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ABSTRACT

The determination of an amplification factor for a given harbor
and a given wave period is an important problem concerning long period
oscillations in harbors. The present study presents a means of comput-
ing the response of a rectangular harbor to the excitation by incident
waves. With the aid of a digital computer, the complete response curve
can be computed for any rectangular harbor. The results of experiments
on model harbors have confirmed the validity of the computation. Exper-
imental response curves, however, do not show the marked increase of the
amplification factor at resonance with a narrowing of the harbor entrance,
because of energy dissipation in a model harbor. The analysis of the re-
sponse factor for waves with a continuous power spectrum also suggests
that a narrowing of the entrance will lead to a reduction in the ampli-
tude of long period oscillations in actual harbors, because of increas-
ing sharpness of the response curves and the presence of energy dissi-
pation mechanisms in harbors. Hence, the problem of the harbor paradox
presented by Miles and Munk does not exist in actual harbors.

In addition to the above resonant characteristics, a study was
conducted on the minimum effectiveness of wave absorbers and filters to
simulate the open-sea conditions in a wave basin of finite dimensions.
A reflection coefficient less than 0.2 is recommended for wave absorbers
and filters. The importance of the basin size is also discussed.
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I. INTRODUCTION

1.1 Nature of the Problem

A resonant phenomenon is always a fascinating subject of study.
It also has a close relation to our daily life; a pipe organ originates
its sounds through resonant vibrations of air in pipes: radio waves are
transmitted and received with resonated circuits. A resonance may be
dangerous, too; engineers have been very cautious not to match the
natural frequencies of the structures which they design with the frequency
of exterior oscillation. One of the troublesome examples and the subject
of the present study is "long period oscillations in ports". Although
the problem of the long period oscillations is limited to a small number
of ports in the world, the troubles are so serious in specific harbors
that the problem was discussed specially in the XIXth International Navi-
gation Congress in London in 1957. At this congress, Joosting [1957]
showed that in the Table Bay Harbor, Cape Town, the long period oscilla-
tions with amplitude larger than 3.5 in. had been observed for four days
in the average per month in the summer seasons during the period 1941-1955.

What makes a long period oscillation intolerable for a harbor
is the fact that it forces moored ships to move to-and-fro from their
berthing positions, thus causing breaking of mooring lines, damages on
fenders and piers, and in some cases collisions of ships with each other.
In addition, the oscillation may produce strong currents up to several
knots at the harbor entrance and carry ships out of control (Wilson[1960]).
These long period oscillations, usually of the order of minutes, are not
necessarily of large amplitude. On the contrary, they are usually only
a few feet high or less. Knapp and Vanoni ['19h5] have stated for the
Naval Operation Base, Terminal Island, California:

In each case where a surge was reported, the height of the
three-minute waves exceeded 0.1 ft. Apparently this height
is in the neighborhood of the critical height beyond which
damaging motion can be expected.

This is primarily due to the long periodicity of such oscillations.
If a standing wave height of 2 ft. with a period of 3 minutes is
observed at an anti-node of a rectangular harbor with a depth of
40 ft., a small float at a nodal zone is likely to move in oscil-
lation over a distance of 51 ft.

The more serious factor involved in the problem, beyond the
substantial damages on berthing facilities and ships, is the invisible
loss in the harbor and ship operations. Once a long period oscillation
is developed in a harbor and damages are reported, no cargo-handling
operation is possible. The ships in the harbor may have to stay there
a day or several days longer than their schedules. If the high opera-
tional cost of a freighter is considered, it is quickly realized that



the existence of such long period waves will greatly diminish the potential
value of a specific harbor.

The arguments on the origin of the long period oscillations in
harbors have not been settled. Surf-beats, passages of atmospheric
jumps, or sudden shifts in the winds are reported to be responsible at
certain instances for such oscillations (see Wilson [19571 for a de-
tailed discussion). However, many investigators seem to be in agreement
that the predominant mechanism of long period oscillations in harbors
is the excitation through the harbor entrance by incoming long period
waves. The existence of long period waves in the ocean has been
proved by many records of wave spectra which show a wide frequency range
of ocean waves up to several hours in period (Miles and Munks [1961]).
Although these ocean waves of long periods are very low in heights and
are completely invisible, an oscillation of appreciable height can be
developed in a harbor through the resonance mechanism if the energy
of incoming waves is concentrated in a narrow frequency range around
one of the harbor's natural frequencies.

1.2 Theoretical Aspects of the Problem

Accepting the problem as a resonant oscillation excited by
incident waves, one will ask what are the natural frequencies of a given
harbor basin. The question cannot be answered readily, even for a
rectangular harbor which seems to be the simplest case. A fully open
rectangular harbor is often quoted as a "one-quarter wave length
resonator", because the resonant condition for a harbor of infinitely
small width is given by:

2m + 1
k& 2 I (1.1)

where: m - number of transverse nodal lines in harbor = 0,1,2,...
k = wave number = 2nA
Z = harbor length
X = wave length

On the other hand, a completely enclosed basin must satisfy the following
condition in order to develop a resonant oscillation in it (see Lamb [1932],
art. 190):

(ke)2 = n2 [m2 + n2 (1.2)
(2b/Z)2

where: n = number of longitudinal nodal lines = 0,1,2,...
b = half-width of harbor
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Thus, the resonant harbor length must be a multiple of one-half wave
length for an enclosed basin. Then, what resonant harbor length is to
be expected for a rectangular harbor with a partial opening? In addition,
equation (1.1) does not hold for a harbor of finite width in a strict
sense. What correction in equation (1.1) should be made for a harbor
of finite width?

Recently, Miles and Munk [1961] have answered these questions to
some extent. For a narrow rectangular harbor with a small opening, they
have shown that a resonant harbor length of a fully open harbor becomes
smaller than the length given by equation (1.1) as a harbor width
increases. A resonant harbor length of a partially open harbor also
decreases from the length of a fully open harbor toward the length of
equation (1.2) as the harbor entrance is narrowed down. Although the
resonant amplification factor of a fully open harbor decreases as a harbor
becomes wide, that of a partially open harbor increases as the entrance
becomes narrow. Since this is contrary to an engineer's concept on the
function of breakwaters, they called this increase of amplification
factor the "harbor paradox". Although their theory was a major step to
the solution of the problem, the analysis is limited only to the vicinity
of the fundamental resonant point of a narrow harbor with a small opening
(see Chapter V). The study also lacks experimental evidence. Although
Iribarren, et al. [1957], Hensen [1959], and LeMehaute [1954, 1961] have
conducted fundamental experiments on generalized models of rectangular
harbors, the boundary conditions at the ocean side are different from
those assumed in Miles and Munk's theory and from the actual open-sea
conditions; for this reason, these experimental data are not available
for the comparison with the above theory. Hence, the present study has
two major objectives: (1) to develop a more rigorous theory of wave
induced oscillations in harbors and (2) to verify it with adequate
experimental data.

Theoretically, the problem is one of the boundary-value problems
for the velocity potential VJ that is, to solve the Helmholtz equation

7 2 f + k2f = 0 (1.3)

for the wave pattern function f(x,y) at the appropriate boundary
conditions. Difficulties have been met in dealing with the boundary
condition at the harbor entrance and in evaluating the outgoing waves
radiated from the harbor entrance. McNown [1950] assumed the entrance to
remain as a node of standing waves in his analysis of a circular harbor.
As in his later work with Kravtchenko [1955] for a rectangular harbor,
he paid little attention to the radiated waves. For this reason,
they could not predict the change of the resonant condition for varying
width of a harbor entrance. Miles and Munk [1961] employed a measure
of an artificial boundary at the entrance to separate the two regions
inside and outside the harbor: continuity of water surface elevation
and normal velocity through the entrance. As for the outgoing waves,
they applied the method of point sources and expressed them in the
integral forms of Hankel functions. But they imposed the restrictions
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of 2kb << 1 and 2b < Z in order to obtain analytical expressions for
the resonant condition and maximum amplification factors.

Differing from the point-source method, Howard [1959] applied
the method of Fourier transformation to evaluate the outgoing waves,
and expressed these waves in integral forms. Although he only showed the
solutions of two special harbors (a fully open narrow rectangular harbor
and a circular harbor with a small opening), his method can be easily
extended to a harbor of any shape with the aid of a digital computer.
This is the approach taken in the present study.

1.3 Simulation of the Open-Sea Conditions for Model Experiments

Since the problems of long period oscillations in specific
harbors are very serious and the theoretical solutions have yet been
limited to harbor of very simple geometry, many scale model tests have
been conducted in various countries. A number of model studies may be
cited: Knapp and Vanoni [19451, and Hudson [1947] for the Naval
Operating Base, Terminal Island, California: Knapp [1949] for the Apra
Harbor, Guam, M. I.: Wilson [1960] for the Table Bay Harbor, Cape Town,
South Africa: Abecasis, et al. [1957] for the port of Funchal on the
Island of Madeira: Barrillon [1938] for the port of Tamatave, Madagascar
(reported by Larras [1957]). This is only a partial list of such studies.

As in any scale model, the prototype conditions must be
simulated in the model for a study of long period oscillation. One of
the difficulties in the modelling for long period oscillations is how
to eliminate the limitation of the finite area of a wave basin3 reflected
waves from coast lines and harbor die away in the infinite region of the
"open-sea"' in the prototype, whereas reflected waves in the model may be
reflected again from the periphery of a basin and wave generator and
interfere with the original wave system, This is especially important in
the modelling for long period oscillations, because the steepness of long
period waves in question is extremely small and such waves are reflected
totally even from gently sloping beaches. For the purpose of overcoming
this difficulty, it is a current technique of modelling to place wave
absorbers in the periphery of a wave basin and to locate wave filters in
front of a wave generator, so that the reflected waves from the model
may be dissipated there. The wave filters and absorbers must be effective
enough so as to keep the wave basin free from undesirable multi-reflections
between basin walls, the wave generator and model harbor. In order to
obtain a good effectiveness for waves of very low steepness, wave filters
and absorbers may become so large that they may occupy the largest portion
of a test basin (Biesel [1954]).

A question arises at this point: namely, how high must be
the effectiveness of the wave filters and absorbers-? To answer this
question, Ippen and Raichlen [1962] started their study on a model
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system with the most unfavorable modelling situation of no wave filter and
absorber. They have shown that such a system is characterized by the
presence of a number of resonant spikes on a frequency response curve,
and concluded that effective wave filters and absorbers will be necessary
to significantly reduce the coupling effect of a highly reflective main
basin and a model harbor. Then, Ippen, Raichlen, and Sullivan [1962] have
observed how the relative effectiveness of such wave energy dissipators
affects the resonant characteristics of a model harbor of rectangular
shape, using several energy dissipators of different effectiveness but
with the same dimension. They concluded that wave filters and wave
absorbers are indispensable and the transmission coefficient of the wave
filters should be much smaller than 0.5 (which was true of' the best filter
applied) to approach an open-sea condition. The question of minimum
effectiveness of wave energy dissipators for the simulation of the
open-sea condition remains still unsolved. Hence, it is also the purpose
of the present study to find out the minimum requirement for the wave
energy dissipators for the modelling of long period oscillations in
harbors.

The above three objectives, to establish a rigorous theory, to
verify the theory with experimental data, and to find out the minimum
requirements for wave energy dissipators, will be dealt with in the
subsequent chapters.

II. THEORY OF WAVE INDUCED OSCILLATION IN A RECTANGULAR HARBOR

2.1 Solution of Wave Induced Oscillation in the Ideal Fluid

2.1.1 Method of Analysis - Separation of Two Regions
Outside and Inside the Harbor

Although the actual harbors which suffer from resonant oscillations
are usually of complicated configuration and the adjoining coast lines are
not straight, a rectangular harbor connected to the open-sea with a
straight coast line seems to be the most practical model for analysis. A
harbor of rectangular shape is often constructed because it provides a port
with many berths. The assumption of a straight coast line extending infinitely
is less applicable to the actual cases some harbor may be located in the
depth of a narrow bay. However, the shore line adjoining to the harbor
entrance does end at the coast line of the open-sea which can be defined
mathematically as the semi-infinite region. In this sense, the analysis
of a rectangular harbor connected to the open-sea has sufficient value
for practical application.

The following conditions are assumed in the analysis;

1. The oscillations in a harbor are induced by the incident
waves of regular wave train moving normal to the coast
line.

- 5 -



2. All boundaries reflect waves totally.

3. The water depth is constant over the whole region in
consideration.

4. The harbor entrance is small enough to guarantee the
uniform wave motion through it.

5. All wave motions are of small amplitude in the ideal
fluid.

The system in the analysis is sketched in Figure 1. The origin
of the coordinates is taken at the center of the harbor

-- 2d

0 x

-d d

2b

-2(1 - s)b 2eb

Figure 1. Definition Sketch of the Model Harbor

entrance. The vertical coordinate, a, is measured upward from the mean
water level. Since the fluid is assumed ideal and the motion is induced
by a regular train of incident waves under the effect of gravity, there
exists a velocity potential which sati&fies the Laplace equation:

72 V = 0 (2.1)

If we assume the velocity potentiail as a product of functions of x and y,
a, and t, such as,

( f(x,y) Z(z)e't (2.2)
10

- 6 -



where: a = angular frequency = 2n/T

T = wave period

then the functions of f(x,y) and Z(s) must satisfy the equation

1 ( + -- f)+ I d 2 
0  (2.3)

ax2  ay2 z dz2

After separating the first and second terms of equation (2.3) and equating
them to a constant, say k2 , the function Z(a) is solved and determined
from the boundary conditions at the bottom as:

Z(s) = ag cosh k(a + h) (2.4)

where: k = constant (which is proved to be the wave number - 2n/A)

h = water depth

a a wave amplitude

The water surface elevation is derived from the surface condition as:

vn(xy,t) = ( V)s = a f(x,y)e i t (2.5)

The constant k in equations (2.4) and (2.5) is determined from the con-
tinuity condition at the water surface:

at = 0
hence,

a 2 gk tanh kh (2.6)

The function f(x,y) which determines the wave pattern in the
system must satisfy the equation:

--- + --- + kaf = 0 (2.7)
ax2  ay2

The boundary conditions for f(x,y) are:
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r
- 0 at x a 2ab and - 2(1 - &)b
ax

- e5y 5o

-F at Jx|> d, y = 0

- O at - 2(1 -e)b 5 x 5 2ebay
y=-

f(x,y) = Cos ky as x2 + y2 --- 0

(2.8.1)

(2.8.2)

(2.8.3)

(2.8.4)

The last condition represents a plain standing wave system, this is so
required because any disturbance from the harbor does die away as it
travels outward.

