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ABSTRACT

A distributed quasi-linear model of direct catchment runoff is
developed consisting Qf cascades of linear reservoirs connected by
linear channels. By fitting to the kinematic wave, the model para-
meters are expressed in terms of the physical characteristics of the
catchment and the impulse response function is constrained to be.
input~dependent.

Separate models of overland flow and streamflow are developed
facilitating consideration of spatially variable inputs. Investi-
gation into the sensitivity of the catchment to distributed inputs
illustrates the failure of the kinematic wave method to provide
realistic hydrograph dispersion when applied to the flood-routing

problem.
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Chapter 1

INTRODUCTION

1-1. Statement of the Problem

The objective of this study is to develop a distributed linear
model for direct catchment runoff. This is a significant extension to
the common lumped linear representation in that it has the capability
to handle spatial variability of the input rainfall and yet retains
the simplicity of the superposition approach applied in unit-hydro-
graph practice.

1-2. Scope of the Investigation

Cascades of linear reservoirs, connected by linear channels and
each having lateral input, will be used to represent the catchment.

In order to relate the parameters of this model to the physical
features of natural catchments, the model will be fitted to an analyt-
ical representation of nature. The kinematic wave is assumed to’
embody the essentiai features of surface runoff and will be used here
for this purpose.

Separate model components will be used to represent overland flow
and streamflow. A two-dimensional geometric‘representation of the
catchment will provide the linkage between the domain of overland flow
and that of streamflow. The overland flow model will receive lateral
inflow in the form of an excess in rainfall over infiltration. Appli-

cation of the methods developed in this work thus requires that rainfall
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data be transformed to a rainfall excess with a suitable infiltration
model.

A significant improvement on the strictly linear approach is
achieved by using an impulse response function that is input-dependent.
This distributed model will enable us to study the response of
the catchment to spatially variable inputs. This will provide insight

into such fundamental questions as the evaluation of errors due to

lumping of the input, the importance of considering moving storms, etc.
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Chapter 2

LINEAR RESERVOIR MODELS

2-1, Results from Linear Systems Theory

The physical behavior of a catchment in converting areally distri-
buted rainfall into concentrated streamflow may be represented here by

an equation of the form

ano dn-lQo
An(x,Qo,t)dt + An_l(x,Qo,t);;;:I—-+ cee 4 Ao(x,Qo,t)Q0 = Qi(x,t)

(2-1)

The variable coefficients determine the following characteristics of
this nth order system:

1. The system is non~linear due to the dependence of

the coefficients upon the output, Qo'

2. The system is time variant, due to the time dependence

of the coefficients.

3. A spatially distributed input, Qi’ is allowed by

virtue of its dependence on the coordinate direction x.

For simplicity of analysis, the system will be reduced to a time-

invariant linear system. Equation (2-1) then reduces to

anO ‘ dn—IQO
o0 + An_l(x);:;:I— + eee + Ao(x)Qo = Qi(x,t) (2-2)

An(X)
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For zero initial conditions, the solution of (2-2) is given by

L t
Q (t) = I [ Q(x,0)h(x,t-0)dodx (2-3)
o O

where

L

-

the length of -the catchment

h(x,t)

[

the impulse response function
h(x,t) satisfies the homogeneous equation associated with equation

(2-2)

, n n-1
A )dhG.t) o, (xd—hG.t) |, (x)h(x,t) = 0 (2-4)
n dtn n-1 dtn—l o

Through equation (2-3), the kernel or impulse response function,
h(x,t), uniquely characterizes the system (2-2). The problem of
determining the form of h(x,t) from records of measured input and
output is called "identification" and corresponds to the task of
deriving the instantaneous unit hydrograph (IUH) with which hydrolo-
gists are familiar. The process to be employed here will be one of
representing h(x,t) by combinations of linear reservoirs and linear
channels.

2-2. Linear Channels and Reservoirs

Linear Reservoirs -- The process by which a catchment transforms
rainfall excess into direct runoff will be separated into a storage
function and a translation function. Let the storage action which

causes delay, modulation and attenuation of the input rainfall excess,
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be represented by

S(t) = kq(t) (2-5)
where k is the proportionality constant or time constant relating
storage S(t) and outflow Qo(t) of a single linear reservoir. It is

equal to the average delay time imparted by the reservoir to the

inflow Qi(t)’ Using the continuity equation
Q,(t) = Q (£) + % s(t) (2-6)
i o dt

and equation (2-5), we obtain the first order linear equation

dqQ,
1,1, .1 -
& kW% Tk (2-7)
For a unit step input
0 ,t<a0
Q4
el A (2-8)
1 , t>0

The total solution to (2-7) is the sum of the homogeneous and

particular solutions
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Q = c]_e_t/k + ¢y (2-9)

Noting that

k as t >

o]
]

we require that
Thus the unit step response is
Q = cle_t/k + k (2-10)

The unit impulse response for the single linear reservoir is then

simply

-t/k

C
h(t) = —2 = - 1—{—1— e (2-11)

This unit impulse response, as well as all others presented later,
is non-zero only for positive values of the argument. For an inflow

volume Vo’ conservation of mass gives

€1 t/k
r vy - r _1 -
i h(t)dt = Vo | % ©

dt = - ¢ (2-12)
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Thus for an instantaneous input, the response or outflow from a linear

reservoir is an exponential decay from a value dependent on Vo

<

-t/k

h(t) = e (2-13)

)
k

Successive developments in the theory and hydrologic application
of this simple impulse response, or instantaneous unit hydrograph
(IUH) have been carried out by Zoch (1), Nash (2) (7), Dooge (3),
Singh (4) and Kulandaiswamy (5).

Linear Channels -- The case of pure translation can be handled
with a linear channel, which was first introduced by Dooge (3). This
concept is analogous to a channel whose area-discharge rating
curve is a straight line. The linear channel, due to constant dis-
turbance velocity at all stages, provides no change in shape of the
input wave.

In a manner analogous to the linear reservoir we may write
A=Q/V (2-14)

where V is the mean velocity of the channel of area A. Combining the

continuity equation

aQo oA

-0 , oa _ 2~15
=t ot 0 ( )



24

with equation (2-14), the following equation is obtained

3Q 3Q
o ,1_ "o _
ox =9 0 (2-16)
\'
which has the solution
Qo(t-T) = constant (2-17)

This of course implies only translation and T is equal to the wave
travel time. Note that the impulse response function of a linear
channel is not a function of time.

The linear reservoir and linear channel placed in a series
arrangement can be represented by a single block diagram as shown in
Figure 2-1. -Analytically, we have just a shift in the time scale

from equation (2-13). That is

v e—(t—'r)/k , t > T

h(t) = (2-18)

-°
k

Qualitatively this function is depicted in Figure 2-2 for a unit

input (V0 = 1).

2-3. Cascades of Linear Reservoirs

The equations for a general network of linear reservoirs, as
identified by March and Eagleson (6), can be derived from the con-

figuration shown in Figure 2-3. Qil’ QiZ’ etc. are different, time-
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QO
Figure 2-1 Block Diagram of Basic Linear Elements
A
+17k
™
|
-
=
-
O ¢

Figure 2-2 Impulse Response Function for a Single Linear Reservoir

and Linear Channel Placed in Series



Figure 2-3

QSUN\

Cascade of Linear Reservoirs with Distributed Inputs
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varying lateral inputs. An alternative representation, Figure 2-4,
emphasizes the distributed nature of the general network by arranging
these reservoirs in a parallel array of cascades of progressively
higher order.

Rewriting equation (2-7) for the first cascade in terms of the

differential operator (D = %E
G
Qil 1+k1D ‘ (2-19)

and similarly for the entire system

second cascade Q2 _ 1 (2-20)
QiZ (l+k1D)(l+k2D) ‘
nth cascade Qn - 1 (2-21)
Qg  (1+k;D)(L+k,D)«++ (I+k D) }
Thus the process of summation yields
qum B Q1 + QZ + Q3 oot Qn (2-22)
or

0 =l RV PN n
“sum (1+1<1D) (1+k1D)(1+k2D) (l+le)(l+k2D)'--(l+knD)

(2-23)



28

* Qsum

Q

Alternative Representation of a Linear Reservoir Cascade

Figure 2-4

with Distributed Inputs
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Multiplying and dividing (2-23) by the denominator of the last term

. _ (l+k2D)(1+k3D)'°'(1+knD) Qil + see + Qin
sum (1+le) (1+k2D) vee (l+knD)

(2-24)

The solution to (2-24) can be obtained by taking the Laplace trans-
form term by term. Letting hj(t) represent the unit impulse response
to the cascade having Qij as input, as designated by the dashed
rectangles in Figure 2-4, the output can be written as the scalar
product of an hj and Qij’ where each term in the product designates

the convolution operation.

Q m hj(t)’Qij(t) (2-25)

sul

where

Quyy = (B (O)+h, () +eeth (£)) + (Q; (D)4Q,(B)+++4Q, (B))  (2-26)
or

Qo = By (£)%Q,;(E) + hy(£)%Q, ,(£) + =++ + h_ (£)*Q, (t) (2-27)

where the asterisk signifies the convolution operation.
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A special simplified form of equation (2-24) results from con-

sidering the case of uniform input, Qil

Qo = Q4g = *°° = Q= Q

in
and equal linear elements, kl = k2 = k3 = eee = kn = k Equation
(2-24) can then be written
n-1 n-2
(1+kD) + (1+kD) + o0 4+ ]
Qoum = , — Q - (2-28)
(1+kD)
The compdnents of the uﬁit impulse'fesponse are thus
-t/k
e
-t/k(t
e ()
hy(8) = =577
-t/ktyn-1
) e )

The last of equations (2-29) is recognized as the n-element
Nash model and is frequently used to represent the behavior of
natural catchments. This, however, amounts to a lumping of the

catchment behavior since all input passes thru the entire system.
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2-4. Distributed Linear Models

Two lines of reasoning have evolved in the search for a linear
model to account for the distributed nature of catchment behavior.
The first involves the class of techniques knpwn as Time-Area Methods.
Dooge (3) has introduced the concept of a routed time-aréa curve
which recognizes the spatial variability in the input rainfall
function. Each segment of the drainage basin is represented by a
single linear reservoir with a separate value of k. These give the
separate cascades of Figure 2-4.

Representing translation time by a linear channel in éach

cascade, it is shown (3) that the IUH of a given area becomes

V_ A(t) '
0 S(t - 1)
== 2-30
h(t) = 3° (I+E.D) (14k D) -~ (¥ D) _ 1(&) da (2-30)
o 1 2 n )
where
8§ = Dirac delta function
T = translation time of the area element
i(A) = ratio of local to average rainfall intensity

By dividing the catchment into a set of segments bounded by
isochrones of constant travel time, T, to the gaging point, equation

(2-30) can be converted from a surface integral to a single integral
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‘ Vo tStc S(t - 1) dA
h(t) = — - ‘ § == -
© =3 (1+k,D) (1+k,D) + =+ (1+k D) dt dt (2-31)
where
tC = time of concentration of element
Letting 1' = T/tC and t' = t/tc’ and defining w(T') = i %% » Dooge
finally expresses the IUH as.
\) t<l
_ _o B 8t -1 , ,
b =2 [ (T+D) (1+k,D) -+ (1#k Dy ¥ (T') 4T (2-32)

The second line of reasoning involves a special case of the
general Dooge model. The simplest of tﬁese is of course the Nash
model with the addition of a linear channel. This model has been
studied by 0'Meara (8) and is depicted in Figure 2-5. 1Its impulse

response function is simply a lagged version of Nash equation

” —(t-D/k a1
h(t) = & T =t , t>T (2-33)

0'Meara (8) has also considered the model indicated by equation
(2-28). The impulse response function is obtained by simply summing

the components of equation (2-29)
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Q

Figure 2-5 Linear Channel in Series with a Linear Reservoir Cascade
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N e-t/k (t/k)n—l

Hy(e) = nzl T (o)

(2-34)

The system represented by equation (2-34) may be constructed of
N first order linear differential equations or a single Nth order
linear differential equation. This model takes advantage of the
simplicity of the Nash model but accounts for the fact that the input
should be distributed areally rather than lumped into one input which
is passed through the entire system. Thus each cascade of Figure 2-4
is considered to be a Nash model of the same linear elements.

This model, unlike the routed time-area method, can not handle
different lateral inputs corresponding to an areally distributed
input rainfall function.

2-5. A Distributed Linear Reservoir -~- Linear Channel Model

A distributed linear model has been developed that incorporates
the concepts of the three models discussed in section 2-4. The
Distributed Linear Reservoir -- Linea¥ ChannelIModel, hereafter
called the Distributed Linear Reservoir Model, is composed of linear
reservoirs connected by linear channels as shown in Figure 2-6.

From this representation the foliqwing characteristics are evident:

1. The model recognizes the spatial variability of

typical rainfall patterns by allowing different time-

varying lateral inputs.

2, By not lumping the translation effect into a single

linear channel (as in Figure 2-5), the concept of



Figure 2-6

3

e
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Distributed Linear Reservoir Model
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different translation times from each segment of the

catchment to the gaging point is retained. This ié physi-

cally more realistic and is analogous to the time-area
method of Dooge.

3. The storage constants, k, are equal as are the

ﬁranslation constants, T. ,This is consistent with the

particular geometric model»tha; will be chosen (Chapter 3)

to represent the catchment.

In section 2-1 it was shown‘that‘a linear channel placed in
series with a linear reservoir only shifted the time scale (pure
translation) and was accounted for merely by redefining the time
variable in the linear reservoir equation. The components of the
unit impulse response function are thus dependent upon their rela-
tive location on the catchment, measured along the coordinate

direction x. Equations (2-29) are thus augmented to become

-(t-1)/k
hy (x,t) = S— | , t>T
-(t-2D) /% |
hy(x,t) = =7 _tl';ZT) , t>21
: -(t-n1)/k . n-1
h_(x,t) = & Ty £ , t>ar (2-35)
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The unit impulse response function for the Distributed Linear Reser-

voir Model is the summation

e—(t—nT)/k‘ -n n-1

N
1
y(x.8) =y nzl KT (n) 5 > bt (2-36)

This equation characterizes the Nth order system described by
the differential equation (2-2). The output can theoretically be
obtained by the convolution indicated in equation (2-3). The IUH
for equation (2-36) has the qualitative form of Figure 2-7.

