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ABSTRACT

A distributed quasi-linear model of direct catchment runoff is

developed consisting of cascades of linear reservoirs connected by

linear channels. By fitting to the kinematic wave, the model para-

meters are expressed in terms of the physical characteristics of the

catchment and the impulse response function is constrained to be

input-dependent.

Separate models of overland flow and streamflow are developed

facilitating consideration of spatially variable inputs. Investi-

gation into the sensitivity of the catchment to distributed inputs

illustrates the failure of the kinematic wave method to provide

realistic hydrograph dispersion when applied to the flood-routing

problem.

534154
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LIST OF SYMBOLS

A = cross-sectional area of flow (ft )

An = coefficient

2
A = steady-state maximum cross-sectional area (ft )
smax

B = channel width (ft)

D = differential operator = d (

IF = Froude number (dimensionless)
0

HN = parallel linear reservoir cascades unit impulse

response function ((ft 2/sec)/ft2 )

H N(x,t) = Distributed Linear Reservoir Model unit impulse

2 2
response ((ft /sec)/ft )

H (n,t) = discrete representation of H (xt)((ft 2/sec)/ft 2
n n

H (n,t) = pulse response function ((ft 2/sec)/ft2
N

K = dimensionless constant of proportionality

K = factor representing spatial variability of the

storm (dimensionless)

L = length of catchment or stream segment (ft)

L = length of catchment (ft)

L = length of stream (ft)

N = number of linear elements

N = number of linear elements in overland flow model
c

N = number of linear elements in stream model

P = wetted perimeter of stream channel (ft)

Q = streamflow (cfs)
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Q. = flow into a two-dimensional fluid system element

(ft 2/sec)

Q (x,t) = spatially variable input function (ft 2/sec)

Q.(n,t) = discrete representation of Q (x,t)(ft 2/sec)

2Q.. = flow into a cascade of linear reservoirs (ft /sec)

QiC = average storm occurring on the catchment (in/hr)

th 3Q.. = inflow to j stream element (ft /sec)

3
Qkw = output predicted by kinematic wave (ft /sec)

Q = flow out of a two-dimensional fluid system element

(ft /sec)

=th
Qocj = j component of the outflow from an overland flow

2
model (ft /sec)

QOC = total outflow from an overland flow model (ft 2/sec)

Qocr = outflow from an overland flow which becomes inflow

th 2
to the j stream element (ft /sec)

th 3
Q. = outflow from j stream element (ft /sec)

Qsm = steady-state maximum streamflow (cfs)

Qsum = summation of flow out of n linear reservoir cascades

2
(ft /sec)

R = hydraulic radius (ft)

IR = Reynolds number (dimensionless)

Ru = pulse height (in/hr)

S = storage function (ft )

S = bottom slope (dimensionless)
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V = velocity (ft/sec)

V = average cross-sectional velocity (ft/sec)

2
V = inflow volume (ft )

c = shallow water wave speed (ft/sec)

c = coefficient

c = resistance coefficient (dimensionless)

d = storm depth (ft)

2
g = gravitational acceleration (ft/sec )

h= catchment unit impulse response function ((ft 2 /sec)/ft 2

h = linear reservoir cascade unit impulse response

2 2
((ft /sec)/ft2

h(x,t) = spatially variable catchment impulse response function

((ft 2/sec)/ft 2

th
hn (x,t) = n component of the Distributed Linear Reservoir

Model unit impulse response ((ft 2/sec)/ft2 )
22

hn(n,t) = discrete representation of hn (x,t)((ft /sec)/ft )

h (n,t) = j h component of pulse response function ((ft 2/sec)/ft 2

i(A) = ratio of local to average rainfall intensity

i = rainfall excess intensity (in/hr)

i = constant intensity which yields an equivalent volume

of rainfall excess as the actual time-varying i (in/hr)

i P = peak rainfall excess intensity (in/hr)

= temporally uniform rainfall excess intensity (in/hr)
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i = average rainfall excess intensity contributing to
mp

peak discharge (in/hr)

k = characteristic linear reservoir time constant

(usually hours)

k = overland flow linear reservoir storage constant (hours)

k = stream linear reservoir storage constant (hours)
5

k = convergence parameter (dimensionless)

m kinematic wave parameter (dimensionless)

m = kinematic wave parameter for overland flow (dimensionless)
c

m = kinematic wave parameter for streamflow (dimensionless)
s

n = Manning's roughness coefficient (dimensionless)

q = discharge per unit width (ft 2/sec)

2
q = lateral inflow to stream due to surface runoff (ft /sec)

L

2qma = steady-state maximum lateral inflow (ft 2/sec)

q = maximum discharge due to i* or i (ft 2/sec)
p mp

t = time variable (hours)

t'= normalized time variable with respect to the time of

concentration (dimensionless)

t = catchment time of concentration (hours)
c

t I = m times the total wave travel time for a rainfallc c

excess intensity i* (hours)

t = catchment time of concentration corresponding to i (hours)
c e

t = hydrograph lag time or time from center of gravity of

rainfall excess function to the peak of the catchment

hydrograph (hours)
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t = length of impulse response function (hours)

t = time to peak of catchment hydrograph (hours)

t = time interval of influence of rainfall on peak
PC

discharge (hours)

tr = storm duration (hours)

t = time of beginning of rainfall influence on q (hours)

t = stream concentration time = Xt (hours)
s c

t = pulse length (hours)
u

x = horizontal coordinate distance (ft)

x = distance measured along channel axis in direction of

flow (ft)

y = vertical coordinate direction (ft)

y = average cross-sectional depth (ft)

Ct = kinematic wave parameter (sec~ )

-1a = kinematic wave parameter for overland flow (sec )c

a = kinematic wave parameter for streamf low (sec 1)
5

= momentum coefficient (dimensionless)

6 = Dirac delta function

= integral square error (percent)

X = relative dynamic importance of streamflow to overland

flow = t /t (dimensionless)
s c

p = fluid mass density (slugs/ft )

CY = dummy variable

T = time constant of channel of area = A (hours)
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= normalized time constant with respect to the time of

concentration (dimensionless)

T = overland flow linear channel time delay (hours)c

Ts = stream linear channel time delay (hours)

T = average boundary shear stress (lb/ft 2

V = kinematic viscosity (ft 2/sec)

F = Gamma function

Aa = time interval between equi-spaced samples (hours)
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Chapter 1

INTRODUCTION

1-1. Statement of the Problem

The objective of this study is to develop a distributed linear

model for direct catchment runoff. This is a significant extension to

the common lumped linear representation in that it has the capability

to handle spatial variability of the input rainfall and yet retains

the simplicity of the superposition approach applied in unit-hydro-

graph practice.

1-2. Scope of the Investigation

Cascades of linear reservoirs, connected by linear channels and

each having lateral input, will be used to represent the catchment.

In order to relate the parameters of this model to the physical

features of natural catchments, the model will be fitted to an analyt-

ical representation of nature. The kinematic wave is assumed to'

embody the essential features of surface runoff and will be used here

for this purpose.

Separate model components will be used to represent overland flow

and streamflow. A two-dimensional geometric representation of the

catchment will provide the linkage between the domain of overland flow

and that of streamflow. The overland flow model will receive lateral

inflow in the form of an excess in rainfall over infiltration. Appli-

cation of the methods developed in this work thus requires that rainfall
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data be transformed to a rainfall excess with a suitable infiltration

model.

A significant improvement on the strictly linear approach is

achieved by using an impulse response function that is input-dependent.

This distributed model will enable us to study the response of

the catchment to spatially variable inputs. This will provide insight

into such fundamental questions as the evaluation of errors due to

lumping of the input, the importance of considering moving storms, etc.
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Chapter 2

LINEAR RESERVOIR MODELS

2-1. Results from Linear Systems Theory

The physical behavior of a catchment in converting areally distri-

buted rainfall into concentrated streamflow may be represented here by

an equation of the form

d n dn-i
A (x,Q ,t) _ + A (xdQ ,) + - + A (xQ ,t)Q = Q (xt)

n 0 dt n n -1 0 dtn-l 0 0 0 i

(2-1)

The variable coefficients determine the following characteristics of

th
this n order system:

1. The system is non-linear due to the dependence of

the coefficients upon the output, Q0 .

2. The system is time variant, due to the time dependence

of the coefficients.

3. A spatially distributed input, Q1, is allowed by

virtue of its dependence on the coordinate direction x.

For simplicity of analysis, the system -will be reduced to a time-

invariant linear system. Equation (2-1) then reduces to

n dn-l
d Q d Q

A (x) d + A (x) d + *-- + A (x)Q = Q (xt) (2-2)
n dt n n-l dtn-i o 0 i
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For zero initial conditions, the solution of (2-2) is given by

L t

Q (t) = F(xa)h(x t-a)dadx (2-3)
0 0

where

L = the length of the catchment

h(x,t) = the impulse response function

h(x,t) satisfies the homogeneous equation associated with equation

(2-2)

n n-1
A (x) d h(xt) + A (x)dn + - + A (x)h(x,t) = 0 (2-4)
n dt n n-l dn-l o

Through equation (2-3), the kernel or impulse response function,

h(x,t), uniquely characterizes the system (2-2). The problem of

determining the form of h(x,t) from records of measured input and

output is called "identification" and corresponds to the task of

deriving the instantaneous unit hydrograph (IUH) with which hydrolo-

gists are familiar. The process to be employed here will be one of

representing h(x,t) by combinations of linear reservoirs and linear

channels.

2-2. Linear Channels and Reservoirs

Linear Reservoirs -- The process by which a catchment transforms

rainfall excess into direct runoff will be separated into a storage

function and a translation function. Let the storage action which

causes delay, modulation and attenuation of the input rainfall excess,
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be represented by

S(t) = kQ0(t) (2-5)

where k is the proportionality constant or time constant relating

storage S(t) and outflow Q0(t) of a single linear reservoir. It is

equal to the average delay time imparted by the reservoir to the

inflow Q. (t). Using the continuity equation

Q(t) = Q (t) + - S(t)0 dt
(2-6)

and equation (2-5), we obtain the first order linear equation

dQ i 1 1

dt k Q0 k Qi
(2-7)

For a unit step input

t < 0

t > 0

(2-8)

The total solution to (2-7) is the sum of the homogeneous and

particular solutions

i 0

k



-t/kQ0 1

Noting that

Q =k as t - O00

we require that

C2 = k

Thus the unit step response is

-t/kQ = ce + k
0 1 (2-10)

The unit impulse response for the single linear reservoir is then

simply

dQ c
h(t) = -= - 1 e-/k

dtk
(2-11)

This unit impulse response, as well as all others presented later,

is non-zero only for positive values of the argument. For an inflow

volume V , conservation of mass gives

0o1 -t/
h(t)dt = V = r - e t -c

o 1 k0 0
(2-12)

22

(2-9)
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Thus for an instantaneous input, the response or outflow from a linear

reservoir is an exponential decay from a value dependent on V0

h(t) = -0 et /k (2-13)
k

Successive developments in the theory and hydrologic application

of this simple impulse response, or instantaneous unit hydrograph

(IUH) have been carried out by Zoch (1), Nash (2) (7), Dooge (3),

Singh (4) and Kulandaiswamy (5).

Linear Channels -- The case of pure translation can be handled

with a linear channel, which was first introduced by Dooge (3). This

concept is analogous to a channel whose area-discharge rating

curve is a straight line. The linear channel, due to constant dis-

turbance velocity at all stages, provides no change in shape of the

input wave.