In addition to the boundary conditions of equations (2,8.1)through
(2.8.4), it is convenient and useful for the analysis to separate the system
into two regions: one outside and one inside the harbor. This procedure
of separating the system is justified if the continuity conditions for
water surface elevation and normal velocity at the harbor entrance are
satisfied. These conditions are expressed as:

rn (x,0) - (x,0) at Ixi I d

af1
y = 0

af
a y = 0

at Ix 15 d

where: subscripts 1 denote the outside of the harbor
subscripts 2 denote the inside of the harbor

Since the harbor entrance is assumed as relatively small compared to the
wave length (kd < 1, see Section 4.2.1 for experimental data), an
approximation of a uniform oscillating flow may be applied on the harbor
entrance. Then, the both sides of equation (2.10) are set equal to
some constant with respect to x as:

af
= (-.2)ay y = 0

a kc e at |x| 5 d

-
- U -

(2.9)

(2.10)

af1

y = 0
(2.11)



The constant c represents some magnitude of a uniform flow through the
entrance. A phase angle o is introduced here, because the wave motion
through the entrance in general has a different phase with the outside
standing wave at the region far from the entrance. Both c and Co are
to be determined later from the condition of the same water surface ele-
vation at both sides of the entrance, equation (2.9).

2.1.2 Wave Pattern Outside the Harbor

As stated in equation (2.8.4), the wave pattern becomes a plain
standing wave in the region far from the harbor entrance. Since this
standing wave satisfies equation (2.7) and has a zero water surface
slope at y = 0, the wave pattern function fj(x,y) may be expressed
as a sum of the standing wave and some unknown function f (x,y):

3

f (x,y) = cos ky + kc e f3 (x"y) (2.12)

The water surface elevation outside the harbor, nh, is written with f3 (xy)
as:

r,(x,y,t) = a cos ky e + akc f (x,y)ei(at + Co)

The boundary conditions for f (x,y) are obtained from equations (2.8.2),
(?.8.4) and (2.11) as 3

af 1 at xl< d

yy =- 0 0 at IxI: d (2.13.1)

f (x,y) 0 as x2 + y2 -> 0o (2.13.2)
3

Now let F(u,y) be the Fourier transform of f (x,y) on x, then
the differential equation for F(u,y) is derived from e~uation (2.7) as:

aF- + (k2 -U2) F = 0 (2.14)
ay2

where: (00.

F(u,y) e- usf (s,y) ds

f (x,y) e' F(u,y) du

-9-



The boundary conditions of equation (2.13) are transformed for. F(u,y) as:

aF u,y)

y= 0
00 us

00 y 0

= 2 sin ud
u

F(u,y) = 0 as y -4

The general solution of equation (2.14) is given by:

F(u,y) = C (u) eVUZ- ke ,y + C (u) e-vuw - k y

In order to determine the coeffidients C 1 (u) and C2 (u) in the
right-hand side of equation (2.16), two rangestof u must be considered
separately; i.e., I u I >k and lul < ;.

i) Jul >k

In this case, C (u) must be zero because of equation (2.15.2).
Hence, C (u) is obtained from equation (2.151.), and F(u,y) is determined
as: 2

F(u,y) =2 sin ud e
uFuy - k)

(2.17)

ii) Iu|< k

In this case, both terms of equation (2.16) become oscillating
functions because of the imaginary power factor, i.e.,

F(u,y) 7,C (u)eilk2- u y + C (u)e-ik - u7 y
2

Since the term of e is employed for the time function of the velocity
potential as well as of the water surface elevation, the first term of
F(u,y) represents incoming waves and the second term represents outgoing
waves. (The resultant f3 (y,y) from the' first term of F(u,y) has a
term of exp [i (1k2 - u2"y +a-t)]; hence, incoming waves.) Since outgoing

(2.15.l)

(2,16)



waves are of present interest, Ci(u) is set to zero. The Fourier transforma-
tion F(u,y) is then determined from equation (2.15.1) as:

F(u,y)=i 2 sin ud e-ik2 - u2 y
u kz - U2

Although F(u,y) obtained in the above does not go to zero as y goes
infinity, it can be proved that the resultant f (x,y) does converge
zero as (x2 + y2) goes to infinity. 1 3

Now the wave pattern function f (x,y) is recovered from
equations (2.17) and (2.18) as:

f (x,y) = i I -I

(2.18)

to
to

(2.19)

where:

2 k sin ud Cos
Tr Jo uik - u2

I
2

ux e-ik - u ydu

ux e- 4u2 - k2 y du=2 sin uds
TIJk' u u - ki o

The water surface elevation outside the harbor is thus obtained as:

=a cos ky e + akc(i I I)

2.1.3 Wave Pattern Inside the Harbor

As for the wave pattern inside the harbor, a solution of separated
type is sought:

Then,equation (2.7) becomes:

f (x,y) = X(x) - Y(y)

1 d2 Y +k2 d2 X

y. dy2 X dX2

-11-

(2.19.1)

(2.19.2)

e t + CO) (2.20)

(2.21)

(2.22)



Since the left-hand side of equation (2.22) is a function of y only and
the right-hand side is a function of x only, they must be equal to a
common constant, say a2 . Then, the function X(x) and Y|(y) have the
general solutions of

X(x) Ae + Bel

Y(y) Ce 1d - k y + De y4 - k y

(2.23)

(2.24)

From the boundary condition of equation (2.8.1) which describes
the condition of no velocity across the walls of the harbor, the
equations for the constants A and B are:

-

2X

ictAe 2iaeb - Be-21aeb 0

X )= ia [Ae21a(e -1)b - Be- 2ia(& - 1)bj= 0
Since thesear hooenos siutaeu eqain for A an1,hfbown

Since these are homogeneoussimultaneous equations for A and B, the following
relation must hold so that there exist the solutions for A and B:

e2iab -2iab -0

or
sin 2ab - 0

Therefore, the constant a must be a real number of

nFb n = 0, 1, 2,.... (2.25)

With a determined by equation (2.25), the constants A and B are
derived as:

A n e
2
Bn ienr

B 2e

-12-



Thus, the function X(x) becomes:

X(x) B B cos n, (x - 2eb) (2.26)

The constants C and D for Y(y) in equation (2.24) are
obtained from the boundary condition of equation (2.8.3) at the back
wall of the harbor:

[dY]
dyj --

S - k2 [Ce -e - k2
-Dee z 2 - k = 0

hence,

C-n eZ'a2 -k 2
C =- ela-k

2

Cn -/ Za2 - k2
D 2 e

Thus, the function Y(y) is determined as:

Y(y) = C cosh [P k (y + 6)

(either real or imaginaxy)where: nn )( )2 - 1

If the product of Bn and Cn is denoted by An
f2(x,y) is expressed as:

the function

f2(xy) = An cos[ (x - 2eb)] cosh [pnk(y + Z)] (2.29)

The differentiation of f2 (x,y) with respect to y at y - 0 yields the
following Fourier cosine series with a period of 4b:

[ Jy - o

00

- A k sin kZ + AnPnk sinh(P ke) cos[ (x - 2eb)]0~~ r;I n 2

Being given the boundary conditions of equations (2.8.2)and (2.111 the
coefficietts Ao and An are determined with the formulae of Fourier cosine
series as:

-13-

(2.27)

(2.28)



2eb + d

A 2eb - d kc e dx

0 2bd sin k-t

A =n

d cd e"
S~b Fin k Z

2eb + d

kc ee Cos dx
2eb d 2b

b pk sinh P k

Thus the wave pattern function

=

4ce sin n cos enn
2b

nni I sinh P ke

f2 (xy) is uniquely determined as:

io
f (x,y) - - b sin k [cos k(y + Z) - S(x,y)]
2tsik

S(x,y) h4b sin kZ sin mid cos enn

n =1 np sinh p kt
L n n

x cos n(x - 2eb) cosh P nk(y + Z)} (2.31)

The water surface elevation inside the harbor is obtained as:

'n (x,y,t) = - b a k e [cos k(y + Z) - S(x,y)]
2bsik

(2.32)

M-Note: In this expression, the following changes should be recalled where

nn < 2kb.

(2.28,1)
n

cosh pnk(y + cos {'3k(y + Z)

p sinh Pnkt p'sin p kZn n n n

- 14 -
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2.1.4 Evaluation of the Amplification Factor

The next task is to determine the unknown constant c and
phase angle co through equation (2.9) which specifies the continuity
of water surface elevation at the harbor entrance. As indicated in
equations (2.20)and(2.32), the water surface elevations have some
variation along the harbor entrance. Instead of matching the surface
elevations outside and inside the harbor at every point along the
entrance, the average values of water surface elevations over the
entrance are employed here for equation (2.9) as an approximation.

First, the average value of the wave pattern function
outside the harbor is calculated from equation (2.19):

Id

f(x,O) f (x,O) dx
3 2d

)-d 3

d k

dx sin ud COS ux du
nd f-d _o u _k - U2

d 00

- dx sin ud cos ux du
d )k usi - kd

By changing the order of integration and evaluating the integral
with respect to x, the average value of f (x,O) is obtained as:

k3

f3 (xO) 2 [ sin2 ud du - sin2 ud du
3 d o uk2 - u2  Jk u2u2 - k2

Now by the change of the integral variable from u to a -ud,
the above expression is rewritten as:

f (x,O) = 1 [i36  'a] (2.33)

where: kd si2a
w3(kd) = kd sin a da (2.34.1)

Jo a2l(kd)2 - a2

(kd) = . kd( sin2 a da (2.34.2)
2 2 n )kd a2 /a2 - (kd)2



1%th these functions 3 1 and Y. , the average water surface elevation
outside the harbor at the entrAnce is expressed as:

7},(x,0) a aelit + ace iyt+ ) O ~)] (2.35)

Since the functions' 1 and ? defined in equations (2.34.1) and
(2.34.2) represent the contribution of outgoing waves to the average
water surface elevation, they might be called the radiation functions.
These radiation functions, y 1 and$O, are functions of a single
parameter, kd. The evaluations of -l and 7A have been carried out
with the aid of an IBM 7090 digital computer. The results of the
computations are shown in Figure 2 for the value of kd up to 1.6
although the assumption of uniform velocity distribution may not be
valid for such large values of kd. Details of the computation
method are described in Appendix A.

Second, the average water surface elevation inside the harbor
at the entrance is calculated from equation (2.32) as:

d

TJ (x,0) -si n ke + O [cos kZ - S(x,O)] dx

- e [cot k4 - S ] (2.36)

b (sin cos enn) 2

where:. S l 8 (n 2 2b (2.37)
n l n2 n tanhp ke

Now the substitution of equations (2.35) and (2.36) into
equation (2.9) yields the following equation for c and w:

a + ac e [i - - acd ei [cot kZ - S]

Divided by a e , the above equation becomes:

e iW+ c[i3 -6 -2 [cot kZ -S (238
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From the real and imaginary parts of equation (2.38), two simultaneous
equations for c and co are obtained:

cos Co + c [- (cot kZ - S1) - ] = 0

- sin co + c =0

From the above equations, the constant c and the phase angle co
are determined as:

C (2.39)

(cot k - S -]2 +12

w - - tan 1 (2.40)

Thus, the entire wave motion inside and outside the harbor has
been solved completely.

The next step is to define the amplification factor. The
most reasonable one would be the ratio of a standing wave amplitude
inside the harbor to the outside standing wave amplitude. Since
such an amplification factor may be defined at any point in the
harbor, the amplification factor is derived from equations (2.32)
and (2.39) in the general form as:

[(x,y)j
X . a o a

= cos k(y +) -S(x,y) I(2.
[cos kZ - (S + A) sin k ]2

1 2
+ (- sin kZ)2

This equation gives the amplification factor at any point (x,y) inside
the harbor. In order to define the largest amplification factor in
the harbor, one needs to know the maximum amplitude in the harbor

- 18 -
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for a given relative harbor length. The location of the maximum ampli-
tude in the harbor is not fixed, but varies depending upon the wave
pattern inside the harbor. However, it is found that the amplitude at
the corner of the back wall (x = 2eb and y = -e) is the largest or close
to the largest one in the harbor when it is in resonance. In this sense,
the amplification factor is defined here as the one at the corner of the
back wall, unless otherwise stated. Then,

a

1-SJ 
(2.h2)

[cos kZ - (S + ')sin k.] 2 + (b sin kZ)2

where:

nmid
4b b in sin -g- cos enn

S 2= -- sin kZ ..n ih , (2.43)
2 ,td np sinh pn kBn n

n=l

The computation of the amplification factor in equation (2.42)
is very tedious because of two infinite series and two irrational
integrals involved. The resonant condition, or the condition which gives
maximum amplification factors for a given harbor, cannot be obtained in
explicit form in general, but has to be sought by successive computa-
tions of the amplification factor for a varying relative harbor length,
kt. Such computations have been carried out with the aid of the IBM
7090 digital computer at the Computation Center in M.I.T. for a number
of harbor geometries. The results of these computations are discussed
in Chapter IV.

2;1.5 Some Characteristics of the Amplification Factor

Before going into numerical analyses of equation (2.h2), an
examination of the equation reveals some characteristics of the ampli-
fication factor of a rectangular harbor. They are:

i) The amplification factor has a finite value at
resonance even without energy dissipation.

Since cos kZ and sin kZ cannot be zero at the same time, the
denominator in equation (2.42) does not go to zero. Hence, the
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amplitude of resonant oscillation in a rectangular harbor remains
finite, even if there is no energy dissipation. (Any energy dissi-
pation in a harbor will decrease the amplitude of resonant oscillation.)
The amplitude of the oscillation in a harbor is established on the
balance of incident wave energy and radiating wave energy carried
by the outgoing waves from the harbor entrance. These outgoing
waves are an essential feature of resonant oscillation; any study
without proper consideration of these outgoing waves would not
yield fruitful results.