The structure of the model invites a sensitivity analysis of

the catchment response to areally variable input rainfall functioms.
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Increasing n

Hy (1)

Figure 2-7 IUH for a Distributed Linear Reservoir Model



Chapter 3

OVERLAND FLOW AND STREAMFLOW

3-1. Introduction

39

A catchment is a very complicated physical system with stochastic

inputs. However, given the physical characteristics of the system,
its initial state, and the inputs, the response of the system is
deterministic to a large degree. The basic element of direct catch-
ment runoff is a: surface with overland flow discharging as lateral
inflow to a stream channel.

Overland flow originates from storage in surface depressions.
Inflow into these depressions occurs when the rate of rainfall or
snowmelt exceeds the infiltration capacity of the surface. Overland
flow is generated by an excess of gravitational forces over those
forces developed by surface irregularities and surface tension.

This flow begins as a thin-sheet flow but is focused into small -
channels by surface irregularities. As these channels merge with
one another, the domain of streamflow is formed. This concept of
overland flow is useful in interpreting the physical meaning of
simulating overland flow by means of linear reservoirs and linear
channels.

3-2. The Equations of Motion

Direct catchment runoff can be modelled mathematically by

considering conservation of mass and momentum as applied to the



control volume of Figure 3-1. The resultingvdifferential equations
are quite complex but may be reduced to a tractable form by making
the following primary assumptions (9):

1. The channel is of constant cross-sectional area over

each reach.

2, Hydrostatic pressure distribution at each section.

3. The momentum distfibution coefficient B=1.

4. Surface tension forces are negligible.

5. The transverse water surface profile at any x is

horizontal.

6. The x-component of momentum flux due to lateral

inflow is negligible.

7. The overpressure due to vertical inflow is negligible.

These assumptions simplify the momentum equation to

3V 3V T

v v _ _dyy _ o (3
ot +V ox g(So Bx) PR (3-1)
and the continuity equation to
3(AV) | A _ i}
ax  t e = 9 T Bi, (3-2)

where qp, = lateral inflow due to surface runoff
B = channel width
i = rainfall excess intensity

40
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Section A-A

Figure 3-1 Control Volume for Flow in Small Streams
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These non-linear partial differential equations have been known
since the time of de St. Venant. They are applicable to one-
dimensional, gradually-varied free surface flows. Analytical solu—b
tions have been restricted to special cases where suitable simplifi-
cations could be made. Numerical solutions using finite difference
schemes have become feasible with the advent of the digital computer.

Under certain additional restrictions, these can be generalized
to demonstrate the essential elementé of‘the surface runoff phe-
nomenon. A summary description of the generalization follows.

3-3. The Kinematic Wave Equations

The derivative terms of the momentum and continuity equation
give rise to two distinct types of wave propagation. If the inertia
forces are important and all inflow terms are negligible, then
equations (3-1) and (3-2) déscribe the movement of long waves in
shallow water. Flood waves in rivers are an example of these so-
called dynamic waves. The other important class of problems is
that in which the pressure gradient and inertia terms of equation
(3-1) are small in comparisbn with those of gravity and friction.
These are the kinematic wave conditions and ére approximately
satisfied by overland flow and by gfadually varied flow in a pris-
matic channel.

The momentum equation is in a much more manageable form if
the kinematic wave conditions can be assumed. However, mere assump-

tion of this type of flow system does not preclude the actual
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existence of dynamic waves. Fortunately, Lighthill and Whitham (10)
have shown that the dynamic component is damped (exponentially)
provided that the Froude number,iFo, satisfies

T =

o 2 (3-3)

<
(gyo)ll2

where V and y, are the average velocity and depth respectively at

uniform flow conditions

Inax = e (3-4)

For steady, uniform flow in a wide channel the momentum equation

reduces to

T ch2
s =-=2- 3-5
85, = oy 2y (3-5)
or
2gS_ 1/2 m
2
qg=vy=(9 y’*-ay°© (3-6)

For a small depth of flow in a wide channel, the continuity equation

can be simplified to the one-dimensional form

30Vy) , 3y _ 4 3-7
9% ot e
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Equations (3-6) and (3-7) are called the kinematic wave equations.

By comparison of these with the 'complete' equations (3-1) and (3-2),
Woolhiser and Ligget (11) have demonstrated that the damping of the
dynamic component will be sufficiently rapid to justify neglecting

the inertia terms provided that

kK =—2— 5 10 | (3-8)

For k0 values smaller than 10, it would be necessary to have short,
channels with small slopes and high velocities. These conditions would
seem more common in streamflow than in overland flow. The numerical
solutions presented by both Morgali and Linsley (12) and Schaake (13),
the latter of which was an urban catchment, conform very closely to

the ko = © curve. Thus the kinematic wave equation appears to be a
good approximation for most overland flow situations.

3-4. The Method of Characteristics

The kinematic wave equations are readily solvable by numerical
methods. Woolhiser and Liggett (11) have found that solution by the
method of characteristics is the most accurate and computationally
efficient of the various finite difference schemes available.
Assuming that aC and m, remain constant with time, it c;n be shown
(14) that equations (3-6) and (3-7) lead to the characteristic

equations for two-dimensional overland flow
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dx mc—1
It = %Y = c (3-9)
dg _dv _ (3-10)

which represent the wave speed, c, and the rate of lateral inflow on
the plane. The essence of the method of characteristics is to find

the space-time (x-t plane) locus of the discontinuity in the partial
derivatives of the important dependent variables, y(x,t) and q(x,t).
The path of wave propagation, called the characteristic path, is

obtained by integration of (3-9) and (3-10)

t t mc—l

x - x =ma . (ft i (0)do + yo) dt (3-11)

o (o}

Streamflow can be added to the model (15) by treating the

catchment hydrograph q(x,t) as lateral inflow to the stream. The

equivalent kinematic wave equation is

2gSo,1/2

cfP

m
R aa ®

(3-12)

where P is the wetted perimeter of the stream channel. The corre-

sponding characteristic equations for the wave speed and for the
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lateral inflow into the stream are

‘ dx _ Ams—l (3-13)
dt OLsms ‘
and
%‘% + %‘ti = q, (3-14)

3-5. A Geometric Catchment-Stream Model

To apply the foregoing analysis to natural catchments it is
expedient to retain only those parameters which are essential from
physical considerations. Wooding (15) has found that a simple model
of the type shown in Figure 3-2 adequately preserves the main topo-
graphic features of a catchment combined with a stream. The para-
meters which have dominant influence upon flow in the catchment and
stream are slope, roughness and flow regime. These are taken into
account by the constants ALs M5 Oy, M in equations (3-9) and (3-13).
The component of slope in the direction of the stream is neglected on
the catchment surface. As the catchment length, Lc’ is assumed con-
stant everywhere, it is obviously an "effective" catchment parameter
which represents the average length of surface flow path tributary
to the main stream. Clearly, in this model, A = 2 Lch'

For this model a special definition for the catchment time of

concentration can be derived. For temporally constant rainfall
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excess, i and letting to = 0 in equation (3-11), the characteristic

*?

curves are given by

mc—l mC
X = aci* t + x (3-15)

For X, = 0, equation (3-15) specifies the "limiting characteristic”
which describes the disturbance emanating from x = o where there is
no inflow from upstream. For the particular case x = Lc’ the
limiting characteristic defines the maximum time during which growth
of depth (and hence discharge) can occur on the catchment surface.

Thus the catchment time of concentration, tc’ is given by

(3-16)

This definition requires a storm of long duration, tr’ such that

tr > tc’ Note that if the rainfall excess stops before the char-

acteristic reaches the end of the catchment then the right~hand side

bf equation (3—10) equals zero. This complicates the formulation

of equation (3-11) and thus a simple expression of the time of

concentration, as in equation (3-16), is no longer possible.
Maintaining the same restrictions on the problem, another useful

definition is available to represent the relative dynamic importance

of streamflow to overland flow.
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If the lateral inflow is constant in time and space, such as
would occur for t > tc for a storm of infinite duration, then the
streamflow at x = L_will rise to a steady-state maximum, Q .

T - 7s s smax

Letting the stream concentration time for this condition be ty = Atc

2q Lg, 1/m Q 1/m
- - ax s s _ smax s _
AsmaX = quaxtc = - o ) = (—a—s ") (3-17)

Using equations (3-6) and (3-16), the ratio of concentration times

becomes

t

1/m
L L /a)" s

-
1/mc tc

A (3-18)

2Lc(i*Lc/ac)

3-6. Selection of Physical Parameters

The applicability of any catchment model to an actual problem
depends upon a careful choice of catchment and flow parameters.
Because of the inherent geometric approximations in a two-dimensional
catchment-stream model, the task of estimating average channel slopes,
lengths and roughness may be difficult. A sensitivity analysis of
the hydrograph to changes in these parameters has been performed by
Morgali and Linsley (12).

k?o estimate the flow regime (i.e., laminar, turbulent, or
intermediate) and the roughness coefficient, it is common practice

to rely on experimental results. By definition



a= (3-19)

where the friction coefficient, Ces is a function of Reynolds number

and of the relative surface roughness. For laminar flow,

cp = ]t% (3-20)
with
R = Reynolds number = %X < 500 (3-21)
we get
g S,
o = 3v and m = 3 (3-22)

For turbulent flow using the Manning equation

cg = 0.9n v (3-23)

where n is the Manning roughness coefficient. Thus

o = L:49 ¢ 1/2

- o and m = 5/3 (3-24)

Overland flow is reputed to be laminar, however, the resistance
coefficient, Ces has been found (13) to be on the order of 10/R ,

which is higher than that obtained theoretically (3-20). This is

50
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probably caused by turbulence effects due to falling raindrops on
the flow surface and the lack of two-dimensional flow as assumed.
For flow on natural surfaces there will be fluctuations in depth
and roughness so that the flow regime may vary between laminar and
turbulent. The work of Horton (18) and others indicates that over-
land flow in this intermediate regime is best approximated with a
value of m = 2.

The streamflow component of this model is applied using as
and m_ as given by the Chezy or Manning formula. In storm runoff
situations where the lateral inflow is negligible in comparison
with streamflow (i.e., A very large), the kinematic wave equations
are of questionable value and a more accurate procedure'would be to
consider the problem as one of flood routing and apply the complete
equations (19).

3-7. The Impulse Response Function

To obtain the instantaneous hydrograph, two different approaches
are available. One technique (8) involves first combining equations
(3-1) and (3-2) into a single non~-linear second order partial differ-
ential equation. The equation can then be linearized by referring
the discharge, depth and velocity variables to their steady-state
values. The solution to a Dirac delta function input can be obtained
using Laplace transform techniques. Computationally it is desirable
to use a reduced momentum equation (such as the kinematic solution,

equation (3-5)) to derive a simplified impulse response function.



The approach to be employed here is derived from consideration
of the characteristic equation (3-11). Considering a temporally
constant rainfall excess, i,, of short duration such that tr <t

the catchment discharge hydrograph or pulse response can be specified

(9) as
y =it ,0<'tstr< t,
mC .
=0y 3 y o= 1t ,tc>tr<_tstp
mc“1 -1
L= &y (yi,” + mc(t—tr)) , t> e (3-25)

where the length of the peak is

t -t
t =t +-———o=>=% (3-26)
) T m
c
in which
' LC
T (3-27)
o d ¢,
and
d = it . (3-28)
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The impulse response function can be obtained from the pulse
response function by taking the limit as the pulse duratiom, tr’
goes to zero. For this limiting case, the discharge begins immedi-

ately and remains constant at the peak value, qp,

(3-29)

Qo
]

ad
[

. ' - ’
until time tc/mc which is the time for the disturbance to travel
the full catchment length at constant depth, d. The recession curve

(t > tp) of the instantaneous hydrograph is given by

(3-30)

Note the similarity between this impulse response function‘
depicted in Figure43—3 and that obtained from the Distributed Linear
Reservoir Model shown in Figure 2-7. This fact will be exploited in
determining the parameters of the latter model.

3-8. Conclusions

The kinematic wave theory is a reasonably accurate, computa-
tionally efficient and well-documented approach to overland flow
and certain streamflow problems. This is the primary reason for

its use as a standard of comparison in the development of the
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Figure 3-3 Kinematic Wave Impulse and Pulse Response Functions
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Distributed Linear Reservoir Model. All concepts introduced in this
chapter, including the two-dimensional catchment representation, will
be incorporated into the Model. Although the Model may suffer from
some of the same weaknesses of this particular application of the

kinematic wave theory, it will be in no way dependent upon this approach.
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Chapter 4

A QUASI-LINEAR REFINEMENT OF THE UNIT-HYDROGRAPH METHOD

4-1. Introduction

The non-linear, areally distributed nature of the rainfall-runoff
process has been illustrated in the discussion of the kinematic wave
presented in the previous chapter.

Traditional hydrologic methods have, for reasons of computational
simplicity, adopted lumped, linear approximations of this behavior.
The characteristic response function of this linear system is known as
the unit hydrograph and in hydrologic terms the associated assumptions
are:

1. The effects of all pertinent physical characteristics

of a catchment are reflected accurately by the hydrograph

of direct runoff from & storm having areally and temporally

uniform rainfall excess.

2. For a given duration of rainfall excess, the duration

of surface runoff is essentially constant and independent

of the magnitude of the rainfall excess.

3. The discharge ordinates of direct runoff hydrographs

are proportional to the total volume of direct runoff.

