS BY ADVECTION ONLY. QPB IS THE MOISTURE FLUX ATPBC00780
C THE BOTTOM OF THE COLUMN. IF A FLUX BOUNDARY CONDITION ON HEAT PBC00790
C IS USED AT THE SURFACE, BCT IS SPECIFIED AS TOTAL HEAT FLUX. PBC00800
C INCLUDING A POSSIBLE ADVECTION TERM. PBC00810
C PBC00820

C PBC00840
C HEAT FLUX B.C. AT BOTTOM OF COLUMN. PBC00850
C PBC00860

QPB=-SAVE(1,1,1)+SAVE(1,2,1)*PP(1)+SAVE(1,3,1)*PP(2) PBC00870
TT(I)=TT(1)+QPB*RHOL*(TSAVE1-TZERO) PBC00880

C P8B00890

IF(NBCT.EQ.2) GO TO 30 PBC00910

C P800930
C TYPE ONE B.C. AT SURFACE. PBC00940
C PBC00950

TT(NN)=BCT PBC00970
D(NN,1)=1.0 PBC00980
TT(NN-1)=TT(NN-1)-D(NN-1,2)*BCT PBC00990
D(NN-1,2)=0.0 PBC01000



GO TO 40 PBC01010
C . . PBCO102O

C PBC01040
C FLUX B.C. AT SURFACE. PBC01050

C PBC01060
30 TT(NN)=TT(NN)-BCT PBC01070

C PBC01080

40 IF(I22.EQ.1) WRITE(6,1020) (I,(D(I.J),J=1,2),TT(I).Im1,NN) PBC01100
RETURN PBC01110

C********** *************************************************************PBCO1 120
C PBC01130
C FORMAT STATEMENTS PBC01140

C PBC01150
C*******************************************B 160
1010 FORMAT(//10X,'MOISTURE EQUATION'/10X.17(IH-)//20X.'I',1OX.'LHS(I.IPBC01170

1)',5X,'LHS(I,I+1)=LHS(I+1,I)',10X.'RHS(I)'/(/19X.I3.8X,DIO.2,8X. PBC01180
2D10.2,14X,D10.2)) PBC01190

1020 FORMAT(//10X,'TEMPERATURE EQUATION.'/10X.20(1H-)//20X.'I'.IOX,'LHS(PBC01200
1I,I)',5X,'LHS(I,I+1)=LHS(I+1,I)'.10X.'RHS(I)'/(/19X.13.8X.DlO.2.8XPBC01210
2,D10.2,14X,Dl0.2)) PBC01220
END PBC01230

HC**** *************************************PC14



C SOL00020
SUBROUTINE SOLVE2(B,C,NN) SOL00030

C SOLOO040

C SOLOO060
C THIS ALGORITHM FOR THE SOLUTION OF A TRIDIAGONAL MATRIX SOLOO070
C EQUATION IS REFERENCED IN SECTION 4.4. SOLO0080
C SOL00090
C********** ***********************************.*************************0L01 00

IMPLICIT REAL*8(A-H,O-Z) SOLOO110
DIMENSION B(46,2),C(46) SOLOO120

C SOL00140
C SOLUTION OF TRIDIAGONAL MATRIX EQUATION USING THE THOMAS ALGORITHM. SOL00150
C . . SOL00160

C(1)=C(1)/B(1,1) SOLOO180
DO 10 I=2,NN SOLOO190
B(I,1)=B(I,1)-B(I-1,2)*B(I-1.2)/(1-1.1) SOLOO200

10 C(I)=(C(I)-B(I-1,2)*C(I-1))/B(I.1) SOL00210
NL=NN-1 SOL00220
DO 20 II=l.NL SOL00230
I=NN-II SOLOO240

20 C(I)=C(I)-B(I,2)*C(I+1)/B(I,1) SOL00250
RETURN SOLOO260
END . SOLO0270



C CHKO0020
SUBROUTINE CHK2(X,Y,NN,ERR,J,K) CHKO0030

C CHKO0040

C . CHKO0060
C THIS SUBROUTINE CHECKS FOR CONVERGENCE OF THE MASS (K=1) CHKO0070
C AND HEAT (K=2) SOLUTIONS. CHKO0080
C .. . . CHKOO090

