
High-Performance Computational Genomics
by

Ariya Shajii
B.S., Boston University (2016)

S.M., Massachusetts Institute of Technology (2018)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 23, 2021

Certified by. .
Bonnie Berger

Simons Professor of Mathematics
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Certified by. .
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

High-Performance Computational Genomics

by

Ariya Shajii

Submitted to the Department of Electrical Engineering and Computer Science
on August 23, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Next-generation sequencing data is growing at an unprecedented rate, leading to new
revelations in biology, healthcare, and medicine. Many researchers use high-level
programming languages to navigate and analyze this data, but as gigabytes grow to
terabytes or even petabytes, high-level languages become prohibitive and impractical
for performance reasons. This thesis introduces Seq, a Python-based, domain-specific
language for bioinformatics and genomics that combines the power and usability of
high-level languages like Python with the performance of low-level languages like C
or C++. Seq allows for shorter, simpler code, is readily usable by a novice program-
mer, and obtains significant performance improvements over existing languages and
frameworks. Seq is showcased and evaluated by implementing a range of standard,
widely-used applications from all stages of the genomics analysis pipeline, including
genomic index construction, data pre- and post-processing, read mapping and align-
ment, and haplotype phasing. We show that the Seq implementations are up to an
order of magnitude faster than existing hand-optimized implementations, with just a
fraction of the code. Seq’s substantial performance gains are made possible by a host
of novel genomics-specific compiler optimizations that are out of reach for general-
purpose compilers, coupled with a static type system that avoids all of Python’s
runtime overhead and object metadata. By enabling researchers of all backgrounds
to easily implement high-performance analysis tools, Seq aims to act as a catalyst for
scientific discovery and innovation. Finally, we also generalize many of the principles
used by Seq to create a domain-configurable compiler called Codon, which can be
applied to other domains with similar results.

Thesis Supervisor: Bonnie Berger
Title: Simons Professor of Mathematics
Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to firstly thank my research advisors, Bonnie Berger and Saman Ama-

rasinghe. I first began working with Prof. Berger as a junior in high school, nearly

8 years ago at the time of writing. Her continued support, guidance and mentorship

over this period have without question shaped me as a scientist, researcher, and in-

dividual. I also began working with Prof. Amarasinghe after my master’s work at

MIT, producing the work presented in this thesis. His precise and methodical ap-

proach to research and engineering problems taught me how to approach seemingly

insurmountable challenges, a skill I will cherish for the rest of my scientific career.

Prof. Berger and Prof. Amarasinghe offered me complementary advising styles and

often viewed research questions in unique ways, affording me the opportunity to think

about many different perspectives and viewpoints. I am beyond grateful to have had

the opportunity to learn from and work under them.

I would also like to thank my academic advisor, Manolis Kellis, for his invaluable help

and support with navigating my time at MIT. I would further like to thank Ibrahim

Numanagić, whom I began working with during his time as a postdoc at MIT, and

continue to collaborate with today—this thesis would not have been possible without

Ibrahim’s guidance and collaboration. I would like to thank the many Berger and

Amarasinghe lab group members that I have had the privilege of interacting with

over the years, particularly Deniz Yorukoglu and Yun William Yu, who advised and

mentored me from an early stage. I would like to additionally thank Patrice Macaluso

and Mary McDavitt for their steadfast kindness and support, administratively and

otherwise.

Last but certainly not least, I would like to thank my family for their unwavering

support throughout this journey: my mother (Haleh), father (Ali), brother (Aram)

and sister (Kimia).

5

6

Previous Publications of This Work

Parts of this thesis are based on the following works:

• “Seq: a high-performance language for bioinformatics,” which appeared in

OOPSLA (2019) with co-authors Ibrahim Numanagić, Riyadh Baghdadi, Bon-

nie Berger and Saman Amarasinghe [109].

• “A Python-based programming language for high-performance computational

genomics,” which appeared in Nature Biotechnology (2021) with co-authors

Ibrahim Numanagić, Alexander T. Leighton, Haley Greenyer, Saman Amaras-

inghe and Bonnie Berger [111].

• Yet to be published work on Codon, a generalization of Seq to different do-

mains, with co-authors Gabriel Ramirez, Jessica Ray, Haris Smajlović, Ibrahim

Numanagić, Bonnie Berger and Saman Amarasinghe.

Note that I, Ariya Shajii, was first or co-first author in each of these works.

7

8

Contents

1 Introduction 21

1.1 The Need for a New Language . 23

1.2 Thesis Contributions . 25

1.3 Thesis Roadmap . 26

2 Background 29

2.1 A Primer on Computational Genomics 29

2.2 A Primer on Compilers . 33

2.2.1 Front-end . 33

2.2.2 Mid-end . 34

2.2.3 Back-end . 35

2.2.4 Domain-specific compilers . 35

3 The Seq Language 37

3.1 Seq at a Glance . 38

3.2 Design Goals . 40

3.3 Sequences and 𝑘-mers . 41

3.4 Pipelines and Partial Calls . 42

3.4.1 Parallelism . 43

3.5 Pattern Matching . 45

3.6 The bio Module . 45

3.7 Other Features . 47

9

3.7.1 External functions . 47

3.7.2 Type extensions . 47

3.8 Differences with Python . 48

3.8.1 Basic types and metadata overhead 49

3.8.2 Generic functions, methods and types 53

3.8.3 Duck typing . 55

3.8.4 Type inference . 56

3.8.5 Limitations . 57

3.9 Conclusion . 58

4 Type System 59

4.1 Localized Type System with Delayed Instantiation 61

4.2 Static Evaluation . 64

4.3 Special Cases . 66

4.3.1 Optional values . 66

4.3.2 Function passing . 66

4.3.3 Miscellaneous considerations 67

4.4 Examples . 68

4.4.1 Recursive flatten . 68

4.4.2 Dependent collections . 69

4.5 The LTS-DI Algorithm . 71

4.5.1 Notations and definitions . 72

4.5.2 The algorithm . 73

4.5.3 Differences with standard Hindley-Milner inference 73

4.6 Limitations . 76

4.7 Conclusion . 77

5 Intermediate Representation 79

5.1 High-Level Design . 81

5.2 Operators . 81

5.3 Bidirectional Intermediate Representations 82

10

5.4 Seq IR in Action . 84

5.5 Passes and Transformations . 84

5.6 Code Generation and Execution . 85

5.7 Conclusion . 89

6 Genomics-Specific Optimizations 91

6.1 Making Sequences Efficient . 92

6.1.1 Definitions . 93

6.1.2 Implementation . 94

6.2 𝑘-mers . 97

6.2.1 Reverse complement . 97

6.2.2 𝑘-mer hashing . 98

6.2.3 Hamming distance . 99

6.3 Pattern Matching . 100

6.4 Pipelines . 101

6.4.1 𝑘-merization . 103

6.4.2 Reverse complementation . 105

6.4.3 Canonical 𝑘-mers . 105

6.4.4 Software prefetching . 106

6.4.5 Inter-sequence alignment . 111

6.5 Conclusion . 115

7 Other Optimizations 117

7.1 Python-Specific Optimizations . 117

7.1.1 Dictionary get/set optimization 117

7.1.2 Intermediate string optimizations 118

7.2 General-Purpose Optimizations . 119

7.2.1 Analyses . 120

7.2.2 Passes . 122

7.3 Conclusion . 126

11

8 Beyond Genomics 127

8.1 Designing Domain-Specific Languages 127

8.2 A Domain-Extensible Compiler . 129

8.2.1 Extending the parser . 131

8.2.2 Extending the IR . 131

8.3 Examples . 133

8.3.1 Seq . 133

8.3.2 Sequre: a DSL for secure multi-party computation 133

8.3.3 CoLa: a DSL for block-based compression 137

8.4 Conclusion . 141

9 Applications and Results 143

9.1 End-to-End Applications . 143

9.1.1 Reference sequence processing 146

9.1.2 Read sequence processing . 148

9.1.3 Data pre- and post-processing 155

9.1.4 Downstream analysis . 157

9.2 Bioinformatics-Specific Benchmarks 158

9.2.1 Improvements over Python . 161

9.2.2 Improvements over C++ . 163

9.2.3 Effects of parallelization . 165

9.3 General-Purpose Benchmarks . 166

9.4 Conclusion . 168

10 Related Work 171

10.1 Genomics . 171

10.2 Type Checking . 172

10.3 Intermediate Representations . 175

10.4 Extensible Compilers . 176

11 Conclusion 177

12

11.1 Future Work . 178

11.2 Closing Remarks . 179

A Seq Tutorial 181

A.1 Reading Sequences from Disk . 181

A.2 Building an Index . 182

A.3 Finding Seed Matches . 184

A.4 Smith-Waterman Alignment and CIGAR String Generation 185

A.5 Pipelines . 187

A.5.1 Parallelism . 189

A.6 Domain-Specific Optimizations . 190

A.7 Final Code Listing . 191

A.8 Using Non-Seq Libraries . 192

B Selected Code Listings 195

B.1 Code from SNAP Benchmark . 195

B.2 Code from SMEMs Benchmark . 200

C Seq Reference Guide 203

C.1 Seq Standard Library . 203

C.2 Seq vs. Python – A Cheat Sheet . 205

C.2.1 Additional types . 205

C.2.2 Additional keywords and annotations 206

C.2.3 Static types . 206

C.2.4 Tuples . 207

C.2.5 Scopes . 207

D Seq AST and IR Listings 209

D.1 AST Nodes . 209

D.2 SIR Nodes . 212

13

14

List of Figures

1-1 Cost of sequencing over time. 22

2-1 Visualizations of two standard computational genomics applications. . 30

3-1 Example 𝑘-merization and seeding application in Seq and C++. 38

3-2 Example 𝑘-mer counting application in Seq. 39

3-3 Example of seq and 𝑘-mer type usage. 42

3-4 Example of pipeline usage in Seq. 43

3-5 Example of parallel pipeline usage in Seq. 44

3-6 Example usage of match. 45

3-7 Example usages of match on sequences in Seq. 46

3-8 Example of external function usage in Seq. 47

3-9 Example of type extension in Seq. 48

3-10 Seq versus CPython for a simple float assignment. 51

3-11 Object metadata overhead visualization. 51

3-12 Metadata overhead in Python from 𝑘-mer counting. 52

3-13 Metadata overhead in Python from arrays. 52

3-14 Seq’s implicit generic type parameters. 54

3-15 Seq’s explicit generic type parameters. 55

4-1 Example of type inference and function instantiation in LTS-DI. . . . 61

4-2 Examples of cases that cannot be type checked by LTS-DI. 62

4-3 Example of monomorphization and static evaluation in LTS-DI. . . . 65

15

4-4 Example of LTS-DI involving flattening a nested collection. 68

4-5 Example of LTS-DI involving collections with unknown, dependent types. 70

4-6 Difference between ML type systems and LTS-DI. 76

5-1 Seq’s compilation pipeline. 80

5-2 Hierarchy of different SIR nodes. 81

5-3 Primitive operators in Seq via @llvm tag. 82

5-4 Equivalent IR for a simple Fibonacci function in Seq. 84

5-5 Simple integer addition constant folder pass in Seq IR. 85

5-6 Example of bidirectional compilation in Seq IR. 86

5-7 Compilation of Seq generators. 88

6-1 Effects of several compiler optimizations performed by Seq. 95

6-2 𝑘-mer matching performance. 101

6-3 Hypothetical pipeline for read mapping in Seq. 102

6-4 Prefetch pipeline optimization. 107

6-5 Example of Seq’s prefetch optimization. 109

6-6 Function-to-coroutine transformer for Seq IR. 112

6-7 Coroutine scheduler for Seq’s prefetch optimization. 113

6-8 Inter-sequence alignment pipeline optimization. 114

7-1 Example of dictionary optimization execution. 118

7-2 Simplified concatenation/output optimization. 119

7-3 Example for loop control-flow graph. 121

7-4 Simplified SIR equivalent of a for-loop. 122

7-5 Simplified C++ implementation of for loop lowering. 122

7-6 Simplified C++ implementation of constant propagation. 124

8-1 Codon’s compilation pipeline. 130

8-2 32-bit float CustomType . 132

8-3 Example of secure multi-party computation. 134

8-4 Sequre performance results. 135

16

8-5 Sequre IR optimizations. 137

8-6 CoLa vs. C for Hilbert space-filling curve. 139

8-7 CoLa PTree example. 141

9-1 Seq end-to-end application results. 144

9-2 Bioinformatics benchmarks results. 159

9-3 Python results. 168

9-4 Word count benchmark implementations. 169

9-5 Word count benchmark results. 169

17

18

List of Tables

3.1 Summary of some of Seq’s genomics-specific language constructs. . . . 40

3.2 Examples of Seq types mapping to LLVM types. 53

5.1 Listing of SIR nodes, LLVM IR analogs, and examples. 80

9.1 CORA results. 147

9.2 AVID results. 149

9.3 BWA-MEM results. 151

9.4 mrsFAST results. 152

9.5 minimap2 results. 154

9.6 GATK results. 156

9.7 UMI-tools results. 156

9.8 HapTree-X results. 158

9.9 Dynamic language results. 162

9.10 Static language results. 163

9.11 Library results. 164

9.12 Seq runtimes on multiple threads. 166

D.1 Listing of simple AST statements. 209

D.2 Listing of complex AST statements. 210

D.3 Listing of AST expressions. 211

D.4 Listing of builtin SIR types. 212

D.5 Listing of SIR variables. 212

19

D.6 Listing of SIR values. 213

20

Chapter 1

Introduction

“Big data” has become a topic of popular interest in recent years, both in terms

of what new insights various big data sources can provide us, as well as the unique

computational challenges they pose. Over the past several decades, fields like physics,

cosmology, meteorology, finance, and indeed genomics, have all been revolutionized

by our newfound ability to store and analyze massive datasets at scale. Even as

data continued to increase exponentially in size, so too did our computational power

thanks to the promise of Moore’s Law [107]. However, for the first time since its

inception, we are failing to meet the exponential trend posited by Gordon Moore in

the mid-1960s. As a result, high-performance algorithms, methods, and tools are now

more important than ever before, as we can no longer rely on hardware to compensate

for inefficient software.

In this work, we will primarily focus on perhaps the fastest-growing of the “big data”

domains: genomics [119]. Advances in sequencing technologies have culminated in

an unprecedented data explosion within the field. Figure 1-1 shows sequencing costs

as a function of time, as compared to projections based on Moore’s Law; costs have

dropped significantly faster than what Moore’s Law would have predicted, and the

amount of generated sequencing data has grown exponentially as a result [85]. A

tremendous amount of research is consequently being devoted to developing high-

21

2001 2004 2007 2009 2012 2015 2018 2020

$1k

$10k

$100k

$1M

$10M

$100M

Moore’s Law

C
os

t
pe

r
G

en
om

e

Cost of Sequencing

$0.01

$0.1

$1

$10

$100

$1000

C
os

t
pe

r
M

eg
ab

as
e

Figure 1-1: Cost of sequencing over time, as compared to projections based on Moore’s
Law. Results are as of August 2020 (https://genome.gov/sequencingcosts).

performance tools and algorithms for genomic data analysis, both from an algorithm

design standpoint and a from a software engineering and optimization standpoint

[76, 75, 129, 87, 128, 112]. This research ultimately leads to new revelations in

biology, medicine, and healthcare.

However, despite relying heavily on optimized, high-performance software, genomics

and bioinformatics face a host of critical challenges in terms of software develop-

ment, testing, and maintenance, which have even resulted in reproducibility issues

throughout the field [98, 17, 69]. There are several key reasons for this, including:

• New sequencing technologies and data types are produced regularly, necessi-

tating frequent updates to existing software in order to keep pace, which often

leads to corner-cutting and messy, difficult-to-maintain software.

• Datasets continue to grow in size and scope, meaning a tool or algorithm that

was developed with a particular scale of data in mind (say, gigabytes) will often

need to be fundamentally reworked to be applied to data of a larger scale (say,

terabytes).

• Genomics research is inherently exploratory in nature, meaning the algorithms

22

https://genome.gov/sequencingcosts

and tools that researchers use are constantly shifting to experiment with new

theories and hypotheses.

• Many researchers in bioinformatics are in fact biologists by training rather than

computer scientists or software engineers, and simply lack the expertise to em-

ploy software development best-practices.

• The vast majority of bioinformatics software is developed at research universi-

ties by 1–2 individuals and is not supported by a dedicated team of engineers,

leading to numerous abandoned software projects once the developer(s) gradu-

ate or leave the institution.

• Research priorities often clash with software development priorities, as submis-

sion deadlines frequently result in rushed software that is not properly tested,

and often times does not even work as intended on datasets other than what

its authors experimented with.

• There is simply a lack of good software development tools and languages for

bioinformatics. High-level languages like Python make development easier but

have extremely poor performance on real-world datasets, whereas low-level lan-

guages like C or C++ are significantly more difficult to program with and main-

tain.

1.1 The Need for a New Language

Recent advances in next-generation sequencing (NGS) technologies are continuing the

sequencing revolution, and providing a means to study various biological processes

through a genomic lens. Because of its novel capabilities and vast scale, NGS has

even bigger computational needs, as terabytes of data need to be processed and

analyzed with the aid of various novel computational methods and tools [85]. These

tools [76, 75, 129, 87, 128, 112] are used on a daily basis in research laboratories

and have fueled major discoveries such as establishing mutation-disease links [84] and

23

detecting recent segmental duplications in the genome [15].

Despite these advances, however, many contemporary genomic pipelines cannot scale

with the ever-increasing deluge of sequencing data, which has necessitated impractical

and expensive ad hoc solutions such as frequent hardware upgrades and constant

(re-)implementation of underlying software. Many promising methods are also too

difficult to use and replicate because they are often manually tuned for a single

dataset, further fueling the recent replication crisis [98, 17]. Finally, many tools are

not maintained due to a lack of personnel, expertise, and funds, which has led to

many abandoned code repositories that cannot easily be modified to suit researchers’

needs, although being vastly superior to the well-maintained alternatives in theory.

The root cause of these problems lies in the general-purpose languages that are used

for bioinformatics software development. The most popular programming languages,

like Python and R, are not designed to efficiently handle and optimize for sequencing

data workflows. Even so, researchers often use such high-level languages to analyze

NGS data as they can quickly and easily express high-level ideas, despite a steep

performance penalty. Alternatively, a researcher may manually implement low-level

optimizations in a language like C. However, doing so requires not only a consider-

able time investment, but also performance engineering expertise, and often results

in hard-to-maintain codebases ridden with subtle bugs and tied to a particular ar-

chitecture, especially in a field like computational biology where many researchers

are not software engineers by trade. These issues are further exacerbated as the field

shifts towards the use of third-generation portable sequencers that are powered by

resource-limited devices [79], which warrant entirely different software designs and

optimizations.

In this thesis, we propose a high-performance, domain-specific programming language

(DSL) for bioinformatics and genomics, called Seq1. Over the course of this work, we

will describe why and how a DSL can significantly enhance both software performance
1https://seq-lang.org

24

https://seq-lang.org

and ease of software development, maintenance, and reuse through novel compiler

optimizations and language features.

Seq circumvents the tedium of learning a new language by borrowing the syntax,

semantics and libraries of the ubiquitous Python2 programming language, which is

used extensively in bioinformatics and beyond [105]—in fact, Python is the most

popular programming language today by many metrics [100]. While Seq emulates

Python, it is a standalone system built entirely from the ground up so as to be

statically analyzable, and is thereby able to achieve radically better performance,

even outperforming C and C++ in many cases. The ability to efficiently execute

Python programs, as well as many of the principles used by Seq, are in fact not

unique to bioinformatics, and lend themselves well to any domain that requires high-

performance. We will also show how Seq can be generalized to a number of different

domains, allowing practitioners to write high-level Python code all the while matching

or surpassing C/C++’s performance.

The dichotomy between high-performance and ease of use is a longstanding issue

in programming, where often one is sacrificed in favor of the other. In this work,

we show that this need not be the case—that it is in fact possible to offer high-

performance through an interface that is familiar, intuitive, high-level and flexible—

thereby democratizing high-performance computing in domains that critically need

it.

1.2 Thesis Contributions

This thesis makes the following contributions:

• We introduce novel programming language features and abstractions tailored for

bioinformatics, which greatly simplify the representations of common algorithms

and patterns in genomics software.
2https://www.python.org

25

https://www.python.org

• We introduce many new genomics-specific compiler optimizations—such as for

optimizing fundamental operations like queries of large genomic index or se-

quence alignment—which are based on the computational domain, its data types

and operations, and its algebraic structure.

• We show how high-level, dynamic languages—the foundation of much bioin-

formatics software—can be statically type checked and compiled to machine

code that does not incur runtime overhead nor runtime type information, by

sacrificing a small set of language features. This is particularly significant in a

field like genomics, where applications often process billions of small sequences

concurrently, thus making any per-object overhead problematic.

• We introduce the notion of “bidirectional” compilation and compiler intermedi-

ate representations, which are more conducive to writing higher-level optimiza-

tions, transformations, and analyses than their alternatives.

• By combining the above contributions, we design and implement Seq, a high-

performance, Pythonic, domain-specific language for bioinformatics and ge-

nomics.

• We show how Seq can greatly enhance the performance and code simplicity of

many common, real-world applications and tools, as well as those of various

benchmarks.

• We show how the principles used by Seq—from static type checking to bidi-

rectional compilation—can be generalized to new domains with similar results.

To that end, we implement Codon, a domain-configurable compiler framework

built on Seq’s foundation.

1.3 Thesis Roadmap

The remainder of the thesis is organized as follows:

26

• Chapter 2 gives background information on computational genomics and on

compilers, laying the groundwork for much of what follows.

• Chapter 3 introduces the Seq language, while providing multiple examples of

Seq’s novel, domain-specific language constructs and features.

• Chapter 4 discusses Seq’s type system, and the approaches taken in order to

compile Python-like code to machine code without runtime overhead.

• Chapter 5 describes Seq’s intermediate representation, optimizations frame-

work, and the ensuing code generation.

• Chapter 6 lays out the many domain-specific optimizations performed by the

Seq compiler, as well how several of Seq’s domain-specific data types are imple-

mented.

• Chapter 7 describes additional compiler optimizations, including Python-specific

and general-purpose ones.

• Chapter 8 shows how Seq can be generalized to new domains by designing a

domain-extensible compiler built on Seq’s foundation.

• Chapter 9 provides performance results on real-world, end-to-end applications

as well as numerous benchmarks, both domain-specific and general-purpose.

• Chapter 10 discusses related work pertaining to multiple facets of this thesis.

• Chapter 11 provides closing remarks and concludes the thesis.

27

28

Chapter 2

Background

Much of the work presented in this thesis lies at the intersection of computational

genomics and compilers. In this chapter, we present the relevant background infor-

mation on each of these fields.