4., The time distribution of direct runoff from a given

storm is independent of concurrent runoff from antecedent

storms.
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Assumptions 2 and 3 are illustrated qualitatively by the hydro-
graphs sketched in Figure 4-1. In actual practice, Ishihara (21) has
found that unit hydrographs derived from floods on the Yura River show
a five-fold variation in the peak discharge and a two-fold variation
in the lag time. It was observed that this non-linearity corresponded
to the occurrence of overland flow during the larger storms.

The advent of digital computers has removed the need for these
regtrictive assumptions, since in principle, the kinematic equations
(and indeed the "complete" one-dimensional equations) can now be
solved for arbitrary variations of the input rainfall and catchment
parameters. In practice, however, the computer time necessary for
this approach is very large and we are led toward other simplifications
which will produce computational efficiency without undue sacrifice
in physical validity.

4-2, A Quasi-Linear Approach

The approach to be used here is to develop a model which is- quasi-
linear in that its response function is input-dependent and which is
distributgd in that different parts of the catchment have different
responses.

Application of the Distributed Linear Reservoir Model requires
convolving the input rainfall excess Qi(x,t) and the impulse response
function HN(x,t) given in equation (2-36). The form of the convolution
operation denoted in equation (2-3) can be simplified by lumping the

input over the distance L/N in the direction x. The output hydrograph
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is then given by
t L
Q(t) = [ Q;(n,0)Hy(n,t-0)do (4-1)
o

Due to the discontinuous nature of the input rainfall function and the
forﬁ of the response function, obtaining a closed form expression for
Qo(t) would rarely be feasible. Therefore, it is convenient to intro-
duce discrete notétion and to perform the integration numerically.

This implies that the input rainfall function and the impulse
response function are defined at discrete intervals, spaced Ao in
time. The response function is no longer instantaneous and must be
defined for a unit-time. This unit-time is called the pulse length
and is denoted by tu.

The pulse function, Ru(c), is defined at discrete intervals
spaced A in time and is of constant magnitude Ru over its duration
tu. The components of the lumped pulse response function, hi(n,ﬁ),
are obtained by convolving the discrete form of equation (2-35) with

the pulse function

i
P

hy(1,1) = oleu(o)hl(l,i-cHl)Ac
P i

h (n,1) = ] R (0)h_(n,i-0+1)40 (4-2)

o=1
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The convolution process of equation (4-2) is illustrated in Figure 4-3.
The length of the output time series, hz(n,i), is determined as shown,
Similarly the pulse response function, H;, in discrete form is

obtained by

i
H;(n,i) = célR“ (0)Hy (n,i-0+1)A0 (4-3)

To use the pulse response function, H;, in a discrete form of
equation (4-1) requires that the input rainfall function be synthesized
as shown in Figure 4-2 and then normalized with respect to the pulse

height

i
Q (1) = Ogl(qim,o)/Rumg(n,i-oﬂmo (4-4)

For a given storm, the overland flow hydrographs generated by the
indicated convolutions for a range of pulse heights can be compared to
those obtained by a characteristics solution of the kinematic wave
equation. Since the pulse height is analogous to the depth in the
shallow water wave speed equation (3-9), the time to the hydrograph
peak will be inversely proportional to the pulse height. This is
illustrated in Figure 4-4. We will consider the optimum pulse height

to be one which minimizes the following integral square error:
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2 _ v 2
e” = ] (q,(M-q (2)) AL (4-5)
2=1

where ka(ﬁ) is the output predicted by the kinematic wave. The derived
impulse feSponse functions of linear catchment models are actually'input
(storm) dependent. Thus the parameters of such a model can only be
oﬁtimal if they too'are input-dependent.

4-3. Selection of the Optimum Pulse Height

In developing an analytical procedure to determine that pulse
which best represents the lag time and the peak discharge for a given
catchment and a given storm input, the mechanism which transforms
rainfall excess into overland flow is of primary importance. Thorough
testing of the Distributed Linear Reservoir Model has established that
the optimum pulse height for a given overland flow situation is
essentially independent of stream parameters, i.e., it is invariant
with the fitting parameter A (equation 3-18).

In the manner of Ishihara (21), we can use the kinematic wave
theory to define an equivalent rectangular block of rain which will
produce the same peak discharge as the actual (time-varying) rainfall
function.

The discharge per unit width is obtained by integrating equation
(3-10) along a characteristic beginning at x = 0 and substituting the

result in equation (3-6)
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t mc
() = a ([ 1 (o)ar) | (4-6)

t
(o]

Let imp be the average rainfall intensity contributing to the peak
discharge and t -to as its duration, where tp= time to peak discharge.
Referring to Figure 4-5, we desire to find the time to at which this
square pulse begins. Substituting imp(t—to) for the rainfall function

in equation (3-11)

ltp mc-l
x-x =L =mna (1 (e-t)) © at (4-7)
o c c v, Vmp )
o
and integrating
mc-l m '
Fc = odps (tp-to) (4-8)

We cannot solve this directly for t0 since imp is a function of to.
However, multiplying both sides of (4-8) by imp we obtain the maximum

flow condition cited in equation (3-4)
3 - - c -
q =i L = ac[imp(tp to)) (4-9)

Ishihara (21) has suggested that this depth of overland flow,

imp(tp—to), is proportional to the depth of the pulse, Ru'tu’ used
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in the unit-hydrograph method. His equation for the pulse height is

R ot = (&) Luotoc (4-10)

where t = (t -t ). Given i , t is merely the time of concentra-
pc P o mp pc
tion as defined in equation (3-16). Ishihara has recommended that tpc

can be taken as twice the lag time, t These variables are depicted

0
qualitatively in Figure 4-6.

It has been found that imp can be approximated by the peak of the
rainfall excess intensity, ig, for overland flow situations of small
LC and/or high values of o, such that LC/OLc < 500. However, most
overland flow situations correspond to the case of Lc/ocC > 500 for

which it has been found that imp is better approximated by an average

rainfall intensity defined by
[ 1 (at (4-11)
t e

*
Using ie in equation (3-16) we can define an average time of

*
concentration, tc

(4-12)
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* *
It has been found adequate to substitute t, for tpc and ie for
imp in equation (4-10) and combine these approximations and the

coefficient involving m, into a constant, K
* %
R *t = Kei ot (4-13)
u u e ¢
The constant K was evaluated for the case of m, = 2 by a linear

regression analysis of the data presented in Table 1. The resulting

equation for the optimum pulse height is given by

(4-14)

with a correlation coefficient of 0.96.

Table 1 compares the observed and predicted optimum pulse height
for eleven catchments subjected to a variety of input conditions. It
is evident that equation (4-14) is preferable to equation (4—10)'for
at least two reasons:

1. An a priori determination of imp and tpc is not

possible since these values must be extracted from observed

data. Thus the(model parameters could not be input-

dependent if equation (4-10) were used.

2. Equation (4-10) was found to be inconsistent with

the wide range of catchment parameters and input condi-

tions from which equation (4-14) was derived.



Table 4-1 Prediction of the Optimum Pulse Height from
Equations (4-14) and (4-10)

L /o iF i it t e R R R
¢’ e e mp e pc d u u u u
ftesec | in/hr | in/hr | in/hr | hr hr | hr |obs (4-14) | (4-10)
100 .10 .095 .05 1.2 |2.57} .20f 1.0] 1.1 .2
100 .20 .19 .10 .8 |1.84] .20| 1.4 1.5 .3
100 .35 .34 .175 .6 11.38] .20f 1.8f 1.9 .2
100 .50 .49 .25 .5 J1.15) .20| 2.1 2.3 .5
100 .70 .67 .35 A4 991 .20| 2.6| 2.8 .5
100 .40 .37 .20 .6 11.29] .10| 4.3 4.1 .8
100 1.0 .93 .5 A .82 .10] 5.0 6.5 1.5
100 .15 .13 .075 [ 1.0 ]2.22] .30 .8 .9 .2
100 .35 .33 .165 .6 |1.41] .30} 1.1} 1.2 .3
100 .10 .095 .05 1.0 |2.56] .40 .5 .5 .1
100 .25 .235 .125 .6 ]11.63] .40 .8 .8 .1
150 .20 .19 .10 1.0 12.25| .20} 1.9 1.8 b
150 .50 .49 .25 .6 |1.42 .20) 3.0] 2.8 .6
150 .15 .13 075 | 1.2 }2.72} .30| 1.1} 1.1 v 2
150 .33 .30 .165 <7 11.73) .30} 1.7} 1.5 .3
200 .10 .09 .05 1.6 |3.65] .20 1.5] 1.4 .3
200 .20 .19 .10 2,4 12,581 ,20) 2.5} 2.0 .9
200 .40 .37 .20 .8 11.83] .20]| 3.4 2.9 .6
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Table 4-1

(continued)

L /o 1F i e 5 e | R R
c' e e mp e pc c u u u u
ftesec | in/hr | in/hr| in/hr| hr hr hr jobs, | (4-14) ] (4-10)
270 .10 | .095 | .05 | 2,0| 4.21] .20 1.9] 1.7 4
270 .20 | .19 | .10 | 1.4 3.05| .20| 2.6 | 2.4 .5
270 .35 | .36 | .175 | 1.0] 2.25] .20| 3.2 3.1 .7
270 .50 | .49 .25 .8| 1.88] .20] 4.0| 3.8 .8
270 .15 | .13 }.075 | 1.6 3.52] .30| 1.3| 1.4 .3
270 .33 | .30 | .165 | 1.0| 2.31] .30| 2.1 | 2.1 .4
333 .10 | .09 |.05 | 2.4 4.71| .20] 2.5] 1.9 4
333 .10 {.09 |.0o5 | 1.6| 4.71] .20} 2.1 | 1.9 .3
333 .20 .19 |.10 | 1.6| 3.33] .20] 2.9 2.6 .6
600 .10 | .08 |.05 | 3.6| 6.32] .20]. 2.2 2.5 .6
1250 20 | .16 |.10 | 3.6] 6.45| .20 5.0 5.1 1.2
1750 .20 | .16 .10 | 6.0] 7.64| .20} 6.3] 6.1 1.7
2500 .10 | .05 .05 [10.8]12.9 | .20} 4.5] 5.1 1.1
2500 .20 | .115 |.10 | 8.2| 9.13] .20| 6.5] 7.3 2.0
2500 .40 | .30 |.20 | 3.8| 6.45| .20| 5.5| 5.0 2.3
2800 .20 | .11 |.10 | 9.2| 9.66]| .20 7.5 7.7 2.1
4700 .10 | .07 |.05 |16.4|17.64( .40 3.0] 3.5 1.2
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The effect of storm duration on the error in prediction (Figure 4-7)
indicates that use of an optimum pulse height in equation (4-4) is
particularly important for areas such as urban catchments on which
short duration storms are critical.

4-4. Selection of the Optimum Pulse Length

The convolution process that has been detailed earlier is performed
over discrete time intervals wiﬁh the assumption that the rainfall
excess is uniform over these intervals. Such a temporal lumping of
the input will cause an error in the forecast hydrograph. The pulse
length should be chosen such that this error is negligible. On the
other hand, in the interests of computational economy, the pulse length
should not be overly small. The optimum pulse length is thus derived
from theoretical and economic considerations.

Experience with the unit-hydrograph method has led to arbitrary
or empirical estimates for the best unit-time or pulse length. One

such determination (22) involves the lag time, tg

tu =1/4 t (4-15)

Referring to Figure 4-2, it is obvious that as the pulse length
decreases the area under the synthesized rainfall function will converge
to the actual depth of the storm. For the triangular shaped storms

considered, the following errors as a function of pulse length or

samples per storm were observed:
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Table 4-2 Percent Error Due to Using a Discrete Representation
of the Actual Storm
Samples Actual Predicted Percent
Per Depth Depth Error
Storm in. in,
200 1.0 .9991 0.09
100 1.0 .9966 0.34
67 1.0 .9912 0.88
50 1.0 .9867 1.33
25 1.0 . 9450 5.5

From these results, the pulse length that is recommended for use

with the Distributed Linear Reservoir Model is

Typical pulse lengths are given in Table 1.

t
u

= tr/SO

(4-16)

Their magnitude

precludes the use of hand computation with this quasi-linear unit-

hydrograph method.

. P
Note that the pulse response function H, must

N

actually be defined at a finer sample spacing, A0, in order to perform

the convolution required in equation (4-3).
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Chapter 5

PARAMETER OPTIMIZATION

5-1. Introductiop

The dynamics of how the catchment transforms rainfall excess into
streamflow is represented here by a time-invariant linear system,
equation (2-2). The sYstem is characterized by its impulse response
function. The conceptual model of Figure 2-6 and equation (2-36) has
been proposed to represent this function. The objective of this
chapter is to identify thé key parameters of the model and to detail
a procedure for determining their optimum values.

5-2. Catchment-Stream Application of the Distributed Linear Reservoir

Model

The necessity for éharacterizing overland flow and streamflow by
separate sets of equations with different values for the key parameters
(a, m, L) was detailed in Chapter 3. Without a distributed model, such
as the one under consideration, these distinct catchment mechanisms
must be lumped, typically by passing the input through a single cascade
of linear reservoirs.

The Distributed Linear Reservoir Model is a three parameter model:
the number of linear elements, N; the reservoir storage constant, ks
the channel time delay, T. Thus, in recognition of catchmeht béhavior,
there should be individually parameterized models for overland flow

and for streamflow.
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Let the flow in a stream be simulated by a Distributed Linear
Reservoir Model. The associated lateral inputs, Qij’ are then the
outputs from overland flow simulations by means of other Distributed
Linear Reservoir Models. The input to the overland flow models is
the rainfall excess itself.

It is convenient then to physically describe the catchment with
the geometric model depicted in Figure 3-2. A more complex geometry
can be envisioned for use with the Distributed Linear Reservoir Model,
but this would necessarily increase the computational effort. Employ-
ment of this geometric model allows ready comparison with the char-
acteristics solution of the kinematic wave equation.