IMPLICIT REAL*8(A-H,O-Z) CHKO0110
DIMENSION X(NN),Y(NN) CHKO0120

L=1 CHK00140
IF(K.EQ.1) GO TO 20 .. CHKO0150

C CHKO0170
C THE HEAT SOLUTION HAS CONVERGED WHEN COMPUTED TEMPERATURES FOR CHK00180
C TWO SUCCESSIVE ITERATIONS DIFFER BY LESS THAN ERR DEGREES. CHKO0190
C . .. . CHKO0200

DO 10 I=1,NN CHK00220
IF(DABS(X(I)-Y(I)).LT.ERR) GO TO 10 CHKO0230
J=0 CHKO0240
RETURN CHKO0250

10 CONTINUE CHKO0260
RETURN CHKO0270

C CHKO0290
C THE MASS EQUATION HAS CONVERGED WHEN SUCCESSIVE MATRIC POTENTIALS CHKO0300
C HAVE A RELATIVE DIFFERENCE LESS THAN ERR. CHKO0310
C .. .. CHKO0320

20 DO 30 I=1,NN CHK00340
IF(X(I).EQ.0) GO TO 30 CHKO0350
IF(DABS((X(I)-Y(I))/X(I)).LT.ERR) GO TO 30 CHKO0360
J=O CHKO0370
RETURN CHK00380

30 CONTINUE CHK00390
RETURN CHKO0400
END . .. . CHKO0410

C**** ****** ***************************s*******.**************************CHKOO42O



C********** *************************************************************BALOOO1O
C BAL00020

SUBROUTINE BAL2(M) BAL00030
C BAL00040

C BAL00060
C THIS SUBROUTINE, IF CALLED FROM THE MAIN PROGRAM. CALCULATES BAL00070
C THE MASS AND ENERGY BALANCE ERRORS - CUMULATIVE AND FOR THE LAST BAL00080
C TIME STEP. BAL00090
C BAL00100

C BAL00120
C COMMON AND DIMENSION STATEMENTS BAL00130
C . BAL00140

IMPLICIT REAL*8(A-H,O-Z) BAL00160
COMMON C(46,2),D(46,2) BAL00170
COMMON Bt(45,2),87(45,2),CK(45.2).CI(45.2).C2(45.2).C3(45.2) . BAL00180
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2).X(45.2).XX(45.2).XWRE(45.2) BAL00190
COMMON B3(46),B4(46),COR(46), BALOO200
*DELTA(46),P(46), BAL00210
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). BALOO220
*TT(46),TTOLD(46),Z(46) BALOO230
COMMON XOLD(45) BALOO240
COMMON POR(44) BALOO250
COMMON BCP.BCT,CPLGE,CPSI,DELTDELTO.DLOGE.DLN10.DLT.DURTN.PERR. BALOO260
*PN,RHOL,ST.STI,SX,SXI,TEND,TERR.TFLUX.THETA.TIME.TSAVE1.TSAVE2. BALOO270
*TZERO,XFLUX,ZETA BALO0280
COMMON IH(46),IS(46) BALOO290
COMMON I1,12,13,I4,I5,16,I7,I8.19.I10,11.112.113.114.115.116.117.BAL00300
*I18,I19,I20,I21,I22,I23,I24,I25.1.J2,J3.d4,J5.J6.J7.J8.d9.ITDES. BALOO310
*KIT,KK,KT,NBCP,NBCT,NL,NN,NPER.NS.NSTEPS BAL00320
COMMON /MASBAL/ SAVE(2,3,2) BAL00330

C BALOO350
C CALCULATE TOTAL STORAGE OF WATER AND ENERGY CURRENTLY IN THE BALOO360
C COLUMN. FOR EACH ELEMENT, FIND THE STORAGE (VOLUMETRIC) AT EACH BALOO370
C END NODE. THEN INTEGRATE OVER THE ELEMENT. ASSUMING STORAGE TO VARY BALOO380
C LINEARLY INSIDE AN ELEMENT. BALOO390
C .. BALOO400

SOLD=SX BALOO420
STOLD=ST BALOO430
SX=O. BAL00440
ST=0. BALOO450
IF(I24.EQ.3) GO TO 20 BALOO460
DO 10 La1,NL BALOO470
J=IS(L) BALOO480
XI=X(L,1) BAL00490
X2=X(L,2) BAL00500