2.1 A Primer on Computational Genomics

The fundamental data type in computational genomics is the sequence, which is con-

ceptually a string over Σ = {A, C, G, T}, representing the four nucleotides (also called

bases) that comprise DNA. Sequences come in several different forms, with vary-

ing properties such as length, error profile and metadata. For example, genome se-

quencing—a process that determines the DNA content of a given biological sample—

typically produces reads: DNA sequences roughly 100 bases in length, with a sub-

stitution error rate less than 1% and metadata consisting of a unique identifier and

a string of quality scores, indicating the sequencing machine’s confidence in each re-

ported base of the read. Reads are often analyzed in the context of a reference genome,

a much longer (in the case of human, 3 gigabase-length) sequence that represents the

consensus sequence of an organism’s genome in its entirety. A standard first step in

nearly any sequence analysis pipeline is sequence alignment, which is the process of

29

ACGT

Sequenced
reads

Constituent
k-mers

de Bruijn graph
over k-mers

ACGT

۔۔۔ ۔۔۔

Donor
genome

Reference
genome

Sequenced
read

k-mer
index

A

C

G
Alignment

Donor
genome

Constituent
k-mers

(a) Overview of the alignment process
for sequencing data. A sequencing ma-
chine produces a read: a roughly 100
base pair DNA sequence randomly sam-
pled from the donor’s genome. Most align-
ment algorithms then split this read into
𝑘-mers—fixed length-𝑘 subsequences—and
query these 𝑘-mers in an index of 𝑘-mers
from the reference genome to determine
candidate alignment positions. Finally, full
dynamic programming alignment (typically
via an adapted Smith-Waterman algorithm)
is carried out to produce the final align-
ment.

ACGT

Sequenced
reads

Constituent
k-mers

de Bruijn graph
over k-mers

ACGT

۔۔۔ ۔۔۔

Donor
genome

Reference
genome

Sequenced
read

k-mer
index

A

C

G
Alignment

Donor
genome

Constituent
k-mers

(b) Overview of de novo genome assembly
from sequencing data. Sequenced reads are
partitioned into constituent 𝑘-mers, which
are then taken to be nodes in a de Bruijn
graph whose edges represent (𝑘 − 1)-length
overlaps. Other formulations use (𝑘 − 1)-
mers (two for each original 𝑘-mer) as nodes
with the original 𝑘-mers represented by the
edges. The assembled sequence corresponds
to an Eulerian path on this graph.

Figure 2-1: Visualizations of two standard computational genomics applications.

30

identifying the position in the reference sequence to which a particular read aligns

with the smallest edit distance (although many different formulations of this problem

exist, such as finding all alignments under a given edit distance threshold). To this

end, reads are typically first split into fixed length-𝑘 contiguous subsequences called

𝑘-mers, which are then queried in an index of 𝑘-mers from the reference to guide the

alignment process, as shown in Figure 2-1a. The index itself is an abstract data type

that maps 𝑘-mers to positions (also called loci) in the reference at which they appear,

and is often implemented in practice as a hash table or FM-index [77, 49].

Due to the large memory footprints of these structures (roughly 5 gigabytes for opti-

mized FM-indices and tens of gigabytes for hash tables) given the size of the genome,

coupled with their poor cache performance, many alignment algorithms spend a sig-

nificant fraction of their time time stalled on memory accesses; the fraction of stalled

cycles in these applications can be over 70% depending on the input dataset [10].

Once a candidate locus is found via the index (and possibly after several filtering

steps), a full dynamic programming alignment is performed, usually via a variant of

the Smith-Waterman algorithm. Because dynamic programming alignment is a key

kernel in nearly all alignment algorithms, there has been substantial research into

designing hand-optimized implementations that exploit SIMD vectorization for bet-

ter performance [48, 124, 120]. One additional complication in sequence alignment is

that, while half of all reads will align in the so-called forward direction (i.e. without

modification), the other half will only align in the reverse direction, meaning the

read must be reverse complemented before alignment. Reverse complementation of

a sequence is an operation where the sequence is reversed, and A-bases are swapped

with T-bases while C-bases are swapped with G-bases (and vice versa). The fact

that half the reads are reverse complemented with respect to the reference genome is

a biproduct of the double-stranded nature of DNA, and ultimately leads to reverse

complementation being a very common operation that is done on sequences.

Alongside alignment, another common application in computational genomics is de

novo assembly, where the reads are used to “reconstruct” the donor genome, in the

31

absence of a predefined reference sequence. While several approaches to this problem

exist, perhaps the most common is to again partition the reads into 𝑘-mers, build a de

Bruijn graph whose vertices are these 𝑘-mers with edges indicating that a given 𝑘-mer

overlaps with another, and finally to find an Eulerian path through this graph, which

would encode the assembled sequence [60]. An overview of this process can be seen in

Figure 2-1b. As in alignment, there are several additional steps involved in practice,

such as counting and filtering 𝑘-mers, as well as error correction (as assembly is more

sensitive to errors than alignment) [113].

Looking further downstream in the genomic analysis pipeline, computational biolo-

gists employ a slew of techniques to handle the problems at hand. However, virtually

any downstream model or algorithm, regardless of its domain (machine learning,

graph algorithms, etc.), is built on top of the sequence manipulation building blocks

described above. For example, structural variation detection (the discovery of novel

genomic rearrangements) starts by analyzing read alignment irregularities to detect

potential breakpoints of a rearrangement, and proceeds by correcting those align-

ments via more advanced read alignment schemes that utilize 𝑘-mers and FM-indices.

Many other problems, such as mutation calling, gene copy number variation detec-

tion, genome-wide association studies and cancer driver identification, proceed in a

similar fashion. Thus, the common threads between alignment, assembly and many

other applications in the genomics domain are the data types used (i.e. various types

of sequences like reads, reference or fixed-length 𝑘-mers) and the low-level operations

performed on them (i.e. some form of matching, indexing, splitting sequences into

subsequences or 𝑘-mers, reverse complementation, etc.). However, these operations

are often embedded in vastly different higher-level algorithms; compare, for example,

the dynamic programming involved in alignment and the de Bruijn graph path finding

involved in assembly.

32

2.2 A Primer on Compilers

Compilers in general are exceedingly complex pieces of software that undertake a

number of different tasks and operations [39]. At the most abstract level, compilers are

programs that convert code from a source language to a target language. For example,

a C compiler would typically convert C source code into assembly language or machine

code. Sometimes, compilers are a part of larger systems that are responsible for

executing the input program as well; for example, Python uses a compiler to convert

Python programs into bytecode, a simplified, linear representation of the program,

which is then executed by the Python virtual machine. Importantly, compilers must

preserve the semantic meaning of the program they are translating: the assembly

code generated by a C compiler must adhere to the original C program’s behavior as

dictated by the C language specification. Further, compilers typically perform code

optimizations or analyses to improve on the source program in some way, without

altering its semantics. The objective of these could be to reduce code size, make the

program faster, limit memory footprint, or anything else.

With these goals in mind, most compilers are designed with the following high-level

components.

2.2.1 Front-end

A compiler front-end is responsible for parsing the input source program. Thereby,

it is typically converted to an abstract syntax tree (AST), a tree representation of

the original code that retains the program’s semantics but strips away superfluous

language features like the notion of operator precedence, parenthesis, indentation, and

more. Many front-ends also perform type checking, which is the process of assigning

types to AST nodes. For example, the AST node for the + operator in the expression

2 + 2 would be assigned the type int by the C compiler’s type checker, whereas 2

+ 2.5 would be assigned type double, representing a floating-point type.

33

2.2.2 Mid-end

While they are a simplification of the original program, ASTs nevertheless still often

include many more types of nodes than what is necessary to capture the source code’s

semantics. For example, many different types of nodes in an AST might be logically

equivalent to a single operation or construct. C arrays, for instance, are in fact

logically equivalent to pointers, potentially leading to multiple AST representations

of the same concept. For this reason, many compilers contain a mid-end that converts

the AST to a simplified representation—called an intermediate representation (IR)—

that consists of a much more limited set of nodes or constructs.

IRs are particularly useful for program analyses, transformations, and optimizations,

and the compiler mid-end is usually where these operations are performed. These

operations are collectively referred to as passes. Passes might depend on other passes;

for example, a pass to eliminate dead code might rely on a pass to fold constants so

as to determine regions of code that will never be executed. Many IRs thus include

infrastructure for writing, scheduling, and running passes.

Integral to IRs and IR passes is the concept of lowering, which is the process of

eliminating certain node types by replacing them with other semantically equivalent

IR structures. For example, a for-loop in C might have a dedicated IR node, but

could be lowered to a series of branches or gotos during compilation. Lowering is

important because certain passes only make sense at a particular level of abstraction,

i.e. before or after certain nodes have been lowered. After the loop lowering in the

previous example, for instance, it is much more difficult to reason about the loop

parameters like bounds or step size, and thus optimizations like loop tiling or strip-

mining become impractical—these optimizations would therefore be performed prior

to loop lowering. On the other hand, various control flow analyses might be more

practical if higher-level control-flow structures have already been lowered to branches

or gotos, meaning they might be performed after loop lowering.

34

2.2.3 Back-end

Finally, the compiler back-end is responsible for actually generating code for the

target, be it machine code, assembly, or something else. This process is highly target-

specific. Generating assembly code, for example, requires instruction selection, reg-

ister allocation, and instruction scheduling, all of which are highly dependent on the

target’s features and instruction set.

As a result, a number of software libraries have been developed to facilitate code

generation for a number of targets. These libraries include LLVM [67], libJIT1, and

GNU lightning2.

2.2.4 Domain-specific compilers

While general-purpose compilers are able to optimize and generate code for programs

across a wide range of applications, there are often missed optimization opportuni-

ties that stem from the specific application area or domain. Since general-purpose

compilers have no knowledge of domain-specific data types or operations, they are

unable to leverage properties of the domain to further optimize code. For instance,

consider an application that works with large matrices, and a series of operations

therein that results in a double-transpose of a large matrix—a general-purpose com-

piler has no way of knowing that transposing a matrix twice has no effect, whereas

a domain-specific compiler can use the algebraic properties of the transpose operator

to do away with the operation entirely.

Hence, domain-specific compilers can often attain better performance than general-

purpose compilers in their respective domains, by incorporating domain-specific opti-

mizations. Such compilers are often accompanied by new or extended domain-specific

languages that are specifically tailored for the domain of interest, with the goal of

simplifying the programming and debugging process within the domain. More specif-

ically, a domain-specific language enables the compiler to recognize and optimize the
1https://www.gnu.org/software/libjit
2https://www.gnu.org/software/lightning

35

https://www.gnu.org/software/libjit
https://www.gnu.org/software/lightning

idioms and patterns that are common within the domain, and at the same time makes

the programmer’s job easier by allowing them to directly express these concepts at a

high level, without worrying about low-level details.

The primary focus of this thesis is on designing a domain-specific language and com-

piler for bioinformatics and computational genomics. Although genomics has seldom

been looked at through the lens of compiler theory and design, we show in this work

that there is much to be gained by doing so.

36

Chapter 3

The Seq Language

In this chapter, we introduce Seq, a domain-specific language (DSL) and compiler de-

signed to provide productivity and high-performance for computational biology. Seq

is a subset of Python, and therefore provides Python-level productivity; yet, the com-

piler can generate efficient code because the language is statically-typed with compile

time support for Python’s duck typing. Seq provides data types tailored to compu-

tational genomics and uses domain-specific information to optimize code. The Seq

DSL allows computational biology experts to quickly prototype and experiment with

new algorithms as they would in Python, without imposing the burden of learning a

new language. Further, Seq is designed to hide all low-level, complex code optimiza-

tions from the end user. Unlike libraries, the Seq compiler can perform optimizations

such as operator fusion and pipeline transformations, which we demonstrate to have

a substantial benefit.

In particular, this chapter does the following:

• We introduce Seq, a domain-specific language and compiler for computational

biology.

• We introduce Seq’s genomics-specific data types (e.g. sequence and 𝑘-mer

types) and operators (e.g. for reverse complementation, 𝑘-merization, etc.), fur-

37

1 from sys import argv
2 from bio import *
3 from genomeindex import *
4

5 # k-mer for indexing
6 K = Kmer[20]
7

8 # create index over 20-mers
9 index = GenomeIndex[K](argv[1])

10

11 # lookup k-mer in index
12 @prefetch
13 def process(kmer, index):
14 # forward lookup:
15 hits_fwd = index[kmer]
16 # reverse lookup:
17 hits_rev = index[~kmer]
18 ... # filter, I/O, etc.
19

20 # sequence-processing pipeline
21 (FASTQ(argv[2])
22 |> kmers[K](step=10)
23 |> process(index))

1 #include <iostream>
2 #include <fstream>
3 #include <string>
4 #include <cstdlib>
5 #include "GenomeIndex.h"
6
7 char revcomp(char base) {
8 switch (base) {
9 case 'A': return 'T';

10 case 'C': return 'G';
11 case 'G': return 'C';
12 case 'T': return 'A';
13 default: return base;
14 }
15 }
16
17 void revcomp(char *kmer, int k) {
18 for (int i = 0; i < k/2 + k%2; i++) {
19 char a = revcomp(kmer[i]);
20 char b = revcomp(kmer[k - i - 1]);
21 kmer[i] = b;
22 kmer[k - i - 1] = a;
23 }
24 }
25
26 void process(char *kmer, int k,
27 GenomeIndex &index) {
28 auto hits_fwd = index[kmer];
29 revcomp(kmer, k);
30 auto hits_rev = index[kmer];
31 revcomp(kmer, k); // undo
32 ...
33 }
34
35 int main(int argc, char *argv[]) {
36 const int k = 20;
37 const int stride = 10;
38 auto *index = GenomeIndex(argv[1], k);
39 std::ifstream fin(argv[2]);
40 std::string read;
41 long line = -1;
42 while (std::getline(fin, read)) {
43 line++;
44 // skip over non-sequences in FASTQ
45 if (line % 4 != 1) continue;
46 auto *buf = (char *)read.c_str();
47 int len = read.size();
48 for (int i = 0; i + k <= len; i += stride)
49 process(kmer, k, index);
50 }
51 }

Figure 3-1: Example 𝑘-merization and seeding application in Seq and C++.

ther augmented with additional language constructs such as compiler-optimized

pipelines and genomic matching, to both simplify the algorithmic descriptions

of complex problems and to enable domain-specific optimizations.

• We show how, in just a few lines of high-level Pythonic code, Seq can express

many complex operations and algorithms.

3.1 Seq at a Glance

Seq provides built-in language-level facilities for seamlessly expressing many of the

types and design patterns found in genomics applications. As an example, consider

reading a set of sequencing reads from a FASTQ file (a standard format for storing

38

1 from sys import argv
2 from bio import *
3

4 K = Kmer[16]
5 counts = {}
6

7 for record in FASTQ(argv[1]):
8 read = record.read
9 for kmer in read.kmers[K](step=1):

10 counts[kmer] = counts.get(kmer, 0) + 1
11

12 ordered = sorted((v,k) for k,v in counts.items())
13 for kmer,count in ordered:
14 print(count, kmer)

Figure 3-2: Example 𝑘-mer counting application in Seq. The shown code prints
unique 𝑘-mers from a FASTQ file in ascending order by count.

reads) and querying each read’s constituent 𝑘-mers in a genomic index. This process is

commonly referred to as seeding, and is the first step in nearly any sequence alignment

algorithm [77].

An implementation of 20-mer seeding in Seq is shown in Figure 3-1. Seq uses the

familiar syntax of Python, but incorporates several genomics-specific features and op-

timizations. 𝑘-mer types like Kmer[20] (which represents a 𝑘-mer with 20 bases), for

example, allow for easy 𝑘-merization (the process of splitting a sequence into 𝑘-mers,

done using kmers in Seq) and reverse complementation (using ~kmer). Similarly,

pipelining—a natural model for thinking about processing reads—is easily express-

ible in Seq, where a user can define pipelines via the |> operator as shown in the

figure. Seq can also speed up expensive index queries via pipeline transformations

that allow for effective software prefetching (@prefetch annotation). Compare this

Seq implementation to the C++ implementation also shown in Figure 3-1, which in-

cludes extensive boilerplate code for reverse complementation and FASTQ iteration,

and cannot perform the domain-specific pipeline or encoding optimizations made by

the Seq compiler, which in practice we find to attain upwards of 1.5–2× speedups

over optimized C++ implementations (Chapter 9).

39

Construct Meaning
seq Sequence type
Kmer[𝑘] 𝑘-mer type
~s Reverse complement of s
s[i:j] Subsequence of s from index i to j
Kmer[𝑘](s) Conversion of s to a 𝑘-mer
s.split(k, step) Iterator over length-k subsequences of s with given step size
s.kmers[K](step) Iterator over 𝑘-mers of type K in s with given step size
a |> b |> c Pipeline with stages a, b, and c
a ||> b |> c Same as above, except output of a processed in parallel
case ‘A*G’ Pattern matching sequences starting with A, ending in G
import bio Usage of Seq’s bioinformatics library

Table 3.1: Summary of some of Seq’s genomics-specific language constructs.

As a second example, consider the code in Figure 3-2, which shows a simple 𝑘-mer

counting application; 𝑘-mer counting is an extremely common operation in genomics

and bioinformatics, the goal of which is to obtain the frequency of each 𝑘-mer in a

dataset [83]. Notice that, in Seq, domain-specific types and functions—e.g. sequences,

𝑘-mers, iterators over genomic files—can interact seamlessly with standard Python

types and functions—e.g. dictionaries, sorting, iterators—as in this example.

A summary of some of Seq’s domain-specific language constructs is given in Table 3.1.

In the upcoming sections, we will discuss each of these constructs in more detail, and

show how they can be used to easily express a range of common idioms, patterns,

and operations within genomics applications.

3.2 Design Goals

A critical barrier to any new language’s success in a particular field is its initial

adoption, as most potential users already have a set of languages, environments and

packages with which they are comfortable. This is particularly true in bioinformat-

ics, where many researchers are biologists first and programmers second. For this

reason, the Seq language borrows the syntax and semantics of Python—one of the

most widely-used languages in bioinformatics—and adds numerous genomics-oriented

40

language features and constructs. Indeed, most of the preexisting Python code that

is used within the genomics community will compile and run without modification

in Seq, ultimately allowing the user to attain the performance of C/C++ with the

programming ease of Python.

To achieve this, we designed a compiler with a static type system. It performs Python-

style duck typing and runtime type checking at compile time, completely eliminating

the substantial runtime overhead imposed by the reference Python implementation,

CPython1, and most other Python implementations alike. Unlike these, we reimple-

mented all of Python’s language features and built-in facilities from the ground up,

completely independent of the CPython runtime. The Seq compiler uses an LLVM [67]

backend, and in general uses LLVM as a framework for performing general-purpose

optimizations. Seq programs additionally use a lightweight runtime library for I/O

and memory allocation. We describe Seq’s domain-agnostic implementation details

in depth in Chapters 4 and 5.

3.3 Sequences and 𝑘-mers

Seq’s namesake type is indeed the sequence type: seq. A seq object represents a

DNA sequence of any length and—on top of general-purpose string functionality—

provides methods for performing common sequence operations such as splitting into

subsequences, reverse complementation and 𝑘-mer extraction. Alongside the seq type

are 𝑘-mer types, which are dependent on the 𝑘-mer length. For example, Kmer[1]

represents a 1-mer, Kmer[2] a 2-mer and so on, up to Kmer[1024] (a reasonable

upper bound on 𝑘-mer length in nearly any genomics application).

Sequences can be seamlessly converted between these various types, as shown in Fig-

ure 3-3. In fact, this pattern is prevalent in many genomics applications, where longer

sequences (be it a read, reference or anything else) are split into their constituent 𝑘-

mers, and each is subsequently processed.
1“Python” is henceforth used as a synonym for “CPython” unless otherwise specified.

41

1 from bio import *
2 dna = s'ACGTACGTACGT' # sequence literal
3

4 # (a) split into subsequences of length 3
5 # with a stride of 2
6 for sub in dna.split(k=3, step=2):
7 print sub
8

9 # (b) split into 5-mers with stride 1
10 FiveMer = Kmer[5]
11 for kmer in dna.kmers[FiveMer](step=1):
12 print kmer
13 print ~kmer # reverse complement
14

15 # (c) convert entire sequence to 12-mer
16 kmer = Kmer[12](dna)

Figure 3-3: Example of seq and 𝑘-mer type usage.

3.4 Pipelines and Partial Calls

Pipelining is a natural model for thinking about processing genomic data, as sequences

are typically processed in stages (e.g. read from input file→ split into 𝑘-mers→ query

𝑘-mers in index → perform full dynamic programming alignment → output results

to file), and are almost always independent of one another as far as this processing is

concerned. Because of this, Seq supports a pipe operator: |>, similar to F#’s pipe and

R’s magrittr (%>%) [12]. Pipeline stages in Seq can be regular functions or generators.

In the case of standard functions, the function is simply applied to the input data and

the result is carried to the remainder of the pipeline, akin to F#’s functional piping.

If, on the other hand, a stage is a generator, the values yielded by the generator are

passed lazily to the remainder of the pipeline, which in many ways mirrors how piping

is implemented in Bash. Note that Seq ensures that generator pipelines do not collect

any data unless explicitly requested, thus allowing the processing of terabytes of data

in a streaming fashion with no memory and minimal CPU overhead.

An example of pipeline usage is shown in Figure 3-4, which shows the same two loops

from Figure 3-3, but as pipelines. First, note that split is a Seq standard library

42

1 from bio import *
2 dna = s'ACGTACGTACGT' # sequence literal
3

4 # (a) split into subsequences of length 3
5 # with a stride of 2
6 dna |> split(..., k=3, step=2) |> echo
7

8 # (b) split into 5-mers with stride 1
9 def f(kmer):

10 print kmer
11 print ~kmer
12

13 FiveMer = Kmer[5]
14 dna |> kmers[FiveMer](step=1) |> f

Figure 3-4: Example of pipeline usage in Seq, where the two loops from Figure 3-3
are represented as pipelines.

function that takes three arguments: the sequence to split, the subsequence length and

the stride; split(..., 3, 2) is a partial call of split that produces a new single-

argument function 𝑓 where 𝑓(𝑥) = split(𝑥, 3, 2). The undefined argument(s)

in a partial call can be implicit, as in the second example: kmers (also a standard

library function) is a generic function parameterized by the target 𝑘-mer type and

takes as arguments the sequence to 𝑘-merize and the stride; since just one of the two

arguments is provided, the first is implicitly replaced by ... to produce a partial

call (i.e. the expression is equivalent to kmers[FiveMer](..., 1)). Both split and

kmers are themselves generators that yield subsequences and 𝑘-mers respectively,

which are passed sequentially to the last stage of the enclosing pipeline in the two

examples.