The selected catchment-stream application of the Distributed
Linear Reservoir Model is shown qualitatively for an arbitrary catch-
ment in Figure 5-1. For simplicity, each overland flow model will
have the same number of linear elements, denoted by Nc’ each with the
constants kc and T. The stream model parameters are similarly
denoted Ns’ ks, Tge Note that the area over which the input rainfall
excess is lumped is only (LC/NC)-(LS/NS).

5=3. Catchment-Stream Simulation

It is evident from Figure 5-1 that, for the general case of an
areally variable rainfall excess, each of the lateral inputs into the
catchment model and thence into the stream model may be different
functions of time. The equations developed in section 4-2 must there-

fore be generalized.
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Catchment Simulation -- It is necessary to perform the convolution
with the components, hg of the pulse response function, H;. To
accomplish this, an average storm,_QiC, must be defined for each over-
land flow modelﬁ. Having determined the pulse héight from equation
(4-14) and the pulse length from equation (4-16), the pulse response
functioh is then given by equation (4-3). The jth component of the
outflow, roj, is obtéined by convolution of h? (equatidn 4-2) with
K.Q. , which is the average storm scaled by the factor, Kj’ representing

jtic

the relative spatial variability of the actual storm. That is
% P
Q. (W) = Ozl (K,Q; (9)/R D0, (3,2-0+1)40 - (5-1)

The total outflow from a given overland flow model, ro’ is thus

c

Qe (5-2)
1

e =

ro(g) .
J

TDepending upon the spatial variability of the storm and the sensitivity
of the catchment to such variations, it may be adequate to use an
average storm occurring on the entire catchment for this purpose

rather than one for each chain shown in Figure 5-1.
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Streamflow Simulation -- The output from the Stream Linear
Reservoir Model is given by convdlving the streamflow model IUH with
the overland flow hydrograpﬁ. Once again it is necessary to perform
one convolution per component, hj (equation 2-35). Noting that there
are actually twd lateral inputs to each stream element (one from each

side of the catchment), which may be different, the lateral input to

the stream is thus
2 .
Quqy (V) = Q™ (5-3)
r=1
and the jth component of the outflow from the stream model is

9 : ;
Qgi® = I Qg (@, (3, 8-0+1)A0 (5-4)

o=1 3
the total outflow, Qo » 1s thus
N
s
Q (&) = jzl Qg3 ) (5-5)

For the case of distributed (unequal) inputs, it has been found
convenient to let the IUH for both the overland flow and the stream-

flow model be generated from linear reservoir cascade responses only
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(Figure 2-4, equation 2-34) and to account for the lag effect of the
linear channels in the final summations of equatipns (5-2) and (5-5).
To accomplish this, the roj and Qosj are lagged by j'Tc and j'Ts
respectively.

It would be well to illustrate this process by a figure. Con-
sider the case where the spatial variability is such that the same
storm can apply to each element of a given overland flow model
(i.e., Figure 5-1). Thus, there is no need to perform the convolution
for the overland flow model separately for each h? and equation (4-4)
applies. Letting the asterisk denote the convolution operation, the
total simulation for selected overland flow models on one half of the
catchment is depicted in Figure 5-2.

5-4. The Method of Moments

Use of the Distributed Linear Reservoir Model requires an a priori
determination of six parameters. A frequently employed technique in
similar situations is the method of moments by which the system func-
tion or IUH can be found directly from the moments of the measured
input and output time series.

The method of moments has definite disadvantages which in certain
cases may become unacceptable.

1. The method of moments is applicable to linear systems.

It thus forces the non~linearity of the catchment into the

higher moments. It has been found (6) that negative parameters

can arise due to the derived moments being inconsistent with

the assumed model.
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2. Most fitting methods are biased. The method of moments
has been observed (2) to give more significance to the
extremities of the hydrograph, consequently producing more
error near the peak than at the extremities. The time of
arrival and magnitude of the peak discharge are often the
most important characteristics of the hydrograph.
Due to these difficulties in applying the method of moments, an

entirely different and rather unique fitting method was developed.

5-5. Selection of Model Parameters

The objective is to determine an unbiased, completely general
method of establishing the best model parameters. To incorporate’tﬁe
results of Chapter 4, the method must be input and catchment dependent.

Consider the impulse response function of the Distributed Linear
Reservoir Model (Figure 2-7). The close resemblance to the impulse
response function of the kinematic wave (Figure 3-3) was indicated in
Chapter 3. From the definition of HN(n,t)(equation 2-36), the peak

is located at t = T and has magnitude

1
HN(n,T) = | (5-6)

Convolving HN(n,t) with a pulse of depth d = Rutu(ft.) occurring on a

catchment of length Lc(ft.), the peak becomes
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Pty = o2
Ho(n,1) = 12 (5-7)

where the pulse volume, Vo = d'Lc. This will be equated to the peak

of the kinematic wave pulse response function (equation 3-29)

=q =0ad°€ (5-8)

or

1-m

0

Nk

L]
(=N

LC/OLC (5-9)

where the units (time) of o, and k are the same.
The effect of the time delay; T, is to delay the origins of the

components h, of HN(n,t) by j*T in time. This then produces an oscil-

J
lation of the pulse response function for time t < NT. The flat
portion of the function shown in Figure 2~7 thus occurs at time
t > NT. The following modification to equation (5-9) was found to

give excellent agreement with the kinematic wave pulse response

function

Lc/aC (5-10)
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specializing this result to the catchment model

l—mC
=d L -
N (k +T ) ], (5-11)

Additional constraints on the value of the model paraméters will
adjust the particular shape of the response function as is shown
qualitatively in Figure 2-7.

One approach to obtain additional equations for the model para-
meters would be to substitute equation (4-4) into equation (4-5),
differentiate the result with respect to two of the unknown parameters
and set the expressions equal to zero. Simultaneous solution of the
two equations would yield the required additional conditions. However,
this procedure yields unmanageable equations. Certainly a simpler
method is desirable.

Through use of the pulse height and pulse length, equation (5-11)
constrains the model parameters to be input-dependent. Two further
relations will be presented which depend upon the physical character-
istics of the catchment.

By generating hydrographs and comparing them with the kinematic
wave, it became apparent that

1. The accuracy of the Distributed Linear Reservoir Model

is relatively insensitive to values of N provided that k

and T are adjusted in accordance with equation (5-11).

2. The computational effort required to apply the model

is inversely proportional to N.
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A good fit is obtained with reasonable computational effort, for

both catchment and stream models, when (as a minimum)
N = 2(log10L—2) + 1.0 (5-12)

A comparison can be made with a similar equation presented by
Nash (25) as derived through application of his single cascade model
to natural catchments, The extent of the agreement is shown in
Figure 5-3.

Catchment Model ~- The basic linear element consists of a linear
reservoir and a linear channel. These components simulate the storage
and the translation effect of overland flow. The form of an equation
expressing the relative significance of each as a function of catch-
ment parameters follows from consideration of the shallow water wave

speed equation (3-9). For a constant unit depth
c=am , (5-13)

The nature of the responses of a linear channel and a linear
reservoir suggest that an equation expressing Tc/kb as a function of

c possess the following characteristics

as occmc + 0 , storage predominates and T, is negligible

as om, > , translation predominates and kc is negligible (5-14)
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Therefore, Tc/kC should be a monotonically increasing function
of mo . Using equations (5—11) and (5-12), the following relation-
ship was established by minimizing the integral square error between
the Distributed Linear Reservoir Model and the kinematic wave
solution

(m o /25)
ce (5-15)

Té/#c = ,5x10

This equation was derived from simulating the overland flow
situations plotted in Figure 5-4. Equations (5-11), (5-12) and (5-15)
completely specify Nc’ kc and T, independently of the observed output.

Stream Model -- The form of the coupling between overland flow
and streamflow suggests that a simple linear transformation between
catchment model parameters and stream model parameters may be adequate.
In section 3-5, the relative dynamic importance of streamflow with

t
respect to overland flow was quantified by A= Egy the ratio of the

c
time of concentrations (equation 3-18).

Since equation (5-12) also applies to NS where L becomes the
length of the stream, LS, only ks and Tg remain to be specified.

Letting A be a measure of the ratid'of the total lags imposed by the

respective models, we obtain

NS(kS+TS)

N G ) " (3-16)
c ¢ ¢
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The minimum integral square error formulation for the streamflow
hydrograph established the result that X also applied separately to the

relative time delays, T. The final equation is therefore

TS/TC = A (5-17)

Thus, equations (5-12), (5-16) and (5-17) complete the parameter

optimization for the Distributed Linear Reservoir Model.
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Chapter 6

NUMERICAL RESULTS

6-1. Introduction

The Distributed Linear Reservoir Model has been developed by using
the kinematic wave solution as a standard. The model can now be used
to simulate the catchment response to any desired input. The input
rainfall excess function specifies the pulse height and ﬁulse length
which then determine ﬁhe optimal values of the model parameters from
the relations of Chapter 5.

Evaluation of the performance of a mathematical model can be
accomplished only after relevant measures of effectiveness have been
defined. For this purpose, the following criteria will be employed:

1. Accuracy

2. Computational efficiency (speed)

3. Simplicity

4, Flexibility

6-2. Accuracy of the Model

Results using the Distributed Linear Reservoir Model will be
compared to those obtained from a Nash model and from the kinematic
wave solution.

The Nash model (equation 2-29) is a lumped-linear representation
of the catchment behavior. Since all input passes through the entire

system, this model is not as physically realistic as a model with
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distributed inputs. The Nash model was fitted to the streamflow
hydrograph as predicted by the kinematic wave using the method of mo-
ments (7). When the Nash model was used to re-predict the output

from which it was derived, it was found to give essentially the same
integral square error as the Distributed Linear Reservoir Model but
not as accurate a determination of the peak discharge and time to the
peak, see Figure 6-la. However, this is not a fair éomparison. To

be useful, a mathematical model must accurately represent situations
other than that from which the model parameters were established.
Figure 6-1b shows that the Nash model exhibits considerably more error
when the peak intensity of the storm is doubled. This error is due

to the non-linearity of the catchment resﬁonse. The Distributed
Linear Reservoir Model performs considerably better for this situation
since its parameters are input-dependent. The pulse height for case
(a) was 7.0 in/hr and the pulse length was 0.20 hr. Case (b) then
corresponded to a pulse height of 10.0 in/hr and a pulse length of
0.20 hr.

The Distribﬁted Linear Reservoir Model has been compared to the
kinematic wave solution for a number of catchments under a variety of
input conditions. The storms considered were of triangular shape with
the peak intemnsity occurring at tr/2. As was shown in Figure 4-7, the
accuracy of the model is maximal for storms of low peak intensity and

long duration. This effect is illustrated for catchments of similar
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lengths but different a's in Figures 6-2 and 6-3. The relative values
of kc, Te and ks, T, are typical of those encountered in application
of the method.

6-3. Computational Experience

The Distributed Linear Reservoir Model is necessarily a digital
computer model. The computer program was developed for the IBM 360/65.
Average running time for a spatially uniform input is 1 1/3 minutes,
independent of the size of the catchment. The kinematic wave solution,
with which the model was compared, was obtained by the method of
characteristics. It was an early version of a model developed at M.I.T.
and failed to rigorously satisfy continuity by from 5 to 15%. This
disparity can be observed in the comparison figures presented in this
chapter. The computational speed for the models responding to spatially
uniform input was essentially the same.

The computational effort for the Distributed Linear Reservoir Model
is directly proportional to the time step used in the computations. In
Chapter 4 it was noted that the time step, A0, must be less than the
pulse length, tu’ for an accurate discrete representation of the pulse
function Ru(o). Accuracy here is measured in terms of continuity. The
time step was considered adequate if the integrated area under the
curve was within 95% of the theoretical value. The components of the

impulse response function, h,, were found to be very sensitive to the

3

time step used. Obviously, as the linear reservoir comstant k

decreases, the time step must also decrease. In general, these
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functions were generated at a time interval of Ao = 0.04 hr. This
provided a good definition of the time lag T since each hj is actually
lagged j*T/AC units.

Because convolution is a time consuming process, we wish to
truncate the components, hj’ of the impulse response function after
they have decayed to a negligible level. . An estimate of the length
of the impulse response function, toax (hours), was made from the

following empirically-determined relation

€ oy = 8:35 (loglo(N(k+T))) + 6.0 (6-1)

The functions were truncated at an earlier time if their value was less
than 0.001.

Adequate definition of the catchment and stream hydrographs was
accomplished with a time step of tr/SO. Linear interpolation was used
where nécessary for convolution purposes.

6-4. Application to Natural Catchments

The Distributed Linear Reservoir Model is extremely easy to use.
Only the catchment geometry and storm characteristics need be specified.
However, it is not réadily apparent ﬁow‘one applies the geometric model
of Figure 3-2 to a field situation. The following two stage procedure

is recommended.
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Stage 1

1. Let Ls = the length of the main stream.

2. Determine LC such that 2chst = the catchment area
(for continuity). The ratio of Lc/Ls is commonly 1/6 (9).
3. Let Qg be determined from the average slope and
roughness of the main stream.

4. Let o, be detgrmined from the tributary catchment

slope and roughness.

5. TUse m, 2, see reference (18).

6. Usem

s 1.67 or 1.5 depending on whether the Manning

or the Chezy equation 1s preferred.
If storm and streamflow data are available, continue to the next stage,
otherwise, terminate.

Stage 2

1. Following the approach used by Wooding for application

of the kinematic wave model (16), the Distributed Linear

Reservoir Model can be fitted to the observed hydrographs by

iterafing on the parameter )\ (equation 3-18).
Application of mathematical models to natural catchments is an art
which must be developed with experience. It was not attempted in the
development of the Distributed Linear Reservoir Model since many
catchments were required to establish the equations of Chapter 5 for

the optimal model parameters.
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6-5. Catchment Response to Distributed Inputs

Development of a distributed model opens the door to entirely new
areas of fruitful research. Presently, little is known about the
sensitivity of catchment behavior to spatially distributed inputs. Such
knowledge is indeed crucial for at least two reasons:

1. When is a simple two-dimensional geometric model of the

catchment adequate?