Ti =TT.( L) BAL00510
T2=TT(L+1) BAL00520
P1=PP(L) BAL00530
P2=PP(L+1) BAL00540
RHOVI=RHOZZ2(T1)*DEXP(P1*2.13D-04/(T1+273.16)) BAL00550
RHOV2=RHOZZ2(T2)*DEXP(P2*2.13D-04/(T2+273.16)) BAL00560
XV1=(1.11*POR(J)-X1)*RHOV1/RHOL BAL00570
XV2=(1.11*POR(J)-X2)*RHOV2/RHOL BAL00580
ST1=(597.3+0.448*(T1-TZERO))*RHOL*XV1+(0.48+RHOL*XI)*(T1-TZERO) BAL00590
ST2=(597.3+0.448*(T2-TZERO))*RHOL*XV2+(0.48+RHOL*X2)*(T2-TZERO) BAL00600
SX=SX+(X1+X2+XV1+XV2)*DELTA(L)/2. BAL00610

10 ST=ST+(ST1+ST2)*DELTA(L)/2. BAL00620
GO TO 40 BAL00630

20 DO 30 L=1,NL BAL00640
30 SX=SX + (X(L,1)+X(L,2))*DELTA(L)/2. BAL00650
40 IF(M.EQ.1) RETURN BAL00660

C BAL00680
C USING THE MATRIX "SAVE", CALCULATE END FLUXES OF MASS. BAL00690
C FIND NET FLUX, TOTAL INFLOW FOR TIME STEP. TOTAL CUMULATIVE INFLOW. BALOO700
C COMPUTE INCREASE IN STORAGE OF MASS DURING TIME STEP AND SINCE BALOO710
C START OF SIMULATION. FIND RATE OF STORAGE CHANGE FOR LAST TIME STEP.BAL00720
C CALCULATE ERRORS FOR TOTAL SIMULATION AND FOR TIME STEP. BAL00730
C BAL00740

QXT=SAVE(2.1,1)-SAVE(2,2,1)*PP(NN-1)-SAVE(2,3.1)*PP(NN) BALOO760
QXB=-SAVE(1,1,1)+SAVE(1,2,1)*PP(1)+SAVE(1.3,1)*PP(2) BAL00770
FLXNT=QXB-QXT BALOO780
FLUX= FLXNT*DELT BAL00790
XFLUX=XFLUX+FLUX BAL00800
GAIN=SX-SOLD BAL00810
CGAIN=SX-SXI BAL00820
DSDT=GAIN/DELT BAL00830
ER=(DSDT-FLXNT)*100./DSDT BAL00840
ERRC= (CGAIN-XFLUX)*100./CGAIN BAL00850
IF(I11.EQ.1.OR.(I11.EQ.O.AND.DABS(TIME-TEND).LT.1.D-10)) BAL00860

1 WRITE(6,1010) QXT,QXB,FLXNT,DSDT.ER.XFLUX,CGAIN.ERRC BAL00870
IF(I24.EQ.3) RETURN BAL00880

C BALOO900
C REPEAT THE ABOVE COMPUTATIONS FOR THE ENERGY BALANCE. BAL00910
C BAL00920

QTT=SAVE(2,1,2)-SAVE(2,2,2)*TT(NN-1)-SAVE(2,3.2)*TT(NN) BAL00940
QTB=-SAVE(1,1,2)+SAVE(1,2,2)*TT(1)+SAVE(1,3,2)*TT(2) BAL00950
FLXNT=QTB-QTT BAL00960
FLUX=FLXNT*DELT BAL00970
TFLUX=TFLUX+FLUX BAL00980
GAIN=ST-STOLD BAL00990
CGAIN=ST-STI BAL01000



DSDT=GAIN/DELT BAL01010
ER=(DSDT-FLXNT)*100./DSDT BAL01020
ERRC= (CGAIN-TFLUX)*100./CGAIN BAL01030
IF (112.EQ.1.OR.(I12.EQ.0.AND.DABS(TIME-TEND).LT.1.D-10)) BAL01040

1 WRITE(6,1020) QTTQTB,FLXNT.DSDT.ER.TFLUX.CGAIN.ERRC BAL01050
RETURN . BAL01060

C BAL01080
C FORMAT STATEMENTS BAL01090
C BAL01100

1010 FORMAT(///1OX,'MASS BALANCE INFORMATION'/10X.24(IHz)//15X.'DATA FOBAL01120
1R CURRENT TIME STEP'//20X,'SURFACE FLUX RATE'.10X.D12.5.' CM/S'. BAL01130
2/20X,'BOTTOM FLUX RATEt,11X,D12.5.' CM/S',/20X.'NET FLUX RATE',14XBAL01140
3,D12.5,' CM/S'/20X,'RATE OF STORAGE CHANGE',5X.D12.5.' CM/S', BAL01150
4 //20X,'PERCENT ERROR',14X,F12.5, BAL01160
5//15X,'CUMULATIVE DATA'//20X,'NET TOTAL FLUX'.13X.D12.5.' CM'. BAL01170
6 /20X,'TOTAL STORAGE CHANGE'.7X.D12.5.' CM'//20X.'PERCENT ERROR'. BAL01180
714X,F12.5) BAL01190

