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ABSTRACT

The characteristics of turbulence in shear flow near rough and porous

walls are investigated theoretically and experimentally. Flows of this nature

are present, for instance, in the case of a erodible particulate streambed.

The fluctuating flow generated in the porous wall by the external

turbulent flow is analyzed using a macroscopic, linearized equation of motion,

with the boundary condition at the surface defined by a pressure distribution

of the same form as that observed at smooth walls. Two different specifica-

tions for the wall pressure are applied, one as- a random function of space

and time and the other as a sinusoidal wave. The intensity of the longitudinal

velocity fluctuations at the wall surface, normalized with respect to shear

velocity, is shown to approach an asymptotic value of 0.38 as the permeability

increases, whereas the fraction of the total energy dissipation that occurs

within the porous medium has a maximum for a characteristic dimensionless com-

bination of permeability, viscosity and external velocity. The Reynolds stress

is identically zero throughout the porous medium.

Experiments were conducted in two pipes, 10" in diameter, one with 1/8"

spherical roughness elements and the other with a 1.20" thick porous lining,
5 5

for Reynolds numbers between 10 and 5 x 105. The rough pipe behavior with

respect to friction factor and mean velocity distribution is in good agreement

with classical experiments for sand roughness. The porous pipe has very high

friction factors, between 0.06 and 0.08, which increase with Reynolds number.

Both friction factor and the displacement of mean velocity profile with res-

pect to the smooth law indicate an equivalent relative roughness of the order

of 0.10. A value of 0.40 for Karman constant K is consistent with the observa-

tions, but deviations from the logarithmic velocity law occur at a distance

from the wall less than 10% of the radius. Both the eddy viscosity and the

velocity defect distributions show systematic variations in the core region

depending on the nature of the wall.

Measurements of turbulence intensity in the longitudinal and radial

directions made with hot wire anemometers show a universal distribution, in

agreement with smooth wall results, when normalized with respect to shear
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velocity. However, the intensities relative to the local velocity increase

with the effective roughness of the wall. The ratio between the radial and

longitudinal intensities agrees with the smooth wall distribution throughout

most of the pipe, except very close to the wall where it remains at a constant

level of 0.6 for the rough and porous cases. Energy spectra for both compon-

ents of turbulence indicate a definite change with distance to the wall. In

normalized form, the spectral measurements for both rough and porous walls

are in substantial agreement with previous smooth wall measurements.
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CHAPTER I

INTRODUCTION

The theory of sediment transportation by streams is one of the most

difficult problems encountered-by the hydraulic engineer. In spite of its

practical importance, very-little progress has been made in its theoretical

formulation, no doubt because of the complexity of the interaction that takes

place at the surface of the bed-between a highly turbulent shear flow and

an irregular and moving solid matrix made up of the bed grains.

The past attempts to deal with the problem have, of necessity, invol-

ved gross over-simplifications, because of the lack of adequate information

concerning the structure of the turbulence in the neighborhood of the bed.

Reviews of the current theories have been presented by Leliavsky (1959)

and by Raudkivi (1967). They show that most formulations ultimately reduce

to an evaluation of the drag and/or lift forces in terms of the velocity at

some representative level. In the most refined methods, as by Kalinske

(1947) or Einstein (1950), statistical features are introduced in the

form of a normally distributed velocity fluctuation superposed onto a mean

velocity defined by the classical law of the wall. The same concepts have

been used by Yalin (1963) to compute the trajectories of the particle and

obtain in this way the solid discharge.

Rather than attempting to reformulate the problem along the same

lines of thought, the present investigation is oriented towards a basic

examination of the characteristics of the turbulence near a sediment bed.

This is a long range purpose and only modest goals could be defined for

the first stage of the project reported here. Attention is focused on

the effects induced by the porosity of the bed on the turbulent shear flow

characteristics. The reasons to select this aspect of the problem are sim-

ple. As an impervious boundary is approached, the intensity of the turbu-

lent fluctuations must vanish. However, if the boundary is porous, these

fluctuations may remain significant at elevations well below the top layer

of particles. Another way in which the porosity of the head may affect

the particles motion, as pointed out by Raudkivi, is throigh local pressure
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gradients developing in connection with the turbulent flow in or near

the porous medium.

Turbulent flow along porous walls with suction or injection has

been extensively studied because of its importance in chemical processes.

Olson and Eckert (1965) report considerable distortion in the shear and

eddy viscosity distributions in a circular tube, even at very moderate

rates of injection. No similar study has been made for the case of a

porous wall without suction or injection. Murray (1965) has shown that

such a boundary may produce significant effects on the flow. He consid-

ered the damping of gravity waves moving over a permeable sand bed. In

particular, the damping can be greatly augmented if the bed comes close

to a state of fluidization, because then the porosity becomes much larger.

In view of the scarcity of information on the subject, the present

study is aimed at the theoretical and experimental evaluation of the major

characteristics of turbulent flow along porous boundaries. No further

reference is made to the theory of sediment transport, the problem being

approached as a basic fluid mechanics question whose solution may prove

useful for a variety of purposes. In particular, the porous wall is

defined as fixed in space, since an erodible-particulate bed would inter-

fere with the necessary turbulence measurements. In principle, any type

of wall shear flow could be selected for the present purpose. Pipe flow

was chosen for experimental convenience and because of the fairly complete

information available in regard to its characteristics for smooth and

rough walls.

A brief outline of the contents of this report is as follows.

The existing experimental knowledge about pipe flow is analyzed from

the phenomenological point of view and some prediction is attempted as

to the kind of effects that may be induced by the presence of a porous

wall. A mathematical model of the flow in the porous wall is developed,

using an extension of Darcy's law with a fluctuating pressure imposed

at the bed surface by the external pipe flow. The results of this analy-

sis cannot be extended to the evaluation of the resulting pipe flow, and

therefore the latter is treated only in an experimental way. Comparative
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experiments were conducted with air flow in two circular pipes of 10"

diameter, using spherical roughness elements in one of them and a

thick porous lining in the other. The reported measurements include

friction factor, distribution of mean velocity and eddy viscosity,

Reynolds stress, intensity of turbulence in the axial and radial dir-

ections and the corresponding-energy spectra, all the turbulence mea-

surements being made with hot wire anemometers.
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CHAPTER 2

ANALYSIS Of TURBULENT PIPE FLOW

Despite much work being done in the statistical theory of turbu-

lence, still highly complex situations like wall turbulence must be

approached through the semiempirical methods usually designated as phenom-

enological theories. Essentially, the method is a search for significant

gross parameters that exhibit a universal behavior, and as such, it must

rely entirely on experimentation. Once a universal parameter is found,

some analytical expression can be assumed to represent it, and then, a tool

is available to predict the flow pattern under different conditions.

Obviously, the method is not satisfactory; it is, however, the only

one available. A major objection comes from the fact that universal behavior

cannot be extrapolated beyond the realm of actual observations. Therefore,

the theory does not exist for entirely new situations. Within this context,

the present investigation can be looked upon as a test of how well the current

models for turbulent pipe flow apply under rather radical changes in the

flow conditions. The introduction of a highly porous wall is not intended

to represent in a precise way an actual model of a sediment bed but rather

to give a qualitative description of the main features to be expected in

such a case. From another point of view, the physical characteristics of

the wall can be considered as the input to a system, whose mode of operation

is unknown. However, by observation of the changes in such outputs as mean

velocity or turbulence distributions, some insight into the significant

mechanisms can be gained.

The purpose of this chapter is to review the current description

of turbulent pipe flow; to discuss the conceptual models constructed upon

it and the available evidence in support or contradiction of them; and,

finally, to discuss the various alternatives for the reformulation of the

problem in terms of a porous wall.

2.1 Turbulent Pipe Flow with Smooth and Rough Walls

There are many detailed presentations of turbulent pipe flow, such as

Clauser (1956), Hinze (1959) and Rotta (1962). Only the factors essential
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to the discussion will be reviewed here.

The mean flow is assumed to be in the x-direction, coincident with

the axis of the pipe, and uniform. The local mean velocity is U. Turbu-

lent components are u, v, w in the axial, radial and circumferential dir-

ections. The respective intensities of turbulence are u' = v, ,-

w = . The radius of the pipe is R, the distance from the centerline

is r and the radial distance to the wall is y. The shear stress is T, at

the wall is T and the shear velocity is u* = j0/p. Properties of the fluid

are: p, density; v', dynamic viscosity; v = u, kinematic viscosity.
p

With regard to the mean velocity distribution, two distinct regions

are recognized. Closest to the wall, where the shear stress is essentially

constant and equal to L , the relevant factors for similarity are shear

velocity u* and viscosity v. Defining as reference velocity u* and as refer-

ence length 2 , the velocity is given by an expression of the form
U*

U (u*y- f() (2-1)

In fact, experiments in smooth pipes show that

U u*y
- A log- + B (2-2)

where A and B are, to a first approximation, universal constants. There is

some disagreement concerning the values for A and B. Proposals for A range

from 5.6 to 5.75 and for B, from 4.9 to 5.85.

When y approaches zero, (2-2) obviously cannot remain valid, Measure-

ments very close to the wall are scarce and inaccurate, but they show signifi-

cant departures from (2-2) for uty < 15. This behavior is explained by
V

assuming the existence of a viscous sublayer, where the shear stress is
dUessentially determined by the viscous force P . Thus,dy

2 dU
T = y --

o p* dy
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which leads to

U - (2-3)
U* V

Observations indicate that some turbulence is present throughout

this layer, which is not laminar as (2-3) implies. This corresponds to

the fact that mean velocity measurements approach (2-3) asymptotically.

In the case of rough walls, the experimental evidence indicates that the

same law applies, except for a change in the constant B, which now becomes

dependent on the roughness height, k ,

uy juk
- A log- + C s). (2-4)

For very large roughnesses, the fully rough regime is established,

and C is found to be related to ks by

u9sk
C = -A log s- D (2

'U k

where Dk depends only on the type of roughness. For fully rough flow, intro-

duction of (2-5) into (2-4) leads to

= A log - D. (2-6)
U* k s k*

Another form of (2-4) is in terms of its deviation from the smooth

law, (2-2),

U usy AU
- A log - + B - . (2-7)

U* U*

It is seen that

= B - C ( (2-8)
U*
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and for the fully rough case

AU uks
-= A log + B - D (2-9)
u*V k

Experimental evidence of this formulation is presented in the references

mentioned above

A second region is recognized in the central portion, or core, of the

pipe. Here the flow is defined mostly in terms of geometric position. Assum-

ing that the maximum velocity Umax at the centerline includes the dependence

on wall conditions, a velocity-defect law is found to exist:

U - U
max= f 

(2-10)

Experimental measurements can also be fitted to a logarithmic form of

R although not as clearly defined as in the wall region:

U - U
max = A log R 

(2-11)

where A is the same constant found in the law of the wall. Sometimes,

correction factors are introduced in (2-11), giving

U - U
max = A log Y+ B + h .U R 1 (R

Values of these corrections may be found in Hinze (1959).

There are a number of ways to justify the above relations, which

up to now have been presented only on an empirical basis. First of all,

the logarithmic character of the velocity distribution can be established

just from very general functional considerations, assuming that there is

an overlapping layer where both (2-1) and (2-10) apply (Millikan, 1938).

The argument leads to the expressions (2-2) and (2-11), with the same con-

stant A. More insight into what actually happens can be gained by introducing

the concepts of the mixing length Z and scalar eddy viscosity E. These are

-7-



defined by

- 2 dU dU
dy dy (2-12)

- UV dU 2-13)
dy

where - uv is the mean product of the turbulent components u and v. In

fact, equilibrium requires:

T dU --
-= dU -uv (2-14)

p dy

but, except very close to the wall, the viscosity term is negligible and

- uv =- . As the shear stress T in a pipe is given by
p

1 = T 1 - V

it follows from (2-12) and (2-13) that

-L = z l - . (2-15)
U* R

Therefore, for pipe flow, any formulation in terms of mixing length

can be converted by (2-15) into an expression in terms of eddy viscosity

and vice versa. The eddy viscosity concept was introduced by Boussinesq

in the last century, without leading to much success. In order to produce

an explicit expression for E, Prandtl reformulated the concept as a mixing

length, which he assumed through intuitive consideration to be, in the

region close to a wall, of the form

I = Ky (2-16)

where K should be a universal constant (afterwards named after von Karman).

By further assuming the shear stress to be constant and equal to the wall

shear, Prandtl was able to derive the logarithmic law (2-2), with A = K.
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Prandtl's approach has been repeatedly criticized, mainly on the grounds

that the turbulent momentum transfer function uv cannot be determined

solely by the local conditions, as it is implied in (2-12), but must be

a function of the overall flow pattern, Another form of the same argument

is to say that, in fact, the computed values of the mixing length are much

too large to warrant Prandtl's considerations of infinitesimal disturbances.

In order to clarify the point, it is necessary to distinguish between two

different interpretations of 1. One is a purely mathematical function,

defined by equation (2-12), or equivalently by (2-13) in terms of eddy

viscosity. Given an experimental distribution of mean velocity U(y), 1
is completely defined, and therefore, is a valid function to use, As it

depends on the derivative of the velocity, it can be a more sensitive char-

acterization of the flow than the velocity profile itself. A quite different

concept is the definition of Z as a measure of the turbulent mixing process;

however, the proposition that such a measure should satisfy (2-12) or (2-13)

cannot be supported by purely theoretical considerations. The fact remains,

however, that experimental observations have shown that Z and c have a fairly

universal behavior, and even if this behavior cannot be explained in terms

of proper mechanical laws, at least it can be described by analytic expres-

sions and applied to a variety of situations. Going along with the objection

relative to the dependence of uv on overall conditions, one might say that,

in (2-12), 1 is a kind of integral factor which takes account of everything

else; if there are regions where I is found to be a function of position

only, then it must be concluded that the flow in those regions is hardly

affected by the rest of the flow, and conversely, a definite variation of

I with Reynolds number indicates interaction between regions far apart

in the flow.

Keeping the first, merely descriptive, interpretation of the mixing

length (which he calls more properly the "characteristic length-scale of

turbulence"), Lettau (1961) has shown that every proposed formula for

the velocity distribution in pipes can be derived from an explicitly or

implicitly assumed analytical expression for 1. In particular, the logar-

ithmic law (2-2) results from:
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T I/
T - 0

P p R

and

Lettau compares a number of alternative expressions for l by deriving

the velocity distribution corresponding to each one and normalizing in

terms of the average velocity given by the integration of the profile. In

this way, the constant K, whose numerical value is uncertain, does not appear

in the final result. Rather than comparing the velocities themselves with

experimental observations, he compares the deviations with respect to the

logarithmic law, which is a more sensitive procedure, and finds that the best

fit is obtained by assuming

KJ Y -__ (2-18)

1 + 2 ( /

which gives, with E - 1 - r
R R'

U -U U+~+
K max - ln -+ - E 2> -2 1si 1  (-19)

1 2 2

An essential feature of all the expressions for l compared by Lettau,

including his own (2-18), is that

lim dl = K (2-20)
y-+O dy

which shows the physical significance of K, as well as assures that the

velocity distribution will approach the logarithmic law (2-2) close to

the wall. This is a common feature to all velocity-defect expressions,

where the implicit assumption is that the nature of the wall enters the

final result only as an additive constant representing the boundary condi-

tion for the differential equation at y = 0. In order to extend the analysis
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to cover the relationship Detween the value of this constant and the wall

roughness characteristics, many attempts have been made to modify the

basic mixing length expression (2-16) in the immediate neighborhood of

the wall. Rotta (1962) lists a number of these propositions, mostly

intended to predict the existence of a viscous sublayer by requiring

that Z tends to zero as y approaches 6v rather than zero, where 6v is

the thickness of the viscous sublayer. Typical of the approach is the

expression proposed by Rotta himself (1950), which gives

1= 0 for y < 6

v 1> (2-21)
1 K(y - 6 ) for y > 6v (

u,6
where v = 6.8. Furthermore, the complete expression for the shear

(2-14) is used, instead of assumingi= -p uv. It is beyond the scope of

this discussion to examine the detailed format of all these various pro-

positions, especially since they have been constructed in a rather arbitrary

way in order to fit empirical data. The agreement is good, indeed, including

the value of the constant B in equation (2-2). More important is the hand-

ling of the boundary conditions, because they provide the adjustment for

the model to cover the case of rough walls.

Before going into the proposed law for rough walls, it is necessary

to discuss the position of the origin of distances normal to the wall.

Very often, the wall is conceived as a flat plate, to which individual

roughness elements are attached. Distances are measured from the plate.

Such a method provides an unambiguous definition of the origin, but it is

clearly arbitrary and it is not applicable to a natural roughness. Clauser

(1956) has indicated that the origin should be found by trial-and-error,

so as to obtain the best fit of the measured velocities to a semi-logarith-

mic straight line. As he says, "no evidence has come to light of a case

where such an origin does not lie between the top and bottom of the rough-

ness elements or where the origin of a given roughness pattern shifts with

changes in the roughness Reynolds number". Implicit is the idea that the
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semi-logarithmic profile extends down to the top of the roughness ele-

ments, where "it blurrs into indistinctness". Clauser's definition

of the origin y = 0 is expedient (even when fairly ambiguous in practice,

as will be discussed later), but its physical interpretation is confusing.

The custom is to think of y = 0 as that point where U = 0. Such a con-

cept is meaningless in a rough wall. But it has been found from experi-

ments that, away from the roughness elements, the velocity is a function

of position. It is reasonable to expect the same functional dependence

as in the case of smooth walls, and therefore, an arbitrary origin y = 0

can be defined such that the velocity profile will become semi-logarithmic

in all the region close to the wall.

