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ABSTRACT

Convection and Segregation Phenomena in Low Prandtl
Number Melt Growth Systems: A Quantitative Experi-
mental and Numerical Approach

3

Edward Paul Martin Jr.

Submitted to the Department of Materials Science and
Engineering on May 5, 1977, in partial fulfillment
of the requirements for the degree of Doctor of Philo-
sophy.

A quantitative approach to the study of thermohydrodynamic
and segregation phenomena in low Prandtl number melt growth
systems has been developed and applied to Czochralski growth of
Ga doped Ge crystals. The approach combines a quantitative
segregation analysis (employing interface demarcation and
spreading resistance measurements), thermal characterization
of the growth system, and numerical analysis of the thermal
convection equations for boundary conditions determined by the
thermal characterization study. Its application required the
development of a computer program stable at high Grashof num-
bers and the establishment of controlled thermal boundary con-
ditions which was achieved by modification of the hot zone of
a Czochralski puller through the installation of a coaxial
heat pipe.

This modification of the hot zone was found to have a
pronounced effect on the thermal and segregation behavior
during Czochralski growth. In particular, it was observed
that longitudinal and radial segregation inhomogeneities al-
ways associated with rotational crystal pulling are drastically
reduced. Thermal asymmetry inherent to conventional Czochral-
ski systems was, thus, virtually eliminated. Random melt tem-
perature fluctuations were observed in the absence and presence
of the heat pipe; their frequency, however, is increased in
the modified system with a correspondingly decreased adverse
effect on growth and segregation.

Numerical solutions of thermal convection in the modified
growth configuration were found to be in semi-quantitative
agreement with measured temperature profiles and revealed the
existence of vigorous thermal convective flows in the melt, A
comparison of calculated solute boundary layer thicknesses and
convective melt flow rates determined from these solutions and
other theoretical and experimental approaches indicated that
both forced and thermal convection may simultaneously affect
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dopant segregation during crystal growth with seed rotation.

As a result of the virtual elimination of thermal asym-
metry in the hot zone through the installation of a heat pipe,
crystal rotation can now be used during Czochralski growth to
obtain a uniform solute boundary layer thickness and, thus,
obtain radial dopant homogeneity without the simultaneous
generation of adverse longitudinal dopant heterogeneities.

Thesis Supervisor: A.F. Witt
Title: Professor of Materials Sciences



-4 —

TABLE OF CONTENTS

Chapter
Number

(TT.

1.

ITV.

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGEMENTS

INTRODUCTION

OUTLINE OF OBJECTIVES, APPROACH AND
STRUCTURE

A. Objectives of the Present Work

B, Experimental and Theoretical Approach

C. Structure of the Thesis

BACKGROUND AND PREVIOUS WORK ON THERMAL
CONVECTION

A. General Reviews

B. Horizontal Layer Heated From Below

1. Horizontal Layer Heated From Below
With Infinite Lateral Extent

Horizontal Layer Heated From Below
With Lateral Confinement

2

~~
a Rectangular Enclosure Heated From the

Side

Vertical Cylindrical Enclosure With
Horizontal and Vertical Heat Flow

E. Control of Thermal Convection

APPARATUS AND EXPERIMENTAL PROCEDURES

A. Crystal Growth System and Related
Equipment

Page
Number

2

4

0

14

16

19

21

21

21

23

24

24

25

25

30

32

36

40

£2

A



weDyn

Chapter
Number

-

JT.

Page
Number

1. Crystal Growth Apparatus

a. Growth Chamber

Heater System

43

43

43

c. Heat Pipe and Heat Pipe Support

d., Crucible

47

47

e, Current Pulsing System 47

) Thermal Characterization Equipment

a. Thermocouple Probe Assembly

b. Thermocouple Manipulator

c. Temperature Measure Equipment

49

49

52

54

B. Experimental Procedures

1. Heat Pipe Alignment

55

55

2. Charge Preparation 56

3. Melt Down Procedure 56

4. Temperature Measurement Procedure 57

THERMAL, CHEARACTERIZATION OF THE CZOCHRALSKI
CRYSTAL GROWTH SYSTEM

A. Comments on Temperature Measurement

B. Thermal Characterization of the Hot Zone 62
in the Czochralski System

1. Time Dependent Temperature Behavior 63
of the Hot Zone

59

2. Spatially Dependent Temperature
Behavior of the Hot Zone

33

NUMERICAL TREATMENT OF THERMAL CONVECTION

Development of the Quantitative Theo-
retical Approach to Convection in Melt
Growth Configurations

37

88



 Gs

Chapter
Number

Vol.+

VITIT.

Page
Number

1. Thermal Convection Equations

Application to Crystal Growth
Geometries

89

30

a, Horizontal Bridgman Configuration 91

b. Czochralski Configuration 93

Numerical Solution of Thermal Convection 95
in the Horizontal Bridgman Geometry

1. Dependence of Computed Flows on the 97
Grashof Number

B.

2. Dependence of the Flow Intensity on 107
the Aspect Ratio

3. Convective Oscillations 109

C. Numerical Solution of Thermal Convection 115
in the Czochralski Configuration

BASIC CONSIDERATIONS AND LITERATURE REVIEW 127
ON FORCED CONVECTION AND SEGREGATION IN
CZOCHRALSKI CRYSTAL GROWTH SYSTEMS

A. Forced Convection

B. Segregation

128

130

l. Segregation Models 130

2, Segregation Studies 131

SEGREGATION BEHAVIOR IN CZOCHRALSKI
CRYSTAL GROWTH SYSTEMS

137

A. Crystal Growth and Characterization
Procedures

1.9

1. Growth Procedures 139

a. Seed Preparation 139

b. Seeding and Growth Procedure 140

ry Interface Demarcation 141



 7

Chapter
Number

LX.

{

TT

Page
Number

2. Specimen Preparation and Segregation
Analysis

a, Sample Preparation

141

141

b. Microscopic Growth Rate Deter-
mination

Spreading Resistance Measurement 147

Calibration of the Spreading 148
Resistance Probe

b. Concentration Determination 149

Comparative Segregation Analysis

Segregation Analysis for Growth With 152
Crystal Rotation

142

3. 151

Segregation Analysis for Growth With 156
Crucible Rotation

Segregation in Modified Growth System 158
Without Rotation

DISCUSSION OF CONVECTION AND ITS EFFECTS ON 164
SEGREGATION

A, Solute Boundary Layer Thickness

B. Fluid Flow Rates

C. Sources of Convective Instabilities

1. Models for Convective Temperature
Oscillations

le64

173

177

2. Comparison of Theoretical and Ex-
perimental Periods

180

D. Correlation of Growth Rate Variations 185
With Convective Temperature Fluctua-
tions and Crystal and Crucible Rotation
Rate

SUMMARY AND CONCLUSIONS

SUGGESTIONS FOR FURTHER WORK

19I |

10.



~8~

Chapter
Number

XTT.

Page
Number

APPENDICES 196

A, Appendix 1 Materials Analysis and Pro-
perties

Appendix 2 Analysis of Microsegrega- 250
tion Due to Fluctuation of Fluid
Velocity and Temperature

Appendix 3 Finite Difference Schemes for 210
Numerical Integration of the Thermal
Convection Equations

197

B.

~

he?

D. Appendix 4 Computer Programs for Num-
erical Solution of the Thermal Con-
vection Equations

2Bo

E. Appendix 5 Error Estimates of Solute
Boundary Layer Thickness Calculations

212

BIOGRAPHICAL NOTE

REFERENCES

784

ry6



=O

LIST OF FIGURES

Figure
Number T i+ 1e

Modified Czochralski Crystal Growth
System

Schematic Drawing of Modified Crystal
Growth Chamber

Modified Hot Zone Without Heat

Shielding System

Interior of Modified Hot Zone

Schematic Drawing of Thermocouple
Manipulator

Schematic Representation of Complica-
tions Associated With Temperature
Measurement

Page
Number

44

45

oS

531

53

61

Representative Temperature Fluctua- 64
tion Spectra in a Standard Czochralski
Puller

.

)

 C’

3
L =

PD

Representative Temperature Fluctua-
tion Spectra in the Modified Czo-
chralski System

Axial Melt Temperature Profile in a
Standard Czochralski System

Axial Gas Temperature Profiles of
the Heat Pipe With Crucible and
Pedestal Removed

Gas Temperature Profiles of the
Modified Hot Zone With an Empty
Crucible at Position M

Vertical Temperature Profiles of
the Melt and Crucible Wall (Crucible
in Position H)

 lL
nf

f:
A

71

1 L
—

 a

/



—-10~

Figure
Number

 4

4

1 5

“ (

1.
’

“he

10

20

21

f1itle

Vertical Temperature Profiles of
Seeded Melt for a Crucible Located
at Position H Within the Heat Pipe

Temperature Profiles of the Melt and
the Gas Phase Within the Hot Zone of
the Modified Growth System (Crucible
in Position H)

Vertical Temperature Profiles of the
Melt and Crucible Wall (Crucible in
Position M)

Temperature Profiles of the Melt for
a Crucible Located at Position M
Within the Heat Pipe

Axial Temperature Profile of the
Melt and Gas Phase Within the
Modified Hot Zone (Crucible in
Position IL)

Axial Temperature Profilesofthe
Melt for a Crucible Located at
Position L Within the Heat Pipe

Computed Contour Plots of Dimension-
less Temperature, Vorticity, and
Stream Function for Horizontal 4
Bridgman Configuration; Gr = 1x10,
A = 0.25

Computed Contour Plots of Dimension-
less Temperature, Vorticity, and
Stream Function for Horizontal 5
Bridgman Configuration; Gr = 1x10,
A = 0.25

Computed Contour Plots of Dimension-
less Temperature, Vorticity, and
Stream Function for Horizontal 6
Bridgman Configuration; Gr = 1x10,
A = 0.25

Page
Number

“i

7s

/ I

1 OO

TH
7 4

S(

Tag

9(

(sf



~11-

Figure
Number

¢

Ao

J 3

4

 85

26

D7

a Q

20

20

ritle

Computed Contour Plots of Dimension-
less Temperature, Vorticity, and
Stream Function for Horizontal ~
Bridgman Configuration; Gr = 1x10,
A = 0.25

Computed Contour Plots of Dimension-
less Temperature, Stream Function,
and Vorticity for Horizontal Bridg-
man Configuration; Gr = 1x106,
A = 0.5

Computed Contour Plots of Dimension-
less Temperature, Stream Function,
and Vorticity for Horizontal Bridg-
man Configuration; Gr = 1x105,
A=1.0

Dependence of Main Vortex Intensity
{IY on Grashof Number (Gr) for Con-
stant Aspect Ratios (A)

Dependence of Main Vortex Intensity
(I) on Aspect Ratio (A) for Constant
Grashof Numbers (Gr)

Time Evolution of Dimensionless
Temperature Field During One Con-
vective Oscillation; Gr = 1x107,
A = 0.25

Time Evolution of Dimensionless

Stream Function Field During One 7
Convective Oscillation; Gr = 1x10,
A = 0.25

Time Evolution of Dimensionless
Temperature and Stream Function
Values at_Center of Cavity;
Gr = 1x107, A = 0.25

Computed Contour Plots of Dimen-
sionless Temperature and Stream
Function for Czochralski Con-
figuration(RunNumber20in
Table 9)

Page
Number

1951

1 {v,1
=

] ye &gt;

 a

iN 0 Ld
of

1c:

1. U

111

117 -

118



-12-

Figure
Number

vy

 A

$3

34

&lt;5

i

.c

1"

38

2 ¢-J

L(y

11

-

* +1ec

Computed Temperature Profiles for
Czochralski Configuration (Run
Number 20 in Table 9)

Computed Velocity Profiles for
Czochralski Configuration (Run
Number 20 in Table 9)

Computed Contour Plots of Dimen-
sionless Temperature and Stream
Function for Czochralski Configu-
ration (Run Number 21 in Table 9)

Computed Temperature Profiles for
Czochralski Configuration (Run
Number 21 in Table 9)

Computed Velocity Profiles for
Czochralski Configuration (Run
Number 21 in Table 9)

Polished and Etched Sample Mounted
on a Brass Disk with a Large Ohmic
Back Contact

Impact Traces of Spreading Resis-
tance Probe (10 ym spacings) and
Interface Demarcation Lines on a

Polished and Etched Ge Sample

Schematic Representation of Spread-
ing Resistance Measurement Circuit

Assessment of Accuracy and Repro-
ducibility of Microscopic Growth
Rate Determination

Effect of Surface Preparation on
Spreading Resistance (Ga Concen-
tration) Measurements

Comparison of Longitudinal Segre-~
gation Associated with Growth
Under Crystal Rotation

Page
Number

-—_

. J

T1221\

PCr
wo 3D

1272r

TeFe 1

1 1.
+g

 #*

iA

143

ldo

1R( }

. 5



-13

Figure
Number

l &lt;

44

45

“G

17

18

10

30 }

TT. 7

Comparison of Longitudinal Segrega-
tion Associated with Growth Under
Crucible Rotation

Comparison of Radial Segregation
Associated with Growth Under
Crucible Rotation

Segregation in Modified Czochralski
System Associated with Growth in the
Absence of Rotation

Schematic Representation of a Non-
Dimensional Finite Difference
Grid

Horizontal Bridgman Configuration

Flow Chart of Numerical Solution

Czochralski Configuration

Flow Chart of Numerical Solution

Page
Number

1 7=

1 5¢

1.1

2.0

214

227

230

251



1 od ”

LIST OF TABLES

Table
Number

10

a

i J.

12

Tiklo

Values of the Critical Rayleigh Number
for a Horizontal Layer of Infinite
Extent Heated From Below

Temperature Fluctuation Components in
the Standard Czochralski System

Temperature Fluctuation Components in
the Modified Czochralski System

Selected Results From Vertical Tem-
perature Profiles

Computer Runs for the Horizontal
Bridgman Configuration

Positions and Intensities of the Main
and Secondary Vortices During One
Convective Oscillation of Computer
Run Number 5

Experimental Convective Oscillation
Periods

Theoretical Convective Oscillation
Periods

Computer Runs for the Modified
Czochralski Configuration

Summary of Comparative Segregation
Behavior

Computed Values of the Solute Bound-
ary Layer Thickness for a Ga Doped
Ge Crystal Grown With Seed Rotation
(17.1 rpm) in the Modified Czoch-
ralski Crystal Growth System

Fluid Velocities Due to Thermal and
Forced Convection in the Modified
Czochralski Crystal Growth System

Page
Number

27

 LC
a

67

31

: F

112

114

115

117

162

172

ye

rf



-15-

Table
Number

13

4
Ben

4

‘ J

 x

‘oy

L 7

i 8

1 itle

Measured and Calculated Periods of
Convective Temperature Oscillations

Computed Periods of Momentum Bound-
ary Layer Instabilities

Correlation of Growth Rate Varia-
tions and Rotation Rate

Materials and Major Impurity
Analysis

Selected Physical Properties of
Liquid Germanium

Selected Physical Properties of
Liquid Gallium and Silicone 0il

Page
Number

131

132

153XL

Ck

137

1 YqTT

yl



-16~

ACKNOWLEDGEMENTS

The author will be forever grateful to his thesis super-

visor, Professor A.F. Witt, for introducing him to the fascinat-

ing field of convection and segregation phenomena in crystal

growth systems. His constant support and timely advice through-

out the period of the investigation and writing of this thesis

are deeply appreciated.

A special thanks is extended to his co-advisor,

Dr. J.R. Carruthers of Bell Telephone Laboratories, for lend-

ing his expertise to many enlightening discussions on thermal

convection in crystal growth melts.

The author appreciated at all times the environment of

scientific professionalism fostered within the Electronic

Materials Group by Professor H.C, Gatos and acknowledges its

profound influence on this work.

Gratitude is due the author's thesis review committee,

Professors J.F, Elliott and T.B. King, in addition to Pro-

fessor A,F. Witt and Dr. J.R. Carruthers, for their careful

reading and criticism of the preliminary version of this

document and their thoughtful suggestions for improvements.

The contributions of the staff, visiting scientists and

postdoctoral fellows of the Electronic Materials Group are

also gratefully acknowledged. In particular, discussions

with Mr, C.J. Herman on crystal growth and equipment design,

and with Mr, M. Lichtensteiger on spreading resistance



-17~—

measurements were essential to the successful completion of

this work. Furthermore, the aid and encouragement of Dr. L.

Jastrezebgki, Dr. K. Kim, Mr. W. Fitzgerald, Mr, J. Baker,

and Ms, M. Cretella are greatly appreciated. In addition,

the generous advice and assistance of Ms. G. Landahl and Ms.

P. Merrick on procedural matters is cheerfully acknowledged.

The congenial interaction with fellow graduate students,

including all the students in the Electronic Materials Group,

in scientific discussions and social activities will be warmly

remembered. The author is especially grateful to A. Muragi,

D. Holmes, R. Gale, J. Thompson and M. Wargo for many thought-

ful discussions on crystal growth and related topics; and to

J. Vaughan for the many enjoyable discussions on philosopy and

politics.

Thanks are due to Ms. D. Merritt for her careful prepara-

tion of the final text and tables and Ms. F. Lindon of Poly-

Graphus for her skillful preparation of the figures.

Other individuals too numerous to mention individually

have provided encouragement, advice, aid, and materials essen-

tial for the ultimate completion of this work. Each of these

many contributions is gratefully acknowledged.

The author thanks God for whatever abilities he may have

been given and for answering his numerous pravers for help

during the course of this work.

The author's wife, Norine, has been a steadfast source of



-1 8m

love and encouragement throughout the course of this work and

his son, Edward, has proved an inspiration during its comple-

tion.

Finally, much gratitude is extended to the John A, Lyons

Fellowship and to the National Science Foundation (MRL) for

financial support during the author's stay at MIT.



~-19~

CHAPTER T

INTRODUCTION

Optimization of materials properties requires control of

chemical composition and structural perfection. Deviation from

specified composition, while inconsequential for some materials

properties, may cause pronounced variations in the physical

properties of others. Extreme sensitivity to chemical and

structural homogeneity is, for example, encountered in the

tronic properties of semiconductors.

elec-

Thus our inability to produce crystalline solids which

achieve theoretical performance limits has in recent years been

traced to a lack of adequate compositional and structural con-

trol during the processing of these materials. Specifically,

compositional inhomogeneitiesinsemiconductorcrystalsobtain-

ed by liquid-solid and gas-solid phase transformations could be

correlated to adverse conditions at the growth interface result-

ing from hydrodynamic instabilities in the fluid phase. These

instabilities take the form of temporal variations in growth

rate and solute boundary layer thickness.

During melt growth, solute generally accumulates in a

boundary layer region ahead of the solidification front. Con-

vective processes within the melt will affect the distribution

of solute whenever the diffusion distance’ D/R (where D is the

liquid diffusion coefficient and R is the growth rate) exceeds

the thickness of the solute boundary layer. Since crystal
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growth from the melt requires the establishment of temperature

gradients in the vicinity of the solid-liquid interface, heat

flows are generated which invariably result in convective melt

flows. The behavior of these flows and their influence on the

phase transformation are complex and, as yet, not well under-

stood. However, according to thermohydrodynamic theory, the

nature of convective melt flows depends, among other things, on

the magnitude of the temperature gradients (Rayleigh number),

the nature of the molten material (Prandtl number), and the

details of the imposed boundary conditions.

This work presents a quantitative approach to thermohydro-

dynamic and segregation phenomena in low Prandtl number crystal

growth systems comprising a quantitative segregation analysis

(employing interface demarcation and spreading resistance

measurements), thermal characterization of the growth system,

and a numerical analysis of the thermal convective flows.

This approach has been applied to the Czochralski crystal

growth system for which controlled thermal boundary conditions

have been achieved.
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CHAPTER II

OUTLINE OF OBJECTIVES, APPROACH, AND STRUCTURE

A. Objectives of Present Work

The present work was performed in an attempt to meet the

following objectives: (a) development of a quantitative ap-

proach to the study of thermohydrodynamic and segregation

phenomena in low Prandtl number crystal growth systems, (b) es-

tablishment of controlled thermal boundary conditions amenable

to theoretical analysis of convective behavior and (c) reduc-

tion in the amplitude of compositional inhomogeneities in

crystals grown.

B. Experimental and Theoretical Approach

To achieve these objectives a combined experimental and

theoretical approach was developed and applied to a Czochralski

crystal growth system. The experimental investigation involved

(a) establishment of controlled thermal boundary conditions,

(b) thermal characterization of the growth system, and (c)

quantitative segregation analysis of grown crystals. The theo-

retical treatment required numerical solution of the equations

appropriate to thermal convection in the Czochralski configu-

ration.

Controlled thermal boundary conditions were to be achieved

by exploiting the potential of a heat pipe for isothermal op-

erationl. This approach was taken since heat pipes have been
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successfully used to establish uniform temperature distri-

butions in horizontal vapor and solution growth systems. No

attempts have, however, been made to use the heat pipe concept

in the Czochralski growth configuration. Characterization of

the resulting thermal environment was to be accomplished by

mapping the temperature distribution in the hot zone (the

crucible wall, the melt, and the protective gas phase) of the

growth system. Quantitative segregation analysis was to be

achieved through interface demarcation (for growth-rate de-

termination) and spreading resistance measurements for the

determination of composition on the micro-scale. Interface

demarcation was further used to delineate the growth interface

morphology and determine its changes during growth.

The theoretical analysis of thermal convection was to be

pursued to establish the theoretical temperature distribution

and flow pattern within the melt. This approach was necessi-

tated by the lack of an experimental method of flow determina-

tion for hightemperature, low Prandtl number melts in the

Czochralski configuration. A computer program employing an

explicit finite difference scheme was developed to solve for

thermal convection within the crucible based on the measured

thermal boundary conditions. The advection terms of the

vorticity andenergy equations were represented by quadratical-

ly conservative finite difference forms? which were expected to

maintain numerical stability at high Grashof numbers. The
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applicability of this analysis could be assessed by comparison

of theoretical with experimental temperature profiles.

The indicated approach was applied to Czochralski growth

of Ga doped Ge crystals. The choice of this binary system was

based on the following considerations: (a) previous studies’

have indicated that the nature of thermal convection in Ge

(937°C) melts is intermediate between the relative stability of

Insb (527°C) melts and the thermal turbulence of Si (1410°C)

melts, thus exhibiting all elements of convective behavior

(laminar, oscillatory, and turbulent), (b) the Ge~Ga system

has been shown to be amenable to quantitative segregation

analysis?, and (c) the physical properties of Ge have been ex-

tensively investigated.

Structure of the Thesis

During the course of the present investigation, the study

of thermal convection and that of growth and segregation were

pursued separately. Therefore, this separation has been main-

tained in the structure of this thesis. The treatment of

C.

thermal convection is presented in chapters III through VI

and that of growth and segregation in chapters VII and VIII,

The results of these independently conducted studies are

brought together and interrelated in chapter IX which pre-

sents a discussion and analysis of convection and its affects

on segregation during Czochralski crystal growth.
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CHAPTER III

BACKGROUND AND PREVIOUS WORK
ON THERMAL CONVECTION

This chapter reviews the literature pertaining to the

factors which influence thermal convective phenomena in con-

fined fluids and which are relevant to understanding such

phenomena in crystal growth melts. For the readers conven-

ience, several recent reviews of thermal convection in growth

related configurations are presented first. (The previous work

on forced convection and dopant segregation is presented in

Chapter VII.)

A. General Reviews

The present state of knowledge of thermohydrodynamics in

melt growth systems has been extensively reviewed in several

recent papers&gt;'®r7, Carruthers” discusses the factors which

influence the stability and forms of thermal convective flow

and presents the methods employed to control thermal convec=-

tion; he emphasizes the importance of thermal and fluid boun-

dary conditions and of the degree of confinement in determining

the nature of thermal convective instabilities. Jakeman and

Hurle® treat temperature oscillations in the melt from both a

theoretical and experimental point of view; they discuss the

relationship between oscillations and solute striations in

grown materials and consider methods of eliminating such os-

cillations in melt growth systems. Carruthers’, in another
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review, considers various models for convective oscillations

and develops expressions which relate the period of oscillation

to the imposed boundary conditions with special emphasis on the

distinction between low Prandtl number (Pr) fluids (liquid

metals and semiconductors) and high Pr fluids (liquid oxides

and nonmetallics).

B_ Horizontal Layers Heated From Below

The study of a horizontal fluid layer heated from below

and cooled from above is a fundamental model for the develop-

ment of many important concepts in thermal convection which

have direct application to complex systems including melt

growth.

L. Horizontal Layers Heated From Below With Infinite
Lateral Extent

The initial impetus for the study of convection associ-

ated with horizontal layers heated from below arose from ob-

servations of Benard® which stimulated Lord Rayleigh’ to

develop the linear theory of Benard instability. The complete

linear theory for horizontal fluid layers of infinite lateral

extent heated from below has been presented by Chandrasekhar?

in his treatise on hydrodynamic stability. Accordingly such

systems are conveniently characterized by two dimensionless

parameters, the Prandtl number, Pr = v/k , (which is the

ratio of momentum transfer due to kinematic viscosity, v, to

thermal transfer due to thermal diffusivity, k) and the
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Rayleigh number, Ra = agBd® /vk, (which expresses the tempera-

ture gradient B in nondimensional form where o is the thermal

expansion coefficient of the fluid, g is the acceleration due

to gravity, and d is the thickness of the fluid layer). When

the Rayleigh number exceeds a critical value (Ra), an ini-

tially stagnant fluid layer becomes unstable and subject to

stationary cellular convection of dimensionless wave length,

BE A/a where As is the horizontal dimension of the convec-

tion cells. The principle of exchange of stabilities! is

said to apply to such systems meaning, the initial motion is

not periodic in time.

It is important to recognize that the values of Ra® and

a, depend on the nature of the horizontal bounding surfaces

(Table 1). Thus systems with free surfaces which allow velo-

city perturbations are less stable than those with rigid sur-

faces as shown by the lower value of Ra®. Similarly systems

with insulating surfaces which allow temperature perturbations

are less stable than those with isothermal surfaces.
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TABLE 1

Values of the Critical Rayleigh Number for a
Horizontal Fluid Layer of Infinite Extent Heated
From Below?

Mechanical Boun-
dary Conditions

Both rigid

Upper free

Both free

Thermal Boundary Conditions
Both Upper Both

Conducting Insulating Insulating
1708 1296 720

1101 zryi) 320

~NLt
~
3

+ 120

A number of experimental studies have been conducted at

Rayleigh numbers in excess of the critical value. Schmidt and

milvertonll developed a basic experimental approach which in-

volves measurement of both the heat flux (Q) through the layer

studied and the temperature difference (AT) across the layer.

Their data were analyzed on the basis of a plot of Rayleigh

number vs. Nusselt number, where the Nusselt number,

N = Q/(kAT/d), is the ratio of the measured heat flux to that

which would occur for pure conduction (k is the thermal con-

ductivity of the fluid). On such a plot a transition from one

mode of flow to another is indicated by a change of slope.

The most precise experiments of convection in the Benard

; .12,13,14
geometry have been those conducted by Krishnamurti .

Her studies included the range of Rayleigh numbers, Ra® &lt; Ra

~ 10°, and the range of Prandtl numbers,
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2.5 x 107% &lt; Pr &lt; 8,5 x 10°. Krishnamurti2/13identifiedin

addition to RaS, four transitions at the critical Rayleigh

numbers, Ra'T, ratll, Ral’, and Ra’. Her studies showed steady
flow (Ra® &lt; Ra &lt; REIT) which, for Ra &lt; Rall, took the form of

two-dimensional rolls oriented such that a maximum number had

their axes perpendicular to the lateral boundaries and, for

Ra &gt; Rall, took on a three-dimensional structure. Above RaTll

the flow became time dependent with full turbulence setting in

at Ra’. This development of turbulence through a series of

flow transitions is a feature generally encountered in thermal

convective flows.

Krishnamurtil3r14 further revealed in high Prandtl number

(Pr &gt; 1) fluids the bimodal nature of time dependent flows

through visual and thermal studies. One mode consists in a

slow tilting of the convection cell walls with a period de-

termined by the thermal diffusive time (@%/«) ; the second mode

consists in the advection of a "knot" or region of high shear

by the basic cellular flow. The temperature anomaly associated

with the convective knot is recorded by a stationary thermo-

couple as a temperature oscillation, whose period depends on

the cell dimensions and the flow velocity. The doubling of

the oscillation frequency above Ral has been correlated with

a doubling of the number of convective knots. Krishnamurti

suggests that, at very high Ra and Pr, Howard 'si&gt; model of

periodic thermal boundary layer instability is likely to



apply. In this model, the thickness of the lower thermal

boundary layer increases until the Rayleigh number, based on

this thickness, exceeds a critical value (about 103) and a

"blob" of warm fluid (a thermal) breaks away from the thermal

boundary layer. This reduces the thermal boundary layer thick-

ness (and the Rayleigh number) below the critical value and

the process is repeated.

In low Prandtl number fluids, Kristmamerel &gt; observed a

dramatic decrease in the critical Rayleigh numbers, Ra TIT, ratV,

and Ra’ with decreasing Pr, while the transition at Rall

could not be observed. She proposed that for such fluids shear

instability is the likely mode of oscillation, Application of

Busse 's’® model for transverse wave instability of convective

rolls (7 = (2/3'%p) / ((Ra-Ra®)/RaY 2) where b is the wave number

and Tt is the period in units of a%/ 9 resulted in good agree-

ment with the data for air (Pr = 0.71) but poor agreement with

data for mercury (Pr = 2.5 x 107%) which instead exhibited

periods on the order of the viscous diffusive time @a%/v). In

this context it is worth noting that Carruthers’, most re-

cently found good agreement between Busse's theory and experi-

mental data reported in the literature.

A numerical study of the Bénard geometry has been con-

ducted by Fromm’ ’ using cyclic boundary conditions to simulate

infinite horizontal extent, He found that, for Ra &gt; 10%, the

fundamental mode exhibited an oscillation of period,
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T = 0.010 a%/«, in the form of a pulsating growth and decay in

tandem of adjacent vortices, causing a rising column of fluid

to go alternatively left and right. This period is larger, by

a factor of ten, than that observed by Krishnamurti for the

same Rayleigh number and the calculated critical Rayleigh

number (RaTTT) is larger by a factor of 102,

2. Horizontal Layers Heated From Below With Lateral
Confinement

The influence of lateral confinement on the stability and

flow patterns of a fluid layer heated from below has been ex-
|=

tensively discussed by Carruthers”. Analysis of this situa-

tion requires the specification of an additional dimensionless

parameter, the aspect ratio, A = d/L, (where d is the layer

thickness and L is the separation between the lateral bounding

surfaces). The layer of infinite horizontal extent corresponds

to the limit of vanishing aspect ratio.

It has been shown that the influence of lateral side

walls on fluid stability through the action of viscous shear

is proportional to the ratio of the total wetted surface area

to the fluid volume. Heitz and Westwater S have shown that,

for a fluid in a box of square cross section, the surface area

to volume ratio is I' = (2/L) (1/(A) + 2). They suggest that the

influence of the side walls is important even at relatively low

aspect ratios since the value of I' at the aspect ratio of 5 is

within 10% of its limit at large aspect ratios. This predicted
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behavior has been confirmed by their experimental findings

involving water confined in a rectangular region heated from

below.

A two-dimensional numerical study of the confined Bé€nard

geometry has been conducted by Samuels and Churchilll?. Their

calculations covered the range of parameters,

0.33 &lt;A &lt;2,0, 0.01 &lt;Pr &lt; 25, and 1,000 &lt; Ra &lt; 40,000,

They found an increase in stability (larger critical Rayleigh

number) with increasing fluid confinement (larger aspect ratio)

and a decrease in stability with decreasing Prandtl number.

Both of these findings are in agreement with the experiments

conducted by Chiesa and Guthrie? involving mercury and lead

contained in stainless steel tubes heated from below.

Several studies have been undertaken to determine the

flow patterns in confined fluid layers. ovchinnikov2l reported

that flow in a water filled cube (A = 1) is initiated as a

two-dimensional asymmetric roll at Ra® = 3650 which exceeds

that of the unbounded layer, The liquid undergoes a transition

to three-~dimensional flow with fluid rising in two diametri-

cally opposite vertical quarters and descending in the other

two at Rall = 6000. Harp and Hurle2? concluded the existence

of this second convective mode in a container (A = 2.8) filled

with liquid gallium from phase analysis of temperature oscil-

lations with periods of 40 seconds measured across the upper

surface.



-32

The convective behavior of gases enclosed in a vertical

cylindrical container heated from below has been reported by

Mitchell and Quinn?3 for the range of parameters 10% &lt; Ra &lt; 10°

and 0.5 &lt; A &lt; 2,0 where the aspect ratio is defined as A = 4d/R

(R is the cylinder radius). They found that, for large aspect

ratios (A &gt; 1), the flow consists of an asymmetric roll extend-

ing across the diameter of the cell. For A &lt; 1, three differ-

ent flow patterns extending across the radius were observed:

(a) a symmetric toroidal roll, (b) a three-~dimensional mode

similar to the second mode of Ovchinnikov?t, and (c) a mode

with a mirror symmetry plane along one diameter. For Rayleigh

numbers above a critical value the basic flow patterns develop-

ed an oscillatory character in the form of three-dimensional

spirals rotating about the axes of the suboscillatory flow,

rr
hr* Rectangular Enclosure Heated From The Side

Studies conducted on thermal convection in a rectangular

enclosure with imposed horizontal heat flow are of particular

importance for horizontal crystal growth. The original theo-

retical treatment by Batchelor?? demonstrated that, as opposed

to the case of heating from below, no critical temperature dif-

ference need be exceeded to initiate thermal convective flow

for horizontal heating. The nature of the temperature and

flow fields were shown to depend on the values of three non-

dimensional parameters, the aspect ratio (A = H/L), the

Prandtl number (Pr), and the Rayleigh number (Ra = guATL&gt;/_ )
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(where T is the horizontal temperature difference imposed

across the cavity of length L and height H). By power series

expansion in terms of Ra, Batchelor determined that, for A = 1

and Ra &lt; 10°, to first order in Ra, the flow consisted in a

circular roll with fluid ascending along the warm wall and

descending along the cool wall. It is of interest to note that

employing the technique of orthogonal polynomial expansion,

Poots?&gt; obtained a more complicated solution which is in good

agreement with Batchelor's for Ra &lt; 10°. Furthermore, Wilkes

and Churchi112® obtained a numerical solution for thermal con-

vection in a square cavity (A = 1) filled with air (Pr = 0.733)

which was in excellent agreement with the analytical solution

of Poots for Ra = 5 x 103.