In a manner analogous to the linear reservoir we may write

A = Q /V (2-14)

where V is the mean velocity of the channel of area A. Combining the

continuity equation

+ = 0 (2-15)
ax 3t
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with equation (2-14), the following equation is obtained

+ = 0 (2-16)
x -3t

which has the solution

Qo(t-T) = constant (2-17)

This of course implies only translation and T is equal to the wave

travel time. Note that the impulse response function of a linear

channel is not a function of time.

The linear reservoir and linear channel placed in a series

arrangement can be represented by a single block diagram as shown in

Figure 2-1. Analytically, we have just a shift in the time scale

from equation (2-13). That is

V -(t-T)/k t > T
h(t) - e (2-18)

k

Qualitatively this function is depicted in Figure 2-2 for a unit

input (V = 1).
0

2-3. Cascades of Linear Reservoirs

The equations for a general network of linear reservoirs, as

identified by March and Eagleson (6), can be derived from the con-

figuration shown in Figure 2-3. Q , Qi2 , etc. are different, time-
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Figure 2-1

Qi

k

Block Diagram of Basic Linear Elements

- I/k

4-

0

Figure 2-2

t

Impulse Response Function for a Single Linear Reservoir

and Linear Channel Placed in Series

A
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Qin

kn

Q i3

k3

Qi2

k2\

kj

Fsum

Figure 2-3 Cascade of Linear Reservoirs with Distributed Inputs
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varying lateral inputs. An alternative representation, Figure 2-4,

emphasizes the distributed nature of the general network by arranging

these reservoirs in a parallel array of cascades of progressively

higher order.

Rewriting equation (2-7) for the first cascade in terms of the

dt

il 1
Qi 1+k 1D

and similarly for the entire system

(2-19)

second cascade

th
n cascade

Q_ 1

Qi 2  (1+k 1D)(l+k2D)

___ 1

Qi (1+k D)(l+k2D)---(l+knD)in 1 2,n

Thus the process of summation yields

Qsum = Ql + Q2 + Q3 + + Qn (2-22)

or

Q (1+. + ) (i2 +in
sum (1+k 1D) (1+k 1D) (l+k 2D) + +(1+k 1D) (l+k 2D) ... (1+k nD)

(2-23)

(2-20)

(2-21)
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Qi1

hi k1

h2

I II I

IkI

k2
,AI

L

Q 2

Q, Q n

Qsum

Q in

k

k 2

hn

kn

I
.. .I -.

Figure 2-4 Alternative Representation of a Linear Reservoir Cascade

with Distributed Inputs
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Multiplying and dividing (2-23) by the denominator of the last term

sum

(1+k 2D)(l+k 3D)*-(l+k D) Q 1 + P- + Qin

(1+k 1 D)(l+k2D) .. (1+knD)
(2-24)

The solution to (2-24) can be obtained by taking the Laplace trans-

form term by term. Letting h.(t) represent the unit impulse response

to the cascade having Q.. as input, as designated by the dashed
iJ

rectangles in Figure 2-4, the output can be written as the scalar

product of an h and Q ., where each term in the product designates

the convolution operation.

Q = h.(t)-Q..(t)
sum j ij

(2-25)

where

Qsum = (h 1(t)+h2 (t)+---+h (t)) - (Qi(t)+Qi2 (t)+--+Q n(t))

or

0s = h (t)*Q (t) + h2(t)*Qi2(t) + --- + h n(t)*Qin(t)

(2-26)

(2-27)

where the asterisk signifies the convolution operation.
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A special simplified form of equation (2-24) results from con-

sidering the case of uniform input, Q - Q2 = i3 = Q = I

and equal linear elements, k = k2 = k3 = - k = k. Equation

(2-24) can then be written

Q (l+kD)n-1 + (1+kD)n-2 + + 1 (2-28)
sum 1+kD) n

The components of the unit impulse response are thus

-t /k

h1(t) k

-t/k t

h2 (t) kl!

-t/k t n-l
e

h (t) = kF() (2-29)

The last of equations (2-29) is recognized as the n-element

Nash model and is frequently used to represent the behavior of

natural catchments. This, however, amounts to a lumping of the

catchment behavior since all input passes thru the entire system.
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2-4. Distributed Linear Models

Two lines of reasoning have evolved in the search for a linear

model to account for the distributed nature of catchment behavior.

The first involves the class of techniques known as Time-Area Methods.

Dooge (3) has introduced the concept of a routed time-area curve

which recognizes the spatial variability in the input rainfall

function. Each segment of the drainage basin is represented by a

single linear reservoir with a separate value of k. These give the

separate cascades of Figure 2-4.

Representing translation time by a linear channel in each

cascade, it is shown (3) that the IUH of a given area becomes

h(t) = A(t) 6(t - T) i(A) dA (2-30)
A (1+k D)(l+k2D)-- (1+knD)

where

6 = Dirac delta function

= translation time of the area element

i(A) = ratio of local to average rainfall intensity

By dividing the catchment into a set of segments bounded by

isochrones of constant travel time, T, to the gaging point, equation

(2-30) can be converted from a surface integral to a single integral



V tgt
h(t) = -A- C

0

6(t - T) dA
(1+k D)(1+k2D)---(l+knD) dT

where

t = time of concentration of element
C

Letting T' = T/tc

finally expresses

V tgl
h(t) -A

w(T') = dAand t = t/t, and defining w(T') = 1 , Dooge

the IUH as

6(t' - T')
(1+k1D)(1+k2D)o-(l+k nD) w(T') dT' (2-32)

The second line of reasoning involves a special case of the

general Dooge model. The simplest of these is of course the Nash

model with the addition of a linear channel. This model has been

studied by O'Meara (8) and is depicted in Figure 2-5. Its impulse

response function is simply a lagged version of Nash equation

h- (t-T)/k n -4
h (t) = kr(n) ( ) , t > T (2-33)

O'Meara (8) has also considered the model indicated by equation

(2-28). The impulse response function is obtained by simply summing

the components of equation (2-29)

32

(2-31)
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k

k

k

*

Linear Channel in Series with a Linear Reservoir CascadeFigure 2-5



34

N -t/k n-i
HN(t) = e (t-k) (2-34)

n=l kr(n)

The system represented by equation (2-34) may be constructed of

N first order linear differential equations or a single Nth order

linear differential equation. This model takes advantage of the

simplicity of the Nash model but accounts for the fact that the input

should be distributed areally rather than lumped into one input which

is passed through the entire system. Thus each cascade of Figure 2-4

is considered to be a Nash model of the same linear elements.

This model, unlike the routed time-area method, can not handle

different lateral inputs corresponding to an areally distributed

input rainfall function.

2-5. A Distributed Linear Reservoir -- Linear Channel Model

A distributed linear model has been developed that incorporates

the concepts of the three models discussed in section 2-4. The

Distributed Linear Reservoir -- Linear Channel Model, hereafter

called the Distributed Linear Reservoir Model, is composed of linear

reservoirs connected by linear channels as shown in Figure 2-6.

From this representation the following characteristics are evident:

1. The model recognizes the spatial variability of

typical rainfall patterns by allowing different time-

varying lateral inputs.

2., By not lumping the translation effect into a single

linear channel (as in Figure 2-5), the concept of
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k

02

Oil

k

k

T 0 sum

Figure 2-6 Distributed Linear Reservoir Model
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different translation times from each segment of the

catchment to the gaging point is retained. This is physi-

cally more realistic and is analogous to the time-area

method of Dooge.

3. The storage constants, k, are equal as are the

translation constants, T. This is consistent with the

particular geometric model that will be chosen (Chapter 3)

to represent the catchment.

In section 2-1 it was shown that a linear channel placed in

series with a linear reservoir only shifted the time scale (pure

translation) and was accounted for merely by redefining the time

variable in the linear reservoir equation. The components of the

unit impulse response function are thus dependent upon their rela-

tive location on the catchment, measured along the coordinate

direction x. Equations (2-29) are thus augmented to become

e(t-T)/1k
h (xt) = e k , t > T

h (x~t) = e-(t-2T) k ,L2 t >2T

-(k-nT)/k t-nTn-

hn (n) k , t > nT (2-35)
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The unit impulse response function for the Distributed Linear Reser-

voir Model is the summation

l N -(t-nT)/k n-1
HN(x't) N I k'(n) e , t > nT (2-36)

n=1

th

This equation characterizes the N order system described by

the differential equation (2-2). The output can theoretically be

obtained by the convolution indicated in equation (2-3). The IUH

for equation (2-36) has the qualitative form of Figure 2-7.

The structure of the model invites a sensitivity analysis of

the catchment response to areally variable input rainfall functions.
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Chapter 3

OVERLAND FLOW AND STREAMFLOW

3-1. Introduction

A catchment is a very complicated physical system with stochastic

inputs. However, given the physical characteristics of the system,

its initial state, and the inputs, the response of the system is

deterministic to a large degree. The basic element of direct catch-

ment runoff is a surface with overland flow discharging as lateral

inflow to a stream channel.

Overland flow originates from storage in surface depressions.

Inflow into these depressions occurs when the rate of rainfall or

snowmelt exceeds the infiltration capacity of the surface. Overland

flow is generated by an excess of gravitational forces over those

forces developed by surface irregularities and surface tension.

This flow begins as a thin-sheet flow but is focused into small

channels by surface irregularities. As these channels merge with

one another, the domain of streamflow is formed. This concept of

overland flow is useful in interpreting the physical meaning of

simulating overland flow by means of linear reservoirs and linear

channels.

3-2. The Equations of Motion

Direct catchment runoff can be modelled mathematically by

considering conservation of mass and momentum as applied to the
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control volume of Figure 3-1. The resulting differential equations

are quite complex but may be reduced to a tractable form by making

the following primary assumptions (9):

1. The channel is of constant cross-sectional area over

each reach.

2. Hydrostatic pressure distribution at each section.

3. The momentum distribution coefficient =l.

4. Surface tension forces are negligible.

5. The transverse water surface profile at any x is

horizontal.

6. The x-component of momentum flux due to lateral

inflow is negligible.

7. The overpressure due to vertical inflow is negligible.

These assumptions simplify the momentum equation to

-+ V = g(S - ) - pR (3-1)
Dt @x 0 x pR

and the continuity equation to

3(AV) 3
+ - q + Bi (3-2)

ax t L e

where qL lateral inflow due to surface runoff

B = channel width

i = rainfall excess intensity



41

A

*~ * ie
Control r----- -7
Volume

A y A
AxY+j,2

Control
Volume

A L

B

Section A-A

Control Volume for Flow in Small StreamsFigure 3-1



42

These non-linear partial differential equations have been known

since the time of de St. Venant. They are applicable to one-

dimensional, gradually-varied free surface flows. Analytical solu-

tions have been restricted to special cases where suitable simplifi-

cations could be made. Numerical solutions using finite difference

schemes have become feasible with the advent of the digital computer.

Under certain additional restrictions, these can be generalized

to demonstrate the essential elements of the surface runoff phe-

nomenon. A summary description of the generalization follows.

3-3. The Kinematic Wave Equations

The derivative terms of the momentum and continuity equation

give rise to two distinct types of wave propagation. If the inertia

forces are important and all inflow terms are negligible, then

equations (3-1) and (3-2) describe the movement of long waves in

shallow water. Flood waves in rivers are an example of these so-

called dynamic waves. The other important class of problems is

that in which the pressure gradient and inertia terms of equation

(3-1) are small in comparison with those of gravity and friction.

These are the kinematic wave conditions and are approximately

satisfied by overland flow and by gradually varied flow in a pris-

matic channel.

