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1. Introduction*

The apparent neglect of quantitative methodology in political analysis can
be explained partly by the absence of a common paradigm or frame of reference
for political inguiry and partly by the lack of experience with experimental analysis
of empirical data. The absence of general theory poses considerable difficulties
for analysis and for specifying the nature of expected relationships or outcomes.
For example, without a good theory of war, it is difficult to explain, account
for, and predict wars among nations as well as to forecast the probable range
of casualties, the extent or duration of violence, geographical scope, and so forth.
And the absence of sufficient experience with quantitative analysis poses equally
numerous difficulties bearing upon our ability to go beyond purely descriptive
modes of inquiry. For example, without sound analytical and computational tools
it is difficult to develop empirical models, or simulations, or forecasts of such
dynamics.

This paper examines some key issues and difficulties encountered in the course
of applying econometric analysis to forecasting in international relations. We will
note the problems involved and the solutions adopted, and indicate the consequences
of faulty analysis, analytical bias, or measurement error,

Qur substantive investigations are addressed to the long range causes of
international conflict. Our objective, during the past several years, has been to
develop systematic procedures for isolating the determinants of international

*1 am particularly grateful to Hayward Alker for critical comments and suggestions at every stage
of these investigations. | am also grateful to Douglas Hibbs, Michael Leavitt, Amy Leiss, Michael Mihalka
and Scott Ross for helpiul comments and suggestions on an earlier version of this paper, and to Raisa
Deber and Thomas Robinson ior editorial commentary. For assistance in computer analysis | am most
grateful to Jonathan Shane, Alexis Serri and Walt Maling of the TROLL Project. For research assistance
| would like to thank Raisa Deber, again, and Taizo Yakushiji. This paper draws upon Chapters 2,
12, 19, and Appendix B of Nazli Choucri and Robert C. North, Nations in Conflict: Population, Expansion
and War (1974},
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violence. The general approach we have employed is one common to any
econometrician concerned with the analysis of time series data, or any statistician
examining the properties of small samples (Deusenberry, 1965; 1969). But our
applications of these methods are not common in political analysis. Economists,
for example, appear to know much more about the nature of market systems,
business cycles, inflation and so forth, than political analysts know about conflict
and warfare, arms races, lateral pressure or international alignments.

In the course of our inquiries we have developed a partial theory of the
dynamics in question, translated this theory into a model from which structural
equations were developed, and then estimated the unknown parameters. The purpose
of this enterprise was to investigate the implications of alternative parameter estimates
upon the behavior of the system as a whole. Experimenting with “high”” and
“low"” coefficients, and comparing these with base-line parameters and system
outputs provided us with reliable means of looking into alternative outcomes and
alternative futures,

It is not our objective here to question the nature of causality, or to dispute
the assumptions underlying the social and behavioral sciences. Others have done
this elsewhere (Blalock and Blalock, 1968; Ando, Fisher, and Simon, 1963). Nor
is it our intent to deliver an introductory lecture on the algorithms upon which
elementary statistical methods are based. Rather, our purpose is to make explicit
the critical problems inherent in econometric analysis and the ways we have
sought to resolve them.? Toward this end we discuss (1) our model of international
conflict dynamics developed within the context of the general linear model in
regression analysis; (2) methodoiogical implications of alternative prespectives upon
causality; (3) some key statistics and common problems in causal inference; (4)
simultaneous estimation and the problem of identifiability; (5) serial correlation
and time dependent corrections; (6) the use of instrumental variables and generalized
least squares; {7) system change and breakpoint analysis; and finally, (8) procedures
employed for simulation, forecasting and policy analysis and some practical
illustrations.

1. Dynamic modeling, which is current in econometric analysis, can be used for political inquiry
to provide (a) an aid to understanding political dynamics, (b) a tool for simutation and forecasting political
behavior, and outcomes, and {c) a guide to the choice of public poticy. The crucial test of a model
lies in its internal and statistical validity. Its prime usefulness is to make forecasts and compare the
forecasts with actual historical values as a means of understanding how systems behave. For a survey
of the devefopment of econometrics as a field of inquiry see Lawrence R. Klein, "Whither Econometrics?”’
Journal of the American Statistical Association (Vol. 66, No. 334, June 1971} pp. 415-421. For an instructive
application of econometric analysis to political inquiry see Gerald H. Kramer, “Short-Term Fluctuations
in U.5. Voting Behavior, 1896-1964," Cowles Foundation Paper No. 344 (New Haven: Cowles Foundation
for Research in Economics at Yale University, 1971).

2. Although the broad lines of our investigations are common in economeiric analysis, we have
found that applied econometrics is not always consonant with econometric theory. In many cases we
have also found that the problems confronting us—such as the coincidence of lagged endogenous variables
and serial correlation in the disturbances—are raised in econometric texts as critical problems, but rarely
are sufficient guidelines or practical directions provided to assist in resolving such issues. For this reason
our approach has been highly exploratory, and the solutians we have adopted amounted te practica!
applications of theoretical arguments. Since there are, as yet, no clear cut solutions to problems such
as these, much of what we have done is both controversial and experimental,
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2. A Model of International Conflict: Extensions of the General
Linear Model

In recent studies of international behavior we have argued that the roots
of conflict and warfare can be found in the basic attributes and characteristics
of nations and that the most critical variables in this regard are population, resources,
and technology. We have then attempted to specify the intervening sequences
between these three sets of variables, on the one hand, and conflict and warfare,
on the other. On the basis of empirical and historical analysis, we suggest that
the chain of developments relating population, resources and technology to violence
appears to be the {following:

A combination of population and developing technology places rapidly increas-
ing demands upon resources, often resulting in internally generated pressures. The
greater this pressure, the higher will be the likelihood of extending national activities
outside territorial boundaries. We have termed this tendency to extend behavior
outside national boundaries lateral pressure. To the extent that two or more countries
with high capabitity and high pressure tendency (and high lateral pressure) extend
their interests and psycho-political borders outward, there is a strong probability
that eventually the two opposing spheres of interest will intersect. The more intense
the intersection, the greater will the likelihood be that competition will assume
military proportions. When this happens, we may expect competition to be
transformed into confiict and perhaps an arms race or cold war. At a more general
level of abstraction, provocation will be the final act that can be viewed as the
stimulus for large-scale conflict or violence. Butan act will be considered provocation
only in a situation which has aiready been characterized by high lateral pressure,
intersections among spheres of influence, armament tensions and competitions,
and an increasing level of prevailing conflict.