An extensive numerical study of a square cavity (A = 1)

was conducted by Stewart and Weinberg?’ for the range of para-

meters, 0,0127 &lt; Pr &lt; 10.0 and 2 x 10° &lt; Gr &lt; 2 x 10’, where

the Grashof number, Gr = Ra/Pr, is the customary nondimensional

temperature difference used for horizontal heat flows. They

found that, while the flow field depended on Gr and Pr sepa-

rately, the thermal field depended only on Ra and was dominat-

ed by conduction for Ra &lt; 10° with convection becoming in-

creasingly important for Ra &gt; 103 (as indicated by the Nusselt

number). This observation has important consequences for

thermal convection flows, since for identical thermal fields

(same Ra), the velocity fields for high and low Pr fluids are
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considerably different, while for similar flow rates, the tem-

perature fields for high and low Pr fluids differ radically.

High Pr fluids tend to develop a boundary layer structure with

low flow rates, whereas the thermal and velocity fields extend

further into the interior of low Pr fluids with higher rates

of flow. Thus, flow simulations employing transparent high Pr

fluids are of questionable value for modeling thermal convec-

tion in opaque, low Pr liquid metals and semiconductors.

Though most studies of thermal convection in rectangular

enclosures have been conducted on high Pr fluids, a number of

important investigations have been reported for liquid metals

and semiconductors. Cole and Winegard?® found that temperature

fluctuations commenced in liquid tin when Hg, &gt; 3.1 cm?°C

(where By is the horizontal temperature gradient). Mueller

and Wilhelm?? found that the amplitude of temperature fluctua-

tions, T, increased with increasing IL and By and increased as

liquid travelled along the upper free surface of indium anti-

monide melts. Using melts of liquid tin and aluminium, Utech

and Flemings SO observed an increase of bothTand frequency,

w, With increasing By and a decrease of T with depth into the

melt. In an extensive investigation on liquid gallium, Hurle

and soworkers&gt;1r32r33 found that temperature oscillations

commenced for LB &gt; 20°C with a period which increases linearly

with L and was independent of H (except for a mode change).

From measured temperature distributions and time phase
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correlations of the temperature oscillations, they determined

that the basic unicellular roll was only slightly perturbed by

the instability. Stewart and Weinberg 4, employing radioactive

tracer techniques in liquid tin and lead, found an increase in

flow rate with increasing temperature difference. MacAuley&gt;,

also using radioactive tracer techniques, determined that, in

liquid tin, the flow velocity is linearly dependent on the

average By and independent of L. Employing the lead-thallium

system in a series of quenching experiments, Carruthers and

Winegard-®° determined a direct correlation between the amount

of lateral (non-axial) heat flow and the intensity of thermal

convection, as revealed by changes in the thermal and solute

boundary layer structure near the solid-liquid interface. These

experimental findings have been explained by Carruthers&gt;’ on

the premise that the basic unicellular thermal convective flow

generated by the imposed horizontal temperature gradient,

which produces a stable vertical temperature gradient (hotter

fluid over cooler fluid) in the bulk liquid, is destablized

(cooler fluid over hotter fluid) in the vicinity of the hori-

zontal surfaces by transverse vertical heat flow at these

surfaces, When the fluid acceleration, generated within these

regions of adverse vertical temperature gradient, is suffi-

ciently large, boundary layer separation and associated vortex

formation occurs along the horizontal end walls, which results

in temperature fluctuations within the melt. Values of the
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critical Rayleigh number (Ra® = agB JH L/ VK) for the onset of

temperature oscillations were computed to be 2940 and 1950 for

the studies of Cole and Winegard?S and Utech and flemings&gt;9,

respectively. The close agreement of these values to those

for confined fluid layers heated from below has been interpret-

ed” as an additional indication of the important role of verti-

cal heat flow in determining fluid stability.

Carruthers” has proposed that tor the length of time

during which the fluid travels along horizontal surfaces where

it is subject to the effect of vertical heat flows, is an im-

portant parameter. The increase in T as the fluid travels

along the horizontal surface is attributed to the increased

time it has been affected by the adverse vertical temperature

gradient, Since the axial flow velocity is independent of L

and linearly dependent on By ty depends linearly on L and

inversely on Bye Thus the linear increase in the amplitude

and period of the oscillation with L is interpreted as an

increase in flow transit time along the horizontal surfaces,

while the decrease of frequency with Bey is understood as a

decrease of transit time.

C. Vertical Cylindrical Enclosure With Horizontal and
Vertical Heat Flow

Investigation of thermal convection in vertical cylindri-

cal enclosures with combined horizontal and vertical heat

flows are of direct importance to crystal growth by the
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Czochralski, vertical Bridgman, and other vertical solidifica~-

tion techniques. The rate of crystal growth is controlled by

radial input of heat into the melt and axial withdrawal of

heat through the solid-liquid interface. As discussed in the

preceeding section, the horizontal component of the heat flow

will always generate a thermal convective flow. Several in-

vestigations of unstable thermal convection in Czochralski

crystal growth from high Prandtl number oxide and fluoride

melts have been reported. For both rotating and stationary

CaF, melts, Wilcox and Fullmer&gt;S observed random temperature

fluctuations with periods of 1 to 3 seconds and amplitude of 20

to 40°C which reached a maximum at a distance of a few milli-

meters below the upper surface and which could be reduced by

reducing vertical heat losses. Brice and Whiffin&gt;? reported

that regular thermal oscillations with 8 second periods and

0.5°C amplitudes in ZnwWo , melts were related to growth rate

induced solute striations in grown crystals.

Cockayne and Gates?! have related temperature fluctuations

in CaF, and Cawo, melts to solute striations in grown crystals;

they also observed small angular movements of a radial spoke

pattern on the surface of the melt produced by thermal convec-

tion and made visible by a temperature dependent emissivity;

in non-rotating melts, thermal oscillations with periods of

10 to 15 seconds and amplitudes of 3 to 5°C appeared associat-

ed in grown crystals with solute striations and a displacement
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(2 to 3mm) of the thermal center. More extensive meandering of

the center of the spoke pattern was found to result in a longer

period (1 to 3 minute) and larger amplitude temperature fluctua-

tion (10 to 20°C, maximum at the crucible center). Small

amplitude angular movements of the spoke pattern produced

thermal oscillations with periods of less than 5 seconds and

amplitudes of 2 to 3°C; these oscillations were associated

with a finely spaced set of striations in the grown crystals.

Reduction of heat loss from the melt surface by the use of

after heaters eliminated the temperature oscillations and the

spoke pattern, while application of crucible rotation enhanced

them.

In studies on Ba, Na Nb Oy 5 melts Cockayne et a1.%!

observed a reduction in the amplitude of temperature fluctua-

tions (8 to 12 per minute in both the melt and the gas phase)

and in the intensity of compositional growth striations with

decreasing melt height. By extrapolation of this data to zero

amplitude, Carruthers&gt; determined the critical Rayleigh number

for the onset of temperature oscillations to be 3 x 104, in

good agreement with the minimum value (2 x 10%) reported by

Mitchell and Quinn?3. This value exceeds, however, the cri-

tical Rayleigh number (3.6 x 103) for the onset of thermal

convection in a confined layer of equivalent aspect ratio (0.8)

heated from below. The findings in oxide systems suggest that

a steady cellular flow, driven by radial temperature gradients,
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exists prior to the development of temperature oscillations.

Of direct importance for vertical crystal growth from

low Pr melts is the series of experiments reported by Kim,

Witt, and Gatos?? in which the thermohydrodynamics of complete-

ly confined InSb melts, heated radially and cooled axially,

have been studied during growth for continuously varying as-

pect ratios (0 &lt; A &lt; 4.5) and Rayleigh numbers

(0 &lt; Ra &lt; 3 x 10°). They report that, for Ra &gt; 4 x 10°,

random, high-frequency, temperature fluctuations (5°C) super-

posed on large (10°C) variations of the mean melt temperature

with periods of 2 to 4 minutes which caused pronounced remelt-

ing alternately on the left and right side of the crystal; in

the range, 3 x 10° &gt; Ra &gt; 2 x 103, they observed highly perio-

dic temperature oscillations and associated solute striations

which, with decreasing Ra, undergo a mode change at

Ra = 2,6 x 10° from a frequency of 0.29/sec and amplitude

0.35°C to a frequency of 0.38/sec with the amplitude decreas-

ing from 0.1°C to below measurement capability. Below

Ra = 2 x 103, neither thermal oscillations nor solute stria-

tions were observed.

These observations have been discussed by Carruthers”

who concluded that the long period thermal variations above

Ra = 4 x 10° are produced by meandering of the thermal center.

He bases his conclusion on the similarity of measured ampli-

tude and frequency to those reported by Cockayne and Gates?



—4 0

The multitude of divergent observations concerning convec-

tive flow in growth systems reported in the literaturel®r41s43

have led Carruthers” to the following conclusions: (a) the on-

set of oscillatory thermal convection occurs at Rayleigh num-

bers very close to the critical value (Ra®) for heating from

below; (b) the steady circulation due to radial temperature

gradients is more effective in stabalizing high Pr fluids

against such oscillatory behavior than in stabalizing low Pr

fluids; (c) for low Pr fluids the destablizing influence of

fluid to container thermal conductivity ratio is more important

than the stabalizing effect of the higher flow rates; and

(d) due to the presence of the suboscillatory shear flow, the

onset of oscillatory thermal convection does not violate the

principle of exchange of stabilities for confined flows.

Control of Thermal Convection

The methods used to control thermal convection in the melt

are based on an attempt to reduce the Rayleigh number.

Recently several methods for controlling thermal convec-

tion have been applied to Czochralski crystal growth systems.

Cockayne and Gates”? have successfully reduced the amplitude

of thermal fluctuations by reducing the heat loss from the

upper melt surface (and thereby the vertical temperature

gradient in the melt) through the use of after heaters. This

procedure, however also reduces the radial gradient in the

melt making crystal diameter control difficult. Brice et a1.%4
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have employed a horizontal baffle in the melt to reduce the

effective melt height and to minimize the amplitude of tempera-

ture oscillations in the melt.

Temperature oscillations (and associated solute striations

in grown material] have been reported to be suppressed by

application of a steady magnetic fie1a°9732 to electrically

conducting melts confined in a horizontal boat. The basis of

this suppression is an increase in the effective melt visco-

sity through the action of the Lorentz force.
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CHAPTER IV

APPARATUS AND EXPERIMENTAL PROCEDURE

The present chapter covers the apparatus and experimental

procedures used for thermal characterization of the Czochralski

crystal growth system. (The computational procedures employed

in obtaining the numerical solution of thermal convection in

this system are considered in Chapter VI and more completely

in Appendix III. Apparatus and procedures required for analyz-

ing growth and segregation phenomena are discussed in Chapter

VIII.)

AL Crystal Growth System and Related Equipment

The experimental approach to the study and control of

thermohydrodynamics and segregation required a crystal pulling

facility with a well defined thermal configuration. Such a

configuration was achieved by the installation of a sodium

filled heat pipe located coaxially between the heating element

and the crucible containing the germanium melt, Additionally,

it required (a) the capability for performing thermal charac-

terization of the melt system and (b) provisions for applying

interface demarcation during crystal growth by current pulsing.

The crystal growth facility modified to meet these require-

ments 1s hereafter referred to as the modified Czochralski

crystal growth system.
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1. Crystal Growth Apparatus

The study was carried out in a modified NRC crystal puller

(Figure 1) with the following standard capabilities:

Furnace power: 4 kw

Temperature Control:

Pull Rate:

Seed Rotation Rate:

+ 0.05°C (at growth

0 to 5.9 cm/hr

0 to 110 rpm

tempera-
ture)

Crucible Rotation Rate: 0 to 40 rpm

a

Protective gas at-
mosphere:

Growth Chamber

ow rage:  nN

A detailed schematic of the crystal growth chamber is

shown in Figure 2. The chamber has a double wall construction

to permit water cooling and is capable of maintaining,at

growth temperature, a vacuum lower than 5 x 1072 torr. A

feed-through ring permits access to the chamber interior for

thermal characterization.

Db. Heater System

The heater system consisted of a graphite ladder heater

and heat shielding, a 40 volt, 100 amp power transformer

(connected to the main line), and a Leeds and Northrup tem-

perature control system. The controlling thermocouple was

positioned below the crucible. The set point of temperature

controller could be adjusted in units of 10 microvolts (0.25°C).
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anyde

Figure 1. Modified Czochralski crystal growth system;
current pulsing system and temperature
recording instrumentation (left); modified
NRC crystal puller (center); power supply
and temperature controller (right).
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Figure 2. Schematic drawing of modified crystal growth chamber.
(Continued from preceeding page).

Upper chamber section:

[ower chamber section:

Heater system:

Heat pipe system:

Seed system:

Crucible system:

~hamber wall (Al), top plate (Pl),
view port (V1).

chamber wall (A2), base plate (P2)
with V-groove (V) and vacuum port (V2),
feed-through ring (F).

heater (Hl), heater supports (H2),
electrode (H3), insulation (H4 and H5),
heat shields (H6, H7, and HS).

heat pipe (HP), heat pipe support (HP1,
HP2, HP3, and HP4).

seed crystal (S), seed holder (Sl),
seed holder bracket (S2),
insulation (S83), pull shaft (S4), pull
shaft bearing (S5), current lead (P).

crucible (C), pedastal (Cl), crucible
shaft (C2), insulation (C3 and C4),
crucible shaft bearing (C5), control
thermocouple (T).
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c. Heat Pipe and Heat Pipe Support

The heat pipe used in the present investigation was a

sodium filled annular isothermal Inconel liner (Dynatherm

11-16-6) of length 15.24 cm, O.D. 7.32 cm and I.D. 4.14 cm.

The heat pipe was installed with the fill tube oriented up-

ward (see Figure 3) and operated in an argon atmosphere?’

(initial runs conducted in a hydrogen atmosphere resulted in

swelling of the liner),

A heat pipe support (see Figures 2 and 3) was designed

and constructed which allowed for positioning and alignment

of the heat pipe. The threaded legs of the tripod base pro-

vided the capabilities of vertical positioning and angular

adjustment and provided the means for coaxial alignment of the

heat pipe with the crucible shaft.

ad. Crucible

The crucibles (ATJ grade graphite) used in this study

had the following dimensions: O.D. 3.81 cm, I.D. 3.20 cm,

depth 1.90 cm. The capability for profiling the temperature

of the side wall was provided for by two vertical holes

(diameter 0.16 cm, depth 2.00 cm) at opposite ends of a cru-

cible diameter into which thermocouple probes, could be in-

serted.

2_ Current Pulsing System

A current pulsing system described by Lichtensteiger,
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Figure 3. Modified hot zone without heat shielding system. (a) Hot
zone without heat pipe. (b) Hot zone with heat pipe.
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Witt, and Gatos~® was used for interface demarcation: The

output of a programmable power supply was controlled by a func-

tion generator which was triggered by a pulse generator; the

resulting current pulses were monitored on a differential

oscilloscope. The system was capable of introducing current

pulses with the following characteristics: amplitude 0 to 36

amp, pulse width 10 nsec to 1 sec, repetition rate 0 to 10 MH,

The current pulses were applied to the growth interface

by means of an electrode system shown in Figure 2: The seed

electrode system consisted of (1) a commutator ring, (2) a

platinum current lead, (3) a stainless steel seed holder

bracket, and (4) a molybdenum seed holder. The melt electrode

system consisted of (1) a commutator ring, (2) a stainless

steel crucible shaft, and (3) a graphite crucible with pedes-

tal.

2. Thermal Characterization Equipment

Characterization of the thermal environment within the

crystal growth system required the design and construction of

a sensitive temperature measurement device, with the capability

of positioning a temperature sensor throughout the hot zone.

I= Thermocouple Probe Assembly

The temperature measuring elements chosen for the pre-

sent investigation were 76 um diameter bare wire chromel-

alumel thermocouples (Omega Engineering Incorporated). The
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choice of wire diameter was a compromise between the improved

measurement accuracy and sensitivity of thinner wires and the

improved service life of thicker wires. Wires of small dia-

meter improve the accuracy of temperature measurement by re-

ducing the heat conduction along the wire leads, reducing

the time constant of the measuring junction (to permit the

measurement of high frequency temperature oscillations), and

also reducing the perturbing influence of the measurement

device on the basic flow within the melt. The thermocouple

probe assembly (diameter D, = 0.07 cm) immersed in a Ge melt

with a flow rate (V) of 0.1 cm/sec has a small Reynolds number

(Re = vD./ v=6) and thus constitutes only a small perturbation

to the basic flow’. In a typical temperature measurement

experiment, the thermocouple probe had to remain in the melt

for a period of 12 hours which thus constitutes the shortest

service life tolerable for the probe. Probes constructed with

76 yum diameter chromel-alumel thermocouples and packaged as

described below, were found to satisfy the above requirements.

The two thermocouple probe assemblies used during the

course of this work are shown in Figure 4. The H-type

assembly (left) was used to profile beneath the (seed)

crystal and near the upper melt surface, while the S-type

assembly was used to profile the crucible side wall and the

vicinity of the crucible bottom.

The complete thermocouple probe assembly consisted of a
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Figure 4.
r= il a

Interior of modified hot zone. (a) H-type
thermocouple probe (A), S-type thermocouple
orobe (B), thermocouple manipulators (C),
thermocouple feed-throughs (D), feed-through
ring (E), heat shielding (F). (b) View
showing H-type and S-type thermocouple probes
positioned in the interior of the modified
hot zone with crucible (G) at position M
within the heat pipe (H).
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thermocouple threaded through a thermocouple holder with a pro-

tective coating applied to the measurement junction and insu-

lating beads applied to the lead wires. The thermocouple

holder was fabricated by drawing one end of 3.5 mm diameter

twin bore quartz tubes (General Electric Company) to a diameter

of 0.5 mm and shaping them as shown in Figure 4. Protective

coatings of a dilute suspension of Ultra Bond 552 (Aremco

Products), an alumina based adhesive, were applied in the

following manner: The thermocouple assembly tip was immersed

in the suspension, after briefly drying in a hot air stream,

the assembly was further dried for 5 minutes at 90°C and

baked for 10 minutes at 600°C, This procedure was repeated

until the desired coating (0.15 to 0,25 mm) was achieved. The

insulating beads were short (0.5 to 1.5 cm) broken pieces of

0.79 mm diameter two hole round (MgO) insulators (Omega

Engineering Incorporated).

Thermocouple Manipulator

The thermocouple movement necessary for thermal profiling

was provided by the thermocouple manipulator shown schematical-

ly in Figure 5 (see also Figure 4(a)). The outer tube (T) was

b.

shaped from thin wall stainless steel tubing (33 cm long, O0.D.

0.32 cm). The inner push rod assembly consisted of two stain-

less steel rods ((Pl) 23.5 cm long, O.D. 0.24 cm and (P3) 8.3

cm long, O.D. 0.24 cm) joined by a braided stainless steel

cable ((P2) 17.1 cm long, O.D. 0.16 cm). This assembly was
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fastened by a Swagelok Union (200-6E) (S1) to T which was attached

to the feed through ring (F) by a Swagelok Male

Connector (S-300-1~2) (82). The stainless steel ferrules of

both fittings (S1 and S2) were replaced by teflon inserts (Il,

I2, and I3) to provide vacuum tight (&lt;5x10"%torr) slip seals.

The guide screws of the stainless steel guide ring assembly (R)

were seated in grooves machined in P3 to prevent rotation of

the push rod assembly. The stainless steel V-groove fastener

(V) provided the means for attaching the thermocouple probe to

the manipulator (see Figure 4 (a)).

The thermocouple manipulator provided both horizontal and

vertical motion to the thermocouple probe. Controlled hori-

zontal displacement was achieved by moving the cuter tube (T)

with respect to the feed through ring (F). Vertical movement

was accomplished by moving the extended rod (Pl) of the inner

push rod assembly with respect to the outer tube. This move-

ment was facilitated by lubricating the grooves in P3 with a

suspension of graphite powder in methanol.

Co. Temperature Measurement Equipment

The thermal emf generated by the thermocouple junction

was brought outside the growth chamber by means of a thermal

emf feed-through assembly. This assembly consisted of a

sheathed chromel-alumel feed-through (Omega Engineering

Incorporated TJ-36-CAIN-18E-12) inserted throughamodified

Swagelok Male Connector (S-300-1-2) (see S2 above) which was
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mounted on the feed-through ring. The thermocouple lead wires

were spot welded to those of the feed-through assembly.

Two temperature recording systems were used during the

course of this investigation: (1) a Leeds and Northrup Speedo-

max W/L Recorder with Calibrated Azar and (2) a Hewlett Packard

Mosely Autograf Model 7100B Strip Chart Recorder augmented with

a bucking voltage supply. Both recorders had the zero suppress-

ion capability necessary for recording the small variations in

thermal emf encountered during the measurement of temperature

profiles and temperature fluctuations. The Leeds and Northrup

system had a maximum sensitivity of 0.8 uv (0.02°C) per mm of

pen displacement, while that of the Hewlett Packard system is

4,0 uv (0.1°C) per mm of pen displacement.

All temperature measurements utilized an ice bath refer-

ence junction.

B.

1.

Experimental Procedures

Heat Pipe Alignment

To achieve symmetric heat input to the crucible containing

the Ge melt, the heat pipe had to be aligned coaxially with the

crucible shaft. Installation and alignment of the heat pipe

and support assembly was performed with the bottom plate of

the growth chamber isolated as shown in Figure 3. The base of

the liner was positioned at the height of the lower heater

ring. A procedure was adopted to insure alignment of the

heat pipe coaxially with the crucible shaft and the alignment
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was confirmed prior to each experiment.

2. Charge Preparation

A typical 64 g charge of Ge doped with Ga (1x1029/cm® in

the melt) was prepared as follows. The desired quantity of Ge

was cleaned in CP4 etchant (5 parts HNO,, 3 parts HF, 3 parts

CH, COOH, and a drop of Br), rinsed in distilled, de—~ionized

water, rinsed in acetone, and dried in a hot air stream. The

amount of Ga required to achieve the initial melt concentration

(1x102%/cm3) was determined and placed in the crucible together

with the Ge charge.

Melt Down Procedure

The seed holder with seed and the filled crucible were

inserted into the crystal puller. After checking the align-

ment of the heat pipe, the crucible position was adjusted so

that the upper rim of the crucible was below the top of the

)

heat pipe at the desired depth 4, 9, or 14 cm, After closing,

the chamber was evacuated (&lt;5x10™2 torr) and back filled with

argon; this procedure was repeated three times. The cooling

water was applied and a dynamic argon atmosphere (150 bubbles

per minute) was established.

Because of the installation of the heat pipe, the system

required a long heat-up period: to avoid damage to the thermal

liner by excessive thermal stress prior to the onset of heat

pipe action, the heat pipe was brought to its minimum operating

temperature (500°C) within a period of one hour. After the
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start of heat pipe action the temperaturewasraisedata more

rapid rate. For a typical experiment the charge was melted

after a heat-up period of three hours.

4 . Temperature Measurement Procedure

Measurements of horizontal and vertical temperature pro-

files in the Ge melt and in the argon gas phase were performed

with and without a seed crystal in contact with the melt. In

addition, profiles were measured within the crucible wall

(see Crucible above}.

Data points were determined as follows: the position of

the thermocouple probe was adjusted by means of the thermo-

couple manipulator. The length of tube T (see Figure 5) pro-

truding from the fitting S2 determined the relative horizontal

position of the thermocouple junction. Similarly the relative

vertical position of the junction was obtained from the length

of rod Pl protruding from the fitting S1. The effects of play

in the push rod assembly (typically 0.5 mm) were minimized by

performing all vertical displacements in the same direction

during the determination of the profiles. Distances were mea-

sured with a metric scale with the estimated reading accuracy

better than 0.25 mm. The time averaged temperature at each

probe position was determined from the recorded thermocouple

output with an estimated accuracy better than 0.25°C in the

melt, The temperature measurement error was considerably

larger in the gas phase due to the presence of large amplitude
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temperature fluctuations.

Temperature fluctuations were recorded on the chart re-

corder during all temperature measurements. In several experi-

ments, the temperature fluctuation spectra were recorded during

crystal growth for correlation with transient segregation

phenomena. In these experiments the thermocouple was position-

ed in the melt near the crucible side wall to minimize inter-

ference with the growing crystal; to avoid inductance effects,

interface demarcation was not applied during these measurements.
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CHAPTER V

THERMAL CHARACTERIZATION OF THE CZOCHRALSKI
CRYSTAL GROWTH SYSTEM

Control of the thermal environment within the hot zone of

a Czochralski puller and of the time and spatial dependence

of convective flows within the melt are prerequisites for the

growth of high quality crystals. Such control can be estab-

lished through proper attention to furnace and hot zone de-

sign.

In the present work the isothermal nature of heat pipe

operation has been exploited to optimize the thermal con-

figuration in the Czochralski system. The controlled tem-

perature distribution established on the crucible wall was

expected to (a) minimize the extent of thermal asymmetry

within the melt and (b) reduce the intensity of thermohydro-

dynamic instability within the melt through a reduction of

the adverse vertical temperature gradient (vertical Rayleigh

number).

In this chapter the thermal behavior of the hot zone in

the modified Czochralski crystal growth system is character-

ized and contrasted with the behavior found in a standard

Czochralski system.

A. Comments on Temperature Measurement

This section discusses the problems of temperature

neasurement and interpretation arising from meniscus effects



and other sources of measurement error.

In the context of temperature measurements the problems of

meniscus effects arise because molten Ge does not wet either

the graphite crucible or the thermocouple probes used in the

present investigation. This failure of the Ge melt (mass m

and density p) to wet the crucible (radius R.) results in a

curved melt surface whose actual depth h (at the center)

exceeds the depth H(= m/TR2p) calculated for a flat melt sur-

face (see Figure 6 (a) and Table 4). In addition both H-type

and S-type thermocouple probes (discussed earlier) cause a

local depression of the melt surface near the point of inser-

tion (see Figure 6 (b) and (c)). As a result the measured

temperature profiles will depart from the actual profiles in

the vicinity of the melt surface (this error being largest for

an S-type probe and smallest for an H-type probe approaching

the surface from below).

Additional sources of error associated with temperature

measurements include the effects of radiant energy exchange

between the thermocouple and the surrounding surfaces and

conductive heat loss along the thermocouple wired?®, Unavail-

ability of the necessary heat transfer data and complexity of

the thermal geometry prevented the determination of temperature

corrections; however, the conduction error was minimized by

using thermocouples with small wire diameter (&lt; 80 um).

Further uncertainties in the temperature measurements

vere associated with thermocouple calibration and temperature
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HahN
Figure 6. Schematic representation of complications asso-

ciated with temperature measurement. (a) Cur-
vature of the melt surface. (b) Deformation of
melt surface by an S-type probe. (c) Deform-
ation of melt surface by an H-type probe.
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control. The purpose of this investigation was the determination

of temperature profiles, temperature gradients, and temperature

fluctuation amplitudes, none requiring absolute temperature

4measurement; thus the thermocouples (of reported 4 accuracy

+7°C at 940°C) were used without calibration.

Thermal Characterization of the HotZoneintheCzochralski
System

Measurements have been performed in order to determine

the time dependence of temperature at fixed points and the

distribution of temperature in the hot zone (the region within

the heat pipe above the crucible bottom) of the modified

Czochralski crystal growth system used in the current investi-

gation. The thermal characterization of this region was ac-

complished both with and without the crucible present, with and

without a Ge melt in the crucible, and with and without a seed

crystal contacting the melt. For these measurements the

crucible was located at either the "high" position (H), the

"middle" position (M), or the "low" position (L) for which its

upper rim was respectively 0.4 cm, 0.9 cm, and 1.4 cm below

the upper rim of the heat pipe (see Figure 10 (a)). Addi-

tionally, measurements were performed to establish the compara-

tive thermal behavior in the hot zone of a standard Czochral-

ski puller with similar crucible geometry but without a heat

pig 53 2
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1. Time Dependent Temperature Behavior in the Hot Zone

During the course of this work all temperature measurements

performed within the hot zones of both the standard and modi-

fied Czochralski systems were found to exhibit time dependent

behavior in the form of random temperature fluctuations, These

were characterized by their average period and root mean square

amplitude which were determined in the following manner:

Within a specific time interval all the temperature maxima and

minima (with variations larger than 1/2 division) were extract-

ed from the temperature recording. From these data the (RMS)

amplitude and the average period (the time interval divided by

the number of maxima) were computed; longer period components

were computed from the data exhibiting variations greater than

twice the amplitude of the preceding component.

The time-dependent thermal behavior typical of the stan-

dard and modified Czochralski systems are shown in Figures 7

and 8, respectively; and the components of the observed tem-

perature fluctuations are compiled in Tables 2 and 3. A

study of these data reveals surprisingly that the amplitude of

the convective temperature fluctuations in the melt is larger

in the modified system (since the heat pipe was expected to

reduce the intensity of thermohydrodynanic instabilities in

this system). This finding is of interest in view of the

significant reduction in microsegregation in crystals grown

within a heat pipe over those grown in the standard configura-

tion (see Chapter VIII). This apparent contradiction between
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thermal and segregation behavior can be attributed to the fact

that the standard puller exhibits a thermal perturbation of

rather long period (30 sec), whereas, the longest dominant

period in the modified configuration is 6.0 sec. Since the

damping of a temperature oscillation as it passes through the

thermal boundary layer from the bulk melt to the solid-liquid

interface decreases with increasing oscillation period”?, the

longer period components observed in the standard Czochralski

system may be expected to have a more pronounced (adverse)

effect on segregation than the corresponding shorter period

components found in the modified system.

TABLE /Z

TEMPERATURE FLUCTUATION COMPONENTS IN
THE STANDARD CZOCHRAILSKI SYSTEM

Thermocouple Position

Hydrogen atmosphere

Top of Melt

Bottom of Melt

Components (Period (sec)-Amplitude (°C))

1.5-3,1, 11-4.8, 30-6.6

1.3-0.24, 36-0.5

1.3-0.24, 36-0.4



TABLE 3

TEMPERATURE FLUCTUATION COMPONENTS IN
THE MODIFIED CZOCHRALSKI SYSTEM

Curcible
Position

J

J

N

x

-

Seed
Rotation (RPM)

NY)

10.7

0.0

10.7

).0

1.0

Thermocouple
Position

Argon gas

Bottom of Melt

Bottom of Melt

Bottom of Melt

Bottom of Melt

Near Solid-

Liguid Interface

Bottom of Melt

Components
(Period(sec) -Amplitude(°C))

1.9-14,7, 15.5-23.6, 37.2~28.8

1.4-0.6, 6.0-0.9

l1.6-0.8, 6,0-1.1

0.8-0.7, 2.0-0.9

0.9-0.7, 2.2-1.0

1.8-0.3, 18.8-0.6

0.6-0.5, 2.2-0.7

[a
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2. Spatially Dependent Temperature Behavior in the Hot Zone

The temperature profiles within the hot zone of the stan-

dard and modified Czochralski systems were determined to

establish their correlation with growth and segregation phe-

nomena. These profiles were furthermore determined to provide

a data base for computational analysis of thermal convection

in the Czochralski configuration.

In view of the time dependent thermal behavior discussed

above, it was necessary to time average the temperature at each

point for the construction of the horizontal and vertical tem-

perature profiles which characterize the temperature distribu-

tion. The average temperature at each fixed point was deter-

mined in the following manner. The thermal emf was recorded

for several minutes at each thermocouple probe position and,

for each position, data were then extracted from the chart

recording at fixed time intervals and used to determine the

average temperature (thermal emf) at that position.

The characteristic vertical temperature profile within an

unseeded melt contained in the hot zone of a standard Czochral-

ski crystal puller (Figure 9) was primarily determined to es-

tablish the thermal conditions in a conventional system and to

provide a basis of comparison for the conditions achieved in

the modified Czochralski system. This profile was obtained by

the continuous withdrawal (3.18 cm/hr) of a 127 um diameter

chromel—-alumel thermocouple (protected by a 1.19 mm diameter

twin bore alumina tube and a thin coating of "Aguadag")
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suitably attached to the crystal pull shaft. The temperature

gradient is 29°C/dm near the melt surface, goes throughamini-

mum of 2°C/cm near the 1 cm position, and increases to an

average value of 3.7°C/cm in the lower half of the melt. The

surface temperature gradient computation neglected the upper-

most data point since, at the surface, the measurement error of

an S-type thermocouple is large (see Comments on Temperature

Measurement).

The vertical temperature profiles measured in the argon

gas along the centerline of the vertically oriented heat pipe

(with the crucible and pedestal removed) for two similar

Operating temperatures (below the actual crystal growth tem-

perature] shown in Figure 10 display a rapid decrease in tem-

perature gradient with depth from 40°C/cm at the top of the

heat pipe to essentially 0°C/cm at a depth of 5.5 cm (about

one third the length of the heat pipe). By contrast, a

vertically oriented zinc filled heat pipe (15 cm long quartz

liner) exhibits an axial gradient decrease from the larger

value of 190°C/cm near its upper rim to a negligible value at a

relatively larger depth of 7.5 cm (half the length of the heat

pipe) .

The average gas temperature profile along the heat pipe

axis with an empty crucible located at position M (see Figure

11 (a)) taken below the growth temperature, exhibits four

linear regions (based on a linear least square analysis):

above the heat pipe (30°C/cm), within the heat pipe above the



of.
 jk
 Ny L

J

-1

Qo

+ 2l-

|}H
s 3zL
Q
O
f———"

=
S
@
 mM
D
O
 Cc
O
—

v
I)

q

5
1

—

 OD | L_

 a111a boop111
650 700 650 700

Temperature (°C)
Axial gas temperature profiles of the heat pipe with
crucible and pedastal removed (for details see text),

Figure 10.



- Pe5 4T\
=

20
! F

IN
4

J

a

-Top of heat pipe
2.35
rrA

b
anLL]

Yr

 Oo
g— 3 ii

J

ll  QO —

Oo
J
——

i

a 8/5

»

a47
. |

8” or

vwaJ A
"

&gt; }
x

i

C

 we 2
_ — Top of crucible

Ng
Q \S

A
aT
C
o
~

Tl
nh

Bg
oL Bottom of crucible — Y
 or

00 750 800 850 900
Temperature (°C)

SOC

25
0 &gt;

-

-

-

-15 -10-05 0 05 10 IS
Radial Position (cm)

“5
s
L.
0

Figure 11. Gas temperature profiles of the modified hot zone with
an empty crucible at position M. (a) Axial temperature
orofile ( e¢ and &amp;, results of independent scans and OO,
temperature minima of horizontal profiles in (b)).
(b) Horizontal temperature profiles taken at labeled
distances above crucible bottom.