3.4.1 Parallelism

CPython and many other implementations alike cannot take advantage of parallelism

due to the infamous global interpreter lock, a mutex that protects accesses to Python

objects, preventing multiple threads from executing Python bytecode at once [20].

Unlike CPython, Seq has no such restriction and supports full multithreading. To

43

1 from bio import *
2 dna = s'ACGTACGTACGT' # sequence literal
3

4 # (a) split into subsequences of length 3
5 # with a stride of 2
6 dna |> split(..., k=3, step=2) ||> echo
7

8 # (b) split into 5-mers with stride 1
9 def f(kmer):

10 print kmer
11 print ~kmer
12

13 FiveMer = Kmer[5]
14 dna |> kmers[FiveMer](step=1) ||> f

Figure 3-5: Example of parallel pipeline usage in Seq, where the two pipelines from
Figure 3-4 are parallelized.

this end, Seq supports a parallel pipe operator ||>, which is semantically similar

to the standard pipe operator except that it allows the elements sent through it to

be processed in parallel by the remainder of the pipeline. Hence, turning a serial

program into a parallel one often requires the addition of just a single character in

Seq, as shown by Figure 3-5. Further, a single pipeline can contain multiple parallel

pipes, resulting in nested parallelism.

Internally, the Seq compiler uses Tapir [108] with an OpenMP task backend to gener-

ate code for parallel pipelines. Logically, parallel pipe operators are similar to parallel

for-loops in OpenMP: the portion of the pipeline after the parallel pipe is extracted

into a new function that is called by the OpenMP runtime task spawning routines (as

in #pragma omp task in C++), and a synchronization point (#pragma omp taskwait)

is added after the outlined segment. Lastly, the entire program is implicitly placed in

an OpenMP parallel region (#pragma omp parallel) that is guarded by a “single”

directive (#pragma omp single) so that the serial portions are still executed by one

thread (this is required by OpenMP as tasks must be bound to an enclosing parallel

region).

44

1 def describe(n):
2 match n:
3 case m if m < 0:
4 print 'negative'
5 case 0:
6 print 'zero'
7 case m if 0 < m < 10:
8 print 'small'
9 case _:

10 print 'large'

Figure 3-6: Example usage of match.

3.5 Pattern Matching

Seq provides the conventional match construct, which works on integers, lists, strings

and tuples. An example usage of match is shown in Figure 3-6. A novel aspect of Seq’s

match statement is that it also works on sequences, and allows for concise recursive

representations of several common sequence operations such as subsequence search,

reverse complementation tests, and base counting, which are shown in Figure 3-7.

Sequence patterns consist of literal ACGT characters, single-base wildcards (_) or “zero

or more” wildcards (*) that match zero or more of any base.

3.6 The bio Module

Lastly, Seq includes a built-in bio library that includes implementations of numerous

standard genomics algorithms and data structures, all with intuitive, Pythonic APIs.

The bio module is implemented entirely in Seq itself, and includes:

• Parsers for many standard file formats, including FASTQ, FASTA, SAM, BAM,

CRAM, VCF, BED, and more.

• SIMD-optimized functions for sequence alignment, which are further accelerated

through domain-specific compiler optimizations (Chapter 6).

• FM- and FMD-index data structure implementations, along with utilities for

45

1 # (a)
2 def has_spaced_acgt(s):
3 match s:
4 case 'A_C_G_T*':
5 return True
6 case t if len(t) >= 8:
7 return has_spaced_acgt(s[1:])
8 case _:
9 return False

10

11 # (b)
12 def is_own_revcomp(s):
13 match s:
14 case 'A*T' | 'T*A' | 'C*G' | 'G*C':
15 return is_own_revcomp(s[1:-1])
16 case '':
17 return True
18 case _:
19 return False
20

21 # (c)
22 def count_bases(s):
23 from bio.seq import BaseCounts
24 match s:
25 case 'A*': return count_bases(s[1:]).add(A=True)
26 case 'C*': return count_bases(s[1:]).add(C=True)
27 case 'G*': return count_bases(s[1:]).add(G=True)
28 case 'T*': return count_bases(s[1:]).add(T=True)
29 case _: return BaseCounts()

Figure 3-7: Example usages of match on sequences in Seq. Example (a) checks if a
given sequence contains the subsequence A_C_G_T, where _ is a wildcard base; such an
operation may be present in an application that uses spaced seeds—non-contiguous 𝑘-
mers that are shown to improve accuracy in some settings [64]. Example (b) checks if
the given sequence is its own reverse complement, which is useful in certain sequence
hashing schemes [94]. Finally, example (c) counts how many times each base appears
in the given sequence, which can e.g. be used to determine GC content (the fraction
of bases that are G or C) [114].

46

1 from C import sqrt(float) -> float
2 from C import puts(ptr[byte])
3 print sqrt(100.0)
4 puts("hello world".c_str())

Figure 3-8: Example of external function usage in Seq with C standard library func-
tions sqrt and puts.

computing Burrows-Wheeler Transforms and suffix arrays.

• Utilities for working with genomic loci and intervals.

• General DNA sequence operations and functionality (e.g. subsequence, itera-

tion, reverse complementation, etc.) as well as support for protein sequences

and operations on them (e.g. alignment, translation, etc.).

A more comprehensive description of the bio module’s contents is given in Ap-

pendix C.

3.7 Other Features

In addition to its genomics-specific features, Seq includes a number of general-purpose

features that aim to make the language more flexible and interoperable.

3.7.1 External functions

Seq enables seamless interoperability with C and C++ via externally-imported func-

tions, as shown in Figure 3-8. Primitive types like int, float, bool etc. are directly

interoperable with the corresponding types in C/C++, while compound types like tu-

ples are interoperable with the corresponding struct types. Other built-in types like

str provide methods to convert to C analogs, such as c_str() as shown in Figure 3-8.

3.7.2 Type extensions

Seq provides an @extend annotation that allows programmers to add and modify

47

1 @extend
2 class int:
3 def to(self: int, other: int):
4 for i in range(self, other + 1):
5 yield i
6

7 def __mul__(self: int, other: int):
8 print 'caught int mul!'
9 return 42

10

11 for i in (5).to(10):
12 print i # 5, 6, ..., 10
13

14 # prints 'caught int mul!' then '42'
15 print 2 * 3

Figure 3-9: Example of type extension in Seq.

methods of various types within the current module at compile time, including built-

in types like int or str. This allows much of the functionality of built-in types to be

implemented in Seq as type extensions in the standard library. Figure 3-9 shows an

example where the int type is extended to include a to method that generates integers

in a specified range, as well as to override the __mul__ magic method to “intercept”

integer multiplications. In short, @extend provides a mechanism to extend existing

types with additional functionality, such as supporting new operators or conforming

to a new API à la Python’s duck typing. Note that all type extensions are performed

strictly at compile time and incur no runtime overhead.

3.8 Differences with Python

Python is an interpreted language, and does not check for type consistency until nec-

essary during runtime—even then, only the existence of methods required by a given

program is checked, an approach commonly referred to as duck typing. This simple

and clean design, together with a well-thought-out syntax, enables rapid prototyping

and a great deal of flexibility without imposing artificial language design constraints,

which is partly what has made Python popular in many different domains, bioinfor-

48

matics notwithstanding.

However, this dynamism comes with a hefty price in terms of performance, as almost

any method invocation or variable reference requires expensive dictionary lookups

during runtime. Furthermore, the lack of type annotations and the dynamic nature

of objects necessitate delaying type checks until a given object is actually used, which

can sometimes be days after the Python script was initially run in the case of long-

running programs. This is a common problem in bioinformatics, where many scripts

take a long time to complete due to ever-growing input datasets; a problematic section

of code that is preceded by a rarely-entered if-statement, for example, can result in

many hours of wasted runtime when reached. Moreover, this lazy approach to typing

requires the developer to include numerous manual type checks and large test suites

to ensure type soundness during execution. Python versions 3.6 and later attempt

to mitigate this problem with the optional mypy type checker, which adds support

for type annotations with ahead-of-time type checks to the core language (and whose

syntax we adopted for consistency). However, mypy must still interoperate with the

Python runtime, and as such could leave some types ambiguous (e.g. as Any), which

does not map easily to LLVM IR—the backbone of Seq’s optimization framework.

PyPy, on the other hand, uses a restricted subset of Python called “RPython” which

can be statically typed, but again does not fit our purposes as it performs type

deduction at runtime and allows arbitrary non-RPython code to be mixed in. By

contrast, the Seq compiler has a complete view of all types at compilation time,

which it uses to avoid all runtime overhead.

3.8.1 Basic types and metadata overhead

Python has a relatively simple type system in which all types derive from the object

base type. Some primitive types (such as integers and floats) are, for performance

reasons, implemented directly in C within CPython’s runtime. However, even the

C implementations of these types carry a significant overhead, as they still have to

interoperate with the rest of the Python ecosystem. As can be seen in Figure 3-

49

10, a simple float object—arguably the most lightweight type Python has—consists

of three pointers, an integer and finally the float value itself. This “metadata” is

necessary for Python’s runtime type resolution and reference counting2. For these

reasons, all high-performance Python libraries (such as NumPy) achieve their speed

by dealing primarily with arrays or matrices that can be abstracted away from the

Python runtime to the C level.

Using optimized libraries in this way works well for programs that operate on a

small number of very large objects, since the total object metadata is small; however,

programs that operate on a very large number of small objects—even if the total

non-metadata memory is the same—suffer from a much larger metadata footprint,

which can render them intractable even in the presence of an optimized C library; a

visualization is given in Figure 3-11. Genomics and bioinformatics programs typically

fall into the latter category, as millions or billions of small sequences are often pro-

cessed concurrently. Figure 3-12, for example, compares memory usages of a 𝑘-mer

counting application between C and Python implementations. As the input data size

grows, so too does the difference between the two implementations’ memory usages;

this difference is indicative of the runtime object metadata overhead that Python

incurs. Figure 3-13 compares memory usages when creating an increasing number of

double arrays, while keeping the total non-metadata memory fixed (similar to what

is shown in Figure 3-11); once the object count surpasses a given threshold, the meta-

data overhead begins to grow astronomically. As shown, a domain-specific, optimized

library like NumPy can reduce overhead when the number of objects is small, but as

the object count increases so does the relative overhead in the NumPy program, due

to the large overhead of each individual NumPy array.

To eliminate this metadata overhead, Seq follows a different design philosophy in

terms of types. Primitive types such as int, bool, and float map directly to the

equivalent LLVM IR types i64, i8, and double, respectively. As such, they incur no
2We do note, however, that the _ob_next and _ob_prev pointers are compiled into the structure

definition conditionally, and can be omitted.

50

x = 3.14

LOAD_CONST 3.14
STORE_FAST x

x: float = 3.14

%x = alloca double, align 8
...
store double 3.140000e+00, double* %x

typedef struct {
struct _object *_ob_next;
struct _object *_ob_prev;
Py_ssize_t ob_refcnt;
struct _typeobject *ob_type;

} PyObject;
...
typedef struct {

PyObject ob_base;
double ob_float;

} PyFloatObject;
...
x = (PyFloatObject){.ob_fval = 3.14};

.LCPI0_0:
.quad 4614253070214989087

main:
...
movsd %xmm0, -8(%rbp)
...

CPython Seq

Figure 3-10: Seq versus CPython during compilation and execution of a simple float
assignment. CPython compiles to bytecode that omits all type information, and
instead relies on runtime type information by virtue of metadata stored alongside the
actual float value within the PyFloatObject structure. By contrast, Seq infers the
type of x at compile time and compiles the assignment to LLVM IR, which encodes
type information. LLVM in turn compiles this to assembly or machine code.

𝑂1 + 𝑂2 + 𝑂3 = ∑︀ |𝑂𝑖| + 3×

𝑜1 + 𝑜2 + · · · + 𝑜109 = ∑︀ |𝑜𝑖| + 109 ×

Few, large objects

Many, small objects

Data Metadata
∑︀ |𝑂𝑖| =

∑︀ |𝑜𝑖|

Figure 3-11: Visualization of metadata overhead in two different scenarios: few, large
objects and many, small objects. An example of the former is performing operations
on a handful of very large matrices, while an example of the latter is hashing, indexing,
and storing billions of 𝑘-mers, e.g. for read mapping, assembly, or 𝑘-mer counting.
The total object data is the same in both cases, but the many, small objects case
incurs substantially more metadata overhead.

51

103 104 105 106 107 108 109 1010

0.00

0.50

1.00

1.50

𝑂(metadata)

Input Size (bases)

M
em

or
y

U
sa

ge
(G

B)

Metadata Overhead – Increasing Data

Dynamic (Python)
Static (C, Seq)

Figure 3-12: Object metadata overhead in Python, using C as a reference. Since Seq
has no metadata overhead, its results are identical to C’s. The plot shows memory
usages for the Python and C implementations of the k-nucleotide benchmark from The
Computer Language Benchmarks Game suite of benchmarks [53], for various input
sizes. k-nucleotide involves counting occurrences of various 𝑘-mers in a large FASTA
file.

100 101 102 103 104 105 106

0.00

0.05

0.10

0.15

0.20

Number of Objects

M
em

or
y

U
sa

ge
(G

B)

Metadata Overhead – Increasing Objects

Dynamic (Python)
Static (C, Seq)
Library (NumPy)

Figure 3-13: Object metadata overhead in Python, using C as a reference. Since Seq
has no metadata overhead, its results are identical to C’s. The plot shows memory us-
ages from creating an increasing number of double arrays (or lists in pure Python) of
fixed total size. The difference between C and Python/NumPy is indicative of meta-
data overhead, especially for larger object counts. NumPy initially has less overhead
than pure Python because it stores the array elements inline; when more objects are
created, NumPy’s overhead grows beyond Python’s due to the large overhead each
NumPy array carries.

52

Seq expression LLVM IR type Description
"hello world" {i64, i8*} struct of length and character pointer
(1, 0.5, False) {i64, double, i8} struct of tuple element types
MyClass() i8* pointer to heap-allocated MyClass struct
MyClass().foo {i8*, void (i8*)*} struct of self and method function pointer

Table 3.2: Examples of Seq types mapping to LLVM types. The last example assumes
foo is defined to be a method of MyClass that takes no extra arguments and does
not return a value (i.e. def foo(self: MyClass) -> void).

overhead whatsoever. Nevertheless, each of these primitives is still logically a fully-

fledged type with a set of associated methods that can be extended by the user (e.g.

type int has a method __add__ for addition that can be statically patched); there

is no overhead as all method dispatches are resolved by the compiler. Furthermore,

Seq inlines all magic method invocations on primitive types.

More complex types typically compile to an LLVM aggregate type or a pointer to one.

Aggregate types are used in place of Python’s tuples and named tuples, and are fully

isomorphic to C structs. Pointers to aggregate types—or, more precisely, reference

types—are used to implement Python classes. As usual, aggregates are passed by

value while reference types are passed, unsurprisingly, by reference. Table 3.2 gives a

few examples of type conversions from Seq to LLVM.

In order to maintain compatibility with Python, class members can be deduced auto-

matically by lexically analyzing a given class’s methods. Python’s built-in collection

types—List, Set and Dict—are all modeled as reference types in Seq and boot-

strapped as standard library classes implemented in Seq itself.

3.8.2 Generic functions, methods and types

Python’s lack of static typing allows any function to take objects of any type as

arguments. This design philosophy does not translate well to strongly-typed compiled

languages that lack runtime type information, as they typically require each function

to explicitly specify input and output types.

53

def f(x):
return 3*x + 1

def f[T](x: T):
return 3*x + 1

def f(x: int) -> int:
return 3*x + 1

def f(x: float) -> float:
return 3*x + 1

def f(x: int) -> int:
return \

int.__add__(
int.__mul__(3, x), 1)

def f(x: float) -> float:
return \

float.__add__(
float.__mul__(3, x), 1)

f(42) f(3.14)

Figure 3-14: Seq’s implicit generic type parameters. The function f is declared to
take a parameter x of unspecified type; the Seq compiler treats the type of x as generic
and clones f on demand for each new input type, and subsequently deduces return
types.

Code compatibility with Python is of paramount importance for Seq, as it is unrea-

sonable to expect users to manually annotate (or rewrite) their large codebases. Thus,

Seq handles this problem by treating each Python function that does not provide type

annotations as a generic function, where one or more input or output types cannot be

deduced from annotations or a lexical analysis of the function body. In this case, each

argument without a type annotation (referred to as an implicit generic) is replaced

by a concrete type on demand at compile time. For example, on encountering f(42)

as in Figure 3-14, the compiler checks whether there is an instantiation of f that

accepts an int argument, and if so routes the call there. If not, the compiler clones

f’s AST and creates a new instantiation of the function that specifically accepts an

int argument (a similar approach is taken by Julia [24]). This newly created function

would produce an error if, for example, int did not contain an appropriate __mul__

method as required in the function body. Instantiations are created lazily on demand.

Unlike Python, Seq allows users to explicitly mark functions as generic and to specify

explicit generic type parameters, allowing more complex type relationships to be

54

1 class Node[T]:
2 next: Optional[Node[T]]
3 data: T
4

5 def item[T,U](n: Node[T], f: Function[[T],U]) -> List[U]:
6 return [f(n.data)]
7

8 n = Node(None, 5)
9 def foo(x: int) -> str:

10 return str(x)
11 i = item(n, foo) # type parameters deduced as int and str
12 i = item[int,str](n, foo) # explicit specification also OK

Figure 3-15: Seq’s explicit generic type parameters.

expressed. For example, Figure 3-15 shows a higher-order function that only operates

on generic nodes and functions (as T is an explicit generic type parameter). The

argument types of item ensure that the argument function f can take the argument

node n’s data as a parameter. Note that it is impossible for Python-style unnamed

generics to cover this use-case without explicit isinstance checks. As shown in

Figure 3-15, explicit type parameterization is optional even when explicit generics

are present, as Seq performs type parameter inference whenever possible.

Analogous reasoning applies to classes, where class members can be generic. Examples

of such classes include List[T] and Dict[Key,Value]. Unlike functions, implicit

generics are disallowed in classes as they would impair readability and could lead to

ambiguous instantiations during the class member deduction stage. Note that, as

far as Seq is concerned, different instantiations of functions and classes are treated

as different types. Thus, f(x: List[int]) and f(x: List[float]) are represented

internally as two separate functions, which allows Seq to optimize each instantiation

according to its concrete argument types.

3.8.3 Duck typing

Seq’s type system is designed to behave like Python’s if one uses Seq as a drop-in

Python replacement without specifying explicit types. As long as the methods of every

55

type are known at compile time (an invariant strictly enforced by Seq as it does not

allow type modifications at runtime), the compiler will deduce the argument/return

types of all methods and instantiate any generic method as appropriate. Indeed, we

find that this static instantiation-on-demand simulates duck typing reasonably well.

Explicit type annotations enforce an extra layer of typing discipline on top of duck

typing (à la mypy), and as such coexist peacefully with it.

3.8.4 Type inference

Any strongly typed language needs a way to infer the type of each variable present

in a given program. Languages such as C or Pascal require end users to manually

annotate each variable with a type. Other languages, such as C++11 or newer versions

of Java, support uni-directional type inference by automatically deducing types of

left-hand side terms based on right-hand side types. Initial versions of Seq also used

uni-directional type inference, allowing users to write, for instance, x = 5 instead of

x: int = 5.

However, uni-directional type inference is unable to handle a few common con-

structs in the Python language, including empty lists (e.g. a = []), nullables (e.g.

a = None) and lambda functions (e.g. lambda x: x+1). With uni-directional infer-

ence, each of these constructs requires the user to provide manual type annotations

(e.g. a: List[int] = []) even if the type can be inferred later. Because of this, Seq

uses bi-directional type inference, implemented on top of the Hindley-Milner inference

algorithm [57, 88, 44], to automatically annotate such types. We slightly modified

the standard Hindley-Milner algorithm to support generic classes, functions and in-

stantiations on demand. We also enforce an invariant where all types within a scope

(be it a function scope, class scope or the top-level scope) must be fully deduced by

the end of that scope. This implies that a function cannot return a non-instantiated

generic type: def f(): return [], for example, will cause a compilation error, but

def f[T]() -> List[T]: return [] will compile successfully. Any weakly typed

variable or lambda is instantiated as soon as possible (note that Seq treats lambdas

56

as weakly typed constructs and does not generalize them—generalizations are only

applied to generic functions defined with def and generic classes). Seq’s type system

is described in depth in Chapter 4.

3.8.5 Limitations

The strongly-typed nature of Seq does come with some limitations compared to con-

ventional Python. Since all types must be fixed at compile time, a Seq program cannot

(for example) create a collection of elements (e.g. List) with varying types (this is

theoretically possible to support by promoting the list’s element type to a union type

over the various different element types, although this has yet to be implemented).

Seq also does not support method or class monkey-patching at runtime (but it does

support this at compile time, as shown in Section 3.7.2), nor indexing into a het-

erogeneous tuple with a non-constant index (as the type of the resulting expression

would be ambiguous). Our type checker and instantiation algorithm also require each

function to have a single return type. Finally, while Seq supports class extensions,

it does not support subtyping (nor, therefore, fully-fledged polymorphism), meaning

that class A; class B(A) will copy A’s methods to B without making B a subtype

of A per se. With these trade-offs, Seq can perform all type-checking at compile

time without sacrificing any runtime cycles for type enforcement, and without signifi-

cantly hindering the expressibility of Python’s syntax. We have found that, especially

in bioinformatics software, these language capabilities are seldom required (or at least

can almost always be replaced by Seq-conforming alternatives with minimal effort);

indeed, we are not aware of any genomics application that directly relies on such

features. Consequently, these features are omitted in Seq at the time of writing. A

summary of Seq’s current limitations and differences with Python can be found in

Appendix C.2.

It is important to note that some of these limitations can be overcome with addi-

tional engineering effort, whereas others might require foundational changes. For

example, mixing objects of different types—be it in a collection or by assignment to

57

a single variable—can be handled by implicitly creating union types; for example,

the element type of the list [42, ‘abc’] could become Union[int,str]. On the

other hand, features such as dynamic polymorphism or subtyping would likely re-

quire more substantial changes to the type checking algorithm, and are known to be

difficult problems in the context of a Hindley-Milner type system [115].

3.9 Conclusion

We have introduced Seq’s language features—both domain-specific and general-purpose—

and motivated Seq’s adoption of Python’s syntax and semantics. In the upcoming

chapters, we will delve deeper into the internals of Seq in terms of type checking, its

intermediate representation, compiler optimizations, and more.