The momentum equation is in a much more manageable form if

the kinematic wave conditions can be assumed. However, mere assump-

tion of this type of flow system does not preclude the actual
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existence of dynamic waves. Fortunately, Lighthill and Whitham (10)

have shown that the dynamic component is damped (exponentially)

provided that the Froude number,F F, satisfies

IF < 2 (3-3)
0 (gy 1/2

where V and y are the average velocity and depth respectively at

uniform flow conditions

q = i L (3-4)Max e

For steady, uniform flow in a wide channel the momentum equation

reduces to

2
T c V

gS = - -= (3-5)
0 py 2y

or

2gS 1/2 3 / 2  mc (3-6)
q=Vy= ( 3 c

f

For a small depth of flow in a wide channel, the continuity equation

can be simplified to the one-dimensional form

(Vy) + -a- -i (3-7)
ax at e
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Equations (3-6) and (3-7) are called the kinematic wave equations.

By comparison of these with the "complete" equations (3-1) and (3-2),

Woolhiser and Ligget (11) have demonstrated that the damping of the

dynamic component will be sufficiently rapid to justify neglecting

the inertia terms provided that

S L
k 0 0 2 > 10 (3-8)

y ]FO 0

For k values smaller than 10, it would be necessary to have short,

channels with small slopes and high velocities. These conditions would

seem more common in streamflow than in overland flow. The numerical

solutions presented by both Morgali and Linsley (12) and Schaake (13),

the latter of which was an urban catchment, conform very closely to

the k0 = <o curve. Thus the kinematic wave equation appears to be a

good approximation for most overland flow situations.

3-4. The Method of Characteristics

The kinematic wave equations are readily solvable by numerical

methods. Woolhiser and Liggett (11) have found that solution by the

method of characteristics is the most accurate and computationally

efficient of the various finite difference schemes available.

Assuming that ot and m remain constant with time, it can be shownc c

(14) that equations (3-6) and (3-7) lead to the characteristic

equations for two-dimensional overland flow
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C= y c 1 C (3-9)
dt cmc

= - (3-10)
dx dt e

which represent the wave speed, c, and the rate of lateral inflow on

the plane. The essence of the method of characteristics is to find

the space-time (x-t plane) locus of the discontinuity in the partial

derivatives of the important dependent variables, y(x,t) and q(x,t).

The path of wave propagation, called the characteristic path, is

obtained by integration of (3-9) and (3-10)

t t mc~1
x - x 0= m ( ie (a)dcr + y0) dt (3-11)

0 0

Streamflow can be added to the model (15) by treating the

catchment hydrograph q(x,t) as lateral inflow to the stream. The

equivalent kinematic wave equation is

2gS .1/2 m
Q = VA = (C ) A3 /2 = c A (3-12)

c fP s

where P is the wetted perimeter of the stream channel. The corre-

sponding characteristic equations for the wave speed and for the
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lateral inflow into the stream are

m -l
dx s- a m A (3-13)
dt s s

and

3x + q (3-14)

3-5. A Geometric Catchment-Stream Model

To apply the foregoing analysis to natural catchments it is

expedient to retain only those parameters which are essential from

physical considerations. Wooding (15) has found that a simple model

of the type shown in Figure 3-2 adequately preserves the main topo-

graphic features of a catchment combined with a stream. The para-

meters which have dominant influence upon flow in the catchment and

stream are slope, roughness and flow regime. These are taken into

account by the constants a , m, c a , m in equations (3-9) and (3-13).

The component of slope in the direction of the stream is neglected on

the catchment surface. As the catchment length, Lc, is assumed con-

stant everywhere, it is obviously an "effective" catchment parameter

which represents the average length of surface flow path tributary

to the main stream. Clearly, in this model, A = 2 L L .
s c

For this model a special definition for the catchment time of

concentration can be derived. For temporally constant rainfall
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excess, i*, and letting t = 0 in equation (3-11), the characteristic

curves are given by

m -l m
x = ai* c t c + x (3-15)

For x = 0, equation (3-15) specifies the "limiting characteristic"

which describes the disturbance emanating from x = o where there is

no inflow from upstream. For the particular case x = L c, the

limiting characteristic defines the maximum time during which growth

of depth (and hence discharge) can occur on the catchment surface.

Thus the catchment time of concentration, t , is given by

L I1- c m -

t = L a c (3-16)c a
c

This definition requires a storm of long duration, t , such that

t > t . Note that if the rainfall excess stops before the char-
r c

acteristic reaches the end of the catchment then the right-hand side

of equation (3-10) equals zero. This complicates the formulation

of equation (3-11) and thus a simple expression of the time of

concentration, as in equation (3-16), is no longer possible.

Maintaining the same restrictions on the problem, another useful

definition is available to represent the relative dynamic importance

of streamflow to overland flow.
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If the lateral inflow is constant in time and space, such as

would occur for t > t for a storm of infinite duration, then the
c

streamflow at x = L will rise to a steady-state maximum, Q
s s smax

Letting the stream concentration time for this condition be t Xt
s c

2qmaxL S /m s Qsa 1/m
A sma= = (max) 1/in5 = (Qsmax) (3-17)

5 5

Using equations (3-6) and (3-16), the ratio of concentration times

becomes

(2iL L /a) /ms t
= _- (3-18)

1/in t
2Lc *Lc c) c c

3-6. Selection of Physical Parameters

The applicability of any catchment model to an actual problem

depends upon a careful choice of catchment and flow parameters.

Because of the inherent geometric approximations in a two-dimensional

catchment-stream model, the task of estimating average channel slopes,

lengths and roughness may be difficult. A sensitivity analysis of

the hydrograph to changes in these parameters has been performed by

Morgali and Linsley (12).

To estimate the flow regime (i.e., laminar, turbulent, or

intermediate) and the roughness coefficient, it is common practice

to rely on experimental results. By definition



2gS 1/2

( 0) (3-19
f

where the friction coefficient, cf is a function of Reynolds number

and of the relative surface roughness. For laminar flow,

6
c - (3-20f IR

with

R = Reynolds number = < 500 (3-21
V

we get

g S
a= 0 and m = 3 (3-22

For turbulent flow using the Manning equation

cf = 0.9n2 y-1/ 3  (3-23

where n is the Manning roughness coefficient. Thus

1,49 1/2a = 1 S and m = 5/3 (3-24n o

Overland flow is reputed to be laminar, however, the resistance

coefficient, cf, has been found (13) to be on the order of 10/R ,

which is higher than that obtained theoretically (3-20). This is

)

)

)

)

50

)

)
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probably caused by turbulence effects due to falling raindrops on

the flow surface and the lack of two-dimensional flow as assumed.

For flow on natural surfaces there will be fluctuations in depth

and roughness so that the flow regime may vary between laminar and

turbulent. The work of Horton (18) and others indicates that over-

land flow in this intermediate regime is best approximated with a

value of m = 2.
c

The streamflow component of this model is applied using as

and ms as given by the Chezy or Manning formula. In storm runoff

situations where the lateral inflow is negligible in comparison

with streamflow (i.e., X very large), the kinematic wave equations

are of questionable value and a more accurate procedure would be to

consider the problem as one of flood routing and apply the complete

equations (19).

3-7. The Impulse Response Function

To obtain the instantaneous hydrograph, two different approaches

are available. One technique (8) involves first combining equations

(3-1) and (3-2) into a single non-linear second order partial differ-

ential equation. The equation can then be linearized by referring

the discharge, depth and velocity variables to their steady-state

values. The solution to a Dirac delta function input can be obtained

using Laplace transform techniques. Computationally it is desirable

to use a reduced momentum equation (such as the kinematic solution,

equation (3-5)) to derive a simplified impulse response function.
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The approach to be employed here is derived from consideration

of the characteristic equation (3-11). Considering a temporally

constant rainfall excess, i, of short duration such that t < t
r c

the catchment discharge hydrograph or pulse response can be specified

(9) as

m
c

c Y

y=

y=

Lc

it

it r

,0 < t s t < t
r c

, t > t < t < t
c r p

m - 1
c -
c + c ct-r)) , t > t (3-25)

where the length of the peak is

t -t
t =t + c r
p r m

c

in which

L
=c

c m -1
ctd c
c

(3-26)

(3-27)

and

d = ist 

3

(3-28)
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The impulse response function can be obtained from the pulse

response function by taking the limit as the pulse duration, tr'

goes to zero. For this limiting case, the discharge begins immedi-

ately and remains constant at the peak value, q ,
p

m
q=p d c (3-29)

pc

until time t /m which is the time for the disturbance to travel
c c

the full catchment length at constant depth, d. The recession curve

(t > t ) of the instantaneous hydrograph is given by
p

mc
m L m -l

q = y c = t)( c c (3-30)
c c

Note the similarity between this impulse response function

depicted in Figure 3-3 and that obtained from the Distributed Linear

Reservoir Model shown in Figure 2-7. This fact will be exploited in

determining the parameters of the latter model.

3-8. Conclusions

The kinematic wave theory is a reasonably accurate, computa-

tionally efficient and well-documented approach to overland flow

and certain streamflow problems. This is the primary reason for

its use as a standard of comparison in the development of the
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Distributed Linear Reservoir Model. All concepts introduced in this

chapter, including the two-dimensional catchment representation, will

be incorporated into the Model. Although the Model may suffer from

some of the same weaknesses of this particular application of the

kinematic wave theory, it will be in no way dependent upon this approach.
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Chapter 4

A QUASI-LINEAR REFINEMENT OF THE UNIT-HYDROGRAPH METHOD

4-1. Introduction

The non-linear, areally distributed nature of the rainfall-runoff

process has been illustrated in the discussion of the kinematic wave

presented in the previous chapter.

Traditional hydrologic methods have, for reasons of computational

simplicity, adopted lumped, linear approximations of this behavior.

The characteristic response function of this linear system is known as

the unit hydrograph and in hydrologic terms the associated assumptions

are:

1. The effects of all pertinent physical characteristics

of a catchment are reflected accurately by the hydrograph

of direct runoff from a storm having areally and temporally

uniform rainfall excess.

2. For a given duration of rainfall excess, the duration

of surface runoff is essentially constant and independent

of the magnitude of the rainfall excess.

3. The discharge ordinates of direct runoff hydrographs

are proportional to the total volume of direct runoff.

4. The time distribution of direct runoff from a given

storm is independent of concurrent runoff from antecedent

storms.
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Assumptions 2 and 3 are illustrated qualitatively by the hydro-

graphs sketched in Figure 4-1. In actual practice, Ishihara (21) has

found that unit hydrographs derived from floods on the Yura River show

a five-fold variation in the peak discharge and a two-fold variation

in the lag time. It was observed that this non-linearity corresponded

to the occurrence of overland flow during the larger storms.

The advent of digital computers has removed the need for these

restrictive assumptions, since in principle, the kinematic equations

(and indeed the "complete" one-dimensional equations) can now be

solved for arbitrary variations of the input rainfall and catchment

parameters. In practice, however, the computer time necessary for

this approach is very large and we are led toward other simplifications

which will produce computational efficiency without undue sacrifice

in physical validity.

4-2. A Quasi-Linear Approach

The approach to be used here is to develop a model which is- quasi-

linear in that its response function is input-dependent and which is

distributed in that different parts of the catchment have different

responses.

Application of the Distributed Linear Reservoir Model requires

convolving the input rainfall excess Q i(x,t) and the impulse response

function H (x,t) given in equation (2-36). The form of the convolution
N

operation denoted in equation (2-3) can be simplified by lumping the

input over the distance L/N in the direction x. The output hydrograph
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is then given by

t

Q (t) = f Q.(n,)HN(n,t-G)da (4-1)
0

Due to the discontinuous nature of the input rainfall function and the

form of the response function, obtaining a closed form expression for

Q (t) would rarely be feasible. Therefore, it is convenient to intro-

duce discrete notation and to perform the integration numerically.