Within this context, Rotta's approach (1950) may be explained in

the following way. With reference to fig. 2-1, let y be the distance

to the wall measured from the top of the roughness elements. At y = 0,

the mixing length is not zero, since there is considerable turbulence in

the roughness interstices, and it may be written

1 = 7- + Ky

or

1 K(y0 + y) = KyB (2-22)

where 1o = Ky is a constant that depends on the nature of the wall.

By introducing (2-22) into (2-12) and (2-14), the same result is

obtained as for a smooth wall, except for a different constant of inte-

gration, which is given as a function of yo. Rotta has computed y from

Nikuradse's experiments and he found it linearly dependent on the sand

roughness height ks. When this relationship is introduced into his equa-

tion for the velocity profile, an expression similar to (2-6) results,

which is in good agreement with experimental observations. The modifica-

tion of the mixing length postulated in (2-22) is, therefore, valid. It

is interesting to note that the coordinate yBproposed by Rotta in (2-22)

is exactly the same found by the trial-and-error adjustment of the origin

to fit the observations to a semilogarithmic straight line. For, if the

points fit a straight line in terms of an arbitrary coordinate y B, then:
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jlog yB y

U(y),eq. (2-6)

U(y) '

U (y)

= y

1

1

+ yO

SKy, eq. (2-22)

> 0 at y1 = 0

mixing length I
Roughness profile

Fig. 2-1 Definition sketch for the mixing length in rough wall flow.

o r--i

Equilibrium layer

I'\

Production

Dissipation

Eq. layer

Oct

y 0

u*y

u (y + y)

y

Fig. 2-2 Sketch of equilibrium layer concept in
rough wall flow
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u
U K in yB+ b

and

dU U U*

dy KyB

which agrees with (2-22).

A different approach to the analysis of the roughness effects was

taken by Morris (1955, 1959), who attempted to classify the various regimes

of flow that can be established according to the depth, spacing, etc. of

the roughness pattern. His work was done mainly in terms of the pipe

friction factor, which precludes a direct comparison with mean velocity

distributions close to the wall. However, he was able to show that some

configurations of roughness, such as corrugated metal, can produce what

he called "hyperturbulent flow", characterized by much smaller velocity

gradients close to the wall and friction factor increasing with Reynolds

number (contrary to the commonly accepted Colebrook-White expression).

Morris' explanation for these unusual occurrences assumes that individual

roughness elements are not close enough to conform a semi-smooth boundary,

but enough for each one to interfere with the wake produced by the previous

one. Morris' approach is significant in the light of a recent survey of

the field by Robertson, et al., (1965), who haveshown that the behavior

of the pipe friction factor is mapped very closely by the variations in

velocity distribution.

Another approach is the concept of the equilibrium layer, proposed

by Townsend (1961), on the basis of the well-known measurements of turbu-

lent energy distribution by Laufer (1954) and others. These measurements,

conducted in a smooth pipe, show that there is a layer with the property

that the production of turbulent energy essentially balances the turbulent

dissipation, and hence, there is negligible interchange of turbulent energy

with other portions of the flow. From the experiments, the condition for

the existence of such an equilibrium layer is seen to hold from the limit

of the viscous sublayer to some fraction of the radius, where the production

of turbulent energy becomes too small. In other words, it roughly coincides
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with the region where the logarithmic law of the wall is valid for smooth

walls. It is significant that the hypothesis of energy balance together

with an assumption of similarity lead to an expression analogous to Prandtl's

mixing lengthc Townsend does it in the following way. The term represent-

ing the production of turbulence in the energy equation is of the form
- DU- uv -; thus, if e is the rate of turbulent energy dissipation, the equa-

Dy

tion for the equilibrium layer is:

- DU
- uv - = e. (2-23)

Dy

Now, the hypothesis of similarity indicates that there is a scale of velo-

city V and a scale of length L which specify the local motion. By dimen-

sional considerations:

V and - 2
L -I-n - I = a V

where a is a constant of proportionality. Introducing in (2-23),

- 1/2 3/2 DU
(-uv) = a L --

Dy

which becomes identical with (2-12) if a3/ = 1. Of course, it is

still necessary to assume an expression for Z or L. Townsend has ex-

tended this reasoning to consider also the redistribution of turbulent

energy within the equilibrium layer by lateral transport. This results,

for the particular case of pipe flow, in a modified expression for the

mixing length,

1 -
RKy (2-24)

1 - (G+l) Y
R

where G is a universal constant. For (y/R) small, again the logarithmic

law is obtained. The relevance of the equilibrium layer approach lies

in the fact that it provides a clear physical picture of the mechanism

by which such a simplified concept as the mixing length can obtain. It
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is seen that the procedure of Ldjusting the measurements to a straight

line in the semi-logarithmic plot does not represent properly a way of

finding the effective position of the wall, but it is rather a way of

determining the actual length scale of turbulence. With reference to

fig. 2-2, it can be seen that the limit of the equilibrium layer close

to the wall is fairly sharply defined, but the outer limit (away from

the wall) is not so clear. This fact corresponds to the gradual departure

from the logarithmic law found towards the center of the pipe, which is

one of the ambiguities in the determination of the slope 1/K. If it is

postulated that the distribution of turbulent energy is universal in an

equilibrium layer in terms of the coordinate y= yo + y, then the follow-

ing distinction can be made between flows with smooth and rough walls, as

indicated in fig. 2-2. In a flow with smooth wall, energy is efficiently
dU

dissipated through the viscous term P d- , allowing for high velocities,

whereas in flows with rough walls, the same energy is converted to turbu-

lence, giving negligible mean velocity. Except for this difference, which

occurs right at the wall, the rest of the flow is essentially the same. A

consequence of this concept of universal energy distribution is that, as

y increases, the thickness of the equilibrium layer should decrease. For

extremely high roughness, the layer could become so thin that it would

not be detected by actual measurements. This is probably what Morris called

the flattening of the velocity profile for hyperturbulent regime.

With regard to the universal Kirmain constant K, it seems reasonable

to assume that the similarity within an equilibrium layer is universal in

nature, and therefore, K should be truly a constant. However, propositions

to the contrary are numerous. Vanoni (1957, see also Committee on Sedimen-

tation, 1963) has indicated that K can change by as much as a factor of 2

depending on the amount of suspended material present in the flow; he explains

the fact by a dampening of the turbulence by the work necessary to keep the

sediment in suspension. Hinze (1962) has re-analyzed Nikuradse's results,

avoiding the core region of the flow; he finds some indications of a sys-

tematic variation of K with Reynolds number. Lettau (1961), in his global

analysis of the flow, reaches the conclusion that K should be a constant
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only for fully rough flow, but not for smooth or transitional flow. It

seems that much of the confusion comes from the lack of a good definition

of what K is supposed to be, as well as from the inherent ambiguity in its

measurements. For instance, a semi-logarithmic straight line is often

drawn through a complete velocity profile, sometimes neglecting the points

very close to the wall. If it is true that K represents the internal

structure of an equilibrium layer, clearly the points towards the core

region have nothing to do in its determination. Of course, there is no

definite criterion to define the extent of the equilibrium layer.

The previous review can be summarized as follows. The mixing

length approach is a valid model for the flow near a solid wall, provided

the correct length scale is used, in the form of a modified coordinate

B= y + yo defined by the roughness pattern. The region of validity is

defined by a state of equilibrium between production and dissipation of

turbulent energy, Under these conditions, K should be a universal constant,

but it is not clear whether the same constant should be determinant for the

flow in the core region.

2.2 Turbulence in Pipe Flow

If there is disagreement between different investigators in relation

to mean velocity distributions, they disagree much more when actual measure-

ments of turbulence are involved, one of the reasons being the many difficul-

ties in the operation of such complex instruments as the hot wire anemometer.

Some of those factors will be discussed in Chapter 3.

The outstanding measurements in smooth wall continue to be those pre-

sented by Laufer (1954), which are reproduced in most books on the subject.

In general, one should expect the same similarity structure found for the

mean velocity distribution to hold for turbulence distributions. Laufer's
u y usy

measurements indicate good agreement for u'/u, vs. y only for --- < 20,

which is about the limit of the viscous sublayer. Beyond that point, notice-

able changes with Reynolds number exist, These may be due to instrumental

errors rather than implying a significant departure from the similarity law,

In the core region, for y/R , 0.4, again good agreement exists in the plot
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of versus I for different Reynolds numbers.
U*

Sandborn (1955), by examining a number of published measurements,

suggested some influence of the.Reynolds number on the intensity at the

centerline, of the form

u' -o.146
-= 0.144ReU x (2-25)max

Similar comparisons made by Robertson and Martin (1966; see also

Robertson et al., 1965), suggest an exponent of -0.084 rather than -0.146.

However, by considering a normalization in terms of u* instead of Umax, they

state that u'/u* does not seem to vary with Reynolds number. It must be

realized that these comparisons are highly speculative, since the scatter

of the points is several times larger than the variation involved in expres-

sions like (2-25).

There are very few measurements of intensity of tubulence for flows

along rough walls. Logan and Jones (1963) have studied the flow development

after a sudden change from smooth to rough wall. They used an 8" pipe and

sand roughness, with an average grain size of 0.073". They were mostly

concerned with the characteristics of the developing flow and their pipe

was too short to obtain strictly uniform flow. However, their data indi-

cate an essential agreement between the distribution of u'/u* at the down-

stream end (12.75 diameters from the beginning of the roughness) and at

the smooth portion of the pipe. The same general trend can be observed

in similar measurements conducted by Carper, Heilhecker and Logan (1965)

in a two-dimensional channel.

More extensive measurements in fully developed flow in rough pipes

have been conducted by Robertson, Burkhart and Martin (1965). They used

two different pipes, one 3" in diameter with sand roughness, the other 8"

in diameter with natural roughness. Their results show appreciable scat-

ter, but when the intensities u' and v' are normalized with respect to

the shear velocity u*, they tend to a substantial agreement with the values
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for smooth walls. No systematic variation with Reynolds number is

reported, although the experimental scatter would have masked any

eventual dependence. To elaborate further the point, Robertson and

Martin (1966) have compared all their data for u'/u* at a fixed dis-

tance from the wall, equal to 10% of the radius. They include in the

comparison all the available information from similar measurements in

boundary layers along smooth and rough walls and they reach the conclu-

sions, first, that there is no influence of the Reynolds number, and

secondly, that the average value of u'/u* is independent of the nature of

the wall. Such a trend can be clearly seen if the data of Corrsin and

Kistler (1954) for a boundary layer on a corrugated plate (reproduced in

Hinze, 1959) are compared with classical studies on smooth walls.

Further evidence in the same sense is provided by the measurements

of Arndt and Ippen (1967) conducted in water in a boundary layer along a

surface roughened with triangular grooves. The interesting feature of

these experiments is the use, as turbulence probe, of a stagnation tube

coupled to a pressure transducer. The normalized axial intensity u'/u*
is again in essential agreement with past experiments on smooth walls.

There are, however, indications of a systematic variation with the rough-

ness height k, the maximum value of u'/u* decreasing from 2.1 for k =

0.0125" to 1.5 for k = 0.100".

Another study of a turbulent boundary layer on a rough surface

has been presented by Uram (1966) who tested several regular configura-

tions of circular cylinders and some natural roughness. His basic

conclusion regarding the turbulent intensity measurements is that the

roughness effect is to markedly increase the anisotropy ratio v'/u'. This

would contradict the expectation of a truly universal distribution. Unfor-

tunately, Uram's data are not presented in a normalized form suitable for

comparison with other data. However some recomputations indicate that his
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claim of a large change in the anisotropy is not clearly substantiated

by his own data.

From this review, a general conclusion may be inferred, in the

sense that there are strong indications that the intensities of turbulence

normalized with respect to the shear velocity follow a more or less universal

behavior. This might appear surprising at first glance, but really it is

not so. For, from the equations of motion, it can be inferred (see, for

instance, Rotta, 1962) that the production of turbulent energy - uv -

is converted entirely to the u- component of turbulence and is redistributed

to the v- and w- components by the pressure fluctuations. It was stated in

the previous section that a characteristic of the equilibrium layer is a

definite pattern for the rate of production of turbulent energy, which must

balance the rate of dissipation. As the significant reference velocity is

u*, it is therefore reasonable to expect u'/u* to have a universal behavior

in this layer, and the same must be true of the other components. In the

u'vy wt
core of the flow, the similarity of , u 9 - , still exists because the

U* * U*

equilibrium layer acts as a buffer zone, isolating the core from a direct

dependence on the nature of the wall, except as reflected by the value of u*.

It is significant in this respect that, according to the discussion in the

preceding section, the mean velocity gradient is essentially independent of

the nature of the wall throughout the pipe, the conditions at the wall mani-

festing themselves mostly as a change in the boundary condition for the

velocity profile. As a result, substantial changes in such overall para-

meters as the friction factor do not necessarily imply a simultaneous

change in the normalized turbulence distribution. All this only reinforces

the view expressed above that an improvement in the understanding of tur-

bulent pipe flow requires an integrated approach towards the behavior of

both mean flow and turbulence.

2.3 The Case of a Porous Wall

As it was stated in the Introduction, the porous wall is conceived

only as a modification in the boundary conditions, and not as a physical

alteration of the geometry of the pipe. That is to say that no substantial
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mean flow should occur within the porous material, the motion of the fluid

being produced only by the turbulence in the pipe. Of course, these are

ideal requirements, which cannot be fulfilled in practice, but which should

be approximated in the best possible way.

At any rate, a theoretical analysis that would predict the effect

of known characteristics of the porous wall on the pipe flow is not possible

at the present, just as for the case of the rough wall, as it was explained

in the previous sections. However, it is important to attempt some analy-

tical description of the flow occurring in the porous wall, even if it can-

not be directly coupled with the principal flow. Such a theory will be

useful for the design of the proper experimental conditions, and it can

further provide some guidelines for the evaluation of the results,

Before going into the analysis, it is interesting to derive some

inferences from the discussion of the rough wall case First, it was said

that the roughness has been found to produce no change at all in the nor-

malized intensities of turbulence. No doubt, a porous wall will be even

less restrictive than a rough wall with respect to the turbulent fluctua-

tions. But it seems reasonable to expect the same effect, that is, no

change in the turbulence Secondly, with regard to the mean velocity dis-

tribution, it was found that the roughness increases the length scale of

turbulence in the close proximity of the wall (i.e., the mixing length)

and, as a consequence, the velocity is reduced by a constant term, A.
u*

If the same model holds, the expectation is that the length scale of tur-

bulence will increase much more than what would be expected from the sur-

face roughness of the porous material; thus, the porosity of the wall

will show itself mostly as an additional apparent roughness.

Turning now to an analysis of the flow within the porous material,

two approaches can be considered, One is the so-called canopy flow model,

important in micro-meteorology (see, for instance, Inoue, 1963). It consists

of a uniform wind blowing over some thick vegetal cover. The drag force

produced by the obstructing elements is balanced by a shear stress gradient

in the fluid, since the pressure is essentially constant. If some reliable

assumption can be made concerning the variation of the shear, then a
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differential equation for U(y) results, either by assuming a totally vis-

cous shear stress or by a turbulent mixing length expression. The equation

is not necessarily easy to solve, always being nonlinear. This approach

was not considered suitable to the present purpose, since it assumes that

a substantial part of the flow takes place within the obstructed layer,

which contradicts the ideal conditions proposed at the beginning of this

section.

Therefore, another model was adopted for the analysis, consisting

of a porous medium subject to a given pressure distribution at the surface

(pipe wall). The known pressure distribution is assumed to be the same

as would exist at the wall if the wall were solid and smooth. This assump-

tion is rather arbitrary and can be accepted only within the context of a

very preliminary approximate evaluation of the problem. It must be noted,

however, that Sternberg (1962; see also Kistler, 1962), in his theory for

the viscous sublayer, accepts a somewhat related principle, assuming that

the pressure fluctuations associated with the flow in the outside region

are imposed throughout the layer, originating the observed fluctuations.

A basic assumption implicit in the porous medium model is that the

scale of the fluid motion is large enough to neglect the details of the

flow in each elementary pore or channel and, therefore, that the usual

macroscopic equations for the flow in porous media are valid. Since the

motion under consideration is rapidly fluctuating and has an essentially

local character, the assumption is not straightforward, and requires some

elaboration. If the turbulence induced motion were comparable in size

to an elementary pore, the resistance offered by the interconnecting

channels would effectively block any transmission to the neighboring pores,

the wall in this case acting merely as a surface roughness. In order to

have a substantial change in the flow regime, it is necessary that large

eddies, when impinging on the wall, may continue their motion as bulk

flow through the porous medium and, hence, the macroscopic description

is adequate.

The acceptance of the macroscopic approach poses as the next question

the definition of the suitable governing equation, for a Darcy-type expres-

sion is known to be valid only for very low Reynolds numbers. Based on
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dimensional considerations, Ward (1964) has proposed for steady, one-dimen-

sional flow through porous media an equation of the form

2
1 P = -+ 0.550 (2-26)

p dx K

where p is the pressure, K the permeability of the medium and q the specific

discharge in the direction x (i.e., q is the discharge per unit cross-sect-

ional gross area of the medium). In support of (2-26), Ward shows substan-

tial experimental evidence. A similar expression was proposed by Rumer

and Drinker (1966), who explain the quadratic term by the corresponding

change in the drag coefficient of a sphere with increasing Reynolds number.

A more general derivation has been presented by Bachmat (1965), based on

the assumptions that the flow is laminar and the resistance forces are due

only to viscous friction and are, therefore, proportional to the velocity.