58

Chapter 4

Type System

In this chapter, we start from the observation that the primary reason for the poor

performance of many high-level languages lies in their dynamism, which prevents

them from being compiled and optimized ahead of time. This, in turn, indicates that

the culprit is a lack of complete type information at compile time; whereas low-level

languages like C, C++ or Rust have complete knowledge of all data types in a program

prior to its execution, most high-level languages defer this information until runtime,

resulting in substantial overhead and slowdowns. Prior attempts at remedying this

issue through just-in-time compilation or other related means often fall short, as they

must still interface with the original implementation’s runtime and allow for unre-

solvable types [32]. These attempts also strive to support every single feature of the

original language, even though many of the “problematic” features that actually en-

tail dynamism are virtually never used in scientific and high-performance computing,

and can often be done away with. In other words, “giving people a dynamically-typed

language does not mean that they write dynamically-typed programs” [11]. Given this

premise, we present in this chapter a strongly-typed alternative to Python’s runtime

that can resolve types and select dynamic behaviour at compile time to the fullest

extent possible without any runtime overhead whatsoever. The goal of this alterna-

tive approach is to cover as much of Python’s syntax and semantics as possible while

59

minimizing the set of missing features stemming from a lack of dynamic runtime.

In other words, we trade some (often unneeded) dynamism for substantial gains in

performance.

Decreased performance is often a fair price to pay for Python’s extensibility and rapid

development cycle. However, as mentioned, in contexts such as high-performance

computing, scientific computation, or big data analytics, even a simple loop con-

struct can introduce enough overhead to render Python code hundreds of times slower

than its compiled counterparts. Some Python implementations, such as PyPy [26] or

Numba [8], attempt to address these shortcomings through just-in-time (JIT) com-

pilation. PyPy achieves this through RPython [9], a limited subset of Python that

is fully analyzable and allows complete type inference, and as such is an ideal target

for JIT compilation. However, despite its success, RPython is a rather narrow subset

of Python, and does not support some advanced use cases (usually involving nested

generators). Numba, on the other hand, is geared primarily for optimizing numeric

computation and is thus severely limited in scope. Other promising approaches, such

as Starkiller [106], are either unavailable or are abandoned, and do not support more

advanced Python constructs (such as exceptions and generators).

To remedy these shortcomings, we propose a new type system for Seq, localized

type system with delayed instantiation (LTS-DI), which builds on top of the clas-

sical Hindley-Milner-Damas bidirectional type inference algorithm used in Standard

ML and many other functional languages. While the rules of this system share many

similarities with ML-like systems, they also significantly depart from the “canonical

ML” rules in order to better support type checking Python-like programs. LTS-DI

is one of the key factors that allows Seq to attain 10–100× speedups over standard

Python (Chapter 9).

This chapter contributes the following:

• We present an ML-like type system, called localized type system with delayed

instantiation (LTS-DI), in the context of the Python language.

60

class List[T]:
def append(self, what: T):

...
a = None
b = []
for i in range(3):

b.append(i)

a = b

def List_append(self: List[T], what: T):
...

a = Optional() # a: Optional[𝛼]
b = List() # b: List[𝛽]
for i in range(3): # i: int

List_append(b, i) # List_append:
Function[[List[𝛾], 𝛾], 𝜂]

Type inference does the following steps:
unify: 𝛾 ← 𝛽 ←int
realize: List_append → List_append_int
unify: 𝜂 ←void

a = Optional(b) # unify: 𝛼←List[int]

def List_append_int(
self: List_int, what: int) -> void:
...

a = Optional_List_int()
b = List_int()
for i in range(3):

List_append_int(b, i)

a = Optional_List_int(b)

Figure 4-1: Example of type inference and function instantiation performed by LTS-
DI. The original Python code on the left gets transformed to the fully type checked
version on the right. The middle box shows the first type checking pass and annotates
type assignments, unification (type merging) and function realization.

• We show how to extend the Hindley-Milner-Damas’s unification algorithm for

bidirectional type inference with additional, novel features—including type lo-

calization, delayed function instantiation, monomorphization, and static com-

pile time evaluation—in order to support many of Python’s language features.

• We show how these modifications can handle a range of Python language con-

structs that are incompatible with a pure ML-like type system. Among these

are Pythonic lambda functions, function passing and returning, decorators, and

type queries.

4.1 Localized Type System with Delayed Instanti-

ation

LTS-DI is a bidirectional type system that relies on Hindley-Milner-Damas type

inference [57, 88, 44] to determine a type for each expression in a given program

ahead of time. The most important parts of this system are parametric polymor-

phism (which provides support for generic types and functions) and bidirectional type

inference (which allows expression types to be decided after the expression has been

processed) [99].

In LTS-DI, each type in a program is either concrete (like int or List[int]), or

generic (in other words, parameterized by other types, like List[T] or Optional[T]

61

1 def foo(x):
2 x.append(1)
3 a = [] # a: List[𝛼]
4 foo(a) # foo(a): Function[[𝛽], 𝜂]
5 # unify: 𝛽 ←List[𝛼]
6 # At this point, type of a is still unbound 𝛼,
7 # and thus Codon cannot instantiate foo.

1 def foo():
2 a = [] # a: List[𝛼]
3 b = None # b: Optional[𝛽]
4 # At this point, 𝛼 and 𝛽 are unbound and
5 # cannot be resolved in the scope of foo.

Figure 4-2: Examples of cases that cannot be type checked by LTS-DI.

where T stands for any type). During type inference, LTS-DI maintains a context

Γ that maps each type name to known type variables. Initially, Γ is initialized with

basic types such as int, float, Ptr[T], Generator[T] and void, and grows with each

new type and function definition, as well as with variable assignments. The presence

of generic types necessitates bidirectional type inference if type annotations are not

present, as the exact instantiation of a generic type is often not known at declaration

time. For example, an empty list declaration x = [] has type List[𝜏] where 𝜏 is

a currently unknown—or unbound—type variable. 𝜏 can later become resolved once

we, say, add an element to the list x. Resolved types are denoted as bound types;

examples include concrete types such as int, and initially unbound types that have

been inferred afterwards. For instance, 𝜏 in the previous example will be bound, or

unified, to int by x.append(1). An example of unification is given in Figure 4-1.

Ultimately, the goal of type checking is to realize all types in the program and to

report any unrealized type as a compiler error.

LTS-DI type system rules take inspiration from the Standard ML type system with

let-polymorphism [89, 99], where each let-expression let x = a in b is represented

by a Pythonic function definition def x(): a followed by b. However, due to the

nature of Python programs and their heavy reliance on duck typing, LTS-DI makes

62

some novel departures from the Standard ML type system. Most importantly, LTS-

DI will not infer the most general type of a generic function in advance through type

checking the function (i.e. let-expression) body during definition; instead, it will only

use the function signature to obtain the function’s type (which, notably, can be more

general than the one obtained by a Standard ML approach), and will delay inferring

types in a function body until the function is instantiated with bound types (i.e. all

of its arguments and generics are fully known). With generic functions, each unique

combination of function argument types will produce a new instantiated function

that needs to be type-checked separately. This technique, called monomorphization,

is used extensively by LTS-DI to instantiate different concrete functions for different

argument types (Figure 4-1). The type soundness of the function’s body, as well as its

return type, will be inferred by the type checking algorithm solely from the provided

argument types at the time of realization. If, on the other hand, at least one argument

type is not known, LTS-DI will delay—unlike Standard ML—the instantiation (and

type checking) of the function, and assign a new unbound type to the function call,

hoping that later expressions will fully resolve function arguments and allow for its

instantiation, and hence type resolution (note that this approach bears some similari-

ties to Cartesian Product type systems [106]). By combining monomorphization with

generic functions (in other words, parametric let-polymorphism) as such, LTS-DI can

faithfully simulate Python’s runtime duck typing at compile time.

Another important distinction of LTS-DI over an ML-like system is localization, which

treats each function block as an independent type checking unit with its own typing

context Γ. As such, each such block must be locally and independently resolvable by

the type system without knowing anything about other blocks. For example, as seen

in the top snippet of Figure 4-2, the type of a cannot be inferred from the scope of

foo alone, and as such will produce a compiler error. Because the outermost scope

is treated as a function itself, the type of a also cannot be inferred from the top-level

alone in the bottom snippet of Figure 4-2 (the fact that foo can realize a does not

help, as each function context is independent of other contexts).

63

However, these two departures—and restrictions at the same time—give LTS-DI much

greater flexibility in dealing with generic functions, which are ubiquitous in Python.

Most importantly, LTS-DI treats generic functions as bound types, and instantiates

them as unbound types only during their application. Otherwise, each instance of

a function would be treated as unbound and instantiated as soon as possible, losing

its genericity after the first instantiation. In other words, if a generic function is

passed as an argument to a function foo, it can be instantiated differently depending

on the supplied arguments within the local context Γfoo, unlike in ML where the

first instantiation determines the type of the function variable. These differences

from Standard ML together allow better compatibility with Python, by enabling

more general lambda support, as well as support for returning generic functions—a

necessary requirement for implementing Python’s decorators (Figure 4-3).

4.2 Static Evaluation

An ML-like type system such as LTS-DI can sometimes over-eagerly reject a valid

Python program. For example, a common Python pattern is to dynamically check

the type of an expression via isinstance, and to proceed to different blocks of code

for different types, often within an if-else statement. A similar strategy is also used

in conjunction with hasattr. However, most type checkers will have to check both

branches at the same time and will raise an error if, say, a candidate type does not

contain a given method even if the call is guarded by a hasattr check. This behaviour

stems from the compiler’s treating if-conditions as purely runtime constructs and

assuming that both branches might get executed, resulting in the type checking of

both branches in advance. Python, on the other hand, does not distinguish between

compile time and runtime and is able to handle these cases gracefully during the

latter.

However, both isinstance and hasattr—as well as many other methods—can in

fact generally be resolved at compile time. To this end, LTS-DI borrows from other

languages and utilizes the concept of static expressions (akin to constexprs in C++).

64

def foo(x, f):
if isinstance(x, int):

return f(x + 1)
else:

return f(1), f(x)

def lambda_1_int(x: int) -> int:
return x + 1

def foo_int_lambda_1(
x: int, f: Partial[lambda_1, ...]

) -> int:
return f.__call__(1) # -> lambda_1_int

foo_int_lambda_1(1, partial(lambda_1))

def lambda_2_int(x: int) -> str:
return str(x) + " hello"

def lambda_2_str(x: str) -> str:
return x + " hello"

def foo_str_lambda_2(
x: str, f: Partial[lambda_2, ...]

) -> Tuple[str, str]:
return (f.__call__(1), # -> lambda_2_int

f.__call__(x)) # -> lambda_2_str

foo_str_lambda_2(1, partial(lambda_2))

f(1, lambda x: x + 1) f(‘hi’, lambda x: f‘{x} hello’)

Figure 4-3: Example of monomorphization and static evaluation in LTS-DI. By
combining these two, LTS-DI can support many common Pythonic constructs, like
isinstance type checking, generic functions that return different types on different
invocations, and so on.

These expressions are evaluated at compile time, and if an if-statement’s condition

is a static expression, it will be type-checked and compiled only if the expression

evaluates to true at compile time. Thus the compiler can opt out of compiling blocks

that fail a hasattr check. An example is provided in Figure 4-3. Note that, unlike

many other languages, LTS-DI automatically detects static expressions and does not

require the user to manually annotate them.

Static evaluation can be combined with constant expressions that can be used to

instantiate types and functions. For example, the 𝑛-bit integer type is expressed

as Int[N: int], where N is not a type generic but a constant expression generic.

Constant expression generics behave the same way as other generics—for example,

different values of N instantiate different types—and can be combined with other

constant expressions to express fine-grained typing requirements.

65

4.3 Special Cases

4.3.1 Optional values

In Python, all objects are reference objects (effectively pointers), with no distinction

between optional and non-optional references. However, in a strongly-typed system,

this distinction is necessary for program validity. To maximize compatibility with

Python, LTS-DI automatically coerces non-optionals and optionals to their counter-

parts in the following cases:

assignment wrapping: (if var is an Optional[T])

var = non_opt var = Optional(non_opt)

function argument wrapping: (if foo expects Optional[T] as an argument)

foo(non_opt) foo(Optional(non_opt))

function argument unwrapping: (if opt is an Optional[T] and foo expects T)

foo(opt) foo(unwrap(opt))

access unwrapping: (if opt is an Optional[T])

opt.member unwrap(opt).member

if-expression wrapping: (both sides of an if-expression must match)

non_opt if cond else opt Optional(non_opt) if cond else opt

As in Python, implicit or explicit unwrapping of optional types will raise an exception

if the given object is None.

4.3.2 Function passing

LTS-DI supports partial function creation and manipulation through Python’s partial

construct (in the functools module) or via a new internal ellipsis construct (e.g.

66

f(42, ...) denotes a partial function application with the first argument speci-

fied). Each partial function is typed as a named tuple of known arguments, where

the names correspond to the original function’s name. Unlike in ML-like languages,

LTS-DI allows functions and partial functions to be generic and thus instantiated

multiple times differently.

To support lambdas and decorators, LTS-DI automatically “partializes” functions

that are passed as an argument or returned as a function value, and as such allows

passing and returning generic functions that can be instantiated multiple times. By

doing so, the system is able to support decorators that rely on generic function passing

and returning.

The cost of allowing generic functions to be passed and returned is that the types

of two (partial) functions with the same argument types are often not compati-

ble. In some cases—for example, if both functions are realized and have no par-

tial arguments—LTS-DI can automatically match their corresponding types without

error. This approach also results in a somewhat higher number of types and instan-

tiations than a Standard ML-like approach, although duplicate instantiations can

be merged later in the compilation pipeline (e.g. LLVM provides a pass to merge

identical functions), and thereby have no effect on code size.

Finally, we note that LTS-DI, unlike Python, supports overloaded methods. While it

is possible to simulate method overloading using static evaluation and isinstance

checks, it is often cleaner if separate overloads are visually distinct.

4.3.3 Miscellaneous considerations

In order to match the behaviour of Python, LTS-DI processes import statements at

runtime. This is done by wrapping each import in a function that is called only

once by the first statement that reaches it. LTS-DI’s LTS-DI also unwraps iterables

when needed, and up-casts int to float when needed. It also has limited support

for traits and treats Callable[...] and Generator[...] as such. Note that LTS-

67

1 def flatten(v):
2 for a in v:
3 if hasattr(type(a), "__getitem__"):
4 yield from flatten(a)
5 else:
6 yield a
7

8 v = (1, [2, 3], ([4], [5]))
9 print(list(flatten(v))) # [1, 2, 3, 4, 5]

Figure 4-4: Practical example of LTS-DI involving flattening a nested collection.

DI fully supports generators and coroutines (and, in concert with LLVM, is able to

efficiently unroll them to highly efficient loops), exceptions and decorators. Finally,

LTS-DI supports Python interoperability and can handle objects managed by the

Python runtime via its pyobj interface. Such objects are automatically wrapped

and unwrapped by LTS-DI, depending on the circumstances, in a similar fashion to

Optional[T]. As a result, all existing Python modules and libraries (NumPy, SciPy,

etc.) are readily usable within LTS-DI.

4.4 Examples

4.4.1 Recursive flatten

As a real-world, non-trivial example, consider the snippet shown in Figure 4-4 imple-

mented in Seq [109] that was modified to use LTS-DI as its type system. The flatten

function takes an arbitrary collection and recursively flattens its contained elements

to generate the non-collection elements. Hence, the print statement on the last line

displays [1,2,3,4,5,6]—the inner elements of v that are neither lists nor tuples.

Executing this function in standard Python is relatively straightforward, as all type

information is deferred until runtime. In a statically-typed context, however, the sit-

uation is substantially more complicated and requires the combined use of several of

LTS-DI’s features.

Specifically, for this example, the following steps take place:

68

1. The type of v is deduced based on the right-hand side of the assignment on the

penultimate line. This type is 𝑇 =Tuple[int,List[int],Tuple[List[int

],List[int]]].

2. flatten is instantiated with argument type 𝑇 . Since 𝑇 is a heterogeneous tuple,

iteration over it (for a in v) is unrolled, and a copy of a for each element type

of v is generated.

3. The first element type is 𝑇1 =int. The hasattr call is statically evaluated to

False, so only the body of the else statement (yield a) is retained. This will

yield 1.

4. The second element type is 𝑇2 =List[int]. This time the hasattr call is stat-

ically evaluated to True, so the body of the if statement is retained. Therefore,

a new instance of flatten is created for argument type 𝑇2, whereby this process

is recursively repeated. This will yield values 2 and 3.

5. The third element type is 𝑇3 =Tuple[List[int], List[int]], which again

instantiates flatten for the new type 𝑇3. This new instantiation will itself

reuse the flatten instance from the previous step for argument type 𝑇2, or

List[int], ultimately yielding values 4 and 5.

Although this example at first appears out of reach for static type checking, the fea-

tures employed by LTS-DI—particularly monomorphization and static evaluation—

make it tractable.

4.4.2 Dependent collections

As a second example, consider the code in Figure 4-5. Here, the group function takes

an iterator of key-value pairs and groups them into a dictionary mapping keys to

lists of values. The invocation of group on the last line instantiates the function for

argument type List[Tuple[str, int]]; within group itself are two collections of

unknown types:

69

1 def group(items):
2 groups = {}
3 for key,value in items:
4 groups.setdefault(key, []).append(value)
5 return groups
6

7 items = [('a', 3), ('b', 5), ('a', 7)]
8 print(group(items)) # {a: [3, 7], b: [5]}

Figure 4-5: Practical example of LTS-DI involving several collections with unknown,
dependent types.

• The groups variable of type Dict[𝑇𝑘,𝑇𝑣] for unknown key and value types 𝑇𝑘

and 𝑇𝑣, respectively.

• The empty list [] used in the setdefault method call of type List[𝑇𝑒] for

unknown element type 𝑇𝑒.

LTS-DI then proceeds to deduce these unknown types as follows:

1. The setdefault method of the Dict type expects argument types 𝐾 and 𝑉 ,

where 𝐾 and 𝑉 are the dictionary’s key and value types, respectively. Hence,

the system deduces that 𝑇𝑘 is the type of key—or str based on the preceding

for-loop—and that 𝑇𝑣 is the type of the empty list—or List[𝑇𝑒].

2. The return value of setdefault is the dictionary’s value type, which was de-

duced to be List[𝑇𝑒] in the previous step. Further, the append method of

List takes the list’s element type as an argument—since value is being passed

to this method, it is deduced that 𝑇𝑒 must be int.

3. Given the resolution of 𝑇𝑒 in the previous step, it is now concluded that 𝑇𝑣

must be List[int]. Now, the type of groups is fully resolved as Dict[str,

List[int]] and the type of the empty list as List[int].

This example showcases how LTS-DI’s bidirectionality is essential when dealing with

collections whose types cannot be deduced immediately. In particular, this snippet

contains two collections whose element types are non-trivially intertwined, but which

70

LTS-DI is able to resolve nonetheless.

4.5 The LTS-DI Algorithm

The LTS-DI type checking algorithm operates on a localized block (or list) of state-

ments that in practice represents either a function body or top-level code (excluding

function or class constructs). The crux of LTS-DI’s typing algorithm consists of a

loop that continually runs the type checking procedure on expressions whose types

are still not completely known, until either all types become known or no changes

can be made (the latter case implies a type checking error, often due to a lack of type

annotations). Multiple iterations are necessary because types of later expressions are

often dependent on the types of earlier expressions within a block, due to dynamic

instantiation (e.g. x = []; z = type(x); x.append(1); z()).

Type checking of literals is straightforward, as the type of a literal is given by the

literal itself (e.g. 42 is an int, 3.14 is a float, etc.). Almost all other expressions—

binary operations, member functions, constructors, index operations and so on—are

transformed into a call expression that invokes a suitable magic method (e.g. a +

b becomes a.__add__(b)). Each call expression is type checked only if all of its

arguments are known in advance and fully realized. Once they are realized, the

algorithm recursively type checks the body of the function with the given input type

argument types, and in practice caches the result for later uses.

Call expression type checking will also attempt to apply expression transformations

if an argument type does not match the method signature, an example of which is

unwrapping Optional arguments. Finally, references to other functions are passed

not as realized functions themselves (as we often cannot know the exact realization

at the time of calling), but instead as temporary named function types (or partial

function types, if needed) that point to the passed function. This temporary type is

considered to be “realized” in order to satisfy LTS-DI’s requirements.

Below, we provide a formal characterization of the algorithm, and highlight its dif-

71

ferences with the standard Hindley-Milner type checking algorithm.

4.5.1 Notations and definitions

Before proceeding, we will introduce the following notations and definitions:

• Each function ℱ is defined to be a list of statements coupled with argument

types ℱarg
1 , . . . ,ℱarg

𝑛 and a return type ℱ ret.

• Each statement is defined to be a set of expressions 𝑒1, . . . , 𝑒𝑚. Each expression

𝑒 has a type 𝑒type—the goal of type checking is to ascertain these types.

• All types are either realized (meaning they are known definitively) or unrealized

(meaning they are partially or completely unknown), as described in Section 4.1.

For example, int is a realized type, List[T] is only partially realized as T is

a generic type, and T itself is completely unrealized. Let Realized(𝑡) denote

whether type 𝑡 is fully realized.

• Some expressions are returned from a function and thus used to infer the func-

tion’s return type. Let Returned(𝑒) denote whether expression 𝑒 is returned.

• Let UnrealizedType() return a new, unrealized type instance.

• Unification is the process by which two types are forced to be equivalent. If both

types are realized, both must refer to the same concrete type or a type checking

error will occur. Partially realized types are recursively unified; for example,

unifying List[T] and List[float] results in the generic type T being realized

as float. Let Unify(𝑡1, 𝑡2) denote this operation for types 𝑡1 and 𝑡2.

• Define an expression transformation to be a function 𝜉 : E ↦→ E that converts

one expression into another, where E is the set of expressions. LTS-DI employs

a set of expression transformations 𝒳 to handle various aspects of Python’s

syntax and semantics, such as what is described in Section 4.3.

72

4.5.2 The algorithm

The LTS-DI algorithm is primarily based on two subroutines that recursively call one

another. Firstly, LTSDI(ℱ) (Algorithm 1) takes a function ℱ and assigns realized

types to each expression contained within, or reports an error if unable to do so. This

procedure continually iterates over the contained expressions, attempting to type

check each that has an unrealized type. If no expression types are modified during a

given iteration, a type checking error is reported. Otherwise, if all expression types

are realized, the procedure terminates.

Secondly, TypeCheck(𝑒) performs type checking for the individual expression 𝑒. Since

this process predominantly entails type checking call-expressions, Algorithm 2 outlines

the algorithm specifically for such expressions. Each argument is first recursively

type checked, after which the types of the argument expressions are unified with

the function’s argument types. If unification fails, expression transformations are

applied in an effort to reach a successful unification; if none is encountered, an error

is reported. At the end, if all argument expression types are realized, the function

body is recursively type checked by again invoking LTSDI.

4.5.3 Differences with standard Hindley-Milner inference

The LTS-DI algorithm is based on the Hindley-Milner type inference algorithm, but

bears several novel distinctions. Firstly, applications of LTS-DI are localized to func-

tion bodies: Algorithm 1 takes a function as input, rather than an entire module.