2. How much research effort should be expended on the

understanding of the internal mechanics of storm movements?

Insight into these considerations can be gained from a few examples.
The response of the catchmeﬁt to a localized input is certainly depend-
ent upon the location of that input relative to the observer (refer to
Figure 5-1). To illustrate this, the results of routing the same storm
through overland flow models tributary to different stream elements is
shown in Figure 6-4. Applying the storm to the most distant portion
of the catchment (overland flow model tributary to stream element
No. 8) produces a significant time lag compared to that when the storm
is applied near the catchment mouth (overland flow model tributary to
stream element No. 2). Figure 6-3 corresponds to the same catchment
subjected to a similar spatially uniform storm. In comparison with
Figure 6-4, it can be observed that the contribution to the peak

~discharge comes primarily from the overland flow models near the catch-

ment mouth.




Q (cfs)

97

350
I | | !
Model
y Parameters
O.l in Hr Fitted to
Kinematic Wave
300 T
Storm
0 20
250}— Hrs —
A =0.27
200}— |
Storm Input to
Stream Linear
Element No.2
Only Storm Input to
50— Stream Linear ]
Element No. 8
Only
100l— Le = 14000 Ft —
ac =3 sec”!
Mg = 2
50| Lg = 100000 Ft —
ag = 0.5 sec”!
mg= |.67
0 | | | '
0 6 12 I8 24 30

Time (Hours)

Figure 6-4 Comparison of the Response from Equal Lateral Inputs to

Two Different Overland Flow Models



98

It is important to noté in Figure 6-4 that there is virtually no
difference in the hydrograph shape for the two cases considered even
though the travel distance in the stream varied greatly. This is
intuitively incorrect, however, this example is actually a flood-
routing problem which certainly violates the assumptions implicit in
the kinematic approach to which the model was fitted.

An investigation into the sensitivity of the response of overland
flow to localized inputs can be performed in an analogous manner. For
the same overland floﬁ models considered in Figure 6-4, an identical
storm was input into a single linear element in each model. The result
of this operation is given in Figure 6-5. The response of the most
distant linear catchment element is considerably lagged and dispersed
from that obtained by applying the storm to a low-order element near
the catchment mouth. Comparison with Figure 6-4 indicates that all
peak attenuation and much of the lag is derived from passing the input
through the overland flow model. In this example, the effect of the
streamflow model is then simply to increase this lag,

The following example provides an indication of the errors due to
spatially lumping the input function. Actual rainfall is likely to vary
randomly over the catchment. ‘To simulate this effect, a random number
(between 0 and 1) was selected to scale the input into each catchment
element. The factors were then averaged for each overland flow model
(see Figure 5-1) corresponding to equal lateral inputs. These two

cases can then-be compared to lumping the input over the entire




Q (cfs)

99

Two Different Overland Flow Models

l | I |
Model
— inHr ™! Parameters ]
50 O-linHr Fitted to
Kinematic Wave
70}— L
Storm
0 Hr.é 20
Storm Input to
50 Overland Flow L¢=14000 Ft o4 Inout 1o
— Linear Element = -1 orm inpu —
No.2, Tributary ac* 3 Sec Overland Flow
A LN iy
Lﬁg\egr Element/  Ls=100000 ﬁ' to Stream Linear
40— ag = 0.5 Sec” Element No.8 —
Mg= 1.67
30— _
20—
10— ]
0 I | l | |
0 6 12 18 24 30
Time (Hours)
Figure 6-5

Comparison of the Response from a Single Lateral Input to



100

catchment by using a uniform storm having the average intensity of the
above random case. The same pulse height was used for all three cases.
The results from these lumping operations afe shown in Figure 6-6.

For the totally random case, the catchment has smoothed the
spatial variability in the input through the convolution and summation
processes involved. Progressively more lumping, first per chain, then
over the entire catchment has the effect of shifting the peak earlier
in time and to a higher value. Thus the random variation in storm
intensity has producéd a dispersion effect on the streamflow hydrograph.

The totally random case corresponded to seventy catchment linear
elements for this example. ‘The compuﬁational effort required was only
507% greater than the typical spatially uniform input case. When the
inpuf was averaged to produce equal lateral input to each overland flow
model (fourteen for this example) the computational effort was reduced
to the level of spatially uniform input. Thus this model can effi-
ciently utilize the greatly increased spatial resolution of storm |
intensity that the latest rainfall measurement techniques (24) promise
to provide.

The final consideration is the importance of mbving storms. The
Distributed Linear Reservoir Mbdel is capable of handling these situa-
tions merely by lagging the storm in proportion to its speed. The
example considered was that of a storm moving parallel to the stream
~axis at a constant rate of speed. The same random scaling factors

were used for each linear element as in Figure 6-6. The results
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shown in Figure 6-7 indicate a time lag and peak attenuation associated
with a moving storm.

It is interesting to note that a storm moving upslope produces
more dispersion than a storm moving in the opposite direction. 'This is
to be expecfed. As the storm moves upstream, the‘peaks of the lateral
inflow become separated more and more from the peak of the streamflow
already produced in lower reaches. As the storm moves downstream, it
tends to become synchronous with the flood wave in the stream.

The apparent lack of the catchment to recognize spatial variability
in the input rainfall excess is due in part to the considerations of
Figure 6-4. It is believed that fitting the Distributed Linear Reser—‘
voir Model to a more exact streamflow model would accentuate the sen-

sitivity of the catchment to distributed inputs.
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Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7-1. Conclusions

A distributed quasi-linear model of direct catchment runoff has
been developed. This model, called the Distributed Linear Reservoir
Model, consists of cascades of linear reservoirs connected by linear
channels. The model parameters were.fitted to the kinematic wave
formulation of Chapter 3. By determining the optimum pulse height and
pulse length as a function of input and catchment parameters, the
ﬁraditional unit-hydrograph method has been significantly improved.
Incorporating these results into the model parameters, the impulse
response function is therefore tonstrained to be input as well as
catchment dependent.

Separate models of overland flow and streamflow allow simulation
of the catchment response to spatially variable inputs. In Chapter 6
the sensitivity of the catchment to distributed inputs was investi-
gated. The kinematic wave method has been found incapable of providing
realistic hydrograph dispersion when applied to streamflow or flood-
routing problems. Part of the lack of sensitivity of the catchment
to a randomly varying storm pattern can be traced to the negligiblé
streamflow dispersion exhibited by the model. Lumping of the input
has been shown to slightly reduce the dispersion provided by random

variations or by mdving storm patterns.




Use of a linear or quasi-linear model of catchment behavior in
an age when more exact solutions exist needs justification. What is
involved is the trade-off between errors due to linearization and a
greater computational efficiency through use of a lineér model. For
a spatially uniform rainfall function, the two models studied were
of identical computational efficiency. However, when considering
spatially varying inputs, the linear approach offers an order of
magnitude better computational gfficiency.

7-2. Suggestions for Future Work

1. A more exact streamflow solution than is provided by the
kinematic wave of Chapter 3 should be employed in the para-
meter optimization. Then the Distributed Linear Reservoir
Model would give, hopefully, better accuracy than the equally
efficient kinematic wave method when compared to natural
catchment data. A further refinement would be to use actual
streamflow data in the parameter optimization process.

2. Development of an infiltration and groundwater model, par-
allel to the direct runoff model depicted in Figure 5-1, would
be a significant extension of this approach. If a separate
model analogous to the kinematic wave solution for direct
runoff could be used as a standard, then this work could
proceed independently of the quasi-linear direct runoff

model already developed. Otherwise, it is recommended that

suggestion No. 1 be pursued first and then development of

105



106

a parallel groundwater system could be done by comparison
with a total runoff model. Accomplishing this task would
increase the advantages of the linear approach to catchment
behavior.

3. Upon completion of suggestion No.l (and preferably
suggestion No. 2 also) a more intensive study of the catch-
ment sensitivity to distributed inputs could be performed.
If necessary, a more elaborate physical model of the catch-
ment (incorporating many of the simple two-dimensional
models and/or fractions thereof, all with appropriate
connectivity) could be utilized to represent highly-complex

natural catchments.
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Appendix

Contained herein is the computer program for the Distributed
Linear Reservoir Model. The program was written in FORTRAN IV for
the IBM 360/65. The options of the program allow either a spatially
uniform or a spatially non-uniform rainfall excess. An average storm
on the catchment is synthesized by inputing the essential storm
éharacteristics as specified in the program listing. Alternatively,
actual storm data, sampled at any time interval, may be input. Spatial
non-uniformity is obtained by specifying the factors which multiply
the input into each catchment linear element. The input variables and
required format are described in the program listing.

The functions of the subprograms are briefly:

MAIN - Handles input of data, transfers to MODEL, computes

pulse response for uniform rainfall excess

MODEL

Computes essential catchment response to storm and
determines pulse height, pulse length and model
parameters

STORM

Synthesizes a storm from input storm shape, length,
volume, etc. or interpolates storm data on an equal
time step if this option is used

DISTRB

Calculates the responses of each overland flow model
to a distributed input if the storm is spatially non-

uniform or is moving



STREAM

CONVOL

XKINIT

HYDGEN

HYDSUM

INTRPL

SIMSON

ERROR

PLOT
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Takes the overland flow model hydrographs as input to the

stream model and routes them down the channel

" Generalized convolution subprogram

Determines catchment and stream model N, k, T

Generates N-element linear reservoir cascade responses
Combines the cascade responses, incorporating the appro-
priate time delays

Performs straight-line interpolation

Integration by Simpson's Rule

Computes integral square error and correlation coefficient
between observed and predicted time series

Generalized printer-plotter
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NTISTRTIRUTFD LINFAR RESERVOIR--L INEAR CHANNEL MODEL

PRNGRAM WRITTEN IN FORTRAN IV, G LEVEL
STNRAGE REQUIREMENTS ARF APPROXIMATELY 25nK
AVEFRAGE PUNNING TIME IS 1-173 MIN, ON THE IBM 361765

INPUT NATA
CLr=LENGTH DF CATCHMENT (FFET)
C1L.S=LFNGTH 0F STREAM (FEET)
FMC,ALFC(1/SFC),EMS,ALFS{1/SFC) ARE THE PHYSICAL
CATCHMENT PARAMETERS FOR THE TWO-DIMENSIONAL MODFL
TDUR=STORM DURATION (HOURS)
TPFAK=TIME TD PFAK INTENSITY (HOURS)
NEP=TOTAL STORM VOLUME {(INCHES)
XTFP=PFAK INTENSITY (IN/HR)

I0PTD=N [MPI IFS SPATTALLY UNIFORM RAINFALL EXCESS
TNPTN=1 IMPLYIES THF NDISTRTRUTEN MNDEL IS TO BE USED
[IPTN=2 TMPLIES A MOVING STORM WITH THE NDISTR, MAODEL

INPT=1 IMPLIES THE STORM IS OF TRIANGULAR SHAPF
1NPT=2 IMPLIFS A RECTANGULAR BLOCK
INPT=3 IMPLIES STORM DATA IS INPUT BY ARRAY

NIMENSTON RAIN(SN),GP{70N) 4NHL{10),A(50,2)
COMMNN/CATPAR/ELC 4FMC,ALFC,ELSEMS,ALFS
COMMON/CATCAR/RUNPT ,DUR, XLAMDA, CUTCFF
CNMMNAN/CATSTR/TNUR , TPFAK ,DEP,XTEFP
COMMON/MODPAR/XNC oNC o XKEC, TN XNSyNS, XKS,, TDS
COMMON/MNDTIM/TMAX 4DTS,DTQ,NTH, ICPTD, I0PT
COMMON/MODL IM/LIMIT,LIMGO, LIMGNS L TMGS,NL
CNMMON/CATCH/CAT(19,500),CUH{ 10, 509)
COMMAN/MODATA/UHT1N0D0) yCATCH(10,4500) HSUM(1509)
CNMMON/TIMFAC/FACI2,17,10),TIMES(2,12,10)
REAN(S5,118) ELCsFMCoALFCELS yEMS,ALFS, INPT, [OPTD
FARMAT(AF1N.3,211)

REAN(S5,177) TDUR, TPEAK,DEP,XIEP

FARMAT{4F1Nn,3)

WRTTF(6,171)

WRTITE(A,172)

WRTITE(Ay173) ELC,FLSyALFC,ALFS,FMC,EMS
WRITE(K,174)

WRTTE(6,178) NFP,TNUR,XIEP,TPFAK

FORMAT(1H] ,5X'DISTRIBUTED LINFAR RESERVOIR-—| INFAR?
1' CHANNEL MNNDELY///)

FADPMAT (17X, TWO-DIMENSINNAL CATCHMENT PARAMETERS')

FARMAT (//11X'LC ='F10,1,5X'LS ='F10,1/11X*ALFC =*F38,.3,

15X, *ALFS =%F8,3/11X'MC =1F10,3,5X'MS ='F10.3/)
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DS

112

134 FOPMAT(//,15X*STORM CHARACTERISTICS?)
178 FARMAT(//1IAXISTORM DEPTH =1F6.2,1¥ ' IN. 4 10X,

-
130

122

232

25

?hA

1

CSTARM DURATINN =0F6,2,1XTHR, ", /1NX*PEAK INTENSITY =1

"F'ﬁ-?"TN/HP',bXQ'TIMF TO pEAK ='F6.2v1X9‘HR.',

st

NEE2 .05 (ALDGLIN(FLEY=-2,1)41.,5
IF(MC JLF. 17) 60 TO 5

NC=1n

XNC=NC

MS=2. qf‘(M”"‘l"(FLS)-7.")+1 5
XYNS=NS

THFE SURPRNGPAM SFRASF?' 1S A SPFECTAL SURPROGRAM
WHICH 7FRNES OUT ONF-NIMENSTONAL ARRAYS

IF NOT AVATLARLFE TT SHOULD BF RFPLACED RY
APPRAPRTATFE DN LNAOPS TN PERFNRM THIS TASK

CALL FRASF(RATN,51)