As for the possible transversal resonances (2b = nX/2),
it should be first noted that a symmetrical harbor does not respond
to the waves with the period of odd resonance mode (n = 2p + 1).
(The terms of odd number in the series, S1 and S , vanish because
of cos e(2p + 1)n = 0 for e = 1/2.) When one of Pn approaches to
zero, the series S in the numerator of equation (2.43) increases
rapidly except for the odd number of n for a symmetrical harbor.
At the same time, however, the series Sl in the denominator also
increases with the same speed as S -, thus keeping the amplification
factor at a finite value.

ii) The amplification factor is unity for kZ = mn.

For k 4 A'

cos kZ = 1 and sin ke = 0

hence,

R 1cos k 1

unless S1 and S go to infinity at kZ = mn. This implies that,

breakwaters will not reduce the wave action in a rectangular harbor
if the length of incoming waves is such that X = 2e/m (m - 0,1,2,...).
This paradoxical result is due to the assumption of no energy
dissipation in the harbor, but on the other hand it indicates the
importance of a suitable energy dissipation mechanism in the harbor.
An engineer should provide a harbor basin with some effective
mechanisms of energy dissipation in order to protect the harbor
from the action of incoming waves.

iii) The amplification factor may be smaller than unity.

This is easily demonstrated for the case of a nearly
closed harbor. If one increases the width of a harbor while
keeping the size of the entrance the same, the terms of (b/d)3 l
and (b/d)362 increase linearly with the increase of the width.
At a certain point, the denominator of equation (2.42) will exceed
unity, thus reducing the amplification factor to less than 1. This
may also be proved with the fact that IR = 1 at k Z = mn and the
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derivative (d R/dk) is positive at kZ = mn. Such amplification
factors smaller than unity simply mean that the water mass in the
harbor basin cannot oscillate as fast as the outside waves, as
in the case of a single-degree-of-freedom oscillator subject to
an exciting force of high frequency.

iv) The response of an asymmetric harbor with an
opening at one side is not the same as that of
a symmetrical harbor with twice the width.

Although two harbors shown in Figure 3 may seem to have
the same resonant characteristics because of similar wave patterns
(both series, S1 and S , coincide for the two harbors), the
resonant periods and aplification factors will not be the same.

2 d Id 4

4 2b b-

Harbor A Harbor B

Figure 3. Sketches of a Symmetrical and an Asymmetric Harbor

The reason is that the magnitudes of the radiation functions , and t
are different for the different absolute sizes of the two harbor
entrances, thus differentiating resonant conditions of the two harbors.

2.1.6 Resonant Characteristics of a Fully Open Harbor

If the harbor is a fully open one, or d = b and e = 1/2,
then both Sl and S become zero, leaving the amplification factor

in the following simple form:

1

=(cos k - sin ke)2 + sin2 k. (2.44)

This equation may be rewritten into the following form after a few
trigonometric manipulations:

R (1 + + 31,2) + ( - - ? 2 ) + 4 2 cos(2ke + 9) (2.45)
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-l 2_ __

where: 9 = tan 2 (2.46)
1- +

1 2

The resonant condition of a harbor with a varying length is immediately
obtained as [cos(2kt + 9) = - 1] from equation (2.45), since %L and?t
are constant for a fixed value of kd. Hence,

2m + 1 1 -1 2'.
(kt)Res = 2l -- tan 22 (2.47)2212- (2 +302)

where: m = integer = 0,1,2,...

(kt)Res = value of relative harbor length at resonance.

The resonant amplification factor is determined from the above condition
as:

L es %(1 +7 +7 ) + _) (1 . 2-2)2 + (2.48)
"e 1112 1 2 ( 1 2 2

where: "Res = value of amplification factor at resonance.

Equation (2.48) indicates that the resonant amplification factor is
governed by one parameter of relative half-opening width, kd, and
independent of the mode of resonance. This is only true for a harbor
with a varying length, however. In the more practical case of
"frequency response" (response of a harbor with fixed geometry to the
waves of varying periods), the resonant condition cannot be given
by [cos(2ke + 9) = - 1] because the parameter of kd does vary as a
wave period varies, thus changing the values of'k 1 and y .

If the analysis is restricted to a very narrow harbor
(kb <<l), equations (2.47) and (2.48) can be used to evaluate the
resonant characteristics of such a harbor because the variations of
the values of 3 1 and 7 are small compared to 1. Moreover, the radia-

tion functions 3I andt are approximated with the following expressions

for such a harbor accoraing to Howard [1959] (see Appendix A):

= kd + O(k3d3 ) (2.49.1)

+kd ( -y - ln kd) + 0 (k2d2 ) (2.49.2)
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where: y = Euler's constant = 0.5772.......

The substitution of equation (2.49) into equation (2.47) with d = b
yields the relative harbor length at resonance of

(k)e 2m + 1 n _ 2 kb n- - nkb) (2.50)Res 2 T 2

The first term of equation (2.50)is the same as equation (1.1) and the
second term represents a "mouth correction factor". The expression is
in agreement with the results of Honda, Terada, and Ishitani [1908],
but not with that of Miles and Munk [1961].

The amplification factor at resonance for a very narrow
harbor is also obtained from equationm(2.48) and (2.49) as:

1 h 4
"Res kb-" (2m + 1)n - 2b (2.51)

This result gives a higher amplification factor by the amount of
28 per cent for the fundamental mode than Miles and Munk's calculation,
since they give the amplification factor as e/2b.

Equation (2.51) also indicates that the value of the
amplification factor at resonance becomes smaller as the value of
m increases. The amplification factors at the second and third modes
are about one-third and one-fifth of the amplification factor at
the fundamental mode, respectively. Such decreases of amplification
factors at resonance are very reasonable. For a fully open rectangular
harbor at the second mode of resonance, a vertical wall may be
erected at a location of one-half wave length away from the back
wall without changing the wave motions. The new short harbor thus
formed has a length of approximately one-third of the original one.
Hence the new wideness ratio 2b/&, or effective wideness ratio, is about
three times the original one; the amplification factor is to be one-
third of that of the fundamental one, accordingly. Therefore, higher
modes of resonance will not present serious problems for a fully
open rectangular harbor.

2.2 Effect of Energy Dissipation in Harbors on Resonant Characteristics

The theory developed in the preceding sections is based
on the assumption of the ideal fluid; no energy dissipation is
taken into account. In the actual harbors, however, there exists
always some energy dissipation mechanisms: turbulence around the
entrance, frictional loss on the bottom, wave breaking on beaches
(for wind waves), and so on. These mechanisms cause some energy
dissipation,even though the dissipation may be less than 5 per cent
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of the total energy. In ordinary wave problems, this amount of
energy dissipation is negligible; but not in the problem of
resonant oscillation. A resonant oscillation gains its high
amplitude only through the accumulation of energy differences between
incoming waves and outgoing waves. Any amount of energy dissipation
interferes with this accumulation process, thus decreasing the resonant
amplification factor. In this section, an attempt is presented to
estimate the effect of wave energy dissipation upon the resonant
characteristics of a fully open rectangular harbor, since the harbor
allows the assumption of one-dimensional wave motion inside it and makes
it possible to apply the method of a partial standing wave system.

If the amount of wave energy dissipation inside the harbor
is small, its effect may be represented by an adjustment of the
reflection coefficient. In other words, whatever the mechanism of
energy dissipation is, the wave profile may be approximately expressed
as the sum of an undamped incident wave and a reflected wave attenuated
at the back wall by a factor of ]KR less than unity. Then, the
incident and reflected waves are:

A 0 (a+w + k (y + I) I

7IR =KR A. ei[( at + o) - k(y + Z)]

Hence, the resultant wave profile in the harbor, r1 , is expressed as:
2

+mR=A ei(a t + Co) [ik(y + Z) +]K e-ik(y + Z)

The amplitude of the standing wave at the back wall is

A = A (l +K)

Using this amplitude, the wave profile is written as:

A ei(a t + Co) Eik(y + &) + % - ik(y + 1 (252

Although the wave pattern inside the harbor has been expressed in
terms of an-unknown constant, c, in the Section 2.1.3, it is
convenient to replace the constant, c, with the amplitude, A,
through equation (2.11) for this case; thus,
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. A i(a t+ CO) ikZ
= ik 1 + e[ -]KRe

= kac e i(t+ W)

hence,

A [e ikZ
c a(1 + %)

ike A 1 - ]KR-%e I = :i 1 +R kZ - sin k4]

(2.53)

Then, the amplitude, A, and the phase angle, co, are derived from
the continuity condition at the entrance, equation (2.9). The
average amplitudes outside and inside the harbor at the entrance
are obtained from equations (2.37) and (2.52) with equation (2.53) as:

x,0) = a e + A e [i ' - '] [i 1 cos kZ - sin kt]

7 (0) = A [cos kZ + i - sin kZ] e i(at+ Co)

With these average amplitudes, the condition of equation (2.9) is
rewritten as:

aei- A[ifb. - [sin k. - i cos kZ]

1 - -R

= A[cos k9 + i - sin ke] (2.54)
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In a similar way as in the derivation of equations (2.39) and (2.40),
the amplitude,A, and the phase angle, co, are determined as:

A = a [(cos kZ - 36 sin kt) + r cos kZ]2

1~

+ sin kZ + r ( cos kZ + sin k)] } (2.55)

CO = - tan-
7/ sin k + r ( cos kZ + sin kZ)

(cos k& - sin kZ). + r cos kZ

where: r = R

1 + ]KR

The amplification factor is immediately derived from
equation (2.55). After some trigonometric manipulations, the ampli-
fication factor is expressed as:

R = = 2(1 + r2) (1 +L +2) + 2ra L1 2

+ -1 (1 - r2) 2( -2 -0/2)2
2 1 2

+ 4312 cos(2kZ + 9)

9 = tan 1

1-(1 + /2)
2

(2.58)

The angle 9 is the factor which primarily governs the resonant condition.
Note that equation (2.58) does not involve the quantity of ]KR( which
represents the amount of energy dissipation) and the equation is exactly
the same as that of ideal fluid (equation (2.46)].
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However, the resonant amplification factor IR Res is greatly

reduced by the presence of energy dissipation. For a very narrow harbor,
the magnitudes of the radiation functions 'land k become small as indicated

in equations (2.49.1) and (2.49.2). The resonant amplification factor for
this case is evaluated from equation (2.57) by setting [cos(2ke + 9)= -1]
and by neglecting higher order terms of r and kd as:

1 4 2 (2.59)
'Res"kd + r 2 + R (1 - "KR) - (29)

where: JR = resonant amplification factor of the ideal fluid = 1/cd

Thus the maximum amplification factor has a limiting value determined by
the magnitude of the energy dissipation inside the harbor. Equation (2.59)
also shows that the effect of energy dissipation on the amplification
factor is larger for a large value ofJR 0 than for a small one.

Although the above analysis is restricted to a very narrow harbor,
the conclusions of little change in the resonant condition and of large
reduction of the resonant amplification factor have been confirmed for
a wide range of harbor geometry by the numerical analysis of equation (2657).
Figure 4 shows frequency responses of two harbors, with and without energy
dissipation. A reflection coefficient of 0.9 is employed for both harbors
to illustrate the effect of energy dissipation. As it is seen in Figure .,
the effect of energy dissipation is more apparent at high values of the
amplification factor than at low values. The resonant amplification factor
of a narrow harbor (2b/t = 0.2) drops from 7.8 to 5.5 for the fundamental
mode, while a square harbor (2b/e = 1.0) shows a slight decrease of

amplification factor from 2.4 to 2.1. It is also noted that the effect
of energy dissipation is concentrated around the resonant points; there
is little change of the amplificatibn factor at the region of anti-resonance.

The resonant characteristics of a fully open rectangular harbor
with and without energy dissipation are compiled in Figure 5. The relative
harbor length and amplification factor at the fundamental mode of resonance
are plotted against the aspect ratio of harbor, 2b/e. The resonant ampli-
fication factor of a harbor with no energy dissipation increases rapidly as
the harbor becomes narrow, but the resonant amplification factor of a

harbor with a reflection coefficient of 0.9 increases slowly toward the
limiting value of 20. The lower part of Figure 5 also shows that the
resonant harbor length, (kt)Re , decreases slightly with the presence of
energy dissipation. But the cange is so small that it is negligible
for practical purposes.
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III. EXPERIMENTAL EQUIPMENTI AND PROCEDURES

3.1 Adoption of Deep Water Waves for the Experimental Study

In the present study, the deep water waves were employed for most
of the experiments. Such an approach may seem to contradict the'nature
of long period oscillations because they apparently belong to shallow water
waves. However, the theory of wave induced oscillation indicates that the
characteristics of the oscillation are governed by the wave length, not
by the water depth nor by the wave period in a direct manner. The wave
length is, of course, determined by the water depth and the wave period,
but its relative magnitude to the dimensions of a harbor (length, width,
and opening) is the factor which defines the characteristics of the
oscillation. Although the velocity potential has a term of a depth
function, Z(a), defined in equation (2.4), its effect is limited only to
the variations in the vertical direction, the velocity pattern on a plane
at any depth has the same pattern as that at the water surface. Furthermore,
the water surface elevation is not affected by the water depth as shown
in equation (2.5). Hence, the theory can be applied to a harbor of any
water depth as long as local variations of wave amplitude due to the change
of water depth.are not of major importance. The choice of wave character-
istics, therefore, can be made from the viewpoint, of experimental feasibility.

The deep water waves have several advantages over the shallow
water waves for the basic experiments of resonant oscillation. They are:

i) "The wave length of deep water waves is not affected
by the wave amplitude and variation of water depth."

The shallow water wave changes its length according to the change
of water depth. In order to maintain the same wave length, the water
level must be kept constant. The bottom of a wave basin must be also
horizontal without any appreciable irregularity so that the wave length
does not vary locally. On the other hand, the wave length of the
deep water wave is determined by the wave period only. Hence, it is
not difficult to measure and control the wave length of the deep water
waves, compared to the case of the shallow water waves.