1020 FORMAT(///10X,'ENERGY BALANCE INFORMATION'/1OX.26(1Hz)//15X,'DATA BAL01200
IFOR CURRENT TIME STEP'//20X,'SURFACE FLUX RATE'.1OX.012.5.' CAL/CMBAL01210
22-S'/20X,'BOTTOM FLUX RATE',11X.012.5.' CAL/CM2-S'./20X.'NET FLUX BAL01220
3RATE',14X,D12.5,' CAL/CM2-S'/20X.'RATE OF STORAGE CHANGE'.5XD12.5BAL01230
4,' CAL/CM2-S', //20X,'PERCENT ERROR',14X.F12.5. BAL01240
5//15X,'CUMULATIVE DATA'//20X.'NET TOTAL FLUX'.13X.D12.5,' CAL/CM2'BAL01250
6,/20X,'TOTAL STORAGE CHANGE'.7X.012.5.' CAL/CM2'//20X,'PERCENT ERRBAL01260
70R',14X,F12.5) BAL01270
END BAL01280



C*********** ************************************************************SOIO0010
C SOI00020

SUBROUTINE SOILI2 SOI00030
c . SOI00040

C SOI00060

C THE FIRST PART OF THIS SUBROUTINE (SOILI2) IS CALLED ONCE AT SOI00070
C THE BEGINNING OF A SIMULATION IN ORDER TO READ THE SOIL PARAMETERS. SOI00080
C COMPUTE OTHER DERIVED PARAMETERS. AND PERFORM PART OF THE SOI00090
C INTEGRATION OF THE RELATIVE HYDRAULIC CONDUCTIVITY FUNCTION. SOIooloo
C THE OTHER ENTRIES ARE SOIL12, SOIL22. AND SOIL32. WHICH ARE SOIoolo
C DESCRIBED BRIEFLY BELOW. SOI00120
C S0100130

C SOI00160
C THE FOLLOWING VARIABLES, NOT DEFINED IN THE MAIN PROGRAM. ARE S0100170
C USED IN THIS SUBPROGRAM: SOIOO180
C SOI00190

C NAME DESCRIPTION SOI00210

A1 (NS)

A2(NS)

CKSAT(NS)

EM
ENT(NS, 8)

NR

NSS

NY
PB

PFINT1(NS)

PFINT2

PFK

PFR(NS, 9)

PFWLT
PR(NS,9)
R (7)

MOISTURE CONTENT INTERCEPT OF THE CAPILLARY
SEGMENT OF THE MAIN WETTING CURVE
MOISTURE CONTENT INTERCEPT OF THE ADSORPTION
SEGMENT OF THE MAIN WETTING CURVE
SATURATED (THETA-SUB-U). REFERENCE TEMPERATURE
VALUE OF HYDRAULIC CONDUCTIVTY
CURVATURE PARAMETER OF MAIN WETTING CURVE
PARTIAL INTEGRALS OF RELATIVE HYDRAULIC CONDUCTIVTY
FUNCTIONS
NUMBER OF BREAKPOINTS IN THE PIECE-WISE LINEAR
APPROXIMATION OF THE MAIN WETTING CURVE (=7)
NUMBER OF SEGMENTS IN THE APPROXIMATION OF THE
MAIN WETTING CURVE (=NR+1)
NUMBER OF VALUES OF XR.PR.PFR (=NR+2)
NEGATIVE MATRIC HEAD AT REFERENCE TEMPERATURE
TRANSITION BETWEEN SATURATED AND UNSATURATED REGIMES
PF-INTERCEPT OF THE CAPILLARY SEGMENT OF THE MAIN
WETTING CURVE
PF-INTERCEPT OF THE ADSORPTION SEGMENT OF THE MAIN
WETTING CURVE (=7)
VALUE OF PF AT WHICH LIQUID PHASE BECOMES
DISCONTINUOUS
VALUES OF PF AT LIMITING POINTS IN THE APPROXIMATION
TO THE MAIN WETTING CURVE
VALUE OF PF AT THE WILTING POINT (=4.2)
VALUES OF MATRIC HEAD CORRESPONDINT TO PFR
PARAMETER USED TO DETERMINE BREAKPOINTS IN PIECEWISE
LINEAR APPROXIMATION