Major wars, we have argued, often emerge through a two-step process: in
terms of internally generated pressure (which can be traced to population dynamics,
resource needs and constraints, and technological development) and in terms of
reciprocal comparison, rivalry, and conflict, on a number of salient capability
and behavior dimensions, Each process tends to be closely related to the other,
and each, to a surprising degree, can be accounted for by relatively non-manipulable
variables (or variables that are controllable only at high costs). And it is these
variables, we hypothesize, that provide the long range roots of conflict and warfare.

The first step in the transition from a general theoretical statement to a mode!
capable of sustaining the empirical test is to identify the variables to be explained.
These will eventually serve as the outputs of the model. The second is to specify
those effects that contribute to outcome variables by developing equations designed
to explain the behavior of each of the dependent variables.

Those explanatory variables that are thought to contribute to our understanding
of the outcomes in question can be other dependent variables (lagged or unlagged)
or they may be variables that are exogenous and not to be explained by the
model. For policy purposes it is important to select at least some explanatory
variables that are manipulable by the policy-maker. For obvious reasons, it would
not be useful to select only variables that are all “givens” or variables that are
manipulable at very high costs unless, of course, one's objectives were to test
for the extent to which non-manipulables dominate system behavior.
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Our theoretical statement can thus be transformed into graphic relationships,
as noted in Figure 1. These relationships can then be translated into structural
equations, the parameters of which could then be estimated in the context of
the general linear model. This particular model pertains to the pre-World War
! period, 1870-1914,

The general linear model in econometric and causal modelling is a conceptual
mechanism to determine the values of variables when quantitative data are supplied.
(Johnston, 1972, 121-176; Christ, 1966, 243-298). This mechanism includes a
set of equations, their functional form, and an accompanying set of specifications
and restrictions. We combine observed data, specifications of a model, and the
laws of probability to obtain estimates of unknown parameters. Related procedurss
are suggested by others (Fennessey, 1968; Rao and Miller, 1971).

This basic linear model is of the following form:

Y=X8 +u,

where
Y represents a vector of observations of the dependent or endogenous variable;

X represents the matrix of independent variables (explanatory, predetermined
and exogenous);

B is the vector of coefficients to be estimated from empirical data; and

u represents the vector of error or disturbance terms, each of which is composed
of three errors (a) error due to a linear approximation of the ‘“true’” functional
form, (b) error resulting from erroneously included or left out variables,
and (c) random noise.

The general linear form can be extended to the case of mr independent variables
and nequations, with the assumption that each dependent variable can be expressed
as a linear function of the independent or exogenous variables (linear in the
parameters only; the variables can be non-linear functions of other variables).
It is also assumed that empirical observations are generated by a stochastic
mechanism, In the case of the linear model, ordinary least squares provides the
best linear unbiased estimates of the parameters only if the following assumptions
or a priori constraints are not seriously violated: (1) that the disturbance terms
{u) are random variables, with zero mean and homogeneous variance; (2) that
the disturbances are uncorrelated over time; and (3) that the exogenous variables
are not correlated with the disturbances,

The model we have developed is more complex than the general linear case.
Some of the complexity is due to (a) the nature of the dynamics being modelled,
{b) the procedures we have employed to correct for significant departures from
the assumptions underlying an ordinary least squares solution of the general linear
model, and (c) the use of simultaneous equation estimators to obtain unbiased
coefficients of feedback systems. The resultant system of equations is presented
in Table I.

The entire analysis was undertaken on TROLL/1, an interactive computer
system developed at the Massachusetts Institute of Technology for the analysis
of econometric models and complex systems. We have employed (a} a logarithmic
transformation on one of the key endogencus variables (colonial area) in order
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Taste |
International Conflict Processes:
Systern of Equations for Simultaneous Estimation

col-area = o, + B, h-pop/h-drea + B, nat-inc/h-pop + B, wade/pop + B,
mil-exp + u,

intersections = o, + B, col-area + B, mil-exp + B, versus*non-allies’ col-area +
B¢ viol-beh + B, viol-others + u,

mil-exp = oy + B, mil-exp,_, + B,, versus*non-allies’ mil-exp + B, intersections
+ B,, col-area + B, h-pop*nat-inc + u,

alliances = a, + B, milexp + B, intersections + B, versus*non-allies’ mil-exp
+ B4 h-pop*nat-inc + u,

viol-beh = ag + B,, intersections + B,, mil-exp + B,, versus*non-allies’ mil-exp
+ By, alliances + B ,, viol-others + ug

and " the co-terms for B, Bs, Bg, Ba Brz Bras Buss B Bror Boor

B ,,. are endogenous variables, B, is a lagged endogenous variable,
and the co-terms for the other explanatory variables are exogenous,

col-area = colonial area in thousand square miles

h-pop = home population in thousand

h-area = home area in thousand square miles

nat-inc = national income in thousand U.S. dollars at standardized prices (1901-
1910 = 100}

trade = imports plus exports in thousand U.S. dollars at standardized prices
(1901-1910 = 100)

mil-exp = military expenditures (army and navy allocations) in thousand U.S. dotlars
at standardized prices (1901-1910 = 100)

versus*non-

allies = dummy variable representing dyadic relationship: 1 when two states
are not allied formally, O if they are

intersections = scaled variable (from 1 to 30) denoting intensity of intersections among
spheres of influence

alliances = number of alliance commitments

viol-beh = scaled variable {from 1 to 30) denocting the highest peak on the scale

recorded for each year, and representing the behavior of the actor toward
other states

vial-others = scaled variable {from 1 to 30} denoting the highest peak on the scale
recorded for each year and representing the behavior of other states
toward the actor state

h-pop*nat-inc = multiplicative variable representing interactive effect of population {in
thousands) and national income (in thousand U.S. dollars standardized
to U.S. dollars, 1901-1910 = 100}

g0 = constant or intercept term

Uy .. Ug = error or disturbance term

instrumental variable list: volume of iron and steel production, volume of pig iron, government
expenditures, merchant marine tonnage, military expenditures of non-allies, colonial
area of non-allies, population density, population times national income, national income
per capita, trade per capita, intersections,_,, violence behavior,_,, violence of others,
alliance committments, _,, wheat production, coal output.
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to approximate the underlying theoretical relationship more closely, and (b) an
interactive term combining the effects of population and technology (defined as
population times national income} in order to obtain some measure of their
multiplicative impact. In addition, we have used generalized least squares, trans-
forming the independent variables according to the structure of the serial correlation
inthe disturbances, in conjunction with two stage least squares (a limited information
maximum likelihood estimator), so as to incarporate a time dependent correction
as well as simultaneous effects in the final estimates of the parameters.?