The wave length of a shallow water wave is also subject to
the magnitude of its amplitude. If the celerity of the solitary
wave is employed to estimate the celerity of a shallow water wave
with a finite amplitude, the wave length may be expressed as (see
Lamb [1932], art. 252):

X = 11) + La (l + )(3.1)
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where: Xs = wave length of shallow water wave with small amplitude

= Tgh

X = wave length of shallow water wave with finite amplitude

a = wave amplitude

h = water depth

The wave amplitude being 5 per cent of the water depth, for example,
will increase the actual wave length by 5 per cent from the length
of small amplitude wave. An error of such magnitude may be crucial
for the study of resonant oscillations because a slight change of wave
length often produces very different responses for the same harbor. Hence,
the wave amplitude must be sufficiently small compared to the water
depth; this usually requires the accurate measurements of very small
amplitudes which are not easy to record.

The effect of wave amplitude on the wave length of a deep
water wave is shown by the theory of Stokes' wave as (see Lamb [1932],
art. 250):

a = X01 + L(n)2 C-X [1 + 2(Il) ] (3.2)
0

where: X0 = wave length of deep water wave with small amplitude

= gT2/2n

X = wave length of deep water wave with finite amplitude

Equation(3.2) shows that the increase of wave length will be only 1.2
per cent even if the wave steepness has a value of 0,05 ; waves with such
magnitude of steepness are easily measured with sufficient accuracy.

ii) "Wave filters and absorbers are more effective for the
deep water waves than for the shallow water waves."

The effectiveness of wave filters and absorbers is usually
governed by the steepness of incident waves. The steepness of the shallow
water waves for a resonant oscillation model is required to be very
small (0.001 or less) so that the wave length does not increase from
that of small amplitude waves. Wave filters and absorbers of ordinary
sizes cannot dissipate such low amplitude waves effectively. In order
to obtain good effectiveness, wave filters and absorbers will need to be
very large in sizes. On the other hand, the deep water waves can have
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a large steepness as discussed in the paragraph i). Hence, wave
filters and absorbers of small sizes may dissipate these deep water
waves effectively, thus simulating the open-sea conditions in a wave
basin.

iii) "The wave basin can be a small one for the model using
the deep water waves."

The size of a wave basin for resonance study must be at
least three or four times the wave length in test. If the deep water
waves are employed, the wave length can be small, as well as the basin
size. For the shallow water waves, however, the water depth should be
at least a few inches so that the accurate measurements of the water
depth and the wave amplitudes can be made. This leads to the minimum
wave length of several feet; hence a wave basin needs to be fairly
large. The wave filters and absorbers must also be of large dimensions
for the shallow water waves. On the other hand, the employment of the
deep water waves makes it possible to use a small wave basin, which is
much more efficient to operate compared to a big one, without
sacrificing accuracy of measurements.

As discussed in the above, the use of deep water waves is more
suitable than the use of shallow water waves for the basic experiments
of resonant oscillations in a region of constant water depth. For this
reason, the experiments were conducted mainly with the deep water waves.

3.2 Wave Basin and Model Harbor

The experiments were carried out in a wave basin shown in Figure 6.
The basin is 11.33 ft. long, 9.0 ft. wide and 14 in. deep. Waves are originated
with a flap-type wave paddle, 6.0 ft. wide, which is driven by a variable
speed motor. The stroke of the paddle can be varied continuously so as
to produce waves of desirable heights. The water depth was maintained
at h = 0.844 ft. throughout the experiments.

To regulate the wave period with a great accuracy, two measures
are employed. First, the power voltage supplied to the motor is controlled
from 60 to 120 Volt with a Variac voltage regulator. The decrease of power
voltage from 120 to 60 Volt corresponds to about 4 per cent increase of
wave period. Second, the wave period thus adjusted is monitored with a
Hewlett Packard 521C Industrial Counter which counts the number of holes
(spaced on the periphery of a rotating disk connected to the paddle-driving
wheel) crossing the light beam of a photo-cell-light-source combination
over a fixed period of time (1 sec. or 10 sec.). With these instruments,
the wave period is measured and controlled within 0.06 per cent in the
period range from 0.5 to 2 sec.
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The model harbor is located at a distance of 7.44 ft. from the
wave paddle. Two vertical wing walls, representing the straight coast lines,
are extended from the harbor entrance to the side walls of the wave basin.
These wing walls (made of lucite) are 0.25 in. thick and their ends at
the harbor side are rounded in semi-circles. The size and plan form of a
model rectangular harbor are flexible. With two variable side walls, one
movable back wall and the adjustable wing walls, a model harbor can be
constructed with any width, length and opening within the maximum size
of 20 in. wide and 12 in. long (see Figure 7 for the arrangements of
variable walls). Such flexibility of harbor geometry facilitated
greatly the experiments. For a more detailed description of the wave
basin and model harbor, the reader is referred to the report by Ippen
and Raichlen [1962].

3.3 Wave Energy Dissipators

The wave energy dissipators employed in the present study are
composed of vertical wire mesh screens normal to the direction of incident
waves. A test section of these dissipators is shown in Figure 8. The
screens are fastened with 1/8 in. aluminum rods, and the spacing is
maintained with segments of lucite tubing (1/8 in. I.D.). The wave filters,
dissipators placed in front of the wave paddle, are 2 ft. wide, 6 ft. long
(divided into two pieces each 3 ft. long), and 1 ft. high. The wave absorbers,
dissipators placed along the side walls of the basinare 17 in. wide, 7.4 ft.
long (divided into 3 pieces for the absorber No. 6), and 1 ft. high. The
sizes of screens and the spacing between them for the four dissipators
employed are listed in Table 1. (The dissipators are so numbered after
Ippen, Raichlen, and Sullivan [1962].) The dissipators Nos. 5, h, and 1
are constructed with galvanized iron wire, whereas the dissipator No. 6
is made with bronze wire.

Table 1

Dissipator Spacing Arrangement

Dissipator Mesh Wire Number of Screens
No. (in.) Diameter Spacing for

(in.) (in.) Filter Absorber

5 0.25 0.028 2.1 13 9

4 0.25 0.028 1.0 25 18

1 0.25 0.028 0.5 49 35

6 0.0625 0.012 0.5 49 35
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This type of wave .energy dissipator was primarily chosen because
the coefficients of transmission and reflection can be adjusted by changing
the size and number of screens without changing the dimensions of dissipators.
The transmission and reflection coefficients of the dissipators employed
are expressed with the following semi-empirical equations (see Ippen and
Goda [1963]):

[1 + 13.4 N -0.5 (U1))0.5 O(A).-2G(3.3)

"KT 2.5(3-4)

where: KT = transmission coefficient = HT/

R reflection coefficient = H

N = number of screens

D = diameter of wire

L = center-to-center distance between wires

H, = incident wave height

G(hA) = depth effect factor (1.81 for the deep water waves)

The expression for the reflection coefficient is applicable for both wave
filters and absorbers *when they are placed ina standing wave system (i.e.
between a wave paddle and a vertical back wall). Hence, it represents a
coefficient of total reflection from a back wall and dissipating screens.

The transmission and reflection coefficients are mainly governed
by three factors: number of screens, ratio of wire diameter to center-
to-center distance, and incident wave steepness. The effects of these
factors are illustrated in Figure 9 which shows the variations of KT and

XR against the incident wave steepness for the four filters employed.
These data have been obtained in the tests in a small wave channel con-
structed in the present wave basin. The reader is referred to the report
by Ippen and Goda [1963] for the details of the tests and results.

Out of the four dissipators, three dissipators, Nos. 5, h and 1
were used only to investigate how the resonant characteristics of a fully
open harbor are affected by the effectiveness of wave energy dissipators.
The dissipator No. 6, the most effective one, was worked to simulate the
open-sea condition after its ability for the simulation had been proved.
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3.4 Meagurementof 4 ieights as Dete2mination of Amplification

The wave heights were measureO. with resistance-type wave gages
and recorded with a Sanborn,l52-lOQ two channel recorder. The gage
consists of two parallel platinum wires, 0.02 'in. diameter and 3/16 in.
apart (see Ippen and Raichlen [1962 for the detail of the wave gage).
Since the test waves were of small heights, .O5 to 1.0 in., a dynamic
calibration test was conducted before the experiment of wave energy dissipators
(see Ippen and Goda [l96) A wave gage was attached to a vertically
oscillating arm and forced to oscillate in the undisturbed water of a
pail. From the records of such oscillations, and statical calibration curves,
the amplitudes of the oscillations were calculated and compared with the
stroke of the oscillating arm which was measured mechanically. The compari-
son showed that the error involved in tho measurement of wave height with
the wave gage was less than 5 per cent for the wave height of 0.15 to
1.5 in.

The determination of. amplification factors requires two measure-
ments of wave heights, outside and inside the harbor. As for the outside
wave height, the standing wave height at the harbor entrance when the
harbor was closed was eTmployed as an approximate value. (It was almost
impossible to obtain the incident wave height when the harbor was open,
because the wave system outside the harbor was that of standing waves super-
imposed with the outgoing waves radiated from the harbor entrance.) Thus,
the experimental amplification factor was calculated by:

H. HH inside .inside (3.)
2a Hclosed

where: a = amplitude of outside standing wave (twice the incident wave
amplitude)

Hinside = wave height inside the hai'bor (at a corner of back wall,
unless otherwise specified)

Hclosed = wave height at the harbor entrance when the harbor is
closedclosed

The error involved in the approximation may be said to be dependent on
the relative size of a main wave basin compared to the model harbor. In
the present case, the main basin was considered to be large enough to
justify the approximation.
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IV. RESULTS OF EXPERIMENTS AND NUMERICAL ANALYSES

4.1 Approach to the Open-Sea Conditions

4.1.1 Criteria for the Open-Sea Conditions

One of the objectives of the present study is to determine the
minimum effectiveness of wave energy dissipators to simulate the open-sea
conditions in a wave basin. This requires the evaluation of whether the
open-sea conditions are satisfied in a wave basin. For the measures of
of the evaluation, the following criteria were set up in the course of
the experiments:

I. The response of a harbor to the incident wave excitation
should be independent of incident wave heights.

II. The frequency response of a harbor should be a smooth
curve, free from multi-resonance-spikes such as those
demonstrated by Ippen and Raichlen [1962].

III. The outside standing waves should have uniform wave
heights.

As seen in equation (2.41), the amplification factor of a harbor
connected to the open-sea has no term of wave amplitudes. Hence, it is
independent of incident wave heights. If the wave filters and absorbers
are effective enough, the criterion I will be satisfied. However, if the
dissipators are not effective enough, a part of outgoing wave energy
radiated from the harbor will remain in the main basin and distort the
amplification factor. The remaining wave energy is a function of effec-
tiveness of energy dissipators, Since the effectiveness of energy dissipators
is governed by incident wave steepness, a change in incident wave heights
will produce different amplification factor for a given harbor and a given
wave period if the dissipators are not effective. This is the purpose
of the criterion I.

The effec.tiveness of the wave energy dissipators is also checked
by the criterion II for the frequency response. The term of "frequency
response" is used here to denote the response of a harbor basin with a
fixed geometry to the waves of varying periods. Another term of "geometry-
response" will be used later to denote the response of a harbor basin with
a varying harbor length to a wave of fixed period. As demonstrated by Ippen
and Raichlen [1962], a frequency response of a rectangular harbor in a wave
basin without any energy dissipator is characterized by numerous resonant
spikes and zero responses. Ippen, Raichlen, and Sullivan [1962] then showed
how these spikes on a frequency response were diminished with the increasing
effectiveness of wave energy dissipators.
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The last criterion, III, concerns the condition of the outside
standing wave system. An accumulation of wave energy (represented by high
standing wave heights) towards the center of the back wall of the main
basin was observed by Ippen, Raichlen, and Sullivan [1962] with effective dissi-
pators. Although the cause of such energy accumulation has not been well
explained, it is certainly not the situation in the open-sea and may affect
the response curve of a model harbor. Hence, it is desirable to have the
outside standing waves as uniform as possible.

4.1.2 Effect of Wave-Energy-Dissipator Efficiency on the
Simulation of the Open-Sea Conditions

The first task of the experiment was to choose the correct wave
energy dissipator to simulate the open-sea conditions. A simple geometry
of a model harbor, a fully open rectangular basin, was chosen to study the
effect of the efficiency of wave energy dissipators. The width of the
harbor was fixed at 4.5 in. The length of the harbor was varied from 0
to 6.5 in, to produce the "geometry responses" for the wave periods of
0.5 and 0.6 sec. The width of the wave basin was reduced to 6.0 ft. with
two temporary side walls so that the analysis of Ippen and Raichlen [1962]
and a part of experimental data obtained by Ippen, Raichlen, and Sullivan
[1962] could be utilized. After the installation of wave absorbers, a
width of 3.2 ft. was left for outside standing waves in the narrow basin.

Four energy dissipators, combinations of wave filters and ab-
sorbers listed in Table I, were tested for the "geometry response" of the
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model harbor with two incident wave heights for each period. The arrange-
ments of wave energy dissipators are shown in Figure 10. Arrangement A
was used for the dissipators, Nos. 5, 4, and 1. For' the dissipator No. '6.
however, the different arrangement B (longer wave filters and shorter absorbers)
was employed because the arrangement A produced highly distorted outside
standing waves. The case of no energy dissipator was also investigated.

A "geometry response" of a fully open rectangular harbor was
obtained in the experiments as follows. The back wall of the harbor was moved
to the harbor entrance (the harbor closed) and the outside standing wave
height was measured. Then, the back wall-and the wave gage were carried
back by 0.38 in. each time, and a wave height at each point was measured.
This process was repeated until the harbor length became 6.5 in. (ke = 2.7
for T = 0.5 sec. and kZ = 1.9 for T = 0.6 sec). After this backward
movement, the back wall and the wave gage were moved forward. The same
kind of measurements were taken during the forward movement in the neigh-
borhood of maximum amplification factor so as to eliminate any possible
bias associated with the direction of the back wall movement. The outside
wave height was measured again at the end of each run. The difference
between the first and the last readings of outside standing wave height,
if any, was distributed linearly across the measurements made during the
run to-yield the appropriate value of outside wave height for each inside wave
height. The amplification factor for each harbor length was then calculated
with equation (3.5) and plotted against the corresponding relative harbor
length, k. Typical geometry response curves are shown in Figure 11.