-73-

crucible rim (62°C/cm), within the bulk of the crucible (58°C/

cm), and within the thermal boundary layer adjacent to the

crucible bottom (25°C/cm). The corresponding horizontal tem-

perature profiles (see Figure 11 (b)) indicate that (based on

a parabolic least square fit about each central temperature

minimum) the thermal axis is displaced by 0.15 cm to the left

of the geometric axis; thermal asymmetry is also reflected in

a temperature difference of about 9°C between diagonally oppo-

site positions adjacent to the crucible wall. It should be

noted that visual observation of the hot zone during the heat

up cycle revealed a noticeable (reversible) lateral movement

of the graphite heater (displacement about 1 mm). Such a

heater displacement while found to be inconsequential during

operation with the coaxial heat pipe must be considered as

highly detrimental to growth conditions in any conventional

system.

The horizontal and vertical temperature profiles measured

in the hot zone with a melt-filled crucible located in the

previously defined positions H, M, and L are shown in Figures

12 to 14, 15 and 16, and 17 and 18, respectively. Selected

temperature gradients determined from these profiles have been

compiled in Table 4.

The temperature profiles within the crucible wall and in the

melt along the axes of crucibles located in positions H and M,

respectively, (see Figure 12 and 15) were measured with an S-

type thermocouple probe. The wall profile (H9) exhibits a
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TABLE 4

SELECTED RESULTS FROM VERTICAL TEMPERATURE PROFILES

Profile
Number

5

19

110

H11

M1

2

M3

V4

IL]

2

r,3

Standard

Profile Probe Melt Depth (cm) Temperature
Position Type bh H Surface

Center  »~ 1 . (HK 1.43 24.7

Wall

Below Seed H

270

1.60 1.46 15.2

1 cm from seed H 10.7

Center S

Half Radius S

Half Radius

1.60 1.47 101.4

22.8

156.0

Wal
x

~ 196.0

center 1 L .60 1.40

Center H 16.6

Below Seed H 15.9

Center  gS 29.0

Gradient (°c/cm) Grashof
Bulk Number

4.4 2.2x10°
5.2

5.6 2.8x10°
4.5

9.1

7.9

10.4

7.3 “de

6.0

6.5 2.7%10°
3.9x10°8.1

3.7
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gradient which is large (270°C/cm) near the upper rim and dim-

inishes (5.2°C/cm) near the crucible bottom; the wall profile

(M4) at the lower position M has corresponding gradients which

are smaller (196°C/cm) near the upper rim and larger (7.3°C/cm)

near the crucible bottom. The axial temperature profile (H6)

shows a gradient which is maximum near the melt surface (680°C/

cm), decreases to a minimum (3.1°C/cm), and becomes nearly

constant (4.4°C/cm) in the lower portion of the melt; the cor-

responding profile (Ml) at position M displays a temperature

gradient which is maximum near the surface (1100°C/cm), ex-

hibits an inversion (5.0°C/cm), and likewise becomes nearly

constant (9.1°C/cm) in the lower portion of the melt. The

inability to balance radiative heat flow to the chamber walls

and conductive heat flow through the thermal boundary layers at

the melt surface for these profiles is attributable to the

meniscus limitation for S-type thermocouple probe temperature

measurement discussed above (see Comments on Temperature Mea-

surement). The temperature profile (Ll) measured with an H-

type probe along the axis of a melt-filled crucible located in

position L (see Figure 17) shows that the steepest temperature

gradient (460°C/cm) actually occurs at the surface in the gas

phase and not in the melt.

The horizontal profiles of gas and melt temperature shown

in Figure 14 (a) were measured with an S-type thermocouple

probe in a crucible located at position H. The profiles taken

above the relative vertical position of 1.375 cm were
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entirely in the argon gas phase and are similar in appearance

to those in Figure 11 (b). The minima in the profiles taken at

the vertical positions 1,375 and 1.3 cm result when the thermo-

couple detaches itself from the curved melt surface as its

radial position is increased. The temperature distribution is

seen to be slightly asymmetric, the temperature being higher on

the left. The profiles completely within the melt are virtually

flat in the center between the radial positions -1.0 and 1.0 cm;

adjacent to the crucible wall the gradients are 40°C/cm, 2.5°C/

cm, and 0.7°C/cm for profiles at positions 1.1, 0.9, and 0.0 cm,

respectively; at the same vertical positions the respective

gradients in the bulk melt were 3.5, 1.6 and 0.7°C/cm. (The

temperature profile shown in Figure 14 (b) is based on the

horizontal profiles in Figure 14 (a).)

Further details of the temperature distribution for the

crucible in position M are shown in Figure 16. The horizontal

profiles (Figure 16 (a)) reveal a considerable asymmetry in

which the average temperature of fluid on the left is 0.8°C

higher than that on the right. This thermal asymmetry, at-

tributed to some misalignment between the crucible and the

heat pipe, can be expected to generate a thermal convective

roll within the melt with fluid rising along the warm wall and

descending along the cool wall. Such a flow pattern will

result in the asymmetric melt temperature profiles observed.

The axial temperature profiles M2 and M3 also display an

inversion of the temperature gradient at about 1 cm above the
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crucible bottom. Such behavior is indicative of a secondary

convective mode existing near the melt surface and resulting

from the observed thermal asymmetry.

Figure 18 shows the axial temperature profiles measured

with an H-type probe with a melt filled crucible located in

position L both without (L2) and with (L3) a seed crystal

contacted to the melt surface. In the absence of a seed

crystal, the average temperature gradient is 16.6°C/cm in the

thin (0.5 mm) thermal boundary layer adjacent to the melt sur-

face and 6.5°C/cm within the bulk of the melt. The apparent

effect of the seed crystal is to increase by the action of

viscosity, the thickness of the thermal boundary layer region

(&gt;3 mm) in which the temperature gradient is 15.9°C/cm and to

increase the bulk temperature gradient to 8.1°C/cm. Extra-

polation of this profile to the melting point of germanium

indicates a meniscus rise of the interface (2.5 mm) which is

in fair agreement with the value (1.8 mm) calculated from the

approximate expression:

| | (we) | Ah |AR 1+ [2 I.
o 4R 4R

1,

where Ah = 20/pg and

(2.26 mm).

Rg is the radius of the seed crystal

The vertical temperature profiles shown in Figure 13 were

taken with an H-~type thermocouple probe with a melt-filled

crucible located at position H and contacted with a rotating
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(16.7 rpm) seed crystal. The profile beneath the seed (H10)

indicates a temperature gradient of 15.2°C/cm in the thermal

boundary layer (&gt; 3 mm) adjacent to the crystal and of 5,6°C/cm

in the bulk melt while the profile (H1l) laterally displaced

by 1 cm exhibits a gradient of 10.7°C/cm in the boundary

layer (2 mm) adjacent to the melt surface and 4.5°C/cm in the

bulk. Again, extrapolation of the temperature profile mea-

sured beneath the crystal indicates a meniscus rise of 2.5 mm.

Comparison of axial profiles measured with S-type thermo-

couple probes for the standard puller (Figure 9) and the

modified Czochralski system (Figures 12 and 15) reveal simi-

lar reduction in the temperature gradient near the vertical

position 1.0 cm. Thus it is quite likely that the flow pat~

tern present in the standard system is asymmetric and is simi-

lar to that which produced the temperature distribution shown

in Figure 16. While care was taken to minimize the extent of

thermal asymmetry prior to performing axial profiles in the

standard system, asymmetry appears to be inherent to the stan-

dard hot zone configuration and could not be eliminated.

Thermal asymmetry in the modified puller (see Figure 16), how-

ever, could be attributed to misalignment of the heat pipe

with the crucible axis and, under optimized conditions, can

be significally reduced (see Figure 14). In the light of this

reduction in thermal asymmetry, crystals grown under seed ro-

tation in the modified Czochralski system are expected to ex-

hibit a significant reduction in the amplitude of rotational

striations as compared to those grown in the standard system.



~86—

In summary, the time and spatial dependence of the tempera-

ture in the hot zones of the standard and modified Czochralski

systems have been presented and compared. While the heat pipe

was found to result in the expected decrease in thermal asym-

metry, the increased intensity of thermohydrodynamic instability

found in the modified system was contrary to expectations. The

implications of these observations for segregation have been

discussed.

The measured temperature profiles are used to establish the

boundary conditions for the numerical analysis of thermal con-

vection in the modified Czochralski configuration (see Chapter

VI), Further, these profiles together with the computed

component periods of the temperature fluctuations are used in

Chapter IX to determine the mechanisms of convective instability

operating in the Ge melt.
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CHAPTER VI

NUMERICAL TREATMENT OF THERMAL CONVECTION

This chapter presents the results of a numerical study

of thermal convection in crystal growth configurations. The

computational analysis employs an explicit finite difference

representation of the differential equations describing thermal

convection in the stream function-vorticity formulation. The

equations are developed in the Boussinesqg approximation and

their non-linear advection terms are represented by a qua-

dratically conserving scheme to insure numerical stability at

large Grashof numbers. The results are presented in the form

of contour plots of fluid temperature (isotherms), stream func-

tion (stream lines), and vorticity (isodines).

The thermal convective melt flows in the modified Czo-

chralski configuration were computed using thermal boundary

conditions determined from the preceding thermal characteriza-

tion study. The treatment was restricted to an analysis of

melt flows for the following reasons: (a) Due to the low heat

capacity of the gas, the large amplitude high frequency con-

vective temperature fluctuations in the gas phase do not

penetrate into the melt. (b) A previous investigation found

no effect of H, pressure (over the range of 1072 to 10° torr)

on growth and segregation of Ga doped Ge’. Furthermore,

since the computed temperature distributions were to be com-

pared with those measured in unseeded Ge melts, the
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computations were performed for this condition. It should be

mentioned, however, that the computer program which was de-

veloped to treat thermal convection in Czochralski configura-

tions has the capabilityofincludinga seed crystal as one of

the boundary conditions and of treating forced convection due

to crystal or crucible rotation. In addition to the contour

plots mentioned above, the numerical results of this investi-

gation are presented as temperature and fluid velocity pro-

files.

The computational approach to the study of thermal convec-

tion in melt growth systems was initially developed in the

horizontal Bridgman configuration. The previous experimental

work on this system provided the reference data necessary for

assessing the applicability of this approach.

This chapter gives a brief development of the pertinent

differential equations describing thermal convection in the

stream function-vorticity formulation and presents the numeri-

cal results obtained. A detailed development of the finite

difference equations and solution technique is presented in

Appendix 3.

A. Development of the Quantitative Theoretical Approach to
Convection in Melt Growth Configurations

Thermal convective flow in a fluid can be described in

terms of the differential equations expressing conservation of

mass, momentum, and energy within the fluid together with the
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equation of state of the fluid. Provided the temperature

variation within the fluid is not too large, a wide variety of

fluids can bedescribed by the simple equation of state’,

0 = pg (I= (T=T_)) , where p is the fluid density at temperature

T, Pq is the density at the reference temperature Tor and o is

the volume coefficient of thermal expansion of the fluid. Use

was made of the Boussinesq approximation since the thermal

expansion coefficients of low Prandtl number fluids (such as

liquid Ga and Ge) are small.

Accordingly, the fluid may be treated as an incompressible

medium with temperature independent properties except for the

body force term in the equation of momentum conservation.

1. Thermal Convection Equations

Thermal convection within a fluid in the Boussinesq ap-

proximation is described by the following conservation equa-

tions’: The conservation of mass (continuity equation) is

y
N

{i (1)

The conservation of momentum (Navier-Stokes equation) is

WV V Go= ToL t 25
ye tVVW =o VPY + wW°V

And the conservation of energy (Energy

)T —
T= Ft V- VT K 4

’

ag (T -— ™ (2)

transport equation) is

(3)
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where V is the fluid velocity, PY =P = 059 r is the reduced

pressure, y is the kinematic viscosity, g is the acceleration

of gravity, k is the thermal diffusivity, P is the pressure,

and r is a position vector.

The pressure may be eliminated in favor of +he vorticity,

defined as

/

by taking the curl of equation

vector identities’ -

4°

(2) and utilizing the following

AxVYA = (L/2VYA + A) - A + VA

IVxA = V(V . A) - V23

Vx (AB) = AV.B - A.VB - BV.A+B.VA

7x VA = 0

VeVUyA = 0

Vy (aR) = aVyA - AvyVa

This results in the following vorticity transport equation:

0 LG QCVE - Te VT = iE + agy VT TL J

2. Application to Crystal Growth Geometries

In the following two subsections the thermal convection

equations will be presented in dimensionless form and
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specialized to two-dimensional rectangular and axisymmetric

cylindrical coordinates which are used for describing thermal

convection in the horizontal Bridgman and modified Czochralski

configurations, respectively.

Horizontal Bridgman Configuration

Thermal convection in the horizontal Bridgman geometry

(see Figure 47(a)) is treated as a two-dimensional flow. The

variables used for the computations in this geometryarenon-

dimensionalized by the following units: L for length, £2 /v for

time, v/L for velocity, v/L2 for vorticity, v for stream

function, and T,-T, for temperature, where L is the length

of the cavity (of depth H), Tq is the temperature of the warm

right wall, and T, is the temperature of the cool left wall.

For this geometry, the velocity vector is

 Vv =
A N

iv, + jv

and from Equation (4) the vorticity vector is

vi 13

Nhere

9)
ov ov
ev
IX oy

{cc i

~ ~ A

and i, Jj, and k are unit vectors along the coordinate axes.

The continuity equation is identically satisfied by defining

the stream function ¥ so that the velocity components are
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V,=

\
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oV

2¥
AX
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-

»

HN)Fy
+4

In terms of the above definitions the energy transport

equation (3) becomes

2 2

ox oy

and the vorticity transport Equation (5) becomes

i
st

+ J(Q,¥) =
320 + 320 ~ Cr oT

3x2 0y2 dX

where the Jacobian, J(A,B) , 1s defined as

\ 3 3, -— 3A 3B _ 3A 3B
IX OV oy 0X

The definition of vorticity (4) pecomes

32% + 5% —
2 22 = -
IX ov

{

(9)

(7))

1 ij

(12 1

. ' ; 3,2

For this geometry, the Grashof number is Gr = ga (T; - T )L7/v

and the aspect ratio is A = H/L .

The finite difference representation of this problem is

given in Appendix 3.b. and the program used for numerical

integration is detailed in Appendix 4.a
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b. Czochralski Configuration

Fluid flow in the Czochralski geometry (see Figure 49(a))

is treated as an axisymmetric flow (no © dependence). The

variables used for computations in this geometry are non-

dimensionalized by the following units: R, for length,

R/V for time, Y/R, for velocity, v/R? for vorticity, VR,

for stream function, and To - Tg for temperature, where R,

is the radius of the crucible (containing a melt of depth H),

T is the highest temperature on the crucible wall, and T

is the lowest temperature on the melt surface. For this

geometry the velocity vector is

— N ~

V=1rv + OV, + z\/

and from Equation (4) the vorticity vector is

A -aV A ad (xv )

=r = + 00 + z r or

where the azimuthal vorticity component is

oV_ IV,
] TE —— —

or ar
(+3)-

~ ~ ~

and r, 8, and z are the unit vectors along the coordinate

axes. The continuity equation can be solved identically by

defining the Stokes stream function such that the radial and

axial velocity components are
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v = - L oY
Vee ® ° r 3z

v,==
Tr

oY
or

[,.13

(Lr¥

In terms of the quantities defined above, the energy

transport equation (3) becomes

2oT 1 _ 1 (1 03 oT 0 7)
oe Fr JWT = Ara (me) 222) 16

The zonal component of the momentum equation (2) becomes

\ 2
Vv ; o Vv

6 , 1 1 o¥ _ 9 (1 3 83c TFT Vel m= Vy 57 T 5r (2 ST (xv) toy U7)

The zonal component of the vorziclity cranspori eguation (5)

becomes

3v2 2
39 Q 1° _ 93 (13 2°0 dTot + oe.) TT hz dr (2 or 0) * ng + Gr or ° (18)

The definition of zonal vorticity (13) becomes

 0 (Lav), 1%__
or \r 9r r 522

(1¢ J

. . 3

For this geometry, the Grashof number is Gr = ag(T; - T,IR_/

a2 and the aspect ratio is A = H/R .

The finite difference representation of this problem is

given in Appendix 3.C. and the program used for numerical
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integration is detailed in Appendix 4.Db,

B. Numerical Solution of Thermal Convection in the
Horizontal Bridgman Geometry

A detailed experimental study of convective temperature

oscillations in molten gallium in the horizontal Bridgman

31,32,33geometry has been presented by Hurle et al. . These

experiments were carried out in a rectangular boat heated on

one end and cooled on the other; a thin layer of silicone oil

was applied to the free melt surface to prevent oxidation of

gallium and reduce vertical heat loss. The presently reported

numerical results were obtained in order to understand the

development of such convective instabilities in low Prandtl

number melts where flows cannot be easily visualized.

The accuracy of the presently used finite difference

scheme was verified by direct comparison with the numerical

results of Stewart and Weinberg?’ for thermal convection in a

square cavity heated from the side with Gr = 2 x 10° ,

Pr = 0.0127, and A = 1 . The computation (with rigid in-

sulating top and bottom surfaces) yielded a value for the

volume flow rate about the vortex center (the maximum of the

stream function field ¥ max = 2.80) in good agreement with the

value (ymax = 2.73) found by Stewart and Weinberg?’.

The computer runs, summarized in Table 5, were conducted

with a stress free boundary condition applied at the upper

melt surface. The physical constants of molten gallium and



TABLE 5

COMPUTER RUNS FOR THE HORIZONTAL BRIDGMAN CONFIGURATION

Heat Flow
Run Aspect Biot Gas Grashof Grid Solution Main Vortex

Number Ratio Number Temperature Number Size Condition Time Position Intensity
1x10% 33x9 ss 0.01693 0.500,0.094 2.19x101
1x10° 33x9 SS 0.01649 0.406,0.094 2.19x10°

1x10° 33x9 Ns 0.00656 0.250,0.125 2.12x10%
1x10’ 33x9 0S 0.00403 0.188,0.125 1.21x10°
1x10’ 65x17 0S 0.00817 0.188,0.109 1.24x10°
1x10’ 33x9 0S 0.01665 — —-

1x10° 33x9 SS 0.01660 0.406,0.094 2.16x10°
1x10°% 33x9 ss 0.01328 0.219,0.125 2.35x10"
1x10’ 33x9 0S 0.01660 0.188,0.125 1.24x10°
1x10’ 65x17 0S 0.02323 0.203,0.109 1.29x10°
1x10% 33x9 ms 0.01660 —-

1x10% 33x9 NU - - wi

1x10% 33x17 Ns 0.02656 0.469,0.219 2.65x10°
1x10° 33x17 NS 0.02188 0.406,0.219 2.24x10%
1x10% 33x17 os 0.01992 0.312,0.219 1.19x10°

1x10’ 33x17 NU -—— -—
1x10% 17x17 Ns 0.05312 0.500.438 1.43xl0!
1x10° 17x17 NS 0.05312 0.500,0.500 1.10x10%

1x10® 17x17 NU

0.25

0.25

0.25 0

0.25 0

0.25 0

0.25 0

0.25 0.135

0.25 0.135

0.25 0.135

0.25 0,135

0.25 0.135

0.25 0.135

0.5 0.135

0.5 0.135

0.5 0.135

0.5 0.135

1.0 0.034

L8 1.0 0.034

{9 1.0 0.034

5S=Steady State, N=Nearing Steady State, 0S=Oscillatory State, NU=Numerically Unstable
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silicone oil used in evaluating the dimensionless parameters

are listed in Table 18. The numerical solutions are presented

in the form of contour plots of the temperature (isotherms),

vorticity (isodlines), and stream function (stream lines) fields

in Figures 19 to 24. For the temperature and vorticity fields

the minima are scaled to zero and the maxima are scaled to

unity; for the stream function field, the zero level remains

at zero and the minimum (which occurs at the main vortex

center and is the volume flow rate between the vortex center

and the upper surface referred to here as the intensity of the

vortex) is scaled to minus one.

i. Dependence of Computed Flows on the Grashof Number

The solutions of the thermal convection equations, com-—

puted as part of the present study, show a marked dependence

on Grashof number. This dependence is clearly illustrated in

the sequence of solutions (runs number 1 to 4) with an in-

sulating upper surface and constant aspect ratio (A = 0,25)

presented in Figures 19 to 22. The analysis indicates a

unicellular flow pattern at Gr = 10% (see Figure 19) which

consists in a rising flow near the hot wall, a cross flow

along the melt surface, a descending flow adjacent to the

cold wall, and a return flow along the bottom of the enclosure.

This convective cell is nearly symmetric about the vertical

midplane. The vortex center is raised above the cavity mid-

height to conserve volume flow (mass), since the flow rate
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(which is inversely proportional to the stream line spacing)

is higher above the center near the melt surface than below.

Furthermore, it is evident from the equally spaced and verti-

cal isotherms that conduction heat transfer is dominant at

this Grashof number.

With increasing Grashof number, the vortex strengthens

and its center moves towards the cold wall. As this occurs

and the amount of convective heat flow increases, the isotherms

are curved by the increased flow and are swept towards the

more quiescent region of the flow field near the hot wall.

Finally, at Gr = 10’ (see Figure 22) a second, but weaker,

clockwise vortex forms in the central region of the fluid as

two weak reverse vortices develop along the bottom. Due to

the lack of smoothness in the vorticity distribution at this

higher Grashof number, the computationwas continued on a more

refined mesh (65x17) as discussed below (see run number 5 in

Convective Oscillations).

The sequence of calculations (run numbers 7 to 9) with

heat flow across the free surface for the same aspect ratio

(A = 0.25) indicated similar behavior with increasing Grashof

number. Aside from the effect of the surface heat flow on the

isotherms near the melt surface, the position of the main

vortex center ,during flow development, tends to be closer to

the cold wall and the circulation about it tends to be

slightly lower than the corresponding flow without surface
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heat flow.

Many of the trends observed with increasing Gr for cal-

culations at the aspect ratio of A = 0.25 are carried over

to the higher aspect ratios (A = 0.5 and 1.0). At Gr = 10%

convective heat transfer is already sufficient to cause bending

of the isotherms in an enclosure with aspect ratio A = 0.5, The

vortex center has moved towards the cold wall and the inten-

sity of the vortex (- 2.65) is an order of magnitude larger

than that (- 0.219) in the cavity of smaller aspect ratio

(A = 0.25). Furthermore, a secondary clockwise vortex appears

in the more quiescent warm fluid and two weak reverse vortices

form along the cavity bottom at Gr = 10° (see Figure 23). At

Gr = 10% , a square cavity (A = 1,0) shows

considerable isotherm bending in response to the increased

intensity of the main vortex (- 14.3) which is nearly two

orders of magnitude higher than that in the cavity of smaller

aspect ratio (A = 0.25). Apparently, for the larger aspect

ratio cavity (A = 1.0), the vortex center cannot move toward

the cold wall with increasing Gr within the resolution of the

17 x 17 grid; however, the flow rate is higher near the cold

wall than near the hot wall. The solution at Gr = 10°

(see Figure 24) reveals boundary layer spearation along the

hot and cold walls in the form of the reverse vortices.

The intensity of the main vortex for the flows discussed

in this section is summarized in Figure 25, It can be seen
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that in the cavity of small aspect ratio (A = 0.25) the

intensity increases linearly with Grashof number at low

Grashof numbers. This behavior is in agreement with the ex-

perimental findings of MacAulay®&gt;&gt; for thermal convection in

molten tin confined in horizontal boats of small aspect ratio,

At higher Grashof numbers the dependence becomes sublinear.

Dependence of the Flow Intensity on the Aspect Ratio

The numerical results presented in the preceding sub-

section displayed a strong dependence on aspect ratio. The

dependence of the intensity of the main vortex on melt aspect

ratio is shown in Figure 26. It can be seen that, for the

same Grashof number, the flow intensity decreases with de-

creasing aspect ratio.

This dependence of flow intensity on aspect ratio can be

understood as follows: As discussed in Chapter 3, the vis-

cous shear exerted by the cavity walls on the fluid is pro-

portional to the ratio of the total wetted surface area to

the liquid volume. For a fluid with a free upper surface in

a rectangular enclosure, the wetted area to volume ratio is

r = (2/L)(1 + 1/(2A)) . As A decreases (for fixed L), T

increases, and the viscous shear increases. This increase in

viscous shear then results in a decrease of the rate of fluid

flow. Thus, other factors being equal, the intensity of the

flow is expected to decrease with decreasing aspect ratio.
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3. Convective Oscillations

Several of the numerical solutions obtained during the

present study exhibited oscillatory behavior (see Table 5).

The onset of convective oscillations was found to coincide

with the appearance of a secondary vortex in the warmer re-

gions of the fluid at Gr = 107 for A = 0.25 and

Gr = 10° for a = 0.5.

The evolution of the temperature and stream function

fields during one oscillation period (0.00254) in a cavity of

small aspect ratio (0.25) with an insulating upper surface

(run number 5) is shown in Figures 27 and 28. The oscillation

consists in the periodic transfer of energy back and forth

between the main and secondary vortices as revealed by their

flow intensities which grow and decay in tandem (see Table 6)

in much the same manner as the oscillation calculated by

Fromm’ ’ for a fluid layer heated from below. During the

oscillation the extrema in the intensity of the main vortex

lead those of the secondary vortex. Furthermore, the main

vortex center undergoes a small counter clockwise circula-

tion as the secondary vortex center undergoes a circulation

in the opposite direction.

In response to and coupled with the flow field, the

temperature distribution undergoes an oscillation with the

same period as revealed by the periodic movement of the iso-

therms. Thus, a stationary thermocouple positioned at the
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cavity center would "see" the 0.4 isotherm move across it,

first to the left and then to the right. This thermocouple

would record the nearly sinusoidal temperature oscillation

shown together with the stream function oscillation in Figure

20

TAZLE Ia

Positions and Intensities of the Main and Secondary
vortices During One Convective Oscillation of Com-
puter Run Number 5.

TTME

0.005686
0.006099
0.006513
0.006926
0.007340
0,007753
0.008167

MAIN VORTEX SECONDARY VORTEX
Position Intensity Position Intensity

0.188,0.109 -123.6 0.625,0.109 - 90.3
0,188,0.1009 -120.1 0.609,0.1009 -100.4
0.188,0.125 -121.5 0.578,0.109 -102.8
0.219,0,125 -127.3 0.578,0.102 - 92.3
0.219,0.1009 -131.2 0.594,0.094 - 75.6
0.203,0.109 -~128.9 0.625,0.109 - 75.4
0.188,0.109 -~123.8 0.609,0.1009 - 89.8

Due to the apparent damping of the oscillation amplitude,

the above calculation was carried out for a longer time on a

less refined (33 x 9) grid (run number 6). The results reveal

a damped oscillation of dimensionless period 0.00213 which

appears to be asymptotically approaching a constant value

somewhat less than 0.008. Additional computations performed

for an enclosure of small aspect ratio (0.25) with heat flow

across the upper surface showed somewhat longer periods of

0.00215 and 0.02262, respectively, for a coarse (run number 8)

and refined (run number 9) grid. One solution for a cavity of
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aspect ratio 0.5 (run number 15) exhibited a period of

0.00708.

It is instructive to compare the numerically predicted

oscillation periods with the experimental findings of Hurle

et a133, The pertinent results are listed in Table 7. For

comparison with the present numerical results, the critical

values of the Rayleigh number (RS = agATH? /LvK) as determined

by Hurle for the onset of temperature oscillations, were con-

verted to values of the Grashof number (Gr = Ra/ (PTA) ) and

were corrected for the difference in the factor (ag/xv) used

by Hurle (320) and that determined from the data in Table 18

(270). The numerical periods have been dimensionalized by

the viscous diffusive time (n.2 /v) and are compiled in Table 8.

TABLE 7

EXPERIMENTAL CONVECTIVE OSCILLATION PERIODS
(From Hurle et al”)

BOAT MELT ASPECT RAYLEIGH  GRASHOF
LENGTH DEPTH RATIO NUMBER NUMBER

(CM) (CM)

PERIOD

(SEC)

3.0 0.75 0.25
2.4 1.2 0.50

@20
7700

ee 1.4x10/ 8.7
7.3%10 5.3
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TABLE 8

THEORETICAL CONVECTIVE OSCILLATION PERIODS

GRASHOF DIMENSIONLESS PERIOD
NUMBER PERIOD (1073) (SEC)
1x10” 8.17
1x107 7.10
1x10 7.17
1x107 8.73
1x106 15.01

RUN ASPECT
NUMBER RATIO

0.25
0.25
0.25
0.25
0.501

It can be seen from Tables 7 and 8 that, for the cavity

of small aspect ratio (0.25), the agreement between the pre-

dicted and experimental period is quite good. In particular,

the excellent agreement between the numerical solution with

heat flow on the refined grid (run number 9) and the experi-

mental result indicates the importance of surface heat flows.

Furthermore, the close agreement between the observed

critical Grashof number and that for which the numerical solu-

tions show oscillatory behavior should also be noted. The

agreement for the cavity of larger aspect ratio (0.5) is less

satisfactory.

~~

Le Numerical Solution of Thermal Convection in the Czochral-
ski Geometry

Only a limited number of computer flow simulations have

been carried out for the Czochralski geometry. The dimen-

sionless parameters and boundary conditions employed were

based on the preceding thermal characterization study (see

Chapter V) and the physical proterties of Ge (see Table 17).
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These computations used the melt height (H) which would occur

in the absence of meniscus effects (see Comments on Tempera-

ture Measurements). The two computer runs to be discussed

are summarized in Table 9. In addition to contour plots of

the dimensionless temperature (isotherms) and stream function

(stream lines) fields, the computational results are presented

in dimensional form as radial and vertical temperature pro-

files, radial profiles of the vertical velocity component,

and vertical profiles of the radial velocity component.

The results of computer run number 20 are shown in

Figures 30 to 32. The thermal boundary conditions on the

crucible wall were based on the temperature measurements

shown in Figure 12, In this calculation the radiative heat

loss from the melt surface was simulated by specifying a

parabolic temperature distribution&gt;?. The computations indi-

cate that the main counter-clockwise vortex of intensity 102.2

causes the isotherms to bend in the vicinity of its center at

(1.2 cm, 0.875 cm) (see Figure 30). The computed vertical

temperature profiles (see Figure 31(a)) reveal, furthermore,

the existence of an axial temperature gradient which is

smaller at the melt surface (7.7°C/cm) and larger near the

melt bottom (6.7°C/cm) than indicated by the respective

experimental results. The horizontal melt temperature pro-

files (see Figure 31(b)) are in qualitative agreement with



TABLE 9

COMPUTER RUNS FOR THE MODIFIED CZOCHRALSKI CONFIGURATION

RUN
NUMBER

20

21

ASPECT
RATIO

GRASHOF
NUMBER

0.875 1.23x10°

0.813 2.01x10°

PRANDTL
NUMBER

6.25%10&gt;
6.67x103

CONVECTION HEAT FLOW RADIATION WALL GRID

BIOT NUMBER GAS TEMP  BIOT NUMBER TEMP SIZE

 J)

J 2.40%10"2% 80°C
17x17

17x17

I
ud

~J
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axperiment (see Figure 14 (a)) in that the horizontal tempera-

ture difference increases with height above the crucible

hottom.

The velocity profiles (see Figure 32) reveal rather high

Flow rates, The maximum radial velocity component (0.622 cm/

sec) occurs in the jet along the crucible bottom, while the

maximum vertical component (0.507 cm/sec) occurs in the jet

along the crucible wall. The effect of a weak clockwise vor-

tex (see Figure 30) is seen in the flow reversal near the

crucible bottom at radial position 1.4 cm.

In order to achieve better computational agreement with

the experimental temperature profiles, heat flow across the

melt surface was explicitly treated in run number 21, The

resulting isotherms, stream lines, temperature profiles, and

velocity profiles are shown in Figures 33 to 35. The ideal

heat pipe configuration condition (constant crucible wall

temperature) was applied and only radiative heat losses were

considered.

The flow pattern and temperature distribution (see

Figure 33) for this run show many features similar to those

found in the preceding run. There exists one main counter-

clockwise vortex (of intensity 130.3 at the position (1.2 cm,

0.73 cm)) and two weaker reverse vortices along the crucible

side wall. Again the isotherms exhibit bending near the

vortex center and they show, furthermore, a similar parabolic
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behavior near the crucible axis at the melt surface. The

vertical temperature profiles (see Figure 34 (b)) exhibit a

larger axial temperature gradient (12.48°C/cm) near the melt

surface, in better agreement with experiment, but the calcu-

lated axial gradient (10.62°C/cm) near the crucible bottom is

larger, The radial profiles again exhibit an increasing tem-

perature difference as the melt surface is approached.

The corresponding velocity profiles (see Figure 35)

show qualitative features similar to those in the previous

run. However, at this higher Grashof number, the horizontal

velocity maximum (0.694 cm/sec) in the bottom jet and the

vertical velocity maximum (0.654 cm/sec) in the crucible wall

jet are increased.

In summary this chapter has presented the results of a

numerical study of thermal convection in the horizontal

Bridgman and modified Czochralski configurations. The ex-

cellent agreement of the present numerical solutions with

previous experimental findings on convective temperature

oscillations in the horizontal Bridgman geometry confirms

the soundness of the theoretical approach developed to treat

thermal convection in growth configurations. The extension

of this approach to the Czochralski geometry has been con-

firmed in principle by a limited number of numerical results.

While agreement in detail between the theoretical and ex-

perimental temperature profiles has not, as vet, been
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achieved, the agreement of computer run number 21 with the

experimental results makes it possible to extract useful gquan-

titative information on the form and rate of thermal convec-

tive flow in the Ge melt. The lack of detailed agreement can

be attributed primarily to the excessive curvature of the Ge

melt surface. Furthermore, uncertainties are associated with

the precision of the available (required) physical constants

of Ge, the assumption of axial symmetry, the neglect of other

convection mechanisms, and definition of the boundary con-

ditions.

The implications of these numerical results for segre-

gation in the Czochralski configuration will be discussed in

Chapter IX.
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CHAPTER VII

BASIC CONSIDERATIONS AND LITERATURE
REVIEW ON FORCED CONVECTION AND SEGREGATION

IN CZOCHRALSKI CRYSTAL GROWTHSYSTEMS

This chapter presents the established theoretical and

experimental framework of crystal growth and segregation and

reviews the literature pertaining to forced convection and

dopant segregation phenomena in Czochralski crystal growth

systems. The current state of knowledge on this topic has

recently been reviewed by Carruthers and witt&gt;, who consider

fluctuations of growth rate and diffusion boundary layer

thickness as the origin of solute striations in melt growth

systems; they consider further the phenomena of segregaton

on faceted interfaces and present the most recent experimen-

tal techniques developed for the quantitative study of

transient segregation effects

The study of segregation phenomena in

Czochralski growth systems, conducted as part of

the present work, is presented in Chapters VII

and VIII for reasons discussed in Chapter II.