Bachmat describes the solid matrix by a number of parameters rather than

by a single scalar permeability, and obtains

-V + K V
Up -- + iV + p V V - - (2-27)at n

where a, 3 are scalar characteristics of the medium, K a permeability tensor,

n the porosity and V the actual average velocity of the fluid, nV = q.

These various characteristics of the porous medium are unknown. Assuming

the medium to be perfectly isotropic, and neglecting the second order term

to make the equation tractable, (2-27) is transformed into the more usual

form (see, for instance, Polubarinova-Kotchina, 1962)

+ (2-28)
n t Kq

The linearization of (2-27) is acceptable only if the neglected

term is much smaller than the others. An estimation of the relative orders

of magnitude can be obtained from one-dimensional experiments similar to

those described by Ward. The point will be discussed in Chapter 3.

The boundary condition consists of the specification of the pressure
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at the surface of the porous medium, the implicit assumption being that

equation (2-28) holds everywhere in the medium, up to the surface y = 0.

Measurements by Willmarth and Wooldridge(1962) in a boundary layer and

by Corcos (1964) in a pipe have shown that the turbulent pressure field

on a smooth wall is convected with an essentially constant velocity, approx-

imately 0.8 of the mean velocity. Therefore, as a simple first approximation,

the wall pressure can be represented by a single sinusoidal wave. A more

accurate method is to define the pressure as a random variable and use the

available information in terms of the pressure spectrum to compute mean square

values for the velocity in the porous medium.

Both methods of solution will be presented in the following sections.

Assuming that the radius of curvature of the porous layer is large compared

to its thickness, it is possible to treat the problem in Cartesian coordinates

as an infinite horizontal layer. Furthermore, fluctuations in the lateral

direction will not be considered, because there is little available informa-

tion that could be used to specify the boundary condition. This is not con-

sidered to be a serious drawback, in comparison with other more radical

simplifications, such as the linearization of (2-27) or the use of smooth

wall pressure information as a boundary condition. It must also be recalled

that this analysis will provide only an initial understanding of the mech-

anism of the flow in a porous boundary and is not, at this point, extended

to give a complete prediction of the modifications in the pipe flow itself.

2.4 Single Wave Specification of the Boundary Pressure

With reference to fig. 2-3, the mathematical problem consists of

solving equation (2-28) for a two-dimensional field (x,y) extending from

y = 0 to y - h, with p given at y = 0 and the normal velocity vanishing

at y = - h. The fluid is assumed incompressible. With q= (q q )

n q 3t K 3
n t K

+ =-(2-29)
n t K Cy ay

aq aqx+ = 0
ax ay
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p = P cos (kx - wt)

at y = - h
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= 0 (Impervious boundary)
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Fig. 2-3 Definition sketch for analysis of flow in porous medium.

In this formulation, q is not given by grad p. However, it is simple

to show that the second boundary condition leads to the same result as the

condition q = 0. In (2-29), p is the pressure fluctuation with respect

to its average value; k is the wave number 27/L, w is the frequency 27/T,

with both k and w being considered as constants and related to the convec-

tion velocity specified before by Uc = w/k. An estimation of the values

of k and w will be made in the next section, in comparison with the results

of the statistical approach. P is a constant defined by the empirical result,
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presented by Corcos (1964), that, at the wall,

v= p = a (2-30)
2

with "a" approximately equal to 3. Taking the divergence of (2-28), con-

tinuity gives

V 2p = 0

and therefore,

p(x,y,t) = P cosh kh+ h) cos (kx - wt) (2-31)

From (2-31), with p' =F

p'(y) _ cosh k(y + h) (2-32)
p'() cosh kh

and, at y = - h, i.e., at the outer solid wall surrounding the porous layer,

p'(-h) _ 1 (2-33)
p'(0) cosh kh

It is of interest to compare (2-32) with the distribution obtained

from the assumption of infinite depth h. If p' (y) denotes the value of

p' at y under the assumption that h + o, then

p'(y)kp = e ky (2-34)
p'(0)

In fig. 2-4, the ratio (p'(y)/p'(0) )2 is plotted in function of y/L

for various values of h/L, in accordance with equations (2-32) and (2-34).

With a relative thickness of 0.3, the exact solution is in essential agree-

ment with the approximation which assumes an infinite porous layer.

When (2-31) is introduced into (2-29), first order differential
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Fig. 2-4 Mean square pressure fluctuation in porous medium
as a function of depth and thickness of the porous
layer.
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equations in t are obtained for q and q . The solutions are
xy

kKP cosh k(y + h) sin (kx - wt + 6)
x y) cosh kh KW 2

n,)

(2-35)

q (xyt) kKP sinh k(y + h)
y p cosh kh

where 6 is a constant defined by

sin 6 = no and

1 + ( 2

cos (kx - wt + 6)

KW 2
nv)

cos 6 =

1+ (Kw) 2
nov

The maximum amplitudes for q and q occur at y = 0. The mean values

are zero. Continuity at y = 0 between the flows in the porous media and

in the pipe requires

q = (u) pipe and q = (v) .
y pipe

since q =(q ,q ) is the specific discharge. From (2-36), the intensities

can be computed as

,2and q' = q
y y

which, after introduction of the value of P, can be written as

Kw
U* V

Sa -
Uc K

Kw

a C 1 + ---
nV

cosh k(y + h)
cosh kh

(2-37)

sinh k(y + h)
cosh kh
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and hence, q' = q' tanh k(y + h). In the limit, as h tends to infinity,y x
the flow becomes isotropic. The mean product q q , from (2-35), is zero

everywhere. This seems to be a shortcoming of the theory, arising from

the linearization of the differential equations, since one might expect

that some turbulent transfer of momentum to the deeper layer of the porous

wall should occur. For large Kw/nv (2-37) becomes independent of the

permeability K and of the viscosity,

= cosh k(y + h)
= an -

U U cosh kh

K>> 1 ) (2-38)
nv

q u* sinh k(y + h)
_Z= an -U U sinh kh

This is the same result that would be obtained from (2-29) by neglecting

the resistance term - q. The fluid motion then represents a balance of

inertial and pressure forces.

It is of interest to determine what average velocity Q will be

produced in the porous medium by the overall pressure gradient in the

pipe. As the equation of motion has been linearized, superposition is

valid. By introducing in (2-28) the pipe pressure gradient dp/dx =4 T /D,
where D denotes the interior diameter of the pipe,

4 K TQ 0
x pD

from which

Q 4Ku* (2-39)
U* vD

and, at y = 0,

x _ akD 
(2-40)

41+ E2
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This expression allows an estimation of the relative importance of Qx
in regard to the linearization of (2-27).

An indication of the importance of the porous medium flow relative

to the overall pipe motion can be obtained by comparing the energy dissi-

pation in each case. The rate of dissipation eL in the porous medium can

be computed in relation to a control volume V of surface S,

e (p + - p V ) V -dS + 1 V dY (2-41)
L 2 p dt 2 p

fp p

where dS points towards the interior of the control volume, V is the actual

velocity q/n, V is the open volume, S is the open cross section and the

gravity term has been neglected. The control volume is chosen of one wave

length, unit width and the thickness of the porous layer (fig. 2-3). By

introducing the porosity in (2-41) in the form V = q/n, V = V /n, S = S /n,

2 2
e =- p + 1 p -_- q-.dS + -f P pq- dV
L 2 2 +t 22 n n

S n

With reference to fig. 2-3, the contribution to the surface integral

from the two boundaries x = 0, Lcancels out, and obviously q.dS vanishes

at y = - h. Furthermore, the volume integral of q2 over one wave length

does not depend on time, so the last term also vanishes. Thus, all the

energy dissipated corresponds to the energy being transmitted from the

turbulent pipe flow to the porous medium, as should be expected, and

eL p= + 1p q dxeL = f~ P
x=n

(at y=O)

Introducing (2-31) and (2-35), it is easily shown that the contribu-
2

tion from q q cancels out, so, per unit area of interface,

2 2
e iL 1 a -r 0 Kw tanh kh
L= - - pq dSr e - - (2-42)
L L. y P U V K

(inerface) c 1 + --
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An alternative method of finding e is to take the scalar product

of q and the equation of motion (2-28) to obtain an energy equation. This

shows that the viscous dissipation term is of the form L q2, which,
K

after a volume integration, gives the same result as (2-42). It is interest-

ing to note that, by differentiating (2-42) with respect to the permeability

K, the dissipation e is seen to reach a maximum when L- = 1.
nfl

If (2-41) is now applied to a control volume including the complete

open section of the pipe, the dissipation E is seen to be, per unit area

of wall interface,

E = -p -U-= U (2-43)dx 4 o

and, therefore, the ratio between the energy transmitted to the porous

medium, and the energy dissipated in the main flow is

e 2 u* u Kw tanh kh a v'- a- = - (2-44)
E U Uc V +(Kw U

where v' represents q' at y = 0. It must be noted that the ratio computed
y

in (2-44) does not represent the additional energy dissipated in the pipe

because of the presence of a porous wall. That additional dissipation is

already included in the factor u*, whose value cannot be predicted from

the present analysis. However, in a general way, it is reasonable to assume

that the porosity of the wall will noticeably affect the pipe flow only

when a significant portion of the total energy has to be transported to the

porous medium and, therefore, e/E is a measure of the influence of the porous
wall.

2.5 Statistical Specification of the Boundary Pressure

The problem formulated in (2-29) can be solved in much the same

way if the pressure at y = 0 is given as a known random function of posi-

tion and time. A fairly similar problem, the irrotational motion at the

boundary of a free jet, has been treated by Phillips (1955) and Stewart (1956).
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The first boundary condition for (2-29) is written as a Fourier-Stieltjes

integral

00
p =-f ei(kx + wot) dB(k, w) at y = 0
p _ e

- W

(2-45)

where dB(k,w) is a random point function and the integral is taken over

all values of k and o. Readers not familiar with the notation of (2-45)

are referred to any book on the theory of random functions; a good intro-

duction is presented by Lee (1960). In a similar way to the single wave

analysis, the solution to (2-29) with (2-45) is found to be

p(xyt) =O e i(kx + ot) cosh k(h + y) dB(
p yt =cosh kh
-- 0

q (xy,t) = - i e
i(kx + ot) Kk/pi

1+ Kw
nv

00

(xyt) -00 e i(kx + ot) kK/i s

+ i -
n%

k,w)

cosh k(h + ) dB(kw) (2-46)
cosh kh

nh k(h + y) dB(kw)
cosh kh

Explicit expressions for p, q or q do not exist. It is possible,

however, to find the mean square values in the following way. The correla-

tion function for the pressure at y = 0 at two points separated by a dis-

placement E and a time interval T, is

R(E,T) = p*(x,0,t) p(x + E, 0, t + T)

where * denotes the complex conjugate. Introducing p from (2-46), it can

be shown (see, for instance, Batchelor, 1960, Chapter 2) that

f 

, 0 ei(ktE + tT)

CO0

(2-47)
dB*dB .

Defining the total Fourier transform of R by
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00

E(kw) = 2 R(E,T)e-i(k + T) ddT(2-48)
-00 

( -8

it follows that

dB*dB = E(kw) dkdw. (2-49)

From (2-46), mean square values can be found by multiplying each

variable by its complex conjugate at the same position and time. As

p, q , q are real,

cosh k(h + y) dB*dB
p~p =0 22 Bd

f-W cosh kh

__ ~2 2 _

q *q 2 00 (Kk/p) cosh k(h + y)
xx *q = 2= 2 dB*dB

v +cosh kh

(2-50)
___ 2 2

q y *qy q= 2 0 - (Kk/p) sinh k(h + y) (2_50

7 y -_4 1 + cs2 hdB*dBq -~~ cosh khdBd

yO 2
q *q = q (Kk/) sinh 2k(h + y) dB*dB

y + /(- 2 cosh2 kh
nk

Therefore, if E(k,w) is known, (2-50) can be integrated to obtain

explicit expressions for the intensities of pressure and velocity. From

measurements of the wall pressure fluctuations in a smooth pipe, Corcos

(1964) has shown that E(k,w) can be expressed in terms of a partial trans-

form P(Ew) defined by

00
R(C,T) e eW (Ewd

0
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Thus,

00

E(kw) = 1 ikE r(C,)d (2-51)
2Tr

f-00

A frequency spectrum is defined by

( - R(0,T) cos WT dT (2-52)
27T

Corcos has measured the cross-spectral function F in the form

P(5,r) = r e = A( ,w) O(w)e

and he found that A = Fr/D is a function only of n. Writing n as a

similarity variable n - , a convection velocity U is defined, which
U' c
c

is found to be only a weak function of frequency, and can be taken to be

a constant, equal to 0.8 times the average velocity in the pipe. Therefore,

S( ,() = () A() e Uc (2-53)
c

Introducing (2-53) in (2-51), and by a suitable transformation,

UQ(o) Uk\_dB*dB Uc (Dw ck

E(k,w) = dBkdB _ E 1 + (2-54)
dk o ol ol w

where E is the transform of A, defined by

E (6) = A(n) e- dn (2-55)
o 27r -_

Corcos gives A only as a plot of experimental points. Gardner (1965), by

a theoretical analysis of the pressure equations in the wall layer, has

shown that A(n) can be approximated by

A(T) = 1 2 (2-56)

1 + (mn)

-34-



1.0

o Pipe flow (Corcos, 1964)

V Boundary layer (Willmarth and
Wooldridge, 1962)

A

0.5 OV

7

Eq. (2-56) with m = 1/5

0 ~020 30 450

n
C

Fig. 2-5 Representation of the cross-spectral function
of the wall pressure, A(n).

-35-



where m is the exponent in a power law representing the velocity distribu-

tion close to the wall. The agreement of (2-56) with observations is not

very good (fig. 2-5), but can be accepted for the present purpose. In fig.

2-5, m has been taken as 1/5. From (2-55) and (2-56),

E K+ )= -- exp - 1 + Uck (2-57)
W 2m m |

To completely specify (2-54), it is still necessary to have an expli-

cit expression for Q(DG), the power spectrum of the wall pressure. Corcos

(1962) indicates that a universal behavior results from the use of the

dimensionless variables

= ; f' = D-w-(2-58)
2'

T D 2dU
0

where U is the mean velocity and D the diameter of the pipe, and that the

data are well represented by

= 0.418 exp (-0.0224 f') (2-59)

However, (2-59) cannot be used for the present purpose, because it does

not integrate to the correct value of p'. It seems appropriate to use

instead an expression similar to that commonly used for the velocity spec-

trum, such as

_ _ 1

2 1 + (Tw) 2  (2-60)
p Ts

where Ts is the time integral scale defined by

T 1 R(0,T) dT (2-61)
s 2 _ -

p
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Comparison with (2-52) shows that

T s -)(0) (2-62)
p

With (2-60), it is possible to fit Corcos' data in the low frequency

range, which is the most significant since it contains the largest portion

of the energy. Rather large departures occur at the high frequencies (fig.

2-6). With (2-54), (2-57) and (2-60), equations (2-50) are completely

determined. An immediate result comes from the fact that dB*dB is an even

function with respect to the vector (k,w). Therefore, q q = 0, as was the

case for the single wave analysis. More similarities between the two solu-

tions will be pointed out as the equations are developed. The integration

of (2-50) is rather cumbersome and, for the purposes of this investigation,

it is convenient to restrict the analysis to the case of an infinite thick-

ness h. The implications of this assumption for the application of the

theory will be discussed later. If the power spectrum of p2 at a depth y

(y < 0) in the porous medium is defined by

-TO
p (y) = (w,y)dw (2-63)

then integration of the pressure equation in (2-50) with respect to k

leads to

2YIQI
(wy) e + 2me M Q (2-64)
~(w,0) - 2 (-4

1 - (2mYQ)

where Y is a dimensionless depth defined by

U T (2-65)c s

and 0 is a dimensionless frequency defined by

= T w. (2-66)
5
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It must be noted that Y is always negative, and, by a suitable rearrange-

ment of (2-64), it can be seen that @(ci,y) remains finite when 2mY|Q| = -1.

In fig. 2-6, the pressure spectrum at the interface y = 0 has been plotted

as given by (2-60), together with the spectrum at various depths in accor-

dance with (2-64). In the same figure, a comparison is made with Corcos'

measurements of the wall pressure in a pipe, which he presented in terms

of the similarity variables (2-58). The implicit equivalence is T = D/U.

The data for ( have been reduced.by a factor of 2, to take account of the

negative frequencies, which do not have a physical reality. To interpret

fig. 2-6 for the case where the porous layer constitutes the wall of a

pipe, T can be expressed as D/U and, recalling that U c 0.8 U, Y becomess c
approximately equal to the ratio between the depth y and the diameter of

the pipe. As depth increases, the high frequencies are severely attenuated.

Some evaluation of the validity of the assumption of infinite thickness of

the layer can be made from the plot. AtY = -0.1, the significant low

frequencies are passed almost unimpeded and even at Y = -1 the attenuation

is rather small. Therefore, for the layer to be considered of infinite
hdepth, the relative thickness U has to be much larger than 1.U T
c s

Further integration of (2-63) gives for the pressure intensity

2-- _ 2Y 2Y - ,) 2Y )cos 2Y) _ 2
p ( ) _ 2 Tr Tr 7T Tr .

2 7 + -2_mY.2 (2-67)
p2(0)

where M is a numerical constant defined by

M1
m e M Ei + e E 0.044

with m = 1/5, and Ci, si, Ei and E are exponential integral functions.

It is of interest to examine the behavior of (2-67) for small values of Y.

The following approximations are valid for small values of the argument:
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Ci(x) Z 0.577 + ln x

si(x) x - 7r

sin(x) x

cos(x) 1.