Figure 11 clearly demonstrates how geometry response curves
are affected by the effectiveness of wave energy dissipators. In Figure 11-a,
two geometry response curves with the dissipators No. 5 are presented. The
only difference in experimental conditions is the outside standing wave
height, 0.35 versus 1.64 cm. The wave period is 0.6 sec. for both
response curves. The difference in the two response curves is only ex-
plained as the difference in the effectiveness of the energy dissipators
due to different incident wave steepness. A comparison of the case of
no energy dissipators and the case for the most effective dissipators
(No. 6) is shown in Figure 11-b. The resonant harbor length and amplifipation
factors for the two cases are so different that it is hard to recognize the
two response curves as those for the same harbor. The theoretical curve
for the first case is reproduced from Ippen, Raichlen, and Sullivan [1962],
and the one for the second case is computed from equation (2.44)

The effect of energy dissipating efficiency is more closely
examined in Figure 12 where the maximum amplification factors and
corresponding relative harbor lengths are plotted against the effectiveness
of the wave energy dissipator. The effectiveness of wave energy dissipator
is defined here as unity minus the reflection coefficient of the wave
absorber, or (1 - iY). The reflection coefficient is that calculated by
equation (3.4) with the steepness of waves incident to the harbor (Hclosed/2x),

because the actual steepness of waves incident to the absorber could not be
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measured. However, the definition is justified when used to express
the relative efficiency of wave energy dissipators for a given size of main
wave basin, since the magnitude of outgoing waves is primarily proportional
to the height of waves incident to the harbor.

Although the variation of the effectiveness was obtained by the
changes of both outside wave heights and the wave energy dissipators
themselves, the variations of resonant characteristics are well described
by the effectiveness of energy dissipators, thus defined, as shown in
Figure 12. As for the case of T = 0.6 sec. (kb = 0.642), both the resonant
harbor length and maximum amplification factor start from the values of the
coupled-basin theory by Ippen and Raichlen [1962] and move toward the values
of the present open-sea theory while showing a kind of damped oscillation,
as the effectiveness of the energy dissipators increases. As for the
case of T = 0.5 sec. (kb = 0.920), the starting points do not agree with
those of the coupled-basin theory. But the resonant harbor length and the
maximum amplification factor approach toward the solutions of the open-sea
theory, as the effectiveness of energy dissipator increases.

From Figure 12, it may be concluded that the reflection coefficient
of the wave absorbers should be 0.2 or less in order to eliminate the
variations of resonant characteristics due to the change of incident wave
heights, although it is difficult to draw a definite line. The wave filters
are also recommended to be more effective than the wave absorbers if the
above value is applied to the absorbers, since the wave filters were more
effective than the absorbers in the present study.

4.1.3 Effect of Wave Basin Size on the Simulation of the Open-Sea
Conditions

Although the wave energy dissipators No. 6 produced a close
simulation of the open-sea conditions in the main basin, the extent of
the simulation was not satisfactory for two reasons. First, the test harbor
showed different geometry responses for two outside wave heights with a
period of 0.5 sec. as shown in the upper half of Figure 13. The difference
of the two response curves becomes noticeable at the large value of relative
harbor length. Second, the outside standing wave was not uniform, but
showed a marked increase of the wave height near the harbor entrance.

The left half of Figure lh shows the transversal wave envelopes
along the anti-nodal lines in the narrow basin with the temporary walls
when the harbor was closed. The wave period of 0.6 sec. was chosen for
the test. If the situation were an exact simulation of the open-sea,
these envelopes should have been horizontal lines having the same height.
The actual wave envelopes showed increasing wave heights toward the center
of the back wall, however. The slopes of the wave envelopes also
became steeper near the back wall than near the wave paddle. The cause of
such distortion of the wave envelopes is not clear, but it is considered
as a phenomenon similar to the diffraction of waves through the gap of
a breakwater.
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In order to improve such non-uniformity of outside standing waves,
the temporary walls were removed and wave envelopes were measured again in
the original basin (9.0 ft. wide) with the wave energy dissipators No. 6
installed as shown in Figure 6. The wave envelopes for T = 0.6 sec. are sho-n
in the right half of Figure 14. Although the transversal wave envelopes
are still inclined, the slopes of the envelopes are much flatter than in
the narrow basin and the wave heights on the center line are almost the
same. Hence, the criterion III for the open-sea conditions is considered
to be satisfied practically.

As in the narrow basin, the geometry response of the fully open
harbor was then investigated for two wave periods, each with two wave
heights. The lower part of Figure 13 shows the geometry response to
the waves of T = 0.5 sec. The effect of incident wave height on the
response curves which is visible in the upper half of Figure 13 has
almost disappeared in the lower half for the case of the original main
basin. The geometry response curve to the waves of T = 0.6 sec. was also
not affected by the magnitude of incident wave height. Thus, the criterion I
for the open-sea conditions is satisfied with the dissipators No. 6 in the
wave basin shown in Figure 6. The remaining criterion, II, is also shown
to be satisfied; this is discussed in Section 4.2.2. Therefore, the condi-
tions of the "open-sea" can be said to be well simulated in the wave basin
with the wave energy dissipators No. 6.

4.2 Resonant Characteristics of Fully Open Rectangular Harbor

4.2.1 Geometry Response of Fully Open Harbor

After the correct basin size and wave energy dissipators had been
established, systematic tests of geometry responses of fully open rectangular
harbors were conducted to verify the validity of the theory. The choice of
the geometry response for the systematic test, as opposed to the frequency
response test, was made from the viewpoint of experimental time. However
it should be mentioned again that the resonant conditions obtained through
a geometry response test are not the same as those obtained by a frequency
response test except for a very narrow harbor as discussed in Section 2.1.6.

The geometry response tests were conducted for four harbor widths,
1.0, 1.678, 2.875, and 4.5 in., each for three wave periods of 0.5, 0.545,
and 0.6 sec. With these harbor widths and wave periods, twelve values of the
relative harbor half-width, kb, were obtained, ranging from 0.14 to 0.92 (the
ratio of the harbor width to the wave length was from 1/22 to 1/3.4). The
test procedure was the same as that described in Section 4.1.2. Each
experimental response curve was compared with the theoretical one computed
from equation 2.44. Figure 15 shows typical experimental and theoretical
geometry responses of fully open harbors. Although the change of response
curve from one harbor to the other is well predicted with the theory, the
experimental amplification factors are smaller than the theoretical ones and
all the experimental curves are shifted a little to the right (large value of ke).
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From such an experimental curve, a resonant point is determined as the
point of maximum amplification factor. The relative harbor lengths at

resonance and the maximum amplification factors thus obtained are compared
to theoretical values by equations (2.47) and (2.48), as shown in Figure 16.

The relative harbor half-width, kb, is chosen as the abscissa because it is
the parameter which governs the geometry response. Figure 16 clearly shows

the increases of resonant harbor length and the maximum amplification
factor with the decrease of kb.

It is seen in Figure 16 that the experimental harbor length at

resonance is longer than the theoretical one as indicated in Figure 15. The
difference is approximately proportional to the value of kb, or roughly to the

harbor width. This suggests a kind of contraction factor at the entrance.

Figure 17 shows the path-line patterns of surface particles under the wave motions
at resonance and anti-resonance. It is clear in Figure 17 that there is a
contraction of path-lines at the harbor entrance at resonance. The wave motion
inside the harbor shows a tendency toward a two-dimensional motion, though
the theory predicts a one-dimensional motion. This contraction of path-lines
is considered responsible for the decrease in the effective harbor width and
thus the increase in the resonant length of a harbor.

The maximum amplification factors shown in the right half of
Figure 16 are smaller than those predicted by the theory for the ideal
fluid. However, the discrepancy is well explained as the effect of a small
amount of energy dissipation inside the harbors. The experimental maximum
amplification factors are located between two theoretical curves with reflec-
tion coefficients of 0.9 and 0.8 computed from equation (2.57).

In the harbors tested, there were three causes of energy dissipa-
tion: eddies around the entrance, friction along the side walls, and leakage
through the gaps between the side walls and the moving back wall. Of the
three causes, only the amount of the side-wall friction may be estimated
reasonably. For the progressive waves, Hunt [1952] has derived the rate
of wave amplitude attenuation due to the friction along the side walls and
on the bottom of a rectangular channel as:

H = H e- Kx (41 )

where: K = attenuation factor = 2k w kB + sinh 2kh
B 2a 2kh + sinli 2kh

B = channel width

v = viscosity

Since the waves are deep water waves and the amount of energy dissipation is
small, the reflection coefficient due to the side wall friction is approximated
from equation (4.1) as:
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-- 4K 1 ~ k-2K(4.2)

This equation gives the attenuation rate of 4.1 per cent for the harbor
width of 1.0 in. and 0.6 per cent for 4.5 in. If another 10 per cent of
amplitude attenuation is presumed for the other two energy dissipations and
added to the above frictional damping, the resultant attenuation rate of
11 -- lh per cent presents a well fitting theoretical curve for the experi-
mental amplification factor.

Figure 16 also shows the theoretical values of Miles and Munk [1961].
Their resonant harbor length and amplification factor are rew itten with the
present notations as:

(kt) = cot$ 2kb [0.478 - - en(2kb)] (4.3)Res

1 2k + sin 2ke 1
%es 2kb 1 - cos 2ke n

Although these equations show some agreements with the experimental data for
the region of kb < 0.3, the overall tendencies of these equations are
different from the experimental data and the present theory.

4.2.2 Frequency Response of Fully Open Harbor

Since the geometry response of fully open rectangular harbors was
proved to be well predicted with the present theory, a frequency response
test was then conducted. A model harbor (12.25 in. long and 2.375 in. wide)
was set in the basin and the periods of incident waves were varied from
0.5 sec. to 1.38 sec. with an increment of about 1.5 per cent each time.
The relative harbor length was decreased from 5.0 to 0.98 as the period
increased. The stroke of the wave paddle at the water surface was adjusted
from 0.16 to 0.63 in. so that the incident wave heights would be of the same
order of magnitude. For each wave period, the outside wave height at the
entrance when the harbor was closed and the inside wave height at the back
wall when the harbor was opened were measured, and the corresponding amplifi-
cation factor was calculated from equation (3.5). The plotting of amplifica-
tion factor versus relative harbor length gave the experimental frequency
response curve which is shown in Figure 18. The theoretical curve is that
computed from equation (2.44) for 2b/e = 0.194 for this case. Although
there are some fluctuations of experimental data around the fundamental mode
of resonance, good agreement between experimental data and theory is
observed for the wide range of kt.
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Since there is no spike of amplification factor for the range of
ke greater than 2.0, it can be said that the open-sea conditions are well simu-
lated in the main basin according to the criterion III of Section 4.1l1.
The general agreement between the experimental frequency response and the
theoretical one proves the applicability of the present theory.

The fluctuations of the experimental amplification factors around
the fundamental mode of resonance are mainly due to the inefficiency of
wave energy dissipators for the very low steepness of the incident waves.
The wave length in this range was three to five times longer than the length
near the second resonant mode and the wave height was about one half; hence,
very low wave steepness. As shown in the upper part of Figure 18, the
magnitude of outside wave height fluctuation does increase as the wave
period becomes long, indicating the increasing transmission coefficient of
wave filters. The maximum points of this wave height fluctuation roughly
correspond to the resonant points of the main wave basin. The positions and
numbers of modes of resonance with the effective basin length of 7.0 ft.
are indicated in the figure. Such fluctuations of standing wave heights are
inevitable in the experiments of resonant oscillations in harbors. An increase
in the effectiveness of wave filters will diminish the amplitude of fluctua-
tions, but the fluctuation itself cannot be eliminated unless the wave filters
dissipate all incident wave energy. (Some analysis of the action of wave
filters in the standing wave system is presented in Ippen and Goda [1963].)

4.3 Resonant Characteristics of Partially Open Symmetrical Harbors

h.3.1 Numerical Analysis

The partially open harbor with the entrance at the center has a
second parameter of the opening ratio, d/b, which governs the resonant
characteristics with the first parameter of the aspect ratio, 2b/e the
response of a fully open harbor is readily determined with the parameter,
2b/e, and the variable, kZ. Since the combination of the two parameters
produces a number of harbor geometries to be analyzed, the approach by a
numerical analysis was taken first, and then some of them were compared with
the experimental results.

The numerical analysis was based on equation (2.42) with equa-
tions (2.34.1)., (2.34.2), (2.37), and (2.43) for the case of e = 1/2.
For a given harbor geometry, or given values of d/b and 2b/e , successive
computations of the amplification factor were ordered from the IBM 7090 digital
computer at the Computation Center in M.I.T. with a small increment of the rela-
tive harbor length, kZ (see Appendix B for the computer program). The
frequency response of the specific harbor was then constructed by plotting the
amplification factor versus the relative harbor length. Figure 19 shows some
of these frequency responses. A narrow harbor (2b/6 = 0.2) and a wide harbor
(2b/Z = 2) with varying opening ratios (d/b = 0.01, 0.1, and 1.0) are chosen
as the examples.
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From this figure, several characteristics of a symmettical
rectangular harbor are evident. First of all, the narrowing of the harbor
entrance leads to higher amplification factors at resonance and to longer
resonant periods. This seems to confirm what was called the "Harbor
Paradox" by Miles and Munk [1961] and criticized by engineers as con-
tradictory to experimental data and field observation (Wilson [1962]).
However, the increasing sharpness of the response curve reduces the realiza-
tion of the harbor paradox in actual harbors (see Chapter V for more
discussions). Second, the relative harbor length at resonance approaches
toward that of the enclosed basin, equation (1.2), as the harbor entrance
is narrowed down. Since this is what is expected, this may serve as
another proof for the validity of the present theory. The difference
between the resonant conditions of a partially open harbor and an
enclosed basin becomes smaller as the harbor becomes wider. Hence,
equation (1.2) may be used as an approximation to the exact solution of
resonant periods for a wide rectangular harbor basin with small corrections
toward shorter periods. Third, a partially open harbor has large ampli-
fication factors at higher modes of resonance1 hence every possible
resonant period should be taken into account in the design of a rectangular
harbor basin with a partial opening.