This implies that the input rainfall function and the impulse

response function are defined at discrete intervals, spaced Aa in

time. The response function is no longer instantaneous and must be

defined for a unit-time. This unit-time is called the pulse length

and is denoted by tu'

The pulse function, R u(a), is defined at discrete intervalsu

spaced Aa in time and is of constant magnitude Ru over its duration

tu. The components of the lumped pulse response function, hn(nt),

are obtained by convolving the discrete form of equation (2-35) with

the pulse function

h (1,1) = 1 Ru(a)h(1 ,(li-G+l)AG

P
h (n,i) = R (a)h (n,i-a+1)Aa (4-2)
n u n
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The convolution process of equation (4-2) is illustrated in Figure 4-3.

The length of the output time series, hn(n,i), is determined as shown.

P
Similarly the pulse response function, HN, in discrete form is

obtained by

P
H (ni) = (RuY)HN(n,i-a+)AG (4-3)

P
To use the pulse response function, %N, in a discrete form of

equation (4-1) requires that the input rainfall function be synthesized

as shown in Figure 4-2 and then normalized with respect to the pulse

height

i P
Q(i) = (Qi (na)/R u)H N(n,i-a+l)AG (4-4)

For a given storm, the overland flow hydrographs generated by the

indicated convolutions for a range of pulse heights can be compared to

those obtained by a characteristics solution of the kinematic wave

equation. Since the pulse height is analogous to the depth in the

shallow water wave speed equation (3-9), the time to the hydrograph

peak will be inversely proportional to the pulse height. This is

illustrated in Figure 4-4. We will consider the optimum pulse height

to be one which minimizes the following integral square error:
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00

' 2A9 (-5)
E2 (Qkw o 24

where Q (k) is the output predicted by the kinematic wave. The derived

impulse response functions of linear catchment models are actually input

(storm) dependent. Thus the parameters of such a model can only be

optimal if they too are input-dependent.

4-3. Selection of the Optimum Pulse Height

In developing an analytical procedure to determine that pulse

which best represents the lag time and the peak discharge for a given

catchment and a given storm input, the mechanism which transforms

rainfall excess into overland flow is of primary importance. Thorough

testing of the Distributed Linear Reservoir Model has established that

the optimum pulse height for a given overland flow situation is

essentially independent of stream parameters, i.e., it is invariant

with the fitting parameter X (equation 3-18).

In the manner of Ishihara (21), we can use the kinematic wave

theory to define an equivalent rectangular block of rain which will

produce the same peak discharge as the actual (time-varying) rainfall

function.

The discharge per unit width is obtained by integrating equation

(3-10) along a characteristic beginning at x = 0 and substituting the

result in equation (3-6)
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t m
q(t) = c S e(t)dt) c (4-6)

t
0

Let i be the average rainfall intensity contributing to the peak
mp

discharge and t -t as its duration, where t = time to peak discharge.
p o p

Referring to Figure 4-5, we desire to find the time t at which this

square pulse begins. Substituting i (t-t ) for the rainfall function

in equation (3-11)

tx-x = L = mc a (i (t-t )) c dt (4-7)
o c cc t mp o

0

and integrating

m-l m
L =a i c t -t) c (4-8)
c c mp p o

We cannot solve this directly for t since i is a function of t .
0 mp

However, multiplying both sides of (4-8) by i we obtain the maximummp

flow condition cited in equation (3-4)

m
q = i pL =. a c(i mp(t P-t ) (49
p mp c c mp p o

Ishihara (21) has suggested that this depth of overland flow,

i (t -t ), is proportional to the depth of the pulse, R 't , used
mp p 0 u u
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in the unit-hydrograph method. His equation for the pulse height is

1/(m -1)
C

R t =( i t (4-10)
U u Te mp Pc

where t = (t -t ). Given i , t is merely the time of concentra-
pc p O pc

tion as defined in equation (3-16). Ishihara has recommended that t
PC

can be taken as twice the lag time, t . These variables are depicted

qualitatively in Figure 4-6.

It has been found that i can be approximated by the peak of the

P
rainfall excess intensity, i , for overland flow situations of small

e

L and/or high values of aC such that L /a < 500. However, most
C C C C

overland flow situations correspond to the case of L Ca C > 500 for

which it has been found that i is better approximated by an average

rainfall intensity defined by

t
* i r

i = (t)dt (4-11)
r o

*
Using i in equation (3-16) we can define an average time of

concentration, t
C

1-M

t= (c ie C (4-12)
C cxl
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* *
It has been found adequate to substitute t for t and i for

C pC e

i min equation (4-10) and combine these approximations and the

coefficient involving m into a constant, K

R et =Ki* *t (4-13)
u u e c

The constant K was evaluated for the case of m = 2 by a linear

regression analysis of the data presented in Table 1. The resulting

equation for the optimum pulse height is given by

* *
i -t

R = 1.59 e c (4-14)
u t

u

with a correlation coefficient of 0.96.

Table 1 compares the observed and predicted optimum pulse height

for eleven catchments subjected to a variety of input conditions. It

is evident that equation (4-14) is preferable to equation (4-10) for

at least two reasons:

1. An a priori determination of i and t is not

possible since these values must be extracted from observed

data. Thus the model parameters could not be input-

dependent if equation (4-10) were used.

2. Equation (4-10) was found to be inconsistent with

the wide range of catchment parameters and input condi-

tions from which equation (4-14) was derived.



Prediction of the Optimum Pulse Height from

Equations (4-14) and (4-10)
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Table 4-1 (continued)

p * *
L /a i i i t t* t R R R

C C e mp e PC C u u u u

ft sec in/hr in/hr in/hr hr hr hr obs. (4-14) (4-10)

270 .10 .095 .05 2.0 4.21 .20 1.9 1.7 .4

270 .20 .19 .10 1.4 3.05 .20 2.6 2.4 .5

270 .35 .34 .175 1.0 2.25 .20 3.2 3.1 .7

270 .50 .49 .25 .8 1.88 .20 4.0 3.8 .8

270 .15 .13 .075 1.6 3.52 .30 1.3 1.4 .3

270 .33 .30 .165 1.0 2.31 .30 2.1 2.1 .4

333 .10 .09 .05 2.4 4.71 .20 2.5 1.9 .4

333 .10 .09 .05 1.6 4.71 .20 2.1 1.9 .3

333 .20 .19 .10 1.6 3.33 .20 2.9 2.6 .6

600 .10 .08 .05 3.6 6.32 .20 .2.2 2.5 .6

1250 .20 .16 .10 3.6 6.45 .20 5.0 5.1 1.2

1750 .20 .14 .10 6.0 7.64 .20 6.3 6.1 1.7

2500 .10 .05 .05 10.8 12.9 .20 4.5 5.1 1.1

2500 .20 .115 .10 8.2 9.13 .20 6.5 7.3 2.0

2500 .40 .30 .20 3.8 6.45 .20 5.5 5.0 2.3

2800 .20 .11 .10 9.2 9.66 .20 7.5 7.7 2.1

4700 .10 .07 .05 16.4 17.64 .40 3.0 3.5 1.2
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The effect of storm duration on the error in prediction (Figure 4-7)

indicates that use of an optimum pulse height in equation (4-4) is

particularly important for areas such as urban catchments on which

short duration storms are critical.

4-4. Selection of the Optimum Pulse Length

The convolution process that has been detailed earlier is performed

over discrete time intervals with the assumption that the rainfall

excess is uniform over these intervals. Such a temporal lumping of

the input will cause an error in the forecast hydrograph. The pulse

length should be chosen such that this error is negligible. On the

other hand, in the interests of computational economy, the pulse length

should not be overly small. The optimum pulse length is thus derived

from theoretical and economic considerations.

Experience with the unit-hydrograph method has led to arbitrary

or empirical estimates for the best unit-time or pulse length. One

such determination (22) involves the lag time, t

t = 1/4 t (4-15)
u

Referring to Figure 4-2, it is obvious that as the pulse length

decreases the area under the synthesized rainfall function will converge

to the actual depth of the storm. For the triangular shaped storms

considered, the following errors as a function of pulse length or

samples per storm were observed:
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Table 4-2 Percent Error Due to Using a Discrete Representation

of the Actual Storm

Samples Actual Predicted Percent
Per Depth Depth Error
Storm in. in.

200 1.0 .9991 0.09

100 1.0 .9966 0.34

67 1.0 .9912 0.88

50 1.0 .9867 1.33

25 1.0 .9450 5.5

From these results, the pulse length that is recommended for use

with the Distributed Linear Reservoir Model is

t = t /50 (4-16)
u r

Typical pulse lengths are given in Table 1. Their magnitude

precludes the use of hand computation with this quasi-linear unit-

P
hydrograph method. Note that the pulse response function H must

N

actually be defined at a finer sample spacing, AG, in order to perform

the convolution required in equation (4-3).
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Chapter 5

PARAMETER OPTIMIZATION

5-1. Introduction

The dynamics of how the catchment transforms rainfall excess into

streamflow is represented here by a time-invariant linear system,

equation (2-2). The system is characterized by its impulse response

function. The conceptual model of Figure 2-6 and equation (2-36) has

been proposed to represent this function. The objective of this

chapter is to identify the key parameters of the model and to detail

a procedure for determining their optimum values.

5-2. Catchment-Stream Application of the Distributed Linear Reservoir

Model

The necessity for characterizing overland flow and streamflow by

separate sets of equations with different values for the key parameters

(ai, m, L) was detailed in Chapter 3. Without a distributed model, such

as the one under consideration, these distinct catchment mechanisms

must be lumped, typically by passing the input through a single cascade

of linear reservoirs.

The Distributed Linear Reservoir Model is a three parameter model:

the number of linear elements, N; the reservoir storage constant, k;

the channel time delay, T. Thus, in recognition of catchment behavior,

there should be individually parameterized models for overland flow

and for streamflow.
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Let the flow in a stream be simulated by a Distributed Linear

Reservoir Model. The associated lateral inputs, Q.., are then the
ij

outputs from overland flow simulations by means of other Distributed

Linear Reservoir Models. The input to the overland flow models is

the rainfall excess itself.

It is convenient then to physically describe the catchment with

the geometric model depicted in Figure 3-2. A more complex geometry

can be envisioned for use with the Distributed Linear Reservoir Model,

but this would necessarily increase the computational effort. Employ-

ment of this geometric model allows ready comparison with the char-

acteristics solution of the kinematic wave equation.

The selected catchment-stream application of the Distributed

Linear Reservoir Model is shown qualitatively for an arbitrary catch-

ment in Figure 5-1. For simplicity, each overland flow model will

have the same number of linear elements, denoted by Nc, each with the

constants k and T . The stream model parameters are similarlyc c

denoted N , k , T . Note that the area over which the input rainfalls s s

excess is lumped is only (Lc IN c)-(Ls IN ).