It is important to appreciate that the parameters of an equation cannot be
estimated purely on the basis of empirical data, no matter how complete, reliable,
or extensive these may be.* The role of data is as follows: Information is useful
for identification purposes only if it can serve to distinguish among structural
equations. Observational data alone carnot perform this necessary step in model
building, although analysis of one set of data can provide clues for specification
of the next set. Nonetheless, only in conjunction with a priori restrictions and
specifications can empirical data be put to good usage (Coombs, 1964). But the
most basic issue of all in making the transition from a theoretical statement to
a formal model is specification of causal ordering.

3. Directional Relations and Causal Inference

in the most general sense, “causation’ refers to hierarchies of influences or
effects, most readily characterized by asymmetrical relations within a specified
system. Causation, however, is not necessarily implied by a particular time
sequence—a consideration that is commonly neglected in systematic social and
political inquiry. Because of this simple, but almost self-evident point, it is important
to adopt alternative criteria for the specification of causal relations. In a persuasive

3. The dynamic elements in a model are usually generated by lagged relationships, by first (or
higher order) derivatives, by employing endogenous variables as explanatory and by introducing random
shock variables. These considerations are important in drawing inferences about the structure of the
system of equations in guestion and about the ability of the system to predict both behavior of the
model and the behavior of outcome variables. In the course of our investigations we have employed
each of these procedures for approximating dynamic systems. Here we note only the most effective
approaches (Fisher, 1965). Dynamic models can be constructed by employing explicit functions of time,
by linear approximations, by exponential functions, quadratic trends, first and higher order differences,
distributed lags and spectral analysis. The result is a system of equations in the correct form whose
parameters are subject to probability error associated with the inference procedure used. We solve the
estimated equation of the model in order to obtain an estimate of the reduced form. An earlier version
of this analysis was undertaken with the use of rates of change variables an both sides of the equations.
In that case, we have found that the resulting parameter estimates were surprisingly fragile throughout.

4. The necessity of a priori specifications, endemic to the question of causality, is predicated on
two considerations. First, these specifications must allow the investigator to develop a particular system
of equations, and to identify the dependent and independent variables, and the nature of their relationships.
This initial specification in itself constitutes an operational statement of theory, however vague, inarticulated,
or implicit it may be. Second, a priori information is necessary for the distinction of one equation from
another. Information of this nature generally constitutes restrictions on the coefficients of the variables
(where some are set at zero) and on the nature of the random or disturbance term. Without the specification
of zero coefficients for sorme variables in each equation there is no way to distinguish ane equation
from another. See Franklin M. Fisher, The Identification Problem in Econometrics (New York: McGraw-Hill
Book Company, 1966), Ch. 1 and 2.
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argument, Herbert Simon suggests that causal orderings are determined by the
appearance of non-zero coefficients in a system of equations. The a priorf
specification of zero coefficients thus raises the issue of identifiability (Fisher, 1966).
“For complete identifiability of a structure those restraints must preclude the existence
in the same mode! of a different equivalent structure, that is (in linear models),
a different set of equations whose members are linear combinations of the original
equations’’ (Ando, Fisher, and Simon, 1963, 23}. Causation is therefore closely
related to identifiability and the requirements of identifiability, by necessity, impose
certain constraints on the process of model building. _

The causal question gives rise to a related set of philosophical and empirical
problems (Orcutt, 1952). The longstanding debate among social scientists regarding
causal perspectives upon the “real”” world—whether it be essentially hierarchical,
or recursive; or whether it be essentially non-recursive, or simultaneous—is one
that can be resolved through a combination of these two positions, namely that
the overall framework or system of relations (or equations) in the structure under
consideration may basically be recursive (thus negating simultaneous relations at
a macro level), but that small components (or blocks) thereof may be non-recursive
(thus allowing for feedback relations within a localized context). In terms of applied
analysis, this debate has one important efiect: How one perceives the structure
one seeks to model (whether it be basically recursive or non-recursive) dictates
the kind of estimation procedure employed, and the ways in which “reality’” is
represented in a system of equations designed to approximate the dynamics under
consideration. We have adopted the non-recursive view of causality while recogniz-
ing that in the longer run greater understanding of the dynamics in question may
be obtained through expansion of our model and use of a block-recursive approach.

In both operational and philosophical terms, the issue of causation thus involves
(1) asymmetries of relations, (2) the necessity for zero coefficients in some equations,
(3) the distinction between endogenous and exogenous variables, (4) specification
of causal ordering, (5) specification of direct and indirect effects and (6) assumptions
underlying the structure of the disturbance term in each equation. The general
linear model provides the intellectual tools to structure reality and to think about
directional influences, but our analysis goes far beyond to causal modelling,
simultaneous estimation, simulation and policy analysis.

4. Causal Inference: Some Key Statistics and Common Problems

The two most common criteria for evaluating the performance of a model
are (1) how well the specified equations fit known data, and (2) what the outputs
of the model are and why. Examining the patterns of errors (or residuals) therefore
becomes an important aspect of model building.

The variance of the coefficient estimate indicates the precision of the coefficient
as derived from empirical data. The statistical significance of a parameter is inferred
from the magnitude of the t statistic, and the significance of several parameters
is inferred from the F ratio. In a regression equation, the value of F measures
the joint significance of the parameter estimates. The summary statistic, R?, refers
to the amount of variance in the dependent variable explained by the independent
variables (and the associated stochastic mechanism). A very high R? may imply
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an identity or a trivial regression equation, while a low R? does not necessarily
indicate an invalid equation.® Other summary statistics are needed before an educated
judgement is drawn, such as the standard errors around the parameters. In practical
applications, however, these statistics are often subject to bias in the parameters.®
When the disturbances are serially correlated, the variances and standard errors
will be deflated, producing inflated t F, and R? statistics, leading to possible
erroneous inferences, Correcting for serial correlation amounts to a crucial aspect
of causal modelling, thus highlighting the importance of the Durbin-Watson statistic.

The Durbin-Watson statistic, otherwise known as the d statistic, is a test of
the significance of serial correlation in a first-order autoregressive process:

n

Z(Ur_ U
t=2
>

d=
t=1

where u represents the error values (which are both positive and negative, with
an assumed mean of zero.) The d statistic will tend to be small for positively
autocorrelated error terms and large for errors that are negatively autocorrelated.
Durbin and Watson have worked out upper and lower bounds of the statistic,
with an area of uncertainty in between, As a rule of thumb, a d statistic of 2.0
{£0.2) indicates the absence of serial correlation in the disturbances. It is also
important to note that the statistic is not applicable in cases with Jagged endogenous
variables—since the test was developed for non-stochastic vectors of explanatory
variables (Durbin and Watson, 1950; 1951).