Then, (2-67) becomes

-(Y) 1 + - -)ln (- T ) for Y small. (2-68)

p (0)

Both (2-67) and (2-68) have been plotted in fig. 2-7. This result

can now be compared with the single wave analysis for the same assumption

of infinite h, that is, equation (2-34). In that analysis, nothing was

said concerning the actual values of the wave parameters L and T. Approx-

imating Y by y/D, equation (2-34) has been plotted for various values of

L/D in the same fig. 2-7, and it can be seen that, in general, the decay

in the turbulent pressure intensity is much faster for the single wave

analysis than for the statistical analysis, and furthermore, that L/D has

to be at least of order 10 to have some degree of equivalence between the

two solutions. This is rather surprising, since one might expect the sig-

nificant wave length to be of the order of the pipe diameter D. The explana-

tion may be found in the pressure spectrum represented in fig. 2-6, where

the significant frequencies Q are less than 0.5. As Q = Tsw is approxi-

mately equal to Dk, this corresponds to ratios D/L smaller than about 0.1.

Of course, these inferences are dependent upon the accuracy of the low freq-

uency spectrum measurements as well as of their analytical representation

(2-60).

Turning now to the integration of the velocity equations in (2-50),

the assumption of infinite depth produces q' = q'. Integration is readily
x y

done only for the special case of y = 0, which gives
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S2 2 2
q 2 2 = 2m2+ 1) dw at y = 0 (2-68)qX -q y 2 +1 Uc + + w(-8

nV

and, after introduction of 4(w) from (2-60),

2 2 2
q q 2u na

= = (2m+ )a2 T at y = 0 (2-69)

*Tr

where a is a dimensionless characteristic frequency defined by

K = (2-70)
nv T

s

From its definition, for a given boundary material, a is inversely pro-

portional to the time scale of the imposed turbulent field. If the

velocity spectrum $(w) is defined by

q - $(w)dw at y = 0

then the combination of the above equations gives

2 2

q + 2 (2-71)
2 =n~ 1+ x2 \ (1 +

x~y s

which is plotted in fig. 2-8 for various values of a. Differentiation
2

of (2-71) shows that P' has a maximum at TraQ2 = 1, and the value of $ '
max

is

p' = n
max + (2-72)

As a +*, $' approaches n. In fig. 2-8, the porosity n has been taken
max

as 0.7. Changes in n will produce only slight displacements of the com-

puted curves. Inspection of fig. 2-8 shows that the resonance peak in
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the velocity spectrum is rather sharp. Only a narrow band of frequencies

in the pressure fluctuations contribute to produce motion of the fluid.

Thus, the magnitude of the velocity fluctuations is roughly proportional

to the value of the pressure spectrum at the resonance frequency. As

the spectrum tends to a constant for low frequencies, the velocity inten-

sities also tend to a constant, which is independent of viscosity and perm-

eability, as shown by equation (2-69). To compare with the single wave

solution, equation (2-37) can be transformed by

1Kw 2'rrK T
nv nvT T

Expressing Ts by D/U and T by L/Uc,

D

2Kw 2Tr . (2-73)
nv L

Thus, for y = 0 and h -+o, (2-37) becomes

S2 ( D 2
x2y 2 u* \2Ta L

2 a n - / D\2 (2-74)
U* (UC 1 + 2 Tr -

Equations (2-69) and (2-74) have been plotted in fig. 2-9 for various

values of L/D, again showing that qualitative agreement requires L/D

to be of order 10.

2.6 Summary of the Porous Layer Flow Analysis

From the previous analysis, the single wave and statistical approaches

must be regarded as mutually complementary. The first provides wider results,

whereas the second is a guide for their evaluation. The main features of

the solution are the vanishing of the momentum transfer term q q everywhere

and the presence of a rather sharp resonance peak in the response of the

flow to the fluctuating boundary pressure. The porous medium acts as a
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filter with respect to the velocity fluctuations, depending on the dimen-

sionless number a which combines the permeability and porosity of the medium,

the viscosity of the fluid and the time integral scale of the imposed pres-

sure distribution. It should be expected, however, that both features could

be substantially affected if the complete nonlinear equation (2-27) were

used to describe the flow.

Concerning the application of this theory to the case of a porous

wall pipe, some conclusions may be drawn. First, the thickness of the layer

must be, from fig. 2-4, at least 0.3 L to be considered as infinite. But

L has been shown to be of the order of 10 D. Therefore, the relative thick-

ness h/D should be at least 3, which basically agrees with the conclusion

drawn from fig. 2-6, but, on the other side, such a thickness would greatly

contradict the assumption of a horizontal layer. There is no need, however,

of assuming an infinite depth for the single wave analysis and, therefore,

it is possible to approach the problem by estimating the significant para-

meters of a representative pressure wave from the statistical analysis, and

then, using the single wave analysis to examine the flow.

As stated before, it is not possible to derive from this analysis the

changes produced in the turbulent pipe flow by the presence of a porous wall.

In general, in the equations for the porous medium flow, u* is treated as

an externally determined input, but in fact there is a feedback process, in

which the pipe flow induces the motion in the porous medium and is in turn

distorted by it. The balance of forces represented by u* must be, therefore,

a function of the porous medium.flow. Accepting this fundamental limitation

of the analysis, the equations developed in the previous sections provide

reasonable criteria to judge the influence exerted by a porous wall on pipe

flow.
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CHAPTER 3

EXPERIMENTAL EQUIPMENT AND METHODS

3.1 Experimental Objectives

In accordance with the analysis presented in the previous chapter,

an experimental program was designed, aimed at the comparison of the effects

produced by two different types of wall on the major characteristics of tur-

bulent pipe flow. The program included the following points:

(a) Construction of two pipelines, one with a conventional type
of artificial roughness and the other with a thick layer
of porous material lining the wall, both long enough to insure
the development of uniform flow.

(b) Measurement of mean velocity distributions and pressure grad-
ient for fully developed turbulent flow conditions, using
standard pitot tubes.

(c) Measurement of intensity of turbulence in the axial and radial
directions and of the corresponding Reynolds stress, using
hot wire anemometry with single wire and x-array arrangements.

(d) Measurement of the turbulent energy spectrum.

In the next sections, a general description of the experimental equip-

ment is given first, followed by the design considerations in selecting a

suitable porous material and a discussion of the various experimental tech-

niques.

3.2 General Description of the Equipment

The open-circuit air flow system is shown in figs. 3-1 and 3-2,

and includes:

(a) an inlet box, approximately cubic in shape, with sides 4 ft.
long, containing four M-S-A Dustfoe M-1000 air filters, rated
at 1,000 cfm each, to protect the hot wires from dust deposit;

(b) the test pipe, approximately 40 ft. long and 10" diameter;

(c) a flexible hose connection to the blower, to reduce vibra-
tions in the pipe;

(d) an American-Standard AH-13 blower at the downstream end,
driven by a 10 h.p. squirrel cage induction motor.

Flow regulation was established through a Wood MSC-10-W variable speed

belt drive which allowed for continuous blower speed control between 1,000
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Fig. 3-2 General view of the equipment

Fig. 3-3 Test section of rough pipe
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and 1,750 rpm, and through an adjustable damper. As installed, the

maximum discharge was approximately 50 cfs. The transition from the

inlet box to the pipe was calibrated in terms of pressure drop vs. flow

rate, and this indication was used to fix the experimental conditions

for each run.

The first pipe to be tested (called in the following the "rough"

pipe) was made from aluminum construction tubing, with nominal dimensions

10" O.D. and 0.094" wall thickness. A first length of 3 ft. contained the

calibrated, rounded transition from the inlet box, plus three sections of

Hexcel honeycomb, to insure symmetrical flow. The pipe itself was 40 ft.

long, the last 20 ft. being covered with artificial roughness. The suit-

ability of this length to produce uniform flow will be discussed in the next

section. At the joints, the two ends were brought to flat contact and cov-

ered with duct tape to provide an air-tight seal. A steel coupling, 6"

long, was tightened around the joint, forcing the two aluminum tubes to

adjust to approximately the same shape.

The length of pipe to be roughened was split longitudinally and 1"-

aluminum angles were mounted throughout the length for re-assembly (fig.

3-3). A rubber gasket was chosen to fill the gap caused by the cut and,

therefore, keep the section to its original dimensions.

The roughness consisted of spherical acetate beads, 0.137" in dia-

meter, bonded by hand to the interior of the pipe with Duco cement. The

packing was at random, and as dense as it was feasible (fig. 3-4). A

sample measurement indicated that 72% of the surface was covered with beads

(the closest packing of spheres would give 91%).

Test sections were located at relative distances from the beginning

of the roughness of x/D = 2.0, 6.25, 11.0, 15.8, 19.4, 21.5 and 23.0; in

fact, only the last one was regularly used, the others being intended only

for preliminary measurements of the development of the flow. At each test

section, three aluminum blocks were mounted at 120* apart on the exterior

of the pipe with epoxy cement; they were designed to hold a United Sensor

manual traverse unit with vernier readings of 0.01", suitable to support

every instrument used in this investigation (fig. 3-6).
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Some changes were introduced in the design of the second pipe,

which will be called in the following the "porous" pipe. In order to

have approximately the same interior diameter as in the first case, poly-

vinyl chloride (PVC) pipe of 12.75" O.D. and 0.406" wall thickness was

used. For the porous lining, a commercially available polyurethane mater-

ial was chosen, Scott Industrial Foam, which has a very open skeletal

structure with a porosity of 97% (fig. 3-5). Advantages of this mater-

ial are its workability, high strength and extremely high permeability;

on the other hand, being flexible, it is conceivable that high rates of

flow may induce some deformation of the material. However, no visual

evidence of any deformation was obtained through various preliminary

tests. Measurements of the permeability of the foam as a function of

pore size are described in section 3.4, together with an evaluation of

its behavior based on the analysis presented in Chapter 2. A texture of

30 pores/inch was chosen, with a permeability of 1.3 x 10 6 ft2

To mount the interior lining, the PVC pipe was cut into 4 ft. long

sections, this length allowing access to any point. The interior wall of

every section was covered with a single sheet of foam. The longitudinal

joint could be made very smooth because of the elasticity of the lining

material. No bond was necessary between the foam and the pipe, friction

and elasticity being enough to keep it in place. However, to prevent de-

formation during assembly, the ends and the longitudinal joint were bonded

with silicone rubber cement. Details of the lining can be seen in figs.

3-5 and 3-6. The in situ thickness was measured as 1.20 inches. The same

lining was applied to the total length of 40 ft. The pipe was continuously

supported by a 4" wide aluminum channel, which provided at the same time

the necessary alignment. The joints were sealed with duct tape. Close

inspection of the interior of the joints was not possible, but what could

be seen from the end of each section indicated that no protrusions existed;

rather gaps, of no more than 1/8", resulted between consecutive sections

but this should not produce a major disturbance in the flow. The test

section was located at 43 diameters from the beginning of the porous lining.

An additional length of 4 ft. downstream of the test section was intended
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to protect it from any disturbance originating at the sudden end of the

porous lining.

The instrumentation included pitot tubes for mean velocity measure-

ments and a two-channel system of constant temperature hot wire anemometers,

Flow Corporation model CTA3 (figs. 3-17 to 3-19). A Technical Products

wave analyzer was available for energy spectral analysis. Details of the

characteristics and operation of these instruments are given in the corres-

ponding sections.

3.3 Development of Uniform Flow

There is little available information concerning the necessary length

of a pipe to assure fully developed flow after a substantial change in wall

roughness. On the basis of the classical studies of Nikuradse and others,

it is usually recommended to have an inlet length of at least 40 diameters.

However, a recent study by Barbin and Jones (1963) indicates that the length

should be even higher. Barbin and Jones have measured not only mean velocity

distribution and pressure gradient, but also the distribution of the three

intensities of turbulence and of the principal Reynolds stress, in a smooth

pipe with a total length of 43 diameters. Their conclusion is that neither

of these characteristics has reached auniform distribution after such a

length, and that both turbulent intensities and Reynolds stress attain in

the process of development values that are higher than those corresponding

to fully developed conditions. More relevant to the present discussion are

the measurements reported by Logan and Jones (1963) on flow development in

a pipe after an abrupt increase in roughness, and by Carper, Heilhecker and

Logan (1965) for a similar case in a two dimensional channel. In the first

case, fully developed flow was approached but not attained in a length of

15 diameters of rough pipe, whereas in the second, a fully developed mean

velocity profile was established within 20 widths of channel, but the tur-

bulence pattern did not seem to have attained the uniform condition. In

both cases, values of the Reynolds stress higher than the fully developed

condition were obtained during the transition. From these results, it

could be inferred that in many reported experimental studies, including

the present one, the length was too short to yield reliable data on fully
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developed flow. However, the same results show that, in the region close

to the wall, the final distribution of turbulent intensities is approached

within only 5 to 10 diameters, and that after this distance, most of the

variations occur in the center portion of the flow. Therefore, a length

of 23 diameters of rough pipe, as used in the present investigation, should

give distributions of mean and turbulent velocities very close to the fully

developed condition, especially in the wall region, which is the most sig-

nificant.

A confirmation of the above results was provided by the preliminary

measurements conducted in the rough pipe by Moran (1967). Figs. 3-7 and 3-8

are reproduced from this study, showing the mean velocity and axial turbu-

lent intensity distributions at various sections. It is reasonable to ex-

pect that the fully developed condition, if not attained, will not be sub-

stantially different from the results at the last test section. To gain

further evidence, the last 3 ft. of smooth pipe were lined with brass wire

mesh, made of 0.054" wire with an opening of 0.279". The ratio of these

dimensions was selected to produce an equivalent roughness several times

higher than the pipe roughness, according to experiments by Stevenson as

reported by Robertson, et al., (1965). The relative intensity of turbu-

lence was measured at the test section before and after the installation

of the wire mesh. The results, shown in fig. 3-9, indicate no trace of

influence of the upstream change, giving further credit to the conclusion

that the rough pipe was long enough to produce satisfactory results. It

was not considered necessary to make similar measurements of flow develop-

ment in the porous pipe, as its length, 43 diameters, was almost twice that

of the rough pipe.

3.4 Design of the Porous Material

As explained in the previous section, the diameter of the pipe, the

thickness of the porous layer and the type of material to be used were sel-

ected mostly on the basis of practical considerations. In order to determine

the most adequate permeability, the equations developed in Chapter 2 were

used. The various requirements to be satisfied were high intensity of
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turbulence and high energy dissipation to assure substantial effects on

the pipe flow, and, at the same time, low mean velocity through the porous

medium and low permeability, in order that the linearized analysis of Sec-

tions 2.4 and 2.5 may be applicable. It was shown there that the single

wave analysis yields results roughly comparable to the more accurate stat-

istical analysis if a wave length of 10 D is used. Thus, the single wave

equations will be used here.

For the purposes of a numerical comparison, it is convenient to

simplify the equations by the introduction of suitable approximations.

The porosity n = 0.97 of the material is taken as 1. The ratio u*/U is

approximated to 0.1 (the later results indicated that this value is quite

accurate). With Uc = 0.8 U and L = 10 D, the frequency becomes

w = k U =0.5 .
c D

With the further introduction of a = 3 from (2-30) and Ts = D/U,

Kw _ KU

nv 0.5 = 0.5a

and the various results of the single wave analysis are transformed as

follows:

__ _ 0.19cr

(2-37) + (3-1)

q q
- tanh kh

(2-39) x - 0.4a (3-2)

e 0.055a tanh kh (3-3)(2-42) + E 1+ (c 2
2
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It is necessary next to evaluate the limitations of the linearization

introduced in the equation of motion (2-27). For this purpose, a series

of permeability measurements was conducted with samples of Scott Industrial

Foam of 3 different textures, namely, 20, 45 and 80 pores/inch. Cylind-

rical samples of various lengths between 3 and 6" were placed in a 2" I.D.

plexiglass air tunnel, in the same arrangement which was later used for

velocity calibrations (fig. 3-23). The specific discharge was measured

with nozzles of 1", 1/2" and 1/4" in diameter connected to a micromanometer

reading to 0.001" of water. As the permeability of the material is very

high, this equipment was not suited to measure the pressure drop for velo-

cities low enough to be in the range of validity of Darcy's law. Therefore,

K had to be computed from the complete equation (2-26). Preliminary compu-

tations indicated that the measurements could not be fitted to (2-26) with

a coefficient 0.550 as proposed by Ward (1964). By trial-and-error, the

constant was estimated as 0.13, this value giving a good universal behavior,

as shown in fig. 3-10. Equation (2-26) has been transformed to

f = + C (3-4)
K Re K

where

f - R -
K 2 , dx' K v

pq

and C is a constant, 0.550 according to Ward and 0.13 according to these

measurements. Most likely, C must be dependent upon the structure of the

porous matrix, which for this foam is quite different from the granular

materials tested by Ward. From (2-26) or (3-4), the ratio r between the

linear and the quadratic terms is given as

K 7.7
r= - 7. (3-5)

2 Re
0.13 -9 K
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Equation (3-5) can be used to estimate the limitations of the linear

analysis, using as a representative velocity

q = Q + q'
x x

and introducing the approximate numerical values of D = 0.8 ft. and

v = 1.6 x 10~4 ft 2/sec. Linearization is valid for r >> 1, gradually

deteriorates as r approaches 1 and is grossly in error for r << 1.

Equations (3-1), (3-2), (3-3) and (3-5) have been plotted in fig.
K3-11, with K as abscissa, for values of 7U of 10, 50 and 100 fps (the

actual velocities in the experiments were 20, 42 and 85 fps). In (3-3),

h/D has been taken as 0.1, giving kh = 0.027 and tanh kh = 0.06. For

reference, the intensity q' from the statistical analysis has also beenx
plotted, in accordance with (2-69), which, after the same simplifications,

becomes

q

-U 0.38 T 36
u 9 tatistical 10+.38(3-6)

T

The variation produced in the ratio r by the use of (3-6) instead of (3-1)

is also shown in the graph.