In order to examine these characteristics more closely, the
variations of amplification factors around the fundamental and second
modes of resonance were computed for nearly 140 geometries of rectangular
harbors. The results of these computations are compiled in Figure 20
which shows the relative harbor length at resonance as the abscissa and
the corresponding amplification factor as the ordinate. The case of a
fully open harbor is represented here with the most right-hand curve of a
family of curves with positive slopes. The curve shows that both the
relative harbor length and amplification factor at resonance decrease as
the harbor becomes wide. The effect of the opening ratio on the resonant
characteristics is evaluated with a family of curves with negative slopes.
A narrowing of the entrance is thus shown to result in the shortening of
relative harbor length and in the increase of amplification factor. At
the same time, Figure 20 serves a good design chart on the resonant
oscillations of rectangular harbors, showing the locations and magnitudes
of resonant oscillations. As an example, take a rectangular harbor of
a length of 3,000 ft. and of a width of 2,000 ft. with an opening of
500 ft. at the center. Then, the relative harbor lengths at the first and
second resonant modes are read from Figure 20 as 0.83 and 3.47 for the
corresponding aspect ratio of 0.67 and the opening ratio of 0.25. The
resonant wave lengths -are therefore 22,700 and 5,430 ft., respectively.
If the water depth of the harbor is 40 ft., this gives the resonant
periods of 10.5 and 2.52 minutes, kespectively. At these resonant periods,
the amplification factors may be as high as 4.8 and 2.4.
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4.3.2 Comparison of the Theory with the Experiments

The experiments on the frequency response were carried out for
three shapes of partially open rectangular harbors: narrow, square,
and wide. The theoretical and experimental frequency response curves of
these harbors are shown in Figures 21, 22, and 23.

The comparison -of the response curves of the fully and partially
open narrow harbors is given in Figure 21. The harbor is 12.25 in. long
and 2.375 in. widewhich is the same as that of Figure 18, and a part of
frequency response curve of the fully open harbor is reproduced here
for the comparison, When the harbor entrance is narrowed to 0.37 in.
(d/b = 0.156), the location of the second resonant mode is shifted
to the left-hand side (or in reference to Figure 18 to the longer wave
period). The distance of the shift obtained experimentally is in good
agreement with the theoretical one. However, the experimental amplification
factor at resonance does not rise higher than that of the fully open
harbor, although the theoretical amplification factor of the partially open
harbor is nearly twice that of the fully open harbor. This is regarded
as the effect of energy dissipation around the entrance caused by strong
oscillating flow through the narrow opening.

The effect of the harbor opening on the frequency response curve
is more fully examined in Figure 22 which shows the frequency response curves
of a square harbor (12 in. in length and width) for three different openings
(6.0, 1.67, and 0.37 in.). As found above, a narrowing of the harbor
entrance reduces the relative harbor length at resonance, but it also in-
creases the resonant amplification factor. These effects of the narrowing of
the entrance are confirmed in part by the experiment. First, the shift of
the relative harbor length at resonance observed in the experiment agrees
very well with the shift of the theoretical relative harbor length at
resonance; the difference between the theoretical and experimental
resonant points is less than 2 per cent. On the other hand, the experi-
mental amplification factor near resonance shows a marked decrease from the
theoretical one. When the harbor entrance is wide (d/b t 0.5), the difference
is negligible so that the agreement between the theory and the experiment is
excellent over the range of kZ from 2.8 to 4.9. When the entrance is
reduced to 1.67 in. (d/b = 0.139), the experimental amplification factor
at resonance rises to 1.8 from 1.4 which is for the case of wider opening
(thus confirming the harbor paradox), but it is far less than the
theorectical one of 2.9. Nevertheless, the experimental data other than
in the vicinity of the resonant point shows good agreement with the
theoretical frequency response curve. When the entrance is further reduced
to 0.37 in. (d/b = 0.031), the experimental amplification factor at resonance
does not rise but falls from 1.8 to 1.5 while the theoretical one shows the
high value of 4.8. The agreement between the theoretical and experimental
response is not as good as for the cases of wider openings. The decrease
in the experimental amplification factor around the resonant points is due
to the energy dissipation around the narrow harbor entrance. It should be

- 59 -



-0

Ec 2d = 0. 37 in.

d/b= 0.031

- 2d

12.0 in.

Xz

T12. 0 in.]

0

0
/ 0

0
0

00

2 d = 1. 67 in.

d/b= 0.139

Legend

a ogExperiment 0

2d = 6.00 in.

d/b = 0. 500

00

c(0 0_

2.5 3.0 3.5 4.0 4.5 5.0 5.5
ki

Fig. 22. Frequency Responses of Square Harbors with Partial Openings

60 -

5

4

IR
3

2

0

3

2

0

2

0
2.0



5

IR;

4
Harbor Legend

2b/9 - 1.667 Theory

d/ b = 0.068 0 Experiment

3 -1.38 in.

120 in.

20.0 in.

2 -

00

0 00 00
AO 0

0 000
0 0 0

0 0

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Fig. 23. Frequency Response of a Wide Harbor with

I I I I I I

a Partial Opening



Resonance [m = 1, n = 0]
T = 0.618 sec.

Resonance [m = 0, n = 2]
T = 0.561 sec.

Resonance [m = 1, n = 2]
T = 0.488 sec.

Zero-Response at the Back Corners
T = 0.588 sec.

Fig. 24. Path-line Pattern, Partially Open Harbor

- 62 -



noted however that the resonant peak of the theoretical frequency response
curve of this harbor (d/b = 0.031) is so sharp that the range of kt where
R21 is only 0.225 or 4 per cent of (k )R

The case of multi-resonant modes is presented in Figure 23 which
shows the frequency response curve of a wide harbor with length of 12 in.,
width of 20 in., and opening of 1.35 in. (2b/t = 1.667 and d/b = 0.068).
This harbor has three resonant periods for the range of k from 2.0 to
5.5, corresponding to the resonant modes of [m = 1, n = 0], [m = 0, n = 2],
and [m = 1, n = 2]. The locations of these resonant points for an enclosed
basin are indicated in Figure 23 with the numbers of mode. The wave patterns
at these resonant modes are shown in Figure 24 with path-line patterns of sur-
face particles. The nodal lines are represented with long path-lines. It
will be noted that the numbers of transversal and longitudinal nodal lines
are exactly the same as m and n. The experimental resonant periods at
these modes show some differences with the theoretical ones; however, the
differences are less than 2 per cent. The experimental amplification factors
at resonance are again smaller than the theoretical ones. Since the
frictional energy dissipation along the side and back walls is considered
negligible for this wide harbor, the energy dissipation is mainly due to
eddies around the entrance. But its magnitude could not be as large as in
the narrow harbor. This may imply that the effect of energy dissipation
inside the harbor on the amplification factor is enlarged when the
sharpness of a frequency response curve increases.

One comment should be made on the point of zero response (JR = 0 at
kZ = 3.52). Since the amplification factor R is computed by equation (2.42)
and measured at a corner of the back wall, a zero response simply means
that the amplitude at a corner of the back wall is null; other locations
have some amplitudes. The picture at the lower right of Figure 24 shows
the wave pattern inside the harbor when the back corner has a zero response.

h.h Resonant Characteristics of Asymmetric Harbor

The frequency response of an asymmetric harbor is governed by
three parameters: they are the aspect ratio, 2b/e, the opening ratio, d/b,
and the relative location of the entrance, s. The last parameter e
characterizes an asymmetric harbor opening. The most characteristic
feature of an asymmetric harbor is the occurrence of transverse resonant
oscillations of odd modes which are not experienced in a symmetrical harbor
as already discussed in Section 2.1.5. This feature is clearly seen in
the frequency response curves of two asymmetric harbors (2b/e = 1.0 and 2.0)
computed numerically and.shown in Figure 25. The computation was carried
out in a manner similar to that of a symmetrical harbor, except for the
addition of odd terms of the series S and S . The reader is referred
to Appendix B for the computer prograIing. 2
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The case of the square harbor is shown in the upper half of the
figure and the case of the wide harbor in the lower half. The entrance
width which is one tenth of the harbor width is located either at one
side (e = 0.95), at an intermediate position (e = O.75), or at the center
(e = 0.5, i.e., symmetrical harbor). Compared to the symmetrical harbors,
there appears one additional transverse resonant mode f'or the square harbor
and four for the wide harbor over the range of kZ from 0 to 6.0. These
new resonant peaks are comparable in height with the peaks for symmetrical
harbors and cannot be neglected. The locations of the new peaks are
closely approximated by those computed for enclosed basins (eggation (1.2))
which are indicated with short segments of dash-dot lines in Figure 25.

Another feature of asymmetric harbors is the possible increase
of amplification factors due to superposition of longitudinal and
transverse oscillations in comparison to those of symmetrical harbors,
indicating more severe action of resonant oscillations. For example, the
resonant amplification factor of the square harbor at the second mode of
m = 1 and n = 0 increases from the value of 3.3 for the symmetrical case
to 5.5 for the case of the entrance at one side. Thus, with the relocation
of the entrance from the center to the side, a partially open rectangular
harbor seems to be more severely affected by resonant oscillations. In
other words, the entrance at the center of a harbor seems to provide less
trouble with respect to resonant oscillations.

These two features of resonant characteristics of asymmetric
harbors - occurrence of transverse resonant oscillations of odd modes
and possible increase of resonant amplification factor - were confirmed
in the experiment. Figure 26 shows the experimental frequency response
curve as well as the theoretical one of a square harbor with an entrance at
one side. The length, width, and opening are the same as those of the
symmetrical harbor shown in the middle of Figure 22. While the symmetrical
harbor in Figure 22 shows only one resonant peak of IRes = 1.8 at kZ = 3.34,
the asymmetric harbor with the same dimension shows two resonant peaks of
]R = 3.0 at kZ = 3.39 and of R = 1.5 at k9 = 4.70. The first peak
ofE"he asymmetric harbor is higher Ehan that of the symmetrical harbor and
the second peak appears where no peak is observed in the case of the
symmetrical harbor. Comparing the theoretical and experimental amplifica-
tion factors, it is seen that the agreement is good near kZ = n., but in
other zones the experimental values appear below the theoretical ones. This
is expected in view of the effect of energy dissipation, because there is
little oscillating flow through the entrance near kZ = n (hence little
energy dissipation), but the oscillating flow increases in intensity as k&
exceeds the value of n.

At this point, the question arises as to what will happen to the
transverse oscillations of odd resonant modes when the location of the
entrance is moved from one side toward the center. The question was studied
both numerically and experimentally. Figure 27 shows the results of the
investigation. The dimension of the model harbor is the same as that
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analyzed in Figures 22 and 26, but the location of the entrance varies by
a small increment of distance from the side wall. For each harbor, the
location of resonant oscillation of odd mode of m = 1 and n = 1, (ke) ,
and the resonant amplification factor,.R , were sought by numerica '
analysis and by the experiment. The lowe15kart of Figure 27 shows the
theoretical and experimental resonant amplification factors and the
upper part shows the relative harbor length at resonance.

Theoretically, the resonant amplification factor at the odd
transverse mode increases very rapidly as the entrance is moved toward
the center, and there seems no upper limit on the increase of the
resonant amplification factor (see sketch to the left-hand side of
Figure 27). Nevertheless, if the entrance is exactly at the center,
there can be no resonant oscillation. Thus the value of e = 1/2 presents
a singularity* with respect to transverse resonant oscillation. This kind
of singularity has also been observed in the case of the wide harbor shown in

*Note: This kind of singularity can be observed in equation (2.42) for the
amplification factor. If one value of Pn, say Pm, is very near to zero,
let it be denoted by & (6<< 1); then,

mit 1 +S andP p (&«l)
2kb m

also

sinh p kZ tanh p ke Ske

The two infinite series Sl and S2 are then approximated with the m-th
terms which include Pm, as & approaches zero1 thus

mitd 2
b (sin cos emn)

S j' 8(-b) 21 itd m 2S6keI 

= -id

,. hb sin -bcos emn
S =- sin k. 2

2 id m6'kt

Since these terms become very large as S approaches zero, the other terms
of 7b, 3a, and cos kZ in equation (2.42) can be neglected compared to

Sl and S . Hence, the amplification factor at kb = mn is obtained as
the limiting value of IR at -)0:

lim lim _ _2 nd
C+0 O- > S sin kZ 2bmjsin mTnd cos emn

S 2b -- ' I
Although this is not the resonant amplification factor but one at kb = mn,
this amplification factor increases very rapidly as e approaches 1/2; hence,
the singularity is inherent in equation (2.'42).
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Figure 25 at a resonant mode of m = 0 and n = 1. However, this kind of
singularity may not be of true nature of the resonant oscillation, because
the assumption of uniform flow through the entrance may be deficient for
the transverse oscillation of odd mode when the entrance is near the center.
Since the direction of the water surface movement in the harbor is reversed
at the center line for the transverse oscillation of odd mode, the oscillating
flow through the entrance may be non-uniform if the entrance is located across
the center line. As seen in Figure 27, the experimental amplification factor
at resonance shows a wide difference with the theoretical one. The experi-
-mental amplification factor is about one-half to two-thirds of the theoretical
one when the entrance is near one side and shows a slight increase from 1.5
to 1.8 and from 1.7 to 1.9 as the entrance is shifted from one side toward
the center. The difference between the theoretical and experimental amplifica-
tion factors at this stage seems to be due to the energy dissipation around
the entrance as in the previous tests of square and wide harbors. However,
when the entrance is further moved near the center, the experimental resonant
amplification factor decreases rather than increases as the theory predicts.
Therefore, the validity of the assumption of uniform flow for the odd transverse
mode needs to be examined further.

The relative harbor length at resonance varies slowly toward the
resonant point of the enclosed basin as the entrance is moved toward the
center. In the case shown in Figure 27, the limiting value of the
resonant relative harbor length is 2n = 4.443. The variation of resonant
relative harbor length is well confirmed by the experiment, the difference
between the theory and experiment is about 1 per cent for the largest one.

V. DISCUSSION OF HARBOR PARADOX

The harbor paradox, "a narrowing of the entrance leads not to a
reduction in harbor surging, but to enhancement" as stated by Miles and
Munk [1961], might be a grave problem for a design and construction of a
harbor basin if the paradox really existed in actual harbors. Although
the results of the present analysis also show increases of amplification
factors at resonance with a narrowing of the entrance, several factors must
be taken into account for the possibility of the harbor paradox.