The Durbin-Watson statistic is no longer valid when there is a coincidence
of lagged endogenous variables and autocorrelated disturbances. In that case, the

5. The smaller the variance of a parameter estimate, the less sensitive the estimate will be to errors
in the independent variables. Furthermore, the smaller the correlation among the independent variables,
the higher will the precision of the regression estimates be. However, computational precision does
not necessarily guarantee that the most theoretically precise estimation procedure has been used. (See
Rao and Miller, 1971, 24

6. The “bias’’ of a parameter estimate is the difference between the mean value of the distribution
of the estimate and its “true” parameter value. Bias may also result from the omission of relevant variables
in the equation. But this will ‘not increase the variance of the estimates of the coefiicients, nor does
the introduction of superfluous variables severely impede the precision of the estimate. Although no
statistical tool is a substitute for good theory, some errars are likely to have greater consequences for
robust inferences than others, For example, regression coefficients with the wrong sign indicate most
likely that some misspecification has taken place, or that the variables are not appropriately defined,
or that we are mistaken about the “right”’ sign, or that there is an interactive effect which has not
been taken into account. It is often difficult to identify the “real’” reason for a “wrong” sign (Rao and
Miller, 1971, 27-35). “‘Precision’” seeks the minimum variance estimate, regardless of bias. As a summary
statistic, the mean square error provides importance to bias and to precision:

MSE(B) = V(B) + [Bias (8)]?

When the estimated equation is the *“true” equation, ordinary least squares provides the minimum variance
unbiased estimate.
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statistic is asymptotically biased upward toward 2.0 and no longer tests for
autocorrelation. Thus, a non-significant d statistic does not preclude the possibility
that ordinary least squares estimates are inconsistent when there are lagged
endogenous variables in the equation. In the case of simultaneous systems, the
same problem exists for the system endogenous variables., We must replace both
system and lagged endogenous variables through the use of instrumental variables.

A common difficulty in statistical analysis is high collinearity among the
explanatory variables. But we cannot rule out the use of a particular variable
or the estimation of a particular equation simply because of multicollinearity. Other
problems might arise (Rao and Miller, 1971, 48). High intercorrelations result
in the loss of precision, but the exclusion of a theoretically relevant variable on
those grounds might exacerbate serial correlation in the disturbances.” Further,
multicollinearity affects the precision of coefficient estimates rather than their values.

By far the most serious problem in data analysis and parameter estimation
involves measurement error. It is customary to equate measurement error with
fauity data or erroneous quantitative measures. While such problems are undoubtedly
the source of much distortion in both analysis and results, it is important to broaden
the conventional definition in at least two ways. First, specific estimates of the
error in quantitative measures may be obtained from the measures themselves
and incorporated as confidence intervals around the basic data for purposes of
modifying the results according to the degree, magnitude, and direction of cumulated
error.®

The second extension of measurement error thinking lies in the structure of
the underlying equation itself. Measurement error may be attributed to cases where
the magnitude of the disturbance of the error term raises serious questions concerning
the validity of the equation and the viability of the resulting specification. idealiy,
the most desirable situation is one in which (1) efrors in the quantitative measures
are known to be negligible and (2) the disturbance term is small and exhibits
no discernible trend of either positive or negative serial correlation, In practice,
however, neither of these conditions may hold: the extent of fault in the data
is often not known, and the disturbance term exhibits significant serial correlation,
especially in trend analysis of time series data (Blalock, 1965). The methods employed
‘to minimize the effects of serial correlation are discussed momentarily.

7. The precision of the parameter estimate depends upon the serial correlation parameter as well
as upon the process generating the independent variables. Ordinary least squares is still unbiased in
the presence of serial correlation, but it does not have minimum variance. If we can identify the structure
and value of the autocorrelation parameter, then by an appropriate transformation of the variables we
can use ordinary least squares to provide minimum variance estimates. This is appropriate only in the
single equation case where simultaneous effects are not thought to operate. When the dependent variables
in the equation are also serially correlated, then the bias depends also on the parameters that generated
their serial correlation. And when the variance in the error term is not constant, ordinary least squares
does not produce the best linear unbiased estimates (Schink and Chieu, 1966). We have attempted to
attain high precision (by seeking sharp and robust parameter estimates) and minimize bias (by respecifying
each equation 1o account explicitly for the effects of separate independent variables.)

8. The conventional use of measurement error may thus be viewed in the context of confidence
intervals, the problem being defined in terms of the absence of vital information rather than the presence
of known error in the quantitative measures,
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5. Simultaneous Inference and the Problem of Identifiability

When there is mutual dependence among the endogenous variables, simulta-
neous estimation of the parameters is called for (Christ, 1960). This set of procedures
is more complex than standard regression analysis. Estimation in the classical
regression mode involves one dependent variable and several independent ones.
In the simultaneous case there are several jointly dependent variables. This situation
generates an identification problem. This means that even if infinite data were
available from which the reduced form of the parameters could be derived exactly,
the values of the coefficients cannot be estimated without some a priori theoretical
restriction upon the number of exogenous and endogenous variables in each
equation.’

The addition of a priori restrictions to identify an equation is useful only
if the same restrictions are not employed to identify other equations as well. However,
additional a priori information is generally in the form of linear inequalities for
the coefficients to be estimated. Inequalities of this nature add to the efficiency
of the estimates but do not assist in the identification of a particular equation.
Furthermore, if a model is not identifiable, manipulating the equations or the
order of constituent variables will not assure identification: Either a model is
identifiable or it is not.