The results of this study are combined with

those of the preceding thermal convection analy-

sis in a general discussion of convection and

its affects on segregation in the modified

Czochralski configuration presented in Chapter

IX
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A. Forced Convection

An understanding of forced convective flows generated by

differential rotation of bounding surfaces is necessary for

analyzing the effects of crystal and crucible rotation

(commonly used with Czochralski growth) on the temperature

and solute distributions during crystal growth. Cochran's

analysis” pictures an infinite rotating disk in a semi-

infinite liquid as a centrifugal fan drawing fluid axially

toward the disk and spinning it radially outward in a uniform

momentum boundary layer whose thickness (6) is of the order

of (v/w) T/2 , where ww is the angular rotation rate of the

disk. Tomlan and Hudson&gt;° analyzed the flow near a finite

disk rotating rapidly in a crucible with equal radius and

showed that although the influence of the crucible walls

extended throughout much of the fluid, the momentum boundary

layer thickness on the disk increased from center (where

Sm = 4.6 (v/w) 2) to the periphery by only 3%. Flow simu-

lation experiments reported by Lehmkuhl and Hudson® were

in good agreement with the predictions of Tomlan and Hudson

for disks and crucibles of equal radius. However, they

found that, when the disk radius was less than about half that

of the crucible, a detached shear layer formed at the radius

of the disk with fluid spiralling radially outward under the

disk and descending to the crucible bottom in the shear layer,

while fluid from the crucible wall spiralled radially inward
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to the shear layer. They determined further that a finite

disk rotating in a confined fluid approximates, to within a

few percent, a uniformly accessible surface (constant mass

transfer coefficient or, equivalently, constant solute boun-

dary layer thickness).

Carruthers”® has simulated thermal and forced convection

in the Czochralski geometry using water-glycerine mixtures.

In the presence of thermal convection alone, a symmetric

toroidal flow pattern was developed with fluid rising along

the crucible side wall and descending beneath the solid-liquid

interface. Application of slow crystal rotation reduced the

intensity of thermal convection in the vicinity of the crystal

interface while, at higher rates of crystal rotation, thermal

convection was suppressed near the crystal, which behaved as

a rotating disk. The effects of thermal convection at low

crucible rotation rates were diminished and a non-uniform

boundary layer developed adjacent to the crystal interface,

while, at higher rotation rates, a Taylor-Proudman cell was

formed beneath the crystal. (It consisted of a cylindrical

volume beneath the crystal whose boundary formed a detached

shear layer separating it from the thermal convection dominat-

ed region near the crucible side wall.) Crystal and crucible

rotation in the same direction (isorotation) was shown to

result only in a modification of flow with crucible rotation

alone, while counter rotation stabilized the Taylor-Proudman
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cell and isolated it from the outer regions of the crucible.

A more detailed simulation study of forced convection by

Carruthers and Nassau’ ®, while confirming these observations,

showed that, with counter rotation, a second Taylor-Proudman

cell may form beneath the crystal with the upper cell dominat-

ed by crystal rotation and the lower cell dominated by cruci-

ble rotation. A series of numerical studies by Kobayashi and

. .60,61,62 . . . .

Arizuml is in good agreement with these observations.

The rotational instabilities which result in a loss of

diameter control during Czochralski growth of Bi,,510,,

crystals were simulated by Whiffin, Bruton, and price’.

They found that above a critical rotation rate ww, the

vertical temperature gradient changed drastically and the

radial heat flow increased as the Taylor-Proudman cell be-

came unstable and a wave pattern developed on the upper sur-

face of the melt. This behavior was reported to be a dis-

turbance of the baroclinic type, which resembles to some

extent the flows computed by Williams®? in his numerical

study of thermal convection in a rotating annulus.

B. Segregation

1. Segregation Models

The incorporation of solute into a crystal (growing at a

rate R) is characterized by the interface distribution co-

efficient kK. , which is defined as the ratio of the solute

concentration being incorporated into the solid phase (Cy)
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to the solute concentration in the liquid phase at the (solid-

liquid) interface (C;) 3 k. = C./Cs . It is generally

assumed that equilibrium prevails at the interface and k.

is equated with the equilibrium distribution coefficient (k,)

At the onset of growth, for kg &lt; 1 , solute atoms are re-

jected from the solid at a rate which is faster than the rate

at which they can diffuse into the bulk liquid; thus a region

of enriched solute concentration, defined as the solute boun-

dary layer of thickness, §, develops adjacent to the growth

interface. Since, under growth conditions, C. is not ex-

perimentally measureable, segregation is characterized by the

effective distribution coefficient (k.) which is defined as

the ratio of solute concentration being incorporated into

the solid phase (Cy) to the solute concentration in the bulk

liquid outside the solute boundary layer (C.)

C ~/ (2C J

A number of segregation models have been developed which

relate LN to the growth parameters such as kj, R, and § .

Tiller? analyzed convection-free growth and showed that

segregation approaches steady-state (kg = 1) after an initial

transient of characteristic length, D/(R k,)y where D is

the solute diffusion coefficient in the liquid. The opposite

extreme, complete mixing in the melt (kg = k,), was treated

by piannbe. For the intermediate case of partial mixing,
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Burton, Prim, and slitcher®’ (BPS) determined the steady state

effective distribution coefficient to be

z F./(k. + (1 - k.rexp(- RS,/D)) 2 P)

The derivation of the BPS relation was based on a boundary

layer solution of the solute conservation equation. This

solution was brought into agreement with their exact solution

for segregation ahead of a rotating crystal (based on Cochran's

analysis”) by defining the solute houndary layer thickness

(§8) as

Q apt/3,1/6,~L1/2  9) %Y

where A is a weak function of the rotation rate (w,) and has

the value 1.6 at low rotation rates.

The effect of a sinusoidal temperature oscillation

(applied at the edge of the thermal boundary layer) on segre-

gation has been modeled by Hurle, Jakeman and pike’? They

determined the fractional change in Li to be

*\k,  kE- kg w|gwC |
TT Tw T 5RC¢ sin (e |
k_ k_ OO OO &lt;a

where kX is the effective distribution coefficient in the

presence of fluctuations of frequency w, ¢w and C,, are

the Fourier amplitudes of the interface displacement and
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liquid concentration, £4 and e, are the phase shifts of

these with respect to the imposed temperature oscillation,and

Ro and Co are the steady-state values of the growth rate

and solute concentration in the liquid at the interface. For

a crystal on the verge of remelting (R = wo ) Hurle and Jake-

man®® have shown that, for low frequency (wD/R? &lt;&lt; 1) and low

average growth rate (R,8/D &lt;&lt; 1},

Ak
2 nv— = (1

oo ’ = kIR_5/(2D)

while, for high frequen 7

Ak
e a ( To

ii = (1~ - XSJR /@\/ 2D)

It should be noted that, although the analysis of Hurle,

Jakeman and pike has been found to be in error (see Appendix

2), many of their basic conclusions remain valid.

Several models of non-equilibrium segregation have been

suggested? 70r 71 Ha11%? has proposed that, due to the dif-

ferences in binding energy, the equilibrium concentration in

the surface layer of the crystal (k C;) differs from that in

the interior (k Cyd - At high growth rates, the interior

cannot attain equilibrium with the liquid and

k + (k, - k_ )lexp(~ R./R)

vhere R. is the growth rate at which one atomic layer is
1
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grown in a time interval equal to the solute relaxation time

for a single atomic layer, Trainor and Bartlett C have

treated nonequilibrium segregation on a faceted interface on

which impurity atoms have been absorbed. Their model predicts

2(1 - kotg/ 15)
4D. ¢G.n. 1/2 A

8 + ie fe + 2282
1 Vv Ti oO i

le } ! 1

4 A=

where v is the lateral step velocity; Tq and T, are the

solute and solvent dwell times at the interface; D, , a,

and n, are the diffusion coefficient, the mean atomic

velocity, and the atomic density of the solute; oq is the

7

number of sites per unit area on the solid-liquid interface;

and ¢ 1s a constant. Carruthers ’'T included the effect of

interface acceleration in the expression

4
_ x o+ O°

nD
3k
oye

where k 1s Hall's expression for k. and a is its time

derivative due to growth rate variations.

2. Segregation Studies

Numerous investigations of segregation during crystal

growth from the melt have been reported in the literature.

Many early works, though carefully done, suffer from a lack

of available experimental techniques with sufficient
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sensitivity and resolution, Only recently have such techni-

ques been developed and applied to quantitative segregation
. 4

analysis.

A classical study of segregation in Ge has been reported

by Burton et al, ’? using a combination of radioactive tracer

techniques and resistivity measurements for compositional

analysis. By assuming a steady growth rate, identical with

the pulling rate, and using the best available values for the

physical constants, their experimental data were considered in

reasonable agreement with the BPS theory.

Carruthers and Benson’ 3 studied the functional dependence

of compositional variations in growth striations on solute

concentration in the melt, growth rate, and crystal rotation

rate for P doped Si, Their results indicate the existence

of non-equilibrium segregation,

Benson’ reported a detailed investigation of radial

segregation in Si crystals as a function of growth conditions,

Applying the insight gained from his flow visualization ex-

periments, Carruthers? attributed variations in radial

segregation with solute boundary layer thickness variations

caused by the interaction between thermal and forced convec-

tive flows.

An extensive series of investigations on microsegregation

and interface morphology in semiconductor crystals has been

reported by Witt, Gatos, and coworkers?r 72781, Studies on
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dopant segregation in InSb have revealed the existence of

six types of impurity striations’&gt;, established the cause and

effect relationship between temperature variations in the melt

and non~rotational striations’®, and developed a theoretical

expression relating variations of the microscopic growth rate

(R) from its average value (R,) to the degree of thermal

asymmetry (AT), the vertical temperature gradient (8), and the

seed rotation rate w)?

w AT
Rg 1 -RB cos wt (23 J

Further, a technique for microscopic growth rate determination

employing vibrational rate striations’ ® has been developed

and utilized to study the different growth and segregation

phenomena operating during facet and off-facet growth’? A

quantitative approach to the study of microsegregation,

combining interface demarcation and spreading resistance mea-

surements, has been developed and applied to segregation in

Ga doped Ge for both the facet8? and off-facet” regions. Most

recently this technique has been applied to the study of

rotational striations in Sb doped Si crystals! under condi-

tions of pronounced thermal asymmetrvs2
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CHAPTER VIII

SEGREGATION BEHAVIOR IN CZOCHRALSKI

CRYSTAL GROWTH SYSTEMS

The electrical and optical properties of semiconductor

materials are sensitivetochemicaland structural homogeneity.

Of particular importance for device production and performance

is the homogeneity of resistivity in these materials which

when grown from the melt depends most strongly on the dopant

segregation conditions during the liquid-solid phase trans-

formation. Moreover, with the advent of micro-electronics and

the increasing tendency towards large scale integrated cir-

cuits, compositional control on both the macro and micro scale

become increasingly important to device performance as well

as device yield.

The most important method for the production of single

crystalline semiconductor electronic materials is the Czo-

chralski technique. However, because of the unfavorable

dopant segregation characteristics associated with this tech-

nique, it is necessary for many device applications to use

the material thus obtained as passive substrates and to pro-

duce the devices on epitaxially deposited layers of improved

compositional homogeneity.

The primary compositional deficiencies in Czochralski

grown crystals can be attributed to longitudinal and radial

segregation variation on both the macro and micro scales.

Longitudinal changes in macrosegregation during growth will
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result whenever the diffusion distance (D/R) exceeds the

established solute boundary layer thickness (6) at the inter-

face. Longitudinal microsegregation,ontheother hand, can be

attributed to temporal variations in either the growth rate

(R) or the solute boundary layer thickness (§). Sources of

growth rate variations include: (1) crystal or crucible

rotation in the presence of a radially asymmetric temperature

distribution in the melt, (2) convective temperature fluctua-

tions in the melt, and (3) faulty crystal pulling mechanisms;

the temporal variations in solute boundary layer thickness

result from unstable convective flows in the melt. Radial

macrosegregation, as yet inadequately understood, is attribut-

ed to (1) a radial variation of the solute boundary layer

thickness which is sensitive to the flow pattern existing in

the melt, (2) the curvature of the crystal-melt interface,

and (3) the presence or absence of facets at the growth inter-

face. Radial microsegregation, on the other hand, may result

from (1) longitudinal microsegregation in the presence of a

curved growth interface and (2) local growth rate or solute

boundary layer thickness variations resulting from insta-

bilities of the momentum, thermal, or solute boundary layers.

An analysis indicates that the compositional variations

in melt grown materials can be primarily attributed to adverse

temperature distributions and associated convective flow

patterns existing in crystal growth melts. It was in an
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attempt to establish control over these parameters by con-

trolling the temperature distribution at the crucible wall

that a heat pipe was introduced coaxially between the cru-

cible and the heater in a Czochralski crystal puller. Through

this approachitwasexpected that improved thermal conditions

could be established which would reduce (a) the extent of

thermal asymmetry and (b) the intensity of thermal convective

instabilities in the melt. Thus crystals grown in this modi-

field Czochralski crystal growth system were expected to ex-

hibit improved radial and longitudinal segregation character-

istics.

In this chapter a comparative analysis is presented of

the micro and macrosegregation behavior for a conventional

and a modified Czochralski crystal growth system.

A. Crystal Growth and Characterization Procedures

This section outlines the growth and characterization

procedures used in the present investigation of dopant seg-

regation phenomena in the Czochralski system. (For details

of the Czochralski growth system used see Crystal Growth

System and Related Equipment in Chapter IV,)

1.

=

Growth Procedures

Seed Preparation

The &lt;111&gt; oriented seed of square cross section (4,5 mm)

and 4 to 5 cm in length was prepared in the following manner:
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After removing the sharp edges from the "growth" end with 600

grit SiC paper, the seed was degreased with trichloroethylene

and acetone and rinsed in distilled, de-ionized water (DDW). Sub-

sequent to drying in a hot air stream, the seed was mounted

in the molybdenum seed holder and etched with CP4 (see Charge

Preparation in Chapter IV).

Seeding and Growth Procedure

Seeding was accomplished as follows: The temperature of

the melt was adjusted to seeding temperature (based on pre-

vious experiments and temperature measurements). With seed

rotation applied, the seed was lowered to about 1 mm above the

upper melt surface. After thermal equilibration (about 15

minutes), the seed was inserted into the melt and a small

portion was melted back to insure a clean (oxide-free) growth

interface. After the temperature was adjusted so that the

meniscus was approximately tangential to the seed, the seed

was slowly withdrawn from the melt (about 1.3 mm/hr) and

the crystal was grown to its desired diameter (typically 1.3

cm) by appropriate power adjustments.

At the final diameter, the pull rate was adjusted to the

desired value. Because of a significant thermal inertia of

the growth system (introduced into the system by the heat

pipe), temperature adjustments were limited to a rate on the

order of 0.01 mv (0.25°C) per minute. With this limitation,

pull rate changes were made in small steps (typically 1.3 mm/hr).
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The growth experiments were conducted for several com-

binations of seed rotation rate, pull rate, crucible rotation

rate, and crucible position.

Interface Demarcation

Interface demarcation was employed in all growth experi-

ments (other than those during which temperature fluctuation

spectra were recorded). Current pulses (of typical charac-

teristics: amplitude 25 amp/cm’, duration 60 msec, and fre-

quency 1 Hz) were applied across the growth interface.

Interface demarcation lines were subsequently revealed by

interference microscopy after high resolution etching of

appropriate samples (see Sample Preparation below).

2.

a.

Crystal Characterization and Segregation Analysis

Sample Preparation

Crystal segments (see Figure 36) were prepared for

analysis as follows: the grown crystals were cut into longi-

tudinal sections (25x15x2 mm) parallel to the &lt;111&gt; growth

axis with the large faces being slightly off a (211) orien-

tation. The samples were degreased and etched in CP4 (see

Charge Preparation in Chapter IV) for 10 seconds. After

drying ,the samples were ultrasonically soldered with In-Sn

alloy (50/50) onto brass disks (diameter 3.4 cm) to achieve

large ohmic back contacts. To avoid contamination during

subsequent sample preparation, a thin coating of acid resis-

tant Crystal Clear (polymer) was applied to the sample and
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its mount.

After mounting, the samples were lapped successively on

an optically flat glass plate with SiC (600 grit), garnet

(5 um), and alumina (3 um) and polished with Linde A (0.3 um

alumina). The final polish with syton solution (200 ml

Syton-HT, 200 ml DDW, 5 ml H,O0, and 2 ml CH, COOH) achieved

a mirror finish. After thoroughly rinsing in distilled water,

and while still wet, the samples were immersed for 5 seconds

in the differential etchant (1 part H,0, 1 part HF, 1 part

CH,COOH). Subsequent to rinsing in distilled water, washing

in soap and distilled water and thoroughly rinsing in dis-

tilled water, the samples were dried in a stream of nitrogen.

b. Microscopic Growth Rate Determination

By employing the interface demarcation technique during

crystal growth, the microscopic growth rate, R(t), at the

time, +t , was determined from the known period (T) of the

applied current pulses and the measured position, X(t), of

the resulting demarcation lines. The distance measurements

on the etched samples (see Sample Preparation above) were made

with a filar eyepiece on a Zeiss Ultraphot microscope. The

nth demarcation line (see Figure 37) was incorporated into the

crystal at the time, t, = nT, and at the position, X = X(t)

when the microscopic growth rate was R = R(t). The micro-

scopic growth rate was determined by representing the first

derivative of position with respect to time by its centered
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Figure 36. Polished and etched sample mounted on a brass
disk with a large ohmic back contact (see text),

Interface Demarcation Lines

13

Probe Impact Traces

Figure 37. Impact traces of spreading resistance probe
(10 um spacings) and interface demarcation
lines on a polished and etched Ge sample.

[,
TT

® » AAA

Re

Figure 38. Schematic representation of spreading resis-
tance measurement circuit.
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finite difference (see Appendix 3)

R (Xo+1 - Xn -11/2T

For microsegregation analysis, the microscopic growth

rate had to be known at the position (¥Y) where the spreading

resistance was measured. Generally the probe position will

be between two interface demarcation lines (such as n - 1

and n). Following Murgai®&gt;, a constant acceleration

(a 4! was assumed for positions between demarcation lines,

and from kinematics®?, the growth rate at the probe position

was approximated by

 v2, xX 41)
J

3
1/2

This relation correctly gives R = R__, when Y =X _; and,

to insure that R = R_ when Y = X , the acceleration was

approximated by

A, .
n=1

_ 2 2 : _

= (R_ - R _q)/2(X, . Xx _q

To establish the limitations of the interface demarca-

tion technique for the study of microscopic growth rates, it

is important to consider the basic approach taken. Growth

interface demarcation by current pulsing results in an

instantaneous segregation change across the entire interface.

This segregation effect appears on the etched specimen as a
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narrow band (groove) which can be detected by interference

contrast microscopy. The visibility and the limits of resolu-

tion for the spacing between consecutive demarcation lines

have been shown to be strongly dependent on the etching pro-

cedure and on the optimization of interference contrast

through adjustment of the Wollaston prism. Moreover, the

accuracy of the determination of the demarcation spacings

ander the microscope by means of a filar eyepiece is subject

to inherrent limitations. Thus, the approach taken was tested

by (a) determining the maximum measurement accuracy through

readings from a calibrated reticule with lines of 0.01 mm

spacing and (b) determining measurement reproductivity from a

small crystal segment subjected to interface demarcation

during growth.

The simulated growth rate profile obtained from the

calibrated reticule (see Figure 39(a)) which should yield a

constant rate of 10 um/sec shows a relative deviation

(AR/R = (R ax - Ruin!” Roos + R in)! of 5% in the upper

profile and 2% in the lower profile which can be directly

attributed to error in determining the demarcation line posi-

tions, While the growth rate data for two successive readings

of the same interface demarcation lines in a small segment of

a typical crystal grown in the modified puller (see Figure

39(b)) yield the identical average microscopic growth rate

and show virtually the same fluctuations, there are distinct
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quantitative differences between the two profiles which can be

attributed to measurement error. The study indicates that the

interface demarcation technique under the presently employed

growth conditions (line spacing of about 10 um) yields growth

rate data of at best 5% accuracy.

Spreading Resistance Measurement

Spreading resistance measurements were made with an ASR-

100 Spreading Resistance Probe in the single point configura-

tion with a constant 10 mv bias applied across the probe and

the ohmic back contact. Longitudinal spreading resistance

scans (along the direction of growth) were performed with 10 um

spacings, while 50 um spacings were used for radial scans.

The spreading resistance measurement is basically a

measurement of the current (I) flowing in a circuit consisting

of a constant voltage source (v = 10 mv) in series with a

variable point contact resistance (Rg) and a constant distri-

buted resistance (R.) (see Figure 38). The point contact

resistance of a lapped Ge surface of moderate resistivity is

essentially the spreading resistance with the contribution

from the potential barrier being insignificant?. The dis-

tributed resistance is essentially the resistance of the

current leads (0.07 ohms). Thus the total resistance (R)

measured by the probe is the sum of the spreading resistance

and the lead resistance

Wy
7 Cn — P

-
“+ Rp
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a. Calibration of the Spreading Resistance Probe

The spreading resistance in a material of resistivity,

0 r from a point contact of effective diameter, D, is

~

Since the spreading resistance probe does not form an ideal

point contact, D is unknown and not well defined (see Figure

37). Thus a calibration procedure must be utilized to con-

vert spreading resistance to resistivity.

Frobe calibration in the present study was performed on

a Ga doped Ge standard of known resistivity and dopand con-

centration (2.97 x 10"30cm and 7.78 x 1018 /cm? , respec-

tively, as determined by Hall measurements in the Vander

Pauw configuration®?). Spreading resistance scans at 25 um

increments were performed across the standard to determine

its average spreading resistance (Ry) . From this value and

the known resistivity, the effective probe diameter was

determined by the relation

2D = 2.97 x 107° /R_

This value was then used to convert spreading resistance to

resistivity for the samples analyzed in the present study.
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b. Concentration Determination

To be useful for quantitative microsegregation analysis,

the spreading resistance values had to be converted to dopant

(carrier) concentration values. This was accomplished in the

following manner: each spreading resistance value was convert-

~d to a resistivity value (see above); the logarithm of

resistivity was then converted to the logarithm of concentra-

tion by linear interpolation between corresponding known

values®?; the antilogarithm of this value was the dopant

(carrier) concentration value required.

The reproducibility of spreading resistance measurements

and their sensitivity to surface treatment are shown in

Figure 40. The three profiles shown were taken parallel to

one another in a small region of the calibration sample,

From top to bottom, these spreading resistance measurements

were made as follows: (a) the sample was left unwashed (for

more than 24 hours), (b) the sample was washed and dried in

nitrogen, the measurement was performed after half an hour

delay, and (c) the measurement was performed immediately

after the sample was rewashed and dried in nitrogen. For

this sequence of treatments the average apparent dopant con-

centration increases (6.75 Xx 1018 /cm3, 7.28 x 1018 /cm?, and

7.79 x 1018 /om3 , respectively), while the measurement

scatter and the relative concencentration deviation decreases

(0.18, 0.11, and 0.07, respectively). In the results reported
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below, the problem of this time dependence of the measurement

was eliminated and the level of measurement scatter was re-

duced by the application of a drop of glycerine to the sample

surface after cleaning and prior to performing the spreading

resistance measurements.

The sensitivity of the spreading resistance probe to

concentration variations is limited as follows: The output

of the spreading resistance probe is a four digit number pro-

portional to the logarithm of the spreading resistance. A

one digit change in the output (for Ge doped with Ga to 1.7

X 1012 /cm’) corresponds to a 0.3% change in the dopant con-

centration and is thus the minimum change detectable. How-

ever, in addition to true concentration changes, such a change

in the output signal may also be due to a surface imperfection

or electrical noise.

B. Comparative Segregation Analysis

This section presents a comparitive segregation analysis

of a representative Ga doped Ge crystal grown in a standard

Czochralski system and crystals grown under similar conditions

in the modified system. Longitudinal and radial segregation

behavior both under conditions of crystal and crucible ro-

tation are compared. Additional data on segregation behavior

in the absence of rotation are presented for the modified

system, although no sample grown under this condition in the

standard system was available for comparison. The
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longitudinal data (see Figures 41, 43 and 45 (a)) are pre-

sented as composite figures consisting of (1) a photomicro-

graph of the region of interest showing the impact trace of

the spreading resistance probe , the interface demarcation

lines, and the contrast due to compositional heterogeneities,

(2) a plot of the dopant concentration as determined from the

spreading resistance measurements, and (3) a plot of the

microscopic growth rate as determined from the interface

demarcation lines. These data were obtained in the off-facet

regions near the crystal periphery where the thermal asymmetry

(AT) is a maximum and therefore, by the Morizane relation

(Equation 23), the growth rate variations are maximum. The

transverse data (see Figures 42, 44 and 45(b)) were obtained

by spreading resistance measurements made across the crystal

diameters and are presented as plots of dopant concentration

as determined from these measurements, The average values

and relative deviations of the growth rate and dopant concen-

tration determined from these data are colledted in Table 10.

1. Segregation Analysis for Growth With Crystal Rotation

The rather significant improvement of longitudinal

microsegregation in crystals grown with seed rotation brought

about by the presence of the coaxial heat pipe in the hot

sone of the modified Czochralski system is evident in Figure

41. The sample grown in the standard system (6.14 rpm) (see

Figure 41 (a)) exhibits large amplitude rotational striations

(high contrast in the photomicrograph) with large relative
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deviations in the growth rate (AR/R = 0.47) and in the dopant

concentration (AC/C = 0.16). By contrast, the crystal grown

in the modified system (17.1 rpm) exhibits small amplitude

(AC/C = 0.017 and AR/R = 0.09) rotational striations (low

contrast in the photomicrograph). The significant reduction

in the intensity of rotational striations for crystals grown

in the modified system reflects primarily the increased ther-

mal symmetry in the melt due to the presence of the heat pipe.

These same samples reveal pronounced differences in radial

segregation on both the macro and micro scale (see Figure 42).

The transverse profiles, obtained from measurements at 50 um

spacings to within 200 um of the sample edges, provide sig-

nificant information concerning "coring" associated with facet

formation at the respective growth interfaces. The transition

from the off-facet to the facet regions is associated with an

abrupt drop in dopant concentration. Two important differ-

ences in the growth and segregation behavior can be identi-

fied. The sample grown in the standard system exhibits a

relative segregation change of AC/C = 0.16 whereas the cor-

responding change associated with growth in the modified

system is AC/C = 0.033. The transverse profiles indicate

further a pronounced increase in the extent of growth inter-

face facet formation for the modified growth system, which is

indicative of a decreased radial temperature gradient and is

consistent with the correspondingly less curved growth inter-

face. The radial microsegregation characteristics for growth
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in conventional Czochralski systems must, on the basis of the

present results, be attributed to the interaction of (a) the

extensive longitudinal microsegregation inhomogeneity and

(b)] a pronounced curvature of the growth interface.

2. Segregation Analysis for Growth With Crucible Rotation

Figure 43 shows that longitudinal microsegregation during

growth with crucible rotation is less affected by the heat

pipe than growth with seed rotation. The measurements indi-

cate that in both systems crucible rotation leads to small

amplitude rotational striations which can be attributed to

growth rate variations. For growth in the conventional sys-

tem (5.78 rpm) AR/R = 0.15 and AC/C = 0.033,whereas in the

modified system (6.0 rmp) AR/R = 0.29, and AC/C = 0.017.

Thus, while the amplitude of longitudinal microsegre-

gation variations under conditions of crucible rotation is

only slightly reduced by the modification of the hot zone,

it is evident that the magnitude of such variations is

significantly less for crucible rotation than for seed ro-

tation. This pronounced reduction in the amplitude of

rotational striations during growth with crucible rotation

is attributed to an increase in the thermal symmetry as-

sociated with crucible rotation. Thus, it is apparent

that the thermal asymmetry of the hot zone in the convention-

al puller is significantly greater than that in the modified

system, since the reduction of the amplitude of rotational
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striations in changing from crystal to crucible rotation is

jreater for the conventional than for the modified system.

A comparison of radial segregation behavior of the two

samples discussed above is shown in Figure 44. It can be

seen that both samples exhibit considerable radial macro-

segregation; AC/C = 0.088 for the sample grown in the con-

ventional system and AC/C = 0.041 for the sample grown in

the modified puller. While the crystal grown in the modified

puller shows less radial macrosegregation than that grown in

the standard puller, it exhibits more pronounced radial

microsegregation. The major changes in radial composition

in the crystal grown in the modified system occur at the off-

facet to facet transitions (at 2000 ym and 6500 um in Figure

44 (b)) which are not present in the crystal grown in the

conventional system. The appearance of a central dopant

concentration maximum in both crystals is consistent with an

increase in the solute boundary layer thickness at the crys-

tal centers where the forced convective flows (generated by

crucible rotation) are expected to exhibit a stagnation

59
point

3. Segregation in the Modified Growth System Without
Rotation

The segregation behavior of crystals grown in the modi-

fied Czochralski system without seed or crucible rotation

are subject only to the influence of the thermal convective
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flows within the melt. The longitudinal segregation behavior

(see Figure 45 (a)) reveals small random variations of com-

position (AC/C = 0.020) and growth rate (AR/R = 0.19) with

an average period of 5,8 sec. The source of the observed

growth rate variations is most likely the thermal convective

instabilities in the melt (the longest dominant period of

which was 6.0 sec), however pulling irregularities cannot be

ruled out at this time.

The radial segregation behavior in the sample discussed

above (see Figure 45 (b)) is quite similar to that found in

the modified system under crucible rotation conditions,

However, without rotation the concentration profile exhibits

a slightly higher relative deviation (AC/C = 0.048). The

central concentration maximum again suggests a thickening of

the solute boundary layer near the crystal center which is con-

sistent with the existence of an axisymmetric toroidal thermal

convection roll within the melt, as computed in Chapter VI and

observed by Carruthers”%, with a stagnation point at the center

of the growth interface.

In summary, the installation of a coaxial heat pipe

within the hot zone of a Czochralski crystal growth system

results in a marked improvement of its segregation behavior

as shown in Table 10. The amplitude of longitudinal micro-

segregation has thus been reduced to a level below two

percent of the average concentration for all conditions

investigated. Even more significant from the point of view
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TABLE 10

SUMMARY OF COMPARATIVE SEGREGATION BEHAVIOR

Crystal Rotation

Standard System (6.14 rpm)

Modified System (17.1 rpm)

Crucible Rotation

Standard System (5.78 rpm)

Modified System (6.0 rpm)

No Rotation

Standard System

Modified System

Longitudinal Segregation

R  AR/R C AC/C

(u/sec) (%) (1012 /cm3) (%)

22.4 0.47 1.14

16.8 0.09 1.73 0.017

0.160

20.7 0.15 0.273 0.033

6.55 0.29 0.999 0.017

6.82 0.19 0.975 0.020

Radial Segregation

Cc AC/C
a
2 em) (2)(101

1,13 0.160

1.67 0.033

0.313 0.088

1.03 0.041

ag

1 N3 0.043

I

—
=&gt;
nS
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of semiconductor device applications is the marked reduction

in radial segregation to the three percent level under condi-

tions of crystal rotation in the modified thermal environment.
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CHAPTER IX

DISCUSSION OF CONVECTION AND
ITS EFFECTS ON SEGREGATION

This chapter presents a discussion and analysis of

convection and its affects on dopant segregation during

Czochralski crystal growth. The results of the preceding

analyses of thermal convection and of growth and segregation

in the modified Czochralski system are interrelated and

the pertinent cause and effect relationships established.

The analysis focuses on the following topics: a determination

of the segregation controlling mode of convection by comparing

solute boundary layer thicknesses and fluid flow rates, an

investigation of the mechanisms of convective temperature

fluctuations, and a study of the correlation of growth rate

variations with convective instabilities and seed rotation,

Solute Boundary Layer Thickness

As previously discussed (see Chapter VII), when the

equilibrium distribution coefficient is small (kg &lt; 1), a

layer of increased dopant concentration is established ahead

of the crystal-melt interface after the onset of crystal

A.

growth. Whenever (as under the present growth conditions)

the thickness (§) of this solute boundary layer is less than

the diffusion length (D/R) (where D is the solute diffusion

coefficient of the melt and R is the growth rate}, the
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segregation process at the growth interface is affected by

the convective melt flows, Under these conditions, § may be

used as a tool for assessing which mode of convective flow

is dominant in controlling the segregation process. The

analysis proceeds as follows: (1) A value of § is determin-

ed for each convective mode. (2) If the value of ¢§ for one

mode is significantly smaller than those calculated for all

other convective modes, then that mode will dominate the mass

transfer process at the growth interface,

For the Czochralski growth of low Prandtl number elec-

tronic materials, the common melt flows include; thermal

convection flows driven by horizontal and vertical temperature

(density) gradients and forced convection flows driven by

crystal and/or crucible rotation. In low temperature crystal

growth systems (Te doped InSb) it has been possible (even at

low rotation rates) to establish growth conditions under

which forced convection dominates the segregation process at

the growth interface, while in high temperature systems (Sb

doped Si) under all growth conditions the dominant mode is

thermal convection (with the exception of the work reported

by Murgai et a1.8%). As yet, the dominant mode of convective

flow in moderate temperature systems (Ga doped Ge) has not

been unambiguously determined.

In this section values of § computed by several

nethods are compared to determine whether thermal convection
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or forced convection dominates the segregation process during

solidification of Ga doped Ge with crystal rotation (17.1 rpm)

in the modified Czochralski system. The values of {§ are

determined by three experimental estimates which are inde-

pendent of the convective mode and two theoretical estimates

which depend on the dominant mode of convection in the melt.

Assuming the BPS relation (Equation 21) is applicable to

segregation during Czochralski pulling and making use of the

definition of the effective distribution coefficient (Equa-

tion 20), an experimental estimate of the solute boundary

layer thickness (8) may be obtained from the BPS relation in

its modified form:

5 (8) [in (2-2) = on (wer)| (24)

where Cg is the solute concentration being incorporated

into the solid phase and CC, is the concentration of dopant

in the bulk melt outside the solute boundary layer. The use

of this approachinearlierstudies was associated with a

very high degree of uncertainty since no microscopic growth

rate data were available prior to the establishment of the

growth interface demarcation technique and R had to be

identified with the average macroscopic rate of growth. This

approximation, while acceptable under the growth conditions

presently established in the modified Czochralski configura-

tion, must be considered as unacceptable for conventional
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growth systems where during growth with seed rotation in

an asymmetric thermal environment, the instantaneous micro-

scopic rate of growth is subjected to continuous variations

and may assume average values which are by a factor of up to

10 larger than the average macroscopic growth rate’? More-

over, earlier attempts to compute § were complicated by the

necessity of determining Cq which, in principle, may be

obtained through the normal freezing equation

-(1-k_}
(25 J

where f is the fraction of the melt solidified at the point

where Cq and § are to be determined and Co is the ori-

ginal dopant concentration in the melt. Because of excessive

radial segregation variations the value of Cy thus computed

(through longitudinal resistivity scans) is, for conventional

growth systems, associated with a significant error and the

§ value computed is by necessity erroneous. Again the pre-

sently modified growth system provides for growth with

virtually negligible radial segregation and the application

of the normal freezing equation (25) becomes justifiable.