5-3. Catchment-Stream Simulation

It is evident from Figure 5-1 that, for the general case of an

areally variable rainfall excess, each of the lateral inputs into the

catchment model and thence into the stream model may be different

functions of time. The equations developed in section 4-2 must there-

fore be generalized.
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Figure 5-1 Physical Application of the Distributed Linear Reservoir

Model
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Catchment Simulation -- It is necessary to perform the convolution

P P
with the components, h of the pulse response function, HN To

accomplish this, an average storm, Qic, must be defined for each over-

land flow model'. Having determined the pulse height from equation

(4-14) and the pulse length from equation (4-16), the pulse response

function is then given by equation (4-3). The j h component of the

P
outflow, Q., is obtained by convolution of h. (equation 4-2) with

ocj 3

K Q c, which is the average storm scaled by the factor, K., representing

the relative spatial variability of the actual storm. That is

Q *() = (K.Q. (a)/R )h (j, k-a+l)ACT (5-1)
ocj l jic u 3

The total outflow from a given overland flow model, Q , is thus

N
C

Q (2) = (PQ .() (5-2)
j-l ocj

Depending upon the spatial variability of the storm and the sensitivity

of the catchment to such variations, it may be adequate to use an

average storm occurring on the entire catchment for this purpose

rather than one for each chain shown in Figure 5-1.
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Streamflow Simulation -- The output from the Stream Linear

Reservoir Model is given by convolving the streamflow model IUH with

the overland flow hydrograph. Once again it is necessary to perform

one convolution per component, h (equation 2-35). Noting that there

are actually two lateral inputs to each stream element (one from each

side of the catchment), which may be different, the lateral input to

the stream is thus

2

S (t) = Qor() (5-3)
r=l ocr

and the j h component of the outflow from the stream model is

Q (k) = Q (a)h (j, -a+)Ar (5-4)
osj aa sj j

the total outflow, Q , is thus

Ns
Q (M) = Qg ()) (5-5)

j=l osj

For the case of distributed (unequal) inputs, it has been found

convenient to let the IUH for both the overland flow and the stream-

flow model be generated from linear reservoir cascade responses only
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(Figure 2-4, equation 2-34) and to account for the lag effect of the

linear channels in the final summations of equations (5-2) and (5-5).

To accomplish this, the Q and Q are lagged by j-T and j-Tocj sjc s

respectively.

It would be well to illustrate this process by a figure. Con-

sider the case where the spatial variability is such that the same

storm can apply to each element of a given overland flow model

(i.e., Figure 5-1). Thus, there is no need to perform the convolution

P
for the overland flow model separately for each h. and equation (4-4)

applies. Letting the asterisk denote the convolution operation, the

total simulation for selected overland flow models on one half of the

catchment is depicted in Figure 5-2.

5-4. The Method of Moments

Use of the Distributed Linear Reservoir Model requires an a priori

determination of six parameters. A frequently employed technique in

similar situations is the method of moments by which the system func-

tion or IUH can be found directly from the moments of the measured

input and output time series.

The method of moments has definite disadvantages which in certain

cases may become unacceptable.

1. The method of moments is applicable to linear systems.

It thus forces the non-linearity of the catchment into the

higher moments. It has been found (6) that negative parameters

can arise due to the derived moments being inconsistent with

the assumed model.
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2. Most fitting methods are biased. The method of moments

has been observed (2) to give more significance to the

extremities of the hydrograph, consequently producing more

error near the peak than at the extremities. The time of

arrival and magnitude of the peak discharge are often the

most important characteristics of the hydrograph.

Due to these difficulties in applying the method of moments, an

entirely different and rather unique fitting method was developed.

5-5. Selection of Model Parameters

The objective is to determine an unbiased, completely general

method of establishing the best model parameters. To incorporate the

results of Chapter 4, the method must be input and catchment dependent.

Consider the impulse response function of the Distributed Linear

Reservoir Model (Figure 2-7). The close resemblance to the impulse

response function of the kinematic wave (Figure 3-3) was indicated in

Chapter 3. From the definition of H(nt)(equation 2-36), the peak

is located at t = T and has magnitude

H (n, = (5-6)

Convolving HN(n,t) with a pulse of depth d = Ru t u(ft.) occurring on a

catchment of length L c(ft.), the peak becomes
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H (n,T) 0 (5-7)

where the pulse volume, V = d-L . This will be equated to the peak
0 C

of the kinematic wave pulse response function (equation 3-29)

V m
0 = a d c (5-8)

Nk c

or

1-M
Nk =d L/ c (5-9)

where the units (time) of ac and k are the same.

The effect of the time delay, T, is to delay the origins of the

components h of HN(n,t) by j-T in time. This then produces an oscil-

lation of the pulse response function for time t < NT. The flat

portion of the function shown in Figure 2-7 thus occurs at time

t > NT. The following modification to equation (5-9) was found to

give excellent agreement with the kinematic wave pulse response

function

1-M
N(k+T) = d cLc c (5-10)
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specializing this result to the catchment model

1-M

N (k +T )=d CL /a (5-11)

Additional constraints on the value of the model parameters will

adjust the particular shape of the response function as is shown

qualitatively in Figure 2-7.

One approach to obtain additional equations for the model para-

meters would be to substitute equation (4-4) into equation (4-5),

differentiate the result with respect to two of the unknown parameters

and set the expressions equal to zero. Simultaneous solution of the

two equations would yield the required additional conditions. However,

this procedure yields unmanageable equations. Certainly a simpler

method is desirable.

Through use of the pulse height and pulse length, equation (5-11)

constrains the model parameters to be input-dependent. Two further

relations will be presented which depend upon the physical character-

istics of the catchment.

By generating hydrographs and comparing them with the kinematic

wave, it became apparent that

1. The accuracy of the Distributed Linear Reservoir Model

is relatively insensitive to values of N provided that k

and T are adjusted in accordance with equation (5-11).

2. The computational effort required to apply the model

is inversely proportional to N.
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A good fit is obtained with reasonable computational effort, for

both catchment and stream models, when (as a minimum)

N = 2(log1 0L-2) + 1.0 (5-12)

A comparison can be made with a similar equation presented by

Nash (25) as derived through application of his single cascade model

to natural catchments. The extent of the agreement is shown in

Figure 5-3.

Catchment Model -- The basic linear element consists of a linear

reservoir and a linear channel. These components simulate the storage

and the translation effect of overland flow. The form of an equation

expressing the relative significance of each as a function of catch-

ment parameters follows from consideration of the shallow water wave

speed equation (3-9). For a constant unit depth

c = a c (5-13)

The nature of the responses of a linear channel and a linear

reservoir suggest that an equation expressing T c/kc as a function of

c possess the following characteristics

as Cc c + 0 , storage predominates and Tc is negligible

as acmc + 0 , translation predominates and kc is negligible (5-14)



84

5x 105

I x 105

5x 104

2.5 x 10 4

I x104

5000
4000

3000

1 2 3 4 5 6 7 8 9 10
Number of Linear Reservoirs, N

Figure 5-3 Relationship Between the Number of Linear Elements and

the Length of the Catchment or Stream
-i

Distributed
Linear Reservoir
Mode I

/Nash Model
-/

-/
-/
-/

I

2000

1000

4-

U

%.-J

0

500

100



85

Therefore, T c/k should be a monotonically increasing function

of mca c. Using equations (5-11) and (5-12), the following relation-

ship was established by minimizing the integral square error between

the Distributed Linear Reservoir Model and the kinematic wave

solution

c/kc = .5x10 mac/
25) (5-15)

This equation was derived from simulating the overland flow

situations plotted in Figure 5-4. Equations (5-11), (5-12) and (5-15)

completely specify Nc, kc and Tc independently of the observed output.

Stream Model -- The form of the coupling between overland flow

and streamflow suggests that a simple linear transformation between

catchment model parameters and stream model parameters may be adequate.

In section 3-5, the relative dynamic importance of streamflow with
t

respect to overland flow was quantified by X = -t, the ratio of the
c

time of concentrations (equation 3-18).

Since equation (5-12) also applies to N where L becomes the
5

length of the stream, Ls, only k and T remain to be specified.

Letting X be a measure of the ratio of the total lags imposed by the

respective models, we obtain

N (k +T )
s s S)= (5-16)

N (k +T )(5Cc CC
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The minimum integral square error formulation for the streamflow

hydrograph established the result that X also applied separately to the

relative time delays, T. The final equation is therefore

T /T = (5-17)
s C

Thus, equations (5-12), (5-16) and (5-17) complete the parameter

optimization for the Distributed Linear Reservoir Model.
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Chapter 6

NUMERICAL RESULTS

6-1. Introduction

The Distributed Linear Reservoir Model has been developed by using

the kinematic wave solution as a standard. The model can now be used

to simulate the catchment response to any desired input. The input

rainfall excess function specifies the pulse height and pulse length

which then determine the optimal values of the model parameters from

the relations of Chapter 5.

Evaluation of the performance of a mathematical model can be

accomplished only after relevant measures of effectiveness have been

defined. For this purpose, the following criteria will be employed:

1. Accuracy

2. Computational efficiency (speed)

3. Simplicity

4. Flexibility

6-2. Accuracy of the Model

Results using the Distributed Linear Reservoir Model will be

compared to those obtained from a Nash model and from the kinematic

wave solution.

The Nash model (equation 2-29) is a lumped-linear representation

of the catchment behavior. Since all input passes through the entire

system, this model is not as physically realistic as a model with
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distributed inputs. The Nash model was fitted to the streamflow

hydrograph as predicted by the kinematic wave using the method of mo-

ments (7). When the Nash model was used to re-predict the output

from which it was derived, it was found to give essentially the same

integral square error as the Distributed Linear Reservoir Model but

not as accurate a determination of the peak discharge and time to the

peak, see Figure 6-la. However, this is not a fair comparison. To

be useful, a mathematical model must accurately represent situations

other than that from which the model parameters were established.

Figure 6-lb shows that the Nash model exhibits considerably more error

when the peak intensity of the storm is doubled. This error is due

to the non-linearity of the catchment response. The Distributed

Linear Reservoir Model performs considerably better for this situation

since its parameters are input-dependent. The pulse height for case

(a) was 7.0 in/hr and the pulse length was 0.20 hr. Case (b) then

corresponded to a pulse height of 10.0 in/hr and a pulse length of

0.20 hr.

The Distributed Linear Reservoir Model has been compared to the

kinematic wave solution for a number of catchments under a variety of

input conditions. The storms considered were of triangular shape with

the peak intensity occurring at t r/2. As was shown in Figure 4-7, the

accuracy of the model is maximal for storms of low peak intensity and

long duration. This effect is illustrated for catchments of similar
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lengths but different a's in Figures 6-2 and 6-3. The relative values

of k c T and k , s are typical of those encountered in application
C C s

of the method.

6-3. Computational Experience

The Distributed Linear Reservoir Model is necessarily a digital

computer model. The computer program was developed for the IBM 360/65.

Average running time for a spatially uniform input is 1 1/3 minutes,

independent of the size of the catchment. The kinematic wave solution,

with which the model was compared, was obtained by the method of

characteristics. It was an early version of a model developed at M.I.T.

and failed to rigorously satisfy continuity by from 5 to 15%. This

disparity can be observed in the comparison figures presented in this

chapter. The computational speed for the models responding to spatially

uniform input was essentially the same.

The computational effort for the Distributed Linear Reservoir Model

is directly proportional to the time step used in the computations. In

Chapter 4 it was noted that the time step, Aa, must be less than the

pulse length, tu, for an accurate discrete representation of the pulse

function R (a). Accuracy here is measured in terms of continuity. The
u

time step was considered adequate if the integrated area under the

curve was within 95% of the theoretical value. The components of the

impulse response function, hi, were found to be very sensitive to the

time step used. Obviously, as the linear reservoir constant k

decreases, the time step must also decrease. In general, these
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functions were generated at a time interval of Aa = 0.04 hr. This

provided a good definition of the time lag T since each h. is actually
J

lagged j-T/Aa units.

Because convolution is a time consuming process, we wish to

truncate the components, h., of the impulse response function after

they have decayed to a negligible level. An estimate of the length

of the impulse response function, tm (hours), was made from the

following empirically-determined relation

tmax = 8.35 (log1 0 (N(k+T))) + 6.0 (6-1)

The functions were truncated at an earlier time if their value was less

than 0.001.

Adequate definition of the catchment and stream hydrographs was

accomplished with a time step of t r/50. Linear interpolation was used

where necessary for convolution purposes.

6-4. Application to Natural Catchments

The Distributed Linear Reservoir Model is extremely easy to use.

Only the catchment geometry and storm characteristics need be specified.