The problem of identifiability is thus closely related to theory and method
and is central to any model building effort. An equation is identifiable when a
combination of a priori and chservational information allows for a distinction
between the parameters of the equation and those of other equations. By extension,
a model is identifiable if each equation represents a distinct set of relationships.
The problem is one of having sufficient a priori information to distinguish among
equations. A certain minimum is necessary. Beyond that, any added information
may be put to use. In just identified equations there is exactly one way to obtain
the “true’’ equation from the reduced form. In overidentified cases there is more
than one way. In an underidentified situation, where a priori information is insufficient
to provide a discriminating service, there is no way in which the “true” equation
may be recovered or distinguished from others in the same functional form. The
model we have developed through experimentation and alternative specification
is an overidentified set of equations; There is more than one way of retrieving
the reduced form of each original equation. In practical terms, the problem is
generally one of choosing among the various alternatives involving an overidentified
equation or maodel.

it must also be noted that standard statistical theorems developed for the
case in which the explanatory variables are treated as if they were fixed in repeated
sampling cannot be used when there are lagged endogenous variables. Furthermore,
the coincidence of lagged endogenous variables and autocorrelated disturbances
inflates the ¢ statistic and may signal erronecus inferences. Marked departures

9, The two necessary conditions for identifiability are the order and rank conditions. For the order
condition to hold, there must be at least M — 1 independent restrictions in an equation where M is
the number of endogenaus variables. This is clearly an exclusion restriction. The rank condition stipulates
that at least one non-vanishing determinant of the order M — 1 can be formed from the ordinary least
square structure of an equation, corresponding to the variables excluded by a priori specification from
that equation (Fisher, 1966, 3942, 60-62; 1959, 431-447; Hibbs, 1973, App. [l
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from the assumptions underlying the general linear model produce biased parameter
estimates, often necessitating equally marked departures from standard regression
procedures. The practical implications of serial correlation in simultaneous systems
for parameter estimation are sometimes overwhelming.

6. Serial Correlation and Time Dependent Correction

Because the structure of the serial correlation in the disturbances is often
unclear—if it were known then the solution to the problem would be simply
to adjust the parameter estimates accordingly—we are confronted with the necessity
of estimating the nature of the autocorrelation parameter empirically and identifying
the underlying stochastic process. This involves: (a) isolating the systematic compo-
nent of the disturbances, and (b) adjusting the independent variables so as to
develop consistent estimates of the parameters. '

Aitken {1935) has demonstrated that the Generalized Least Squares estimator
produces an unbiased estimate of the error variance when disturbances are
autocorrelated. But the estimate is not the “true” rho. However, it does have
a known statistical distribution and in small samples it is consistent (Hibbs, 1974;
Goldberger, 1965). Our objective is to identify the theoretical structure of the
time dependent parameter, and determine its statistica! properties. B

Four disturbance structures have properties which are tractable and well known:
(1) first order autoregressive process (where each error term (u,) depends only
upon its previous value (u,_,) plus a random component (e} (2) second order
autoregressive structures (where u, depends upon u,_, and U,_,, plus a random
component (e )); (3) first order moving average (where the disturbances depend
only upon a series of temporally adjacent, independently distributed, random
variables; and hence al! the disturbances prior to u,_, do not contribute to generating
u,); and (4) second order moving averages (where, for the same reason, the

autocorrelation of u, is effectively zero with all terms beyond u,_,):

ay u,=pyu_, +e
2) uy=pou, +pyu_, + e
(3) U, =€, ~p,g,_,

4) u=e€ ~pie,_—pye,,

where u, represents the disturbance and e, represents the random component.
tnthe ““real”” world, higher order structures are probably operative, but their statistical
tractability amounts to a major computational problem, and it is not always clear
that the benefits accrued by computational complexity are greater than the costs
incurred.'®

10, Econometricians have focused primarily upon first order autoregressive structures (due to the
ease of computation) and as a resuit a general tendency to assume that the world is of a first order
autoregressive nature pervades much of the econometric literature. In our investigations, however, we
have rarely encountered an AUTO1 structure. An AUTO2 often appears to be a suitable trade-off between
complexity and accuracy (Rao and Griliches, 1969; Orcutt and Winokur, 1969).
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We seek to identify the structure of serial correlation parameters so as to
obtain unbiased general least squares (GLS) estimates of the parameter values
and their statistical variance and other attributes, A critical aspect of GLS involves
a careful analysis of the residuals. There are at least two ways in which this
can be done: The first way involves retrieving the residuals from regression analysis
and then correlating the first t/5terms with the initial value of the residual, generating
empirical values. A correlogram analysis is then undertaken comparing *‘theoretical’”
values (which would be expected from a particular autoregressive structure) to
the empirical ones. The second way, applicable only for autoregressive processes,
involves regressing the residuals (u,) upon their previous values (u,_, for AUTO1
and u,_,, u_,, for AUTO2,) and observing the statistical significance of the
two equations and the value of the Durbin-Watson statistics.

These two procedures are not as clear cut as they might appear. In applied
analysis, for example, it is often difficult to distinguish moving average processes
from autoregressive processes that dampen off sharply (Hibbs, 1974, 51; Hannan,
1960). There are also difficulties in determining whether the discrepancy between
the theoretical autocorrelation parameter and its empirical counterpart is significant
rather than attributable to noise. Conventional statistics of goodness of fit are generally
employed to differentiate significance from noise, Identifying the structure of serial
correlation and making appropriate adjustments amount to an important aspect
of our investigations.

7. Instrumental Variables and Generalized Least Squares

As noted earlier, ordinary least squares yields inconsistent parameter estimates
in dynamic models with iagged endogenous variables and serial correlation in
the error term, The OLS residuals are no longer the “true”’ underlying disturbances
inthat Y,_, has a tendency to co-opt the systematic component of the disturbances.’!
This results in an upward bias for the coefficient of the lagged endogenous variable
and a downward bias for the other exogenous or explanatory variables, frequently
leading to erroneous inferences, This was a particularly serious problem in our
investigations since determining the effects of the previous year’s military allocations
upon the next year's budget amounted to an important aspect of our research.
For this reason we must find ways of compensating for expected distortions.

One important assumption of Least Squares is that the errors are uncorrelated

_with the co-terms and uncorrelated with each other.’® To meet this assumption

11. See Rac and Miller, 1971, Chapter 7. The true error does not depend on the value of the
independent variables, but the residuals do. Residuals, therefore, reflect the properties of the independent
variables as well as the errors and the effects of left out variables. If errors are homoscedastic and
random, the residual corresponding to a particular value of the independent variables has a statistical
distribution with zero mean and homogeneous variance. See Christ, 1966, 394-395, Goldberger, 1964,
232-235, and Johnston, 1972, 208-242.