While the modified hot zone configuration (for improved

growth conditions) and interface demarcation during growth

(for microscopic growth rate determination) make it possible

to optimize the indicated approach, computation of the solute

boundary layer thickness is still associated with significant
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errors. The evaporative loss of Ga during melt down which at

present can only be approximately determined, requires ad-

justment of C, on the basis of a wet chemical analysis of

the charge remaining after the growth experiment. Moreover,

the diffusion constant of Ga has, as yet, not been determined

with adequate precision and the presently selected value (1.9

X 104m? /sec), while taken as the most reliable, cannot be

considered as precise. Finally, the generally accepted value

of k, (0.087) must according to most recent measurements be

considered as uncertain and may be in excess of 9.127,

In addition to the procedure outlined above, two other

experimental estimates of the solute boundary layer thickness

may be obtained as follows: The solute boundary layer thick-

ness may be obtained by assuming that a differential form of

the steady state BPS relation (Equation 21) is applicable to

the small amplitude compositional and growth rate fluctua-

tions encountered in the modified Czochralski system. The

expression thus developed is

A (D/R) (r+) (AC/C)/ (AR/R)Oo

(-of1)

which applies (as under the present growth conditions) so

long as RGS/D &lt;&lt; 1 . The solute boundary layer thickness

may also be obtained through the relationships between the

respective thicknesses of the solute (6), thermal (8p) and

momentum (6) boundary layers: § = (o/v11 3s when
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= 1/2 | :

§ &lt; 8 and §p = (k/Vv) 8 when Sp &gt; Sm , where v is

the kinematic viscosity of the melt and «k is its thermal

diffusivity. Thus, the solute boundary layer thickness may

be estimated from the thermal boundary layer thickness ac-

cording to the relation

\ ~1/3 1 /2 1/2
m

(2 }

The theoretical solute boundary layer thickness due to

forced convection (crystal rotation) may be obtained from the

low rotation rate form of the Cochran relation (Equation 22)

A L.e pt/3,1/6 -1/2 (24 yo
t

This relationship was developed by Burton, Prim and slichter®’

based on Cochran's analysis-&gt;. It should be pointed out,

however, that Cochran considered the convective flow pro-

duced by a rigid, flat disk of infinite lateral extent in a

semi-infinite fluid and in the absence of any additional

driving forces. Thus, the BPS treatment neglects such

effects as fluid confinement in a finite crucible, the

finiteness of the crystal radius, the curvature of the growth

interface, and the ability of the interface to change mor-

phology in response to convective stimuli. It also neglects

the affects of the meniscus column attached to the crystal

perimeter and the influence of thermal convective melt flows.
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Furthermore, Burton, Prim and Slichter neglected all terms in

Cochran's expression for the vertical velocity component larg-

er than second order,which requires that the Schmidt number

(Sc = v/D) be large (Sc &gt; 64), whereas for Ga doped Ge the

Schmidt number is small (Sc = 7.4).

The value of the solute boundary layer thickness due to

thermal convection is estimated as follows: The radial

velocity (v.) at the edge of the Cochran momentum boundary

layer and the half radius (Ry /5) position is determined from

the numerical solution (see the next section below), By

assuming the expression for the momentum boundary layer on a

flat plate is valid

\
yr

1/2Ry o/ (Ry ov /9)

the solute boundary layer thickness can be computed according

to the relation

S ——

1/2. 1/6. 1/2 -1/2
D777 VTE "Ry ov

(26 )

This estimate the solute boundary layer thickness due to

thermal convection is of questionable accuracy since the

numerical computations were performed without a crystal con-

tacting the melt and the expression for the momentum boundary

layer thickness on a flat plate is not strictly applicable.

However, it is believed that this approach should yield a

useful order of magnitude estimate for the solute boundary
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layer thickness due to thermal convection.

The estimates of the solute boundary layer thickness

for the sample grown with crystal rotation (17.1 rpm) in

the modified Czochralski system based on the approaches out-

lined above are collected in Table 11. In the light of the

error estimates discussed above and in Appendix 5, all values

must be considered as in excellent agreement. Conspicuous in

Table 11 is the fact that the boundary layer thickness assoc-

iated with thermal convection (Equation 29) is virtually the

same as that for forced convection (Equation 28) and both

are in agreement with two experimental values determined by

segregation analysis based on the BPS theory. Only the esti-

mate based on the measured thermal boundary layer thickness

differs from these, but still is of an acceptable order of

magnitude. Thus for the present growth conditions, both

forced convection (due to crystal rotation) and thermal con-

vection (due to density gradients) are important in deter-

mining the thickness of the segregation controlling solute

boundary layer.
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TABLE 11

Computed values of the Solute Boundary Layer
Thickness for a Ga Doped Ge Crystal Grown
With Seed Rotation (17.1 rpm) in the Modified
Czochralski Crystal Growth System

Computation Method Solute

Equation (24)

Equation (26)

Equation (27)

Equation (28)

Equation (29)

Boundary Layer Thickness (cm)

0.020

0.023

0.013

0.023

0.021

This finding explains why the segregation behavior in Ge

melt systems is intermediate between that in low melting point

systems (InSb) and high melting point systems (Si). Further-

more, it explains the observation that in some published work

seed rotation is considered effective in suppressing time-

dependent thermal convection effects, while in others this

approach is considered as ineffective.

Under the presently discussed conditions thermal convec-

tive perturbations in the melt are expected to affect dopant

segregation during crystal growth through the response of the

solute boundary layer thickness to the melt flow rate varia-

tions, and through temperature fluctuation induced growth

rate variations. Making use of the modified BPS relation

Equation 24), the concentration and growth rate data
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presented in Figure 41, revealed considerable relative devia-

tion in the solute boundary layer thickness (A§/8 = 0.12),

Further evidence for the existence of solute boundary layer

variations in the modified system lies in the poor correlation

of growth rate and concentration profiles shown in Figures

41 (b), 43(b), and 45(a). It was in the light of these ob-

servations that the analysis of Hurle, Jakeman and pike? was

extended to include temporal solute boundary layer variations

(see Appendix 2), however, as yet, accurate numerical results

for this model have not been achieved.

Fluid Flow Rates

In the preceding section, the relative importance of

forced and thermal convection in controlling segregation

phenomena in the modified Czochralski system was analyzed on

the basis of the solute boundary layer thickness. However,

the thickness of this region of enriched dopant concentration

is a direct consequence of the rate of convective melt flow

in the vicinity of crystal-melt interface. Thus additional

insight into the relative importance of the various convec-

tive modes in determining segregation behavior may be achieved

through a direct comparison of the fluid velocities associated

with each mode. The mode for which the rate of flow near the

growth interface is largest dominates the mass transfer

process. In this section the relative importance of forced

and thermal convection in controlling segregation in the
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modified Czochralski growth system is reanalyzed on the basis

of their respective fluid flow rates.

The flow velocities to be compared in the present analy-

sis are the vertical component (v,) along the rotation axis

and the radial component (v..) at the half radius position

(Ry /oli both components were evaluated at the edge of the

Cochran momentum boundary layer (S,, = 3.5 A212 where

Cochran's vertical component reaches 80% of its asymptotic

value. Along the axis the only non-zero velocity component

is the vertical component and the direction of forced con-

vection flow (due to crystal rotation) is opposite to that of

thermal convection (due to temperature gradients). At the

half radius position fluid flowing under the influence of

forced or thermal convection will have travelled equal dis-

tances along the growth interface. The edge of the Cochran

momentum boundary layer (6) is far enough away from the

growth interface to be consistent with the spatial resolution

of the numerical solution and to minimize the influence of

the free surface boundary condition used in this solution and

vet is close enough to the interface to be meaningful in

assessing the relative affects of thermal and forced convec-

tion on segregation phenomena.

The forced convective flow rates were determined from

the Cochran analysis’ of flow near an infinite rotating disk

in contact with a semi-infinite fluid according to the rela-

Eid.— .
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V = va) 12x

Yv ~0F

where the dimensionless velocities H(= 0.800) and

F(= 0.038) were evaluated at the edge of the Cochran mo-

mentum boundary layer. (The limitations on applying the

Cochran analysis to the Czochralski system were already dis-

cussed in the preceding section.)

The rates of thermal convective flow were determined

from the numerical solution of thermal convection in the

modified Czochralski system without a seed crystal contacting

the melt. The required dimensional components of the flow

velocity were computed according to the relations

7

7

19(v/R) (- L2)

13= GYR) (2 2)

Tr

YT

[1 7 A
m

R. /5/R, ’

J
—

 Zz = § / R.

(the term in the first set of parentheses dimensionalizes the

dimensionless components computed in the second set of paren-

theses, R. is the crucible radius and the dimensionless

quantities r, z, and ¢ are the radial coordinate, axial

coordinate, and stream function, respectively.)

The primary limitation in using the numerical solution
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for assessing the flow rate due to thermal convection during

crystal growth is its use of a stress free boundary condition

over the entire melt surface. The effect of employing the

more precise rigid boundary condition at the growth interface

is, however, ambiguous. This is so because the presence of

a rigid surface will retard the horizontal components of the

flow through the action of viscous shear, while the presence

of a crystal is expected to increase the radial temperature

gradient near the crystal periphery and hence accelerate the

radial fluid velocity component. Thus it is likely that the

calculated rates of thermal convective flow will be of correct

order of magnitude.

The above contention is further supported by the results

of two runs of the computer program in two-dimensional rec-

tangular coordinates which were used to simulate thermal con-

vective flow in the Czochralski system. These runs employed

the same thermal boundary conditions, however, the first run

used a free surface boundary condition, while the second

employed a rigid boundary condition at the crystal-melt inter-

face. While the Grashof number employed (Gr = 3600) was un-

realistically low, both solutions showed the same general

flow patterns and the magnitude of the flow rates below the

crystal were comparable.

The vertical and radial components of the fluid velo-

cities for thermal and forced convection during crystal growth
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with seed rotation (17.1 rpm) in the modified Czochralski

system have been computed in accordance with the approach

outlined above and are compiled in Table 12

TABLE 12

Fluid Velocities Due to Thermal and Forced
Convection in the Modified Czochralski
Crystal Growth System

Mode of Convection Radial Velocity Vertical Velocity
(cm/sec) (cm/sec)

Thermal Convection

Forced Convection

0.266

0.026

0.094

0.040

It can be seen that the vertical velocity component for

thermal convection is double that due to forced convection,

while the radial component is an order of magnitude larger for

thermal convection. In the light of the limitations of this

approach discussed above, these results must be viewed as

preliminary and incomplete. However, this comparison does

serve to further strengthen the contention that both thermal

and forced convective flows affect solute incorporation during

Czochralski type crystal growth.

C. Sources of Convective Instabilities

The preceding sections have established the importance

of thermal convection in affecting segregation phenomena
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during solidification of Ga doped Ge in the modified Czochral-

ski crystal growth system, Furthermore, the existence of

solute boundary layer thickness variations and melt tempera-

ture fluctuations could be attributed to convective oscilla-

tions in the melt. Insight into the mechanisms of convective

instability operating within these low Prandtl number melts

can be achieved through a comparison of the average periods

of the measured temperature fluctuations with the periods

predicted by the models of convective temperature oscillations

recently reviewed by Carruthers’

Models for Convective Temperature Oscillations

The mechanisms of convective instability likely to be

operating in crystal growth melts are: (a) convective roll

instabilities, (b) thermal boundary layer instabilities, and

(c) momentum boundary layer instabilities.

Busse™® has considered the stability of convective rolls

in fluid layers heated from below. Accordingly, instability

sets in as a transverse wave oscillation in which the basic

roll pattern is shifted perpendicular to its axis in the same

manner as a wave propagates along a rope. For a fluid layer

of thickness, h, and thermal diffusivity, k , with free sur-

faces and infinite lateral extent, the oscillation period of

convective rolls with spacing \2h is given

. 0.65 (h%/x) [(Ra = RaC) /RaC1 "1/2
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where Ra is the Rayleigh number and Ra® is its critical

value. For completely confined fluid layers, this expression

should be multiplied by the factor D/(nth) where n is an

integer and D is the largest horizontal dimension. In the

present work, D is the crucible diameter and n is assumed

to be unity so the confinement factor becomes 2/ (mA)

where A = 2h/D is the aspect ratio.

A second form of convective roll instability considered

by Carruthers’ is that of internal gravity wave generation

for which the period of oscillation is

-
q

. -

= 24/ 2Dh (kv) "1/2 (ra) "1/2

where Vv 1s the kinematic viscosity of the fluid.

The instability of the thermal boundary layer in fluids

heated from below may take the form of either thermals or

plumes. Thermals®&gt; are generated at the horizontal surfaces

when the thermal boundary layer locally becomes gravitation-

ally unstable and emits a "blob" of fluid which reduces the

thickness of the thermal boundary layer and momentarily re-

stores it to local stability. Plumes are vertical buoyant

jets of fluid which are generated at localized sources of

heat and develop instabilities as they rise (a typical

example is the instability of a column of smoke rising from

a lighted cigarette). The expression developed by carruthers’

for the period of temperature oscillations associated with
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thermals is

Ton = 32 (h% fk) (Ra) "2/3

and that for plumes

-

1s

77 (02/1) (Ra) 7}

The periodic release of momentum by a momentum boundary

layer adjacent to an isothermal vertical wall has been treated

by analogy to the periodic release of thermals by a thermal

boundary layer’. The period for this boundary layer separa-

tion phenomenon is

-

nr
114 (h2/v) (cr*) ~2/3

where Gr* is the Grashof number based on the melt height

and the horizontal temperature difference AT, between the

isothermal vertical wall and the bulk fluid. This mode of

instability will set in when the condition Gr* &gt; 8 x 10° is

gatisfied.

2. Comparison of Theoretical and Experimental Periods

The models presented above have been evaluated for the

system presently investigated and the measured and calculated

periods have been compiled in Tables 13 and 14. It should be

mentioned that these models were developed for idealized

situations such as unidirectional heat flow, isothermal walls,



TABLE 13

MEASURED AND COMPUTED PERIODS OF CONVECTIVE
TEMPERATURE OSCILLATIONS

Crucible
Position

Vv]

o|

Calculated Period Measured Period
(sec) (sec)

Ra° ‘rR '¢ tr bp 1
h AT

Profile (cm) (°C) Ra

L2 1.6 11.0 1.76x10" 910 1.18 6.37 0.60 0.05 1.4-1.6

17.5 2.80x10% 910 0.99 5,05 0.44 0,03 ies

6

L3 1.6

M1 1.4 15.0 &gt; 240x102 910 1.00 5.46 0.48 0.04 0.8-1.9 2.0-2.2

i5 1.55 7.0 1.02x10% 910 1.48 8.11 0.80 0.09

15.0 2.40%x10% 910 1.00 5.46 0.48 0.04

6.6 2.2

H10 1.6 — gon

fs
oC

—-



TABLE 14

COMPUTED PERIODS FOR MOMENTUM
BOUNDARY LAYER INSTABILITY

Crucible Vertical Thermocouple
Position Position (cm)

0Aaoa

\, (.°

AT (°C)
6.0

1.2

Gr*

1.44x10°
2.88x10°

8x10°

"M(sec)
16.4

24 2

|
[
00)
No

1
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and unbounded fluids. While the exact expressions for the

periods of convective oscillations developed for these models

are not expected to carry over to the more complex Czochral-

ski geometry, it is anticipated that their orders of magni-

tude should be maintained.

The vertical temperature differences necessary to com-

pute the Rayleigh numbers were extracted from the axial

temperature profiles (presented in Chapter V) as follows.

For temperature profiles measured with the S-type thermocouple

probe, the surface temperature was estimated by linear ex-

trapolation of the bulk temperature profile to the surface;

for temperature profile measurements with an H-type probe,

the bottom temperature was determined by linear extrapolation

of the bulk temperature profile to the crucible bottom. The

temperature differences thus determined are likely to be

several degrees too large in the latter case and several

degrees too small in the former. The horizontal temperature

difference required to compute the Grashof number was de-

termined from the horizontal temperature profiles by a

similar procedure.

The value of the critical Rayleigh number (Ra® = 910)

employed in the present calculation of the period for con-

vective roll instabilities (13) was estimated in the following

manner. From the plot of critical Rayleigh number vs. aspect

ratio for confined fluids heated from below, (see Figure 4

in Reference 5) the ratio of the values of the critical
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Rayleigh number at aspect ratio (depth over width) of 0.5 to

those for corresponding layers of infinite lateral extent

were determined for conducting and for insulating horizontal

surfaces. The average of these ratios (1.34) was multiplied

by the critical Rayleigh number (669) for a heated layer of

infinite extent contained between an insulating and free

upper surface and a conducting and rigid lower surface (see

Table 1) to determine the presently used value of the critical

Rayleigh number,

Though some of the measured periods were obtained during

crystal growth, all of the calculated periods were determined

from measurements made prior to the initiation of growth.

During growth the temperature difference is expected to

decrease by a small amount, with a larger decrease occurring

in the melt height??, Both these changes have the effect of

reducing the oscillation periods; thus, the calculated

periods in Table 13 are considered as overestimates.

A comparison of the calculated and measured periods of

convective temperature oscillations listed in Tables 13 and

14 suggests the following conclusions. It is clear that the

mechanisms operating in these melts to produce convective

temperature fluctuations do not include plume or momentum

boundary layer instabilities. The longer period component

(15) of the measured temperature fluctuations is bracketed

by the two forms of convective roll oscillations, with the

period calculated for transverse wave oscillation being
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closer to the measured period in most cases. The shorter

period component (14) of the measured fluctuations may be

attributed either to the generation of thermals or to a

higher order (n &gt; 1) transverse wave instability.

The data obtained suggest that the convective tempera-

ture fluctuations observed in the modified Czochralski system

are produced by convective roll oscillations. While the

mechanism of thermal boundary layer instability (generation

of thermals) may be operating to produce the higher frequency

components, it is evident that the other forms of boundary

layer instability do not operate in this system.

D. Correlation of Growth Rate Variations With Convective
Temperature Fluctuations and Crystal and Crucible
Rotation Rate

The microscopic growth rate is a sensitive indicator of

the nature of the thermal environment in the vicinity of the

solid-liquid interface during crystal growth. Under steady

thermal conditions the growth rate will have the constant

value required to balance the amount of latent heat liberated

at the growth interface with the conductive heat flows to the

interface through the thermal boundary layer in the melt and

away from the interface into the solid phase. During melt

growth the crystal-melt interface generally does not "see"

a steady thermal environment but instead is subjected to

transient thermal conditions. In response to these trans-

ients the microscopic growth rate undergoes the temporal
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variations required to maintain a dynamic energy balance at

the growth interface.

The growth rate variations generally observed in Czoch-

ralski grown crystals fall into two main categories’ &gt;; (1)

rotational growth rate variations and (2) non-rotational

variations. The rotational growth rate variations result

when a crystal is grown with seed or crucible rotation and

either the melt temperature distribution is asymmetric or the

thermal center of symmetry and the rotational axis do not

coincide, The sources of non-rotational variations have

been attributed to the presence of convective temperature

oscillations in the melt. This section will discuss the

relationship of growth rate variations observed in crystals

grown from the modified Czochralski system to the crystal or

crucible rotation rates applied during growth and the tem-

perature fluctuations measured in the melt.

The correspondence of nonrotational growth rate varia-

tions with convective temperature fluctuations is best in-

vestigated in samples grown without seed or crucible rota-

tion. In the present study the establishment of a direct

one to one correspondence was not possible for the following

reasons: (1) The temperature measurements were performed

near the bottom of the crucible and (even if the convective

knot model of Krishnamurtil&gt; were applicable) cannot be

expected to exhibit the same fluctuation spectra as the

temperature at a point close to the growth interface.
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(2) According to the analysis of Hurle, Jakeman, and pike~C

further correlation is lost as the temperature fluctuation

passes through the thermal boundary layer adjacent to the

growth interface where the high frequency components are

highly damped. (3) Because of inductive interference associated

with current pulsing, temperature fluctuation spectra and

growth rate data could not be obtained simultaneously. It

would be possible to overcome some of these limitations by

positioning a shielded thermocouple probe near the growth

interface within the thermal boundary layer. Also Fourier

analysis of the temperature fluctuation spectra and growth

rate data would allow for a direct comparison of the result-

ing Fourier components and provide a good test for the

theory of Hurle, Jakeman, and pike’?,

The growth rate data obtained from the sample grown in

the modified Czochralski system without crystal or crucible

rotation (see Figure 45(a)) exhibits random non-rotational

variations. These variations must be directly related to

the time dependent thermal convective melt flow and reflect

the random temperature fluctuations in the melt (see Figure

8(b)). The average period of the observed growth rate

fluctuations (6.1 sec) is in good agreement with the longest

dominant period (5.8 sec) determined from the measured tem-

perature fluctuation spectra. In the light of the limitations

discussed above it is apparent that the non-rotational growth

rate variations in the modified Czochralski system may be
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attributed to the convective temperature fluctuations in the

melt.

The correspondence of growth rate variations with

crystal or crucible rotation is best achieved through a

direct comparison of the observed periods of the growth rate

variation and of one revolution. Prior to the establishment

of the interface demarcation technique this correspondnece

was investigated by comparing the separation between growth

striations of etched samples with the distance grown per

revolution. In the event that such a correspondence is

established under crystal rotation conditions, the extent of

thermal asymmetry (AT) may be assessed from the relative

growth rate variation (AR/R) by using a modified form of the

Morizane relation (Equation 23):

AT AR)RB
R | 0g

{3¢( )

where R is the average growth rate, 8 is the temperature

gradient in the melt at the interface, and Wg is the

angular rotation rate of the crystal.

The periods extracted from growth rate data of samples

grown in the modified Czochralski system under conditions

of crystal rotation (see Figure 41(b)) and crucible rotation

(see Figure 43(b)) have been compiled in Table 15. The

agreement between the respective periods indicates a strong

correlation between the observed growth variations and
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rotation rate. Thus both crystal and crucible rotation dur-

ing growth in the modified system result in rotational growth

rate variations (though less pronounced than those encounter-

ed in the standard system). From the data presented in

Table 10 and using Bg = 16°C/cm (see Table 4), the extent of

thermal asymmetry across the rotating crystal is computed by

Equation (30) to be AT = 1.4 x 10" 3ec . (A similar com-

putation for the sample grown with crystal rotation in the

standard system reveals AT = 2.6 x 10 %oc further indicating

the marked reduction in thermal asymmetry in the modified

system.)

TABLE 15

CORRELATION OF GROWTH RATE
JARTATIONS AND ROTATION RATE

Rotation Rotation Revolution Growth Rate Variation
Type Rate (rpm) Period (sec) Period (sec)

Crystal

Crucible

17.1

6.0

3.

10.0

3
-

«

190.4

4

Crystal rotation was initially employed during growth

in the Czochralski configuration in an attempt to establish

a solute boundary layer of uniform thickness adjacent to the

growth interface. Growth under such conditions was expected

to eliminate radial segregation (except for facet effects)
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and result in crystals with homogeneous dopant distribution.

Until now, however, attainment of such dopant homogeneity has

been hindered in conventional Czochralski systems by the

unavoidable presence of excessive thermal asymmetry which

results in large amplitude rotational growth rate variations

and corresponding compositional heterogeneities during growth

with crystal rotation. Presently, the installation of the

coaxial heat pipe in the modified Czochralski system was

found to reduce the level of thermal asymmetry so that

crystal rotation could now be used to achieve transversd

dopant homogeneity without increased periodic longitudinal

dopant inhomogeneity.



-191~-

CHAPTER X

SUMMARY AND CONCLUSIONS

A quantitative approach to the study of thermohydrodynamic

and segregation phenomena in semiconductor melt growth systems

has been developed and cause and effect relationships between

them have been established. This approach required the design

and construction of micro-thermocouple probes and manipulators

for thermal characterization of the hot zone, the development

of two computer programs, for numerical analysis of thermal

convection, employing quadratically conservative finite diff-

erence schemes for numerical stability at large Grashof number,

and the application of an established technique for quantita-

tive segregation analysis. The approach was applied to the

Czochralski growth of Ga doped Ge crystals from a hot zone

modified by the installation of a coaxial heat pipe. The

effect of the heat pipe on convection and segregation was

determined throughacomparative analysis of the modified and

standard Czochralski configurations. The numerical approach

was justified by the excellent agreement found between the pre-

sent computational results and previous experimental findings

for thermal convection in the horizontal Bridgman configura-

tion.

The conclusions of the present work may be summarized as

follows:

(1) A coaxial heat pipe has been used to control and

improve melt convection and segregation associated with
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Czochralski crystal growth.

(2) Temperature measurements indicate that the use of a

coaxial heat pipe in the hot zone of a Czochralski system re-

sults in a significant reduction of thermal asymmetry in

the melt.

(3) A number of numerical solutions of thermal convection

based on temperature measurements in the modified growth con-

figuration revealed (a) qualitative agreement between computed

and measured temperature distributions, (b) a pronounced de-

pendence of the quantitative agreement between computed con-

vection behavior and thermal measurements on precise character-

ization of established boundary conditions, and (c)} the exist-

ence of vigorous thermal convective flows in the melt.

(4) Samples grown in the modified system were found to

exhibit a pronounced reduction in both longitudinal and trans-

verse segregation inhomogeneities.

(5) The establishment of a virtually symmetric thermal

environment associated with the installation of a coaxial

heat pipe in the hot zone of a Czochralski ststem allowed the

application of crystal rotation to control the solute boundary

layer thickness; thus, during growth, radial dopant uniformity

was achieved without the adverse effect of pronounced rota-

tional striations.

(6) A thermal analysis surprisingly revealed that the

random temperature fluctuations in the melt assume larger

amplitudes with the installation of a coaxial heat pipe;
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however, these fluctuations are of higher frequency, and thus,

have a decreased adverse effect on growth and segregation.

(7) Low frequency components of temperature fluctuations

in the melt could be correlated with convective roll insta-

bilities; the origin of the high frequency components, on the

other hand, is somewhat uncertain since they can be explained

as due to either convective roll instabilities or due to

thermal boundary layer instabilities (thermals).

(8) Various approaches to the determination of the solute

boundary layer thickness and the determination of convective

melt flow rates gave consistent results which indicated that,

for crystal growth with a heat pipe under conventional thermal

gradients and seed rotation rates, both forced and thermal

convection may simultaneously affect dopant segregation at the

crystal-melt interface.
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CHAPTER XI

SUGGESTIONS FOR FURTHER WORK

The present work has established a quantitative approach

to thermohydrodynamic and segregation phenomena for growth sys-

tems involving low Prandtl number melts. The results of its

application to growth of Ga doped Ge crystals in a modified

Czochralski system was discussed. An analysis of the results

suggests the following complementary work be undertaken to

establishaquantitative understanding of Czochralski growth

necessary for its optimization.

(1) Establishment of growth conditions with a virtually

flat free melt surface is required for the experimental boun-

dary conditions to be adequately characterized for computational

analysis. A flatter melt surface may be obtained by selecting

a crucible material and melt whose contact angle is close to

90°. This could be accomplished either with Ge melts of

various dopant compositions and finding an appropriate crucible

material or changing both the melt and crucible material (such

as Si in a quartz crucible).

(2) In the light of the significant reduction in micro-

segregationforgrowthinthe modified Czochralski system,

more accurate procedures for the determination of interface

demarcation line positions and spreading resistance measure-

ments are desirable. In addition, microsegregation could be

enhanced by choosing a dopant species with a smaller equilibrium
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distribution coefficient (such as Sb in Ge).

(3) In view of its technological importance, a detailed

investigation of the origin of radial segregation should be

conducted. Solute boundary layer thickness effects can be

isolated from facet effects by selecting a nonfaceting growth

direction. Furthermore, the angular symmetry of the transverse

dopant distribution should be investigated.

(4) Fourier analysis of the temperature and growth rate

fluctuation spectra must be undertaken to more accurately es-

tablish existing cause and effect relationships and to test

theoretical predictions such as those of Hurle, Jakeman, and

pike&gt;0
(5) The dependence of convection and segregation pheno-

nena on deviation from coaxial alignment should be established

and the heat pipe concept for control of such phenomena should

be extended to other materials systems (such as Sb doped Si).

(6) To achieve precise quantitative segregation analyses,

the required physical constants must be accurately determined

and procedures for determining the melt composition during

growth should be established.

(7) The numerical study of convection in the Czochralski

configuration, based on experimental boundary conditions, must

be extended to include a seed crystal in contact with the melt

and should involve the effects of both seed and crucible ro-

tation. Furthermore, the possibility of extending this study

to include a numerical treatment of dopant segregation during

crystal growth should be investigated.
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CHAPTER XI

APPENDICES
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A. APPENDIX 1

MATERIALS ANALYSIS AND PROPERTIES

This appendix presents the following information in tabu-

lar form: (1) The analyses of the starting materials, Ge and Ga,

for major impurities are presented in Table 16. (2) The

physical constants of liquid Ge required for computational

analysis of thermal convection and segregation in the Czoch-

ralski configuration are compiled in Table 17. (3) The physical

constants of liquid Ga and silicone oil required for numerical

analysis of thermal convection in the horizontal Bridgman con-

figuration are listed in Table 18

TABLE 16

MATERIALS AND MAJOR IMPURITY ANALYSIS

Material

se
(a)

“+ (
tm

0)

Impurity

~
1

2
2)

 MN

Al

Vg

Si

~
a

“da

Level (PPM)

ve 0.1

&lt; 0.005

&lt; 0.03

&amp; 0.4

&lt; 0.04

&lt; 0.04

0.06

”
5] 0 93

a, Eagle Picher
bh. Alusulsse
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TABLE 17

SELECTED PHYSICAL PROPERTIES OF LIQUID GERMANIUM

Melting point Se

Density?
Thermal expansion coefficient?

Thermal conductivity”?
Specific heat”?

Emissivity’?
Thermal diffusivity (k/pc)
Kinematic viscosity’?
Diffusion coefficient?

Equilibrium distributions
coefficient of Gallium

T = 937.2°C
m

p= 5.52 g cm3

a = 1.17x10 2oc~L

k = 0.50 w em 2oc™1

Cc = 2.43 J cm Sect
p

e = 0.53

¢ = 0.21 - sec”!

Vv = 1.4x1073 cn® sect

D = 1.9x10 4cm? sec?

k
0

= 0.087
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TABLE 18

SELECTED PHYSICAL PROPERTIES OF LIQUID
GALLIUM AND SILICONE OIL

Liquid Gallium at

Density”
Thermal exvansion coef-
ficient94

viscosity’?
Thermal conductivity’&gt;
Thermal diffusivity ®

Kinematic viscosity (u/p)

6 = 1.65 g cm&gt;

a = 1.24x10 %ec™l

u = 1.64 cp

kK = 0.349 w om Yk!

kK = 0.155 on sun

2.7x10"°3 cm? sec

Silicone 0il at 60°C

Thermal conductivits
97

K = 1.36x10"° w em log1
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B. APPENDIX 2

Analysis of Microsegregation Transients Due to

Fluctuations of Fluid Velocity and Temperature

This appendix presents a perturbation analysis of the in-

corporation of solute at a growth interface in the presence of

fluid velocity and temperature fluctuations. The analysis starts

with a treatment by Hurle, Jakeman, and pike”? (HJP) based on

only temperature fluctuation effects and extends the treat-

ment to include fluid velocity fluctuations acting upon the

solute diffusion boundary layer. Some errors in the original

HIP analysis were corrected; however, their original conclus-

ions do not appear to be substantially altered. Convective

processes in the melt determine not only the overall thickness

of the diffusion dominated region but also the boundary condi-

tions required to mathematically describe both the steady and

perturbed problems.

The effect of thermohydrodynamic instabilities in the

melt is introduced by applying a temperature oscillation,

pelt , (of amplitude 6 and angular frequency ww) at the

edge of the thermal boundary layer and allowing for a momentum

boundary layer thickness variation, 5 (0) 4 set (were) (of

amplitude &amp;§ which is phase shifted by ¢ from the thermal

oscillation). (The boundary layer fluctuation is produced by

a fluctuation of fluid velocity associated with the convective

instability.) The amplitudes are assumed sufficiently small
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that linear perturbation theory may be applied to determine

the small deviations from the steady state.

The Steady State

The steady state solution to this problem has been pre-

sented by HJP for a planar solid-liquid interface advancing

with constant velocity v along the z-axis. The distribu-

tion of solute and temperature (in a frame moving with the

interface) must satisfy the following diffusion equations:

2

&gt; Ts &amp; v As — 13s
Nop 2 Kg 02 Kg ot

2
3 T oT oT

5g 2 Ka 0Z Kg ot

2c 5C 5¢
L,yv_ 2 _ 1

 0 D 8z D., dt
jz 9,

5

r

7

 -—

—

J

)

(51! a)

10)

‘y3)

where s and 2 refer to the solid and liquid, respectively,

and T, C, ¥, and D are the temperature, solute concentra-

tion, thermal diffusivity, and mass diffusion coefficient,

Diffusion within the solid can be neglected since the ratio

D./D, is small (typically ~ 107%). The following boundary

conditions are applied at the solid-liquid interface (z=0):

7 Tn Th * Tr )
2 a)
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T

Dy 3, = vic, ™ Cg)

m

qT aT
Ss _ 2

5z ~~ Kg Bz + CV

(T ib)4,

(B2c)

(B24)

where n, is the liquidus slope (assumed constant); T* is

the melting point of the pure solvent; and ¢ = L/pc, is the

ratio of the latent heat to the product (assume equal in both

phases) of density and specific heat at constant pressure.

In the steady state, the concentration in the solid is equal

to the distribution coefficient, k , times that in the

liquid. Sufficiently close to the interface (z &gt;&gt; - AY

in the solid and 2z &lt;&lt; Ko /V in the liquid) the steady state

solution is

T Nn (J) 4 2 2 7 J

Tr, n 0) +  _R 7 r 7) )

Cc. = C(0)[k + (1 - k)exp(~- vz/D,)] r 20

(B3a)

(E-b)

(B3c)

where C(0) = (T(0) - T*)/m, is the interface concentration

in the liquid, T(0) is the interface temperature, and J

and Bg, are the respective temperature gradients.