SOI00230
SOI00240
SOI00250
SOI00260
SOI00270
SOI00280
SOI00290
S0100300
SOI00310
SOI00320
SOI00330

SOI00340

SOI00350
S0100360
SOI00370
SOI00380
SOI00390
SOI00400

SOI00410
SOI00420
SOI00430
SOI00440
SOI00450
SOI00460
SOI00470
SOI00480

SOI00490
SOI00500

U-1



C S1(NS) SLOPE PARAMETER OF THE CAPILLARY SEGMENT SOI00510
C S2(NS) SLOPE PARAMETER OF THE ADSORPTION SEGMENT SOI00520
C SS(NS,8) SLOPE PARAMETERS OF THE PIECEWISE LINEAR SOI00530
C APPROXIMATION SOI00540
C XK(NS) MOISTURE CONTENT CORRESPONDING TO PFK SOI00550
C XR(NS,9) MOISTURE CONTENTS CORRESPONDING TO PFR AND PR SOI00560
C XWILT(NS) MOISTURE CONTENT AT WILTING.POINT. .. . .. SOI00570

C SOI00600
C COMMON AND DIMENSION STATEMENTS SOI00610
C . .. . .. . . SOI00620

IMPLICIT REAL*8(A-H,O-Z) SOI00640
COMMON C(46,2),D(46,2) SOI00650
COMMON BI(45,2),B7(45,2),CK(45,2).CI(45.2),C2(45.2).C3(45.2), . SOI00660
*C4(45,2),C5(45,2),DXDP(45,2),EF(45.2).X(45,2).XX(45.2).XWRE(45.2) SOI00670
COMMON 83(46),B4(46),COR(46), SOI00680
*DELTA(46),P(46), SOI00690
*PFU(46),PP(46),PPOLD(46),RHOV(46).T(46). S0100700
*TT(46),TTOLD(46),Z(46) SOI00710
COMMON XOLD(45) SOI00720
COMMON POR(44) SOI00730
COMMON BCPBCT,CPLGE,CPSI,DELTDELTO.DLOGEDLNIO.DLT.DURTN.PERR. SOI00740*PN,RHOL,ST,STI,SX,SXI,TEND,TERR.TFLUX.THETATIME.TSAVEl.TSAVE2. 

S0100750
*TZERO,XFLUX,ZETA SOI00760
COMMON IH(46),IS(46) S0100770
COMMON I1,12,I3,I4,I5,I6,17,I8.19.I11.I11.112.113.I14.115.116.117,S0I00780
*I18,I19,I20,I21,I22,123,I24,I25.J1.J2.J3.J4.d5.J6.J7.J8.J9.ITDES. SOI00790
*KIT,KK,KT,NBCP,NBCT,NLNN,NPERNS.NSTEPS. SOI00800
COMMON /SOIL/ AI(44),A2(44),EM(44).S1(44).S2(44) SOI00810
COMMON /ADHOC/ PB(44) SOI00820
DIMENSION ENT(44,8),PFR(44,9),PR(44.9).R(7),SS(44.8).XR(44.9) SOI00830
DIMENSION CKSAT(44),XK(44),XWILT(44).PFINT1(44) SOI00840
DATA R /1.D-02,1.D-01,3.D-01,5.D-01.7.D-01,9.D-01.9.9D-O1/. SOI00850

C SOI00870
C PERFORM INITIAL SOIL CALCULATIONS. SOI00880
C . . . .. .. .. SOI00890

READ(5,1010)(POR(I),PB(I),XWILT(I).EM(I).CKSAT(I).PFINT1(I), SOI00910
1I=1,NS) . SOI00920
IF(I5.EQ.1) WRITE(6,1020) (I,POR(I).PB(I).XWILT().EM(I).CKSAT(I),SOI00930

*PFINT1(I),I-1,NS) S0100940
PFINT2=7. S0100950
PFWLT=4.2 SOI00960
PFK=5.85 SOI00970
NR=7 SOI00980
NSS=NR+1 SOI00990
NY=NR+2 SOI01000
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SS(INSS)=(PFR(I,NSS)-PFR(I,NY))/(XR(I.NY)-XR(I.NSS) SOI01510