Fig. 3-11 serves to illustrate some of the limitations of the

analysis presented in Chapter 2. For instance, the maximum in the energy

dissipation occurs at a point where the threshold of linearization, r z 1,

has been greatly exceeded. The same is true of the point where the tur-

bulence intensity becomes independent of permeability.

From Fig. 3-11, a design Point of - = 10-2 was chosen as avD
compromise solution, satisfying more or less the requirements stated at

the beginning. In fig. 3-12, the permeabilities measured in the tests

previously described are plotted as a function of the pore size. A

texture of 30 pores/inch was selected, with a permeability K = 1.3 x 10 6ft2
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K -2
which, with D = 0.8 ft., gives - = 10 as required.

>D

3.5 Measurement of Position in the Pipe

As it was discussed in Chapter 2, it is not possible to define on

a geometrical basis the exact position of the wall for a substantially

rough condition. Nonetheless, it.is necessary to establish a reference

origin to compare measurements taken with different probes and to define

a diameter for normalization and for computations of discharge or mean

velocity.
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In the rough pipe, the method chosen was to express the position

of the probe as the distance from the smooth aluminum pipe, which was

measured as follows: after removing some roughness beads from the spot,

a blunt rod was brought to contact with the wall; a topographic level was

set up and the rod brought up to the optical axis; the difference between

the two readings gives the distance from the optical axis to the wall.

Then, the beads were replaced and .the probe positioned on the optical axis.

The method was reproducible within 0.01", which was the accuracy of the

traversing mechanism. The diameters measured at three traverses, 1200

apart, in the test section were 9.75, 9.68 and 9.83", with an average of

9.75': An effectixwdistance yB to the wall was defined by introducing a

constant displacement in the origin for all traverses. Its determination

will be presented together with the experimental results. The value chosen

was 0.105", which, when subtracted from the average radius, gives an effec-

tive pipe diameter of 9.54". This value will be used to compute the mean

velocity. For purposes of normalization, an effective radius RB was defined

as the effective distance yB to the centerline, which in turn was found,

not as the geometrical midpoint of the traverse, but rather as the axis

of symmetry of the mean velocity profile. Differences between the axis

of symmetry and the geometrical midpoint were of the order of 1/4" (fig.

3-13). In this way, the normalizing radii were different for the two sides

of each traverse.

Essentially the same procedure was followed with the porous pipe.

However, because the foam lining could not be removed at will, an arbi-

trary reference level was fixed during construction by bolting a metallic

scale, graduated to 0.01", to the end of the pipe. The zero of the scale

was referred to the wall of the PVC pipe. The mounting of the scale was

tight enough to obtain reproducible positions; in this way, each probe

could be referred to the scale by the use of a topographic level. The

thickness of the lining was measured in place as 1.20 inches. This value

was used to compute y, the distance to the wall. Because of the method

of construction, this pipe was more regular than the previous one. Dia-

meters (of the PVC pipe) measured at the test section at 1200 apart were
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11.825, 11.80 and 11.84". The average pipe diameter, up to the interior

surface of the porous material, was 9.42". The flow was very symmetrical,

with the maximum velocity occurring within 0.03" of the geometric mid-

point (fig. 3-13). Therefore, RB was taken as one half of the geometric

diameter.

3.6 Measurements of Static Pressure

Static pressure measurements are necessary to determine the pres-

sure gradient and, hence, the friction factor and the shear velocity, and

to compute the mean velocity from total head tube readings. In the first

case, systematic errors are not important, because they will not change the

overall gradient, but they may become important in the second case. There

is little available information concerning the behavior of wall pressure

holes in the presence of roughness. Polzin (1939) compared the pressure

at a wall roughened with sandpaper with the static pressure read by a

pitot tube in the center of the duct, for air velocities up to 50 ft/sec.

The roughness height ranged from 0.005 to 0.02 inches and the hole diameter

from 0.02 to 0.35 inches. In all cases the measured wall pressure was lower

than the indication of the pitot tube, the difference in general tending to

increase with velocity, but without a clear functional relationship. Polzin

stresses the fact that the pressure difference is very sensitive to the

roughness configuration around the hole. The largest differences were

2% of the velocity head at the centerline. This kind of experiment is

difficult to evaluate, because of the uncertainty about the behavior of

the pitot tube itself. Shaw (1960) has studied the effect of hole size

on the pressure reading on a smooth wall. He found a fairly universal

relationship between the pressure deviation (Ap/T ) and the Reynolds number

(du*/v), where Ap is referred to the extrapolated pressure as the diameter

d of the hole approaches zero. The largest error Ap is + 2.8 T . He also

studied the effect of burrs produced by imperfect drilling. For the largest

burr (0.03 d in height), the error Ap increased by a factor of 7. At any

rate, these variations are very small; for a hole diameter as large as 10%

of the pipe diameter, the error is of the order of 1% of the mean velocity
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head. Chao and Sandborn (1965) have measured the pressure distribution

around the spherical elements of the boundary roughness for a radial

wall jet. They found some pressure variation in the upper surface of

the spheres, but the pressure around the bottom half was essentially con-

stant.

It can be concluded, therefore, that for pressure gradient measure-

ments the roughness should not be a major source of error. In fact, the

systematic error can be minimized by producing similar roughness configura-

tions around each hole, and, of course, the importance of accidental varia-

tions is reduced by the averaging involved in the process. Accordingly,

pressure holes were installed in the rough pipe as follows: at each test

section, six holes, 1/16" in diameter, were drilled 600 apart; around each

hole, four beads were glued to the wall in a square pattern. The surrounding

roughness pattern was random, but closely packed. Such test sections were

located at distances from the beginning of the roughness of x/D = 3.80, 8.60,

13.40 and 18.20. All six pressure holes at each section were individually

tested. In general, the variation between each two holes was less than 1%

of the mean velocity head, the largest ones being smaller than 2%; holes

deviating noticeably from the average were discarded. Pressure differences

were measured with a Dwyer No. 1420 water micromanometer, with an accuracy

of 0.001" (of water) (see fig. 3-23).

For the porous pipe, little flow was expected to occur near the solid

wall. Therefore, the design of the holes was not thought to be critical.

Three holes, 1/16" in diameter, were drilled at 120* apart, every 2 ft.

throughout the length of the pipe. As every piece of pipe was 4 ft. long,

pressure test sections were located at 1 ft. from each end. As expected,

deviations between individual pressure holes were smaller than in the rough

pipe. The largest were of 0.5% of the average velocity head, in general

being of the order of 0.2%, which is approximately the limit of accuracy

of the micromanometer.

A more difficult problem is the determination of the local static

pressure, to be used in connection with total head tube readings to find

the mean velocity. Hinze (1959), while discouraging the use of static
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Fig. 3-14 Static pressure distribution in rough pipe,
measured with static pressure tube

pressure tubes because of turbulence induced errors, points out the lack

of any more reliable alternative. Sandborn (1955) has evaluated the

pressure distribution from turbulence measurements in a smooth pipe.

His results show a maximum deviation referred to the wall pressure of

0.3% in terms of the centerline velocity head. This figure is in agree-
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ment with an earlier, similar estimate by Fage (1936). Fage also indicates

that the static pressure tube itself shows only from one half to one fourth

of the pressure deviation, depending on the local turbulence levels. Some

static pressure tube traverses were made during the preliminary stages of

this investigation in the rough pipe, using a 1/8" tube, with two 1/32"

holes located 3/4" from the upstream end. Some results are shown in fig.

3-14, the maximum deviations being of the order of 1% of the average velo-

city head. The trend is similar to the curves shown by Fage and Sandborn,

but the absolute deviations are larger, which is consistent, because the

relative levels of turbulence are higher in a rough pipe. In view of the

uncertainty covering the subject, the procedure was simplified by using

a constant static pressure throughout the cross section, equal to the wall

pressure as determined from interpolation in the pressure gradient profile

at the location of the tip of the total head tube. In the region

close to the centerline, such method does not introduce errors larger than

0.5% in the computed velocity. However, close to the wall, where the

velocities are much lower and the pressure deviations the highest, errors

of up to 2% are to be expected.

3.7 Measurements of Mean Velocity

Although mean velocities can be obtained from hot wire readings

simultaneously with turbulence values, the reliability of the method is

low. Therefore, independent measurements were taken with a cylindrical

total head tube, 0.125" outside diameter (figs. 3-15 and 3-21). The pres-

sure coefficient for the tube was assumed to be 1.0. Hurd, Chesky and

Shapiro (1953) have shown that this assumption is true for Re > 2,000, with

the Reynolds number Re defined in terms of local velocity and interior

diameter of the tube. The minimum measured velocity was of 8 ft/sec, which

gives Re z 500. For this value, a pressure coefficient of 0.99 is to be

expected; however, since very few measurements fell in this range, no

correction was applied.

Other factors that are usually corrected for are turbulence, velocity
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Fig. 3-15 Pitot-tube sketch.

gradient and wall proximity. Goldstein (1936) proposes a turbulence

correction based on the total intensity of turbulence, q2 = u,2 + v2 + w2

Ptotal - static
1 2 1 2
2pU + p q

Hinze (1959) finds more proper to use only u'2 in the correction,

but he also mentions some experiments where turbulence actually decreased

the pressure difference. For the present purpose, the correction is impor-

tant only close to the wall, where the turbulence is highly anisotropic.
2 ,2

Therefore, q is not very different from u , allowing the use of

1 p U L1 + (- 2
2 (U)

(3-7)

-71-

Ptotal - static



Other corrections were applied using the following results of

MacMillan (1957). Because of the velocity gradient, there is a dis-

placement of the effective position of the tube given by 0.15 d, where

d is the outside diameter. On the other hand, because of the wall prox-

imity, the true velocity is larger than the measured velocity by an

amount AU, which MacMillan gives in a graph of AUl versus y/d. Data
U

reduction was made with the IBM 360 computer at the M.I.T. Computation

Center. For this purpose, the above corrections had to be expressed in

an analytic format. First, the measured velocity Um was computed from:

U = 2g Ah -w (3-8)
m w P

where Ah is the reading of the micromanometer referred to the wall pres-

sure, in height of water, and p , p a are the densities of water and air.

p was assumed constant, and equal to 997 g/l. pa was corrected for temp-

erature and atmospheric pressure by

p = 1.2929 273.13 p g/Z (3-9)a T 760

where T is the absolute temperature in degrees centigrades and P is the

atmospheric pressure in mm Hg. T was measured to 0.1*C with a standard

mercury thermometer, located in the pipe downstream from the test section.

The turbulence correction was formulated in terms of smooth wall

turbulence measurements, normalized to shear velocity. It was assumed,

as a starting point, that a similar distribution for u'/u* would obtain

in the rough and porous pipe. This expectation was substantiated by the

later measurements (see Chapter 4), and the form of the correction was

left unchanged. In fig. 3-16, Laufer's measurements for u'/u* are plotted

in a semilogarithmic graph versus y/R. A good fit is given by:

- exp (0.805 - 1.15 1 ) (3-10)
U* R
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Obviously, such an expression is not valid close to the wall, but

the total head tube could not be placed closer to the wall than the limit

of validity of (3-10). For y and R, yB and RB as defined in section 3.4

were used.

The correction for velocity gradient amounted to a constant shift

in y, since only one tube was used. Thus:

yC = y + 0.15 d = y + 0.019 inches (3-11)

where y is the corrected distance to the wall. Finally, MacMillan's

correction for wall proximity was fitted to the expression

AU -72.46
U- 3.65 x 10 ( (3-12)

which is plotted in fig. 3-17. The true velocity is computed then as

U = U 12+2,+ (3-13)

It must be noted that there is considerable uncertainty as to the

validity of applying these corrections, found on smooth walls, to a rough

pipe and more so to a porous boundary. An indication of the magnitude of

the correction is given in fig. 3-18, which shows some typical comparisons

between corrected and uncorrected velocity distributions for both pipes.

The pressure drop between the inlet chamber and a section of the

pipe 1 ft. downstream was calibrated in terms of discharge by two total

head tube traverses in the smooth aluminum pipe 1 ft. before the beginning

of the roughness. The calibration curve is shown in fig. 3-19, together

with the discharge integration performed from the mean velocity distribu-

tions in the test section of both the rough and porous pipes. No velocity

corrections were applied in the discharge computations.

3.8 Hot Wire Anemometry

The turbulence measurements were made with a two-channel system
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of constant temperature anemometers, manufactured by Flow Corporation,

model CTA3 (fig. 3-20). Occasionally, a linearizer, model 4835C of Flow

Corporation, was used. Mean voltages were measured with two DC volt-

meters, Digitec model 201. For RMS voltages, Flow Corporation model 900-5

was used. This is a slightly modified version of Hewlett-Packard model

3400A true RMS meter, which extends the frequency range to 2 cps and pro-

vides an averaging time of 20 sec. A Technical Products wave analyzer

system, consisting of analyzer model TP-627, oscillator model TP-626 and

integrator model TP-645, was available for energy spectrum measurements.

Two probes were used (figs. 3-21 and 3-22). One was a straight,

single-wire probe, 1/4" diameter, with the last 1-1/4" reduced to a dia-

meter of 1/8". The other was an x-array probe, with the two wires mounted

at the end of long, curved prongs to minimize the influence of the support.

The tip was of the plug-in type, since such an arrangement did not permit

to introduce the probe through the wall of the pipe. In all cases, tung-

sten wire, 0.00015" in diameter, was used with the two ends copper-plated

to be soldered to the prongs. The nominal length of the sensitive portion

of the wire was 0.044", with probable variations of 10 to 20% for indivi-

dual wires.

The theory of operation of the hot wire anemometer is well covered

in many publications, such as Kovasznay (1954) or Hinze (1959). The pro-

cedure, however, is rather involved and leaves room for many sources of

error, as is testified by large disagreements among different published

data. In order to clearly explain the method followed in the present

investigation, some repetition of well-known equations is inevitable.

Essentially, the method consists of the cooling of an electrically

heated thin wire by the fluid flow. A feedback system regulates the elec-

tric current in the wire to keep its resistance, i.e., its temperature,

constant. Therefore, the basic equation of operation equates the power

supplied to the wire with the heat transfer from the wire to the fluid.

If I is the electric current in a wire of resistance R at an absolute

temperature T , V is the velocity normal to the wire and Ta is the fluid

temperature, then the empirical heat transfer relationship for a wire of
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Fig. 3-20 Hot wire anemometry system

Fig. 3-21 Instruments: single wire probe, x-array

probe with plug-in tip, stagnation tube
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Fig. 3-22 Close-up view of x-array probe

Fig. 3-23 Calibration unit
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infinite length is of the form

12R = (A + B V (Tw - Ta (3-14)

where A, B and n are constants depending on the characteristics of the

wire and of the fluid, which have to be determined by calibration. The

commonly accepted value for n is 0.5. However, Collis and Williams (1959)

have presented substantial evidence to show that a value of 0.45 produces

a better correlation of observations. The point may seem academic, since,

at any rate, an empirical calibration will be used in the reduction of

data. This is true of mean velocity measurements, but, as will be shown

later, the exponent n is also a constant of proportionality in the expres-

sion for the intensity of turbulence (see eq. 3-25) and in this case the

difference becomes significant. Both values for n were tested during this

investigation. Fig. 3-24 shows some typical calibration curves, the use

of the exponent 0.45 giving a clearly better fit to a straight line than

0.50. Therefore, the value 0.45 was definitely adopted.

Collis and Williams also give expressions for the constants A and

B, which are useful not to predict their exact value, better found from

experiments, but to establish corrections to the calibration curve for

varying ambient conditions. Their expressions can be written as

0.17

A=C 1 K f T
Ta

(3-15)

0.17

B DTf d

f (T a f)-

where K is the thermal conductivity of the fluid, Z and d the length and

diameter of the wire, C and D universal constants and the subscript f

refers to film temperature, defined as the average of the temperatures

of the wire and of the fluid. From (3-15), an approximate temperature

correction can be derived, noting that, for the range of temperatures
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occurring in these measurements, air properties can be closely represented

by

.85
K =T
KR TR

(3-16)
IR T 

) 0.73

IR T R

where the subscript R indicates any reference value. Both p and K can

be taken as independent of pressure. Changes in p are represented by

T- = R P

PR PR
(3-17)

where P is the atmospheric pressure. Now (3-14) can be written for the

condition of zero velocity with the subscript o, giving

I 2 R = A (T - T
o o w ao

(3-18)

under the assumption that R and T are kept at a constant level during

the whole operation. From (3-14) and (3-18),

I2 (T -- T

\ w ao

I (T T a)

A + B n
A \A(/

0

Introducing (3-15), (3-16) and (3-17),

I2 T- T ) T f02 T 017 dn T 1.73n
\ w ao/ _ f_ a- C + R 

I 2 Tw- Ta) TK) Ta CV n 'T PR(v
\ 

\Tf ao
(3-19)

Restricting the case to small variations in temperature, if r is the ratio

T /T ao which is known,

T f -ATf 1

TfT rT)Tfo Tfoao

1/2r T 1/2r

a T a
aoo.
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Introducing (3-20) in (3-19) and rearranging terms, the final equation

is obtained,

T - T 02 0.17 12
2w ao aO>2r 2 o P__(3-21)

T - T T a a 1.73
w a aIf

where

C R R n
a1  D 1.73

d TR

is a constant for each wire. For convenience, the computer program was

written in terms of

T - T T 1- 0.17
F(I) = 2 w ao _ao 2r

( T a T
w -Ta

and

P 4351.73 n
F(V) = 7-- - V

L760( Tf

with P in mm Hg and T fin *C; in this way, F(V) z V n. Equation (3-21) be-

comes

2 
2

F(I) -I 2 0- F(V) (3-22)0 a

In general, the overheat ratio was 1.5, thus r = 1.25. From (3-21), it

can be seen that, for a variation in temperature of the order of 1*C,

the correction is very small and can be neglected altogether. Therefore,

if it is possible to calibrate and operate the wire within such a range

of temperature, no correction is necessary. In the present case, however,

because of the shape of the x-array probe, it was necessary to calibrate

the wires at an open-end nozzle, the blower thus being located upstream

from the probe. The heat generated by the blower produced changes of up

to 8C from the ambient temperature, making necessary the use of the com-

plete equation (3-21). Table 3-1 shows the percentage change in the
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velocity computed with (3-21) with respect to a computation neglecting

the change in temperature, for various typical values of AT and I/I .