2 The Perturbed State

The presence of thermohydrodynamic instabilities within
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the melt will cause the temperature and solute concentration

fields to deviate from the steady state distribution presented

above. For small deviations, the perturbed distributions can

be expanded as

T - op (0) m1)

T = 0) | (1)

c = c(0) Lc)

1

4

1

~

 1)Lg

(BR4Db)

(Bdc)

where rl 7 70) , and c}% are the previously described

steady state fields and p(t) ; rt ’ cit are the first

order corrections. In response to the perturbation, the posi-

tion of the phase boundary is displaced to =z = o 1) ce)

relative to the frame moving with the unperturbed velocity

7 (0) , so that the actual interface velocity is

J (0) + v1) = v (0) + dé (1) a+ (BSr

The first order corrections can be expressed as Fourier series

for which the components of frequency, ww , can be written as

(B6a)

pit) = T, (z)e™®t

oH) _ c, (z)e™t

, (1) _ palt

(RED)

tm)\ 4X)

(RA- 1)
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The spatially dependent amplitudes of these expressions satis-

fy the following linear perturbation equations:
2

3 T (0) 3T .

~F rEBr=m- s 0Z 5

2
J T, , v@ oT, wo.
TFT x 57 Tk Tyouw9 Zz [)2

37

B
"5%

vorz 0 .

J (B7b)

2
0 C (0) ac . i (0)

2 Vv 2 iw iw (0) A Z— Yr ey a = wees Tote ’
322 Dg %z Dp to Dy 2

(B7c)
&gt; 0

which are obtained by substituting Eguations (B4), (B5), and

(B6) into Equation (Bl) and neglecting the product of small

quantities, The boundary conditions to be satisfied by the

perturbation amplitudes at the position of the unperturbed

interface (z = 0) are

mg Cp = Tp + (myC(0) (1 - xv? /p, + By)9 r Je162.1)

1c, /0z = ¢, (1 = vO pt ic(0) (1 - x)ws/D, (BSD)

r. +8. ¢=1T, +R }

&lt;
Ny
—

'T_/3z = KgdT,/d2 + 1Zwod

(B8c)

(bad)

which are derived by substituting Equations (B4), (B5), and

(B6) into Equation (B2) which apply at z = o (1) , expanding
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about the position of the unperturbed interface, making use of

Equation (B3), and linearizing, Since the perturbed concentra-

tion at the edge of the perturbed solute boundary layer

(z = 5 0) + seth) must be equal to the concentration in

the bulk of the melt, the amplitude of the perturbed concen-

tration component evaluated at the edge of the unperturbed

solute boundary layer (z = 6100) must satisfy

 = c@@ - Vv Pexp- v6ipysr (B9)

which is determined by expansion about =z = 5 LO and lin-

earization. Similarly, the temperature perturbation at the

edge of the perturbed thermal boundary layer (z = 50) +

spe?) must be equal to the sum of the bulk temperature

and the perturbation pelt so that the amplitude of the

perturbed temperature component evaluated at the edge of the

unperturbed thermal boundary layer (z = 5107) must satisfy

9 = ~ —-—— 11 J)

Finally, since the temperature must be bounded in the solid,

the amplitude of the temperature perturbation must satisfy

T * © 7S OD (B11)

At the unperturbed interface (z=0), the solutions of the

perturbation Equations B(7), subject to the above boundary

conditions (Equations B(8) to B(ll)), are:
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h
» 2m c (0) (1 - k)v%)
D6 - B68) + &lt;5. —28y A — q+

T.  BR + ale + p(6 R  _-

mn =
Q 2 , C0)Qa - K) |m D

) 2 .

¢ + T
J

/ m

,
(B12a)

(B12b)

(Rl2c)

where

0

~~

K

A

—

a

Kk, cosech(k 6° exp (v(? 0) /2 2)
3 | (0)

Kok + K,k,coth(K 8, )

iweg - 2 -(8, = Bg) (Kgkg - v(0) 3)

K ska + K,k,coth( 5 (0) RE| . : af

n,c(0) (1 - x)v{?a cosech(as'?)exp(- v%s_s2)
vO (2k - 1)/2 + Da coth(as'?))

(0)2
m C(0)(1= k) [kv'") + iuD|/p

d—— AH ——— citi 1 + Yr

vO (2k - 1)/2 + pa coth(as®))

x, 43 we)t/2J 2¥

2
117 (0) + 41D) 2 /2D

(B13a)

(B13b)

(Bl3c)

(B13d)

(B13e)

(B13f)

The presence of imaginary terms producesa phase shift of the
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solution with respect to the temperature perturbation. The

same relation is assumed to hold between the deviations in

boundary layer thickness as between the steady state values:

J) = prl/ 2s (0) sL/3: (0°

| 8 Dy pel/2) A) J gl/3 5,

where Pr = v/k, is the Prandtl number and S. = v/D

Schmidt number.

(Bl4a)

(Bl4b)

is the

In the absence of boundary layer variations the solution

to the perturbed problem presented here in equations (B12)

should be identical with that presented in HJP Equations (13).

The HJP solution for the deviation in interface position can

be expressed as

where ¢g

o

—

m,C(0) (1 - xyv (0)
h 20/ [eC

— a

and s must be redefined as

wg + (8, = 8) (Kc + v9 2)

Nn (0)
K,k,coth(K, sn )

 Oo

2
mC (0) (1 - fir ©) , jon)

v(® (1 - x)/2 + ab coth(xs'?)

+Ss

J

Ca 5)

(B1l6a)

(B16Db)
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and p 1s given by Equation (Bl2a). Comparison of Equations

(B15) and (Bl2a) shows that the first two terms in the de-

nominator of the HJP expression are incorrect by a factor of

two; comparison of Equations (Bl6a) and (B1l3b) reveals that

the second term in the numerator of the HJP expression for ¢

is missing a factor of two and has two incorrect negative

signs and further this expression for gq is missing the term

- BP ; and finally comparison of (B16b) and (B13d) indicates

that the HJP expression for s is missing the term r . A

further error in HJP is their interface boundary condition

(B8b) which is

3200 5c (1) oc (0) 2 5c (0) cit - ct)
lo —% yr _ ol _ 5

352 dz 9z 02 1 -k
)

4

1A1) 40) (1 _ 4

1" 7)

”y

and which by making use of Equations (B3c), (B5), and (B6d)

can be written as

(1)
3c, (0) (1 - xy‘) = 4cl) Suc) (1 = k)o

J{(0)

2
+(0)

—-— (1 - k)[1 ~ (1 rg ‘n (0)|¢

(B18)

which is not dimensionally correct and further is not in

agreement with the corresponding Equation (B8b) developed in
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this appendix.

The model presented in this appendix is presently under

investigation. Preliminary investigations show general

trends which are consistent with the findings of HJP for the

case in which boundary layer fluctuations are neglected. As

yet, an accurate numerical study of the present model has not

been carried out. Thus, although the analytical expressions

derived by HJP are seen to be in error, the physical reason-

ing behind their model is evidently correct.



-210~

C. APPENDIX 3

FINITE DIFFERENCE SCHEMES FOR NUMERICAL

INTEGRATION OF THERMAL CONVECTION EQUATIONS

Finite Difference Representation of Derivatives

In this section the concept of finite difference repre-

sentations of derivatives?® will be introduced. When formu-

lating a problem in finite differences the region of interest

is represented by a network of grid points. Each point repre-

sents a small distance, area, or volume depending on whether

the region of interest is one, two, or three dimensional. In

this section only a one dimensional region will be considered.

In Figure 46 the one dimensional region of interest is a

line segment of unit length. This is discretized into M-2

interior segments of length AX and a segment of length AX/2

at either end. Each interior segment has an interior grid

point at its center. The boundary grid points are at the

boundary end of the respective boundary segments. The posi-

tions of the grid points are given by X. = (i = 1)AX with

Xx. = 1 = (M - 1)AX.

) J

D desO frees O md

j=]

fer.

i 1+1

—t—o—}f

M=2 M=1 M

fr©remafe-ay

)

Figure 46. Schematic representation of a one-dimensional
finite difference grid.
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Consider a field f(X) which takes on a value £; at

the grid point 1 given by £; = £(X;) . The values of this

field at the neighboring grid points i + 1 and i -~ 1 are

related to the value of the field and its derivatives at grid

point 1 by the Taylor Series expansions

Fang

he

2 2 3. 3
= £, + 5 ax + 42 axe f Ax +...

! li 3X7 |. 3X” |;
 + i

_ 3 f 2 2el Ax? 33fl ax3
fa Tf Cx, tis C3) Te

1 0X 1. aX"|;
T= .

These expansions can be used to develop finite difference ex-

pressions for the first and second derivatives of the field

at the grid point 1 . Three expressions which can be de-

veloped for the first derivative are

forward

backward

of
IX
 = _

 = (Fy - £0/0x

aol=(2ox |, — (Fg 7 Fj )/ax

U (AX)

0 (AX)

25 _ 2
centered Axl. = (£..4 - £._1)/28X + 0 (AX™)
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Three expressions which can be developed for the second deri-

vative are

forward

backward

centered

2
hd _ 2

= = (Egy = 2f;,, + BAX A
1

0 {AX)

2
32] _ } 2

0 (AX)

2
°F _ _ 2 Orne4 = (£;,,.1 — 2£, + £; ;)1/8x° + 0(ax%)

i

The forward and backward difference expressions are only

accurate to order AX , while the centered difference expres-

. 2
sions are accurate to order AX

Finite Difference Equations in Two Dimensional Rectangular
Coordinates

This section will develop the finite difference equa-

tions and boundary conditions appropriate for numerical solu-

tion of the thermal convection problem in two dimensional

rectangular coordinates. By proper choice of boundary condi-

tions these equations can be made to treat a wide variety of

important configurations. Some of the possible applications

include: the Behard geometry, horizontal or vertical Bridg-

2.

man geometry, and a two dimensional simulation of the Czo-

chralski geometry. Here the horizontal Bridgman geometry as

investigated by Hurle et a1.33 will be considered.
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The geometry treated by Hurle is depicted in Figure 47 (a).

The fluid fills a rectangular cavity of length IL and depth

H , across which a constant temperature difference Ty - TS

is maintained. The side surfaces are rigid and maintained at

temperatures T, and Ty , respectively. The bottom surface

is rigid and insulating, and the top surface is free and

insulating, however, the possibility for heat flow across

the upper surface will be included. For this section u and

v are the velocity components along the x and y axes,

respectively; T,P,&amp; , and | are respectively, the tempera-

ture, reduced pressure, vorticity, and stream function fields;

J 1s the gravitational acceleration; op, ao, v, and are

the fluid density, thermal expansion coefficient, kinematic

viscosity and thermal diffusivity, respectively; and the two-

dimensional Laplacian v2 is defined by:

2 5%. 9°
ITA = 5 + —5

AX oy

Development of the Thermal Convection Equations

The equations of mass, momentum, and energy conservation

will assume the Boussinesqu approximation? which states

that the only term in the equations of motion which need

include the variation of fluid density with temperature is

that involving the body force. Other than this one term the

fluid can be treated as an incompressible fluid with constant

properties. The equation of mass conservation is
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AX oY

&gt;

(C1 )

The equations of momentum conservation are

du udu vou 1 9P | 2= 4 Zon 4p YOO oo = 2 \Yt© ax | oy o ax VV u

ov , wav , vav _ _ 1 gP
ot ox ov 0 3Y

+ Vy2v - ag (T -

rhe equation of energy conservation 13

oT uoT voT _ 2
2 + 2 4 Xl 7
ot * 0X oy id

T

Koa)&amp;

" "b) 4

(C3¥

And the equation of state for the fluid which has been used

in developing the vy-momentum Equation (C2b) is

 nN  po(1 = a(T = T.) ) WA. NY 1}

The equations of momentum conservation can be put in a

more useable form which eliminates the pressure P by de-

fining the Z-component of the vorticity &amp; as

- “W/3%X —- au/ov  +H ~3)

With this definition of vorticity the equations of momentum

conservation (C2) may be replaced by the equation of vorticity

transport which is
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NE uo Vv 2+ 0 — arn —xe wL + R= WV TE og 2 (T T C6t 9x | 0! - (C6)

The bouyancy term of this equation, = ag Se (T ~ T,) , is

responsible for the vorticity generation which drives the

thermal convective flow??, The equation of mass conservation

(Cl) can be solved indentically by defining the stream function

VU in terms of which the velocities are

3 and =
'y

\ A

and the definition of vorticity (Equation (C5))] becomes

The vorticity transport Equation (C6) becomes

3) +
2

+ J(E,¥v) = vV &amp; ~- dag J
I (T-T_.- ND

(C’4

1)Us

, co }

and the energy Equation (C3) becomes

3T 2
NT + J(T,y) = V°T (+ 1.0)a

where the advective terms have been expressed in terms of a

Jacobian J defined as

wa) = BUA_303AJY +» A) 5% 3y 3% Bx
1re L)
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Thus, there are three basic coupled partial differential

equations which describe the stream function, vorticity, and

temperature fields.

b. Development of the Boundary Conditions

The boundary conditions appropriate for solution of these

equations will be developed next. At all boundary surfaces,

the normal fluid velocity must vanish. Thus, for the hori-

zontal boundary surfaces v = - 3y/ 3x = 0 and ¢ is inde-

pendent of x . For the vertical boundary surfaces

u=9yY/9y = 0 and ¢ is independent of y . Thus ¢ is

constant on the bounding surfaces and this constant is choosen

to be zero. For the rigid boundary surfaces, the no slip

boundary condition applies and the tangential fluid velocity

vanishes. Thus, for the horizontal rigid surface,

u = 3y/3y = 0 , while, for the vertical rigid surfaces,

v = 3y/ox = 0 . For the free horizontal boundary surface the

tangential stress vanishes! and Tym = 2 (2 + i) = 0 and
since v = 0 for all x , 9dv/3x = 0 and thus 0du/dy = 0

so that the vorticity &amp; = 3v/dx - du/dy = 0 on the free

surface. The boundary conditions on the temperature field

are T = constant on conducting surfaces, 8T/dy = 0 on the

insulating bottom surface, and - k3T/3y = h(T_ - T) on the

upper surface, where k 1s the thermal conductivity of the

fluid, h is the convective heat transfer coefficient, and

T, is the gas temperature outside of the thermal boundary



-218-

layer region.

Thus, the equations will be solved subject to the fol-

lowing boundary conditions:

On the vertical boundaries:

 J J) o i
2

NK

T Sp Te
i

~~
at  XX = 0 for all

T = T, at X = L for all

0, L for all Y

v

,

anl 2)

On the lower boundary:

 ]
—
-

y.2 !
== 0 at y =H for all X . (C13)

On the upper boundarv:

C?

{ J ) &lt;3T
I~7

== h(T, - T) at y = 0 for all X .

(C14)

Non-DimensionalizationoftheEquations and Boundary
Conditions

To ascertain the parameters which control thermal convec-

tion in the horizontal Bridgman geometry, it is convenient to

non-dimensionalize the applicable equations and boundary

conditions, The non-dimensionalization to be used is L

length, 12 /v for time, Vv/L for velocity, v/L? for

vorticity, Vv for stream function, and T, - T, for
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temperature. The energy Equation (C10) becomes

1
W/o = JW,.0) + o= v7

)
gi (F" 5)

The vorticity Equation ( C9) becomes

The stream

IE
Tt

= J(,E) + vir

function Ecuation

- ~~

na

(C8)

Gr 30/0x

becomes

f+
~Y Gul

ANN 5)

ya

a7)

The boundary conditions (Equations Cl2 to C14) become

i! 7 r = em 82. 7x2 at ¥ = 0.1 for all J

a) A n at X = D for all

8 A. at Vv = 1 for all \_u 8)

p= 0, &amp; =20,
90
3y ~ Bi(6 L = 0) at y = 0 for all £  9»

J] 0, £=-320/9%% . 36/3v = 0 at v = Asp for all vy.

Thus thermal convection in the horizontal Bridgman geo-

metry is characterized by the four non-dimensional parameters:

(1) the Prandtl number, Pr = v/x , which characterizes the

relative importance of convective and conductive heat flow,

(2) the Grashof number, Gr = og (T, - T_ 13/0? , which
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characterizes the magnitude of the bouyancy term in the vor-

ticity Equation,(3)theBiot number, Bi = hL/k , which

characterizes the heat flow across the upper surface, and (4)

the aspect ratio, Asp = H/L , which characterizes the shape

of the region occupied by the fluid.

d. Finite Difference Formulation

Now that the equations and boundary conditions for the

thermal convection problem have been developed, they will be

given a finite difference formulation appropriate for numeri-

cal calculation. The region occupied by the fluid will be

represented by a rectangular network of M grid points in

the horizontal direction and N grid points in the vertical

direction as shown in Figure 47 (b). The coordinate axes are

descretized according to X, = (i = 1)AX and Yq = (j = 1)Ay

where (M - 1)AX =1 and (N - 1) y = Asp . The time is

descretized according to t= nAt . The temperature, vor-

ticity, and stream function fields at time tt are repre-

sented by M x N arrays with an element corresponding to

each grid point and £1 = f(x bY rt) . Each element can

also be thought of as the average value of the field over a

grid square and a time step such that

a

4
—
AxAvyAt rr I [X.=Ax/2 y.=Ay/2 t —At/2

fF(x,y,t)dxdydt .
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The explicit finite difference equations are formulated

by using a forward difference for the time derivative, special

quadratically conservative forms for the Jacobians?, and

centered differences for all other space derivatives. The

energy Equation (C10) becomes

ntl _ n n _ n n

933 7 9%5 _ no. Qiig T2053 * O54;
=a (we) + 22 J 27a)

At Li] Pr AX

n n n

913+41 ~ 2953 * 9540
Pr Al

(C19)

in the interior,

n+l on n n n
P31 9i1 _ .n ©5411 ~ 2941 tT 95.11
 aliloghge) + SRILAAndPr AX

iL

n n

22 7 91) | ami (on,
pr Ay2 Pray a il

2 J)

on the upper surface, and

n+l n
9%. - 0.

iN iN
lr pam t——— Joong (V0) +

1

n n n

Oi+in ~ 2055 * 951N
_1tlN Ho AmidPr AX

3 (58 - of(Oin-1 On?
Pr Asr2

¢ 21)’
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on the lower surface. The vorticityEquation (Cl6) becomes

n+1 n n n

ij Tag“ij Tp WE) + ci¥ly T 43*Eiqg
17

(C22)

0-2 + RL (0,74 = 03.74)“i3+l CT 284g Giger oo 91413TPi-13)
AKAX

in the interior. The stream function Equation (C17) becomes

Dime =20.0+ Vu as Yaa, = 20s.+YlVitls Vis Vi-13 1 ij+1 17] 1] 1 = Foy
ATT Av

(C23)

The special Lilly Jacobian”? I1i4 1S

[~
03413 Wia19-1 7 Vierger © Vigor 7 Viger

0; 13 Wim1g41 = Vi-19-1TVige1 7 Pig-1]

F0i541Wiv1ge1 = Yic1941 7 Vie1g 7 Vi-1y

1
Iris WO) gary

*0i3-105-15-1 “Vie14-1 FT Vic1g Ving)
(C24)

and Jrsq 1S

3 ( + )
0i+11Wiv12 tT Vio

_ 1

J. 59 000) = oi53y +0;11Wy10+yo) c2n }

FOi2Wip12 7 Vicia
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The special Arakawa Jacobian Taij 13

 141541 Wier Vi541) F Eia15-1 Wig Vi41y) |

*3o1941 Wager Vio15) * fica Wi Vig-1)

P15 Wir19-1Vie1441i517Vig)
4

Taig (WrE) ~ 12AXAY
+

€ie15 Wic1g41 Vi15-1 055417Vig-1

+3541 Wip1541 Vic1g41 Vir157Vi-14]

+E 2 (Ws qs a-2 rig-1Wie1j-1 Vi419-11Vi-15"Vi415’ |
(C26)

The special finite difference forms of the advection

Jacobianswereselectedfortheirconservationproperties.

The Jacobian Tris has the desireable feature of conserving

the temperature and its square within the grid. The Jacobian

Taij conserves vorticity, square vorticity, and kinetic

energy within the finite difference grid. The lack of spuri-

ous sources or sinks of these quantities is expected to result

in an accurate finite difference scheme which is numerically

stable at high Grashof numbers.

The finite difference forms of the boundary conditions

(C18) are
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n
-2 .

0%. =0, yi. =0, 2. = —21 at i=1 for all J

Af 1
-2yR

= 1 , vhoo=0 , ey Tr at 41 =
X

M FOY all j
»

(C27)

FR 0 _
bq = 0 , i1 0 at I 1

a|) * = 0 ,
gl — i

: iN-1N = 2 at ]

for

N

all

for

1

all 1

The no slip boundary conditions are included in the problem

through the expressions used for calculating the boundary

vorticity. The boundary conditions for the temperature field

at the upper and lower surfaces are included in the finite

difference energy equations to be applied at these surfaces.

RequirementsforNumericalStability

Next the requirements for computational stability of the

finite difference scheme will be discussed. There are two

basic requirements for computational stability. One is

required for stability of the diffusive terms and one is re-

quired for stability of the advection terms.

Since the finite difference scheme choosen for solution

of the thermal convection problem in the horizontal Bridgman

geometry represents the time derivatives with forward differ-

ences and evaluates all other terms at the current time step,

it is of the explicit type. It is well known that care must

be used in choosing the size of the time increment to insure



~225~

computational stability of an explicit finite difference

scheme. The equations for temperature and vorticity fields

can be written as

n+l _ n n n n

13 7 2105419 * 2205-15 FT 23055 * 20551

n+1
213

1 =
~ 1 n

_ n n n n

= PyEir1g tT Pasar tt Pali tT but

1 .

? -
n+l ,FRET "95-13n (0,

+ AETy; 41-1

(C2:)}

In order to insure computational stability all the at's and

b's must be positive. This requirement reduces to one only

on a, and bs since all the other a's and b's are al-

ways positive. In the interior

= 1 - oe (yp + 2) &gt; 0
PrAX PrAy

b. oa (Zed &gt; 0
AX Ay

i"iy2)

and on the upper surface

* Lone 2a 2sPrAX PrAy PrAy
(..0)i yy

For low Prandtl number fluids the most stringent requirement

on the size of the time step is that for the temperature field
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on the upper surface

| (am + 2 + 22)Prax? PrAy Priy
IdC31)

The requirement for computational stability of the ad-

vection terms is essentially that during one time step each

fluid particle moves less than one grid spacing. This can be

expressed as

in (x Ayie &lt; min (22 7) C3%)

That is At must be less than which ever is smaller between

the horizontal spacing divided by the maximum horizontal velo-

city and the vertical spacing divided by the maximum vertical

velocity.

SolutionofPoisson'sEquation

The stream function is computed by using a subroutine

XYPOIS developed by 0'Buneman’?’ for solving Poisson's equa-

tion in two dimensional Cartesian coordinates. This sub-

routine produces a solution which is exact within the frame-

work of the finite difference technique

Je Computational Strategy

The computation proceeds as flow charted in Figure 48.

The computation is begun by specifying the dimensionless

parameters Gr, Pr, Asp, Bi, and © , the grid size M x N
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Figure 48.

Specify Parameters
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Initialize Fields

Calculate Initial Time Increment

Calculate Temperature Field

Calculate Interior Vorticity Field

Calculate Stream Function Field

Calculate Boundary Vorticity Field

Calculate New Time Increment

Yes

[lest for Steady State
oo Yes

Test for Number of Time Steps

NO

NO

Flow Chart of Numerical Solution of Thermal
Convection in the Horizontal Bridgman Configura-
tion
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and a number of control parameters. From these a number of

constants are calculated, afterwhich, the temperature, vor-

ticity, and stream function fields are initialized and an

initial time increment is determined. The computational loop

consists of the following steps:

(1) The time is incremented. (2) The new temperature

field is calculated. (3) The new interior vorticity field is

calculated. (4) The new stream function field is calculated.

(5) The new boundary vorticity is calculated. (6) A new time

increment is determined and the process is repeated until

either a specified number of time steps are executed or steady

state is achieved. Analysis of early results indicated an

adequate test for convergence was

n+l n

 1 Wee | _ Yee ~ YeeIo, ot VI AE
&lt; .00001 (C.3)

where Yo is the value of

of the grid.

the stream function at the center

3. Finite Difference Equations in Axisymmetric Cylindrical
Bah LLeon a OS ee BE dm 2
Coordinates

This section will develop the finite difference equations

and boundary conditions appropriate for numerical solution of

the thermal convection problem in axisymmetric cylindrical

coordinates. By proper choice of boundary conditions, these

equations can be made to treat a wide variety of important
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configurations. Several of the possible applications include:

the Bénard geometry, horizontal and vertical Bridgman geometry,

and the Czochralski geometry. Here the Czochralski geometry

will be considered.

The geometry appropriate for treating thermal convection

in the Czochralski crystal growth configuration is illustrated

in Figure 49(a). The fluid fills a cylindrical crucible of

radius R. and depth H . A cylindrical crystal of radius

Re is coaxial with the crucible and in contact with the

upper surface of the fluid. The crucible wall and the crys-

tal interface are rigid and maintained at temperatures T.

and Tg , respectively. The upper surface between the

crystal and the crucible wall is free and allows heat flow

with the surroundings. The crystal may be rotated at a rate

Wo and the crucible may be rotated at a rate ®

Ae Development of the Thermal Convection Equations

The equations of mass, momentum and energy conservation

will assume the Bousinesqu approximation and will be de-
: 2

veloped for axially symmetric cylindrical coordinatest?

The eguation of mass conservation is

de

Y

J ow _
am (ru) + 57&gt; = 0 (c.1)-—

The equations of momentum conservation are
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Figure 49. Czochralski configuration.
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2ou ugu wou Vv 1 oP 2
ot dT dz r p or wba

AV uv Wav vu
— + — + — + — = + vl
2t or 0Z r '

0
y

ow, uow _ wow _ 1 oP
ot or Zz 0p 97

+ iw - ga (T ~- T_)

(C35a)

(C35b)

. (C35¢c)

The equation of energy conservation is

oT ugT woT 2
A is Semi; T5 Tar Tez CY (73)z

and the equation of state for the fluid which was used in

developing the z-momentum Equation (C35c) is

3 11 - o(T = T_. ]

In the above equations wu, v, and w are respectively the

radial, azimuthal, and vertical velocity components and the

operators v2 and D2 are defined by

2
2. 1 3 [roA 0 An= ak (B22) + 33

2
2, _ 3 (1 3 0 AD A = Sr 2 Ir (2) + 2

The equations of momentum conservation (C35) can be

modified to eliminate the pressure by defining the zonal

vorticity component n by
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a ou_aw
yz or

(C3
= 1
:

J

With this definition of vorticity the r-momentum and z-mo-

mentum Equations (C35a and C35c) are replaced by the equa-

tion of vorticity transport

2
dn 4, dn , won _ un _ 1 ov _ 9T, ,p*tt rT oz "rx CT az Cor TVET (3)v3

The equation of mass conservation (C34) can be solved iden-

tically by introducing the Stokes stream function ¢ in

terms of which the radial and axial velocities become

Bl
—- £

Tr
oY _ 1Ny and Ww =

oY
3

and the definition of vorticity (Eguation C37) becomes

3 (12 %y(i) -1y37

(C29)

(C4)

The vorticity transport Equation (C38) becomes

2

st FP IW,+—Fm;=905p+vD

The zonal momentum Equation 5c) becomes

IV 1
3t + Tr J (PY, v)

IY, JY
\ 7

A
= VD VY

(C41)

(v.12)
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The energy transport Equation (C36) becomes

dT 1
It + Ia J (,T) =  wv

r

-

The advection terms have been expressed in terms of a

{C4~y
¥y

Jacobian defined as

T WA) - OY 9A _ 9y 9A
Sr dz 5Z 3T

1('41)

Thus, in the stream function-vorticity formulation,

thermal convection in the axially symmetric Czochralski

geometry is described by four coupled partial differential

equations which together with the boundary conditions deter-

mine the stream function, vorticity, zonal velocity, and

temperature fields.

Db. Development of the Boundary Conditions

The boundary conditions appropriate for solution of these

equations will be developed next. At all boundary surfaces

the normal velocity must vanish. Thus, for z = 0 and

z =H, w=20 and, thus, ® = 0 and dw/dr = 0 , so that,

n = au/dz = - = 2% . For rr = R, , u=0 and, thus,

 yp = 0 and A 0 , so that, n = - 3w/3r = ~- . (2 2) .

At the free surface, z = 0 and R_ &lt; r &lt; R, , the two

components of the shear stress vanish. Thus,

=v (ou, dw) _STE 0 (C4r )
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_ V[ov , 1 3w) _wo = (212) - G (C45-
cont'd)

and since 3w/%r = 0 and 03w/36 = 0 , it follows that

Ju/9z = 0 and 93v/9z = 0 . Also,since Jw/dr = 0 and

ou/3z = 0 , then nn = 0

At the rigid surfaces the no slip boundary condition must

hold. Thus, for z = 0 and 0 &lt; r &lt; Rg yr V = Tug and

u = 0 , so that y/9z = 0. For z =H , V = Tu, and

u=0, so that 0y/3z = 0 and, for r = R, , it follows

that vv = Rw, and w = 0 , so that dJy/3r = 0 .

There are three types of thermal boundary conditions

which may be considered. At a "conducting" surface the tem-

perature is specified and fixed. For surfaces which allow

heat flow OQ , the temperature field must satisfy - = = Q/k

For insulating surfaces, there is no heat flow Q = 0 and

the temperature field must satisfy of = 0 . Two types of

heat flow at the boundary surface will be considered,

radiative heat transfer to the chamber walls at temperature

 yy

QO = eq (T* - nd
pt

(+. | 6)

and convective heat transfer through the thermal boundary

layer to the ambient gas at temperature

3 n{(P -— T_|
J

i

c A ! 7)
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The conditions to be imposed at the axis of symmetry

will be considered next. Consideration of axial symmetry

(see Figure 49(b)) leads to the following conditions: T(r) =

T(- r) so that 3T/pR =0 . u(r) = - u(- r) so that u = 0;

v(r) = - v(-~ r) so that v = 0 , and w(r) = w(- r) so that

dw/dr = 0 . Thus on the axis of symmetry, u =v = 0 and

35T/9 = 9w/dr = 0 . From these it follows that

n = 2 - oY - 0 and

CC. Non-Dimensionalization of the Equations and Boundary
Conditions

The parameters which control convection in the Czoch-

ralski configuration can be revealed by non-dimensionalizing

the applicable equations and boundary conditions. The non-

dimensionalization to be used is R, for length, R_/V

for velocity, R/V for vorticity, VR, for stream function,

and T, Tg for temperature, where T. is the hottest and

T is the coldest temperature on the fluid boundary.

The energy Equation (C43) becomes

dT 1 1 2
x tz JW,T) = f= ¥ 7

The zonal momentum Equation (C 1 2)

IV 1
YE whe + J, V) = v_

2
oY
a2

becomes

2
D v7

(C493)

(C49)

The vorticity transport Equation (C41) becomes
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omny gg, 0) - LT 9r 13 or 22+ 0%

The stream function Ecguation (C40) becomes

a raw), 12%
yr \r Or rog,2

n

CH 7)

(v.31)

The boundary conditions become

ly 0 -
~ 0 aT

Yr
= 0 , ww = 0 for rr =0, 0 &lt; z A

D 0 n = —— 2(Lydr 2) + T=T., V= R for
ec

Tr

N 7&lt;&lt; A

h Q n = =— £
T

2
a ll fn =
yz

T vy \ R ~~ for z = 0

N 1)

Is 0 n == 0 4 LL = Bic (T - T,) + Bir (T + mry - (TT + ory

For 7 =(0 Rr Yr 1

L = 0
==

’ n ~ Tr

2
1, T =

No
Ik r x7 R_ I for z = A

ov

0 z Yr &lt; 1

Thus, thermal convection in the Czochralski configura-

tion is characterized by nine non-dimensional parameters:

{1) the Prandtl number, Pr = v/k , (2) the Grashof number,
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Gr = ag (T, - T VR /v° , (3) the aspect ratio, A = H/R /

(4) the radius ratio, B = R./R , (5) the convection Biot

number, Bic = hR _/k , (6) the radiation Biot number,

Bir = eo(T - T_) R_/k , (7) the temperature ratio,

T' = T/ (T, - T.) , (8) the seed rotational Reynolds number,

Reg = w R2/V , and (9) the crucible rotational Reynolds

number, Roo = 0 RE/Y .

d. Finite Difference Formulation

The above equations and boundary conditions will be

formulated by finite differences. The region occupied by the

fluid is represented by a rectangular network with M grid

points in the horizontal direction and N grid points in the

vertical direction as shown in Figure 492(c). The coordinate

axes are descretized according to ry = (IL -— 1)Ar and

zg = (J - 1)Az where MM - 1)Ar = 1 and (N - 1l)Az = A .