IFCINPTND LGE., 1) GO TOH 190

FACAVG=L M

CALL MONEL(FACAVG,RAIN)

60 TN a :

WRITE(A,13N)

FORMAT(//,5%X*STORM FACTNRS FNR LINEAR ELEMFNTS ¢
"IN THF DISTRTIBUTED CATCHMENT MODELY//) '
FACH NF THE 2%NS DATA CARDS CCNTAINS NC STORM FACTNPS
LEFT SINDF NF TWN-NDTMFENSIONAL MODEL FACING UPSTREAM
PRECENES THS RIGHT SINF IN INPUT DATA STRUCTURF
N 23 1S=1,2

READ(G649127) ({(FAC{ISyJds 1)y I=1,NC)yJ=1,NS)
WRITE(AZ120) LIFACIISsdyI)o1=1,NC),J= I'NS,
FAPMAT(SF10,.2)

CONTINUF

NLRNO =9

FACSUM=" 7

NN 25 1S=1,2

nn 25 J=1,NS

N 28 JI=1,N7

FACTNR=FAC(IS,J,I1)

IF{FACTOP LT, DeN1) G0 TN 25
FACSUM=FACSHM+FACTOR

NLPND=NLRNT+)

COMT INYF

FACAVG=FAC SUM/NLRND

WRITF(69121) FACAVG

FORMAT (/17 X*STNRM LINEAR SCALE FACTCR AVERAGE ='F6,1)
TFIINPTD LER, 2) GCTO 14

Nno 26 1S=1,2

N 26 J=s1,4NS

TYMFS(tsfdvi)zﬂo{"
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24

12

21

113

15°
2
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CALL MODEL(FACAVG,RAIN)

59 TN 40

WRITF(h,y126)

FOIRMAT (//+SX*STORM TIME LAGS FCR LINFAR FLEMFNTS *
1'IN THE DISTRIBUTED CATCHMENT MCNEL'//)

MAOVING STNRM DATA READ IN

FACH NF THF 2%NS DATA CARDS CONTAINS NC TIMF DELAYS
NATA STRUCTURE SIMILAR TN STORM FACTOR DATA

NN 24 1S=1,? \ :
EAN(5,120) ((TIMES(IS,J,1),1=1,NC),4J=14NS)
WRTITF(69120)((TIMES(ISyJyI)sI=1,NC),J=1,NS)
CINTINUF

CALL MODEL(FACAVG,RAIN)

61 TN 49

IT=L IMGC/S0D

ODT=1T%=NTQ

T=N_,N

A{1,1)=N.0

Al1,2)=N,0

N0 12 1=2,52.

IT=1TT%x{1-1)+1

T=T7T+DT

AlT,1)=T

CALL HYDGFN{XNCyNCXKC 4NTH,DTH, NHL,I)

CALL HYDSUM{XNC JNC,TDCDTHNDTQWLIMIT,LIMGO)
CAtL SIMSON(DTQ.LIMGCO,HSUM, SUM)

CALL CONVNL(DTQDTQyDTOWNL,LIMGC,L IMG, RAINvHSU”er)
CONVERSION TN CFS UNITS

N0 21 I=1,L1IMGO

GP(I)=GP(I)®{FLC/43200,7)

DY 18 =2, 8"

I1=1T%(T1=-1)+]

ALT,2)=GPUTT)

CONTINUE ) i

CALL 91MSON(DTQ1LIMGF GP,SUM)

WRITE(6,15M)

FORMAT (1H]1 yAOX, *DPTIMUM PULSFE RFSP”NSE'.//'
CALL PLOTU1,A450,23097950,2)

CALL STORM{(RAIN,GP)

GO T 1

FND
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133

134

13A
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SURRNUTINF MONEL(FACAVG,PATN)
THIS SUBRNUTINF CALCULATES THE ESSENTTAL CATCHMENT
CHARACTERISTICS AND DFTERMINFS THE OPTIMUM
PULSF HFIGHT, PULSE LENGTH, TTME STEPS FTC,
DIMFENS TAN RAIN(SN) '
COMMON/CATPAR/ELC yFMC, ALFC 4 EL Sy FMS,ALFS
COMMNN/CATCAR/RUDPT,, DUR y XLAMDA , CUTOEF
C“MVPN/CATSTR/TOURoTPFAK.UEP XI1EP
COMMON/MONPAR/XNC g NC o XK o TDC g XNS o NS, XKS, TDS
COMMON/MONTIM/TMAX,DTS,DTQ,DTH, INPTD,IOPT
COMMON/MODLTIM/LIMIT, LIMGO,LIMGOS , LIMGS, NL
COMMON/MANATA/UH(I000N) ,CATCH( 1N 507 ) yHSUM( 1507)
NFP=NEPXFACAVG
XTAV=DEP/TDUR
TC={FLC/(ALFC»36NN N (XTAV/12,2)) ) %51, Y/EMC)
XL AMNDA=(2, *X[AV*FL(*ELS/ALFS!**(I /FMQ)/(? *ELC*
LIXTAV*FLC/ALFC)I*%(1,/EMC))
DUR=TDIR/5N N
INT=nyR/0, 75N
pUR=INT2N, 05N
NEFTINITNN ﬂc CATCHMENT AND STREAM HYDRNGRAPH TIMF STEP
NTS=TNUR/S5N,N
DEFINITAON OF PULSE RESPONSF TIME STEP
NTO=NTS/5,N
NDECREASING THE TIME STEPS PROVICES BETER CONTINUITY
8UT REQUIRES PROPNRTIONATELY MORF COMPUTATION TIME
I[FIDUR GT. 2,0550) GO TO 4
S DUR =N GG
NTQ=",N1IN
RUNPT=1, 59%TCxXIAV/DUR
TR=RUOPT/N,5N40,25
RUDPT=TR*N ,50
VAL R=RUNP T *DUR
VALUMF=VOLR*(ELC/6432N0,N)
QPEAK=ALFCX((VOLR/12.7)%%FMC)
CUTOFF=QPEAKRI N1NXDEP/( TDUR*RUNPT)
VOLTOT=DEP&RELCXFLS*2,n /432NN, 0
VOLLRR=VOLTNT/ IXNC*XNS*2, V)
WRITE(6,133) TC
FORMAT(//5X*CATCHMENT TIME OF CCONCENTRATION =tF6,2,
12X 'HNYRS?)
WRITF(64134) RUNPT
FORMAT (/5Xy'OPTIMUM PULSE HEIGHT ='F6.,2,2X*IN/HR?)
WRITF(6,13£€) NDUR
FORMAT (/5X*0PTIMUM PULSE LENGTH =9F6,3,2XHOURS ?)
THF FOLLOWING VOLUMES PROVIDFE A CONTINUTTY
CHFCK 0NN THE MODEL
LACK OF CONTINUITY WILL BE DUE TC TOC LARGE
A TIME STFP USEDN IN THE CNMPYTATINONS
WRITF(6413%) VOLLRB
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125

137

175

1?

18

130

115

FARMAT (/1OX*VOLUME OF DIRECT RUNCFF PER LYNFAR '

19SLEMENT =9E10,4,2XFEETY)

WRITE(6,137) VﬂlTOT
FARMAT (/10X TOTAL VOLUME 0OF DIRECT RUNOFF FNR STNRM!?

1 NN THE ENTIRE CATCHMENT ='E10,4,2X'FEETY)

WRITF(6,105)

FORMAT(//, INXIOVERQLAND FLOW MONDEL PARAMETERS!)
FALL XKINTT(XNCXKCoTDC,QPEAK,VOLUME,1)
XKT=XKC+TDC

T TMAX=0, 35%(ALNGIO{XNCEXKT) ) +6,1

TMAX=TTMAYX '

IF(TMAY ,GT, 2.7) GO TO 12

. TMAX::Z'Q

LIMGO=TMAX/DTQ+N,5

IE(LIMGO JLE. AD0) GO TO 18

NTO=NTO*2,N

63 TC 12

ITH=NTO

X1 IM=TMAX/DTH+1.5

L IM!T:YL!M

TNS=XLAMDAXTNC

TTOC=TDC/NTQ4N 8D

TAC=TTNCEDTO

LAG=TRC/NDTH+N,5

L=t IMIT4+{ AGANC

NUHL =NC *|

CAILL FRASE {UH,NUHL)

WRTITFE(A,132) NTS,NTQ

EAPMAT(//173X*TIME STEPS USED IN CCMPUTATINNS' /11X,
1NTS =1F5,3,5X9DTN =1F5,3)

PYLSE RFESPANSE TIME STEP MUST BE SMALL ENODUGH TN
PRAVINE A £0AN NISCRFTE NEFINITINN NF THE PULSF
AT LEAST & SAMPLES (NML>5) ARE NORMALLY REQUIRED
NL=DUR/NTA+1,1 '

CACD:‘).(& .

RAIN(1)=RUCPT/FACRRDTQ

DATNM(NL) =RUNPT/FACR*DTQ

NL1=NL=-1

NN 17 1=2,NL1Y

RATN(T)=PUNPT=DTQ

RETURN

END
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13

16

175

17

21

116

SURRAOUTINF STORM(RAIN,GP)

THIS SURRNUTINE GENERATES: A STORM FNR THF CATCHMENT
NIMENSTON GP{1),RAIN(S"),STRIS5DN),GPS(T72"),
ITIME(2:0) , FACSTR{1N),N(5",2) ;
COMMON/CATPAR/JELC 4FMCyALFCLELS, FMG ALFS
COMMNONY/CATCAR/RUDPT yNUR X LAMDA, CUTCFF
COMMNON/CATSTR/THURZTPEAK 4DFP,XIFP
COMMONZMNNDPAR/XNC yNCy XKC 9 TDC s XNSy NSy XKS, TDS
COMMON/MODTIM/TMAX DTS NDTQWNTH, ICPTN, 10PT

COAMMOM/MOANL IM/LTMIT,LIMGN, L IMGNRS, L IMGS,NL
WRITE(A,1N1)

FWPMA*(IHI,lﬁX’SVNTHFQ!ZFD FATFPMFNT STORME /)
XLTM=TDUR/DUR+1 .5

LIM=XLTM

XI_TMD=TDEAK/DUR+N 5§

LIMP=XLIMP

LIMGOS=TDIR/NTS+0,5

CALL FRASFE(STR,LLIM,GPS,A:N)

G0 TN (14,413,12),T0PT

INPUYT STORM DATA RY ARPAY

LIMSTR=NUMRER 0OF INPUT NATA PﬁINTQ
REAN(5,117) LTIMSTR ~
REAN(S5,118) (TIME(I),GPS{I)sI=1,LIMSTR)
FARMAT(T11) :

FORMAT(2F10.4)

INDUT STNeM NDATA CONVERPTED TO AN FQUAL TIMF STEP
CAT L INTRPL(STRL IMyL TM,NDURGDUR, TIMF ,GPS,STR,2)
Y TN 17

HST=NEP/TNHUR
DHS=HST/RUCPT

NJ 16 I=1,0LT™

STR{T)=DHS N

WRITE(A,1175) (STR{TI),1=1,LTM)
FORMAT(1INF1N,5)

G TN 27

HST=YIFP

HSM=HST

TE(LIMP LT, 2) GO TN 21

NHST=HST/I.IMP

HST=0,N

nn 1N I1=24L1IMP

HST=HST+NHST

STP(1)=HST

LIMP=1 TMP4+]

STR{ILIMP)=HST+DHST/2,."

HST=HST+DHST

NHST=HSM/ (LTM-LIMP)

L:]_ TMP“"l

NN 15 T=L,L1I™

HST=HST-NHST
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125
17

12

STO(T)=HST

LTM= TM=1

CALL STMSON{DUR,LIM,STR,SUM)
WRITE(£4128) (T,STR(T),I=1,L1IM)
FORMAT (5(15,F10.5))

N 12 J=l,LTM
STRIJ)I=STR(J)Y/RUNPT
IF(TAPTND L Te 1) GO TO 2N
CALL NDISTRAB{RAIN,STR)

G TN 4N

YNM=TNUR/DUR+T .5

NM= XM

CALL CONVOL(DURGDTO,NTS,NM L IMACILGPS,STRyGP,CPS)

24
25
145

27

2~
147

157

s

1IFlLGPS ,GF, LIMGNSY 6N TN 25

NN 24 1=L59S,LIMGNS

GPS(T1)=" "

WRITFI6H,145)

FARMAT (1HY ,15X'PRFDICTED CATCHMENT HYDRNGRAPH'//)
LIMOCS=LGOS

COMTINUITY CHECK

CALL SIMSONIDTS,,LIMCNS,GPS,ySUM)

[ T=LIMROS/S0+7,08

T=",

NT=1T%PTS

NEYT1)=0,.1

0‘102)=r‘0."

nnN 2an ]:2,6":

[1=1T%{1-1)+1

T=T+DT

D(Te1)=T7

N{1,2)=GPS(IT)

WRTTFE(6,14N) T,HGPS(II)
ENRMAT (15X 4FR.2,1F1D,5)

WRYITE(6,150) :

FAORMAT {141 36" X, "CATCHMENT HYDRNGRAPH',//)
CALL PLOT{19Ne5N929NyNy6N,2) -
CALL. STRFAM(GOS,FACSTR)

RECTYRY

117
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SURPNUTIME NISTRA (RAIN,STR) ,
THTS SUBRNUTINE HANDLFS UNFQUAL LATERAL
INPUTS INTO THE DOVERLAND FLOW MNOEL
NDIMENSTON NHL{17) 4UHLP(670),UPH({15"),STRCL4""),
1STR{1),GPS{7D90),FACSTR{IN),PATN{1),GPD(TN")
CNMMAN/CATPAR/FLC yEMC 4 ALFC,FLSyEMS,ALFS
COIMMON/CATCAR/RUNPT,DUR , XLAMNDA ,CUTNFF
COMMON/CATSTR/TDUR yTOFAK 4NEP,XTEP
COAMMOAN/MONDPAR/XNC ¢ NC 9 XKC 9 TDC o XNS yNSyXKS,TDS
COAMMON/MANTIM/TMAX9DTS,NTQ,NTH, I0PTN,INPT
COMMON/MODLIM/UIMIT,LIMGO,LIMGOS, LIMGS,NL
COMMON/CATCH/CAT(10,507),CUH(13,520)
COMMON/MODATA/UHTLNONN ) CATCH{ 1D, 500) ,HSUM{1517)
COMMON/TIMFAC/FAC(2,10410),TIMFES(2,1n,10)
WRITE(6,105) ' o '
FARMAT(// /17Xy *DISTRIRUTFD CATCHMENT MODFLY//)
JSAMF =0

LAG=TOC/DTH+1,.5

L=LTMITHNC*LAGH+IN

NI TM= *NC

CALY ERASE(UHLR,L,UH,NLTM)

XMNS=TDUR/NUR+N,.5

NMS=XMNS

NL=NUR/NTQ+1,.1

NO 5 J=1,4NS

FACSTR(J)=1en

NN 11 J=1,NS

DN 1N Jd=1,590

CATCH(J,y39)=0,9

CUH(J,JI)=0,"

CAT(J9Jdd)=0eD

no 50 1S=1,2

70 41 J=14NS

IF(INPTD +FQ, 2) 6N TN 15

17ERN=N

I SAME=n

FACT=1,0

DN 17 I=1,NC

FACTOR=FAC{ISsd» 1)

IF(FACTOR o6T. D.N10) GO TN 16

TZFRO=TZFRC+]

GO TN 17

TF{(ARS(FACTNR-FACT)) .GT. N,01) GN TO 17
TSAMF=TSAME+]

FACT=FACTOR

WRITFE(A,100) Jy I7ERN, TSAME

IF(TZERN LT, NC) GO TN 14

DY 19 JJ=1,52"

CAT{J,JJ)=0."