An overheat ratio T /Tao = 1.5 is assumed.

Table 3-1

Temperature Correction in Percentage
of Velocity, According to (3-21)

/I 1.3 1.6 2.0
0

AT
[ a

20C 6.5% 4% 3%

40C 10.5% 8% 7%

60C 18% 12.5% 10%

The magnitude of the correction is significant, especially if the

calibration is performed at a temperature different from the operation

conditions. With regard to I0, by its definition (3-18), it could be

measured by placing the wire in a closed container with still air. This

is not, however, an accurate procedure because the heat dissipated by the

wire produces convection currents that change the heat transfer relation-

ship. From Collis and Williams' experiments, such free convection effects

become noticeable at air velocities below 0.5 fps. Therefore, no attempt

was made to measure I directly. It was determined instead as the zero

intercept of a straight line fitted to the values of F(I) and F(V) by

the least squares method, in accordance with (3-22). In-every case, the

resulting constant I was smaller than the current reading at zero velo-
0

city.

The calibration apparatus is shown in fig. 3-23. From left to

right, it included an air filter, blower, by-pass valve, flow straighteners,
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a 40" length of 2" I.D. plexiglass tubing and a nozzle contracting to 1".

The temperature was measured at the beginning of the straight reach of

pipe. The velocity at the nozzle was computed from

V= Cn\2g(p /p ) Ah (-3V= C W a) "w

n \ D 4 (3-23)1 (Dn /Dp)

where Ah is the pressure before the contraction with respect to the

atmospheric pressure, measured in height of water; p w, Pa are given as

in (3-2) and (3-3); D n D are the diameters of the nozzle and of the

tube, and C is the nozzle coefficient, measured with the total head

tube giving 1.013. It is to be noted that, in fact, the use of this

coefficient implies that the hot wire anemometer is calibrated with ref-

erence to the total head tube, the nozzle acting only as an intermediary.

The procedure adopted was to calibrate the wire before each run,

and whenever it was possible, after the run too. An inspection of

(3-21) shows that the response of the electronic system is highly depend-

ent on the operating temperature T of the wire. Now, the controls of

the instrument are not sensitive enough to insure that, each time that

the bridge is balanced, exactly the same overheat ratio is achieved. Eq.

(3-21) is adequate to compensate for minor changes in ambient temperature

during operations, but it has been assumed in its derivation that T is
w

accurately known. Therefore, changes in T are reflected in the constants
w

of (3-22). Another source of variation in the constants comes from dust

collecting in the wire, which, without air filtering, would render meaning-

less any attempt to calibrate. The filters installed in the test pipe were

fairly effective for low rates of flow (Re < 2x10 ), the calibrations before
and after the run being practically identical. Some variation was noticed

for larger flow rates. In the calibration unit, however, a 500 cfm filter

was installed, the maximum flow rate being of less than 100 cfm. In this

case, remarkable stability of operation was achieved. Several tests of

up to 12 hours of continuous operation showed no variation at all in the

anemometer response. Fig. 3-25 illustrates these various effects by show-

ing a number of successive calibrations on the same wire.
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The above considerations relate to the operation of the wire on a

steady velocity field. There is no experimental information regarding

the heat transfer relationship for rapidly fluctuating flow. It is assumed,

therefore, that (3-14) is valid for the instantaneous velocity V. Let U

be the average velocity, assumed normal to the wire, and u, v the instan-

taneous fluctuations in the normal and parallel directions. Thus,

V = + u2 + V2

and assuming that the fluctuations u, v are much smaller than U, the equa-

tion can be simplified to

V =U + +

Vn = n (l + )

Introducing this expression into (3-14), together with I = I + i, where

I is the average current and i the instantaneous fluctuation, and repeat-

ing the same temperature correction analysis, the following expression is

obtained for the relative velocity fluctuation:

2
u n I 2 i (3-24)U12

1 -b

where 
1.02 0.17

T -T T 2r ~01

T - T T

w ao ao)

By taking root mean square,

- 2 -
u, u 2  2 .2

- = n \ (3-25)U U I2 -
I 

-I -0
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It is interesting to note that (3-25) does not depend on the second con-

stant B of (3-14), and depends only weakly on Io. Thus, the measurement

of relative intensities of turbulence is little affected by changes in the

wire calibration. On the other hand, u'/U is seen to be inversely propor-

tional to the exponent n in (3-14), whose choice becomes crucial to the

interpretation of turbulence measurements. From (3-25), u' is obtained

merely by multiplying by the mean velocity U. According to the derivation

of the equation, it seems logical to use the mean velocity as measured by

the wire itself. However, in spite of all the care exercised in the opera-

tion of the system, there was substantial disagreement between the hot wire

results and those obtained with the pitot tube, even in cases where no varia-

tion occurred in the calibration curve of the wire during the run. A typical

example of the deviations is shown in fig. 3-26. It was decided, therefore,

to compute u'/U from the hot wire data, and then to obtain u' by using the

interpolated mean velocity value from pitot tube traverses.

The linearizationintroduced in (3-24) restricts the use of (3-25)

to small intensities of turbulence. Hinze (1959) presents an analysis

according to which the error will be less than 3% for relative intensities

below 20%. In the present case, this limit was widely exceeded, as will

be shown in Chapter 4. There is some question, therefore, as to the accur-

acy of the measured relative intensities. Hinze indicates that considerable

improvement results from the use of an electronic linearizing circuit. For

constant resistance linearized operation, the theoretically expected devia-

tion of the measured intensity is reduced by a factor of 3 with respect to

the non-linearized measurement. Still, Hinze emphasizes that the correct

measurement of high relative intensities is an impossibility. In order to

estimate the reliability of the present measurements, one comparison test

was made in each pipe using the linearizing circuit described at the begin-

ning of this section. It is a less accurate instrument than the anemometer

itself, since it is not possible in practice to compensate for local temp-

erature variations, and it also exhibits a larger drift. For these reasons,

it was used only to check the correct order of magnitude of the turbulence

measurements. Fig. 3-27 shows the linearized average output as a function
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of the local mean velocity as measured with the hot wire, and fig. 3-28

compares the distribution of axial relative intensity of turbulence u'/U

as computed from (3-25) for the direct output of the hot wire, and from

- = - (3-26)
U -

for the linearizer output. There is some deviation in fig. 3-27 from a

strictly linear response, and therefore, equation (3-26) may not be

accurate. But, besides the details, the comparison shows an essential

agreement between the linearized and the non-linearized responses, which

lends confidence to the overall picture presented by these measurements.

One more remark has to be made relative to the actual measurements

of turbulence. In the early runs, a conventional AC voltmeter was used,

instead of a true RMS meter. The basic difference between the two types

of instruments is that the AC meter does not integrate the signal, but

rather measures the peak-to-peak amplitude, which, in the case of sinusoidal

waves, is proportional to the RMS value. It is easy to see that such an

instrument will give large errors when used in connection with, say, square

waves or other types very different from a sine wave. There is little

information available concerning its response to a random signal. There-

fore, some comparisons were made between both instruments covering the

whole range of voltages found in these experiments. The result is shown

in fig. 3-29. A systematic deviation exists, the AC meter reading approx-

imately 8% below the true RMS meter, whereas for sine waves, the agreement

was within the 2% accuracy of this type of instrument. Therefore, a

uniform correction was applied to the runs made with the AC meter (those

in the rough pipe).
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3 9 Operation of the X-Array Probe

An arrangement of two hot wires forming an X in the plane of

the mean velocity is typically used to measure components of turbulence

normal to the axial direction. The particular probe used in this investi-

gation, described in Section 3.8 (see fig. 3-22) was suitable to measure

the components in the axial and radial directions.

The method is based on the response of a hot wire inclined with

respect to the mean velocity. If the wire is infinitely long, clearly

any steady velocity parallel to it will not affect the heat transfer

balance The wire then responds only to the normal velocity. For wires

of finite length, some influence of the parallel velocity is to be ex-

pected. A number of empirical expressions have been proposed in the past

to account for the deviation. According to recent experiments by Delleur

(1966) and by Champagne, Sleicher and Wehrmann (1967), the best represen-

tation for the effective cooling velocity V acting on the wire is given by

12 2 2'
V = U sin a + k cos a (3-27)

where a is the angle between the wire and the fluid velocity U (fig. 3-30).

Champagne, et al., have shown that k depends primarily on the length-to-

diameter ratio of the wire, with k approximately 0.2 for i/d = 200 .and below

0.05 for l/d > 500. The response of an inclined wire to" turbulent fluctuations

can be derived from'(3-27) as -in fig. 3-30, where the effective velocity V is

decomposed in a constant C plus a fluctuation c, and the fluid velocity,

as before, is represented by its components (U + u) and v. The instantan-

eous angle a'is

a' =a + tan 1  v + V

Then, (3-27) can be written as

1U 2/ 2 uC ++ s + k2 cos2 ,
U U
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Assuming that u, v are small with respect to U, the quadratic terms can

be neglected and, furthermore, sin v - v and cos v 1. Introducing
U U U

the steady balance

2 2 2
C = U sin a + k cos c'

the fluctuation of the effective cooling velocity is obtained as

c - u + v - k2 ) sin a cos ( (3-28)
C - U U .2 2 2

sin a + k cos 2a

Sometimes, instead of (3-27), the following expression for V is

used:

V = U(sin a)

where X is a constant for each wire. This expression, after a similar

development, leads to

c- = + a (3-29)
C U U tan a

Equation (3-28) can be transformed to read

c = U +  - (3-30)
C U U k 2

1 + 2 2tan a
1 - k2)sin a

showing that the constant X in (3-29) is equivalent to

1 1+ k (3-31)

1 - k sin a

For convenience, in the following, (3-29) with (3-31) will be used.

Expressions for the operation of the X-array of hot wires can now
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be written. Considerable simplification in the results arises from the

assumptions that the wires are well-matched (i.e., they have the same

calibration curve) and symmetrical with respect to the mean velocity U.

However, it is very difficult to match the wires, an additional require-

ment being that the two electronic channels be also matched. Also, in

the present case, there was no way of adjusting the position of the probe

to have the wires symmetrical with respect to the flow. On the other hand,

since all data reduction was to be done through a computer, the complexity

of the equations posed no difficulty. The method used is explained in

detail in Bulletin 68 (1962) of the manufacturer of the equipment, Flow

Corporation. Here, the formulas are extended to the case of asymmetric

wires. With reference to fig. 3-30, equation (3-29) is written for each

wire,

= -u + 1 v
C U K U

C2 u 1 v

C2 U K2U

(3-32)

I
where

K. = tan i i= 1,2

in accordance with (3-29) and (3-31). Taking squares and averaging both

equations of (3-32) plus their sum and their difference, the following

result is obtained after a lengthy algebraic computation:

u 2 1 2 2 2 2+K K C c KcC=_+cK (3-333 i)
U K + K 1 +K 2  + 12 C C

1 2 1 2 1 2

2 2v \/v 2  KK c c2  cc2
K+K + 2 2C C

1 2 1 2 1 2
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- K2 c, c2 cycjuv 1 2 K 1- K2  + K - K C C (3-33, iii)
UC K2K C 2 1 2CU K1 + K2)2 2 / 2

In (3-33), c C12) and (c2 /C2 2 are merely the intensities of

turbulence indicated by each wire, computed by (3-25). The mean product

c1c2 can be measured with a sum-and-difference circuit. From (3-24), the

instantaneous velocity c is proportional to the current i for a fixed posi-

tion of the probe in the flow (i.e., for a fixed mean velocity U), and,

therefore, yi1 + i2) and i\1l - i2) are linear combinations of cl and c2'
A short computation shows that

2 2 2 2
c c2  _1 Ei +E2 E -Ed

R - 2 2 1 2 s d (3-34)
12 2 E 2 E 2 E1E2

cl c 2  s d

where El, E2, Es, Ed are the RMS values of i, i2, (i 1 + i2 ) ( 1 - '
corrected for amplifier noise by

2 2
E= E - E

measured noise

With (3-34), equations (3-33) completely specify u'/U, v'/U and
-2
uv/U , provided the constants Ki, K2 are known. In fact, there are two

constants for each wire, k and a. An accurate measurement of k is very

difficult to perform, but is not necessary, as can be seen from equation

(3-31), given that k is usually much smaller than 1. On the other hand,

the accuracy in the determination of a can be critical. This can be seen

from the structure of equations (3-33). Assuming that the ratio a1/2
(where the subscripts 1 and 2 refer to each wire) is fixed, both v' and

uv are roughly dependent on tan (,7 ), where =a + a is the total angle

between the wires. As 3 is approximately 90*, the percent error in v' and

uv is slightly higher than the percent error in , and S should be measured

within + 10 to keep the error below 2%. This is to say that the usual assump-

tion that the angle between the wires is 900 can be accepted only if there is
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reasonable certainty that this is satisfied within + 1*. Otherwise, an

experimental determination of the angle is necessary. This is relatively

simple if the probe can be accurately rotated around an axis normal to the

plane of the wires, but it was not feasible in the present case, because

of the particular geometry of the probe. Therefore, a more elaborate

method had to be used, as follows. First, each wire was independently

calibrated by placing it normal to the flow in the calibration unit (fig.

3-23). From equation (3-27), the response of the wire is in this case

insensitive to small angle variations, and it was accurate enough to loc-

ate the probe by eye. Afterwards, a second test was aimed at the deter-

mination of k and f, and finally, with the probe in the pipe, a third

test served to define a and a 2. To determine , the probe was positioned

at 5 different angles 6 with respect to an arbitrary origin, as sketched

in fig. 3-31 and 3 nozzle velocities were measured at each position. The

position 61 where each wire was normal to the flow was computed then by

trial-and-error, searching for that angle 6. that would minimize the mea-
1

sure of the error sl defined by

m U -U 2
2 ( \ 1 meas nozzle (335)

1 (m - 1) U ozz-35)
1 nozzle

where Umeas is the flow velocity as measured by the wire in accordance

with (3-27), Unozzle is the known flow velocity at the nozzle, and m

is the number of measurements. A typical calibration is shown in fig.

3-32 where s is plotted as a function of the angle 6 . for various assumed

values of k. In practice, the lowest values of sl always occurred for

values of k in the vicinity of 0.12, which is the value of k predicted from

the experiments by Champagne, et al., (1967) for the length-to-diameter

ratio used in this investigation. Therefore, k = 0.12 was used throughout

the calibrations. The total angle between the wires is finally found as

1 - 2'

The final step in the calibration was accomplished by locating

the probe in the test section of the pipe and measuring with each wire
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the mean velocity at a number of points. These were chosen in the core

region of the flow, to reduce the error due to the turbulence. Again

by trial-and-error, the angles u and a2 were determined from the condi-

tion that the velocities as measured by each wire should be equal, given

t+ 1 2 = 3. The measure of the error to be minimized was defined by

m

s2 1 ,a2 (m -1)1 (3-36)
1 

U + U2]

where U and U2 are the velocities computed from each wire reading, in

accordance with (3-27). For the optimum condition, the difference between

the velocities measured by each wire was in general about 2% of their aver-

age, with maximum deviations of 10%.

3.10 Velocity Spectrum Measurements

In order to obtain spectrum information, samples of the hot wire

output were recorded using a Precision Instrument model PS-207A portable

FM tape recorder, operating at 60 ips. The frequency response limit was

of 5,000 cps. The signal was transferred to a continuous loop, with a

total length equivalent to 45 seconds, and analyzed in a system consisting

of a Sanborn-Ampex tape recorder model 2000, a Technical Products oscillator

model TP-626 and analyzer model TP-627. The analyzer system has a frequency

range from 2 to 25,000 cps and the hot wire anemometers were operated with

a good frequency response up to 12,000 cps. Therefore, the limiting freq-

uency in the spectral analysis was fixed by the recording procedure. Two

electronic filters were available, with nominal bandwidths of 2 and 50 cps.

The response of these filters to a sinusoidal signal is shown in fig. 3-33,

from which the effective bandwidth has been determined as the width at

which 50% of the total power (or 70.7% of the RMS value) is passed, with

a result of 1.9 and 53 cps. Some of the samples were analyzed with both

filters, in order to check their equivalence. Typical results are shown

in fig. 3-34, which shows that both filters give essentially similar results,

except of course at very low frequencies, where the wide filter is not
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operative. As the most significant portion of the spectrum occurred at

low frequencies, only the narrow filter was used throughout the measure-

ments.

For the samples taken with the single wire probe, no further

consideration is required, the measured spectrum corresponding to that

of the fluctuating longitudinal velocity u. However, a difficulty arose

in the use of the x-array probe, because the wires were not precisely

matched. Equation (3-24) shows that the current i/I is proportional to

the effective cooling velocity,

i 1 c (3-37)
1 M C

where the constant of proportionality M, of course, depends on I and I.