The crystal edge is at I = I, . Time is descretized

according to t = nAt . The temperature, zonal velocity,

vorticity, and stream function fields at time t are

represented by M by N arrays with an element correspond-

ing to each grid point and £01 = f(rp,z5,t)) . Each ele-

ment can be envisioned as the average value of the field

over a grid square and time step:

Ar Az—— + ==‘1t 3 237 2

/ Ar / Az
r = = z= TT

e+ AF
nn 2

/
n

f(r,z,t)rdrdzdt.
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The finite difference equations are formulated in a man-

.. coq 2

ner similartothatemployed by Williams®'© for thermal con-

vection in a rotating annulus, The explicit finite differ-

ence scheme incorporates centered time differences, special

quadratically conservative difference forms for the Jacobians,

and centered space differences for all other terms. For rea-

sons of numerical stability the diffusive terms are evaluated

with values at the preceding time step. The energy Equation

(C48) becomes

ptl _ pl
IJ "IJ _ 1 3 wl ry + 1 I - 3/2 n-1

SAE = ar = 1) Yrzg' peng? | T- 1 1-1

 Pva a
-l I -1/2 pn—1 i 1 p=

TJ T = 1 I+1J PrAz2 IJ-1{
(C=2)

1
n-1 n-1

2
Trg t Tro+1)

in the interior of the grid,

ptl _ p21
1J 17 _ 1 n n n n n n

—zRE 2, Tog Wager = Vog-1) + Tig-1Wogo1 * Vag)

n n n

T1411 Wog * Yager),
(C54)

—— EX - nt + ond
PrAr- | PrAz

i pol1741|

n-1 n-1Ee - 2Ty5
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on the symmetry axis,

ctl _ pL
Il IT. _ 1 1 [on (p&gt; _ 2 Lo) _ ph 1

- - 1 rTI~=12 I+ I-IAT anergy T= 1) | 9)

n n n n n

(pgp + bg) + Tppgg Wop t a2]

1 I- 3/2 .n-1 n-1 , I - 1/2 .n-1 |reer]! - 27 + —--s’—T
bear? T= 1 ~1I-11 Il T - I ~I+ll

(C55)

| _2
PrAzZS

n-1 n-1
57; - Tri |

2Bic n-1 2Bir '
2 -— — + TPrAz (T, 1 Tr1 ) + PrAz x,

n=-1 1 4To + T 4]

on the free upper surface, and

ptLl pL / 1 l
Il Il 2 n n n 4 n- n-IRE Ty 221 7 Ti) te (+3 11

2 n-1 n-1 2BicC n-12 (+53 Ti1 ) * PrAz (ra. | 07)

}
2Bir rv 4
PrAz [(T, + THY (T, + Tt]

on the symmetry axis at the upper free surface when no

crystal is present. The zonal momentum Equation (C49)

becomes
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Atl _ -e
IJ ~~ "IJ _ 1 n n

2At 0 Ar (I = 1) Jpg Vv)

L

L

n
v
IJ n n

— - yr)
2Ar2Az (I - 1) IJ+1 IJ-1

1 [1-2 n1 _ 2(1 - 1)? n=l
Ap 2 I - 3/2 "I-13 (IT - 1/2) (IT - 3/2) IJ

I mel + 1 JBL _ a1 + JBL
- 1/2 "I+1J Ag? IJ-1 IJ 1J+1]T

(C57)

in the interior and

Ar J n-l
Il T1 _ 1 1 ol (t _ 2

2A t 2 I - 1 I2'7'I-12 I+12°
A4Ar~Az

-

n n n n n n

Troy Wag * Wp) + Vp Wy + Ugo)
J

_ “11 yD
AriAz (I - 1) I2

L

(C28)

|
1 I - 2 n-1 2(I - 1)“ Sl

1o2 T = 3/72 Vi-11 (T = 1/2) (T -3/27 "11

I n-1 | 2 n-1 n-11-1/2 VI+1l | ¥ Ag2 3 - ark

at the upper free surface. The vorticity transport Equation

(C50) becomes
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ntl _ n=l StL
IJ IJ _ n _n IJ n+l _ n+l

SAT = Ja) F grrr r= 17 Won Vig-1)

sr pntl ntlar (Treg ~ Trig!
(C29)

L | x-2 nl. 2(T - 1)2 n=l
2 |T=372 "1-10 @ =3/20(T=172)13

i n-1 + 1 n-1 _ 9 n-1_ n-1

-"172 "1+1J 22 N1J+1 Nyy ~ T1J+l{ sm

The stream function Fouation (C51) becomes

1 | 1 tl 2(1T ~ 1) n+l 1 pte |
ed | T= 3/2 Vm TS3/2 = 172) Vig * To 172 Vi+lgg

(C60)

L | n+l n+l n+l "74
f———— Wlgoq = 2p *V =-n

Ard ze (T = 1) IJ-1 IJ 2h TJ

©

The special Jacobian Jorg for the temperature and zonal

momentum equation is
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Trr13 Wri +1 VT+1 g-1"V1341 V13-1"

~ —- \
FT 13Wroy 3-17Y1-1 g+1 ¥13-1"V13+1°

- _ 1

Irrg (Wr Tl= g3577 tlre Wio1 41 141 +1 V1-10"V 1413)

|

Fryar Wis1 g-17Y1-1 g-1 1415 V1-17]

and the special Jacobian Jnr for the vorticity transport

(Col)

equation is
a

N1+1 +1 Was V1410) 1410-1 Pris V1g-1!

* 14013 Wre1 ger Ve rr trgey Ven) /1

- | nrge1 Wry J-1"Y141 g41 V1-10"V1415

1
J (v,n)= ————

AlJ 19AT2A2
Frye Wry g-17V1-1 sor rer Vor)

i} /(I-1)
| N11 +1 Wro1gVrge) Wro1g-1 Wigan

- Vyo1g)

Tp 13Wio1 g-17V1-1 21V1o1 roan)
/ (I-22) (C62)

Te

+

in the interior and
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: 4

J (V,n) =
A2J 12Ar2Az

3041 Wy g41 ¥35) 35-1 Wag Vog-1]
+ N37 W351 Y33-1* 2301 ¥ 23-1] /2

30-1 (W35.1tVo5-11V35)
p— Noge1 Wager t¥oge1tVag)

(7 &lt;3)

|

. * Nyy (35-1254)

at one grid point from the symmetry axis. The Lilly Jaco-

pian”? Ji13 has the desireable feature of conserving

temperature and its square within the grid. The Arakawa

Jacobian? Jat conserves vorticity, square vorticity and

kinetic energy within the grid, As a result, these special

Jacobians do not produce any spurious sources of energy or

vorticity within the grid which results in a stable and

accurate difference scheme.

In terms of finite differences the boundary conditions

(Equations C52) are
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big = 0 , Nyy = 0 , Vig = 0 at I =1 for all J

Tugs = Tog - Vag7 0 .
_ gM ~ 1) .

"My Tm 3UpMT aM - 1) 1 M~-1J

t= at
20

T = M for all J

Tr = T Yo. J Tr r —
ArAzZ (I - 1) 12

i

J

1
Ar (I - 1}Rr

2G
at  vy fl for I

b11 = 0 , M1 0 at J = 1 for T 1

TIN = Tor Vr = 0 ,

IN agp - 1) IN-1

7
 T™

Aa- (I [IN
2
3old 4,

at J = N for

C6*)

”
~ I

=]

all I

The no slip boundary condition at the rigid surfaces is

included in this scheme through the boundary vorticity ex-

pressions. The boundary conditions for the temperature and

zonal velocity fields at the free surface have been included

in the finite difference formulation of the energy and the

zonal momentum equations.
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e. Requirements for Numerical Stability

Incorporation of a centered difference for the time

derivative and evaluation of all other terms at the current

and previous time step makes the scheme developed above of the

explicit type. To avoid time splitting instability, solu-

tions from adjacent time steps were periodically averaged. 0°.

It is well known that, to insure computational stability of

an explicit finite difference scheme, the time increment must

be chosen to be sufficiently small. The vorticity, zonal

momentum, and energy equations may be written in the form.

n+l
“rg

_ n-1 n-1 n-1 n-1 n-1
= Ay Np,15 FT By np Jy Ft By ng tA Ng tt Bg Ng

(.- 3)t,

DA J

n n

apg (Un)
At n n
ar Cr Trig = Tro1g!

n+l n-1 n-1 1 .n-1 n-1 n-1
Tog = By Voigt By Villy FRAT Vigo tt Ay Vig tf Bg Vig

(C66)

n+l _ n-1 n-1 n-1
Ty =By Tryqg vB Tris PBT + By 4d 2g

An
n n

CAA

n-1 n-1
m

(Ce?)
\

I, (b,T)



-246-

In order to insure computational stability, all the A's and

B's must be positive. This requirement reduces to a require-

ment that Aj ’ Aj , and B, be positive, since all the

other coefficients are always positive, In the interior

Nn

N

2

Cae] 2 2(1 = 1)°= T=3/G -1/2)0 1 =rz” |
J

[1 2x-1? 2
2 (T= 3/20(T = 172) © 2

 lL - AE

1 n n
—————eees LY) _ - YP &gt; 0AriAz (T _ 1) 2 (+2, 1 on)+

= 1 = At(22|
| rar PrAz |

&gt; J

0

C6! ‘)

On the free surface

A 1 = A+
1 2 (I - 1)2 , 2

ZT -3/0a - 1/2) To

—. 7 |. 0
Ar2Az (I - 1)? 12 |

2 = 1 - At

2B. 2B.
2 + 2 + ic ir

2 2 PrAz Pri |PrAr PrAz
re!- 7)
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On the axis

3 . = 1 - At Begg Ht reir |&gt;o
PrAxr PrAz i

and on the axis at the upper surface in the absence of a

Lr” nN)

crystal

3 = 1 -~ At 4 + 2 + ic + ir

PrAr? PrAz2 PrAz Priz |
(C71)

For low Prandtl number fluids the most stringent requirement

is that on the coefficient B, . For the case of germanium

in argon both Bic and Bir are small so that the require-

ment becomes

AC
PrAr PrAz

mY 42)

when a crystal is present and

At
2B. 2B.

 aff 4s 2, dc, ir
PTAL 2 ne 2 PrAz PrAz

-?rc 5)

when no crystal is present, The requirement for computational

stability of the advection terms can be expressed as

A+  win (ex 4)u w
(74)

That is At must be less than whichever is smaller between
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the radial spacing divided by the maximum radial velocity and

the vertical spacing divided by the maximum vertical velocity.

£. SolutionofStreamFunctionEquation
The stream function is solved by using a trigonometric

; : faqs 2

interpolation method used by williams®® . The stream func-

tion and vorticity are expanded in the trigonometric series:

N-2

p — &gt; A.. Sin __Tk (5 - 1)!
i 1k N - 1

tome] -

N-2

A= )1]
k=1

. Tk : |

Bix sin | (3 a 1) |

(..75)a

Upon substituting these expressions, the stream function

equation becomes

Lk +t boi Bie TCR 1k T Bik A \ -
— 7 3)

where

J = 1/ (ar)? (+ , Ar)

C* - 1/ (ar) 2 (= - 7)

b.
_ 2 rk= ay + c,*t — 3 (x - COS 2) »

r(Az)

(C77)
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This equation is solved for the coefficients Ask using

Richtmyer's iteration methoal®3 which involves determining

Ep and Fox so tha®

Ave TEAK F
3 fr

v7
¥ 3)

Upon substituting this expression in the above Equation

Eq and F.p satisfy the recursion relations:

FE..
J

EF.
IRE

a /(b., it 1%.

(bp + c FF, 1/ (bsp = CE. J.)

vo
Pad

g - 3)

The condition that the stream function vanishes on the axis

provides the starting values E, = 0 and Fp = 0 . The

condition that the stream function vanishes at the wall pro-

vides that Ay-1k = Fre1x .

The procedure used in calculating the stream function is

as follows: (1) The B's are found by analyzing the vor-

ticity field:

N

Big : &gt; ix Z 7 . TkL.sin|s—s (3-G=1 1J N ~-1 ’ &amp; (C.0)PET

(2) The E's and F's are found in increasing order by

using the recursion relations together with the starting

values. (3) The A's are found in decreasing order starting
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with Av-1k . (4) The stream function is found by evaluating

the trigonometric series (Equation C75).

Computational Strategy

The computation proceeds according to the flow chart in

Figure 50. The computation begins by specifying the dimen-

sionless parameters, the grid size, and the control para-

meters. These are used to compute the numerical constants,

after which, the temperature, zonal velocity, vorticity, and

stream function fields are initialized and an initial time

increment is determined. The computational loop consists of

the following steps: (1) The time is incremented. (2) The

new temperature field is calculated. (3) The new zonal velo-

city field is calculated. (4) The new interior vorticity

field is calculated. (5) The new stream function field is

calculated. (6) The new boundary vorticity field is calcu-

lated. (7) A new time increment is calculated and the pro-

cess is repeated until either a specified number of time

steps are executed or steady state is reached. The test for

convergence to steady state is

n+l n

Yeo - Voc
oH ae
cc

-

“~~, .00u01F 4

where Vee is the value of the stream function field at the

center of the grid.
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Start

Specify Parameters

Calculate Constants

Initialize Fields

[Calculate Initial Time Increment

oe :

Calculate Temperature Field

Calculate Zonal Velocity Field

Calculate Interior Vorticity Field

Calculate Stream Function Field

Calculate Boundary Vorticity Field

Calculate New Time Increment

Yes
Test for Steady State ;

No Yes

Test for Number of Time Steps

Endl
 I

Figure 50. Flow Chart of Numerical Solution of Thermal
Convection in the Czochralski Configuration
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D. APPENDIX 4

COMPUTER PROGRAMS

Le Comp uter Program for Computation of Thermal Convection in

the Horizontal Bridg man Configuration



r

Cc
C

r

od

COMMON MyM1yM24NoN1yN29JU,S,KMAX,KDELyLMAX
DIMENSION THEETA(33,9),0MEGA{(33,9),CALC(33,9),PSI(33,9),

Q(295) 4,P(32),TWOCOS(8B),RECIP(16),XVEL(33,9),YVEL(33,9)
EQUIVALENCE (Q(1)+sPSI(241)),(XVEL(1,y1),CALCI(1,1))

SPECIFY THE PARAMETERS FOR THE CALCULATION.
INITIALIZE TO ZERO THE STREAM FUNCTION FIELD, PSI; THE VORTICITY FIELD,
OMEGA; THE CALCULATIONAL AND X VELCCITY FIELD, CALC; AND THE Y VELOCITY
FIELD, YVEL.

CALL ERASE(PSI,297,0MEGA,297,CALC,297,YVEL,297)
5R = 10000CC.

PR = ,0171

ASP = ,.25

THETAD = 0.

SPECIFY THE FINITE CIFFERECE GRID.
M=33
N=9

DETERMINE FREGCUENTLY USED INTEGERS.
Ml=M-1
M2=M-2
NiI=N-1
N2=N=-2
JU=M%N2
[C=(M+1)/2
JC=(N+1)/2
1E=3
JE=N-1E+1

SPECIFY THE CONTROL INTEGERS.
JWRITE=1
JPRINT=200
JPUNCH=100C
[WRITE=JWRITE
IPRINT=JPRINT
[PUNCH=JPUNCH
{STOP=0
ICHECK=10CC

'
No
192
 Ww

1

MATINOCOL
MAI XQQ02
MAINOOD3
MAINOOD4
MAI NONDS
MAINOGO6
MAINOOOT
MAIANQDDR
MAINGCCTO
MAINOG1O
MAINOO11
MAINQO12
MAINOOL13
MAINOO14
MAIROOQLS
MAINOQ16
MAINOO1T7
MAINOC18
MAINOC19
MAINOD?20
MAINODZ21
MAINQGO22
MAINGQD23
MAINDN24
MAINCD25
MAINGCO26
MAINQO27
MAINGCC28
MAIXNODO29
MAINOO30
MAINOC31
MAINQOC32
MAINOC33
MAINMNOO34
MATNOC3S
MAI NOC36



INITIALIZE TC ZERQ THE TIME AND THE COUNTER, ICOUNT.
TIME=0.
ICOUNT=0

C DETERMINE THE CONTROL INTEGERS KMAX AND KDEL FOR SUBROUTINE EPUNCH AND
C SUBROUTINE EREAD.

KDEL=M
KMAX=0
KDEL=KDEL-6
(MAX=KMAX+1
(F(KDEL .GT. 6) GO 70 5
[F{KDEL .EC. 3) KDEL = 2
[FI(KDEL .EQ. 5) KDEL = 3
TERMINE THE CONTROL INTEGER LMAX FOR SUBROUTINE EPRINT.
LDEL=M1
LMAX=0
LDEL=LDEL-8
LMAX=LMAX+1
{FILDEL .GT. 0) GO TO 10

INITIALIZE THE TEMPERATURE FIELD, THETA.
AT = Oo.

DT = 1./FLOAT(M1)

DO 15 I=24M1
AT = AT + [7

DO 15 J=1,N
THETA{I,J) = AT

00 2G J=1yN
THETA{14,J) = 0.

20 THETA(M,J) = 1.
INITIALIZE TO ZERO THE VARIABLES FOR DETERMINING CONVERGECE, OLDT AND OLDP.

gLOP=0.
JLDT=0.

DETERMINE THE ARRAY TWOCOS
LO=N1/2
TWOCOS(LO) = C.

L=1L0/2
TWOCOS{L) = SQRT (2. + TWOCGCSILO))

|
ND
Ut
&amp;
i

MAINDO37
MAINOC38
MAINOC39
MAINOO4O
MAINQC41
MAINQOO42
MAINOO43
MATNOC44
MAINOOC4S
MAINDO4S
MAINGO4T
MATINQOO4SB
MAINOO49
MAINOOSC
MAINODS1
MATINOGS2
MAINQO53
MAINOCE4
MAINOCSS
MAINOOS56
MAINGCOST
MAINOOSS
MATINOOS9
MAI NOD6C
MAINOOS61
MAINOO62
MAINOC63
MAINOCH4
MAINOOS6S
MAINOCG6
MAINOCOET
MAINOOGS
MAINQOO69
MAINOCT70
MAINODT1
MAI KQOGT?2
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ad

r~

La

iy

50
LO=L
TWOCOS(N1-L) = —-TWOCOS(L)

L=L+2%L0
IF({2%L/N1)*{(2%L0-3)) T70,60+4C
TWOCOS(L)=(TWOCOS(L+LO) + TWCCOS(L-LO))/TWOCDS(LO)
50 TO 50

DETERMINE THE CONSTANTS APPEARING IN THE FINITE DIFFERENCE EQUATIONS.
0 A7=FLOAT(M1%M]1)

AB=FLOAT(N1*N1)/ (ASP*ASP)
A13=2.%A7
Al4=2.%A8
A9=A13+A14
Al=AT7/PR
A2=A8/PR
A3=A9/PR
AS=A14/PR
L=M1%N1
A4=FLOAT(L/8)/ASP
A6=FLOAT(L/4)/ASP
A10=A6/3.
Al1=GR*FLOAT(M1/2)
A12=1./FLOAT{2%M1%M])
AlS = FLOAT(N1/2)/ASP

Al6 = FLOAT(M1/2)

Al7 = 2.*%BI*FLOAT(NL)/ASP/PR

AKE = FLOATI(L/2)/ASP

AT=1.6%ASP/FLOAT(L)
RBIG=FLOAT(M1)*ASP/FLOAT(N1)
S = BBIG*BBIG

38I16=2.*(BBIG+1./BBIG)/PR
BIG=2.%BBIG

THIS READ STATEMENT READS THE
READ(5,75) 1
FORMAT (1X,11)
WRITE(6475) I

IF 1=0, THEN THE CALULATION PROCEEDS TO STATEMENT NUMBER 80. IF NOT, THEN

50

Ra

EY ji dia asa Nowawd RE mre REENE mercerrrr SeSR IE even  armenia ie aieayy|mon

I
ND
5)
Un

1

MATNOGT3
MAINGCOT4
MATIKROOTS
MAINQCTO6
MAINGOT7
MAINOOT78
MAINOOT9
MAINOOBO
MAINGOB1
MAINQO82
MAINOOE3
MAINOCR4
MAINDOBS
MAINOOBS
MATINOOST
MAI NODSS
MAINCOR9
MATNOG30
MAINODA91
MAINC(C92
MAINOC93
MAINDOO94
MAI NOG95
MAINQOO96
MAINOOAT
MAINON98
MAINODO99
MAINO1GO
MAIANDL1O1
MAINO1O2
MAINGO1C3
MAINO1D4
MAINQ1GS
MAINOL1O6
MAINOL1CY
MATIAQLICSE



Cc A PREVIOSLY TERMINATED CALULATION IS TO BE CONTINUED AND THE VALUES OF TIME
C AND BIG ARE TC BE READ BY THE READ STATEMENT AND THE FIELDS THETA, PSI, AND
C OMEGA ARE TO BE READ IN BY SUBROUTINE EREAD.

[FI .EQ. 0) GO TO 80
READ(5,+360) TIMELBIG
CALL EREAD(THETA)
CALL EREAD(PSI)
CALL EREAD(CMEGA)

THIS WRITE STATEMENT PROVIDES LABLING ON THE PRINTED OUTPUT AND IS THE
STATEMENT BEGINNING A NEW TIME STEP AFTER SUBROUTINE EPRINT OR SUBROUTINE
EPUNCH ARE USED.

BO WRITE(6490) IC,JCyIC,JCHyICHIE,IE,IE,IE,JUC,IE,JE
70 FORMAT(S5Xs "TIME? yIXy'KE* 9BXy'OLCP" 4X *PSI(*y12,%'y"912,%)1,

1 6X9 'OLDTY 32Xo5(? THETA [299% 912,%')'))
EACH NEW TIME STEP BEGINS AT THIS STATEMENT EXCEPT WHEN SUBROUTINE EPRINT
OR SUBROUTINE EPUNCH ARE USED. THE NEW TIME INCREMENT DT IS CALCULATED AND

THE TIME IS INCREMENTED.
95 DT=AT/BIG

TIME=TIME+DT
C THIS DO LOOP DETERMINES THE CALCULATICNAL FIELD, CALC, FOR THE
C FIELD, THETA.

DO 105 I=2,M1
C THIS INNER DO LOOP DETERMINES CALC ON THE INTERIOR OF THE

D0 100 J=24N1
CALC(I,J) = Al1*(THETA(I+1,J) + THETA({I-1,J))

+ A2%(THETA({I,J+41) + THETA(I,J-1))
— A3%THETA(I,J) + A4%

(THETA(TI #1, J)%(PSI(I+41,J-1)-PSI{I+1,J+1)4PSI(I,J-1)-PSI(I,J+1))
4 +THETA(I=-19J)%(PSI(I-143J+41)~PSI{I-1,J-1)+4PSI(I,J+1)=-PSI(I,J-1))
5 #THETA(I,J+1)%(PST(I41,J41)-PSI(I-1,J41)4PSI(I+1,J)-PSI(I-1,J))
5 *THETA(I,J-1)%(PSI(I-190-1)-PSI{I+41,J-1)+PSI(I-1,4J)=-PSI(I+1,J)))

THIS STATEMENT DETERMINES CALC ON THE UPPER BOUNDARY OF THE GRID.
CALC(I,1) = Al*(THETA(I+1l,1) 4 THETA(I-1,1))

+ AS*THETA(I,2) - A3*THETA(I,1)

Z + AT*(THETAO-THETA(I,1))
THIS STATEMENT DETERMINES CALC ON THE LOWER BOUNDARY OF

i
BO
wn
on

1

MAINO1CY
MAIANOL10
MAINOLIL1
MAINO112
MAINOLL3
MAINQC114
MAINO115
MAINC116
MAIANOL117
MAINO118
MAINOL19
MAINO120
MAINO121
MAINC122
MAINO123
MAING124
MAINO125
MAINDL126
MAINO127
MAINO128
MAIND129
MAINOL13C
MAINO131
MAINGO132
MAIANO133
MAINGC134
MAIXNO135
MAINC136
MAINCLI3T
MAINO138
MAINOL139
MAINO140
MATNO141
MAINOL42
MAINQO143
MAINO L144
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105 CALC(I,N) = ALl*(THETA(I+1,N) + THETA(I-1,N))
1 + AS¥THETA(IsN1) — A3XTHETA(IsN)

THESE TWO DO LOOPS CALCULATE THE NEW TEMPERATURE FIELD.
DO 110 J=1.N
DO 110 I=24M1

110 THETA(I,J) = THETA(I,J) + DT*CALC(I,J)
: THESE TWO DO LOOPS DETERMINE THE CALCULATIONAL FIELD, CALC, FOR THE INTERIOR
5 VORTICITY FIELD, OMEGA.

DO 200 J=2,N1
DO 2G0 I=2,M1
CALC(I,J) = AT*(CMEGA(I+1,J) + UMEGA(I-1,4))

+ A8*(OMEGA(I,J+1) + OMEGA(I,J-1))
- A9*(OMEGA(I,J) + Al0x%

(OMEGA(T41,J)%(PSI{I+41,J=-1)-PSI(I+1,J+1)4PSI(I,J-1)-PSI(1,J+1))
 +tOMEGA( I-14 J)*(PSI(I-14J41)-PSI{I-14J-1)4PSI(1,J41)=-PSI{1I,J-1))
tOMEGA( I 9 J+1)%(PSI(I419J+1)-PSI(I-15J41)¢PSI(I+1,J)-PSI(I-14J))
+OMEGA(T9J-1)%(PSI(I-14J-1)-PSI(I+1,J-1)4PSI(I-14J)-PSI(I+1,J))
+ OMEGA(TI+41,J+1)*(PSTI(I+1yJ) — PSI{I,J+1))

8 + OMEGA(I+1,J-1)*(PSI(I,J-1) —- PSI{I+1,4))

9 + OMEGA(I-1,J41)%(PSI(I4J#1) ~ PSI(I-1,J))

A + OMEGA{I-1,J-1)*(PSI(I-1,J) = PSI(I,J-1))

B - AL1%(THETA(I+1,J) — THETA(I-1,J)))

THESE TWO DO LOOPS CALCULATE THE NEW INTERIOR VORTICITY FIELD.
DO 210 J=24N1
D0 210 I=2,M1

210 OMEGA(I,J) = OMEGA(I,J) + DT*CALC(I,J)
L=0

5 THIS DO LOOP PREPARES THE INTERIOR VORTICITY FOR INPUT TO SUBROUTINE XYPOIS
L WHICH SOLVES POISON'S EQUATION FOR DETERMINING THE STREAM FUNCTION, PST.

DO 300 J=24Nl1
L=L+M
K=L
DD 300 I=2,M1
K=K+1

30C Q(K) = A12%CMEGA(I,J)
SUBROUTINE XYPOIS RETURNS THE STREAM FUNCTION, PSI, IN THE FIELD Q.
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MATNOL145
MAT NC146
MAINO14T
MAINO148
MAI NO149
MAINOLSO
MAINO1S1
MAINQO152
MAINO153
MAIND154
MAINOL155
MAING156
MAINO157
MAINO158
MAINOIS9
MAINO160
MATINO161
MAINO162
MATNO163
MAINO1b4
MAINO165
MAINQO166
MAINOL16T
MAINO1ASB
MAINOL169
MAINGO170
MAINOL1T71
MAINDO172
MAINO173
MAINO174
MAINO175
MATINOL1T6
MAINOL1T77
MAINO178
MAINO179
MAINO180
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CALL XYPOIS(Q.PoTWOCOS,RECIP)
C THE NEXT TWO DO LOCPS DETERMINE THE NEW VORTICICITY ON THE GRID BOUNDARY.

DO 310 J=24N1
c THIS STATEMENT CALCULATES THE NEW VORTICITY ON THE LEFT BOUNDARY.

OMEGA{1,J) = -A13%PSI{2,J)

Cc THIS STATEMENT CALCULATES THE NEW VORTICITY ON THE RIGHT BOUNDARY,
310 OMEGA(M,J) = -A13%PSI(Ml,J)

DO 315 I=2,M1
THIS STATEMENT CALCULATES THE NEW VORTICITY ON THE LOWER BOUNDARY.

315 OMEGA(IsN) = -A14%PSI(I,N1)
DETERMINE THE PARAMETER BIG. IF BIG = 2*BBIG, THEN THE MAXIMUM TIME STEP 1
BASED ON A DIFFUSIVE REQUIRMENT. IF BIG = MAXIMUM DIFFERENCE OF PSI, THEN

THE MAXIMUM TIME STEP IS BASED ON THE NONLINEAR REQUIREMENT.
B16 = BBIG

BIG = 2.*%BIG

DO 325 J=24.N1
DO 325 I=2,M1
JIFFI = ABS(PSI(I+1,J) - PSI(I-1,J))

DIFFJ = ABS(PSI(I,J+1) - PSI(I,J-1))

IF(DIFFJ .GT., BIG) BIG = DIFFJ
[F(DIFFI .GT. BIG) BIG = DIFFI

325 CONTINUE
INCREMENT THE COUNTER,

ICOUNT = ICCUNT + 1

TEST FOR CONVERGENCE OF THE CALCULATICN.
TEST = THETA(IC,JC)
DLDT = {TEST - OLDT)/TEST/DT

PEST = PSI(IC,JC)
[F(PEST .EQ. O.) GO TO 330
OLOP = (PEST - OLDP)/PEST/DT

[F(ABS(OLDT) .GT. 1. OR. ABS{OLDP) .GT. 1.) GO TO 330
[F(ISTOP EQ. 1) GO TO 330
[STOP = 1

[PUNCH = IPRINT + JPRINT
COMPARE THE COUNTER WITH IWRITE TO DETERMINE IF CUTPUT IS REQUIRED.

330 IF{ICOUNT .LT. IWRITE) GO TC 345
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MAINOL81
MAINO182
MAINGC183
MAINOL1B4
MAINC185
MATIND186
MAINDL1RY
MAINC188
MAINO189
MAINO190
MAINO191
MAIKO192
MAINO193
MAINO194
MAINO195
MAINC196
MAI NO197
MAINO198
MAINO199
MATING200
MAINC2G1
MATIXNO2G2
MATINO203
MAINO204
MAINO2CS
MAINO206
MAINC20T
MAINO2C8
MATINO0209
MAINQ210
MAINO211
MAINO212
MAINQ213
MAING214
MATINN0215
MAIKD216



IWRITE = IWRITE + JWRITE
KE = 0.

THESE TWO DO LOOPS DETERMINE THE KINETIC ENERGY OF THE FLUID.
DO 335 J=2,N1
DO 335 [=2,M1
KE = KE + PSI{I,J)*CMEGA(TI,J)
KE = AKE*KE

THIS WRITE STATEMENT PRINTS INFORMATION ON THE CALCULATION.
WRITE(64340) TIME,KE,OLDP,PSI(IC+JC)4CLDT,THETA(IC,JC),

. THETA(IC,IE),THETA(IE,IE) ,THETA(IE,JC),THETA(IE, JE)
340 FORMAT{1XyE12.63E114491X9E9.291XyE13.651X+E9.2,5E13.6)

UP DATE THE PARAMETERS FOR DETERMINING CONVERGENCE.
345 OLDT = TEST

OLDP = PEST

- COMPARE THE COUNTER WITH IPRINT TC DETERMINE IF THE FIELDS THETA, PSI, AND
G CMEGA SHOULD BE PRINTED BY SUBROUTINE EPRINT.

[F{ICOUNT LT. IPRINT) GO TGC 95
[PRINT = IPRINT + JPRINT

ARITE(64346)
FORMAT (//71X"THETA"//)
CALL EPRINT(THETA)
ARITE(64347)
FORMAT (//71X,"PSI®n//)
CALL EPRINT{PSI)
WRITE(6,348)
FORMAT (//1X"0OMEGA"™//)
CALL EPRINT{(OMEGA)

COMPARE THE COUNTER WITH IPUNCH TC DETERMINE IF THE FIELDS THETA, PSI,
OMEGA, XVEL, AND YVEL SHOULD BE PUNCHED ON CARDS BY SUBROUTINE EPUNCH.

[F{ICOUNT .LT. IPUNCH) GO TC 20
[PUNCH = IPUNCH + JPUNCH

THESE TWO DO LCOPS DETERMINE THE VELOCITY FIELDS, XVEL AND
DO 355 I=2,4M1
DC 350 J=2,N1
XVEL(I4J) = AL4X(PSTI(I,J+1) - PST(I,J-1))

YVEL{I,J) = A15%({PSI(I-1,J) — PSI{I+1,J))
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XVEL(I31) =2.%A14%PSI(1,2)
355 XVEL(IsN) = O.

THIS WRITE STATEMENT PUNCHES ON CARDS THE TIME AND ITS INCREMENT PARAMETER,
BIG, THE PARAMETERS FOR THE CALCULATION, AND THE GRID PARAMETERS.

WRITE(7,360) TIME,BIG,ASPyGRyPRyHEAT,THETAOM,N
360 FORMAT (1X92E13.694E10.3+4F7.34+213)

THE FIELDS ARE NOW PUNCHED ON CARDS BY EPUNCH.
CALL EPUNCH(THETA)
CALL EPUNCH(OMEGA)
CALL EPUNCHI(PSI)
CALL EPUNCH(XVEL)
CALL EPUNCHI(YVEL)

IF ISTOP=1, THEN THE CALCULATION HAS CONVERGED AND THE CALCULATION STOPS.
IF(ISTOP EQ. 1) GO TO 400

C IF THE COUNTER IS GREATER THAN OR EQUAL TO ICHECK, THEN THE MAXIMUM ALLOWED
C NUMBER OF TIME STEPS HAS BEEN REACHED AND THE CALCULATION STOPS.

IF(ICOUNT .GE. ICHECK) GO TO 42C
GO TO 80
WRITE(6+410)
FORMAT(//77111771?
CALL EXIT
WRITE(6,9430)
FORMATI(//7771177177°
CALL EXIT
END

MATNG253
MAINO254
MAINGC255
MAINO256
MAINC257
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MAI NO259
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SUBROUTINE XYPDIS(Q,P»TWOCOS,RECIP)
COMM 0 MyM1,TUyNyN1yN29JUsSoKMAX,KDEL,LMAX
JIMENSION Q(295)4P(32),TWOCCS(8),RECIP(16)
LO = N1/2

P{M1) = 0.

ID =1
MODE = 2

LI = 2%L0
[PHASE = 2xMODE - LI/N1

JD = M%N1/L1
JH = MX(NL1/(2*L1))

JT = JD + JH

JI = 2%JD

JO = JD*MODE

DO 11 J=J0,yJU,JI
J1 = J + 1
JIU = J + TU

50 TO (20, 24, 26, 2B), IPHASE
DO 29 I=Jl1,J1U
PI = QI) - QUI-JT) - Q(I+JT)

AI) = QUI) - QUI-JH) - QUI+JH) + Q(I+JD) + Q(I-JD)

P(I-J) = PI + QI)

50 T0 10
DO 27 I=J1l,JIU
P(I-J) = 2.%Q(1])
RII) = Q(I+JD) + QUI-JD)

GO TO 10
DO 25 I=J1,JI1U
D{I=-J) = 2.%Q(1) + Q(I+JD) + Q(1-JD)
Q(I) = QUI) = QUI+JH) - Q{I-JH)

GO TO 10
DO 23 I=41,J1U
PUI-J) = 2.%Q(I) + Q(I+JD) + Q(I-JD)

23 (1) = Ce

10 DO 22 L=LOyN1yLI
A = 2. + S*x(2.—THWOCOSIL))

8

29

26

24

25

20
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19 RECIP(ID) = 1./A
IT = 2%*ID

DO 21 I=11,1U,11
P{TI) = P(I)%A + P{I+ID) + P(I-1ID)
A= AXA - 2,

iD = 11

IF ({A .LT. 1.E8) .AND. {ID .LT. M1/2)) GO TO 19
A= S/A
DO 18 I=II,1U,11
PII) = P(I)*A
ID = 11/2
A = RECIP(IC)

D{ID) = (S*P{ID) + P{II1))*A
[0 = ID + 11

30 17 I=10,1U,11
D{I) = (S*P(I) + P(I+ID) + P{I-ID))*A

IT = ID

IF {ID GT. 1) GC TO 16
CONTINUE
30 11 1 =J1,J1U
QI{TI) = QI) + P(I-J)
GO TO (14, 13, 12, 12), IPHASE
LO = LO/2

IF (LO EQ. 1) MODE = 1
0 TO 15
LO = 2%*L0

IF (LO LT. N1) GO TO
RETURN
END

POISON37
POIS0038
POI S0039
POIS0040
POIS0041
POI S0042
POIS0043
POIS0C44
POIS0045
POISOG46
POI S0047
POIS0048
POI 50049
POIS005%0
POIS0051
POI S0052
POI S0CS3
POIS0054
POISO0055
POI SC056
POISOGS7T
POIS0058
POI SCCS59
POIS0CKO
POIS0061
POI SOC62
POISOCH3
POIS0064
POI SOGHS
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SUBROUTINE EPRINT(FUN)
SUBROUTINE EPRINT CUTPUTS A FIELD FUN { THETA, PSI, OR, OMEGA) ON
THE PRINTER. LMAX CONTROLS THE OUTPUT OF THE FIELD WHICH CONSISTS OF LMAX
BLOCKS. EACH BLOCK CONSISTS OF N LINES WITH 9 ELEMENTS PER LINE. THE FIRS]
COLUMN OF ONE BLOCK IS IDENTICAL TO THE LAST COLUMN OF THE PRECEEDING BLOCK.