Localization enables handling of overloaded functions and methods (absent in most

ML-like type systems), which is needed primarily to support Python’s magic methods

(e.g. int.__add__(int) versus int.__add__(float)). Secondly, LTS-DI applies the

type checking procedure repeatedly so as to account for delayed instantiation—unlike

ML type systems, which will type check called functions immediately, LTS-DI delays

the instantiation and type checking of functions until their argument types are real-

ized (last if-statement in Algorithm 2), which in turn emulates Python’s duck typing

and dynamism at compile time.

73

Algorithm 1: Type checking of a function ℱ .
Result: LTSDI(ℱ)

1 ℱ ret ← UnrealizedType();
2 foreach 𝑠 ∈ ℱ do // iterate over statements
3 foreach 𝑒 ∈ 𝑠 do // iterate over expressions
4 𝑒type ← UnrealizedType();
5 end
6 end
7 𝒯 ← {(𝑒, 𝑒type) | 𝑒 ∈ 𝑠,∀𝑠 ∈ ℱ};
8 loop
9 𝒯0 ← 𝒯 ;

10 foreach 𝑠 ∈ ℱ do // iterate over statements
11 foreach 𝑒 ∈ 𝑠 do // iterate over expressions
12 if Realized(𝑒type) then
13 if Returned(𝑒) then
14 Unify(etype,ℱ ret);
15 end
16 else
17 𝑒type ← TypeCheck(𝑒);
18 end
19 end
20 𝒯 ← {(𝑒, 𝑒type) | 𝑒 ∈ 𝑠,∀𝑠 ∈ ℱ};
21 if ⋀︀

(𝑒,𝑡)∈𝒯
Realized(𝑡) then

22 return
23 else if 𝒯 = 𝒯0 then // check change in types
24 error // type checking error
25 end

74

Algorithm 2: Type checking of a call-expression 𝑒 = (ℱ , 𝑎1, . . . , 𝑎𝑛) for called
function ℱ and argument expressions 𝑎1, . . . , 𝑎𝑛.
Result: TypeCheckcall(𝑒)

1 foreach 𝑎𝑖 ∈ {𝑎1, . . . , 𝑎𝑛} do
2 𝑡← TypeCheck(𝑎𝑖);
3 if ¬Unify(𝑡,ℱarg

𝑖) then
4 unified← 0;
5 foreach 𝜉 ∈ 𝒳 do
6 𝑎′

𝑖 ← 𝜉(𝑎𝑖);
7 𝑡′ ← TypeCheck(𝑎′

𝑖);
8 if Unify(𝑡′,ℱarg

𝑖) then
9 unified← 1;

10 break
11 end
12 end
13 if unified = 0 then
14 error
15 end
16 end
17 end
18 if ⋀︀

𝑎∈{𝑎1,...,𝑎𝑛}
Realized(𝑎type) then

19 LTSDI(ℱ);
20 return ℱ ret

21 end

75

(* OCaml *)
let f g a b = (g a, g b) in

let g x = x in
f g 1 "a" (* error *)

Python
def f(g, a, b): return g(a), g(b)
def g(x): return x
f(g, 1, "a") # compiles

Figure 4-6: Example of a program that cannot be type checked by standard Hindley-
Milner type inference algorithms, but which can be type checked by LTS-DI. Since
LTS-DI delays function instantiation, it can support multiple applications of the
function f on different argument types, unlike OCaml.

As a concrete example, consider Figure 4-6. The left snippet shows OCaml code,

which is type checked with standard ML type inference; the bottom line produces

an error since the type of the passed function f is realized by the first function

application, leading to inconsistent types on the second application. LTS-DI’s delayed

instantiation is able to support the equivalent code in Python, since functions are not

immediately instantiated.

Finally, LTS-DI employs a number of expression transformations (𝒳 in Algorithm 2)

in order to increase Python compatibility. An appealing aspect of this approach is

that the set of transformations can be easily expanded to support new semantics and

behavior.

4.6 Limitations

The goal of LTS-DI is to support as many features as possible from the original

Python feature set without relying on runtime type checking of any kind. As of now,

LTS-DI can handle nearly everything that Python can, including comprehensions,

iterators, generators (both sending and receiving), complex function manipulation,

variable arguments via *args/**kwargs, type checks with isinstance and hasattr,

and more.

However, there are several features that LTS-DI still does not support. Some of

the features are deliberately not supported: these include dynamic modifications of

types (e.g. dynamic method table modification, dynamic addition of class members,

76

metaclasses, and class decorators) and dynamic scoping operations (e.g. Python’s

lax scoping and modification of the internal __dict__ table). Other unsupported

features are, on the other hand, planned to be incorporated into the LTS-DI in the

near future. These include support for inheritance and dynamic polymorphism and

support for union types.

Further, standard Python modules need to be re-implemented so as to be compatible

with LTS-DI, which currently entails implementing some C-based standard modules in

Python. In practice, we have found that generally simply copying the “equivalent to”

Python snippets from CPython’s documentation will simply work without issue. Yet,

several Python built-in modules are not yet supported as-is due to this restriction.

Many of the features that are not currently supported in LTS-DI are in fact still

possible in a statically-typed context. For example, although creating a list containing

objects of different types (e.g. [42, ‘foo’]) is disallowed in LTS-DI, it would be

possible to support by implicitly converting the list’s type to a union type over its

element types (e.g. Union[int,str] in the preceding example). Several of these

features are under active development at the time of writing.

4.7 Conclusion

The type checking methodology presented in this chapter lays the groundwork for

Seq’s compilation pipeline, and opens the door to novel compilation techniques like

bidirectional compilation, which we discuss in the next chapter. Statically type check-

ing dynamic languages like Python is a complicated task, and there is still much to

explore beyond what is presented here, such as dynamic polymorphism or the use of

union types.

77

78

Chapter 5

Intermediate Representation

Many languages compile in a relatively direct fashion: source code is parsed into an

abstract syntax tree (AST), optimized, and converted into machine code, typically

by way of a compiler framework such as LLVM [67]. Although this approach is

comparatively easy to implement, ASTs often contain many more types of nodes

than necessary to represent a program’s underlying computation. This complexity

can make implementing optimizations, transformations, and analyses difficult or even

impractical. An alternate approach involves converting the AST into an intermediate

representation (IR) prior to performing optimization passes. IRs typically contain a

substantially reduced set of nodes with well-defined semantics, making them much

more conducive to transformations and optimizations.

Seq implements this approach in its IR, which is positioned between the type checking

and optimization phases, as shown in Figure 5-1. The Seq Intermediate Representa-

tion (SIR) is radically simpler than the AST, with both a simpler structure and fewer

nodes. Despite this simplicity, SIR maintains most of the source’s semantic informa-

tion and facilitates “progressive lowering,” enabling optimization at multiple layers

of abstraction similar to other IRs [68, 127]. Optimizations that are more convenient

at a given layer of abstraction are able to proceed before further lowering. A pre-

cise listing of SIR’s structure can be found in Figure 5-2 and Table 5.1; Appendix D

79

SIR node LLVM equivalent Examples
Node N/A See below
Module Module N/A
Type Type IntType, FuncType, RecordType
Var AllocaInst Var, Func
Func Function BodiedFunc, LLVMFunc, ExternalFunc
Value Value See below
Const Constant IntConst, FloatConst, StringConst
Instr Instruction CallInstr, TernaryInstr, ThrowInstr
Flow Various IfFlow, WhileFlow, ForFlow

Table 5.1: Listing of different kinds of SIR nodes, LLVM IR analogs, and examples.

def fib(n):
a, b = 0, 1
while a < n:

print a
a, b = b, a+b

fib(1000)

+

ba __add__ a b

Call
1

Instr

Func 2

+

ba
intintAbstract

Syntax Tree Type Checker
Intermediate

Representation
Source Code Optimization

Passes
Target

int, int

Bidirectional Compilation

Figure 5-1: Seq’s compilation pipeline. Compilation proceeds at first in a linear
fashion, where source code is parsed into an abstract syntax tree (AST), on which
type checking is performed to generate an intermediate representation (IR). Unlike
other compilation frameworks, however, Seq’s is bidirectional, and IR optimizations
can return to the type checking stage to generate new IR nodes and specializations
not found in the original program, which is required for several key optimizations we
present in Chapters 6 and 7.

provides a much more detailed listing.

Among the contributions of this chapter is the introduction of bidirectional interme-

diate representations, a new class of IRs with which compilation does not follow a

linear path after parsing, but can return to the type checking stage during IR passes

to generate new specialized IR nodes. The bidirectionality of Seq’s IR is critical to

many of its general-purpose and domain-specific compiler optimizations.

80

Node

Module Value

Const Instr Flow

Type Var

Func

Figure 5-2: Hierarchy of different SIR nodes.

5.1 High-Level Design

SIR is a value-based IR inspired in part by LLVM IR [67]. As in LLVM, we employ

a structure similar to single static assignment (SSA) form, making a distinction be-

tween values, which are assigned once, and variables, which are conceptually similar

to memory locations and can be modified repeatedly. So as to mirror the source’s

structure, values can be nested into arbitrarily-large trees. Keeping this SSA-like

tree structure enables easy lowering at the Seq IR level. For example, this structure

enables SIR to be lowered to a control-flow graph easily.

Unlike LLVM, however, the IR initially represents control flow using explicit nodes

called flows, allowing for a close structural correspondence with the source code.

Representing the control-flow hierarchy explicitly is similar to the approaches taken by

Suif [127] and Taichi [58]. Importantly, this makes optimizations and transformations

that depend on precise notions of control-flow much easier to implement. One key

example is the for flow: in Pythonic languages, the for x in range(y) pattern is

exceedingly common; maintaining explicit loops allows Seq to easily recognize this

pattern rather than having to decipher a maze of branches, as is done in lower-level

IRs like LLVM IR.

5.2 Operators

SIR does not represent operators like +, -, etc. explicitly, but instead converts them

to function calls resembling Python’s “magic methods”. For example, the + operator

81

1 @extend
2 class int:
3 @llvm
4 def __add__(self, b: int) -> int:
5 %tmp = add i64 %self, %b
6 ret i64 %tmp

Figure 5-3: Primitive operators in Seq via @llvm tag.

resolves to an __add__ call. This enables seamless operator overloading for arbitrary

types via these magic methods, the semantics of which are identical to Python’s.

A natural question that arises from this approach is how to implement operators

for primitive types like int and float. Seq solves this by allowing inline LLVM

IR via the @llvm function annotation, which enables all primitive operators to be

written in Seq source code. An example for int.__add__(int) is shown in Figure 5-

3. Information about operator properties like commutativity and associativity can

be passed as annotations in the IR.

5.3 Bidirectional Intermediate Representations

Traditional compilation pipelines are linear in their data flow: source code is parsed

into an AST, usually converted to an IR, optimized, and finally converted to machine

code. With Seq we introduce the concept of a bidirectional IR, wherein IR passes are

able to return to the type checking stage to generate new IR nodes and specializations

not present in the source program. Among the benefits of a bidirectional IR are:

• Large portions of complex IR optimizations can be implemented in Seq. For

example, the prefetch optimization mentioned in Chapter 3 involves a generic

dynamic scheduler of coroutines that is impractical to implement purely in IR.

• New instantiations of user- or library-defined data types can be generated on

demand. For example, an optimization that requires the use of Seq/Python

dictionaries can instantiate the Dict type for the appropriate key and value

82

types. Instantiating types or functions is a non-trivial process that requires a full

re-invocation of the type checker due to cascading realizations, specializations

and so on.

• The IR can take full advantage of Seq’s intricate type system. By the same

token, IR passes can themselves be generic, using Seq’s expressive type system

to operate on a variety of types.

While SIR’s type system is very similar to Seq’s, SIR types are fully realized and

have no associated generics (unlike Seq/AST types). However, every SIR type carries

a reference to the AST types used to generate it, along with any AST generic type

parameters. These associated AST types are used when re-invoking the type checker,

and allow SIR types to be queried for their underlying generics, even though generics

are not present in the SIR type system (e.g. it is straightforward to obtain the type

T from a given SIR type representing List[T], and even use it to realize new types

or functions).

The ability to instantiate new types during SIR passes is in fact critical to many SIR

operations. For example, creating a tuple (x, y) from given SIR values x and y

requires instantiating a new tuple type Tuple[X,Y] (where the uppercase identifiers

indicate types), which in turn requires instantiating new tuple operators for equality

and inequality checking, iteration, hashing and so on. Calling back to the type checker

makes this a seamless process, however.

Implementing bidirectionality within a given IR requires a degree of integration with

the AST and type checker. For example, the type checker employs the host language’s

type system when type checking the AST, whereas the IR’s type system might be

significantly different. Seq’s IR, for example, has no concept of generic types, whereas

generics are used extensively during type checking. To address this issue, all SIR types

carry a reference to the corresponding AST type that was used to generate them; this

AST type is used when interfacing with the type checker. Furthermore, new IR types

are always created via the type checker, ensuring they all carry a corresponding AST

83

type reference.

We demonstrate the power of bidirectional IRs by implementing several real-world

domain-specific optimizations in Chapter 6, each of which relies on bidirectional IR

features listed above.

5.4 Seq IR in Action

def fib(n):
if n < 2:

return 1
else:

return fib(n - 1) + fib(n - 2)

(bodied_func
'"fib[int]"
(type '"fib[int]")
(args (var '"n" (type '"int") (global false)))
(vars)
(series

(if (call '"int.__lt__[int,int]" '"n" 2)
(series (return 1))
(series

(return
(call

'"int.__add__[int,int]"
(call

'"fib[int]"
(call '"int.__sub__[int,int]" '"n" 1))

(call
'"fib[int]"
(call '"int.__sub__[int,int]" '"n" 2))))))))

Figure 5-4: Equivalent IR for a simple Fibonacci function in Seq.

Figure 5-4 shows an example of Seq source mapping into SIR. The simple function

fib (Fibonacci sequence) maps to a SIR BodiedFunc with a single integer argument.

The body contains an IfFlow that either returns a constant or recursively calls the

function to obtain the result. Notice that operators like + and - are converted to

function calls (__add__ and __sub__, respectively), but that the IR otherwise mir-

rors the original source code in its structure, allowing easy pattern matching and

transformations.

5.5 Passes and Transformations

SIR provides a comprehensive analysis and transformation infrastructure: users write

passes using various SIR builtin utility classes and register them with a PassManager,

which is responsible for scheduling execution and ensuring that any required analyses

are present. In Figure 5-5, we show a simple addition constant folding optimization

that utilizes the OperatorPass helper, a utility pass that visits each node in an IR

84

1 class AddFolder : public OperatorPass {
2 void handle(CallInstr *v) {
3 auto *f = util::getFunc(v->getCallee());
4 if (!f || f->getUnmangledName() != "__add__") return;
5 auto *lhs = cast<IntConst>(v->front());
6 auto *rhs = cast<IntConst>(v->back());
7 if (lhs && rhs) {
8 auto sum = lhs->getVal() + rhs->getVal();
9 v->replaceAll(v->getModule()->getInt(sum));

10 }
11 }
12 };

Figure 5-5: Simple integer addition constant folder pass in Seq IR. This pass recog-
nizes expressions of the form <int> + <int> (where <int> is a constant integer) and
replaces them with the correct sum.

module automatically. In this case, we simply override the handler for CallInstr,

check to see if the function matches the criteria for replacement, and perform the

action if so (recall that binary operators in SIR are expressed as function calls).

Users can also define their own traversal schemes and modify the IR structure at will.

More complex passes can make use of SIR’s bidirectionality and re-invoke the type

checker to obtain new SIR types, functions, and methods, an example of which is

shown in Figure 5-6. In this example, calls of the function foo are searched for, and

a call to validate on foo’s argument and its output is inserted after each. As both

functions are generic, the type checker is re-invoked to generate three new, unique

validate instantiations. Instantiating new types and functions requires handling

possible specializations and realizing other types and functions (e.g. the == operator

method __eq__ must be realized in the process of realizing validate in the example),

as well as caching realizations for future use to avoid a blowup in code size.

5.6 Code Generation and Execution

Seq uses LLVM to generate native code. The conversion from Seq IR to LLVM IR is

generally a straightforward process, following the mappings listed in Table 5.1. Most

85

1 class ValidateFoo : public OperatorPass {
2 void handle(AssignInstr *v) {
3 auto *M = v->getModule();
4 auto *var = v->getLhs();
5 auto *call = cast<CallInstr>(v->getRhs());
6 if (!call) return;
7 auto *foo = util::getFunc(call->getCallee());
8 if (!foo || foo->getUnmangledName() != "foo") return;
9 auto *arg1 = call->front(); // argument of 'foo' call

10 auto *arg2 = M->Nr<VarValue>(var); // result of 'foo' call
11 auto *validate = M->getOrRealizeFunc("validate",
12 {arg1->getType(), arg2->getType()});
13 auto *validateCall = util::call(validate, {arg1, arg2});
14 insertAfter(validateCall); // call 'validate' after 'foo'
15 }
16 };

def foo(x): return x*3 + x

def validate(x, y):
assert y == x*4

a = foo(10)
b = foo(1.5)
c = foo('a')

a = foo(10)
validate(10, a)

b = foo(1.5)
validate(1.5, b)

c = foo('a')
validate('a', c)

Figure 5-6: Example of bidirectional compilation in Seq IR. The simple pass shown
in the bottom box searches for calls of function foo, and inserts after each a call
to validate, which takes foo’s argument as well as its output and verifies the re-
sult. Both functions are generic and can take as an argument any type that can be
multiplied by an integer, so the type checker is re-invoked to generate three distinct
validate instantiations for the example code in the top left box, producing code
equivalent to that in the top right box.

86

Seq types also translate to LLVM IR types intuitively: int becomes i64, float be-

comes double, bool becomes i8 and so on—these conversions also allow for C/C++

interoperability. Tuple types are converted to structure types containing the appro-

priate element types, which are passed by value (recall that tuples are immutable in

Python); this approach for handling tuples allows LLVM to optimize them out entirely

in most cases. Reference types like List, Dict etc. are implemented as dynamically-

allocated objects that are passed by reference, which follows Python’s semantics for

mutable types. Seq handles None values by promoting types to Optional as necessary;

optional types are implemented via a tuple of LLVM’s i1 type and the underlying

type, where the former indicates whether the optional contains a value. Optionals on

reference types are specialized so as to use a null pointer to indicate a missing value.

Generators are a prevalent language construct in Python; in fact, every for loop

iterates over a generator (e.g. for i in range(10) iterates over the range(10)

generator). Hence, it is critical that generators in Seq carry no extra overhead, and

compile to equivalent code as standard C for-loops whenever possible. To this end,

Seq uses LLVM coroutines1 to implement generators. LLVM’s coroutine passes elide

all coroutine overhead (such as frame allocation) and inline the coroutine iteration

whenever the coroutine is created and destroyed in the same function. (We found in

testing that the original LLVM coroutine passes—which rely on explicit “create” and

“destroy” intrinsics—were too strict when deciding to elide coroutines, so in Seq’s

LLVM fork this process is replaced with a capture analysis of the coroutine handle,

which is able to elide coroutine overhead in nearly all real-world cases.) An example

of coroutine usage by the Seq compiler is given in Figure 5-7.

Seq uses a lightweight runtime library when executing code. In particular, the Boehm

garbage collector [25]—a drop-in replacement for malloc—is used to manage allocated

memory, in addition to OpenMP for handling parallelism and libbacktrace2 for ex-

ception handling. Seq offers two compilation modes: debug and release. Debug mode
1LLVM coroutines are also used by Clang versions 6 and later to implement the C++ Coroutine

Technical Specification [90].
2https://github.com/ianlancetaylor/libbacktrace

87

https://github.com/ianlancetaylor/libbacktrace

C++ Seq

for (i = 0; i < 3; i++)
print(i);

for i in range(3):
print i

entry:
%g = call i8* @range(i64 3)
br label %for

for:
call void @llvm.coro.resume(i8* %g)
%done = call i1 @llvm.coro.done(i8* %g)
br i1 %done, label %exit, label %body

body:
%p0 = call i8* @llvm.coro.promise(i8* %g, i32 8, i1 false)
%p1 = bitcast i8* %p0 to i64*
%i = load i64, i64* %p1
call void @print(i32 %i)
br label %for

exit:
call void @llvm.coro.destroy(i8* %g)

call void @print(i64 0)
call void @print(i64 1)
call void @print(i64 2)

-O3

LLVM coro. passes + -O3

Figure 5-7: Compilation of Seq generators. Two semantically identical loops in C++
and Seq are shown in the uppermost boxes. Seq generators are implemented as
LLVM coroutines, iteration over which in LLVM IR is shown in the middle box. The
LLVM coroutine passes subsequently deduce that the “range” coroutine is created
and destroyed in the same function without escaping, and inline/unroll the coroutine
to produce code identical to the C++ example’s.

88

includes full debugging information, allowing Seq programs to be debugged with tools

like GDB and LLDB, and also includes full backtrace information with file names and

line numbers. Release mode performs a greater number of optimizations (including

standard -O3 optimizations from GCC/Clang) and omits debug information. Users

can therefore use debug mode for a seamless programming and debugging cycle, and

use release mode for high-performance in deployment.

5.7 Conclusion

Seq’s intermediate representation is the medium through which program transforma-

tions, optimizations, and analyses are carried out. It offers a well-defined and succinct

interface to the primitives that are entailed in many different compiler passes, such as

constructing new IR nodes, pattern matching, inlining/outlining, control flow analy-

sis, and so on. Moreover, through bidirectionality, it allows passes to generate, spe-

cialize, and instantiate types and functions on the fly, which proves to be immensely

useful for many of the optimizations we discuss in the upcoming chapters.

89

90

Chapter 6

Genomics-Specific Optimizations

A central goal of Seq is to bridge the gap between the high-performance of low-level

languages and the usability of high-level languages. While the usability aspect is

largely based on the type system presented in Chapter 4—which allows Seq to reuse

Python’s syntax—in the next two chapters we focus more on the performance angle.

To that end, this chapter describes the many domain-specific optimizations and pro-

gram transformations that are performed automatically by the Seq compiler, several

of which are exceedingly difficult to implement by hand and would require large-scale

code changes and significant testing time to incorporate into existing software. Yet,

in Seq, they often require just a single additional line of code, resulting in succinct,

elegant code that is easy to reason about and maintain. Many of these optimizations

also require a global view of the program, and are thus out of reach for software li-

braries, several of which have been developed for a number of languages [38, 65, 117].

Most libraries are furthermore still bound to high-level host languages that lack perfor-

mance, or to low-level languages that are hard to program—performance comparisons

to some of these libraries are given in Chapter 9.

In short, this chapter provides the following:

• A characterization of Seq’s genomic data types and their implementations.

91

• A host of novel compiler optimizations designed specifically for bioinformatics

applications. These include optimizations for reverse complementation, genomic

pattern matching, queries of large genomic indices, sequence alignment, and

more.