Combining (3-37) with (3-32) and rearranging,

u K M 1 + K M
U K + K 1 - 2 2 )

1 2 -2

(3-38)

v K 1K i i -I
U K1 + K K 1 - 2 -

1 

I 12/

Thus, if M = M2 and K = K that is, if the wires are well matched and

symmetrical with respect to U, then the instantaneous fluctuations u and

v are respectively proportional to the sum and difference of the hot wire

output signals. This is not strictly the case, however, and the use of

the sum and difference circuit in the CTA3 anemometer had to produce errors

in accordance with (3-38). In the case of the spectrum of u', some indi-

cation of the magnitude of this error is obtained from the comparison shown

in fig. 3-35 between measurements made with the single wire probe and with

the x-array probe, since the first is not affected by this kind of error.

The discrepancy is small, except at the very high frequencies, where the
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x-array measurements may have been affected by the noise of the amplifier

of the sum-and-difference circuit. The spectrum of v' is, however, much

more sensitive to the error represented by (3-38) and, unfortunately, there

is no direct way of estimating the extent of the distortion. For reference,

the values of the constants in equations (3-38) have been summarized in

Table 3-2. At any rate, these tests can provide an estimate of the shape

of the spectrum, and under this understanding, they will be presented in

Chapter 4.

Table 3-2

Values of the Constants in Equations (3-38)
for Spectral Analysis of X-Array Signals

Pipe Re yB/RB M1 M2

Rough 1 x 105 0.5 9.8 8.6

K = 0.96

K2 = 1.15 3.5 x 105 0.03 8.6 8.2

0.07 8.3 7.9

0.5 7.6 7.2

1.0 7.4 7.0

Porous 1 x 105 0.03 11.3 12.0

K = 0.84 0.09 10.1 10.6

K = 0.96 0.5 9.1 9.4
2

2 x 10 0.03 10.0 9.8

1.0 7.9 7.8
5

4 x 10 0.03 8.5 8.5

0.09 7.8 7.8

0.5 7.1 7.0

1.0 7.0 6.9

-106-



CHAPTER 4

EXPERIMENTAL RESULTS

The results obtained with both the rough and the porous pipes will

be presented in parallel in this chapter. The gross characteristics of

the flow, such as friction factor behavior and equivalent roughness, will

be discussed first. Next, the details of the mean velocity distribution

will be examined from the point of view of the law of the wall and of the

velocity defect law. The turbulence measurements are presented in the last

two sections.

4.1 Gross Mean Flow Description

The pressure variation along the rough pipe is shown in fig. 4-1 and

along the porous pipe in fig. 4-2. In both cases, a constant pressure grad-

ient is established much earlier than a fully developed velocity profile

(compare fig. 4-1 with fig. 3-7). In fig. 4-2, a larger pressure gradient

seems to exist at the downstream end, which probably is produced by the end-

ing of the porous lining. However, such disturbance does not affect the flow

in the test section. From these plots, a friction factor f was computed, as

defined by

dp. f 1 -2(41

dx D (4-1)

where U is the average velocity in the pipe and D the effective diameter

defined in section 3.5. The friction factor is plotted in fig. 4-3 as a

function of the Reynolds number Re = UD/v. For the rough pipe, the friction

factor follows very closely the well-known behavior of grain-type roughness.

For high Reynolds number, a fully rough condition is approached, correspond-

ing to a relative roughness of approximately 0.008. With a pipe diameter

of 9.54", the equivalent roughness size ks is 0.075", which is about one

half of the size of the spherical elements. This result seems reasonable,

as a closely packed bed of spheres conforms to a much smoother surface than

a bed of angular sand grains of the same size. The porous pipe, however,

exhibits a quite different behavior, with the friction factor continuously
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increasing with Reynolds number, in spite of the fact that the flow is well

within the usual fully rough regime. To check this behavior in more detail,

a number of short measurements were taken in addition to the pressure grad-

ient runs shown in fig. 4-2, using only two piezometer sections. These meas-

urements are also shown in fig. 4-3 and they prove the general consistency

of the results. It must be noted that, in the computation of the mean velo-

city, the total inlet discharge is assumed to flow through the open section

of the pipe. Therefore, if a substantial fraction of the flow were to occur

within the porous wall, there would be an error in the computed friction fac-

tors. In order to examine this point, the specific discharge q through the

porous medium has been computed, from (3-4) with 0.13 for the constant for

each measured pressure gradient. The values of q are presented in Table 4-1,

together with the corresponding discharge in the porous material and the

Table 4-1

Computation of the Discharge Through
the Porous Lining in Accordance with (3-4)

Qinlet U q r Qporous Qporous/Qinlet
cfs fps fps cfs

9.90 20.7 0.10 10.8 0.028 0.003

16.4 34.2 0.29 3.7 0.082 0.005

34.2 71.5 1.01 1.1 0.29 0.009

42.6 89.5 1.44 0.75 0.41 0.010

ratio r between the linear and the quadratic terms in the modified Darcy's

equation (2-26). Table 4-1 shows that any correction in the friction fac-

tor to take account of the flow through the porous medium would be negli-

gible. Further evidence in the same respect is provided in fig. 3-19,

where the discharge integrated from the velocity profile under the assump-

tion of no flow in the porous medium is shown to be in good agreement with

the calibration of the inlet contraction.
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Two unusual features of the friction factor of the porous pipe in

fig. 4-3 are the very high equivalent relative roughnesses ks/D, between

0.018 and 0.06, and the continuous increase of f with Reynolds number.

Introducing D, k is seen to vary between 0.17" and 0.56", and it is ob-

vious that such effects cannot be explained by the surface texture of the

material, but must be associated with the flow occurring in the porous

medium. A speculative explanation for the variation of f with Reynolds

number can be given with reference to the modified Darcy's equation (2-26).

For low rates of flow, the linear term, dependent on viscosity, is dominant

over the quadratic term, their ratio r being much larger than 1. As the

Reynolds number increases, the influence of the linear term gradually dimin-

ishes and eventually the equation becomes independent of viscosity as r

becomes much smaller than 1. This gradual change in the form of the govern-

ing equation for the turbulent motion within the porous medium should be

reflected in the characteristics of the pipe flow. Considering the curves

presented in fig. 3-11, the mean velocity in the porous medium is seen to

be the determinant factor in defining the relative importance of the two

terms in equation (2-26) and, therefore, the values of r in Table 4-1 can

be taken as representative of the flow regime in the porous medium. It is

thus conceivable that the increase of the pipe friction factor with Reynolds

number may reflect this change of regime of the flow in the porous medium

shown in Table 4-1. If such is the case, the friction factor will become

constant only when equation (2-26) is practically independent of the vis-

cosity at sufficiently high permeability Reynolds numbers. However, no

direct proof for this explanation can be given now, and it must be taken

as a tentative proposition.

4.2 Mean Velocity Distribution

The same features exhibited by the friction factor behavior are pre-

sent in the mean velocity profile, as evidenced by fig. 4-4, where U/Umax
is plotted as a function of position. For the rough pipe, there is little

variation with Reynolds number, whereas the increase of friction factor

with Reynolds number is reflected by the displacement of the porous pipe
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velocity distribution.

As discussed in Chapter 2, the analysis of the mean velocity dis-

tribution can be made from two different points of view: the law of the

wall, equation (2-4), and the velocity defect law, equation (2-10), each

one with its own zone of validity. In order to plot the data in terms

of the law of the wall parameters, some decision had to be made in regard

to the origin of the geometrical coordinate, as discussed in Chapter 2.

There is an inherent ambiguity in this process, because it is not known

in advance how far away from the wall the semi-logarithmic law should

extend. Therefore, the evaluation of the best location for the effective

origin and the resulting slope 1/K of the semi-logarithmic straight line

will be affected by the width of the zone where a good fit to the data is

required. As long as the eventual variations of y0 remain small, some

fairly definite conclusions can be reached. Such is the case for the

rough pipe. The origin was selected using three complete traverses, that

is, six profiles at different orientations, at the same Reynolds number,
5

3.2 x 105. All the data were plotted together and an average curve was

drawn through them. By trial-and-error, an origin 0.105" from the aluminum

pipe. i.e., 0.032" below the top of the roughness elements, was found to

give the best fit to a straight line. With such an origin, the semi-logar-

ithmic velocity distribution is plotted in fig. 4-5 for four Reynolds num-

bers. A reasonable fit to parallel straight lines can be obtained, with

a slope A = 6.15 for equation (2-4), corresponding to K = 0.375. The

deviation AU/u* from the smooth law, defined in equation (2-7), has been

evaluated at the center portion of the profiles and is compared in fig.

4-6 with the information compiled by Clauser (1956). For the roughness

height ks, the same equivalent size found from the friction factor diagram

was used, namely, ks = 0.075". The agreement with the curve correspoiding

to Nikuradse's sand roughness experiments is satisfactory, confirming the

consistency of this series of observations with the classical characteristics

of grain-type roughness. It is interesting to note the tendency of the

points in fig. 4-6 to follow a line with the same slope A = 6.15 of the

semi-logarithmic velocity distribution. Of course, no definite conclusion
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in this regard can be reached on the basis of only four points.

A more careful observation of the data in fig. 4-5 indicates,

however, that some systematic deviations exist. If the best straight

line is drawn separately for each run (the segment lines in fig. 4-5),

K is seen to decrease from 0.40 at Re = 1.0 x 105 to 0.345 at Re = 4.8

x 10 5. This result is not unusual. Hinze (1962) has re-examined many

smooth pipe experiments plus the rough pipe tests of Nikuradse, and he

reports large variations, up to 20%, in K. However, it is difficult to

establish whether such variations are systematic, because the scatter is

considerable. In this connection, the present experiments in the porous

pipe provide a better perspective of the problem, due to the large apparent

roughness, which accentuates the usually small departures from the univer-

sal behavior. In fig. 4-7, the mean velocity profile is plotted in terms

of the distance y from the surface of the porous material, without any

origin correction, and little evidence can be found of a tendency for the

measurements to follow a semi-logarithmic straight line. It is possible

to obtain such a straight line by introducing suitable displacements of

the origin, y0, but the process does not have a clearly defined solution.

In order to show how the results depend on the particular value of

y selected, two different interpretations have been made of the same data.

In the first case, shown in fig. 4-8, a displacement y = 0.08" has been

chosen so as to obtain a fitting to straight lines with slope approximately

given by K = 0.40. As in the rough pipe case, the average of six profiles

at the same Reynolds number was used to find the amount of the correction.

A very thin logarithmic region is found, extending to not more than 0.35"

from the surface of the porous material, which is less than 10% of the

radius of the pipe. There is some indication that the displacement y should

be smaller as the Reynolds number decreases. The deviation AU/u* from the

smooth wall case has been measured from fig. 4-8. In order to compare it

with the curves of fig. 4-6, an equivalent roughness height k has been

estimated from the condition that, for the highest Reynolds number, the

point should fall in the fully rough curve for sand roughness. This is

an arbitrary criterion, but it serves the purpose of a relative comparison.
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The resulting ks is approximately 1.2", that is, it is equal to the

thickness of the porous layer. This value seems surprisingly large,

but inspection of the friction-factor diagram in fig. 4-3 shows that

the fully rough condition will probably imply an equivalent relative

roughness of about 0.10, that is, k of the order of 1".
5

A second, alternative correction is presented in fig. 4-9, where

an effort was made to extend a reasonable fit to a straight line up to

0.2 of the radius, regardless of the resulting slope. After a uniform

correction y = 0.21", parallel straight lines can be more or less fitted

to the data, with K = 0.26. Again, there are strong indications that the

displacement changes with Reynolds number. Fig. 4-10, with displacements

ranging from 0.14" to 0.21", shows a better fit, while K still is 0.26.

For purposes of comparison, all the curves shown in figs. 4-5, 4-7, 4-8

and 4-10 have been summarized in fig. 4-11, where the experimental points

have been omitted for simplicity.

In summary, both the slope 1/K and the width of the semi-logarithmic

profile are seen to vary as a function of the chosen displacement y0 in

the distances from the wall. In a way, the problem under consideration

reduces to the recurring question of whether K is truly a universal con-

stant. It is convenient to examine this point on the basis of the con-

cepts discussed in section 2.1. The parameter K(y + y) was interpreted

as a turbulence scale for a universal mechanism characterized by the equil-

ibrium between production and dissipation of turbulent energy, which ulti-

mately leads to a logarithmic mean velocity distribution. If such a tur-

bulence scale has a physical reality, it follows that the measurements should

define a unique value for K(y0 + y) at any particular location; hence, the

inverse type of relationship between K and y found in the computations.

In fact, the presence of two empirical constants, K and y , allows

for the arbitrary determination of one of them, and it will be shown in the

following that the acceptance of K as a universal constant brings as a con-

sequence a very general universal description of the flow in the wall region.

One important characteristic of the flow is the production of turbulent

energy, which, in accordance with the implicit postulate of fig. 2-2, should
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have a universal distribution in the equilibrium layer in terms of the

coordinate (y + y). In this region, the logarithmic velocity law holds

and, therefore,

dU u * dU U*(4-2)
dy K( y + y)

Assuming a constant stress layer near the wall, the normalized production

of turbulent energy is

-- dU v 1
-uv -U-v

dy 4 u(y + y) (4-3)
K 

%

Thus, the constancy of K implies that (4-3) has a universal distribution.

Another way of analyzing these data is in terms of the eddy viscosity

E defined in (2-13). With the same assumptions of constant stress and a

logarithmic velocity distribution,

6 = K (4-4)
u*(Y+ y)

or

- K u*(y + y) (4-5)

showing again that c/v will have a universal distribution if K is constant.

It is more convenient to transform (4-5) to

= K = K_ (4-6)
u*R R

with C = (yO + y)/R, because in this form the same dimensionless parameters

describe the flow over the whole pipe. The eddy viscosity has been computed

using a semi-logarithmic plot of the Velocity defect
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U -U
max

versus C. From the definition of c in (2-13) and a linear shear stress

distribution, it follows that

S _ (C0- 1)-- C (4-7)
U*R dn

d(ln C)

and, as the semi-logarithmic plot is fairly close to a straight line, a

graphical evaluation of (4-7) can be conveniently done. The computation

of E has been carried out for the two values of y , 0.08 and 0.21", and

the results are shown in fig. 4-12. As expected, the points lie very

close to equation (4-6), with the same values of K as in the mean velocity

plots. It seems, therefore, that the most reasonable interpretation is

to treat K as a universal constant, approximately 0.40, since in this way

a universal distribution of 6 is obtained near the wall. The point of

departure from the universal distribution marks the end of the zone of

validity of the logarithmic law. Fig. 4-13 presents the distribution of

e for both the rough and the porous pipes, in the latter case assuming

y = 0.08", together with the values computed by Hinze (1959) from smooth

pipe measurements by Laufer and Nunner and the empirical curve found by

Reichardt (1951) in a smooth rectangular channel, given by

-E- = K 0.5 + 1 -V1- 1 -
u*R 3 R R (4-8)

The agreement close to the wall is quite good. In the central core region,

however, there are systematic variations which cannot be explained by mere

experimental scatter. The values of E/u*R seem to decrease with increasing

effective relative roughness.

From the definition of c, it is clear that a universal velocity defect

law implies a universal distribution of e, as can be seen explicitly in
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eq. (4-6)
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equation (4-7). Therefore, fig. 4-13 suggests systematic variations in

the velocity defect profile. That such is, in fact, the case is shown

in fig. 4-14 where the velocity defect is plotted as a function of posi-

tion for both the rough and porous pipes. No substantial variation with

Reynolds number is apparent, but there is a net displacement between the

two series and also with respect to the smooth wall data represented by

Laufer's measurements in a smooth pipe. Several proposed expressions for

the velocity defect law are also shown in fig. 4-14, namely, the commonly

used logarithmic equation (2-11), Lettau's equation (2-19) and the expres-

sion derived by Reichardt from his empirical equation (4-8) for the eddy

viscosity

U - U 1+2 2 X
max _ 1ln ( R

u-K n _ J
R

In all these expressions, K has been taken as 0.40. The logarithmic equa-

tion shows a rather poor agreement with the data, even for smooth wall,

whereas the empirical expressions of Lettau and Reichardt represent very

well the smooth wall data. It is interesting to note that the same ambig-

uity encountered in the interpretation of the law of the wall is found here.

For an expression like (4-9) can be made to fit the present data for rough

or porous walls if a suitable K is chosen. But then this constant would

not be equivalent to the one appearing in the law of the wall. In fact,

such a procedure would render K meaningless. It must be concluded, there-

fore, that a strictly universal velocity defect law does not seem to exist

for all kinds of wall conditions.

4.3 Turbulence Intensity

As a first indication of the reliability of the measurements, the

normalized distribution of the Reynolds stress -uv/u*2 is presented in

fig. 4-15 for both pipes and compared with the theoretically known linear

distribution. The agreement is typical of this kind of measurement and

can be accepted as fair, considering that the computation is done by taking
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the difference of the squares of two measured quantities, as shown by

equations (3-33). The same equations show that the intensities u' and

v' are much less sensitive to random experimental errors, and therefore,

their measurements should be expected to be substantially more accurate.

The axial and radial intensities of turbulence relative to the

local velocity are plotted in figs. 4-16 and 4-17. In fig. 4-16, a

comparison is made between the measurements of u'/U taken with the single

wire and with the x-array probe. The four runs made with the single wire

in the rough pipe exhibit a remarkable consistency, especially close to

the wall, whereas similar measurements with the x-array probe are some

15% higher and show a distinct variation with Reynolds number. No explana-

tion was found for the disagreement between the two probes. At first glance,

the single wire measurements could be taken as more reliable. However, it

must be recalled that the same probe failed to measure satisfactorily the

mean velocity and it may be that the same instrumental errors have affected

the turbulence measurements. On the other hand, in the case of the x-probe,

the wires are much less exposed to interference from the probe stem. There-

fore, there is no clear reason to prefer one of the probes as more reliable.