COMMON MyM1,M2,NyN14N2,JUyS,KMAX,KDELsLMAX
DIMENSION FUN(33,9)
2 =1
270 15 L=1,LMAX
[1=12
[2=12+8
WRITE(6410) ((FUN(I,J)sI=11,12),J=1,yN)

10 FORMAT (4X49E14.6)
15 WRITE(6,420)
20 FORMAT (//)

RETURN
END

PRNTOGO1
PRNTOCTC2
PRMTOCO3
PRNTOOC4A
PRNTQLOS
PRNTOO06
PRNTO0D7
PRNTQGCOS
PRNTO0C9
PRNTGOO010
PRNTOO11
PRNT0012
PRNTQO013
PRNTOD14
PRNTOC15
PRNTOO16
PRNTOC17
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SUBROUTINE EREAD (FUN)
SUBROUTINE EREAD INPUTS A FIELD FUN FROM CARDS. THIS FIELD CAN BE THETA,
PSI, OR OMEGA. KMAX AND KDEL CONTROL THE INPUT QF THE FIELD WHICH CONSISTS
OF KMAX BLOCKS OF SIZE 6 BY N ELEMENTS AND 1 BLOCK GF SIZE 1 BY Ny 3 BY Ny
OR 5 BY N ELEMENTS. EACH OF THE KMAX BLOCKS CONSISTS OF N CARDS WITH 58
ELEMENTS PER CARD. THE REMAINING BLOCK CONSISTS OF L CARDS WITH 6 ELEMENTS
PER CARD AND 1 CARE WITH N—-6*L ELEMENTS WHEN KDEL=1lys N CARDS WITH 3 ELEMENTS
PER CARD WHEN KDEL=2, AND N CARDS WITH 5 ELEMENTS PER CARD WHEN KDEL=3.

COMMON M,M1,M2,NyN1yN29sJU,S,KMAX,KDEL,LMAX
DIMENSION FUN(33,9)
IMAX = 0

THIS DO LOOP READS KMAX*N CARDS WITH 6 ELEMENTS PER CARD.
DO 1 K=14KMAX
IMIN = IMAX + 1
[MAX = IMAX + 6

READ (592) ((FUN(IyJ)yI=IMIN,IMAX)..
FORMAT (1X,6E13.6)
[MIN = IMAX + 1

GO TO (3,5,7),KDEL
IF KDEL=1y THIS READ STATEMENT READS L CARDS WITH 6 ELEMENTS PER CARD AND
1 CARD WITH N-6%L ELEMENTS.
3 READ (5,4) (FUN(M,J),yJ=1,N)
4 FORMAT (1X,6E13.6)

RETURN
[F KDEL=2, THIS READ STATEMENT READS N CARDS WITH 3 ELEMENTS PER CARD.
5 READ (546) ((FUN(I4J),I=IMIN,M),J=1,N)
6 FORMAT {1X,3E13.6)

RETURN
IF KDEL=3, THIS READ STATEMENT READS N CARDS WITH 5 ELEMENTS PER CARD.
I READ (548) ({FUN(I4J)yI=IMINyM),J=1yN)
8 FORMAT(1X,5E13.6)

RETURN
END

C
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READOC12
READOO13
REACO014
READOG1S
READOQC1G
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READOO18
READOCLY
READ0020
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READOO26
READOD27
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C
SUBROUTINE EPUNCH{FUN)

SUBROUTINE EPUNCH QUTPUTS A FIELD FUN ON CARDS. THIS FIELD CAN BE THETA,
PSI, OR CMEGA. KMAX AND KDEL CONTROL THE OUTPUT OF THE FIELD WHICH CONSISTS
OF KMAX BLOCKS OF SIZE 6 BY N ELEMENTS AND 1 BLOCK OF SIZE 1 BY Ny, 3 BY N,
OR 5 BY N ELEMENTS. EACH DOF THE KMAX BLOCKS CONSISTS OF N CARDS WITH 56
ELEMENTS PER CARD. THE REMAINING BLOCK CONSISTS OF L CARDS WITH 6 ELEMENTS
PER CARD AND 1 CARD WITH N-6*L ELEMENTS WHEN KDEL=1, N CARDS WITH 3 ELEMENTS
PER CARD WHEN KDEL=2y AND N CARDS WITH 5 ELEMENTS PER CARD WHEN KDEL=3,

COMMON MoM1yM2yNeN1¢N2+sJUySsKMAX,KDEL3LMAX
DIMENSION FUN{33,9)
IMAX = 0

THIS DO LOOP PUNCHS KMAX®N CARDS WITH 6 ELEMENTS PER
DO 1 K=1,KMAX
IMIN = IMAX + 1

IMAX = IMAX + 6

NRITE(T 42) ((FUN(I9J)yI=IMIN,IMAX)sJ=14N)
FORMAT({1X,6E13.6)
IMIN = IMAX + 1

GO TO (34547) 9KDEL
[F KDEL=1, THIS WRITE STATEMENT PUNCHS L CARDS WITH 6 ELEMENTS PER CARD AND
1 CARD WITH N-6%L ELEMENTS,
3 WRITE(T74+4) (FUN(MyJ)yeJ=1,4N)
4 FORMAT({1X,6E13.6)

RETURN
[IF KDEL=2, THIS WRITE STATEMENT PUNCHS N CARDS WITH 3 ELEMENTS PER CARD.
5 WRITE(T 6) (FUN{IyJ)oI=IMIN,M),J=1,4N)
6 FORMAT(1X,3E13.6)

RETURN
iF KDEL=3, THIS WRITE STATEMENT PUNCHS N CARDS WITH 5 ELEMENTS PER CARD.
7 WRITE(T48)((FUN(I,4J),I=IMIN,M),J=1,N)
8 FORMAT(1X,5E13.6)

RETURN
END
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2. Computer Program for Computation of Thermal Convection in

the Czochralski Config uration
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COMMON T9KoeL oe IK FSINyFCOSyNyJNyIMyIMI,N2,M,KMAX,KDELJACCS
DIMENSION TA(L17)9sT(17917)sUl17417)4VI1T7917)4SU1T7417),CALC(17,1T7)

2 TO(1T 417) ,UB(1T417),VO(17,17)
oe GSIN(T)sFSIN(4,15)4FCCS(4,y 8) ,4G(15)

: sAA{15)4BB(15)sCC(15)4C(15)9sE(15),F(15),5UM(15)

DATA TR/50./sTA{1),TAL17)/84(0.,848.4/,
{ T(191)eT(1917)/9394994T74/3T{1T91)sTU17417)794T7:449947.4/
TIME = 0.

PR = 00667

TEMPERATURES ARE NOT NON DIMENSIONALIZEU
5R=GR/ (TH-TC)
SR = 2.39616E+05
ASP = .8125

RI = 0.
BIR = 9.,61615E-12

REC = Oe.

RES = 4021.24

8 = 0.

M=17
N=17
[XTL = 5

JPRINT = 1
JPUNCH = 100

[CHECK = 100

JVRG = 20

K1 = 2

K2 = M + 1 - K1

K3 = N + 1 - K1

[INDEX = 0

IXTLYL = IXTL + 1

M1 = M-1

M2 = M-2

N1 = N-1

y2 = N-2

JM = N1/4

JM] = JUM-1]

Ia ry —_—_—_—"
ideeSauda dD

pom ri {iin

i
ND
to)!
~J
}

MAINGCOOL
MAINOCC2Z
MATINOGO3
MATNOCO4
MAI ®00US5
MAINOOLG
MATNOOOT
MAINQOOS
MATINOGLH
MAIM0G10
MAINOOL1
MAINQC12
MAINGO13
MAINOO14
MAINOOLS
MAINOO16
MAINOO17
MAIANOO18
MAINOO19
MAINDG20
MATNOD21
MATNQO22
MAT HNOC23
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MATMNOG26
MAINOO27
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MAINOGC29
MATINOOG30
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MAINCO32
MAINOO33
MAINOD34
MAINQC35
MAINQD3S



JN1 = N1/2
JN = UN1 + 1

JN2 = JUN1 - 1

IC = M1/2 +1
JC = N1/2 + 1

[PUNCH = JPUNCH

[PRINT = JPRINT
IVRG = JVRG

KDEL = M

KMAX = 0

(DEL = KDEL - 6

KMAX = KMAX + 1

[F{KDEL GT. 6) GO TO 1
[F(KDEL .EQ. 3) KDEL = 2
IF(KDEL .EQ. 5) KDEL = 3
K = M1

Y = NI

TEMPRATURES ARE NOT NON DIMENSIONALIZED
Al = TA(1)
Bl = TA(M) - Al

B2 = T(M,1l)

A3 = T(1,N)
B3 = T(MyN) — A3

A= 1/X
B = A

DO 5 I=2,M1
C = B%*B

TA({I) = Al + B1%*(C

[{Is+1) = B2*C
[{IsN) = A3 + B3*C
B =B + A
DO 10 I=1,M
A= T(I,s1)
B = (T{ILN)-A)/Y

DO 10 J=24N1
A= A +B
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MAINGCO38
MATNOO39
MAINOO4O
MAINGO4]
MAINOCC42
MAINQO43
MAINQG44
MAINQO4S
MAINQOD46
MAINOOAT
MAINOC48
MAIMNOD4S
MAINOGSO
MAINGCOS1]
MAI MNOOS2
MAINOOCS3
MAINCCS4
MAINOCSS5
MAINOOS6
MAINOCCST
MAINOOSS
MAINOCH9
MAIXNQOO60
MATINOOUS61
MAINOCH2
MATIANQOE3
MAINCCE4
MAI NOOBS
MAINODOK6
MAINOCGET
MAINCO68
MAINODG9
MAINQOTC
MAI NOOT1
MAIANQDT72
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T{I,J) = A
8 = TA(1)

TRG = (TR+273,)%%4,

CALL ERASE(S,289,V,289,U,289)
CALL EREADI(T)
CALL EREADI(S)
CALL EREAD(V)
X = M1

Y = N1/ASP

Al = RES*X

Bl = REC*X

A2 = 0.

B2 = 0.

DO 15 I=2,M1
A2 = A2 + Al
32 = B2 + Bl

IF{Il LE. IXTL) U{I,1) = A2
UlT4N) = B2
DO 20 J=1.N
U{MeJ) = REC

DO 21 I=1,IXTL
T{I,1) = 937,

DO 25 J=1,N
DO 25 I=14M
TO(IsJd) = T(1,J)
JO(14J) = Ull,J)
VOLI sd) = VIIeJ)
WRITE(6,850)(TA(I),1I=1+9)
WRITE(6,850){TA(I),1=9,117)
WRITE(69850)({T(IsJ)sI=149),J=1,17)
WRITE(6,850)((T(I4J)91=9417),J=1,17)
ALO = X*X

A9 = Y*Y

Al18 = X*Y/2.

AS = A10%Y

Al = A5/8.

MAINOCT3
MATNOOT4
MAINOOTS
MAT NOCTO
MATNOOTT
MAINOCT8
MAINOOT9
MAINOO8O
MAINOCB1L
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MAINOOET
MAINOOSS

MAI NOO89
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MAINOO9L
MAINOC92
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MAINOCOT
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Al2 = AS5/4.

Al4 = 2.%A5

Alé6 = A5/12.

A2G = Al6/2.

A2 = A9/PR

A3 = A10/PR

A4 = —2.%{A2+A3)

Ab = 4,.,%A3

AT = 2.%A2

\15 = -A6-A7
A8 = 2.*BI*Y/PR

ABR = 2.%*BIR*Y/PR

All = 2.%A9

Al3 = -2.%A9

Al9 = GR*X/8.
A21 = A13%X
A22 = -8.%A10%A1C/{4.%A10-1.)
A23 = -2.%A10

A24 = A13/A20

A25 = A23/A20

A26 = -2.%A25/A5
A27 = 4.%*A10/3.

A28 = -2.%A2T74A13
DT1 = .5/(A8+ABR-A15)
DT = X%*(.5%ASP/GR)*%*,5

[F{ DT .LT. DT1) DT1=DT
BIGG = 1./(A14%DT1)
AT = 1.8/A5

BIG = 4.*BICG
WRITE (6430) Al,A2,A3,A4sA5,A6,A7,AByA9,A10,A11,A12,A13,A14,Al5,

t A16,A179A18,A19,A20,A21,A22,A23,A24,A25,A26,AT,BIGG
2 +ABR,TR

30 FORMAT(/T(6X,E13.6)/)
CALC(1,1) = O.
oLDT = T(IC,JC)
oLDS = S{IC,JC)
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48

GIN1/2) = 0.

LO = N1/2

L = LO/2

GIL) = SQRT(2.4G{(L0O))
LO = L

G(N1-L) = -G(L)
L = L + 2%LC

[F({2%L/N1)*(2%LC-3)) 38,37,35
5(L) = (G(L+LO) + G(L-LO))/G(LO)

50 TC 36
ACOS = 1.

DO 39 K=1,JN2
S5SIN(K) = G(JUN1-K)/2.

DO 49 I=1,JM
LO = 0

DO 49 J=1,N2
Ll = (J+1)/2

SIGN=1.
K=1*J
[F{K-N1) 43,4742
K=K-N1
SIGN=-SIGN
50 TO 41
SIGNN=SIGN
L = JN1 - K

IF(L) 45,048,546
L==L
SIGNN=-SIGNN
K=N1-K
FSIN(TI,J)=SIGN*GSIN(K)
IF{L1 .EQ. LO+1) FCOS(I,L1) = SIGNN*GSIN(L)
60 TO 49
FSIN(1I,J)=0.
[F{L1 .EQ. LO+1) FCOS(I,L1) = -SIGN*ACOS
50 TO 49
FSIN(I,J)=SIGN*ACOS
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49
IF{L1 .EQ. LO+1) FCOS{I,L1) = O.
LO = L1

290 50 J=14N2
G(J) = 2. = G(J)

[K = 0

D0 55 K=14N2
L = (K+1)/2

[K = IK + 1

530 TO (51453),IK
SUM(K) = 2.*FSIN{JIM,K)*FSIN{JM,K) + ACOS*ACOS

NO 52 J=1,JM1
SUMIK) = SUMIK) + 2.%FSIN(J,K)XFSIN(JsK) + 2.%FCOS(JyL)*FCOS(J,L)

GO TO 55
SUM(K) = 2.*%FSIN{JM,K)*FSIN{JM,K)

DO 54 J=1,JM1
SUM{K) = SUMIK) + 4.%FSIN{JK)*FSIN{J,K}

CONTINUE
A = X*Al0

B = A9/A10

DO 6G I=1,M2
 TC = I+.5
AA(T1) = BXC/(C-.5)

BB{I) = C/(C-1.)
CCI) = C/A

WRITE(6985) ICeJCoICosJCoyICJCICJCK29K19yK19yK19K1yK34K2,K3
FORMAT(//7/764X "TIME J6X 4 'OLDTY 3SXp OLDS 45X oT 312," 9124')%,5X,

1G (0129 eg 925") gSXg Ul 2,0 9I250)1,5Xy 'VI'4124'+%912+%)7%,
2 4(SX 'T(1,129%9%,12,%)%))

30 DT = AT/BIG
FTWODT = 2.%DT

IME = TIME + OT

DO 110 I=2,M1
83 = I-1

Bl = A3%(B3+.5)/83

B2 = A3*(B3-.5)/B3

50

31

52

54
h&amp;

35
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B3 = Al/B3

DO 100 J=2,N1
CALCU 9J)=A2%(TO(1,J+1)4TO(1,J-1))+B1*TO(I+1,J)+B2*TO(I-1,J)

+A4*T0(1,J)
+B3X (TUL, J-1)%(S(I+1,J)+S(I+1,J-1)-S{I-14J)-S(I-14J-1))

“TI J+ 1) *(S{T+41,J+1)+SUI+1,J)=-S(I-1,J41)=S{I-1,J))
tTEI4) J) %(S{I+1,J+41)4S{1,J+1)-S(1+1,J-1)=-S({[,J-1))
~TUI=-19d)%(S(T,J41)+S(I-1,J%1)-S(I,J-1)=-S(I-1,J-1)))

IF(IXTL .NE. 0) GO TO 125
CALC y1)=A14%S{2+42)%(T{2,1)-T(1,2))4A6%TO(2,1)+AT*T0(1,2)

: +A15%TO(191)+ABRKX(TRA4-(TC(1,104273.)%%4,)+A8%(TA(1)-TO(1,1))
125 IF(IXTL1 .GT. M1) GO TO 110

CALC{I 41 )=AT%T0(1,2)+B1%TO(I+1,1)+B2*TO(I-191)+4A4*TO(I,41)
L +2.%B3%(T(I+1,1)%(S(I1+142)4S(1,2)) = T(I-141)*(S(I-142)+5(1,2))

: ~T(I,2)%(S(I+1,2)-S(I-1,2))) + A8*%(TA(I)-TO(I,1))
3 + ABR*(TR4=(TC(I+1)4273.)%%4,)

110 CONTINUE
DO 120 J=2,N1
CALC(1:J)=A2%(TO(1yJ+1)4TO0(15J-1)-2.%TO(1J))+A6X{TO(2,J)=-TO(1+J))

ASR{T(1,J=-1)%(S(2,3)4S(2,J-1))=-T(1,J+1)%(S(2,J+1)45(2,J))
+T(24J)%(S(2,J41)-5(25J-1)))

DO 160 J=14N1
DO 150 I=1,M1
IF(J JEQ. 1 AND. TI .LT. IXTL1l) GO
SAVE TA(I4J)
TO(I.Jd) = T(1I,J)
T(1,J) = SAVE + TWODT*CALC!

CONTINUE
D0 210 I=2,M1
34 = 1-1

Bl = Al/B4

B2 = Al0*({B4+1.)/(B4+.5)
33 = A10%(B4-1.)/{(B4~-.5)

B4 = B4*B4

B6&amp; = A5/B4

B4 = Al3 + A23*%B4/(B4-,.25)

100
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200
DO 200 J=24N1
CALC{I4J)=B1*{(U(I,J-1)%(S{I41,J)4S(I414J-1)=-StI-14J)-S(1-1,J-1))

“UCT J+) %(SUI+1,J41)+4S5(I+41,3)-S(I-1,J+1)-S(1I-1,J))
tU(T+#190)%(S(TI+1,J41)4SUT,J+1)-S(I+1,0-1)-S({I,J-1))
—“UlI-19J)%(S(I4J41)+S{I-19J41)=-S{I,4J-1)=-S(I~14J-1)))

+A9%(UD(I4J+1)+UD(15J-1))+B2%UC(I+1,J)+B3%xUC(I-1,J)4B4*UD(1yJ)
+B6*¥U(I,J) *(S(I,J+41)=-S(1,J-1))

IF(I .LT,., IXTL1) GO TO 210
CALC(I,1) =

2.%B1*(U(I+1,1)%{S(I+1,2)+S(1,2))
-UlI-1,1)%(S(I-1,2)+S(1,2))
+U(I92)%(S(I-142)-S(I+142)))

+A11%UD(1,2)+B2*UC(I1+1,1)+B3*U0(I-1,1)+B4*U0(I,1)
5 +2. %¥B6*U(I141)%5(1,2)

210 CONTINUE
20 260 J=14N1
DO 250 I=24M1
[F{J «EQ. 1 AND. I .LT. IXTL1l) GO TO
SAVE = UO(I,J)

JO(I4d) = UlI,J)
J{1,J) = SAVE + TWODT*CALC:

30 3C0 I=3,¥M1
B6 = I-1

Bl = Al16/(Bé+l.)

B2 = Al16/B6

B3 = Al16/(Bé-1.)

B4 = Al0%(B6+1.)/(B6+.5)

835 = Al10*(Bé6-1.)/(B6-.5)

B7 = A18/Bé6

B6 = B6*B6

B6 = Al3 + A23*B6/(B6-.25)

D0 300 J=2,4N1
CALC(I5J)=B1x(V(I+14J+1)%(S(I,J+1)=S(I+1,J))

+VII+1,J-1)%(S(I+1,J)-S(1,J-1))
AVII41, 0) %(S{T+41,J41)=S{I+1,J-1)4S(I,J+1)-S(1,J-1)))

FB2%(V( To J+1)%(S{I-19J+41)=S{I+1,J+1)+S(I-1,J)-S(I+1,J))
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fy +VIIyJd=-1)%(S{I+414J-1)-S{I-14J-1)4S(I+1,J)-S(I-1,4)))
+B3%(V{I-1,J)%(S{I-1,J-1)-S{I-1,J41)+S(1,J-1)-S{I,J+1))

+V(I-14J+41)%(S{I-14J)=-S(14J+1))
tVII-19yJ-1)%(S(I,J-1)=-S{I-15J)))

$A9X(VO(I2J+1)4VO(I4J-1))4B4%xVO(I+1,4J)+B5%VO(I-1,J)+B6*VO(1,J)
+A19(T(I+1,J41)=-T(I-1,J+1)42.%(T(1+1,J)-T(I-1,J))

4T(1+1,3-1)-T(I-1,J-1))
$BTX(U(I,J+1)+U(I,J-1) D)*(UlI,J+1)-U(I,J-1))

=

310
DO 310 J=2,N1
CALC(29J)=A16%{V{2,J)%(S{29J-1)-5(2,4,J+1))

“VI{2:J41)%(S{3,J41)4S(2,J+1)4S(3,J))
+VI(2,J=-1)%(S(3,J=-1)+S(2,J-1)+S(3,J)))

+A20%(VI(3,J)%(S{3,J41)-S(34J-1)4S5(2,5J+1)-5(2,J-1))
tVI(3,J+41)%(S(2,J41)-5(3,J))
+V(3,J-1)%(S(3,J)=-S(2,3-1)))

+A9R(VO{2yJ+1)#+V0(29J=-1))+A2T%VO(34J)+A28%V0(2,J)
$A1BR(U(2,J41)+U( 2,01) I%(U(2yJ+1)-U(2,J-1))

 A109 {T(3,J41)-T(1J+1)42%(T(34d)=-T(1,J))4T(3,J-1)-T(1,J-1))
DO 350 J=2,N1
DO 350 I=2,M1
SAVE = VO{I,J)

VO{I,J) = V(I,J)
V(IeJ) = SAVE + TWODT*CALC(I,J)
iK = 0

DO 420 K=1,N2
L = (K+1)/2

IK = IK+1

IF(IK EQ. £) IK=1
DO 400 I=1.M2
D{(I) = TRANFG(V)

G1 = G{(K)
F(1) = 1./7(1.+G1*AA(1)+BB(1))
F{1) = CC(1)*D(1)%*E(1)

DO 410 [=2,.M2
E(I) = 1./7(1. + G1%AA(I) + 3B(I)*(1l.-E(I-1)))

FIT) = (CCUIY=D(I) + BB(I)*F(I-1))%E(])

15 J
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CALC{M1,K+1) = F(M2)

DO 420 I=24M2
J = Ml-1

CALC{J+1,K+1) = E(J)®CALC{J+2,K+1) + F(J)
IK = 0

DO 430 K=1,N2
SUM1 = SUMI(K)
L = (K+1)/2
[K = IK+1

IF(IK .EQ. 5) IK=1
DO 430 I=1,M2
S(I+1,K+1) = TRANFG(CALC)/SUM1
IFLIXTL LT. 2) GO TO 445
00 440 I=2,IXTL

440 V(1,1) = A21%S(1+2)/FLOAT(I-1)
44% DO 450 1I=2,.M1
450 V(IsN) = A21*S{I4N1)/FLOAT(I-1)

DO 460 J=2,N1
VIMeJ) = A22%S(M1,J)
8IG = BIGG

DO 470 J=2,N1
IF(ABS{S(25J)) GT. BIG ) BIG=ABS(S(2,4))
BIG = 2.%BIG

[F{IXTLl .GT. M1 ) GO TO 485
DO 480 I=IXTL1,M1
[FU ABS(S(2,J))/FLOAT(I-1) .GT. BIG ) BIG=ABS(S(2,J))/FLOATI(I-1)
BIG = 2.%*BIG

SMAX = 0.

DO 490 I=2,M1
Bl1=FLOAT{I-1)

DO 490 J=2,N1
[F(ABS(S(I4J)) LE. SMAX) GC TO 483
ic=1
JC=J
SMAX = ABSI(S(I,J))

IF(ABS(S({I+1,J)-S{1-14J))/B1l.GT.RIG) BIG=ABS(S{I+1,J)-S(I-1,J))/81489
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490 TF(ABS({S(I,J+1)-S(I1,J-1))/B1l.GT.BIG) BIG=ABS(S{I,J+1)-S({1,J-1))/B1
INDEX = INDEX + 1

TEST = T({IC,JC)
OLDT = (TEST - OLDT)/TEST/DTY

SEST = S({IC,JC)
LDS = (SEST - OLDS)/SEST/DT

[FIINDEX LT. IPRINT) GO TO 530
NRITE(64510) TIME,OLDT,0LDS,TEST,SEST,1C,4JC 2 VIIC,JC)

i TIK29K1) 9s T{K19K1)T{K1yK3),T(K2,K3)
510 FORMAT({1XyF10.992E9.292E13.5,14,3X,14,5E13.5)

IPRINT = IPRINT + JPRINT

[F{INDEX LT. IPUNCH) GO TO 530
WRITE(64+850)(({T(I+J)+I=1+9)49J=1,17)
WRITE(64850){(T{I,J)91=9,17),J=1,17)
WNRITE(69850)((S(1+J)91=199)9J=1,17)
WNRITE(69850)({(S{19J)sI=9917)9d=1417)
WRITE(64850)((U{I,J)91=1,9),J=1,17)
WRITE(6,850){(U(I:J),1=9,17),J=1,1T7)
WRITE(6+850)((VIIeJ)yI=1+9),d=1,17)
WRITE(6,850)({V(I4J),1=9,17),J=1,17)
FORMAT{(//7/7(4X49E14.6))
WRITE(6¢485) ICeJCyICsJCHyICHUCHIC,JCK24K19yK13K1yK14K3,K2,4K3
[PUNCH = TPUNCH + JPUNCH

[F{INDEX GE. ICHECK) GO TO 920
iF{ISTOP .EC. 1) GO TO 900
OLDS = SEST
ILDT = TEST

[F (INDEX LT. IVRG) GO TO SC
[VRG = IRVG + JVRG

DO 540 I=1,M
DO 540 J=1,N
AVRG = (T(I4J) + TO{(1,0))/2.

T(I,J) = AVRG
TO(Iy,J) = AVRG
AVRG = (VI(I.J) &amp; VO(I,J))/2.

V(IeJ) = AVRG
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540 VO(1,J) = AVRG
GO TO 90
WRITE(6,910)
FORMAT(///" STEADY STATE HAS BEEN REACHED!)
WRITE(7,520) TIME,BIGyGRyPRyASP,BI
FORMAT({1X,6E13.6)
WRITE(T74525) TByRESJREC MyN,IXTL
FORMAT (1X93E13.645315)
CALL EPUNCHI(T)
CALL EPUNCHI(S)
CALL EPUNCH{U)
CALL EPUNCHI(V)
CALL EXIT
WRITE(6,930)
FORMAT (///* ICHECK HAS BEEN EXCEEDED?)
WRITE(7,52C) TIME,BIGyGRyPRyASP,BI
WRITE(T7+525) TByRES,REC)MyN,IXTL
CALL EPUNCHI(T)
CALL EPUNCH({S)
CALL EPUNCHI(U)
CALL EPUNCHI(V)
CALL EXIT
WRITE(6,950)
FORMAT (///7* TEMPERATURE IS NEGATIVE?)
CALL EXIT
END
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FUNCTION TRANFG(FUN)
COMMON TyKyLyIKyFSINyFCOSo Ny JIN JIMy IJM1,N2,M,KMAX,KDEL,ACCS
DIMENSION FUN(17417)4FSIN(4,15),FC0OS{4%,8)
GO TO (10,20,30,40),I1K
TRANFG = (FUNCI+1yIMEL)+FUNCT+14N=JM) )RXFSINCIM,K) +ACOS*FUN(T+1 JN)
DO 15 J=1,JM1
TRANFG = TRANFG + (FUN(I+1,J#1)+4FUN(I+1,N=-J))*FSIN(J,K)

H{FUN(I+1,UN-J)+FUN(T+1,IN+J) )XFCOS(J,L)
RETURN
TRANFG = (FUN(T+#1,JM+1)=FUN(I+1,N-JM))XFSIN(JIM,K)
D0 25 J=1,JM1
TRANFG = TRANFG + (FUN(I+1,3J#1)4FUN(TI+1,JN=-J)

l —FUN(T41,3JIN+J)-FUN(I+1,N-J))XFSIN(J,K)
RETURN
TRANFG = (FUN(I+1,JM#1)+FUNTT+14N=JM))XFSIN(IM,K)~-ACOS*FUN{T+1,JN)
DO 35 J=1,JM1
TRANFG = TRANFG + (FUN(I+19J#1)+FUN(TI+14N=-J))%RFSIN(JyK)

L =(FUN(I+14UN-J)+FUN{T+1,JN+J))%FCOS(J,L)
RETURN
TRANFG = C.

00 45 J=1,JM1
TRANFG = TRANFG + (FUN(I+1,J+1)~-FUN(I+1,JN=-J)

+FUN(TI+1,3 UN#J)=-FUN(I+1yN=J))I*FSIN(J,K)
RETURN
“ND
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TRANCOC9
TRANQO10
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TRANQO12
TRANOG13
TRANOO14
TRANOD15
TRANCCG16
TRANOD17
TRANOO18
TRANOG19
TRANOC20
TRAKOO21
TRANQQ2?2
TRANOC?3
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SUBROUTINE EPUNCH({FUN)
COMMON T4KyLyIKoFSIN,FCOS)NyJINyJIMyJIML,N2,M,KMAX,KDEL,ACCS
DIMENSION FUN(17417),FSIN(4,15),FC0OS(4,8)
IMAX = 0

20 1 K=1,KMAX
[MIN = IMAX + 1
IMAX = IMAX + 6

WRITE( 742) ({FUN(I,J),I=IMIN,IMAX),J=1,N)
FORMAT(1X96E13.6)
[MIN = IMAX + 1

50 TO (3+5,7)+KDEL
WRITE(T744) (FUN(M,J)yJ=14N)
“ORMAT (1X,46E13.6)
RETURN
WNRITE(T,6)((FUN(T,J),I=IMIN,M),J=1,N)
FORMAT (1Xy3E13.6)
RETURN
WRITE( 748) ((FUN(I4J)yI=IMINyM),yJ=1,N)
FORMAT (1X9 5E13.6)
RETURN
END

A

5
6

/
B

PNCHQOGC1
PNCHOL02
PNCHOGCG3
PNCHQOU4
PNC HONO0S
PNCHOQRS6
PNCHONOT
PNC HOODS
PNCHO0OO09
PNCHON10
PNCHEOC11
PNCHOO12
PNCHQOO13
PNCHOC14
PNCHOO15
PNCHOQ16
PNCHOGC17
PNCHO018
PNCHOOQ19
PNCHOO0?20
PNCHOCZ21
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SUBROUTINE EREADIFUN)
COMMON IT 9KoLsIKyFSINSFCOSyNsJINgJIMyJM1 ,N2,M,KMAX,KDEL,ACCS
DIMENSION FUN(1717),FSIN(4,15),FC0S(4,8)
IMAX = 0

DO 1 K=1,KMAX
IMIN = IMAX + 1
IMAX = IMAX + 6

READ(S5,2) ((FUN{I4J)yI1=IMIN,IMAX)yJ=1,N)
FORMAT(1X,6E13.6)
IMIN = IMAX + 1

50 TO (3,5,7)+KDEL
READ{S5,4) (FUN(M,J),Jd=1,4N)

FORMAT {1X96E13.6)
RETURN

READ(S5¢8) ({FUN(I4J)sI=IMIN,M),J=1,N)
FORMAT (1Xy3E13.6)
RETURN
READ(S54B){(FUN(I4J)yI=IMIN,M),,J=1,N]}

FORMAT(1X,5E13.6)
RETURN
END

&gt;

3
4

5
5

7
B

READQOGCL
READOCG2
READOQOQC3
REACO0C4
READQCOS
REALOOGSE
REALCOOTY
REALQOQOS
REACOCO9
READGC10
REAOC11
REALOO12
READCO13
REATOC14
READCCLS
REALDDL6
REALOGLT
READOCLS
READOT19
REACOG2C
REARQDQO?21

a
.

x.
Ld

}
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E. APPENDIX 5

ERROR ESTIMATES OF SOLUTE BOUNDARY
LAYER THICKNESS CALCULATIONS

The various methods used in Chapter IX for computing

values of the solute boundary layer thickness can be shown to

have the following expression for their relative errors:

(1) From the BPS relation (Equation (24))

AS; ap _ aR . 6 20 = 5) c 1s Ak8 D R : c. c Oe k
1 Ss 2 0

(2) From the relative deviation ratio relation (Equation (26))

A02 _ AD + 0.09 Akg + A(Ac/c) - A (AR/R)
5. - Db © 0% kt Tlac/el © T(AR/RY

(3) From the thermal boundary layer thickness relation

(Equation (27))

“°3 _ aD, av _ak, DOr
Sy 3D bv 2k 5

(4) From the Cochran relation (Equation (28))

 4 _ ap,Avfe
§, 3D bv 20

In deriving these expressions the following values of the

required parameters were used: k_ = 0.087, D = 1.9x10 *cm?/

sec , R = 16.8 cm/sec , C, = 1.732101? /cm’ » k_ = 0.101 ,

and C, = 1.71x10%%/cm’
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Recent work has suggested that Kk may be as large as

0.11% s0 its relative error is estimated to be Ak /k = 30%.

Other estimates of the relative errors in the required

parameters are the following: AD/D &lt; 50% , AR/R &lt; 5% ,

Ac /cg &lt; 1% , AC /CL &lt; 50% , Av/v &lt; 30% , Aw/w &lt; 1%

Ax/k &lt; 50% , and NPA &lt; 20% . Using these values in the

relations derived above results in the following error es-~

timates: AS,/84 &lt; 300% , AS,/8, &lt; 50% , AS5/8 4 &lt; 20% , and

AS ,/6, &lt; 20% . The primary sources of the large error in

51 are the determination of the bulk liquid concentration

Co and the precision of the equilibrium distribution coef-

ficient k_

F
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