• Several microbenchmarks that demonstrate the efficacy of these optimizations,

with in-depth results for larger, real-world applications given in Chapter 9.

6.1 Making Sequences Efficient

It goes without saying that computational genomics applications largely deal with

processing and operating on sequences, and so an efficient sequence type implemen-

tation is invaluable. Seq provides a sequence type seq and a separate 𝑘-mer type

Kmer[𝑘] for 1 ≤ 𝑘 ≤ 1024. While the sequence type and the 𝑘-mer type are concep-

tually both strings of nucleotide bases, they differ largely in where and how they are

used: sequences have arbitrary length and can be accompanied by various metadata

like an error profile, quality scores or ambiguous bases; 𝑘-mers on the other hand,

at least in how they are frequently used in practice, are fixed-size segments of some

larger sequence. For example, a typical alignment algorithm would employ short 𝑘-

mers obtained from an arbitrary-length sequencing read, in conjunction with some

𝑘-mer index, to obtain candidate alignments for that read, where 𝑘 is usually chosen

as a fixed parameter beforehand, but read lengths are not known until runtime. In

this case, the reads would be of type seq and the 𝑘-mers would, unsurprisingly, be of

type Kmer[𝑘] for some 𝑘. In practice, general sequences can also have a larger alpha-

bet than 𝑘-mers (which are restricted to just the four nucleotide bases); for instance,

N indicates an ambiguous base, R indicates an A or a G, etc. Chapter 3 provides several

examples of using sequence and 𝑘-mer types in Seq, showing the general syntax as

well as some common operations and how to convert between the two.

The following operations on sequences and 𝑘-mers are common, and are the subject

of several compiler optimizations performed by Seq: subsequence extraction/iteration,

92

reverse complementation, 𝑘-merization (the process of iterating over a sequence’s con-

stituent 𝑘-mers), Hamming distance computation, hashing / indexing, and dynamic

programming alignment (e.g. Smith-Waterman or Needleman-Wunsch).

6.1.1 Definitions

For a sequence 𝑠 over an alphabet Σ (where usually Σ = {A, C, G, T}), we let |𝑠| be the

length of 𝑠, 𝑠[𝑖] be the character at 0-based index 𝑖, 𝑠[𝑖 : 𝑗] be the subsequence from 0-

based index 𝑖 (inclusive) to 0-based index 𝑗 (exclusive), and 𝑠 ‖ 𝑡 be the concatenation

of 𝑠 with another sequence 𝑡. Further, let 𝑠 be the reverse complement of 𝑠. Reverse

complementation is a common operation in computational genomics where a given

sequence 𝑠 is transformed into a new sequence 𝑡 such that 𝑡[𝑖] = RevComp(𝑠[|𝑠|−𝑖−1])

for 0 ≤ 𝑖 < |𝑠|, where

RevComp(𝑐) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 𝑐 = A

G 𝑐 = C

C 𝑐 = G

A 𝑐 = T

.

We define a 𝑘-mer to be a sequence 𝑠 of fixed length |𝑠| = 𝑘. 𝑘 is typically on the

order of 10 to 100. Let 𝜅𝑘(𝑠) be the set of all 𝑘-mers that exist as subsequences in

sequence 𝑠.

These definitions give rise to various algebraic rules, each of which Seq uses to perform

various optimizations. For example:

1. 𝑠 = 𝑠: “the reverse complement of the reverse complement is the original se-

quence” – enables efficient 𝑂(1) lazy sequence reverse complementation.

2. 𝑠 = 𝑠[𝑖 : |𝑠|] ‖ 𝑠[0 : 𝑖], 0 ≤ 𝑖 ≤ |𝑠|: “the reverse complement is the concatenation

of the reverse complements of the two halves of the sequence, in reverse order”

93

– enables efficient 𝑘-mer reverse complementation via a lookup table.

3. {𝑡 | 𝑡 ∈ 𝜅𝑘(𝑠)} = {𝑡 | 𝑡 ∈ 𝜅𝑘(𝑠)}: “iterating over reverse complemented 𝑘-mers

can be done by iterating over 𝑘-mers of the reverse complemented sequence” –

enables loop reordering for 𝑘-mer iteration followed by reverse complementation.

6.1.2 Implementation

Seq’s sequence type is implemented as a 16-byte pass-by-value structure containing

an 8-byte character pointer and an 8-byte length. The C equivalent would be:

struct seq_t { char *ptr; int64_t len; };

Subsequence operations do not copy, but rather just return a new sequence instance

whose pointer is at the appropriate offset from the original’s. Seq then uses a con-

servative garbage collector to ensure that memory is deallocated as needed, and that

nothing is prematurely deallocated, which is especially important when employing

this scheme as many pointers will be referring to the middle of some larger allocated

block. (In general, there are many ways to implement a sequence data type, and

future work entails choosing the best variant based on context at compile time, be it

an ASCII representation, a 2-bit encoding or something else. We found the described

implementation to work well in a wide range of cases, however.)

Sequence reverse complementation is an 𝑂(1) operation in Seq, implemented not by

copying and physically reverse complementing, but by simply, “lazily”, flipping the

sign of the sequence length. Then, each sequence method (e.g. for subsequence, 𝑘-

merization, etc.) first checks the sign of the length, and uses it to determine if the

sequence should be treated as reverse complemented or not (of course, the actual

length is given by the absolute value). Conceptually, therefore, each sequence 𝑠

is a 2-tuple of the underlying “logical” sequence 𝑠log and a length 𝑠len, such that

|𝑠| = |𝑠log| = |𝑠len|, and 𝑠len < 0 if and only if 𝑠 is really reverse complemented with

respect to 𝑠log. The reverse complementation algorithm is shown in Algorithm 3.

94

0 5 10 15 20 25 30 35

100

200

300

400

|𝑠|

Ru
nt

im
e

(s
)

seq reverse complement

naive
lazy

(a) Revcomp opt. (sequence)

4 16 64 256

50

100

150

𝑘

Ru
nt

im
e

(s
)

Kmer reverse complement

lookup
bitwise
SIMD

(b) Revcomp opt. (𝑘-mer)

22 23 24 25 26 27

101

102

103

104

𝑘

Ru
nt

im
e

(s
)

Hamming distance

naive
popcnt

(c) Hamming distance opt.

22 23 24 25 26 27
0

200

400

600

𝑘

Ru
nt

im
e

(s
)

𝑘-merization

naive
Algorithm 6

Alg. 6 + RC opt.

(d) Pipeline revcomp opt.

10 15 20 25 30
200

400

600

800

1,000

𝑘

Ru
nt

im
e

(s
)

FM-index queries

w/o prefetch
w/ prefetch

(e) Prefetch opt.

40 60 80 100 120
0

10

20

|𝑠|

Ru
nt

im
e

(s
)

Smith-Waterman alignment

intra-sequence
inter-sequence

(f) Inter-align opt.

Figure 6-1: Effects of several compiler optimizations performed by the Seq compiler
on various small benchmarks. Reverse complement performance was measured by
counting sequences (or 𝑘-mers) lexicographically larger than their reverse comple-
ments; Hamming distance performance by computing distances between 𝑘-mers and
their reverse complements; FM-index query performance by querying 𝑘-mers from a
set of Illumina reads; Smith-Waterman alignment by aligning one million simulated
sequence pairs of maximum length |𝑠| with 90% identity and maximum indel size of
3. The reference genome used in each applicable benchmark was hg19.

95

Algorithm 3: Reverse complement of sequence 𝑠 = (𝑠log, 𝑠len).
Result: 𝑠

1 return (𝑠log,−𝑠len);

An example implementation of 𝑠[·] under this scheme is shown in Algorithm 4; notice

that the sign of 𝑠len must first be checked in order to determine how to index into 𝑠log.

If 𝑠len is positive, we index regularly; if it is negative, on the other hand, we treat 𝑠log

as reverse complemented and index correspondingly.

Algorithm 4: Sequence indexing for sequence 𝑠 = (𝑠log, 𝑠len).
Result: 𝑠[𝑖]

1 if 𝑠len > 0 then
2 return 𝑠log[𝑖];
3 else
4 return RevComp(𝑠log[(−𝑠len)− 𝑖− 1]);
5 end

The appeal of this approach is that it not only saves memory and copying, but can also

be applied multiple times without issue. For instance, clearly 𝑠 = (𝑠log,−(−𝑠len)) = 𝑠.

A more complicated example is 𝑠[𝑖 : 𝑗], which also works as shown below, along with

a concrete example where 𝑠 = AAAGGGTTTCCC (|𝑠| = 12) with 𝑖 = 2 and 𝑗 = 5:

𝑠[𝑖 : 𝑗] = (𝑠log,−𝑠len)[𝑖 : 𝑗]

= (𝑠log[|𝑠| − 𝑗 : |𝑠| − 𝑖],−𝑠len)

= (𝑠log[|𝑠| − 𝑗 : |𝑠| − 𝑖], 𝑠len).

𝑠 = AAAGGGTTTCCC,

𝑠 = GGGAAACCCTTT,

𝑠[2 : 5] = GAA,

𝑠[2 : 5] = TTC,

𝑠[|𝑠| − 5 : |𝑠| − 2|] = 𝑠[7 : 10] = TTC.

The drawback of this approach is that all sequence operations must include a prelim-

inary check of 𝑠len’s sign, although we have found the overhead of this to be minimal,

and greatly outweighed by the benefits (Figure 6-1a). In fact, this check can be elided

altogether by the compiler in many cases (e.g. when sequences are first read from

disk, at which point nothing has yet been reverse complemented).

96

Figure 6-1a shows the performance of this approach compared to the naive method

of simply copying and reverse complementing. The benchmark shown in Figure 6-1a

entails counting all subsequences of a given length in the human reference genome

that are lexicographically larger than their reverse complement. Notice that the naive

implementation is 𝑂(|𝑠|) in the best case, whereas the lazy approach is best-case 𝑂(1)

since bases must only be read until the lexicographic order of the given sequence and

its reverse complement can be determined (by contrast, the naive approach must

always read all bases of the subsequence to reverse complement it). Hence, the lazy

approach not only performs better, but also scales better, as shown in the figure.

6.2 𝑘-mers

In Seq, a 𝑘-mer’s length is defined by its type (e.g. Kmer[5] is a different type than

Kmer[32]), so unlike sequences the length does not need to be stored explicitly. Seq

stores 𝑘-mers in a 2-bit encoded format, where Kmer[𝑘] maps to LLVM IR type i𝑁

with 𝑁 = 2𝑘. LLVM then maps that integral type to hardware; for 𝑘 ≤ 32, a 𝑘-

mer fits in a single machine register on 64-bit systems, whereas larger 𝑘-mers may

be spilled to the stack. Longer 𝑘-mers can often be stored in MMX/SSE registers,

and LLVM will frequently utilize these registers when generating code for long 𝑘-

mers. Notationally, let 𝜉𝑘(·) be the bijection from the set of all 𝑘-mers to unique 2-bit

encodings.

6.2.1 Reverse complement

The Seq compiler uses three different approaches to reverse complement 𝑘-mers (ex-

pressed programmatically as ~kmer):

• Lookup: The lookup method uses a lookup table of hard-coded 4-mer reverse

complements (taking up 44 × (2 · 4) bits, or 256 bytes). Reverse complements

of longer 𝑘-mers are then constructed using the fact that 𝑠 = 𝑠[4 : |𝑠|] ‖ 𝑠[0 : 4]

(recursively), i.e. the first four bases are reverse complemented, followed by the

97

next four and so on, after which they are concatenated (in this case via bitwise

shifts) in reverse order. For 𝑘 < 4, the 2-bit encoding can simply be padded

with A bases to construct a 4-mer, and the resulting T bases can be trimmed

after reverse complementation.

• Bitwise: The bitwise approach uses a series of bitwise operations to reverse

the 2-bit pairs of the encoded 𝑘-mer, then applies a bitwise-NOT to obtain

the complement, the end result of which is the reverse complement. This is

a generalization of the approaches used in GATB [46] and Jellyfish [86] for

arbitrary-width integer encodings.

• SIMD: The SIMD approach uses a vector shuffle instruction to reverse the bytes

of the encoded 𝑘-mer, then uses bitwise operations on each byte of the reversed

vector in a similar fashion as the bitwise approach to obtain the final reverse

complement. A similar method is implemented in MMseqs2 [118], although this

implementation uses x86-specific pshufb instructions to reverse complement

individual bytes in the reversed vector, whereas Seq’s LLVM IR implementation

uses just the target-agnostic LLVM IR shufflevector instruction followed by

a series of shifts and bitmasks to achieve the same effect.

The performance of each of these approaches for a wide range of 𝑘 is shown in Figure 6-

1b. As shown, there is no clear winner between these three methods. For smaller

𝑘 (≤ 20), the lookup method is almost always best; for larger 𝑘 (≥ 32), the SIMD

approach is almost always best. For 𝑘 values between these two cutoffs, the optimal

algorithm varies, but we found the bitwise approach to be consistently close to, if not

the best option. Because of this, the Seq compiler employs this heuristic to decide

how to reverse complement a given 𝑘-mer.

6.2.2 𝑘-mer hashing

𝑘-mer hashing is an extensively researched area [83]. For 𝑘 ≤ 32, Seq simply uses

the encoded 2-bit value as the hash by default. For 𝑘 > 32, on the other hand, the

98

situation is somewhat more complicated. One option is to use the hash of the first

32 bases, but due to the highly non-uniform structure of the genome, this leads to

excessive collisions; for example, all 𝑘-mers consisting of a string of 32 As followed

by unique bases would hash to the same value. For this reason, hashing 𝑘-mers for

𝑘 > 32 is done by hashing the first and last 32 bases, and XORing the two hash

values. Compared to the naive approach, this method reduces the average collisions

per unique 64-mer in hg19 from 1.089 to 1.007, and more than halves the size of the

largest bucket. The best way to hash 𝑘-mers can vary based on the application, so

Seq enables the user to override the 𝑘-mer hash function if needed. Hashing a 𝑘-mer

in Seq is done via hash(kmer).

6.2.3 Hamming distance

The Hamming distance of two 𝑘-mers 𝑠 and 𝑡 is defined to be |{𝑖 | 𝑠[𝑖] ̸= 𝑡[𝑖], 0 ≤ 𝑖 < 𝑘}|;

i.e. the number of positions at which corresponding bases differ. In Seq, this is ex-

pressed simply as abs(s - t). A naive Hamming distance algorithm is to iterate over

the bases of the two 𝑘-mers one at a time, and count how many differ. Seq employs

a different algorithm using the popcnt instruction (which computes the number of 1

bits in an integer’s binary representation), shown in Algorithm 5.

Algorithm 5: Hamming distance between two 𝑘-mers 𝑠 and 𝑡.
Result: |𝑠− 𝑡|

1 𝑚1 ←
2𝑘⏞ ⏟

010101 . . . 012;
2 𝑚2 ← 101010 . . . 102⏟ ⏞

2𝑘

;

3 𝑟1 ← (𝜉𝑘(𝑠) ∧𝑚1)⊕ (𝜉𝑘(𝑡) ∧𝑚1);
4 𝑟2 ← (𝜉𝑘(𝑠) ∧𝑚2)⊕ (𝜉𝑘(𝑡) ∧𝑚2);
5 𝑑← (𝑟1 ≪ 1) ∨ 𝑟2;
6 return popcnt(𝑑)

Algorithm 5 works by first checking for differences in the odd bits via the 𝑚1 bitmask,

then checks the even bits using 𝑚2, and finally ORs the results to obtain a bit-

vector with 1s corresponding to different bases, a population count of which is the

99

desired result. We leave to LLVM the decision of how to lower the logical popcnt

instruction to actual machine instructions. For longer 𝑘-mers, the popcnt version can

be substantially faster than the naive version, as shown in Figure 6-1c. For example,

for 128-mers, the popcnt approach is nearly 100× faster.

6.3 Pattern Matching

Seq supports genomic pattern matching via a match statement. Sequence patterns

consist of literal ACGT characters, wildcards that match any single base (_) and wild-

cards that match zero or more of any base (...), with at most one ... allowed per

pattern. For example, to match a sequence starting with the start codon ATG and

ending with the stop codon TAG, with at least one base in between, one could use the

pattern ATG_...TAG.

Pattern matching on sequences is done in a straightforward way, where bases are

checked one at a time. 𝑘-mer pattern matching, on the other hand, is done using

bitwise operators. Let 𝑝 = {A, C, G, T, _, ...}⋆ be the pattern; we then have the four

cases:

1. No wildcards, no zero-or-more’s (_ /∈ 𝑝, ... /∈ 𝑝): This is the simplest case,

where the pattern is a literal sequence without wildcards. We simply construct

the encoded pattern and compare with the query. We also do a compile time

check to ensure 𝑘 = |𝑝|.

2. Wildcards, no zero-or-more’s (_ ∈ 𝑝, ... /∈ 𝑝): In this case, we have only single-

base wildcards, so we construct a bitmask with zeros at the wildcard positions

and ones elsewhere, apply it to both the encoded pattern (with wildcards en-

coded arbitrarily) and the query, then compare. We again do a compile time

check that 𝑘 = |𝑝|.

3. No wildcards, zero-or-more’s (_ /∈ 𝑝, ... ∈ 𝑝): Similar to case (1), except we

partition the pattern into two sub-patterns 𝑝1 and 𝑝2 around the ... wildcard,

100

100 200 300 400 500

100

200

300

400

𝑘

Ru
nt

im
e

(s
)

𝑘-mer matching performance

naive (short)
Seq (short)
naive (long)
Seq (long)

Figure 6-2: 𝑘-mer matching performance for a long pattern (T_ × 32 ‖ ... ‖ _A ×
32) and a short pattern (T_T_..._A_A). Performance was measured by counting
matching 𝑘-mers from hg19. The naive implementations consist of two loops that
check appropriate bases from the two ends of the 𝑘-mer.

then check each individually. This time, we check that 𝑘 ≥ |𝑝| at compile time,

since ... can match zero or more bases.

4. Wildcards, zero-or-more’s (_ ∈ 𝑝, ... ∈ 𝑝): Similar to (2), except we partition

around ... as above, mask each sub-pattern appropriately, then compare each.

We again check that 𝑘 ≥ |𝑝| at compile time.

This scheme is only applied in certain situations: for shorter 𝑘-mers and patterns,

checking bases one at a time was found to be faster, so the compiler will generate

corresponding code in these cases (as a heuristic, we apply bitwise matching only

if 𝑘 > 256 ∨ |𝑝| > 100. Performance numbers for 𝑘-mer matching are shown in

Figure 6-2, using both a long and a short pattern for various 𝑘.

6.4 Pipelines

Pipelining is a natural model for thinking about processing genomic data. For exam-

ple, a typical read mapping algorithm can be formulated as the pipeline:

1. Read input reads from FASTQ file

101

1 from sys import argv
2 K = Kmer[20] # seed length
3 ...
4 index = read_genome_index_from_file(argv[1])
5 (FASTQ(argv[2]) |>
6 iter ||>
7 find_candidate_mappings[K](index) |>
8 filter_candidate_mappings |>
9 smith_waterman_align |>

10 output_to_disk(argv[3]))

Figure 6-3: Hypothetical pipeline for read mapping in Seq, where the first argument
(argv[1]) is some serialized genome index file, the second is a FASTQ file containing
input reads, and the third is the output file. The shown pipeline is parallelized using
the parallel pipe operator, ||>, and each read can be processed in parallel.

2. Extract seeds and lookup in some genomic index

3. Filter candidate alignment positions

4. Perform full Smith-Waterman alignment on remaining candidates

5. Format and output results to SAM file

As shown in Chapter 3, pipelining is supported natively in Seq via the pipe operator,

|>. Pipelines can be parallelized via the parallel pipe operator, ||>, which allows

all subsequent stages to be executed in parallel (the Seq compiler uses an OpenMP

task backend to implement this; future work entails implementing other backends,

such as GPU for highly parallelizable tasks or MPI for distributed computing). In

Seq, a |> b simply passes the output of a to b if a is a function; if a is a generator,

all values yielded by a are passed to b. An example of how pipelines might be used

to implement a typical read mapping application with the stages described above is

shown in Figure 6-3.

The Seq compiler performs various domain-specific optimizations on pipelines, after

which they are lowered to a series of (potentially parallel) loops. In the next several

sections, we discuss some of these optimizations in detail; some are based on recog-

nizing patterns in the pipeline, whereas others are substantially more involved and

102

utilize coroutines to obtain better performance. We summarize these optimizations

below:

• Reverse complementation: Optimizes iteration over 𝑘-mers combined with

reverse complementation (pattern matching-based).

• Canonical 𝑘-mers: Optimizes iteration over canonical 𝑘-mers (pattern matching-

based).

• Software prefetching: Optimizes pipelines that access large genomic indices

(coroutine-based).

• Inter-sequence alignment: Optimizes pipelines that perform sequence align-

ment (coroutine-based).

6.4.1 𝑘-merization

An extremely common pattern is to iterate over the 𝑘-mers of some sequence with

a particular step size 𝑟. In Seq, this can be achieved using the kmers[K] function,

where K is the target 𝑘-mer type. For instance, the following code:

K = Kmer[2]

s'ACGT' |> kmers[K](step=1) |> echo

prints all 2-mers in the sequence ACGT (i.e. AC, CG and GT). Obtaining 𝑘-mers with

positions as a tuple can be done with the analogous kmers_with_pos[K] function.

The best way to perform this 𝑘-merization depends on 𝑘 and the step size 𝑟. For

example, if 𝑟 ≥ 𝑘, the best we can do is to simply extract the length-𝑘 subsequences

at offsets 0, 𝑟, 2𝑟, etc. and convert them to 𝑘-mers. However, if 𝑟 < 𝑘, then 𝑘-mers

overlap, so we can reuse the previous 𝑘-mer to obtain the next, similar to a rolling

hash. The situation is complicated somewhat by the presence of non-ACGT bases in

the sequence; 𝑘-mers spanning such bases are skipped by kmers. A simplified version

of the 𝑘-merization algorithm used in Seq is shown in Algorithm 6. In this algorithm,

103

the two main branches inside the loop dictate whether the current 𝑘-mer must be

“refreshed” because a non-ACGT base was encountered; if so, the 𝑘-mer is re-encoded

afresh via SequenceToKmer, otherwise the previous 𝑘-mer is “shifted” to the right

via ShiftKmer to cover the new bases, without doing a full re-encoding from scratch.

Also notice that if 𝑟 ≥ 𝑘, the second branch is never entered, and we perform a full

re-encoding for every 𝑘-mer. This style of 𝑘-merization is not unique to Seq, and

is often used in performance-sensitive genomics applications; the optimizations we

discuss below, however, specifically require a domain-specific compiler like Seq to be

performed automatically.