C S0101530
C DO INITIAL INTEGRATION OF THE RELATIVE HYDRAULIC CONDUCTIVITY SOI01540
C FUNCTION. S0101550
C . . SOI01560

DO 80 .=1,NSS SOI01580
ENT(I,J)z(1./PR(I,J+1)-1./PR(I.))/SS(I.J) SOI01590
IF(J.EQ.1) GO TO 80 SOI01600
ENT(I,J)=ENT(I,J)+ENT(I,J-1) SOI01610

80 CONTINUE SOI01620
90 CONTINUE SOI01630

IF(I6.EQ.1) WRITE(6,1040) (I,(XR(I.J),Jxl,NY),(PFR(I.J),d=1,NY). S0I01640
l(PR(I,d),J=1,NY).(SS(I.J),=1.NSS).(ENT(I.d).d=1.NSS),I=1.NS) SOI01650
RETURN S0101660

C SOI01690
ENTRY SOILi2 50I01700

C . . SOI01710
C********** ***************************.*********************************SOIOI 720
C SOI01730
C THIS ENTRY IS CALLED FROM NWSTP2 TO UPDATE THE WETTING HISTORY SOI01740
C INFORMATION, IF NECESSARY. IF THE CHANGE IN AVERAGE MOISTURE SOI01750
C CONTENT OF THE ELEMENT DURING THE LAST TIME STEP WAS SOI01760
C IN THE OPPOSITE DIRECTION OF THAT DURING THE PREVIOUS TIME STEP, SOI01770
C THE HISTORY IS UPDATED. SEE SECTION 3.3. SOI01780
C S0101790

DO 140 L=1,NL SOIO1810
J=IS(L) SOI01820
EX=0.5*(X(L,1)+X(L,2)) S0101830
IF(IH(L).EQ.1.AND.XOLD(L).LE.EX) GO TO 140 SOI01840
IF(IH(L).EQ.2) GO TO 110 SOI01850
IH(L)=2 SOI01860
DO 100 N=1,2 SOI01870
XWR=XWET(PFU(L+N-1),J) SOI01880
XWR=DMIN1(XWR,POR(d)) SOI01890

100 XWRE(L,N)=XWR+POR(d)*(X(L,N)/XWR-1.) SO011900
GO TO 140 SOIO1910

110 IF(XOLD(L).GE.EX) GO TO 140 50101920
IH(L)=1 S0I01930
DO 130 N=1.2 SOI01940
XWR=XWET(PFU(L+N-1),4) SOI01950
XWR=DMIN1(XWR,POR(J)) SOI01960
IF(XWR.EQ.POR(J)) GO TO 120 SOI01970
XWRE(L,N)=POR(J)*(X(L,N)-XWR)/(POR(J)-XWR) S0101980
GO TO 130 SOI01990

120 XWRE(L,N)=POR(J) SOI02000
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XX(L,N)=274.169/(739.+(DLNIO*PFU(I))**4.i+0.124 50102510
IF(KODE.EQ.1) GO TO 230 SOI02520
DXDP(L,N)=274.169/(739.+(DLN1O*PFU(I))**4.)**2.*4.*(PFU(I)*DLN10) SOI02530
1**3./10.**PFU(I) SOI02540

GO TO 230 SOI02560
220 XX(L,N)=POR(J) SOI02570

DXDP(L,N)=0.O SOI02580
230 CONTINUE SOI02590

RETURN SOI02600

C S0102620
ENTRY SOIL32 SOI02630

C . .S0102640

C SOI02660
C CALCULATE RELATIVE HYDRAULIC CONDUCTIVITY AND THE FACTOR. EF. SOI02670
C . . SOI02680
C**** ****** ************************ ************************************S0I02690

DO 320 L=lNL SOI02700
DO 320 N=1,2 SOI02710
J=IS( L) SOI02720
IF(XX(L,N).GE.POR(d)) GO TO 290 SOI02730
IF(J5.EQ.1) GO TO 280 SOI02740
DO 240 K=lNSS SOI02750
NK=NSS+1-K SOI02760
IF(XX(L,N).GT.XR(J,NK)) GO TO 250 SOI02770
IF(K.EQ.NSS) GO TO 300 SOI02780