12. In cases where collinearity among the instrumental variables is high, principal component
transformation produces a new set of variables which are orthogonal linear combinations of the original
variables. The new variables are so ordered so that each vartable explains as much of the remaining
variance of the original variables as possible. In such cases it is possible to use a smaller number of
variables while still accounting for 2 major fraction of the variance explained by the original equation.
We employed a principal components solution only when it was not possible to create instruments
in any octher way due to excessive collinearity among the instruments.
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instrumental variables—which are assumed to be uncorrelated with the error but
highly correlated with the original co-terms—are created. The constructed variables,
which may be linear combinations of the original terms, are therefore assumed
to be uncorrelated with the disturbances, and can thus be used to estimate the
coefficients of the original equations. The original data and not the constructured
terms is used to calculate the residuals (Eisner and Pindyck, 1972).

Instrumental variables can be thought of as Two Stage Least Squares estimators
in which not all the predetermined variables need be used. Rules for a good
instrument include (a) those which must be observed to yield a consistent estimator
and (b) rules designed to improve efficiency while maintaining consistency. For
an equation

Y= Y,_, + EX,+ u,

Two Stage Least Squares is consistent because it replaces Y,_, with Z,, with certain
properties for a consistent estimator. These are: (a} Z, is a linear combination
of the predetermined variables: this is necessary so that Z, will, in the probability
limit, be uncorrelated with the disturbances, u, ,; (b) Y,_, and Z, must be linearly
independent: this occurs if there are enough predetermined variables used in the
first stage (in order to assure that the matrix inverted at the second stage will
be non-singular); (c} Z, must include, as part of its instrument list, all of the
predetermined variables in the system, and (d) the same list of instruments must
be used in the first stage of the regression which will be employed in estimating
the second stage (or the original eguation), otherwise there is no assurance that
all the elements of Z, will be independent of the error term.’?
The equation thus becomes

Yo=Z,+ X, + u,

Z, replaces the lagged endogencus variables Y:—1, and ZX, still represents the
remaining exogenous variables. System endogenous variables are treated similarly
to the lagged term Y,_,.

Good instruments must have the following properties: (a) they must be
predetermined, uncorrelated asymptotically with the disturbances (and a lagged
endogenous variable cannot be treated as exogenous), (b) there must be no
simultaneous feedback loops connecting the equations to be estimated with the
equations explaining the potential instrument; (¢) the disturbances with the equation
to be estimated must not be correlated with the explanatory variable. Predetermined
variables are instrumental because of the above three conditions. In short: A good
instrument must propel the endogenous variable in the equations to be estimated.’™

13. Lagged endogenous variables must not be treated as exogenous, particularly since the number
of predetermined variables cannat exceed the sample size (this is an absolute limit). For purposes of
quantitative analysis, the number of degrees of freedom fost is a critical consideration, as is meeting
the order and rank conditions of identifiability, both of which are restrictions upan the specifications
of the equation.

14, The choice of instruments is theoretically intuitive. A predetermined list can be refined in two
ways: (a) through the use of principal components: this method reduces multicollinearity since the
components are mutually orthogonal, and principal components summarize the information in the list
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The instruments we have employed are listed in Table 1.

The question remains: Is the time dependent correction to be made before
or after the second stage instrumental variable substitution?’® In the analysis reported
below we have followed the algorithms implemented in TROLL by undertaking
generalized least squares first, then the instrumental variable substitution. But we
have tested empirically for the differences that are yielded when the reverse procedure
is employed; that is, first the instrumental variable substitution and then generalized
least squares, and have found no significant differences for the model in Table
1, Several rounds of Generalized Least Squares rarely produce theoretically mean-
ingful results. For this reason, if an initial use of GLS does not appear to correct
for serial correlation adequately, respecification is definitely called for.

Two Stage Least Squares thus “’purges’’ the correlation between the independent
variables and the error term, so that a least squares estimate can be performed
from the reduced form equation (Hibbs, 1974; Rao and Miller, 1971). The first
stage is (a) to regress Y,_, upon the instrumental variables, and (b} replace v _,
by the created counterpart (Z,). if the instrument is a good one, all variables
are uncorrelated with the disturbance term. This method yields consistent estimates
of the parameters for the lagged endogenous variable, and for the parameters
of the exogenous variables. The residuals obtained are now the ““true’’ residuals
and can be used for correlogram analysis. The next step (c) is to use the consistent
estimates of the second stage and the original data to form estimates of the original
disturbances (these disturbances are consistent since they are deduced from
consistent parameter estimates), The following step (d) is to analyze the residuals
for time dependent structure, then (e) generate the Ceneralized Least Sgquares
estimates, which is one method for generating parameter estimates in the presence
of significant serial correlation, 2SLS is thus an instrumental variable substitution
technique since it generates Z, which are independent of the errors. When employed
in conjunction with Generalized Least Squares, we can correct for serial correlation
as well as take into account the simultaneities and interdependencies in the dynamics

- modelled, with the problems mentioned above.

In sum, one correction for the coincidence of lagged endogenous variables
and serital correlation involves a two-stage instrumental variable substitution and
the use of generalized least squares. If we treat lagged endogenous variables as

of instruments; and (b) through structurally ordered instrumental variables, by first establishing a list
of preference ordering of instruments relative to a particular explanatory term; then regressing the endogenous
variable on the instruments in differing combinations to determine whether an instrument further down
the list has an effect or whether its contribution is simply using up a degree of freedom; the constructed
elements of ¥, together with the elements of Z, are then employed as instrumental variables in constructing
Y. See Rao and Miller, 1971; and Eisner and Pindyck, 1972.

15. There are differences of views concerning this ordering, and hence the residuals to be employed
when undertaking an instrumental variable substitution. When combining time dependent corrections
{generalized least squares), and instrumental variables (two stage least squares), it is not intuitively obvious
which residuals, and at which stage, should be used in calculating the relevant statistics for evaluating
the parameters at the final stage. On the one hand it is argued that, when generalized least squares
and instrumental variables are combined, the transformed residuals should be calculated without the
substitution. On the other, it is maintained that substitution should first take place, and then the time
dependent corrections be performed. In the latter case, the proper asymptotic variance-covariance matrix
must contain the instrumental variable substitution. in the former it does not, (Hibbs, 1974; Wallis, 1967;
Eisner and Pindyck, 1972; Fair, 1970).
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endogenous, then a consistent estimate of the equation can be obtained using
an instrumental variable estimator with current and Jagged exogenous variables
as instruments, provided the system has a sufficient number of exogenous variables.
This estimator is robust against all forms of autocorrelation in the disturbances,
but not against serial correlation in the explanatory variables. In this case, it becomes
necessary to estimate the structure of the disturbances, and then confront the
problem of sequencing with respect 1o generalized least squares and two stage
least squares, as noted above,

8. System Change and Breakpoint Analysis

The occurrence of breakpoints and problems relating to the estimation of
system change and prediction beyond the break are central issues in model building
and forecasting. Sharp shifts in dynamics may signify discontinuities in some
underlying empirical realities (but they may well be quite natural regularities of
other empirical realities). Often breakpoints indicate incompleteness of theoretical
specification.