Algorithm 6: 𝑘-mers contained in sequence 𝑠 at offsets a multiple of 𝑟, skipping
non-ACGT bases. For simplicity, we ignore reverse complementation and assume 𝑠
is in the forward direction.
Result: 𝑘-mers in 𝑠 with step size 𝑟

1 Σ := {A, C, G, T};
2 𝑖← 0;
3 𝑏← False;
4 𝐾 ← AA . . . A⏟ ⏞

𝑘

;

5 𝜅← ∅;
6 while 𝑖 + 𝑘 ≤ |𝑠| do
7 if 𝑏 = True then
8 𝑠′ ← 𝑠[𝑖 : 𝑖 + 𝑘];
9 if 𝑐 ∈ Σ,∀𝑐 ∈ 𝑠′ then

10 𝐾 ← SequenceToKmer(𝑠′, 𝑘);
11 𝑏← 𝑟 ≥ 𝑘;
12 𝜅← 𝜅 ∪ {(𝑖, 𝐾)};
13 end
14 else
15 𝑠′ ← 𝑠[𝑖 + 𝑘 − 𝑟 : 𝑖 + 𝑘];
16 if 𝑐 ∈ Σ,∀𝑐 ∈ 𝑠′ then
17 𝐾 ← ShiftKmer(𝐾, 𝑠′);
18 𝜅← 𝜅 ∪ {(𝑖, 𝐾)};
19 else
20 𝑏← True;
21 end
22 end
23 𝑖← 𝑖 + 𝑟;
24 end
25 return 𝜅

104

6.4.2 Reverse complementation

𝑘-merization followed by reverse complementation can be implemented more effi-

ciently by using property {𝑡 | 𝑡 ∈ 𝜅𝑘(𝑠)} = {𝑡 | 𝑡 ∈ 𝜅𝑘(𝑠)}, as described above.

Because of this, the Seq compiler internally makes transformations of the following

form:

A |> kmers[K](step) |> revcomp |> B

A |> _kmers_revcomp[K](step) |> B

where _kmers_revcomp[K] is a function that iterates over reverse complemented 𝑘-

mers by first reverse complementing the entire sequence then 𝑘-merizing.

The effect of these optimizations is shown in Figure 6-1d, which shows the performance

of a 𝑘-merization and reverse complementation pipeline for a naive implementation

(i.e. every 𝑘-mer is encoded and reverse complemented individually), an implemen-

tation using Algorithm 6 for 𝑘-merization, and finally Seq’s implementation, which

uses both Algorithm 6 and the reverse complement optimization described above.

6.4.3 Canonical 𝑘-mers

A “canonical” 𝑘-mer is the minimum (often, lexicographic minimum) of a 𝑘-mer and

its reverse complement. Canonical 𝑘-mers are frequently used in 𝑘-mer counting algo-

rithms as well as various hashing schemes to ensure that 𝑘-mers are treated as equal

to their reverse complements [83, 128]. For example, many 𝑘-mer counting methods

report counts of canonical 𝑘-mers rather than raw 𝑘-mer counts. Consequently, a

common pipeline pattern is to pipe the output of kmers to the canonical function,

which simply returns the canonicalization of its argument.

A naive implementation of such a pipeline might reverse complement each 𝑘-mer

individually, but a better approach is to use two sliding windows when iterating over 𝑘-

mers: one for the forward-direction 𝑘-mer, and one for the reverse complement. When

the step size is 1, for instance, the next base is shifted in on the right of the forward

105

window, while the complement of the base is shifted in on the left of the reverse

window, thereby ensuring the reverse window always holds the reverse complement of

the forward window. Using this approach, no 𝑘-mer ever actually needs to be reverse

complemented during the iteration. The Seq compiler recognizes this pattern and

makes use of a double-sliding-window implementation, _kmers_canonical:

A |> kmers[K](step) |> canonical |> B

A |> _kmers_canonical[K](step) |> B

6.4.4 Software prefetching

Large genomic indices, coupled with cache-unfriendly access patterns, often result

in a substantial fraction of stalled memory-bound cycles in many genomics applica-

tions [110, 10, 130]. As a result, the Seq compiler performs optimizations to overlap

the cache miss latency of an index lookup with other useful work, similar to the

general-purpose approaches described in [61] and [35].

To illustrate the effect of this optimization, consider the pipeline A |> B |> C where

function B performs an index lookup. In Seq, by using the @prefetch annotation on

B, the function is implicitly transformed into a coroutine which performs a software

prefetch, yields, then commences with the actual index lookup once it is resumed.

Code for the pipeline itself is generated to include a dynamic scheduler, which man-

ages multiple instances of the B coroutine, suspending and resuming them as needed

until all are complete. In this way, while one instance of B is performing its prefetch,

another can continue doing useful work, compared to the original pipeline where

progress would be stalled until a given index lookup completes. A concrete example

for FM-indices is shown in Figure 6-4, wherein the typical backwards-extension FM-

index search algorithm is applied to count occurrences of subsequences from an input

FASTQ file.

The performance of the code from Figure 6-4 for various values of 𝑘, both with and

without the @prefetch line, is shown in Figure 6-1e. For smaller 𝑘, the “head” of

106

from sys import argv
from bio.fmindex import FMIndex
fmi = FMIndex(argv[1])
k, step, n = 20, 20, 0
def add(count): n += count

@prefetch
def search(s, fmi):

intv = fmi.interval(s[-1])
s = s[:-1] # trim last base
while s and intv:

backwards-extend intv
intv = fmi[intv, s[-1]]
s = s[:-1] # trim last

return count of occurrences
return len(intv)

FASTQ(argv[2]) |> seqs |> \
split(k, step) |> search(fmi) |> add

print 'n:', n

chr1

Input queries Output results

Query
buffer

Input
queries

RAM

Output results

After

Before

Genome index

Cache

Prefetch

Genome index

chr5

chr3

chr1

chr5

chr3
RAM

Figure 6-4: Prefetch pipeline optimization in Seq. The code snippet gives an example
of using the @prefetch annotation with a pipeline performing FM-index queries;
the depicted code simply counts occurrences of length-20 subsequences from a given
FASTQ using the index. The bottom diagram illustrates the program transformation:
pipeline stages that query a large index are converted to coroutines and suspended
before querying the index, after issuing a corresponding software prefetch; a dynamic
scheduler manages the coroutines and ultimately ensures that any cache miss latency
is overlapped with useful work by another coroutine.

107

the FM-index is largely cache-resident, so the prefetch optimization has no benefit.

For larger 𝑘, however, the effect of cache misses increases and the optimization sig-

nificantly reduces runtime (by almost 2× at 𝑘 = 32). The prefetch optimization also

works with other types of indices, such as hash tables, although we found it to be

most effective on tree-like structures like FM-indices.

An example

A detailed example of the prefetch optimization in action is shown in Figure 6-5. The

data structure that is being queried must provide (as the standard data structures

from the bio module do) a __prefetch__ magic method definition in the index

class, which is logically similar to __getitem__ (indexing construct) but performs a

prefetch instead of actually loading the requested value (and can simply delegate to

__prefetch__ methods of built-in types). The programmer then simply provides a

one-line @prefetch hint indicating that a software prefetch should be performed.

For instance, an index with a single array v may implement __getitem__(self,x) by

returning self.v[x], in which case it would implement __prefetch__(self,x) by

returning self.v.__prefetch__(x); i.e. the prefetch is delegated to the underlying

array (which may in turn be delegated to a raw pointer, which has intrinsic methods

for actually performing the prefetch via an LLVM prefetch instruction).

In Figure 6-5, the @prefetch annotation first leads to explicit invocations of the

__prefetch__ method, and functions annotated with @prefetch (i.e. process in the

figure) are converted by the compiler into coroutines that yield after each prefetch.

Then, pipelines containing such functions as stages are transformed into loops that

dynamically schedule multiple invocations of the newly created coroutine, where once

one invocation yields or terminates, another is resumed or created by the scheduler,

respectively. The transformed pipeline in Figure 6-5, for example, has several note-

worthy components:

• M is the number of concurrent coroutines to be processed, which ideally should be

108

class MyIndex: # abstract k-mer index
...
def __getitem__(self: MyIndex, kmer: Kmer[20]):

standard __getitem__
def __prefetch__(self: MyIndex, kmer: Kmer[20]):

similar to __getitem__, but performs prefetch

k20 = Kmer[20]
@prefetch
def process(read: seq, index: MyIndex):

...
for kmer in read.kmers[k20](step):

hits_fwd = index[kmer]
hits_rev = index[~kmer]
...

return x

k20 = Kmer[20]
def process(read: seq, index: MyIndex):

...
for kmer in read.kmers[k20](step):

index.__prefetch__(kmer)
index.__prefetch__(~kmer)
yield
hits_fwd = index[kmer]
hits_rev = index[~kmer]
...

yield x

FASTQ("reads.fq") # input reads

|> process(index) # index lookup

|> postprocess # output results

M = 16 # num. concurrent tasks
N = 0 # next coroutine slot to fill
k = 0 # next coroutine to execute
states = array[generator[T]](M)

for read in FASTQ("reads.fq"):
if N < M:

states[N] = process(read, index)
N += 1

else:
while True:

g = states[k]; g.next()
if g.done():

postprocess(g.promise())
g.destroy()

states[k] = process(read, index)
break

k = (k + 1) % M

for i in range(N):
g = states[i]
if not g.done():

while not g.done(): g.next()

postprocess(g.promise())
g.destroy()

__prefetch__ magic method

Function transformations

Pipeline transformations

Figure 6-5: Transformations performed by Seq to enable effective index prefetching.
Colored segments under pipeline transformations indicate where the specific stages
show up in the resulting code. FASTQ is the standard file format for storing sequenc-
ing reads.

109

large enough to saturate the memory bandwidth of the processor as prefetches

are performed. In practice, we choose M conservatively to be 16, which also

allows for software prefetching performed by other parts of the system, such as

the garbage collector.

• N is a variable indicating how many of the M coroutine slots have been filled,

and is only used at the start of the loop to actually fill the slots (initially zero).

• k is the next coroutine slot to be resumed by the loop (initially zero).

• states is the array holding the M coroutine handles/frames (which have type

generator in Seq). In reality this array is stack-allocated in the entry block

of the function containing the pipeline. (T is simply the original return type of

process.)

The code generated in the loop body is that of a simple dynamic scheduler where:

• The if N < M component initially populates the array of pending coroutines

states.

• Inside the else clause is a loop that iterates cyclically through states and

resumes each coroutine. If a coroutine terminates (i.e. if g.done()), then the

value returned by the coroutine (given by g.promise()) is sent through the

remainder of the pipeline, as it would be in the original untransformed pipeline;

then, the coroutine is destroyed and a new one is created to take its place.

• The final loop simply completes any remaining coroutines that have not yet

terminated. Since the number of such coroutines is at most M, this loop just

executes them sequentially.

By employing this scheme, the latency of one coroutine’s cache miss can be over-

lapped with useful work from another, increasing memory-level parallelism and overall

throughput. Note that these optimizations depend only on the existence of a prefetch

instruction, which is the case for nearly any modern architecture.

110

Implementation in Seq IR

The actual prefetch optimization is implemented as a Seq IR pass, in roughly 100 lines

of code. The two necessary transformations for this optimization are 1) converting

the annotated function to a coroutine and 2) inserting the dynamic scheduler in the

pipeline. The former is shown in Figure 6-6 and the latter in Figure 6-7. Due to

Seq IR’s bidirectionality, the entire scheduler can be implemented in Seq as a generic

function, and instantiated during the IR pass by re-invoking the type checker.

6.4.5 Inter-sequence alignment

Sequence alignment via a dynamic programming algorithm like Smith-Waterman is

arguably one of the most prevalent operations in genomics applications, and has been

the subject of much research and optimization, particularly with regards to SIMD

parallelization [120, 43, 104]. There are two approaches to SIMD alignment, referred

to as intra-sequence and inter-sequence. An intra-sequence implementation uses SIMD

to align a single pair of sequences, whereas an inter-sequence approach aligns a batch

of pairs at once, and uses SIMD across different sequence pairs rather than within

one pair. Inter-sequence alignment can be substantially faster than intra-sequence,

but is rarely used in practice due to programming difficulty [122].

In Seq, however, inter-sequence alignment is just as easy to program as intra-sequence,

as shown in Figure 6-8. When a function marked @inter_align is used in a pipeline,

the Seq compiler will perform transformations similar to those used for software

prefetching; specifically, the function is transformed into a coroutine and suspended

just before the alignment. During execution of the pipeline, several hundred sus-

pended coroutines are batched, have their sequences aligned using inter-sequence

alignment, and are resumed after the alignment result is returned to them. Similar to

the prefetch optimization, this is orchestrated by a dynamic scheduler of coroutines,

the code for which is generated in the body of the pipeline. An illustration of such a

pipeline before and after this transformation is shown in Figure 6-8.

111

1 class PrefetchFunctionTransformer : public Operator {
2 // return x --> yield x
3 void handle(ReturnInstr *x) override {
4 auto *M = x->getModule();
5 x->replaceAll(
6 M->Nr<YieldInstr>(x->getValue(), /*final=*/ true));
7 }
8

9 // idx[key] --> idx.__prefetch__(key); yield; idx[key]
10 void handle(CallInstr *x) override {
11 auto *func =
12 cast<BodiedFunc>(util::getFunc(x->getCallee()));
13 if (!func ||
14 func->getUnmangledName() != "__getitem__" ||
15 x->numArgs() != 2) return;
16

17 auto *M = x->getModule();
18 Value *self = x->front(), *key = x->back();
19 types::Type *selfType = self->getType();
20 types::Type *keyType = key->getType();
21 Func *prefetchFunc = M->getOrRealizeMethod(
22 selfType, "__prefetch__", {selfType, keyType});
23 if (!prefetchFunc) return;
24

25 Value *prefetch = util::call(prefetchFunc, {self, key});
26 auto *yield = M->Nr<YieldInstr>();
27 auto *replacement = util::series(prefetch, yield);
28

29 util::CloneVisitor cv(M);
30 auto *clone = cv.clone(x);
31 see(clone); // don't visit clone
32 x->replaceAll(M->Nr<FlowInstr>(replacement, clone));
33 }
34 };

Figure 6-6: Function-to-coroutine transformer for Seq IR. This transformation is
utilized by several of Seq’s pipeline optimizations, including the prefetch optimization.

112

1 @inline
2 def _dynamic_coroutine_scheduler[A,B,T,C](
3 value: A, coro: B, states: Array[Generator[T]],
4 I: Ptr[int], N: Ptr[int], M: int, args: C):
5 n = N[0]
6 if n < M:
7 states[n] = coro(value, *args)
8 N[0] = n + 1
9 else:

10 i = I[0]
11 while True:
12 g = states[i]
13 if g.done():
14 if not isinstance(T, void):
15 yield g.next()
16 g.destroy()
17 states[i] = coro(value, *args)
18 break
19 i = (i + 1) & (M - 1)
20 I[0] = i

Figure 6-7: Coroutine scheduler for Seq’s prefetch optimization. A pipeline stage
marked with @prefetch is converted to a coroutine by the pass in Figure 6-6, and
this scheduler is used to manage multiple instances of this coroutine, overlapping
cache miss latency from one with useful work from another. Scheduler state is passed
as pointers (Ptr[int]) and modified by the scheduler, which itself gets inserted in the
pipeline. Seq IR’s bidirectionality is used to instantiate the scheduler with concrete
argument types when applying the prefetch optimization.

113

from sys import argv
in1 = argv[1] + '.1.txt'
in2 = argv[1] + '.2.txt'

@inter_align
def process(t):

query, target = t
align and get score
score = query.align(target).score
print query, target, score

zip(seqs(in1), seqs(in2)) |> process

71 68

71

68

83

Input sequences Output scores

Sequence
buffer

Input
sequences

Intra-sequence
alignment kernel

Inter-sequence
alignment kernel Output scores

After

Before

83

83

Figure 6-8: Inter-sequence alignment pipeline optimization in Seq. The code snippet
gives an example of inter-sequence alignment using the @inter_align annotation,
where sequence pairs are read from two text files, aligned, and printed. The bottom
diagram illustrates the program transformation: in the original pipeline, sequence
pairs are passed through the pipeline one at a time and aligned individually; in the
transformed pipeline, sequence pairs are batched by a dynamic scheduler, aligned with
inter-sequence alignment, and returned to their respective suspended coroutines.

114

Performance of inter-sequence alignment compared to intra-sequence is shown in Fig-

ure 6-1f, where inter-sequence is shown to be almost 4× faster in some cases. The

code difference between the two implementations used in this figure is just a single

line: the @inter_align annotation on the function performing the alignment. Note

that Seq uses KSW2 [74, 120] as its intra-sequence alignment kernel.

This approach to alignment also lends itself well to other backends. For example, it

would be possible to instead perform inter-sequence alignment on a GPU or FPGA

rather than a CPU, and tune the parameters (e.g. sequence buffer size) for each

backend. A domain-specific language and compiler such as Seq makes it possible

to explore various backends and their benefits in a systematic way, and we plan to

pursue this as future work.

6.5 Conclusion

Compiler design and computational genomics have traditionally been isolated from

one another, with very little research taking place at their intersection. A key take-

away of this chapter is that there is much to be gained by looking at bioinformatics and

genomics through the lens of compilers, particularly when it comes to performance.

There are many more genomics-specific compiler optimizations that are worthy of ex-

ploration; for example, can we determine the best representation of a sequence based

on context? Or, can we take advantage of the highly non-uniform structure of the

genome? These questions lead to many interesting avenues for future work.

115

116

Chapter 7

Other Optimizations

Beyond genomics-specific optimizations, Seq’s Pythonic roots also give rise to many

unique optimization opportunities. Specifically, many prevalent idioms and code pat-

terns in Python are particularly inefficient if compiled naively. This chapter intro-

duces several Python-specific compiler optimizations to address this issue, which fur-

ther liberates the programmer to write straightforward, idiomatic code while leaving

all performance considerations to the compiler. Later in the chapter we discuss several

general-purpose optimizations and analyses performed by the compiler.

7.1 Python-Specific Optimizations

Given Seq’s roots in Python, it is able to substantially accelerate many standard

Python programs out of the box. Further, Seq IR makes it easy to optimize several

patterns commonly found in Python code. Below we discuss two examples: the

dictionary get/set optimization for updating Python dictionaries, and intermediate

string optimizations for eliding the creation of unnecessary intermediate strings.

7.1.1 Dictionary get/set optimization

For many applications, dictionary queries and modifications account for a large frac-

117

d = {'a': 42}
d['a'] = d.get('a', 0) + 1

d = {'a': 42}
d.__dict_do_op__('a', 1, 0, int.__add__)

Figure 7-1: Example of dictionary optimization execution. The pass recognizes the
get/set pattern and replaces it with a single call to __dict_do_op__. As this function
is generic, we instantiate a new version and pass the int.__add__ function as a
parameter.

tion of the runtime, particularly for “counting” tasks. In Pythonic code, however,

these can be a major source of inefficiency. Specifically, we identify the get/set

pattern, which includes statements of the form d[x] = d.get(x, <value>) <op>

<value>, as a particularly inefficient idiom. Without optimization, these unnecessar-

ily perform two separate dictionary lookups: one to obtain the value for a key and

another to assign a new value. However, we can replace this pattern with a single call

that applies the modifications in-place. In Figure 7-1, we show an example of this

optimization running on a simple snippet. In implementing this transformation, we

showcase the utility of Seq’s bidirectional IR—rather than manually implementing

the in-place operation in IR, we simply instantiate a helper method. This has the

benefit of generalizing the optimization to all types that implement the appropriate

methods. The pass that performs this optimization searches for index assignments of

the form d[k] = d.get(k, i) + j for arbitrary d, i, j, k.

7.1.2 Intermediate string optimizations

We additionally implement a simple transformation to “fold” consecutive string ad-

ditions into one concatenation call. This enables Seq to easily reduce the string

allocation overhead of large addition trees. Given that format strings (“f-strings”)

in Python/Seq de-sugar into concatenation as well, outputting these results using

print or file.write is especially common. We denote these occurrences as the

concatenation/output pattern. As with get/set, this is easy to recognize in the IR

and equally simple to optimize. To reduce intermediate values, we simply realize

a new version of the appropriate I/O function using the concatenation arguments.

Figure 7-2 demonstrates a simple instantiation of this procedure, applied to print

118

1 class PrintOptimization : public OperatorPass {
2 void handle(CallInstr *v) {
3 auto *M = v->getModule();
4 if (auto *callee = util::getStdlibFunc(v->getCallee(),
5 "print")) {
6 auto *internalTuple = extractCatArguments(v->front());
7 if (!internalTuple)
8 return;
9

10 vector<types::Type *> types = getArgTypes(callee);
11 vector<Value *> args = cloneArgs(callee);
12 types[0] = internalTuple->getType();
13 args[0] = internalTuple;
14 auto *print = M->getOrRealizeFunc("print", types, {},
15 "std.internal.builtin");
16 v->replaceAll(util::call(print, args));
17 }
18 }
19 };

Figure 7-2: Simplified implementation of the concatenation/output optimization for
print. This pass recognizes the pattern, extracts the cat function’s arguments, clones
them, and uses them to realize a print function that directly outputs the string rather
than calculating an intermediate value.

calls.

7.2 General-Purpose Optimizations

Seq also performs numerous standard, general-purpose optimizations and analyses at

the IR level. These include:

• Constant folding and propagation

• Dead code elimination

• Canonicalization

• Flow and dominator analysis

Worth noting is the fact that LLVM will itself apply many of these optimizations

119

prior to final code generation; hence, the two primary reasons for incorporating them

at the Seq IR level are:

• To account for higher-level constructs that may get lost at the LLVM level. For

example, Seq IR is able to fold the concatenation of two constant Lists into

one value, whereas recognizing such a pattern at the LLVM IR level is much

more difficult.

• To extend the reach of other optimizations. For example, the inter-sequence

alignment optimization discussed above requires the alignment parameters to

be constant (or global); the constant folding and propagation IR passes allow for

cases where the parameters are not explicitly constant in the original program,

but are found to be constant after applying propagation/folding.

Below we discuss these passes and optimizations, as well as some of the infrastructure

surrounding them.

7.2.1 Analyses

Seq provides several analyses based on the notion of control-flow graphs.

Control-flow graphs

While SIR’s hierarchical structure is helpful for pattern recognition, it can occasion-

ally be a hindrance to certain other analyses, particularly those involving data flow.

Consequently, we define an auxiliary deconstructed version of SIR. This approach,

akin to that taken by Taichi [58], enables analyses to operate over a fully simplified

structure without eliminating SIR’s nested structure too early.