The disagreement is somewhat smaller in the porous pipe runs, but there is

more variation with Reynolds number in the x-array results. However, the

accuracy of the measurements is not enough to assign a special significance

to these variations. The most relevant feature of the relative intensities

is, of course, their considerable increase with roughness. This is espec-

ially so of the intensity normal to the wall v'/U, which, for smooth walls,

is fairly uniform throughout the pipe, but shows a continuous increase when

approaching the rough and the porous walls.

However, when the same data are normalized with respect to the shear

velocity u*, the agreement with the smooth wall measurements is striking,

as shown in figs. 4-18 and 4-19. This fact has been pointed out before,

as was discussed in section 2.2. Considering the wide variations in the

distributions of mean velocity and relative intensity of turbulence found

in the present experiments, the final agreement must be taken as a strong

proof of the existence of a universal distribution of the normalized inten-
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sities, independent of the nature of the wall. There are some minor

variations close to the wall, the rough wall results being slightly

higher than those for the porous wall. A similar trend of a decrease

in u'/u* with increasing roughness was found by Arndt and Ippen (1967)

in a boundary layer. However, in the present case the variation is much

less obvious, and it is contradicted by a comparison with the smooth wall

results by Laufer, which are, if anything, below those for the rough wall.

It seems, therefore, that the departures from a universal distribution

found in this investigation should not be deemed significant. As explained

before, there is little available information with which the present results

may be compared. A summary is presented in fig. 4-20. The results of Robertson,

Burkhart and Martin (1965) for u'/u* and v'/u* are represented by the average

trend curve. The deviations of the individual observations are not large,

less than 15%, if two runs notoriously out of line are eliminated. In addi-

tion, the distributions of u'/u* measured by Logan and Jones (1963) in a

rough pipe and by Carper, Heilhecker and Logan (1965) in a rough rectang-

ular channel are shown. It must be recalled that, in these last two cases,

the profile had not reached the fully developed condition. In particular,

the data by Logan and Jones weretaken at 12.75 diameters from the beginning

of the roughness. Reference to fig. 3-8 shows that the intensity of turbu-

lence distribution differs appreciably at this station from the final pro-

file. Thus, these data are presented only to compare the general order of

magnitude. The data of Carper, et al., were taken at 20 times the height

of the channel, and they seem to be much closer to a fully developed pro-

file. Data for rough boundary layers are not included in fig. 4-20, since

the distribution of intensity is different, but, as shown by Arndt and

Ippen (1967),the maximum values of u'/u* close to the wall are in the same

general range as in a pipe, i.e., between 1.6 and 2.1.

The anisotropy ratio v'/u' is presented in fig. 4-21. Over most of

the pipe, there is general agreement, regardless of the nature of the wall.

However, close to the wall, the ratio tends to a constant value, approximat-

ely 0.6, in the present experiments, whereas for a smooth wall there is

a sharp drop to a value around 0.25 at the edge of the viscous sublayer.
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Conversely, at the centerline, the ratio v'/u' for rough and porous walls

is somewhat lower than in the smooth wall case.

4.4 Turbulent Energy Spectra

The energy spectrum functions E for u and E for v are defined by
u V

E (f) df = u
ou

(4-10)

CO

2
E (f) df = v
V

0

where f is the frequency measured in cps. The data have been normalized

by

E U
u

u 2
uD

E U
v
2v (4-11)

v D

f' f
U

where U is the local mean velocity and D the diameter of the pipe. In

this way,

Scu (f') df' = Wf) dfv 1.

It is interesting to note that, by Taylor's hypothesis, the wave number k

is given by
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k 27rf (4-12)
U

and it follows that

f kD - D (4-13)
2Tr L

if L is the wavelength at the frequency f.

The dependence of the normalized energy spectra $u and $v on Reynolds

number and distance to the wall-was studied in both the rough and the por-

ous pipe. No significant variation with Reynolds number was found. A

typical example is offered in fig. 4-22, which shows $v at the position oclos-

,est' to the wall in the porous pipe.

In fact, a fairly universal behavior can be detected in both $ u
and v, as evidenced by the composite plots of figures 4-23 and 4-24, which

include the total of the spectral observations. In each run, the lowest

frequency shown is 5 cps and the highest 5,000 cps, which is the nominal

frequency response limit of the recording system. The average trend cur-

ves for $u and $v are shown in both graphs to emphasize the consistent

difference in shape between the two functions.

There are, however, some systematic variations with distance from

the wall. In fig. 4-25, a comparison is made between $u measured at the

centerline and at the smallest distance from the wall, for both pipes.

The spectra measured by Laufer at-corresponding positions in a smooth pipe

are also shown in fig. 4-25. The most noticeable effect is the decrease

of the spectrum at the wall with respect to that at the centerline for

the low frequencies, especially so in the porous pipe. Even though at7 these

low frequencies the measurements are more subject to instrumental errors,

the variation is deemed significant. It was noticed that the shape of $

in the porous pipe hints at some similarity with the theoretical spectrum

of the velocity fluctuation at the surface of the porous medium, as pre-

sented in fig. 2-8. Although the significance of this similarity is diffi-

cult to judge, it is interesting to note that, for the experimental conditions,
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ais approximately 0.8, which corresponds in fig. 2-8 to a peak of the spec-

trum at Q = 27f D/U = 0.8, and therefore, f' ~ 0.25, which is not far from

the suggested experimental peak in fig. 4-25.

At the higher frequencies, the spectrum at the wall tends to become

larger than that at the centerline, in accordance with the notion that the

size of the eddies increases towards the centerline of the pipe. In general,

the measurements at the centerline for the three wall cases are in good agree-

ment, but significant variations are encountered close to the wall.

A similar analysis for $v is presented in fig. 4-26, which shows the

same features as in the case of $U in fig. 4-25. The spectrum at the wall

is substantially smaller than that at the centerline for the low frequencies,

and slightly higher for high frequencies. The low frequency departure is

more accentuated in the porous pipe than in the rough pipe. The agreement

with Laufer's data is better than in the case of $U'
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CHAPTER 5

SUNMARY AND CONCLUSIONS

A study of the turbulence characteristics in pipe flow with rough

and porous walls has been made, with the ultimate purpose of developing

a more complete understanding of the mechanics of sediment transport.

The main conclusions are summarized in the following.

5.1 Theoretical Analysis of the Flow in the Porous Wall

Turbulent pipe flow produces wall pressure fluctuations, which in

the case of a porous wall will be transmitted into the fluid in the porous

medium and generate a turbulent motion therein. An analysis of this flow

has been made, assuming the validity of a linearized, Darcy-type equation

of motion with inclusion of the local acceleration term. As boundary con-

dition at the wall surface, the pressure is assumed to be of essentially the

same form as the wall pressure in a smooth pipe. Two different specifications

for the wall pressure have been applied, one as a random function of space

and time and the other as a sinusoidal pressure wave. Important features

of the solutions are:

a) The normalized intensity of the longitudinal velocity fluctua-

tions at the wall surface u'/u* tends to an asymptotic value of 0.38 as

the permeability increases. This value is deemed large enough to produce

substantial effects on the pipe flow, although it is smaller than the meas-

ured intensities in shear flows near a wall, which are of the order of 2 u*.

b) The ratio of the viscous energy dissipation in the porous medium

to the total dissipation in pipe flow has a maximum for a particular combina-

tion of permeability, viscosity and average velocity. The maximum can be

as high as 5% in the case of infinite thickness of the porous layer. For

the present experimental conditions, it was close to 1%.

c) The sinusoidal wave formulation of the problem provides an approxi-

mate solution in fairly good agreement with the more complicated spectral

approach if a suitable wave length, of the order of 10 pipe diameters, is

used.

d) The Reynolds stress -uv derived from this linearized analysis is
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identically zero throughout the porous medium.

e) The computation of the spectrum of the velocity fluctuation at

the surface of the porous layer shows that the porous medium acts as a

filter, with the components at the low frequencies (i.e., at large wave

lengths) being severely attenuated. A resonant peak is found at a char-

acteristic frequency which depends on the permeability, the viscosity

and the time integral scale of the wall pressure.

Although it was not possible to evaluate the modifications produced

in the pipe flow by the feedback effects from the porous medium flow, the

analysis proved useful in the selection of the experimental conditions.

5.2 Mean Flow Characteristics

Measurements of friction factor and mean velocity distribution were

conducted in two pipes, approximately 10" in diameter, one with 1/8" spherical

roughness elements and the other with a 1.20" thick porous lining. The Rey-

nolds number based on pipe diameter and average velocity ranged from 1 x 105
5

to 5 x 105. No measurements were taken within the porous layer.

The rough pipe behaves in every respect in accordance with the

classical experiments of Nikuradse for particulate roughness.

The most obvious difference found in the porous pipe is the very

high friction factor and its continuous increase with Reynolds number

throughout the range of the experiments, even when, under normal condi-

tions, the flow would have been in the fully rough regime. The displace-

ment of the logarithmic velocity distribution with respect to the smooth

wall law is consistent with the friction factor behavior, both indicating

an equivalent roughness of the same order as the thickness of the porous

lining.

Alternative interpretations of the Kgrman constant K have been

examined. A consistent description of the mean velocity distribution is

obtained by accepting K as a truly universal constant, approximately 0.40.

The position of the effective origin for the logarithmic profile changes

with Reynolds number. The distance from the wall up to which the logar-

ithmic law holds is smaller for the porous pipe than for the rough pipe.
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The eddy viscosity follows a universal behavior near the wall, but

systematic variations are present towards the center of the pipe. The

normalized eddy viscosity is smaller in the rough wall case than in smooth

pipes, and even more so for the porous pipe. These variations are reflected

in the velocity-defect distribution, which is not strictly a universal func-

tion of position.

5.3 Turbulence Characteristics

The distributions of the intensities of turbulence u' and v' in the

axial and radial directions, as well as the corresponding Reynolds stress

were measured in each pipe using constant temperature hot wire anemometers.

The relative intensities u'/U and v'/U are higher in the rough case than in

the smooth case throughout the pipe, and much higher in the porous pipe. Of

special significance is the change in v'/U, which for a smooth wall is roughly

constant, except in the immediate vicinity of the wall where it drops to zero;

whereas, for the rough wall, and even more so for the porous case, it steadily

increases as the wall is approached. As a consequence, the ratio v'/u' re-

mains at the same constant level in the presence of rough and porous walls,

without any sign of the sharp decrease shown by smooth wall data.

When normalized with respect to shear velocity, a universal agreement

is found between intensity data for smooth, rough and porous walls.

The energy spectrum of the velocity fluctuation u in the axial direc-

tion shows a fairly universal shape, independent of the wall condition, for

smooth, rough and porous walls. The same is true of the spectrum of the

radial component v of the fluctuation. No dependence on Reynolds number

was found. A systematic variation with distance from the wall is present

in the spectra for both u and v. At low frequencies, the spectrum near

the wall is lower than at the centerline, whereas at high frequencies the

opposite trend holds. This variation is more pronounced in the case of the

porous wall. For the rough pipe, the variation is clear only in the spec-

trum of v.

5.4 Recommendations

It is believed that the present study has provided the needed background
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information to guide a more comprehensive evaluation of porous boundary

effects. One obvious extension of-the experimental work is the systematic

testing of different porous boundaries, with varying permeability, porosity,

thickness and surface texture. In particular, it has been suggested that

the flexibility of the material used in this investigation might have had

a significant role in the observed-effects. Only a comparative test can

provide a definite conclusion in this respect. These kind of experiments

could be more conveniently conducted in a rectangular channel.

From the theoretical point of view, an attempt should be made to

analyze the flow in the porous medium using the complete, nonlinear equation

of motion. If a non-zero Reynolds stress were found, perhaps the coupling

between the pipe and the porous medium flows could be achieved through a

mixing length formulation. In this regard, it would be useful to have

experimental information about the balance of turbulent energy near rough

and porous walls. These are not easily accomplished tasks, but substantial

progress in such difficult problems as the theory of sediment transport can

be achieved only through a much deeper insight into the nature of wall tur-

bulence.
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3-13 Typical mean velocity distribution, showing slight 66
asymmetry in rough pipe profile.
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with static pressure tube.
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(1954).
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MacMillan (1957), for tube diameter 0.125", pipe dia-
meter 9.54".
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in rough and porous pipes.

4-20 Comparison of the measured intensity of turbulence with 136
other data.

4-21 Turbulence anisotropy ratio v'/u' 139

4-22 Variation of normalized energy spectrum ( with Reynolds 140

number.

4-23 Universal plot of spectrum analysis of the longitudinal 142

velocity fluctuation.
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4-24 Universal plot of spectrum analysis of the radial 143
velocity fluctuation.

4-25 Variation of energy spectrum cu with distance to wall. 144

4-26 Variation of energy spectrum $v with distance to wall. 145

Table Page

3-1 Temperature correction in percentage of velocity, according 84
to (3-21).

3-2 Values of the constants in equations (3-38) for spectral 106
analysis of x-array signals.

4-1 Computation of the discharge through the porous lining 111
in accordance with (3-4).
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APPENDIX II

LIST OF SYMBOLS

Only the principal symbols are defined here. Symbols with limited usage within

a section are defined where they first appear. An effort has been made to keep

the customary notation in each field. Some repetition of symbols in inevitable,

but possible ambiguities should be resolved by the context. Numbers in parenthesis

refer to the equation in which the symbol first appears.

a constant, - 3 (2-30)

A constant in law of the wall, (2-2)

A constant in hot wire equation, (3-14)

A same, for zero fluid velocity

A(n) cross-spectral function of the wall pressure, (2-53)

B constant in law of the wall, (2-2)

B constant in hot wire equation, (3-14)

dB random point function, (2-45)

c fluctuation of the effective cooling velocity acting on hot wire

C mean cooling velocity acting on hot wire

d outer diameter of pitot tube or of hot wire

D I.D. of pipe

e turbulent energy dissipation in porous medium, (2-42)

eL same, integrated over one wave length, (2-41)

E total dissipation in pipe flow, (2-43)

E Fourier transform of the wall pressure correlation coefficient, (2-48)

E Fourier transform of A(n), (2-55)
0

E energy spectrum for u, (4-10)

Ev energy spectrum of v, (4-10)

f frequency, cps

f pipe friction factor

f' normalized frequency, (2-58)

fK permeability friction factor (3-4)
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h thickness of porous layer

I current in hot wire

II average current in hot wire

I current in hot wire at zero velocity
0

i fluctuation in hot wire current

it rms value of i

k hot wire constant, (3-27)

k wave number of pressure wave, 27/L

k roughness height

K permeability

K K2 constants of wires in x-array probe, (3-32)

L length of sinusoidal wall pressure wave

1 mixing length, (2-12)

0 initial value of mixing length, (2-22)

m exponent in a power velocity distribution, (2-56)

M constant, function of m, (2-67)

M M2 ratio between velocity and current fluctuations in each wire of
an x-array probe, (3-37)

n porosity of the porous medium

n exponent of the velocity in heat transfer equation for a hot wire, (3-14)

p pressure '

p rms value of the fluctuation p

P amplitude of sinusoidal wall pressure wave, (2-29)

q specific discharge through the porous medium, (2-26)

q ,q components of q in directions x,y

q ,q' rms values of the fluctuations q ,q

2
q total intensity of turbulence

Q pipe discharge

Q mean specific discharge through porous medium produced by pipe pressure
gradient, (2-39)

r radial distance
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r ratio between linear and quadratic terms in modified Darcy's eq., (2-26)

R pipe radius

R(,T) correlation coefficient of the wall pressure, (2-47)

R hot wire resistance

RB effective pipe radius, referred to origin of coordinate yB

Re Reynolds number based on pipe diameter and average velocity

ReK permeability Reynolds number, (3-4)

t time

T period of sinusoidal wall pressure wave

T integral time scale of wall pressure, (2-61)

T absolute temperature in degrees centigrades

u longitudinal component of velocity fluctuation

u? rms value of u

U shear velocity, VT/p

U local mean velocity

U maximum velocity
max

U convection velocity for the wall pressure
c

U average pipe velocity

AU displacement of mean velocity profile in rough pipes with respect
to smooth pipes, (2-8)

v radial component of velocity fluctuation

v' rms value of v

w circumferential component of velocity fluctuations

w' rms value of w

x axial distance, measured from the beginning of regular roughness

y distance from wall

y displacement in origin of y

yB = y + yo, effective distance from wall (measured from the origin of the

logarithmic velocity profile)

Y dimensionless depth in porous medium, (2-65)

a angle between hot wire and fluid velocity
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3 angle between wires of x-array probe

r partial Fourier transform of R(E,T), (2-51)

C eddy viscosity, (2-13)

< Kdrmdn constant

P dynamic viscosity

v kinematic viscosity

E dimensionless radial distance, r/R

pa air density

Pw water density

a dimensionless frequency, (2-70)

T shear stress at distance y from wall

T wall shear stress (at y = 0)

0 time spectrum of wall pressure, (2-52)

normalized time spectrum of wall pressure, (2-58)

$u normalized spectrum of longitudinal velocity fluctuation, (4-11)

v normalized spectrum of radial velocity fluctuation, (4-11)

time spectrum of velocity in porous medium, (2-71)

normalized spectrum of velocity in porous medium, (2-71)

.W angular frequency

Q dimensionless frequency, (2-66)
*

( ) complex conjugate
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