We can think of breakpoints either as sharp changes in slope, or as non-lineari-
ties. Some shifts may signify discontinuities which may be directly included in
the equation as dummy variables (as we have done when defining changes in
rivalling Powers). Econometricians use similar procedures (Thiel, 1970). The incor-
poration of a break directly in the analysis increases the fit between historical
and estimated data and between historical and simulated dynamics.

In some instances the break results from quantitative changes. In others it
results from qualitative changes. There are as yet no known methods whereby
the particular points at which a significant shift has occurred may be identified
precisely (other than costly and complicated iterative procedures). For this reason,
the best alternative is to plot the data, then to hypothesize the occurrence of
a break based on empirical observation and to test for its statistical significance.
The Chow test is still the most appropriate significance test for breakpoints.
Quasi-experimental techniques for coping with such problems provide additional
perspectives upon these issues but they are cumbersome and complicated {Chow,
1960; Campbeil and Stanley, 1966).

The Chow test, modified recently by Fisher, involves the comparison of a
set of coefficients with those of another array of which it is a subset, as follows:
The least squares regression for an equation with k variables is applied to the
first set of cbservations (sub-period of m observations) and the residual sum of
squares (u'u) computed. A Jeast squares regression is fitted again to the entire
sample (n observations) and the new residual sum of squares (u/u,) computed.
The test of the null hypothesis that the m observations obey the same relations
as the n observations is provided by an F statistic with (m, n — k) degrees of
freedom:'®

16, In our analysis we have compared the residuals generated by the regression of the n observations
with those of the m observations (given k number of variables) and it becomes clear that in instances
where the deviations are great the F test picks these and registers as statistically significant, thereby
rejecting the null hypothesis (Fisher, 1970b; Johnston, 1972, 206.207).
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Wu-wu)/m
=

wu}/(n—k

We have inquired into the statistical significance of diiferences among two
sets of regressions, one yielding coefficients for the period as a whole, the other
for a particular sub-period. Cases where a significant difference emerged provided
important clues into system change or transformation. Phase shifts can be identified
with systemic breaks. But breaks which are more in the nature of non-linearities
may not always be identified as such, The result is simply a “bad” fit which
cannot be attributed to an underlying break, but rather to non-linearities which
are not specified in the functional form of the equation. A search for breakpoints
also assists in identifying poor specification or areas of misspecification.

In sum, the analysis of residuals and identification of breakpoints becomes,
much like sensitivity analysis, a critical aspect of the research enterprise.””

9, Simulation, Forecasting and Policy Analysis

The next step in this analysis is to develop viable simulations of the system
as a whole and observe their behavior under various conditions. This is done
in two stages: the key relationships are simulated equation by equation (by employing
historical values at each iteration in place of calculated endogenous variables),
and then the entire system is simulated in simultaneous mode (by employing
calculated values for all endogenous variables). A successful (single equation) forecast
increases the probability of a valid simulation: a successful simulation almost certainly
implies a successful forecast.™ A forecast {of a single equation) is conducted
independently of the other equations and its solution depends primarily upon
the existence of historical values for the endogenous variable period by period.
A simulation involves the entire system of equations, solvingfor the jointly dependent
variables without recourse to their historical observations. A completely self-con-
tained structure is operative in a simulation, thus allowing for a fairly controlied
method of varying parameters and observing the implications for the system as
a whole (Naylor, Wertz, and Wonnacott, 1968).

The TROLL facilities, upon which our simulation of the system of simultaneous
equations was undertaken, caiculate values of the jointly endogenous variables
in the model over a period of time for which exogenous data are available, or
for any sub-period therein. For simulation four types of information are required:

17. Forpurposes of experimentation and increasing our understanding of the model we have developed,
we found it desirable to identify and test for breakpoints (using the Chow test) in cases where the coefficients
were estimated with and without the uses of instrumental variables. We found, generally, that there
were no significant differences in terms of the results obtained with and without the use of instrumental
variable substitution.

18. Econometricians generally talk of forecasting when the endogenous variable in each equation
is replaced by historical values at each point, and simulation when the coeificients, the exogenous variables
and the error terms ogether with the jointly dependent variables are employed to generate an antificial
replication of the entire system. This replication is commonly referred to as simulation. In looser parlance,
we often talk of forecasting as simulation beyond the existing data which was used to estimate the
coefficients initially, Clearly, that is not the usage intended in this paper.
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the structure of the model itself, initial historical (or known) values for the endogenous
variables, data for the exogenous variables, and constant files (coefficients and
parameters which have been estimated earlier).

The model we have examined is a simultaneous system with as many
endogenous variables as equations. Initial values are required only for the exogenous
variables, all inclusive of lags and leads. Values for the constants must be supplied,
but if their numerical values are specified in the model, they are taken as such
and incorporated with the other pertinent information.

A dynamic simulation proceeds as follows: For a given model in which Y
and Z are endogenous variables, and A, B, X are exogenous variables:

Y=a +b A +b,Z _, +u,

Ze=a,+ by X, + b, B, + u,

In the first period, Y, and Z, are calculated using exogenous values for A, B,
and X,, and an exogenous starting value for the endogenous variable Z,_;. In
the second period, (t + 1), ¥,,, and Z,_, are computed using exogenous values
for A _;, B,,,, and X, and the simulated endogenous value for Z, from the
previous period. Historical values for the endogenous variables are no longer
employed. This procedure then continues, calculating the endogenous variables
from their simulated values during the previous period and the current values
of the exogenous variables. It must be noted that at each step.subsequent to
the initial t, historical values for the exogenous variables must be provided.

The solution for a variable at any given period is a function of a series of
iterations in which all the equations in the block are solved and iteration values
of the endogenous variables produced. Convergence criteria are established by
default (or changed by the investigator) and identify the point at which the iteration
has reached a solution. Sometimes it is necessary to relax the convergence criteria
in order to obtain a solution. A common procedure for checking the performance
of the simulation when convergence is attained is to examine the summary statistics,
particularly percent error, and compare the simulated values of the endogenous
variables with the actual, or known, historical values.'®

There are several sources of error in a simulation: First, the disturbance in
period t may not be accurately forecasted; second, there may be errors when
estimating the parameters from observed samples (errors arising during the sampling
period or measurement error); and third, there may be errars in forecasting the
exogenous and lagged endogenous variables for period t.2°

19. If the object is shon-term forecasts, multicollinearity need not necessarily be a drawback. tf
some of the explanatory variables are multicollinear, the prediction interval obtained will be large. By
eliminating some collinear variables one can reduce prediction interval for a given value of the included
independent variables. But the actual outcome will change very little. Pragmatic forecasts and simulation
would be indifferent to the extent of collinearity while sophisticated ones will not. Both will make similar
forecasts and the errors will be very similar (Kuh and Meyer, 1957).

