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Abstract: We present a method to overcome the Manley-Rowe limit in a Q-factor engineered
multimodal nonlinear cavity. Cascading nonlinear processes enable continuous-wave terahertz
generation with a theoretical conversion efficiency of 98.8%. © 2021 The Author(s)

Nonlinear frequency conversion has enabled the development of many light sources, ranging from the UV to the
far-infrared wavelengths, i.e. terahertz (THz). For difference-frequency generation, the maximal energy conversion
efficiency ηe is given by the Manley-Rowe (MR) limit. In this optimal scenario, every high-energy pump photon
(ω0 = 2π × 200THz) will simultaneously generate a low-energy THz photon (ωT = 2π × 1THz) and an idler
photon ωi, i.e. ωT = ω0−ωi. The maximum conversion efficiency ηe is then given by the ratio of the THz to the
pump photon energies: ηe = ωT/ω0 = 0.5%.

The idea of recycling the idler photons to initiate subsequent cascaded nonlinear processes was proposed to
overcome the MR limit [1–3]. However, competing red-shifted (THz creation) and blue-shifted (THz annihilation)
processes strongly limit the possible net gain in THz conversion efficiency [2], see Fig. 1(b).

In this work, we propose a scheme for highly-efficient THz generation in an asymmetric multimodal cavity.
We show that by engineering the Q-factors of the cavity’s many modes, one can find a scenario where red-shifted
cascaded nonlinear processes strongly dominate over their blue-shifted counterparts, resulting in a quasi-complete
depletion of the pump energy into the THz mode. Our method enables THz conversion efficiencies as high as
98.8%. We also discuss attainable efficiencies in a realistic scenario by considering experimental parameters such
as cavity dimension, nonlinear crystal, dispersion, and frequency detuning.

Fig. 1. (a) Highly multimodal cavity. (b) Red and blue-shifted cascaded nonlinear mode mixing. (c) Uniform Q distribu-
tion: Qn = 105. Conversion efficiency ηe = 0.05%. (d) Asymmetric Q distribution: Q−N,...,−1 = Qb = 102,Q1,...,N-1 = Qr =

105,Q0 = QN = 1.3×103. Conversion efficiency ηe = 9.7%.

The system under consideration is depicted in Fig.1(a). The nonlinear cavity supports 2N + 1 modes centered
around the pump frequency ω0, and equally spaced by the THz frequency ωT . Figure 1(b) shows the multi-
frequency mixing with red and blue-shifted cascading orders. The time-evolution of the system can be described
by a set of nonlinear coupled-mode equations [4]:

ȧn = i(ωn +δωn)an− γnan− iωnβnaTan+1− iωnβna∗Tan−1 +
√

2γns+n , (1)

where an is the amplitude of the mode with index n ∈ [−N,N], with frequency ωn, detuned by δωn, de-
cay rate γn = ωn/2Qn and effective nonlinear coupling coefficient βn. The mode n is pumped with input
power s+n . Only modes 0 and 1 are pumped with s+0 � s+1 (arrows in Fig. 1(b)). The mode amplitudes
are normalized such that |an|2 is the energy in mode n. Additionally, the THz mode amplitude is given by
ȧT = iωTaT− γT aT− iωTβT ∑

N−1
n=−N ana∗n+1. We first consider an ideal situation where we neglect frequency de-

tuning δωn. It is known that by engineering the phase-matching between blue and red-shifted modes, one can



favor red-shifted cascaded processes [2]. We make a similar observation via Q-engineering the multimodal cavity,
by considering low-Q blue-shifted modes Qb and high-Q red-shifted modes Qr (except the modes with indices 0
and N, which are assumed to have a lower Q). Figure 1(c) and (d) show the time-evolution (left panel) and steady-
state (right panel) of the mode energies |an|2 for a uniform and asymmetric system, respectively. While a uniform
Q-factor distribution results in a symmetrical energy decay around the pump mode (ηe = 0.05%), the asymmet-
ric Q distribution favors red-shifted processes, thus resulting in a significant conversion efficiency enhancement
(ηe = 9.7%).

With a Q-engineered multimodal cavity of N = 199 red-shifted modes (ω0 = 2π×200THz,ωT = 2π×1THz),
a theoretical THz conversion efficiency as high as 98.8% is achieved. Figure 2(a) shows how most of the energy
flows through the red-shifted modes, contributing to a THz photon generation at each step. At steady state the pho-
ton efficiency shows that a single pump photon produced 197 ωT photons (ηph = 19,700%) and 1 ωN photon, see
Fig. 2(a). This is a quasi-full depletion of the pump energy into the THz mode and almost a 200-fold enhancement
compared to the conventional MR limit when considering a single difference frequency generation process.

We then consider an experimentally realistic scenario with N = 24 red-shifted modes, corresponding to an
optical bandwidth of 166nm for pump wavelength λ0 = 1.55µm and THz frequency ωT = 2π×1THz. We assume
a bow-tie free-space optical cavity with length 0.6m and a 10µm LiNbO3 crystal. Figure 2(b) shows the time
evolution of the photon efficiency. We predict a photon efficiency of ηph = 2160% at a pump power P0 = 100W,
corresponding to an energy conversion efficiency of ηe = 11.2%. This is more than 20 times the MR limit.

Interestingly, the system under study is equivalent to a resonator chain coupled along a synthetic dimension
in the tight-binding approximation. Modes 0 to N− 1 are coupled along the synthetic dimension corresponding
to the mode frequency ω . In real space, such tight-binding configurations are known to be efficient waveguiding
systems [5]. Assuming fast decay of the THz signal compared to the red-shifted IR modes, only nearest-neighbor
modes can couple along this synthetic dimension through an effective nonlinear coefficient κ =−iωnβnaT� Qr.
In our scheme, the pumping and Q distribution are chosen to favor the excitation of a forward propagating mode
along the mode index direction N (towards decreasing values in synthetic frequency space ω). Importantly, the
mode N at the end of the chain is chosen to minimize reflection at the boundary of the synthetic dimension with
γN ∼ κ (since a backward propagating wave would result in THz annihilation).

Fig. 2. (a) Ideal scenario with N = 199: Q−N,...,−1 = 1,Q1,...,N-1 = 1010,Q0 = QN = 4× 102. (b) Realistic scenario with
N = 24: Q−N,...,−1 = 30,Q1,...,N-1 = 107,Q0 = QN = 5×103. Efficiency ηe for (a) and (b) is respectively 98.8% and 11.2%.

In conclusion, we propose a novel scheme for highly-efficient THz generation in Q-engineered multimodal
cavities. By engineering the Q-factor distribution, one can favor nonlinear processes involving red-shifted modes
and achieve almost complete depletion of the pump infrared modes into a THz mode. Our findings open the way
to highly-efficient continuous-wave THz generation with realistic experimental parameters.
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