However, it is not readily apparent how one applies the geometric model

of Figure 3-2 to a field situation. The following two stage procedure

is recommended.
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Stage 1

1. Let Ls = the length of the main stream.

2. Determine L such that 2xL xL = the catchment area

(for continuity). The ratio of L c/L is commonly 1/6 (9).

3. Let as be determined from the average slope and

roughness of the main stream.

4. Let ac be determined from the tributary catchment

slope and roughness.

5. Use m = 2, see reference (18).

6. Use ms = 1.67 or 1.5 depending on whether the Manning

or the Chezy equation is preferred.

If storm and streamflow data are available, continue to the next stage,

otherwise, terminate.

Stage 2

1. Following the approach used by Wooding for application

of the kinematic wave model (16), the Distributed Linear

Reservoir Model can be fitted to the observed hydrographs by

iterating on the parameter X (equation 3-18).

Application of mathematical models to natural catchments is an art

which must be developed with experience. It was not attempted in the

development of the Distributed Linear Reservoir Model since many

catchments were required to establish the equations of Chapter 5 for

the optimal model parameters.
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6-5. Catchment Response to Distributed Inputs

Development of a distributed model opens the door to entirely new

areas of fruitful research. Presently, little is known about the

sensitivity of catchment behavior to spatially distributed inputs. Such

knowledge is indeed crucial for at least two reasons:

1. When is a simple two-dimensional geometric model of the

catchment adequate?

2. How much research effort should be expended on the

understanding of the internal mechanics of storm movements?

Insight into these considerations can be gained from a few examples.

The response of the catchment to a localized input is certainly depend-

ent upon the location of that input relative to the observer (refer to

Figure 5-1). To illustrate this, the results of routing the same storm

through overland flow models tributary to different stream elements is

shown in Figure 6-4. Applying the storm to the most distant portion

of the catchment (overland flow model tributary to stream element

No. 8) produces a significant time lag compared to that when the storm

is applied near the catchment mouth (overland flow model tributary to

stream element No. 2). Figure 6-3 corresponds to the same catchment

subjected to a similar spatially uniform storm. In comparison with

Figure 6-4, it can be observed that the contribution to the peak

discharge comes primarily from the overland flow models near the catch-

ment mouth.



97

350

Model
Parameters

0.1 in Hr Fitted to
Kinematic Wave

300

Storm
0 Hrs 20

250-
X = 0.27

200-
Storm Input to
Stream Linear
Elemnent No.2
Only Storm Input to

150 Stream Linear
Elemen t No. 8
Only

100 Lc = 14000 Ft

ac = 3 Sec~
mc= 2

50 Ls 100000 Ft

as = 0.5 Sec~
ms 1.67

0.1
06 12 18 24 30

Time (Hours)

Figure 6-4 Comparison of the Response from Equal Lateral Inputs to

Two Different Overland Flow Models



98

It is important to note in Figure 6-4 that there is virtually no

difference in the hydrograph shape for the two cases considered even

though the travel distance in the stream varied greatly. This is

intuitively incorrect, however, this example is actually a flood-

routing problem which certainly violates the assumptions implicit in

the kinematic approach to which the model was fitted.

An investigation into the sensitivity of the response of overland

flow to localized inputs can be performed in an analogous manner. For

the same overland flow models considered in Figure 6-4, an identical

storm was input into a single linear element in each model. The result

of this operation is given in Figure 6-5. The response of the most

distant linear catchment element is considerably lagged and dispersed

from that obtained by applying the storm to a low-order element near

the catchment mouth. Comparison with Figure 6-4 indicates that all

peak attenuation and much of the lag is derived from passing the input

through the overland flow model. In this example, the effect of the

streamflow model is then simply to increase this lag,

The following example provides an indication of the errors due to

spatially lumping the input function. Actual rainfall is likely to vary

randomly over the catchment. To simulate this effect, a random number

(between 0 and 1) was selected to scale the input into each catchment

element. The factors were then averaged for each overland flow model

(see Figure 5-1) corresponding to equal lateral inputs. These two

cases can then-be compared to lumping the input over the entire
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catchment by using a uniform storm having the average intensity of the

above random case. The same pulse height was used for all three cases.

The results from these lumping operations are shown in Figure 6-6.

For the totally random case, the catchment has smoothed the

spatial variability in the input through the convolution and summation

processes involved. Progressively more lumping, first per chain, then

over the entire catchment has the effect of shifting the peak earlier

in time and to a higher value. Thus the random variation in storm

intensity has produced a dispersion effect on the streamflow hydrograph.

The totally random case corresponded to seventy catchment linear

elements for this example. The computational effort required was only

50% greater than the typical spatially uniform input case. When the

input was averaged to produce equal lateral input to each overland flow

model (fourteen for this example) the computational effort was reduced

to the level of spatially uniform input. Thus this model can effi-

ciently utilize the greatly increased spatial resolution of storm

intensity that the latest rainfall measurement techniques (24) promise

to provide.

The final consideration is the importance of moving storms. The

Distributed Linear Reservoir Model is capable of handling these situa-

tions merely by lagging the storm in proportion to its speed. The

example considered was that of a storm moving parallel to the stream

axis at a constant rate of speed. The same random scaling factors

were used for each linear element as in Figure 6-6. The results
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shown in Figure 6-7 indicate a time lag and peak attenuation associated

with a moving storm.

It is interesting to note that a storm moving upslope produces

more dispersion than a storm moving in the opposite direction. This is

to be expected. As the storm moves upstream, the peaks of the lateral

inflow become separated more and more from the peak of the streamflow

already produced in lower reaches. As the storm moves downstream, it

tends to become synchronous with the flood wave in the stream.

The apparent lack of the catchment to recognize spatial variability

in the input rainfall excess is due in part to the considerations of

Figure 6-4. It is believed that fitting the Distributed Linear Reser-

voir Model to a more exact streamflow model would accentuate the sen-

sitivity of the catchment to distributed inputs.
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Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7-1. Conclusions

A distributed quasi-linear model of direct catchment runoff has

been developed. This model, called the Distributed Linear Reservoir

Model, consists of cascades of linear reservoirs connected by linear

channels. The model parameters were fitted to the kinematic wave

formulation of Chapter 3. By determining the optimum pulse height and

pulse length as a function of input and catchment parameters, the

traditional unit-hydrograph method has been significantly improved.

Incorporating these results into the model parameters, the impulse

response function is therefore constrained to be input as well as

catchment dependent.

Separate models of overland flow and streamflow allow simulation

of the catchment response to spatially variable inputs. In Chapter 6

the sensitivity of the catchment to distributed inputs was investi-

gated. The kinematic wave method has been found incapable of providing

realistic hydrograph dispersion when applied to streamflow or flood-

routing problems. Part of the lack of sensitivity of the catchment

to a randomly varying storm pattern can be traced to the negligible

streamflow dispersion exhibited by the model. Lumping of the input

has been shown to slightly reduce the dispersion provided by random

variations or by moving storm patterns.
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Use of a linear or quasi-linear model of catchment behavior in

an age when more exact solutions exist needs justification. What is

involved is the trade-off between errors due to linearization and a

greater computational efficiency through use of a linear model. For

a spatially uniform rainfall function, the two models studied were

of identical computational efficiency. However, when considering

spatially varying inputs, the linear approach offers an order of

magnitude better computational efficiency.

7-2. Suggestions for Future Work

1. A more exact streamflow solution than is provided by the

kinematic wave of Chapter 3 should be employed in the para-

meter optimization. Then the Distributed Linear Reservoir

Model would give, hopefully, better accuracy than the equally

efficient kinematic wave method when compared to natural

catchment data. A further refinement would be to use actual

streamflow data in the parameter optimization process.

2. Development of an infiltration and groundwater model, par-

allel to the direct runoff model depicted in Figure 5-1, would

be a significant extension of this approach. If a separate

model analogous to the kinematic wave solution for direct

runoff could be used as a standard, then this work could

proceed independently of the quasi-linear direct runoff

model already developed. Otherwise, it is recommended that

suggestion No. 1 be pursued first and then development of
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a parallel groundwater system could be done by comparison

with a total runoff model. Accomplishing this task would

increase the advantages of the linear approach to catchment

behavior.

3. Upon completion of suggestion No.1 (and preferably

suggestion No. 2 also) a more intensive study of the catch-

ment sensitivity to distributed inputs could be performed.

If necessary, a more elaborate physical model of the catch-

ment (incorporating many of the simple two-dimensional

models and/or fractions thereof, all with appropriate

connectivity) could be utilized to represent highly-complex

natural catchments.
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Appendix

Contained herein is the computer program for the Distributed

Linear Reservoir Model. The program was written in FORTRAN IV for

the IBM 360/65. The options of the program allow either a spatially

uniform or a spatially non-uniform rainfall excess. An average storm

on the catchment is synthesized by inputing the essential storm

characteristics as specified in the program listing. Alternatively,

actual storm data, sampled at any time interval, may be input. Spatial

non-uniformity is obtained by specifying the factors which multiply

the input into each catchment linear element. The input variables and

required format are described in the program listing.

The functions of the subprograms are briefly:

MAIN - Handles input of data, transfers to MODEL, computes

pulse response for uniform rainfall excess

MODEL - Computes essential catchment response to storm and

determines pulse height, pulse length and model

parameters

STORM - Synthesizes a storm from input storm shape, length,

volume, etc. or interpolates storm data on an equal

time step if this option is used

DISTRB - Calculates the responses of each overland flow model

to a distributed input if the storm is spatially non-

uniform or is moving
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STREAM - Takes the overland flow model hydrographs as input to the

stream model and routes them down the channel

CONVOL - Generalized convolution subprogram

XKINIT - Determines catchment and stream model N, k, T

HYDGEN - Generates N-element linear reservoir cascade responses

HYDSUM - Combines the cascade responses, incorporating the appro-

priate time delays

INTRPL - Performs straight-line interpolation

SIMSON - Integration by Simpson's Rule

ERROR - Computes integral square error and correlation coefficient

between observed and predicted time series

PLOT - Generalized printer-plotter
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C
r TSTRIPUT E LINEAR RESERVOI R--LINEAR CHANNEL MODEL

C PROGRAM WRITTEN IN FORTRAN IV, G LEVEL
C STRAGF REQUIREMENTS ARE APPROXIMATELY 25nK

AVFrPAGE DONNING TIME IS l-1f3 MIN. ON THE IBM 361/65
r

r TINPUT DATA
C CL=LENGTH OF CATCHMFNT (FFET)
r L.S=LFNGTH Cc STREAM (FEFT)

C FMC,AILFC(1/SEC),EMSALFS(1fSFC) ARE THE PHYSICAL
C CATCHMENT PARAMETERS FOR THE TWO-DIMENSIONAL MOOFL
r TPIR=STORM DURATION (HURS)
C TPFAK=TIME TO PEAK TNTENSITY (HOURS)
C nED=TCTAL STOPM VOLUME (INCHES)
C XIFP=PFAK INTFNSITY (IN/HR)
r

C IOPTO=, IMPI IFS SPATIALLY IUNIFOPM RAINFALL EXCESS

C TrPT-D=1 IMPL IES THF DISTRIRUTE0. mOOFL IS TO BE USED
TPTr=2 IMPLIES A MOVING STORM WITH THE OISTR. MODEL

C
C I0PT=1 IMPLIES THE STORM IS OF TRIANGULAR SHAPF

C TlPT=2 IMPLIFS A RECTANGULAR BLOCK

C V'0T=3 IMPLIFS STOpM DATA IS INPUT BY ARRAY

OIMFNSION RAIN(5) ,GP (70) ,NHL(10) ,A(50,2)
COMMnN/CAT PAR /EL C, FMC, ALFC, ELS, EMS, ALFS
COMMnN/CATCAR/ROPT ,RJP, XLAMDACUTCFF
COMMON/CATSTR/TDtQ , TPFAK ,DEP, XIEP
r9MMON/MODPAR/XNC ,NC,XYKC,'T0C ,XNSNSXKS, TnS