5.1 Sharpness of Response Curve near Resonant Points

The first factor to be considered is the sharpness of response
curve near resonant points. As noted in Figure 19, a frequency response
curve near resonant points becomes sharper as well as higher as the
entrance is narrowed down. The period range for the waves which can excite
an oscillation of high amplitude becomes narrower. If the analogy of a
single-degree-of-freedom oscillator can be applied to the oscillation in
a harbor, the sharpness may be defined with a quantity Q As:

(kt)-,/() 1/ 2  + 1
(k e = 1 + 1 (5.1)

779Res 2
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1
where:(ke)1 /2 = value of k& at the half-power points where JR = JRRes

(kZ)Res = value of k at resonance

In the case of a single-degree-of-freedom oscillator, the quantity 1/Q
is a linear measure of the damping and the quantity Q is identical to the
amplification factor at resonance. However, this analogy is only applicable
to the fundamental resonance mode of wave induced oscillations in a harbor.

Table 2 shows a comparison of the quantity Q obtained from the
frequency response curve by equation (5.1) with the resonant amplification
factor for a narrow harbor (aspect ratio of 0.2). The table also
shows the quantity Q given by Miles and Munk [1961].

. TABLE 2

Comparison of Q with RRes (2b/e = 0.2)

Fundamental Mode Becond Mode

Opening ratio, d/b 0.01 0.1 1.0 0.01 0.1 1.0

:R'es 13.2 10.3 7.8 7.5 4.9 2.7

Q (equation (5.1)) 11.2 8.4 5.7 38.3 17.7 6.0

Q (Miles and Munk) 11.5 8.4 5.8 39.7 15.3 6.2

For the fundamental mode of resonance, the quantity Q is about 80 per cent
of the resonant amplification factor IRRes But, for the second mode of

resonance, the quantity Q is much larger and increases more rapidly than

RRes as the opening ratio d/b decreases. In other words, a harbor at the
second mode of resonance does not respond as high as it is expected from
the sharpness of response curve. This suggests a re-examination of the
harbor paradox, since it is based on the presumption that the frequency
response near resonance is well described with the quantity Q.
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Another interesting point in Table 2 is an excellent agreement
between two Q's, one measured from the frequency response curve with
equation (5.1) and the other given by Miles and Munk [1961]. (The values
for a fully open case are calculated according to equation (4.3).) This
suggests that Miles and Munk may have calculated the quantity Q excellently,
but not the amplification factor at resonance. They have also stated that
the second mode is more highly amplified than the fundamental mode, based on
their calculation of the quantity Q. Since the resonant amplification factor
at the second mode is smaller than at the fundamental mode as seen in
Table 2, the statement is incorrect.

5.2 Response to Waves with Continuous Power Spectrum

The second factor to be considered is the continuous power
spectrum of incoming waves. Except the tidal motion, the waves which
induce resonant oscillation in actual harbors are not waves of regular
train with discrete periods as assumed in the analysis. The incoming waves
are rather regarded as random waves with different periods and amplitudes.
The characteristics of these waves are described with a power spectrum
Pl(a); the energy in a frequency interval a - lda to a + 1da is repre-

sented by P (a) da ; the mean wave amplitude is proportional to E where
E is the integral of P1 (a) from a = 0 to 00.

When the waves with a continuous power spectrum induce resonant
oscillations in a harbor, the induced oscillations also have a power spectrum
P2 (a) which is given by

p (0) = R2(a) P (a) (5.2)
2 1

The amplitude of the oscillations which may be observed visually is
calculated by integrating the above power spectrum for some predominant
frequency range and by taking its square root.

2 2

T2 = P (a) da = ]R 2(a)P,(a)da (5.3)

where: A = root-mean-square amplitude of the oscillations in the harbor

As a measure to examine the response to actual waves, incident waves of constant
power spectrum within a frequency range of *10 per cent from a resonant
frequency are considered here: i.e.,
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2
P (a for ITC 1

.= .2ao f /a0 - _ 0.1

= 0 for Ia/a0 - 1 > 0.1 (5.4)

where: a = resonant angular frequency

Substitution of equation (5.4) into equation (5.3) yields the root-mean-
square response factor of 7 as:

2 -
-(a)da (55)

P \a)= 0.2a0
0. 9 a0

Since the angular frequency is proportional to the wave number for the shallow
water waves, the above expression is rewritten as:

1.1k Z

2 .0.2 k 4 (k) d(ke) (5.6)
0 . 0 .9k 0

where: k = resonant wave number
0

Although the power spectrum of actual incident waves may not be
the same as that employed here, this kind of response factor is what actually
determines the amplitude of resonant oscillations. To re-examine the
problem of the harbor paradox, the root-mean-square response factor has
been computed with equation (5.6) for three symmetrical harbors, each having
three opening ratios. The results of computations, listed in Table 3,
show only a slight increase of root-mean-square response factors for the
second mode of resonance with a narrowing of the entrance.
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TABLE 3

Root-Mean Square Response Factors of Symmetrical Harbors

Narrow Harbor (2b/t = 0.2)

Opening ratio, d/b

IR Res

IP

Fundamental Mode

0.01 0.1 1.0

13.2 10.3 7.8

9.4 8.1 6.6

Second Mode

0.01 0.1 1.0

7.5 4.9 2.7

3.3 2.9 2.3

Square Harbor (2b/ = 1.0)

Opening ratio, d/b

Res

IR P

Fundamental Mode

0.01 0.1 1.0

8.2

6.6

5.2 2.4

4.7 2.2

Second Mode

0.01 0.1 1.0

6.2 3.3 1.2

1.7 1.6 1.0

Wide Harbor (2b/e = 2.0)

Opening ratio, d/b

Fundamental Mode

0.01 0.1 1.0

Second Mode

0.01 0.1 1.0

4.5 1.7

4.1 1.6

6.1 3.3 1.0

1.8 1.8 0.9

Hence, the narrowing of the entrance does not make the situation worse
appreciably even if no energy dissipation takes place in harbors.

Although the root-mean-square response factor for the fundamental
mode increases with almost the same rate as the resonant amplification
factor as the opening ratio decreases, the oscillation is rather uniform
without any longitudinal or transversal nodal lines. The water mass in
a harbor basin moves up and down in unison and there is only minor horizontal
movement. Hence, the resonant oscillations at the fundamental mode do not
cause much troubles to moored ships. A possible hazard of oscillating
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currents at the entrance is also restrained with energy dissipation due to
friction and turbulence in the vicinity of the entrance, since the magnitudes
of friction and turbulence increase with the increase of velocity at the
entrance.

5.3 Scale Effect in Model Experiments

The analysis in previous sections has not taken into account the
effect of energy dissipation in harbors. As discussed in Section 2.2 and
Chapter IV, a small amount of energy dissipation can reduce the amplification
factor near resonance appreciably. This reduction of amplification factor
seems to also depend on the shaprness of the response curve; the sharper
the response curve is, the more the amplification factor is reduced. Since
the response curve becomes sharper as the entrance is narrowed down, the
response curve becomes more sensitive to the presence of energy dissipation
and may even show a decrease of resonant amplification factor. Even if the
resonant amplification factor does not decrease but is merely slowed down
in its rate of increase with a narrowing of the entrance, such a slowing
down is enough to decrease the root-mean-square response factor except for
the fundamental mode.

However, it should be noted that a scale model of long period
oscillation has a large amount of energy dissipation compared to the proto-
type. If a harbor is surrounded with vertical walls, the energy dissipa-
tion will take place in two regions: the wake zone near the entrance and the
boundary layer at the bottom. Although it is difficult to evaluate the
intensity of turbulence in the wake zone, the frictional damping on the
bottom may be estimated with equation (4.1). For the shallow water waves,
equation (4.1) is simplified in terms of a transmission coefficient as:

1 - 1KT = (5.7)

For a model with a depth of 0.1 ft. and period of 5 sec., equation (5.7)
gives the following attenuation rate for kx = 3.2 (second mode):

1 3.2  5- x =0.0321 - (T)m T x 0.lV 3.1.

Since the attenuation rate of a standing wave is approximately twice the
above value, the total attenuation rate is 6.4 per cent which is a
considerable amount of energy dissipation for resonant oscillation. If
equation (5.7) is applied for a prototype harbor with a depth of 40 ft.
and period of 100 sec. (length scale of 1/400), the attenuation rate is
calculated as:
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) 3.2 x 100 0036
1 'T p T x 40 .1

Although the boundary layer in the prototype is turbulent and has a larger
rate of amplitude attenuation than the above value, it will be still far
less than the attenuation rate in a model.

Hence, if a test is conducted on the effect of a narrowing
of the harbor on a resonant amplification factor, a scale model may possibly
show a marked decrease of resonant amplification factor because of large
energy dissipation, even if the prototype harbor may show an increase.
(Resonant periods will not be affected as discussed in Section 2.2.)
In this sense, the results of model experiments concerning resonant ampli-
fication factor should be discussed with reservation.

5.4 Possibility of Harbor Paradox

Summing up the discussion of the harbor paradox, it may be con-
cluded that it has little reality because:

i) the resonant amplification factor at the second mode does not
increase as fast as the sharpness of the response curve
increases,

ii) the response to waves with a continuous power spectrum
increases only slightly with a narrowing of the entrance,

iii) the presence of energy dissipation will eventually decrease
the root-mean-square response factor,

iv) the only possible case of the fundamental resonance mode
does not produce a serious problem for moored ships.

However, emphasis must be placed on the importance of the energy
dissipation mechanism. If there is no energy dissipation, a narrowing
of the entrance does not reduce the root-mean-square amplitude of the
resonant oscillations. The narrowing of the entrance can reduce the
amplitude only when there exists some amount of energy dissipation.
Although a sloping beach is said to reflect long period waves totally without
breaking, it does dissipate some wave energy through frictional loss along
the bottom. Permeable moles of multi-piles arranged at strategical locations
are also considered to be effective to produce a good amount of energy
dissipation. Engineers are advised to explore every feasible mechanism of
energy dissipation in order to reduce the magnitude of resonant oscillation
or to avoid its occurrence in harbors under their design.
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VI. CONCLUSIONS

As shown in the preceding sections, this study has revealed
several important characteristics of resonant oscillations in a rectangular
harbor excited by incident waves, theoretically and experimentally. They
are:

1. The present theory can predict the complete response curve of any
rectangular harbor connected to the open-sea.

2. For a fully open harbor, only the fundamental and the second modes
of resonance are important, but for a partially open harbor any resonant
mode may be crucial for the excitation of "long period oscillation" in
harbors.

3. A widening of a fully open harbor shifts the resonant periods of
the harbor to the longer ones and decreases the amplification factors at
resonance,

4. A narrowing of the harbor entrance results in the increase of the
resonant amplification factors with a shift of the resonant periods toward
those of an enclosed basin.

5. The harbor entrance is recommended to be located at the center,
because it produces smaller amplification factors at resonance than at
other locations.

6. The presence of energy dissipation inside the harbor causes large
decreases in resonant amplification factors, but produces little change
in the resonant periods or lengths.

7. In model studies, the reflection coefficient of wave filters and
absorbers should be less than 0.2 for the simulation of the open-sea
conditions in a wave basin. A consideration should also be taken on a
proper basin size for the better simulation.

8. Although a narrowing of the harbor entrance increases the
resonant amplification factor, the amplitude of actual oscillations in
harbors will be decreased except for the fundamental mode because of increas-
ing sharpness of response curve and presence of energy dissipation in actual
harbors. Hence, the harbor paradox is most unlikely.
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VII. RECOMMENDATIONS FOR FURTHER STUDY

The present study suggests the following for the subjects of the
further study on the long period oscillations in harbors.

1. Analysis of Wave Induced Oscillations in a Harbor of Arbitrary Shape

As mentioned in Section 1.2, the problem is to solve the Helmholtz
equation (equation (1.3)) for given boundary conditions. The wave
pattern function outside a harbor has been solved and given by
equation (2.19). If the wave pattern function inside a harbor of
given geometry is found by some methods., the entire wave motion
is solved by matching outside and inside water surface elevations at
the entrance. For a harbor of relatively simple planform, the
inside wave pattern function may be obtained by a direct calculation
or by the use of conformal mapping technique. In general, the
inside wave pattern function will be obtained by rewriting equation
(1.3) into a form of difference equation and by solving it numerically.

2. Effect of the Direction of Incident Waves on the Response of a
Rectangular Harbor

The present study has dealt only with incident waves normal to the
coast line. Although Miles and Munk [1961] have shown that the
response of a harbor is independent of the direction of incident
waves as long as the entrance opening is very small compared to the
wave length, experimental studies by Iribarren, et al.,[1957] and
Wilson [1960] have shown some effects of the directions of incident
waves.

3. Effect of the Coast Line Arrangement on the Response of a
Rectangular Harbor

If the harbor in question is located in the depth of a bay or at the
edge of a small island, the assumption of the aligned coast line
extending to infinity does not hold; the slanted coast line will be
a better approximation. The resonant period of a rectangular bay
is known to be affected by the angle between the coast line and the
axis of the bay (see Defant [1961]).

4. Analysis of a Rectangular Harbor with Moles

The moles or jetties constructed in a harbor affect the response
of the harbor in two ways. First, they change the resonant periods
of the harbor. Second, they produce additional energy dissipation
and reduce the resonant amplification factors. If the moles are long
and the harbor is regarded as divided into compartments, the wave
motion at the entrance to each compartment may be considered uniform.
Then, an artificial boundary may be set up at each entrance and the
wave motion may be solved in a similar manner as the analysis of
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multi-harbors in Ippen and Raichlen [1962]. The energy dissipation
caused by moles will be a subject of experimental study. Hensen [1959]
has conducted an extensive study on a square harbor with various
arrangements of moles.