240 CONTINUE SOI02790
250 PFM=PFR(J,NK)-SS(J,NK)*(XX(L,N)-XR(J.NK)) SOI02800

SSS=SS(J,NK) 50102810
260 XXX=XWET(PFM,J) SOI02820

IF(DABS(XXX-XX(L.N)).LT.1.D-08) GO TO 270 S0102830
PFM=PFM+(XXX-XX(L,N))*SSS SOI02840
GO TO 260 SOI02850

270 PWET=-10.**PFM SOI02860
CK1=0. SOI02870
IF(NK.GT.1) CK1=ENT(J,NK-1) SOI02880
CKPART=(CK1+(1./PWET-1./PR(J,NK)) SOI02890
*/SS(J,NK))/ENT(J,NSS) S0102900
CKPART=CKPART*CKPART SOI02910
CK(L,N)=CKSAT(J)*DSQRT((XX(L,N)-XK(J))/(POR(d)-XK(J)j)*CKPART S0102920
GO TO 310 SOI02930

C SOI02950
C USER-SUPPLIED FORMULA FOR HYDRAULIC CONDUCTIVTY FOLLOWS: S0102960
C SOI02970
280 CK(L,N)=CKSAT(J)*124.6/(124.6+(-PP(L+N-1))**1.77) SOI02980
C . . . S0102990

0l



GO TO 310 S0103010
290 CK(L,N)=CKSAT(d) S0103020

GO TO 310 SOI03030
300 CK(L,N)=O. SOI03040

IF(I24.EQ.3) CK(L,N)=CKSAT(J)*t.D-20 S0103050
EF(L,N)=1.11*POR(J) S0103060
GO TO 320 SOI03070

310 EF(L,N)=(1.11*POR(J)-XX(L,N))*(1.+XX(L.N)/(1.11*POR(J)-XK(J))) SOI03080
320 CONTINUE SOI03090

RETURN SOI03100
C********** ************************ *************************************S0I031 10
C SOI03120
C FORMAT STATEMENTS SOI03130
C .. SOI03140

1010 FORMAT(6G10.0,20X) S0103160
1020 FORMAT(///5X,'INPUT SOIL PARAMETERS'/5X.21(1H=)//IOX.'SOIL TYPE'. SOI03170

15X,'POR',5X,'PB',5X,'XWILT',4X,'EM'.6X.'CKSAT'.5X.'PFINT1'.5X. SOI03180
2/1OX,65(1H-)/10(/14X,I1,8X,F4.2.3X.F5.0.4X.F4.2.4X.F4.0. SOI03190
32X,D9.2,4XF6.4)) SOI03200

1030 FORMAT(///5X,'COMPUTED SOIL PARAMETERS'/5X,24(IH=)//10X. SOI03210
1'SOIL TYPE',9X,'A1',9X.'A2',9X,'S1'.9X.'S2'.9X.'XK'. SOI03220
2/IOX,67(1H-)/10(14X,I1,7X,5(FIO.5.1X))) SOI03230

1040 FORMAT(//5X,'SOIL TYPE',13/5X.12(IH-)/6X.'XR'.9E12.2/5X.'PFR'.9E12SOI03240
1.2/6X,'PR',9E12.2/6X,'SS',8E12.2/5X.'ENT'.8E12.2) SOI03250
END . SOI03260



C RHOO0020
FUNCTION RHOZZ2(TEE) RHO00030

C RHO00040

C RHOO0060
C THE SUBPROGRAM CALCULATES THE VARIOUS PHYSICAL RHOO0070
C PROPERTIES OF WATER AS A FUNCTION OF TEMPERATURE. THIS INCLUDES RHO00080
C SATURATED VAPOR DENSITY, SLOPE OF SATURATION VAPOR DENSITY CURVE. RHOO0090
C AND THE TEMPERATURE CORRECTION FOR HYDRAULIC CONDUCTIVITY. RHOO0100
C . RHO00110

IMPLICIT REAL*8(A-H,O-Z) RHOO0130
COMMON /CKTEE/ CKTN RHOO0140
DIMENSION RZ(81),SIGMA(9) RHO00150

C RHOO0170
C RZ(I) CONTAINS THE VALUE OF THE SATURATION VAPOR DENSITY AT RHOO0180
C TEMPERATURE I. SIGMA CONTAINS THE SURFACE TENSION OF WATER AT RHO00190
C TEN DEGREE INCREMENTS (NOT CURRENTLY IN USE). RHO00200
C RHO00210