IF(IS 6T, 1) 6N TO 40
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FACSTR(JI=CL.T

6N TN 40 : .

IFCTSAMFE LLT., (NC-1)) GN TN 15

WRITFE(A,117) J

FORMAT (//710X, "FQUAL LATFRAL TNPUTS FNR CHAIN NC.'1?2)
IF(JSAME LEQ., 1) GC TN 18

ROYTINE FOR FRUAL LATERAI INPUTS

TN A GIVEN NDVFRLAND FLOW MNNEL )

CALL FEYDGENIXNE gNHC f XKT 4DTH,DTHZNHL 41)

CALL HYNSUMIXNC o NHC ,, TDC, NTHDTQR,LIMTT,LIMGN)

CALL STMSOININTO,LIMGO,HSUM,SUM) ;

CALL CONVYNL(DTRWNTQyNTNGNL L TMGD ,IIMG,RAIN,HSUN JPH)
CALL SIMSONIDTQ,LIMG,UIPH, SUM)

CALL CQNVOL(DURoDTQ'DTS,NMS'LIMG,LIMGS,STQvUDH,GDD)
CALL STMSON(DTS,L IMGS,GPD,SUM)

CACTPR=FAC{ISsJel)

CRS=FACTORKMELC/423200D,M) , v
WRITE(A,17D) JSAMEZNLLLTIMGS,CFS,FACTNR
EARMAT (T 1M,4F11,2)

JSAME=]

NN 27 Jd=1,LIMAS

CATL J4J3)V=GPDNLII)*CFS

o TO 4“

WATTC(H,1158) J

FARMAT(//10X'DISTRIAUTED L ATERAL INPUTS FNR
TOYERLAND FILOW MONDEL NDL'13,7)

ROAUTINE FNR UNFDUAL LATERAL INPUTS

T A GIVEN NVFERLANN FLNW MODEL

NN 35 T=],4,NC

TL=0T1=1)%E IMRS

FACTNR=FAC({IS,+J,1)

TE(EACTAR GT. D.717) 6N TN 21

nno27n 1C0=1,1L TMGS

Lo Tn 35

XAH=T ,

CAV L HYDOEN{XNH NHC ,XKE s DTHy, DTHGNH 4 2)

LTIMIH=NHL(T)

N 22 JJ=1+LIMUH

UHL2(JJ)Y=UK(3])

CALL STMSONIDTH,LLIMUHIUHLR, SUM)

CALL CONVNLIDTONTHyDTO W NL 9L IMUHGLTMG,RATN,UHLR,1JPH)
CALL STYSONMNTQ,LTMG, UPH,SUM)

L IMS=NMS

TAA=TIMES( IS,y 1)

CALL MOVEACITNA DTS, LIMS,FACTOR,STR,STRC)

CALL CONVOLIDUR DTN, nTs,LIMs,tluf,LIMGS STeC ,UPH,GPS)
CALL SIMSON(DTS L IMGS,,6GPS, SUM)
reS=(FIC/UXNM*432NG,0))

FOPMAT(1IX 417710 ,3)
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P

D

41
5

NG 24 JJ=1,11M58

4 CUHH(T,JJ)=6PS ) %CFS

COANT TMYF

LTL=NC#) TMGS

AL FRASE(UH,TL)
NN 34 =1 ,NM
TL=(T=1)%L IMGS

NN 36 JJ=1,LIMGS
UHCTL+31)=CUH{ T, 4

CALL HYNDSUMUXNC o NC TP o DTS oDTS o+ LIMGS o1 TMGS)

NN 2R JI=1,LIMGS

CAT( Sy 33 Y=HSUM[ JJ ) %XNC
CONTINUE o
IF(1S AT, 1) 6N TN 45
N A5 J=1,NS -

D0 45 JS=1,1.TMGS
CATCHU,JS)1=CAT(J,JS)
N T 8N

N 4R l=l,N§

NN 40 JS=1,1 IMGS
CATCH(J W JS)I=CATIHIJ,JS)+CAT(J,4S)
CANT TMNUF

ALY STREAM(GPS,FACSTR)
RFTURN

FAD
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SUBRRDUTINF MNOYFAC{TCANTS,LIMIT,FACTOR,STR,STR()

THIS SURRNUTINE MULTIPLIES THE STORM INPUT BY THE

LINFAR E{FMENT FACTOR AND 1LLAGS THF BEGINNING 0OF THE

STARM ACLNRDING TO. THE STORM TIME DELAY§ '

NIMENSINN STR{1),STRC(470)

WRITE(A,107). TNA,FACTMR

100 FGDMAT(/II"Xs'SHIFT TIME ORIGIN RY'FI,2,2XHOURS?,
TZ1°XYMUYL TIPLY LATERAL INPUT Rv ARFAL FACTOP TFE17.2,/)
NM”VC TNA/CTS
P IMIT=LTMTITH#NMOVF
nﬂ 17 I=s1,LIMIT
JENLIMIT-T4+]

STRCLJ)=S TR(J-NMPVE)*FA(TQP

17 CONT TNYE
TE(NMNVE LFD. M) G0 TO 18

NN 15 T=1,NMNVF
15 STRC(I)=".N
12 LIMIT=NLIMIT

PETYPN

END
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SURRNUTINF STRFAM{GPS,FACSTR)

THIS SURRNUTINE RNUTS THE OVERLAND FLON HYDRPGPADH
THRAUGH THE STREAM MODEL

NDTMENSION - FDS(7”0)yUHG°(50”)'STRGPS(5ﬂO) D(5C,42),
PNHLEIN )W UHGPL (4NN ), TIME(TND) y UHLR (:60D) , FACSTR (1)
COMMON/CATPAR/ELC JEMCyALFC o FLSy EMS,ALFS
CAMMAIN/CATCAR/RUDPT y DUR ¢ XLAMDA ,CUTCFF

© COMMON/CATSTR/TNUR»TPEAK,DEP, XIEP

-

4LQ

147
30

COMMON/MNANPAR/XNC gNC o XKC 9 TDC ¢ XNSyNS ¢ XKS,TDS
rAMMOAN/MONTIM/TMAXYDTS,DTQ,NTH, INPTD,IOPT
COMMON/MONDLIM/LIMIT,LIMGN, L IMGOS, L ITMGS,NL
COMMNON/CATCH/CAT(10N,5720) ,CUH(10,50M)
COMMCN/MNNATA/UHIONND) yCATCH{ 1N 4 500) ,HSUM(1509)
WRITF(65117) XLAMDA
FIPMAT(1HY,//7/715X, "CATCHMENT-STRFEAM MGDFI'//,
PAXy CLAMNDA =1F1N,4,//)
XLR=FLS/XNS
T=r N
T=DTS
nn A Iglyﬁcﬁ
T=T+NT
TIME(T)=T
T=n,0
Nnn 7 J=1,17
N7 dJd=1,8500
CUHUJ »JJ) =0, "
nn R gJ=1,69n0
STRGPS(JJ) =D
ITNS=TNS/NTS+7,25
TNS=TTNS%DTS
WRITE(A,175)
FORMATY [/ /415X *STREAM MONDEL PARAMETERS?Y)
FALL XKINITIXNSXKS,TDS,QPEAK,VNL,2)
[FIINPTD «GE. 1) GO TN 49
L TMGS=1 IMGCS
N1 45 J=1,NS
FACSTR(J)=1.M
NN 46 J=1,NS
N 46 T=1,LIMG0S
CATCH{Jy 1)=GPS{T)*2,0"
GN TN 50
WRTTF(6,140)
FORMAT(/ /10X, *DISTRIRUTED STREAM MONEL'//)
nn 7N J=1,NS
JL=(J=-1)*{ ITMGS
YN=)
PT1I=NTS
LGS=LIMGS
CAl L FRASE(GPS,6C")
IFIFACSTR(J) GT. N.10) GO TO 52

oy
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DA 51 JJ=1,1.TM0S
81 CIHE ), J))=0.0
nY TR 7N
£ WRITF(A,141) J
141 FORMAT(//10XYL IMEAR RESERVOIR CHATIN NN, 13,2X*TUHY/)
TE{S «GT. 2) G0 TN 65
SO L TMTT=TMAX /DT
CALL HVYNDCEMIXYNGMHS  XKS,NT1yDNTY, mHL,Z)
LTIMUH=NHLL Y
Yy 53 I=1,LIMUH
S PHLELT)=1H(T)=DT] .
WRTITE(EV16K) (UH(T) aI1=1,1TMH)
14564 FARMAT(S5F]1",4)
AL STMSAONINTY L ITMUH, UM, SUM)
TEISUM (T, D.97) 6N T 58
nTY?>=pv1/2."
TEINT?2 LT, "L.7708) ) TN &R
NT1=NT?
537 TN 86
E3 977 87 1=1,11M0S
HHGP (TY=CATCH(Y, 1)
ST CONTINYF
LGS=LIMGS:(NTS/NT1)
CAL) INTRDPL (1 TMGS LGS yNTI 4 NTS e TIMEZUHCP ,UHGPL, 2)
CALL CONVALINTI yNT1 0TS 1 GS» LIMUH, LIMENS,UHGP]Y,
1L R 4GP S)
CALL STMSON(NTS, L IMGCR,GPS,SUM)
NN 858 JS=1,LIMACS
B CUHE ), TS)Y=GDSTS)=XLP
G TN
A LTMTT=TMAX/DOTS
CALL HYDGEN (XN NHS g ¥M S, DTS, NTS,NHL, 2)
LIMYH=NHL (J) _
N A2 T=1.LIMUH
A2 JHILR({T)=UHIT)EDTS
WRITF(6,166) (UH(T)sT1=1,LTMUuH)
CAl L S!M%ﬂN(DTS,L!MUH.UH,SUM)
TTEOATE UNTTL ADFQUATE CONTINUITY 1S ACHIEVED
FAR THE L TNEAR RFSERVNIR RFSPONSF
IRV GT, N,37 JANN, SUM LT, 1,17y 6N TN 66
MT1=NTS/ 10,0
NN TN 5
A6 N7 AT I=1,1 TMGS
A2 HGP ([ Y=CATCH(J,T)
AT CLONTINUF
CALL CONVNLINTS,, DTS, DTS, L IMGS,LTMUH,1 IMGNS,UHGP,
1UHLR ,, (PS)
CALL SY“ﬁﬁNlDT%.LYVGC§ GDQ,SUN)
Ny A8 IS=1,LIMGOS
25 CUHE ), T1S)=6GPS(TS) %=XLR
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COINTINUYE

JI=NS*LTMGOS+27A

cALl FRASFIUH,JL)

NN 75 J=1,N¢

JL=(J=1) %L IMGOS

NI 75 JJ=1,LIMGCS

NHEIL+IIN=CUHJ,JJ)

CALL HYNSUMIXNS,NS,TDSyNTS,DTS,LIMGNS,LIMGOS)
N 74 T=1,LIMG0S

STPGPS{I)=HSUM( T)*XNS

WRITE(A,135) ,
FIRMAT({1H1,15X*PRENDICTEN STREAMFLOW HYDPNGRAPH®//)
CONTINUTITY CHECK

CALL STMSONINTS,LIMGOS,STRGPS,SUM)

IL=LIMGNS/ 8N4],08 ‘

NT=TL%NTS

NE1,1 Y =N 0

D(142)=""

N1 R4 I=2,5n

TI=IL%x(1-1)+1

T=Ta+DT

N(T,1)=T

NI{T,2)=STRGPS(IT)

WRITE(6,128) ToSTRGPS(II)
ENRMAT (15X ,F8e2,1F1N,3)

rFAINTINUF ;

IF(INPTN LT+ 1) GO TH 33

WRITE(&,167)

EARMAT (1H1,57X, *DISTRIBUTED CATCHMENT-STREAM
1*4YNRNOGRADPH / /)

6N TN 138

WRITF(A,150) -
FORMAT{1H] 46" X, *CATCHMENT-STREAM HYDROGRAPH',//)
CALL PLNT(2,D,50,2,03,0450,2)