5. Study of Energy Dissipation Mechanisms in Harbors and their Effect
on Resonant Oscillations

To increase the magnitude of energy dissipation in a harbor is
an important task assigned to harbor engineers. Constructions of
impermeable moles, erections of multi-pile piers, provision of sloping
beach, and the division of the harbor into several compartments are
some examples of possible measures for the increase of energy
dissipation. Since the energy dissipation is due to the viscosity of
water and cannot be combined with the velocity potential, the effect
of energy dissipation on resonant oscillation will be best studied
experimentally. In the experiment, however, the problem of scale
effect discussed in Section 5.3 should be paid a due regard.
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APPENDIX

A. Evaluations of Radiation Functions ' a/ and

The analytical evaluation of the radiation functions 14 and 7

for small values of kd was first accomplished by Howard [1959].
The first radiation function y1 is defined in equation (2.34.1) as:

kd

(kd) = 2 kd
1 1

sin2a da

a2/(kd)2 a2

The term of sin2a/a2 can be expanded into a Taylor series as:

1

a 2
sina = 1 (1 - cos 2a)

2a2

02n

= .1 -n (2c)2n

2a n= 0 (2n)! J

2 ii: m (2a)
2m

== 2 (-1)(2m + 2)71

With a change of variable from a to Q where a = kd sin G, equation (A.l)
is rewritten as:

n /2

1l = kkd5

02m

_ (-l)m (2kd) 2 (sin 9) 2m] d9
M= 0(2+27

Since the above series converges uniformly, the integration can be
applied to each term:
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n /2
00

4: ( m (2kd)2mTI kd(2m +2)T

-_kd TI 1 ) (2kd) 2
kd 2 L2 + (-') (2m +2)!

m=l

2mdQ

13-...(2m-3) (2m-1) *
2,,4...-(2m -2) (2m)

00

Skd 1 + 2 Z
m=l

(A.2)( (2kd)!2m 1-3-...(2m-1)
(2m + 2)T. 2-4- -- 2

For a small value of kd, 1 is approximated with the first term only:

1 = kd + O(k3d
3 )

which has been presented as equation (2.49.1).

The computer program, however, includes up to the seventh
term (m = 6) of equation A-2 to cover a wide range of kd. The
function 4 1 is programmed as a subprogram, FUNCTION PSIl (A), as

shown in Figure A-1. The argument A stands for kd.

The second radiation function is defined in equation (2.34.2)
as:

36 = 7 (kd) = kd
2 2 TI

00

sin2a

kd a21a7 -(kd) 2

This integral cannot be transformed into a series because of the infinity
at its upper limit. However, the following transformations are possible
for a small value of kd.

*See Moriguchi, et al., [1956], pp. 2h2.
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FIG. A-i. FORTRAN PROGRAMS FOR RADIATION FUNCTIONS fAND%

* LIST
* LABEL

FUNCTION PSI1(A)

1 AA = A*A
2 PSI1 = A*(1. - AA/6. + AA**2/60. - AA**3/1008.)
3 IF(A-1.) 90,90,4
4 PS11 = PSI1 + A*(AA**4/25920. AA**5/950400. + AA**6/47174400.)

90 RETURN
END

* LIST
* LABEL

FUNCTION PSI2(A)

1 AA = A*A
2 SUM = 0.04472*SINF(A)**2/AA
3 X = 1.001*A

104 IF(A-0.03) 5,1079107
5 H = 0.004*A
6 GO TO 14

107 IF(A-0.1) 8.110,110
8 H = 0.002*A
9 GO TO 14

110 IF(A-0.3) 11,13*13
11 H = 0.001*A
12 GO TO 14
13 H = 0.0005*A
14 SUM = SUM + 0.5*H*SINF(X)**2/(X**2*SQRTF(X**2-AA))
15 DO 118 I=1,1000
16 X = X+H
17 SUM = SUM + H*SINF(X)**2/(X**2*SQRTF(X**2-AA))

118 CONTINUE
119 IF(X-3.) 20,20922
20 H = (3.14159-X)*0.001
21 GO TO 15
22 H = 0.06283
23 DO 126 I=19100
24 X = X+H
25 SUM = SUM + H*SINF(X)**2/(X**2*SQRTF(X**2-AA))

126 CONTINUE
27 SUM = SUM + 0.25/X**2
28 PSI2 = 2.*A*SUM/3.14159

RETURN
END

Fig. A-1. FORTRAN Program for Computation of Frequency Response
of Asymmetric Harbor
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Let the integral be denoted by I. Then, it is rewritten as:

.00

I sin2a da

Jkd a2Ta (kd)

sin=a da + 1

kd a3 kd /

1
a/)

sin2a da
a2

The first integration is carried out as:

Ca

sin2 a da
kd cL3

00

= -1 sin2a
2 aa 2J kd

1 (sin kd) +
Skd

2-d

2 iJkd

sin 2a da
2

a

1 i
1 sin 2a -0

2 a +
kd Ikd

- + 1 + O(k2d2 ) +I
2kd

The last term is a cosine integral, -C (2kd), which is evaluated as:

-C.(2kd) = J cos t dt
dt

= - y - ln 2kd

2kd
+1 1 - cos t dt

t

= - y - ln 2kd + 0 (k2d2 )

8)4 -

cos 2a da
a

Cos t dt
t



where: y = Euler's constant = 0.5772....

In order to evaluate the second integral in the expression for I, the
sine function is expanded into a Taylor's series with a remainder:

sin2 a = a2 - a3 sin 29a 0 < Q < 1
3

The second integral is then evaluated with this expression as:

00 J. 1 sin2 a da
a (kd)2 a

kd

=k --da - FI a - 1 sin 29a da
d 1a2 (kd)2 a] 3f kd, Ia k

kd kd

The first term is simply

00
[In a (kd)1 = ln 2

kd

The second term is estimated as:
00

2 f - 1] sin 29a da

00

d kda - (kd)2

S00
2 1a2 - (kd)2 - a]kd = kd << 1

Adding all these terms, the integral I is finally expressed as:
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I = + O(k2d2 )] + [-y - ln (2kd)+ 0 (k2d2 )]

+ [ln 2 + o(kd)]

=-3-y - ln kd + O(kd)

Hence,

= 2 kd(2 - y -ln kd)
-2 n 2 + 0 (k2d2 )

In the numerical evaluation, the integral was carried out for the
five regions of a, shown in Figure A-2. The region I was provided in
order to avoid the divergence of the integrand. The integral was
approximated with:

kd + h h
sin2 a -da= sin 2(kd + t) dt

kd a2a2 - (kd)2 o (kd + t)2 t(t + 2kd)

h
sin2 kd

(kd) 2J J 0

1 2 sin2 kd h

dt = (kd) 2 2kd

= .04472 sin2 kd for h = 0.001 kd
(kd )2

The integral in the region V was also approximated with:

sin2 a 1

Sa2a2 - (kd)2

3n

00

n f3T 1 - da
~~n 2 a2a (kd)2

1 - cos 2d daJ. 3T a2ja2 - (kd)2

- 3TE
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H(a)
sin2 a

-H(a)

a1a2 - (kd)

I I
II II IV V

h

kd Pkd n 2n 3t a

Note: h = 0.001 kd

p = 4 for kd < 0.03

= 2 for 0.03 kd < 0.1

= 1 for 0.1 .kd < 0.3

= 0.5 for 0.3 <. kd < 2n/3

Figure A-2. Definition Sketch of Integration Range for L

Although this was a crude approximation, the resultant error was
negligible because the integral for this region itself was very small
compared to those for other regions. As for the regions II, III,
and IV, simple summation methods were employed with divisions of 1,000,
1,000, and 100 respectively. These numbers of divisions and the range
of the region II were so chosen after several trials to get maximum
efficiency of computation with adequate accuracy. The program for this
numerical integration is shown in Figure A-1 as FUNCTION PS12 (A).

This program was rather slow, however. It took the IBM 7090
computer 1.58 sec. to compute one value of 7/ (kd). Hence, the

computation of with this program was conducted for only 174 values
of kd from 0.01 2through 1.74 with increment of 0.01. With these data,
a new program for3? was constructed, based on the method of linear

interpolation. This new program was then used for the computation of
the amplification factor.
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B. FORTRAN Program for Computation of Amplification Factor

In the course of numerical analysis, several computer programs
have been constructed and utilized: programs for frequency responses of
fully open harbors with and without energy dissipation, frequency responses
of symmetrical and asymmetric harbors with partial openings, responses
of symmetrical harbors at arbitrary point, root-mean-square response
factor of symmetrical harbors, etc. However, they had common frameworks
because they were some simplified cases of the computation of
general amplification factor defined in equation (2.41). For this reason,
the program for the frequency response of asymmetric harbors is
illustrated in Figure B-1. The program shown is complete with the DATA
for the computation of frequency response curves presented in Figure 25,
except FUNCTIONs PSIl (A) and PSI2 (A) which are shown in Figure A-1.
As it might be expected from the form of equation (2.41 ), the use of
FUNCTION subprograms was a great help for the numerical analysis.

Table B-1 is a conversion table of major FORTRAN names
employed to the symbols appearingin the text. The table will be a guide
for the reader to read the program. Since the program is constructed
just in the same manner as the equations are written, no explanation
on programming logics will be necessary. As for the truncation of the
series S and S2, the upper limits of summations are set at n = lO(q + 1)
and 2(q + 1) respectively, where q is the largest integer not exceeding
(2kb)/n. The maximum error of summation due to the truncation is esti-
mated as 1 per cent for both series.
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TABLE B-1

Conversion Table of Major FORTRAN Names to Symbols in Text

Text Symbol

p (equation

kd

d/b

JR (equation

pn (equation

A (ke)

e

kb

FORTRAN Name

ABETAZ

AKD

ALPHA

AMPFAC

BETAZ

DELKL

EPSLON

HARKB

HAREL

N

P

PALPHA

PSIl

PSI2

SINH

SUMAZ

SUMBZ

WIDNES

Note

(2.28.1))

(2.42))

(2.28))

kZ

q (:L 2kb/n)

n (in equations (2.37) and
(2.43))

2nd/b

,k(equation (A.2))

-2(equation (A.3))

sinh

S (equation (2.37))

S (equation (2.43))
2

2b/Z

FUNCTION

opening ratio

FUNCTION

increment of k?

integer

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

Aspect ratio
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* LIST
* LABEL

C ASYM

1 READ 1105. WIDNES, ALPHA, EPSLON, HARKL, DELKL, N
2 IF(WIDNES) 900,900,5
5 PRINT 2002, WIDNES, ALPHA, EPSLON
6 PRINT 2003
7 PALPHA = 6.2831853*ALPHA

108 DO 120 I = 1,N
9 HARKB = HARKL*WIDNES/2.

10 AKD = ALPHA*HARKB
11 SA = SUMAZ(EPSLON, PALPHA, HARKB, HARKL)
12 SB SUMBZ(EPSLON, PALPHA, HARKB, HARKL)
13 PA = PSI2(AKD)/ALPHA
14 PB = PSI1(AKD)/ALPHA
15 SPA = SA + PA
16 PAB = (SPA**2 + PB**2)/2.
17 AMPFAC = (1.-SS)/SQRTF((0.5 + PAB) + (0.5 - PAB)*COSF(2.*HARKL)

1 - SPA*SINF(2.*HARKL))
18 PRINT 10059HARKL, HARKB, SA, SB, AMPFAC
19 HARKL = HARKL + DELKL

120 CONTINUE
22 GO TO 1

900 CALL EXIT
1005 FORMAT(5F20.5)
1105 FORMAT(5F10.5, 110)
2002 FORMAT(76H1 RESONANCE SPECTRUM OF ASYMMETRIC HARBOR WITH A PARTIA

1L OPENING. 2B/L = F8.5, 10H D/B = F8.5, 8H E =F8.5////)
2003 FORMAT(104H REL. LENGTH(KL) REL. WIDTH(Kb) SU

1M.1 SUM.2 AMP. FACTOR(R) ///
END

* LIST
* LABEL

* LIST
* LABEL

FUNCTION SUMAZ(EPSLON, PALPHA, HARKB, HARKL)

1 N XINTF(HARKB/1.570796)
2 P = 1.
3 S = 0.
4 IF(N) 112,112,105

105 DO 111 I=1,N
6 ABT = ABETAZ(PHARKB)
7 IF(ABT) 898,9
8 ABT = .1.OE-18
9 S = S - ( SINF(P*PALPHA/4.)*COSF(EPSLON*P*3.1415927))**2
1 /(P**2*ABT*TANF(ABT*HARKL))

10 P = P + 1.
111 CONTINUE
112 NP = N + 1
13 NNP = 10*(N+1)

114 DO 118 I=NPNNP

15 BT = BETAZ(P,HARKS)
16 5 = S + (SINF(P*PALPHA/4.)*COSF(EPSLON*P*3.1415927))**2

1 /(P**2*BT*TANHF(BT*HARKL))
17 P = P + 1.

118 CONTINUE

200 SUMAZ = 32.*S/PALPHA**2
RETURN
END

* LIST
* LABEL

FUNCTION SUMBZ(EPSLON, PALPHA, HARKb, HARKL)

1 N = XINTF(
2 P = 1.
3 S = 0.

FUNCTION BETAZ(PHARKB) 4 IF(N) 112,
105 DO 111 1=1

BETAZ = SQRTF((P*1.570796/HARKB)**2 - 1.) 6 ABT = ABET
RETURN 7 IF(ABT) 8,
END 8 ABT = 1.OE

9 5 = S - SI
1 /

* LIST 10 P = P + 1.
* LABEL 111 CONTINUE

112 NP = N + 1
FUNCTION ABETAZ(PHARKB) 13 NNP = 2*N

114 DO 118 I=N
ABETAZ = SORTF(1. - IP*1.570796/HARKB)**2) 15 BT = BETAZ
RETURN 16 5 = S + SI
END 1 /(

17 P = P + 1.
118 CONTINUE
200 SUMBZ = 8.

* LIST RETURN
* LABEL END

HARKB/1.570796)

112,105
,N
AZ(PHARKS)
8,9
-18
NF(P*PALPHA/4.)*COSF(EPSLON*P*3.1415927)
P*ABT*SINF(ABT*HARKL))

+ 4
PNNP
(PHARKB)
NF(P*PALPHA/4.)*COSF(EPSLON*P*3.1415927)
P*BT*SINH(BT*HARKL))

/-PALPHA*S*SINF(HARKL)

FUNCTION SINH(X)

IF(X - 70.) 2,2,4
SINH = 0.5*(EXPF(X) - EXPF(-X))
GO TO 90
SINH = 1.OE+30
RETURN
END

Figure B-1

FORTRAN Program for Computation of Frer- ncy Response of Asymmetric Harbor
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