COMMONf/MOTIM/TMAX,nTS,OTQ,OTH, IOPTn, IOPT

CMMON/MODLIM/LIMIT,LIMGOLIMGOS,LYMGSNL
COMMON/CATCH/CAT(V),5f0),CtUH( 1Ot0)
rMO /tO : T A/UH( 100) ,C AT CH (10 , 5mr) ,HSUm( 15r; )

CnMmN/TIMFAC/FAC(?,v,1),TIMES(2,1 ,10)

I RFAM(5,11R) FLC,EMC,ALFC,ELS,EMS,ALFSIOPT, IOPTD

QEeAn(5,1 )) TDIJR,TPEAKDEP,XIFP
1' FOrpMAT(4F11.3)

WPTTF(6,111)

WRYITE(6, 113) ELCFtS,ALFCALFS,F MC ,EMS
WRITF(6, 114)
W 9 TC(6, 15) DEP,TOUR,XIEP,TPEAK

1 F0 MAT (IH1 ,'X'DI ST I BUTEn L INEAQ RESEQVOIR--L INE AP'
1' CHANNEL MnDEL'///)

1J ? FqvMAT(1X,fTWO-D1MENSINAL CATCHMENT PARAMETERS')

13 F9MAT t//1'PLC ='F10.1,5XLS =1F1n.j/3,X'ALFC =F8.!,
15X*IALFS =1FP.3/11XeMC =4FI0.3,5X'MS =1Fj1*.3/)
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1

CAtt MD00EL(FACAVG,RAIN)
G7 TO 4f-

14 WPTTF(6,126)
26 F9PMAT (//,5X'STORM TIME LAGS FCR LINFAR FLE

1'IN THF DISTRIBUTED CATCHMFNT MCDEL'//)
M4VVING STnRM DATA QEA) IN
FACH fF THF ?*NS DATA CARDS CONTAINS NC TIMF

DATA STRUCTURE SIMILAR TO STORM FACTOR D ATA

On 24 1S=1,?
RFAO(5,120) ((TTMFS(IS,J,I),I=1,NC),J=1,NS)
W TTF( 6, 120) (( T IMES( I SJ,I) ,q=1,NC) ,J=1,NS)

?4 C9NTINUF
CALL MODEL(FACAVGRAIN)
G1 Tn 41
I T=L TMGil/5/
DT=IT*DTQ

MFNTS I

DELAYS

T=,. 0n

A (1 ,1)= -.0
A ( l,?V)0.)
D 1 2?, 5
I T=I T*f I-l)+l
T=T.+r 0T

1. A(I,1)=T
CAI.t HYDGFN(XNC,NCXKCOTH,DTHNHL,1)
CAL L HYDSUJM( XNC,NC,TDC,DTH,nTO, L IMIT t LImG)
CAI L S IMSrWNUT0,LIMGO,HSUM, SUM)
CALL CONvOL(DTQDTO,OTQNLLIMGCL IMG,RAIN,HSUM, GP)

C COfNVFQSIPN Tn CFS UNITS
00 ?1 I=lLIMGO

I1 GP ( I ) =7 ( I)*( ELC/432f,. )
Dl 18 1=2,5'

A( I,2)=GP( II)
1 CfnNT INUE

C AtL SIMSON( DTQL IMGCrPtSUM)
WP ITE( 6, 150

155 FlPMAT(1H1,v6X,t'PPTIMUM PULSF RFSPONSE',//)
CALL PLOT(1,A,5n,2,9,0,50,2)

41 CALL STORM(RAIN,GP)
G 0 Tr' 1
FNP
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15 STD(l)=HST
I TtM=L TM-1
CALL STMSnN(Ut)R,LTMSTR,S
4QTTE( 6, 1? ) (ISTP(1),1=

25 FrMAT(5(15,F1.5) )
1.7 19 19 J=1,LIm
18 S TP( J)=S T ( J) RUO T

Tr(Tn PTD .LT. 1) GO TO 2A
CALL OISTP'R(RAINSTR)
G' Tn 4

UM)
1,LIM)

YNM=Tr1JR/OUR+0.5
N M=XIM

CALL CCNV I (7lNWe,DTO,OTS,ML -MrCLGPS,STR,GP, PS)

iPtPS .GF. LTMGf'S) GO TO ?5
flfl 26 ThLGSLIGS

2WRITF(6,149)
.5 $:1PMAT(1H1,15XPRFDICTED CATCHMENT HYOROGRAPH'//)

L I *I C S =L GP S
C'ThTT NUT TY CHCK
CAL:L ST SN(OTS,LMGOfS,GD'S, SUM)

27 1T=LIM M S/5r+0.1'
T= .
l T= T TOT rS

r) ( I v I ,) .:,)

Tl=TT*(TI)+Il
T=T+nT
D( T 1 =T
Of !,2)=GPS(TI)
WPTTF(6,14") TCPS(IT)

144 cfRM AT ( I5X FPR. ,1 P19.)
WPTTF(69,15)

15 FPM AT (11 ,6 Y, 'CA TCHmFNT
c AL Pt OT 1, q ,5 2 ,,,s r',
CAt L STFAM(G)SFACSTD)

4 N rEUPN
rNr)

HY.ROGRAPH' ,//)

117

1

C

29

I



r
SUR'fUTTINE OISTRR (RAINSTRI
TNTS Si..lPUTINE HANDLFS IJNFQUAL LATFRAL
TNPUiTS INTO THE OVERLAND FLnW MODEL
0IFNSTON NHL(l'),UHLY(6"O) ,UPH(150''),STPC(4''),

ISTP(1) ,GPS(7Dl),FACSTR(11),RATN(l),GP(7"')
(fMMrN/CATPAR/FLC,EM(C,ALFCFLSFMS,ALFS
C'MMON/CATCAR/RjOPTOuj , (XLAMOA,CUTnFFF
CoMMfN/C ATSTR/TruR ,TDFAK ,0FP, X TEP
C(sMMfN/MOFPAR/XNC ,NCXKC ,TDC ,XNSNSXKS,TDS
CIMM'N/MnOTTM/TMAXDTS,TQrTH, TOPTD,TfPT
CIMMQN/MOOLIM/LMIT,LIMGO,L IMGOS , L IMGS, NL
Cn.MMON/CATCH/C AT( 10,501) ,CUH( 117, 51n)

C -mmrN /mnD A TA /UMH( Vlolf% (CA TrH ( 11 , 517,- ) ,pHsU 1 )
COMMON/TIMFAC/FAC(2,1 ,1O),TIMFS(2,1II)
WR TTE (6, 1 -15)

1 5 FCRMT(///10X,'DISTRIPUTFD CATCHMENT MODFL'//)
J SAMF="
LAr,=T0C/DTI-+1.5
L=L TMIT+NC*LAG+19l

C&L.1 FRASE (4JHLR,L,t.JH,NLTM)
YMNS=TlUR /DUR+1. 5
NM S=XMN S
NL=ntjR /OTQ+1. 1
00 9 J=1,NS

9 FACSTR(J)=1.
00 It" J=1,NS
Dr, 1" JJ=1,'5KY
CAT CH( J, 1 )=n.)
CtH(J,JJ)=0.'

I' CAT(J,JJ)=%r.
n 50 TS=1,2

11 41 J=1,NS
IF( TOPTD .FO. 2) GO To 15
T7FRq=4
I SAMF=l
FACT=1."
Do 17 T=1,NC
pACTOR=FACfISJT)

TF(!FACToR .GiT. n.110) GO TO 16
IZFRO=T ZFRC+1
GO Tn 17

16 Ir((APS(FACTOR-FACT)) .GT. ".01) GO TO 1
I S A4P=TIS A ME+1

17 FACT=FACTOR
WRTTF(6,00r') j,T7ERn,TSAMF
IF( T7ERO .LT. NC) GO TO 14
D IQ JJ=1,95"

1. CAT(J,JJ)= .
IT(IS .GT. 1) GO TO 4*
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rf 2'4 JJ1 ,t TMGS
'11''4(T, JJ)=rPS(JJ)A*rFS

N T CNT TMU F
T L = 7M ,L I mGS

C1I' FRASE(UH,TL)
3, 6 T=I,NC

TL=( T-1 )L TMGS
o 1 6 JJ=1,LI MGS

1.) HjH( T1 +J, )=CUH( T,JJ)
C t I HVSiIM( XCNtrTOrDTSDTSLIMGSL TMGS)

r) n JJ=1 ,LTMGS
- C T ( J , JJ )=HSJM( JJ) XNC

SrnT T NUr
I P ( IS .rT, I GO T(7 46

1 ". 4L J=1, NS

) 4 ' 5 JS=1,L TMr.S
4r ATCH( J,js)=CrAT(J,JS)

(G Tn G
4 -1 4%1 .lNS

nfl 4 js=11. 4rI,'S
4: cATrH(J,Js)=rATrH(j,js)+CAT(J,JS)

5' C'T ITNUF
(At STrPEAM(GPS,FACSTR)

P FTUP N
Fl 0
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C
r
r

SURRIT1NF MOVF4C(TCA,nTSLIMJT,CACTR,STPR,STRC)
THIS SUIRROUTINE MULTPLIES THE STOPM TNPUT BY THE
INAQ Et EMENT FACTOR ANr AGS THF REGINNING OF THE

STnRM ACCoRnIN, TO. THE STORM TIME OELAYS
n T M'NSION STPR(1),STQ C(4*n)
WRTTF(A),'l,0 ) TrA,FACTnR

l P's F9rMA T(//1f X,SHIFT TIME OPIGIN BY'Flr.2,2XHOUR S',
'/i.'MUItTDLY LATFPAL INPUT !Y ARFAL FACTO 'F1.?,/)
N i V =TnA /C T S
*\#I I'M i T=LTMTT+NMqVF
nn Ii !=1,LT MIT
,J=NL IMI T-T +1
STpC r J)=STR( J-NMOVE) *FAC Trr
CNTnr T
TF (NM1V~ . '0. Al O TO 18
OYI 1 T=1,NMOVE

Iq STPC(T)=n,.0
1 LTMIT=NLIMTT

fErTPN
EN')
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S!JPRP0UTIN r-- STRFAM(GPS FACST 'R)C THIS SURflUTINIF ROUJT'S THE, OVERLAND--.FLOW HV~RCGQAPH
r THPIUCrH THF STRFA'4 -MODlEL

0lMNS!ON vP(',J-3(V)STGS5V),((,)

CO OrN/C ATPAR/ EtC ,EMC, A FC , FIS, #EMS, ALFS
rn4mmN/rATCARP/PUr)PTOUP 9 XLA:MDA,, ,CUTfF
r OMN/C A1STR/TVVR,PFAK9,DEP, X IF.p
Co'mMrN/MnOPAR/XNC ,NC,XKC,TOC,XNS,NSXK-STOS
.1rl'MCN/M()TTM/TMAXTSi,DTQ,0ITH, IOP-TD, TOPT
r OMPrN/MnflL M/I TM IT, ITP4GOL P4(OSL MGS ,NL

CflMMfN/CATCH/GiT(1O,51'l) CUH(10,9(Y')
rMMCN/MflfATA/tH(1),ATCH(IM95'O1)HSLJM(15O)