20. The root mean square of the error (RMS) is the most important summary statistic in indicating
how well the simulated modet tracks empirical observations:

R
\/ 2 AP

i=1
RMS error =
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The basic procedure for undertaking simulation experiments is to resimulate
the model with different inputs (or sets of information) from those used in the
base simulation. Changes in parametric values, in estimated coefficients, in
endogenous variables, or in exogenous files may be made. To compare the results
we note the discrepancies between empirical data output for the initial simulation
and that for the modified simulation. For policy purposes it is necessary to modify
the coefficients of key variables and then observe the effects upon the simulated
output. This is done by changing coefficients one by one and obtaining the simulated
output after each modification. Only in this way is it possible to identify the
effects of policy changes upon the entire simulation. This procedure assumes that
changes in one coefficient will not lead to counterbalancing changes in others.

10. Simulation, Forecasting and Policy Analysis: The British Case

By way of providing some empirical reference to the above discussion we
draw upon recent investigations of the British case, 1870-1914. Table Il presents
summary statistics of the mean values of the historical data, the simulated series,
and the forecasted series, and the percentage errors and Root Mean Square errors
of the forecasted and simulated series for each of the dependent variables in
the system of simultaneous equations depicted in Table | and, in diagram form,
in Figure 1. These summary statistics provide useful insights into the structure
of the dynamic system modelled. Space limitations prevent an extensive commentary
upon the political significance of these results. Some brief observations may be
in order concerning the quantitative findings and their “‘real world” implications.

In terms of colonial expansion, both the simulation and the forecast of British
territorial acquisitions were remarkably successful in capturing the trend, although
they failed to replicate occasional outlying points.

In general, the simulations of military expenditures in the Great Power systems
were quite successful. The British simulation ran slightly lower than the real-world
expenditure levels during the 1870’s. In the earlier years of this period, Britain
fought the Ashanti Wars and was involved in other colonial conflicts, but in many
respects the period was characterized by an 1874 declaration from the Throne
of friendly relations with all Powers. Another peak in 1903 (post Boer War
expenditures} was again not captured, but the simulation was generally extremely
close to actual spending.

Although the mean values for the simulation and forecasts of intersecting
spheres of influence were close to the mean historical values, the percentage
errors-——calculated over the entire period—were considerable. Percentage errors

= number of periods simulated
A, = historical (known empirical) values for an endogenous variable
P, = simulated values for the endogenous variable.
The statistic thus accomodates changes in the scales of variables. Other important summary statistics
include the mean of the forecast and the mean of the simulation, the percentage error for each, their
mean errors, the mean of their first differences, the mean of their percentage first differences. These

" statistics, presented further along, are compared with counterpart statistics for the historical data, and

the discrepancy indicates the extent of fit between actual observations and simulated values. TROLL/T
User’s Guide, 1972, pp. 8-28
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take into account each deviation from the mean in a calculation of the overall
percentage. Since the metrics involved were of small magnitudes—covering the
range of the interaction scale from 1 to 30—any increment of deviation makes
a greater impact on the percentage error calculations than similar increments in
the cases where the metric itself involves large numbers—such as military expendi-
tures in monetary values or colonial area in thousands of square miles.

The actual discrepancy or error between the historical alliance commitments
and the simulated or forecasted commitments was small. But, because of the nature
of the metric involved—low values and variance in the alliance commitment
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series—these minor discrepancies in absolute terms become major ones in percent-
age terms. In such cases, we can only observe these two sets of statistics and
draw the appropriate inferences. Since the actual error between historical and
simulated alliance commitments was very small, we find it reasonable to conclude
that our simulation of these dynamics captured much of the underlying processes.

A similar assessment may be made with respect to the results of the simulation
of prevailing levels of international violence: there was a high level of congruence
between the actual level of violence—as measured by scaled interaction data—and
the simulation and forecast of these levels. The actual error between simulation
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and forecast, on the one hand, and real-world data, on the other, was negligible,
but the percentage errors were considerable. Again, much as in the cases of the
intersection and alliance variables, this outcome is due to the nature oi the metrics
involved.

A successful simulation model should do more than enhance our understanding
of the dynamics of a system and the interdependence among its components.
Once such a model is developed and its parameters estimated from empirical
data—the values being robust and the coefficients statistically significant—we must
still address ourselves to the “so what?’ query, By allowing us to raise questions
of a “what if"’ or “if . . . then . . " nature, a viable simulation should identify
critical intervention points where policy changes (alterations in coefficients) will
yield specific future outcomes.

By modifying the parameters in each equation and observing the changes
in the behavior of the dependent variables, it is possible to draw inferences con-
cerning “real world”’ equivalences and expected behaviors. Although even a
summary discussion of our policy analysis for the British case cannot be presented
here, suffice it to add that the entire system was much more sensitive to upward
swings in the dynamics under consideration than to downward swings. In other
words, the dynamics in question were imbedded, seemingly, in explosive tendencies
which surfaced with any slight upward changes in key parameters, whereas the
system did not respond as dramatically to counterbalancing downward changes
in the same parameters (Choucri and North, 1974},

Such findings bear witness to the complexities of decision-making and indicate
the counter-intuitive tendencies and behavioral characteristics of many large social
systems. This type of experimental application of econometric analysis to political
inquiry provides a methodology for assessing both theory and the outcomes of
conventional regression analysis {(including departures therefrom) and also a basis
for experimenting with various alternative policy formulations. Overali, these partial
and, in some instances, non-cbvious outcomes of an “if . . . then . . . nature
serve as further tests of a model and accompanying equations. Political scientists
must now investigate the full range of political problems to which econometric
analysis and forecasting might be put to use. Unless the issues raised in the earlier
sections of this paper are given sufficient attention, it is unlikely that the exercise
described in the last sections will be undertaken with any degree of validity.
And, at this stage in the development of quantitative methodology, the issues
of theory, method and procedure assume paramount importance.
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