DATA RZ/ 0.4831D-05,0.5178D-05,0.5545D-05,0.5933D-05,0.6344D-05. RHO00230
I 0.6779D-05,0.7240D-05.0.7728D-05.0.8246D-05.0.8793D-05. RHO00240
2 0.9373D-05,0.9984D-05.0.1063D-04.0.1131D-04.0.1203D-04. RHO00250
3 0.1279D-04,0.1358D-04.0.1443D-04.0.1532D-04.0.1626D-04. RHO00260
4 0.1724D-04,0.1827D-04.0.1936D-04,0.2050D-04.0.2170D-04. RHO00270
5 0.2297D-04,0.2429D-04.0.2567D-04.0.2713D-04.0.2865D-04. RHO00280
6 0.3025D-04,0.3193D-04,0.3368D-04,0.3552D-04.0.3744D-04. RHO00290
7 0.3945D-04,0.4154D-04,0.4374D-04,0.4602D-04.0.4841D-04. RHOO0300
8 0.5091D-04,0.5352D-04,O.5624D-04.0.5907D-04.0.6203D-04. RHO00310
9 0.6511D-04,0.68310-04.0.7165D-04,0.7512D-04.0.7874D-04. RHO00320
A 0.8250D-04,0.8641D-04,0.9049D-04.0.94720-04,0.9910D-04. RHO00330
1 0.1036D-03,0.1084D-03,0.1133D-03,0.1184D-03.0.1237D-03. RHO00340
2 0.1292D-03,0.1349D-03,0.1408D-03,0.1469D-03.0.1533D-03. RHO00350
3 0.1598D-03,0.1666D-03,0.1737D-03,0.1809D-03.0.1884D-03. RHO00360
4 0.1963D-03,0.2042D-03.0.2126D-03,0.2212D-03.0.2301D-03. RHO00370
5 0.2393D-03,0.2488D-03,0.2585D-030.2686D-03.0.2791D-03. RHO00380
6 0.2898D-03/ RHO00390
DATA RHOLG/979./ RHOO0400
DATA SIGMA/75.6D+00,74.22D+00,72.75D+00.71-18D+00.69.56D+00, RHOO0410
167.91D+00,66.18D+00,64.4D+00,62.60+00/.-. . RHO00420

C RHO00440
C FIND SATURATION VAPOR DENSITY (G/CM3). RHO00450
C . . RHOO0460

L=TEE RHO00480
EXTRA=TEE-L RHO00490
RHOZZ2=RZ(L+1)+EXTRA*(RZ(L+2)-RZ(L+1)) RHOO0500



RETURN RHOO0510

C RHO00530
C COMPUTE SLOPE OF SATURATION VAPOR DENSITY CURVE (G/CM3-DEGK). RHO00540
C . . RHO00550

ENTRY DRZDT2(TEE) RHO00570
L=TEE RHO00580
DRZDT2=RZ(L+2)-RZ(L+1) RHO00590
RETURN RHOO0600

C********** **********************************.**************************RHOOO6IO
C RHO00620
C RHO00630
C COMPUTE TEMPERATURE CORRECTION FOR HYDRAULIC CONDUCTIVITY. RHO00640
C .. RHO00650

ENTRY CKTT2(TEE) RHO00670
IF (TEE.GT.20.) GO TO 10 . . RHO00680
VISCC=10.**((1301./(998.333+8.1855*(TEE-20.)+0.00585*(TEE-20.)*(TERHO00690
*E-20.)))-3.30233) RHOO0700
GO TO 20 RHOO0710

10 VISCC=0.01002*10.**((1.3272*(20.-TEE)-0.001053*(TEE-20.)**2.)/(TEERHOO0720
*+105.)) RHO00730

20 CKTT2=1./VISCC/CKTN RHO00740
RETURN RHO00750
END RHO00760

C********* ******* ***** ****** ****** ******* ***** *********** ************ *RH000770



C**************************************************XWEOOO10
C XWEOOO2O

FUNCTION XWET(P,d) XWE00003
C ... XWE00040

C****************************************************XWE00050
C XWE00060
C THIS FUNCTION SUBPROGRAM COMPUTES THE VALUE OF THE MAIN XWE00070
C WETTING CURVE USING EQATION 3.38. XWE00080
C . . XWE00090

IMPLICIT REAL*8(A-H,O-Z) XWE00110
COMMON /SOIL/ AI(44),A2(44),EM(44).S1(44),S2(44) XWE00120
XWET=DLOG(DEXP(EM(d)*(A1(J)-Si(J)*P))+DEXP(EM(J)*(A2(J)- XWE00130
*S2(d)*P)))/EM(d) XWE00140
RETURN XWE00150
END XWE00160

****XWE00170