WR1T(6t1lf',) XIAMDA
11 F:'P'4T(H1,///15X,'CATCI4MEN'T-STPFAM mnifF]//,

XKLR=FLSIXNS

fT=rTS

nn~ ,A T=,6C'n
T=T+flT

A TImP(T)=T

09 7 J1,19 l
rin~ 7 JJ=1v,',V'

7 rlUH(JJJ)"20.m
Or0 A JJ=1,64)m

0 STRCPS(JJ)=I.l
TTnS=TflS/0TS+A. ?5
ToS TT)S*0TS
WPI TE (6,1'S)

Ic FflPMtAT//,19X'STQF:AM MOnEL- PARAMETERS')
C ALL XKTNTT(XN;,tXKSTDSOPFKVlL,2)
IF(TfOPTD *GE. 1) rO TO 4q

47 L TMG7S=tlImG'CS
19f 45 J=l 9NS

45 FACSTP(J)=.on
M-1 46 ,~~\
nl) 46 1=1,LIM60S

4 rATCH(JT)=r7PS(T)*?.n

14"' F9PMAT(//i91XqlDTSTP!9UTED S9TREAM mflDEL.//
9r)-0~n ' =.N

JL=( i-i) *L MnS
SN j

PT 1=nrS,
L,S=L I mr.'
CAtI FRASE(rps,,6C~l)
IFVcATSTR(J) .GT, ~1ln GOl TO 52
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'D fl j 1

r! j)

W,7 WIT (,6,141) J
1 rFlPMAT(//IX I INFAP PF'rESEVflIR CH ATN Nn.'13,?X TUJ'M/)
T!(J .GT. ') Gn Tn- 6'

L rMTT=TMA~x/nT1

L T MJA=NHL( J)
90 13 =1 , L I UH

U-HLP- ( T )=IJH ( T ),fr.TI
W" T TE (6, 166) (UH I) I =1,t T MUH)

1. 6 FnRMAAT (9Fj1 .4)
r f L 4; TtA Z- (nT , p I WUH, 9 SUt )
T r ( SU tjk GT . f.9 )G TF; 5.9

TC nT) .LT. ^.o5) Gn Tn 59

: ;i Tn r,

'1 1,7 T=,I IMrS
'JH14P ( I )=C A TCH( J, I

4"CN1 T IN I-
r IS= j PPL 1 ( TMS/D 1

k t.i INT.P .9 t.GS,1GS,0T 1,TSTTMF,jHGP,u1HGP1,2)

,7 Ai L (r.,..V9L( PTJ ,PTJ, nT , tGS, L I "UHi t- 1mr0S ,U.HGPj,
I L T f., " S)

CA I S 0MSN (nT S,L T MrCC, rPS, SUM)
rn C5 1S=1,LTMnCS

5 ' J, f- ISXLP

A LIMTT=TMAX/r)TS
CM Hyn C,FM fXN, NHS, Y K,rT.,OS,NHL,2)

L I M'i =NJ-4L- 41 ( J)
A1 A? T=ILI MiJH

1JIHI P ( T )=WAi( T ) *DTS
W ITFr( (,9166 ) (tH ( T ),T= 1,L TMUH)

CMAl L ST MSPN(DTS ,1, T mUHJH, SUM)
1TF.ATF JNTTL FDFJ1TF CeNT TNUTTY T". ACHTPVFP

10 TMr- LjNEAP RFSFPVT P RFSPONSF
IFC';M .GT. . .ANf). SUM .LT. 1. )- Gfl T 64
r'T I=)TS/1-.)

0 fl 67 I=1,1 ITMGS

'7 NT N UF
r Al I CCNVnt-(fTS,PTS,OT S,L IMGS,L MHtI IMGS-r,

IUwLR , GP )
CALL S TMSfN(nTSLTmGCSrPS, SUM)

r) TS=1,LIMGPS
5 r- )14( j, 9 s )=G3S ( I S )*X LP
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SUROqUT1NF CfONVOL (DO P,nTO,DTS,NM,L IMH,LTMG,RAIN,UHP,GCS)
r T-IS SUfIROUTTNF PFRFrRMS THF rnNVOLUTION

r)T Mr-N,;I N PA IN ( ,UHP(1) ,G W4O 1 9,GS S (7TV), T T ME (5on)
CO ,N/CATCAR/AUDPTDURXLAm4A,CJUTCFF

YI A r= flr /DTQ+ .?5

I M=L T MH+L A G*NM
(7 tJ FQASE (G- 4 ,GSS,

Lm=LIMH

K=LA*(N-1)

P 19 !=N,LTM
J= T-K I

Ir(IJHP(J) .T. CUTPFF) Gr) T 18
17 G(I)=r(I)+UHP(J)*RAIH(N)

Q CONT T NUF

LI =L!M+LAG

C CCNVFPSTON TO TTMF STEP=OTS
XLr.=DTS/)TQ
LG=XLG

TF (nLr G .F. '),.0 r, G1 T n 4,
T c YLG .JT. 1.15) Gr TO 2S

[Y ?6 T=1,LTM
?4 GSS(TI)=GU T)

LTMG=LM
ID Tr 51

4 L T M=L T~/L G
GSS(1)=0 .'

rro -d 1=2,1.1MG
I I=LGr ( T-1 +1

G,',S ( T ) =G( I I)
Gn Tn 9r.
4')" 4' T=l.LTP
T=T+flTO

45 T TMF( T)=T
1 T 'M-=L T A*TO/nTS
CALl. IIT 0 L(L IM,LIMGOTS,DTQ,TIME,G,GS S,?)

5 2sTUp hi
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H=-x viH 41
i J.I U)

61 UkOl 05 di~ .L -i

43U X/ W(IINX-H

l~ivJLI6=FbL Lu

Ut Aj x~) = N x

N AL

[+N=N
H fq X N X

(HINX-NX )-- * L= :

L-.1 ul UU ibo*.. *19* NXUzLd

-44 UH = I u L

L LUi U9) (S1 *t)* NX *dU* ji* *11 HiU)i1l

HNX=NX

HNx= (1

1 0 uUt) IL *U-~ IduAl I

(/&N3t)UAH WrObi.. SNIVH) *1~ U e'33!&Xt.I/)LVtidU.j S. L

Ik'A)IHN NUISN3"vliu
SbiIOAb3S38 N AO 13UOhi HSVN V SI NIVH-I) HJVi 3

SJSN~dS3b dLUA8dlSgd bVEiNII 3HJ. S~iL 3N39 -iNIlubtfls siHJ.
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Y)n 20 J=LJLTMTT
? UHWNM+J)=0.0

75 X=XNH-XN
NHL (N) =LJ
WR TE(6,1100) N,T,OT LIMT ,LJ

1 FORMAT (I10,2F10.4,2II'/

5' NH=N
PFTURN
EN
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SJPRr)UTINF HYOSU.M(X NHNM,TDDTHrTQ, LIMIT ,LimGn)
THT S SUqQ0UTINl q;MRTNFS THE COMPCNENT PFSOOONSFS

C AND TNCORPnRATES THE TIME DELAY TO

ST m.FS I0N HS (3n ) ,T H (3nnr0
CnmmnN /mlf) A T A/UH( (1n0n) , CA TCH( 11), 51)f) ,H SUM( 150fl)
XL AG=TD/rTl-+i.5
L AG=XLt A,
'lL AG=XLAG-I Ar'
IFiDLAG .LT. * Gr) TD 5
LAG=LAG+l

5 L=t IMIT+LAG*NM+16n
CALL ERASF.(HStL,THL)

LTM= ITTT
On ?5 N=1,NM
N-=( N-i)*L MIT
K=LAG*(N-1)
nO IR T=N8,LTM
J= I-K

17 HS( T)=HS( I)+UHtNH+J)
1 CONTINUF

NIr=NR+ AG

LIM=LIm+ AG
?5 C(JNTINUE

T=-DTH
EY' 3n 1=1,LTAM

T=T+nTH
TH( T)=T
HS( I)=HS( I )/XNH

34 CnNTINUF
L =I A S( L IM IT-L T MGO)
TF(LG .GT. 1) GO TO 40
Dfl 35 I=1,LIMTT

-45 HlmUi T )=H, (I
GO Tn 45

4 " CALL T.NTRIPL(LlmGnL IMG0,DTQDTH, THHSHSU.M*l I

45 RETuRN
r- N r
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SuspnUTINF INTRPL(L,L1m,nTXTtHvXVY,JOPT)
DIMFNSTON- TH(1 ),X(1 ),v4M.O')
IF(JnPT .GT. 1) GC TC A
THIS 9PANCIJ r)ETFPMINFS THE VALVE CF Y CORPFSPnNDING Tr
A PATTrULAR !X AT TT'kfF T

K=1
T=0.
T (T .,E. TH(K)l GO TO 5
T=T+OTX
GO TO 1

5 TF(T .GE. TH(K) .AND. T .LF. TH(K+1D) GO TO 7
K=K+I
GOf TO 1

7 nTn=(T-TH(K))/nTH
J=J+.
Y(J)=(X(K+I)-X(K))*DTD+X(K)
T=T+DTX
IF(J .rF. L) GO TO 25
GO TO 1
TqIS 89ANCH PEPFOR nS CONTINUOUS STPATGHT LTNF
TNTFRPr'LATION RFTWFEN TWO VALUFS OF X

-1 TH( )= .
T

Y (1) =1.*
9 T=T+r-TX

TI(T .LE. TH(1+1)) GO Tfl 15
I CINT INUE

Y( J)=.(
GO Tr 2n

15 DOX= (T-THI I)) (TH( 1+1 )-TH( ))

?' TF(J .E. IM)GC TO 25
C,o Tn 0

?5 ETTURN
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C
C
C
C

SURPOUTTNE EqpOR tG,GP,N,DT)
THIS SUAROUTINE COMPUTES THE ANTEGRABLE SQUARE ERROR
AND THF CORRELATION COEFFICIENT BETWEE14 THE TIPES SERIES
G ( ASSUME) TO PE THE NORM) AND GP
APPLTrATTnN HERE IS FOR THE FTtTING PROCESS
OtMFNSTnN G(l),GrP(I)
SUMA=') .
SUM f= 0.

SU ME =.
N ?=M/ ?+n .5
DC 1 T=l,N
SUMA=SUMA+G( I)**2
SUMR=S(JMB+G(I)*nT
StJMC= SUMC+( GP.( I )-G( I )**2) *DT
SUMD=SUMO+GP( I )**2

IP SU4MF= UME+C(I)*GP(IJ
10 SUMX=A 3S( ( 2.r*SUJME-SIMD)/SUMA)

FPRrPS=SQRT( SUMC )*In. /SUMB
rCriR=SQRT( SJMX)
WRITF(6,1nn) FRRORS,CORR

l^- FnRMAT(///,InX'lNTEGRAL SQUARE ERROR ='F8.3,/,10X,
1'CoRRFLATTCN COEFFTCIENT ='F8.4/)

r ETUP N
END
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L=1
MY=M-1
no Pm =1,NLL
F=I-1
XPR=XR+F*XSCAL

q~n 00 55 IX=Jv,1ll
95 UT(IX)=LANK

00 6n J=1, Y
Ll=L+J*N
*JP=( (A(LL)-YMIN
fUT(JP)=IANG(J)

6 CfnNTINUE
WRITF(6,2) XPR, (OUT ( 1i), 1Z=1, If1)
t. =L+1
GO TO 8n

70 WRITE(6,3)
Al CnNT1NUF

WRTTE (, 7)
YDP (1)=YM&4N
nn 9m KN=1,9
VO YPP(KN+i)=YPRKN)+YSCAL*.
YVP(11)=YMAX
WRTTF(6,8)(YPR(fP)vP=1,11)

Q5 RPTURN
EN D

5461 019

134

) /YSCAL)+I,.)