RETIRN

FND
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SURPAUTINF CONVOLIDOR,DNTO,DTSyNM,LIMH,LIMG,RAIN,UHP,5S<)
THIS SUBROUTTINF PFRFORMS THE CONVOLUTION

DIMENSTAN RAIN(1),UHP(1),4G(400N),GSS(THN),TIMF(1500)
COMMON/CATCAR /RUNPT 4 DUR y XLAMDA . CUTCFF

ANnR=1 ~

T=0,1 5

YILAC=RIR/DTQ4D, 25

LAC=XLAG ;

PM= TMHELAGANT

CALL FRASE(G,4000,GSS,709)

LIM=LIMH *

NI 25 N=1,NM

K=LAR®(N-1)

NN 18 T=NRLLIM

J=1-x

IF(14P(J) LT. CUTNFF) GN TN 18
GEIY=GLI)+UHP(J)%RATINI(N)
CONTINUF

NB=NR+LAG

LIM= TM4&LAG

CANTINYE

CONVERSTON TO TIME STEP=NTS

XL A=DTS/DTQ

LG=XLG

NDLG=XLG=-LN o
TE{DLA JGFe T.14) 60 TN 40
TEIXLA 6T 1.05) RO T2 28
Nt 24 T=1,LTM =
GSSUT)=6(T)

L]MG:LM

57 TN 59

LIMO=L TM/1G

551 )=ten

nn 28 1=, 1MG
IT=L0%(1-1)+1

GSS{TI=6G(TY)

GN TN s~

0N 48 T=1,LIM

T=T+DTN

TIME(T)=T

LTMA=L TMENTQ/NTS

CALL TNTOPL{LIM,LIMG, DTS DTQyTIMELG4GSS,2)
ETIIPN

=ND



O

NP YA

126

suarnurlms xKINIT (XNH xK,rn"openx VFL,JDPT)
THIS SURROUTINE SFTS THE VALUE CF THE MODEL
PARAMFTFRS K AND TD:FOR - THF APPPOPRIATE N
NIMENSINN XCAT(?)
COMMNN/CATPAR/ELC ¢FMCyALFC,ELSy EMS,ALFS
COMMNN/CATCAR/RUQPT yNUR » XLAMDA , CUTCFF.
GD TD {(145),J0PT
NETERMINATION OF CATCHMENT MODEL PARAMETERS
THE PFAK NISCHARGF OF THE KINEMATIC WAVE PULSE
RESPANSE IS EQUATED TO THE PEAK 0OF THE MODFL
PILSF RFSPONSE TO DETERMINE (XK+TD)=TDKSUM
1 TDKSUM=1 .7/ (XNH=QPFAK/VOL)
YCAT(1)=XNE
XCAT(2)=TNKSUM
RATIO NF TD/XK=F(ALFC,EMC) ;
TOXKR=F,50%] 7 Nkk (EMCRALFC/25,.0)
XK=TDKSUM/ (1. 2+TDXKR)
TN=TDKSIIM=XK
2 IF(XK .6GT. "eN27) 6O TN 3
XK=TNK SUM
T"):z“, [a)
3 WRITE(4,100) XNH, XK, TD
179 FNRMAT (/75%, "L INEAR RESERYNIR-~L INEAR CHANNFL ¢
1OMNDEL NFYFS,2,1X, *CHATINS ', //1DX*K =*F7 4,1 X HOURS*
24XVTIME DELAY ='F7.4,1X'HOURS'/) .
1”7 RETYURN ‘
NETERMINATINN 0OF STREAM MODEL PARAMETERS
& TNKSUM=XLAMDA%XTAT(1)*XCAT{2)/XNH
XX =TNKSUM=TD
60 TN 2
FND
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SUBROYTINFE HYDGEN{XNH NH, XK, DTH, CTLR1,NHL, I0PT)
THIS SURRNUTINF GENERATES THE LINEAR RESERVOIR RESPONSES
FACH CHAIN IS A NASH MODEL OF N RESFRVDIRS

DIMENSTION NHLI{1?)

NNYBLFE PRECISINN XKDy XKNy XNUM, XDEN
COMMON/MODLIM/L IMIT, L IMGO, L IMGOS,LIMGSyNL
COMMON/MONATA/UHTINADN) y CATCH 19,500 ) yHSUM(1500)

WRITE(A,17%)

FARMAT (/17X *GENERATED LR, CHAINS FROM HYDGEN'/)

XKN=YXK
I5(10PT
A =X MH

XN=XNH

«FGe 1) GO TO 1

NT=NTH

NM="
FAC=1,7

G TN 11
XN = 0

At =N

;Ar.::’. o«
XN:XN+1.ﬁW
[F(NDTH LT,
NT=0TLel
67 TN 8
NT=DTHk
NYN=XNH/ XN
TE(NXN «GT. 0,99) 60 TN 1D
FAC=1 3= XN=XNH)

XN =XNH

N=N+1

NM=(N=71 )% IMTT

T=1,1

UH(NM+1) =02,N

HMAX=T,10

T=YN

GM=GAMMA(Z)

XKN=XKNE2EYN

XDVEM=XKNXGN

NY 18 J=2,LIMIT

T=T+NT

1 J=J

XMUY= T2 (XN=1,7) ) ADEXP(~-T/XKD)
H=XNUM/XNEM

UH{NM4 ) =HEFAC

TF(H4 .67, KMAX) GC T 17

TE(H LLT. 1.,2F=n3) G0 TO 19

GR TN 18 :

DeNID JNR, XN GT,

17 HMAXY=H
18 CANTINYF

10

TE(LS «(Ese LIMIT) GO TN 25

1.5) GN 7O 7
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89

NN 20 J=LJ,LIMIT:
UHINM+J)=0,0
NX=XNH=XN"
NHL(N)=LJ

WRITE(6y100) NyToDT,LIMIT,LY

FORMAT(110,42F10.4,2112/)
IF(DX=N,N1)8N,5",5
NH=N
RETURN
END

9
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SURRNUTINFE HYDSUM{XNH NM,TDsNTHsCTQLIMIT, L IMGD)

THTIS SUBRAUTINF COMRINFS THE COMPONENT RESOONSFS.

AND INCORPNRATES THE TIME DELAY TD

NIMENSION HS(310N), TH(370N)
COMMON/MANDATA/UH(10CNN) ,CATCH{ 1N, Sﬂ“),HQUM(IS“”)
XLAG=TN/NTE#I .5

LAG=XLAG

M AG=XLAG~I| AR

TFIDLAG +LTe D,50) GN TN S
LAG=LAG+] '

L=t IMIT4+LAGENM+1TN

CALL SRASFE(HS,L,TH,L)
NR=1

L IM=LIMYIT

NN 25 N=1,AM
NH=(N=1) %L IMIT
K=LAGX{N=-1)

NN 18 T=NR,LIM

J=1-K

HS{ T)=HS{ T )+UH{NH+J)
CONTINUFR v
NAR=NR$1 AG

LIM=| IM&LAG
COMTINUE

T==-DTH

D7 30 I=1,1LTM
T=T+NTH

THIT)Y=T
HS{T)=HS{I)/XNH
CNNTINUFE
LG=TARS(LIMIT-LTIMGO)
IE(LG «GT. 10) G TO 40
00 35 [=1,LIMIT
HSUM{ T)=HS(T)

GN TN 4%

CALL INTROL{LIMGN,LIMGO, DTQ.DTH THHS JHSUM, 1)
RETIRN

cr\m
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:u&nnurle INTRPL(L,LTM, DTX.DTHyTHoX Y,J0PT)

DIMENS INN rH(l!.X(l).v(anaﬂ) :

IF(JNPT .GT, 1) 6C TC '8

THIS BPANCH DETFRMINES THE VALUE CF Y ronnFsPnNDING ™
A PARTICULAR ‘X AT TIME T

J=n

K=1

T=0,0

TF(T .GF., THIK)) G0 TN §

T=T4DTYX

6N TN 1 ;

TF(T 4GE. TH(K) .AND. T JLF, ‘'TH{K+1)) 60 TN 7

K=K+1} )

6N TN

NTN=(T=-TH(K)) /NTH

J=J+1

Y{J)=(X{Ks+1)~ X(K))*DTO+X(K)

T=T+NTX

TF(J «GF, L) GO TN 25

GO TC 1 i

TYIS RRANCH PFRFNRMS CONTINUOUS STRATGHT LINE
INTERPNLATINN RFTWEEN TWN VALUFS NF X

TH{1)=0,0

T:Q.ﬁ

J=n

Y{1)=",n

T=T+DTX

J=1+1

nno1n I=1,L

IFIT JLFe. TH(I+1)) 6N TN 1§
CINTINUE

y(g)y=r,n

Gy TA 2~
OOX=(T=TH(T))/(TH(I4+1)=-TH(T))
YOI =X0T )+ (X{I41)=-X(1))*PDX
TF(Y «CF. LIM)Y GC TN 25

C,{] TN ©

RETURN

END
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SYULROUTINEG SIMSON (DT,N,Y,SUM)

THYS SUBPNUTINF CARRIES OUT THE INTEGRATION
ACCORDING TO STMPSON'S RULE

Y TS THE FUNCTINN TO RE TNTEGRATED FROM A TN B

AP ICATINN HFRE IS FOR CONTINUITY CHECKS TD
NETFRMINFE THE ORNPER TIME STEPS FNR THE COMPUTATIONS
NDIMENSTINN Y(1) :
COMMNN/CATCAR/TCC yTCSyNUP, TRAIN, XTI, TNIR,, XL AMDA,,CUTNFF
H=NT

SYM=7, 1

ML={N/2Y=-?

nre 18 T=1,NL

J=2*%1-1

SUM=SUMEY { J) 44, 2Y(J+1)4Y( J4+2)

CONTINUF

SUM=SUM=H /2, N

WRITE{A,10:0) SUM

CARMAT (/YBX,YINTFGRATED AREA UNCER CURVE ='FlNn,4)
RETIIRM :

FND
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SURRDUTINF ERPNR (G GPyN,DT)

THIS SUBROUTINF CONPUTES THE & INTECRABLE SQUARE ERROR
AND THE F"QRELATION CDFFFICIENT BETHEEN THE TIMES SERIFS
6 (ASSUMEN TD RE THE NARM) AND GP i

APPLICATINON HERE IS FOR THE FITTING ‘PROCESS
DIMENSINN G(1) 'GPL1)

SUMA=D "

SUMR=D .0

S!jMC:ﬁ'ﬂ

SUMD=1 "

SUMF=N,n

N2=M/240,5

N 182 T=1,N

SUMA=SUMA+G({ [ )%x%2

SUMR=SUMB+G(I)*DT

SUMC=SUMC+({GP{T)-G(T))%%x2)%DT

SUMD=SUMN+GP ([ ) *%x2

SUME=SUME4G(TI)*GP( 1)

SUMX=ABS{( 2,N*SUME-SUMD) /SUMA)
FRRARS=SQRT(SUMC) %100, /SUMB

FARR=SQRT ( SUMX)

WRITE(6,170) FRRORS,CNRR

FNRMAT(/// 417X INTEGRAL SQUARF FRROR ='F8,3,/,19X,
1*CORRFLATICN COFFFICIENT ='F8,4/)

RETUPN

FND
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SUBROUTINF PLCOT (NN, RyNyMyNLyNSy KX,y JX)

THTS SURRNUTINF TS A GFNERAL PRINTER-PLOTTER
NIMENSTON NUT(1IN1),YPRIL11),TIANG(S),A{200),RIKX,JX)
INTEFGER IDUM/ LY /G TANG/ o0 o8kt gt et 00,080,001,

10,0, F Y/

INTEGER NUT
1=1

nn 2 J=1,w
NN 39 K=1,4AN
A(T)=R(K,J)
1=14+4]}
COANTINYE

2 FORMAT(IH L,F11,3,5%X,171A1)

3 FNRMATI(IH )

7 FORMAT(/,16&X,°*, . . o'
1' L] . [} 0'
21 . ")

8 FARMAT{IH" 49Xy 11F 1N ¢3,//6 X DI SCHARGE-CFS*///)

17

11

12
14
15
16
18
?ﬁ

NLT =NL

TEINS) 16, 14, 10

N1 15 T=1,N

nr 14 J=1,N

TECALIY)=-ACU)Y) 14, 14, 11
{.=T=-N

LL=J-N

NN 12 K=11~

i{=L+N

LL=LL#+N

F=A(1)

A(LY=A(LL)

A(LL)=F

CANTINUFE

COANTINYE o

IF(NLL) 27, 18, 27

NLL=8&"

B ANK =D

CL=FLOAT{NLL=-1)

TE(FL LT, 74717) GC TH 95
XSCAL=(A{N)-A(1))/FL

YMINZ1 AFTS

yMAX==1,"F75

v1=N4)

MD =M% N

NN 47 J=M] JMD

1 LAL)Y) GTe YMAX) YMAX=AL(])
TC (AL J) JCGCT, YMAX) YMAX=A({J)
IF (A (J) LT, YMIN) YMIN=A(J)
CINTINYF : ‘
YSCAL=(YMAX=YMIN) /107 N i B
XR=A(1) '
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L=1

MY =M=
nn 8&n I=1,NLL
F=1-1 . ¢

XPR

=XR4+FuXSCAL

a1 PN 8% IX:[,IGI

55 JUT(TX)=RLANK
NN a0 J=19”Y
LL=L+J*N

JP=((A(LL)-YMIN)/YSCAL)+1.D

NUTIJIPI=TANG(J)
67 CONTINUE

WRITE(6,42) XPR,(OUT(IZ)y1Z=1,101)

L=L+1
60 7O 8N
7Y WRITE(6,3)
R CNMTINMUE
WRTITE(Ey7)-
YPR (1)=YMIN
AN 97 KN=1,9

20 YPRIKN+1)=YPR(KN)+YSCAL*1N,N

YPR(11)=YMAX

CWRITE(648)1(YPR(IP),IP=1,11)

95 RFTURN

END

5461 019
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