As in the classic formulation, we define “basic blocks” that contain values, and edges

between these blocks [39]. A standard if-else flow, for example, will be decon-

structed into two blocks each leading to an “end” block. This structure is particularly

useful because each value in a given block is guaranteed to execute without interrup-

120

entry

forBegin

endFor

forCheck

forNext

forBody

Figure 7-3: Example for loop control-flow graph.

tion. Therefore, analyses can often operate on blocks as a whole without having to

consider individual instructions therein.

In Figure 7-3, we show the control-flow of a Seq function containing a single for-loop.

Seq defines control-flow graph conversion methods for all builtin nodes.

Reaching definitions

Given a CFG, it is often useful to calculate the possible values, or definitions, of

variables at a particular stage in a program [39]. We implement these analyses by

determining the variable definitions generated (gen) and killed (kill) by each block.

Subsequently, we repeatedly calculate for each block 𝑏, in𝑏 = ⋃︀
𝑖∈preds𝑏

out𝑖 and out𝑏 =

(in𝑏−kill𝑏)∪gen𝑏. Once these sets stabilize, the analysis is complete and the reaching

definitions can be easily propagated to each individual instruction.

Dominators

In a control-flow graph, a particular node 𝑑 dominates another node 𝑣 if all paths

from the entry to 𝑣 must go through 𝑑. Since this information can be useful for many

optimizations, we add support for this calculation as a standard analysis pass. We use

a simple approach, similar to that of reaching definitions: for each basic block 𝑏, we

repeatedly calculate, dom𝑏 = {𝑏}∪ (⋂︀
𝑖∈preds𝑏

dom𝑖) until the sets stabilize. While this

121

1 (for (call '"range.__iter__[range]"
2 (call '"range.__new__[int]" 10))
3 (var '"i")
4 (series)
5)

Figure 7-4: Simplified SIR equivalent of a for-loop.

1 struct RangeMeta {
2 bool valid;
3 Value *start;
4 Value *end;
5 int64_t step;
6 };
7

8 void ImperativeForFlowLowering::handle(ForFlow *v) {
9 auto *M = v->getModule();

10

11 auto r = analyzeRange(v->getIter());
12 if (!r.valid || r.step == 0)
13 return;
14

15 v->replaceAll(M->N<ImperativeForFlow>(v->getSrcInfo(),
16 r.start,
17 r.step,
18 r.end,
19 v->getBody(),
20 v->getVar()));
21 }

Figure 7-5: Simplified C++ implementation of for loop lowering.

approach is simple both conceptually and in its implementation, there are dominator

tree construction algorithms with better asymptotic complexity in theory [71, 40].

However, since this analysis is applied at the function level, we found the simple

algorithm to be more than sufficient in practice.

7.2.2 Passes

Loop lowering

Seq’s canonical loop format can be cumbersome for some optimizations. Consider the

122

simple loop for i in range(10), which maps to the SIR in Figure 7-4. The loop

condition, implicitly 𝑖 < 10, is hidden under two magic method calls. Since this is an

extremely common case, we add the ImperativeForFlow node, which represents a

simple C-like loop, and a simple lowering pass shown in Figure 7-5. The pass simply

checks for a __iter__ call applied to a range, and extracts the arguments to create

a new loop.

This is an example of “progressive lowering” [68]: the original loop form could be

useful to certain passes, while the lowered form may be more helpful for others. In

particular, the ImperativeForFlow is generally more helpful for loop unrolling, tiling,

and vectorization.

Code simplification

Given the reaching definitions analysis, it is possible to determine that a variable’s

value at a particular usage is a constant. To take advantage of this knowledge, we

incorporate a propagation optimization that replaces all such variables with their

constant value. We show its implementation in Figure 7-6: for each VarValue, we

simply check if it has a single, constant reaching definition. If so, we can safely replace

the old value with the constant.

This optimization results in a considerable number of arithmetic operations containing

only constants. We optimize this case with a folding/simplification pass that runs

after constant propagation. Similarly, we resolve control flow (i.e. IfFlows and

TernaryInstr) at compile time for constant conditions, so as to eliminate dead code.

Canonicalization

There are many different ways to express the same operation in high-level languages—

for example, a + 1 and 1 + a are syntactically distinct expressions in Seq, but se-

mantically they are equivalent. As a result, passes and analyses that search for specific

patterns in SIR would be required to check many permutations that are semantically

identical. To remedy this issue, Seq applies a canonicalization pass that converts these

123

1 class ConstPropPass : public OperatorPass {
2 private:
3 std::string reachingDefKey;
4 public:
5 // boilerplate and okConst not included
6 void handle(VarValue *v) override {
7 auto *r = getAnalysisResult<RDResult>(reachingDefKey);
8 if (!r)
9 return;

10

11 auto *c = r->cfgResult;
12 auto it = r->results.find(getParentFunc()->getId());
13 auto it2 = c->graphs.find(getParentFunc()->getId());
14 if (it == r->results.end() || it2 == c->graphs.end())
15 return;
16

17 auto *rd = it->second.get();
18 auto *cfg = it2->second.get();
19 auto reaching = rd->getReachingDefinitions(v->getVar(), v);
20

21 if (reaching.size() != 1)
22 return;
23 auto def = *reaching.begin();
24 if (def == -1)
25 return;
26

27 auto *constDef = cast<Const>(cfg->getValue(def));
28 if (!constDef || !okConst(constDef))
29 return;
30

31 util::CloneVisitor cv(v->getModule());
32 v->replaceAll(cv.clone(constDef));
33 }
34 };

Figure 7-6: Simplified C++ implementation of constant propagation.

124

different, semantically equivalent constructs into a single, “canonical” representation.

The central concept used by this pass is that of “ranking” an IR node. Then, for

instance, commutative binary operators like addition or multiplication can have their

operands re-ordered based on rank. Nodes are ranked based on the following criteria,

in order of importance:

• Whether the node is constant (constants come last in ranking)

• Maximum node depth (shallower nodes come last in ranking)

• Node hash, based on types and variables used by the node and its children

Then, the following transformations are performed:

• Chains of commutative/associative operators are re-ordered by rank. For ex-

ample, c + b + a would be re-ordered as a + b + c.

• Comparisons are re-ordered by rank. For example, b < a would be re-ordered

as a > b.

• Variables are factored out of addition-multiplication expressions. For example,

a*x + b*x would be re-written as (a + b) * x.

• Constant subtractions are converted into additions. For example, a - 1 would

be re-written as a + -1.

Collectively, these rules ensure that most expressions only have a single canonical

representation in the IR. Care must also be taken to apply these transformations

only when the operand types allow for it—for example, string concatenation via the

+ operator is not commutative, and floating point arithmetic is in general neither as-

sociative nor distributive. Because of this, Seq uses the annotations @commutative,

@associative, and @distributive to mark the operators on which canonicalization

can be applied. Core types like int and float use these annotations where appropri-

ate, and they can be used in user-defined classes to enable further canonicalization.

125

7.3 Conclusion

The overarching goal of the compiler passes presented in this chapter is to provide

a comprehensive ecosystem of optimizations and analyses, so as to bolster the effect

of other domain-specific passes. Operations such as control flow analysis, dominator

analysis, constant propagation, and others are all useful in domain-specific settings,

and in fact interoperate with Seq’s domain-specific optimizations.

126

Chapter 8

Beyond Genomics

Beyond just genomics and bioinformatics, domain-specific languages are able to pro-

vide intuitive, high-level abstractions that domain-experts can easily work with,

all the while attaining better performance than general-purpose languages through

domain-specific compiler optimizations. Yet, implementing new DSLs is a burden-

some task, leading to DSL designers’ often embedding them in general-purpose lan-

guages. While low-level host languages like C/C++ perform far better than high-

level languages like Python, high-level languages are nowadays much more preva-

lent amongst practitioners in many domains. Here, we generalize Seq to a domain-

extensible compiler framework called Codon, which similarly offers Python’s syntax,

semantics and libraries with zero runtime overhead, achieving the performance of

C/C++. We also showcase other DSLs built with Codon for various domains.

8.1 Designing Domain-Specific Languages

Domain-specific languages usually come in one of two varieties: embedded or stan-

dalone. Embedded DSLs are integrated with a general-purpose host language, whereas

standalone DSLs introduce new languages, syntax, and semantics. Both varieties have

pros and cons, but in practice embedded DSLs are far more common due to ease of

127

implementation and adoption. Consequently, designers of high-performance DSLs

face a crucial choice at the onset: which language to embed their DSL in. In the

past, the choice was obvious—high performance required embedding in a lower-level,

statically analyzable language like C or C++. Since these languages were already com-

monly used in their respective domains, such DSLs frequently saw seamless adoption

with few issues. Further, by virtue of their host languages, embedded DSLs inherited

existing language and compiler infrastructure, providing overall end-to-end perfor-

mance and general-purpose functionality. Indeed, this approach was taken by many

high-performance DSLs like Halide [101], Taco [62] and Tiramisu [13], which each

derived from C++—the go-to language at the time for their target audiences.

Nowadays, the decision is no longer so simple. Dynamic languages like Python

and Ruby, combined with the widespread availability of relatively high-performance

domain-specific libraries [55, 97, 2, 95], have captured the majority of potential users

targeted by DSLs. Thus, building new DSLs on top of lower-level languages can in

fact become a barrier to widespread adoption, and even alienate a large fraction of the

potential user base—indeed, this was Seq’s motivation for using Python. Nonethe-

less, building optimized language features on top of intrinsically low-performance

languages like Python or Ruby can be perilous, resulting in tools like TensorFlow [2]

or PyTorch [95] primarily using their host languages as APIs for interacting with op-

timized C/C++ libraries. This approach is only possible because the work performed

in Python is minimal, and the heavy lifting is actually done by the C/C++ libraries.

Moreover, domains like genomics often make this approach infeasible, particularly

when the data comprise billions of small objects directly defined and accessed by the

DSL, drastically increasing the cost of interfacing with an external library [109].

The emerging issue, therefore, in today’s DSL landscape is that practitioners are

increasingly moving towards dynamic languages like Python and R, whereas high-

performance DSLs necessitate a foundation in low-level languages like C or C++.

Ideally, we would like to combine the familiarity and usability of dynamic languages

with the high-performance of low-level languages—much like what Seq has done in

128

the genomics field—albeit in a domain-agnostic way.

In this chapter, we introduce Codon, a novel solution to bring high-performance DSLs

to the Python user community, by building a flexible development framework on top

of Seq’s optimized, Pythonic base. Codon is a full language and compiler that—

like Seq—borrows Python’s syntax, semantics, and library features, but compiles

to native machine code with zero runtime overhead, allowing it to rival C/C++ in

performance. To this end, Codon leverages many of Seq’s features: a specialized

bidirectional type checking algorithm and novel intermediate representation (IR) to

enable optional domain-specific extensions—both in the language’s syntax (front-end)

and in compiler optimizations (back-end)—via a plugin system that not only allows

new DSLs to be seamlessly built on top of the framework, but that also enables

different DSLs to be composed within a single program.

Overall, this chapter makes the following contributions:

• We generalize Seq’s compiler infrastructure by designing a plugin-based domain-

extensible compiler framework, where even Seq itself can be realized as a plugin.

• We show how Seq’s front-end can be extended with new keywords, and how Seq

IR can be extended with new IR nodes, types, optimizations, and analyses.

• We show various DSLs built with this new framework.

8.2 A Domain-Extensible Compiler

Due to the framework’s flexibility and bidirectional IR, as well as the overall expres-

siveness of Python’s syntax, a large fraction of the DSL implementation effort can be

deferred to the Seq source. Indeed, as shown in Chapter 6, a large fractions of Seq’s

domain-specific components are implemented in Seq itself, and the same philosophy

is carried over to Codon. This has the benefit of making Codon DSLs intrinsically

interoperable—so long as their standard libraries compile, disparate DSLs can be

used together seamlessly. Along these lines, Codon uses a modular approach for in-

129

def fib(n):
a, b = 0, 1
while a < n:

print a
a, b = b, a+b

fib(1000)

+

ba __add__ a b

Call
1

Instr

Func 2

+

ba
intintAbstract

Syntax Tree Type Checker
Intermediate

Representation
Source Code Optimization

Passes
Target

int, int

DSL Plugin

Domain-specific
optimizations

New syntax

Library modules

Bidirectional Compilation

Figure 8-1: Codon’s compilation pipeline. The compilation process resembles that
of Seq (Figure 5-1), but Codon additionally allows for extensions to the language
syntax (i.e. adding new keywords), libraries (e.g. like Seq’s bio module), and IR
passes. These extensions are packaged as plugins that Codon can load and execute
during compilation.

corporating new IR passes and syntax, which can be packaged as dynamic libraries

and Codon source files. At compile time, the Codon compiler can load the plugin,

registering the DSL’s elements.

An illustration of how Codon’s DSL plugins relate to the rest of the framework is

given in Figure 8-1. In short, DSL plugins consist of three key elements:

• Libraries: Library modules relevant to the domain, such as the bio module in

the case of Seq. This also includes types and functions that might be used by

IR passes via bidirectional compilation.

• Syntax: Codon allows DSL plugins to register new keywords, and to define how

these keywords are translated to (potentially new) IR nodes.

• Optimizations: Plugins can register domain-specific optimizations or analyses

to be run on the IR.

These components are packaged into shared libraries that are dynamically loaded by

130

Codon, as well as a set of Codon source files for the library modules.

8.2.1 Extending the parser

Codon’s parser is based on a parsing expression grammar, or PEG [50]. A set of core

language rules are hard-coded into the grammar (i.e. to cover Python’s base syn-

tax). However, additional rules can be registered dynamically, with some constraints.

Currently, the parser allows three classes of keywords to be registered:

• Expression keywords of the form keyword e1 . . . e𝑛 for expressions e1 . . . e𝑁 .

• Block keywords of the form keyword e1 . . . e𝑛: block, where block is a block

of code.

• Binary keywords of the form e1 keyword e2.

A DSL plugin must also specify how each new keyword is to be converted to IR nodes;

this might include custom nodes, which we describe below.

8.2.2 Extending the IR

Many frameworks like MLIR [68] allow customization for all facets of the IR. While

this allows for a great deal flexibility, it also comes at the cost of complexity when im-

plementing new patterns, analyses, and transformations. Due to Seq’s fully-featured

base, we are able to restrict customization of the IR to a few types of nodes, ensuring

compatibility with existing SIR infrastructure, all the while maintaining flexibility.

In particular, SIR allows users to derive from “custom” types, flows, constants, and

instructions, which interact with the rest of the framework through a declarative in-

terface. For example, custom nodes derive from the appropriate custom base class

(CustomType, CustomFlow, etc.) and expose a “builder” to construct the correspond-

ing LLVM IR; we show a brief example of this API in Figure 8-2, which implements a

32-bit float (note that Seq’s default float type is 64-bit). Notice that implementing

custom types (and custom nodes in general) involves defining a Builder that specifies

131

1 class Builder : public TypeBuilder {
2 llvm::Type *buildType(LLVMVisitor *v) {
3 return v->getBuilder()->getFloatTy();
4 }
5

6 llvm::DIType *buildDebugType(LLVMVisitor *v) {
7 auto *module = v->getModule();
8 auto &layout = module->getDataLayout();
9 auto &db = v->getDebugInfo();

10 auto *t = buildType(v);
11 return db.builder->createBasicType(
12 "float_32",
13 layout.getTypeAllocSizeInBits(t),
14 llvm::dwarf::DW_ATE_float);
15 }
16 };
17

18 class Float32 : public CustomType {
19 unique_ptr<TypeBuilder> getBuilder() const {
20 return make_unique<Builder>();
21 }
22 };

Figure 8-2: 32-bit float CustomType

132

LLVM IR generation via virtual methods (e.g. buildType and buildDebugType); the

custom type class itself defines a method getBuilder to obtain an instance of this

builder. This standardization of nodes enables DSL constructs to work seamlessly

with existing passes and analyses.

8.3 Examples

8.3.1 Seq

Since Seq is itself a DSL, it can be implemented as a plugin for Codon. In particular,

all of Seq’s core genomics-specific type (e.g. seq and Kmer) are implemented in Seq

itself, so they can be packaged as a library along with the rest of the bio module.

Seq’s domain-specific optimizations can also be packaged in a shared library that uses

the IR’s API. Below we present new Codon-based DSLs for other domains with very

different computational characteristics.

8.3.2 Sequre: a DSL for secure multi-party computation

Secure multi-party computation (MPC) [41] is a strategy for performing computations

without actually revealing the underlying data. MPC operates by partitioning and

distributing the data to multiple parties in such a way that no individual party

is able to reconstruct the original values. These parties include data owners (which

distribute shares of the data) and computing parties (which perform the computation

of interest). Conceptually, the data owner securely shares their data, allowing the

computing parties to perform secure computations like neural network training or

statistical analyses. This computation is performed in a distributed manner, where

each computing party only accesses its share of the original data, and occasionally

communicates with its peers over a secure channel. Finally, after all shares have

been computed, the parties broadcast their results back to the data owners, who then

combine and reconstruct the shares into actual results. While this protocol is simple

in theory, ensuring the security of a given computation or program requires careful

133

g

𝑥 = 15
𝑦 = 25

𝑥 + 𝑦 = ?

g g

g

[𝑥] = 𝑟
[𝑦] = 𝑟′

[𝑥] = 15− 𝑟
[𝑦] = 25− 𝑟′

[𝑥 + 𝑦] = 𝑟 + 𝑟′ [𝑥 + 𝑦] = (15− 𝑟) + (25− 𝑟′)

𝑥 + 𝑦 = (𝑟 + 𝑟′) + (15− 𝑟) + (25− 𝑟′) = 40

Data owner

Computing
party 1

Computing
party 2

Figure 8-3: Example of secure multi-party computation for computing 𝑥+𝑦 with two
computing parties. The data owner (green) distributes the shares of both 𝑥 and 𝑦 to
the computing parties (blue), which then compute the sum of their shares and send
their results back to the data owner for reconstruction of the final sum.

code review, making simple, straightforward code preferable.

Data sharing and reconstruction relies on a randomization of data splits (or shares)

to achieve security and hide the original data. For arithmetic operations like addition

or subtraction, these shares can be obtained by a simple mechanism: in a scenario

involving two computing parties and a secret value 𝑥, data can be split across the

nodes by generating a random value 𝑟, assigning one node 𝑟 and the other 𝑥 − 𝑟

(written as [𝑟, 𝑥 − 𝑟]). Reconstruction of the original value can be performed by

simply adding the shares: 𝑟 + (𝑥 − 𝑟) = 𝑥. Since 𝑟 is random, neither node has any

information regarding the original value 𝑥. Basic arithmetic operations like additions

and subtractions can be executed independently by each node. For example, if 𝑥 and

𝑦 are shared across two nodes as [𝑟, 𝑥−𝑟] and [𝑟′, 𝑦−𝑟′] respectively, we can simply add

(or subtract) the shares at each node independently, obtaining [𝑟+𝑟′, (𝑥−𝑟)+(𝑦−𝑟′)].

Combining these yields the desired 𝑥 + 𝑦. Both shares are still random, and as such

do not invalidate the security guarantees of the protocol. An illustration of this

procedure is given in Figure 8-3.

134

0 1,000 2,000 3,000

Library MPC

Beaver (Codon optimization)

Polynomial (Codon optimization)

Bytes exchanged

Figure 8-4: Total network utilization for standard MPC library (“Library MPC”) and
Sequre’s two optimized solutions (“Beaver” and “Polynomial”) in terms of exchanged
bytes between computing parties.

Other arithmetic operations like multiplication are considerably more complicated,

with the approach above yielding incorrect results. For example, simply multiplying

shares independently results in an incorrectly reconstructed value of (𝑥 − 𝑟)(𝑦 −

𝑟′) + 𝑟 · 𝑟′ ̸= 𝑥 · 𝑦. Numerous solutions to this problem have been discovered over

the past decades [19, 33, 42]. The most common approach is known as a Beaver

multiplication protocol [19], which rectifies the reconstructed value by adding (𝑥−𝑟)𝑟′

to first share and (𝑦 − 𝑟′)𝑟 to the second. These values are called Beaver partitions,

and calculating them incurs significant computational and communication overhead.

Other arithmetic operations (such as division and exponentiation) also build on top

of the Beaver protocol, and as such come with substantial overhead in both offline

and online computing—with all nodes involved—as well as much more complex code.

Optimization efforts are usually focused on minimizing communication between com-

puting parties, which is the largest bottleneck in the pipeline overall. Such optimiza-

tions include Beaver partition caching and polynomial evaluation [37]. The former

attempts to reuse Beaver shares (that are expensive to generate) across different ex-

pressions, while the latter converts each arithmetic expression over shared data into

canonical polynomial form, and is proven to induce minimal network overhead. How-

ever, implementing these optimizations manually requires significant code refactoring,

and the optimizations themselves often obscure the underlying program, making the

code much harder to review.

135

Sequre is a Codon-based DSL for secure multi-party computation that attempts to

solve these challenges in a systematic way, improving performance by reducing net-

work overhead, without sacrificing code simplicity. It is accompanied by a library

that implements all state-of-the-art multi-party computing paradigms. Inspired by

the above mentioned Beaver partition caching and polynomial evaluation optimiza-

tions, Sequre optimizes all multi-party arithmetic by leveraging Codon’s IR to either

transform all arithmetic operations on shared data to their cached multi-party equiv-

alents, or by automatically converting such expressions to their polynomial forms,

which are then evaluated with an optimized polynomial evaluation procedure (see

Figure 8-5 for details). The first approach includes caching the Beaver partitions and

powers for each variable, and propagating those caches as necessary, thus decreasing

network overhead. These two approaches are mutually exclusive, and each can be

superior in different scenarios. Namely, polynomial optimization is guaranteed to

minimize network overhead between computing parties, but pays an extra cost in

offline computation for polynomial expansion; its computational complexity is also

exponential in terms of the polynomial’s degree. Therefore it can become impractical

even compared to a non-optimized solution if the polynomial’s expansion is too large.

We control this by statically calculating the size of the eventual polynomial expansion

and, if it is too large, using the first optimization instead within the IR pass.

We implemented two mutually exclusive IR passes for optimizing arithmetic expres-

sions in Sequre:

• Beaver optimization: Transforms arithmetic expressions into their secure multi-

party counterparts that implement Beaver partitioning and powers caching at

the same time

• Polynomial optimization: Reshapes arithmetic expressions into polynomial shape

and scaffolds them for optimized polynomial evaluation

The Beaver optimization IR pass transforms all arithmetic operators to their multi-

party counterparts optimized with an adapted Beaver caching paradigm. This pass,

136

@secure
def foo(a, b, c):

d = b + c
e = d ** 2
print e
f = e * a * d
return f

def sequre_foo(a, b, c):
beaver_cache_partitions(a, b, c)
d = b + c # d = b + c
beaver_cache_partitions(d)
d_powers = secure_powers(d, 2)
e = e_powers[2] # e = d ** 2
beaver_cache_partitions(e)
print secure_reveal(e)
__mul__ reuses the cached partitions
f = e.__mul__(a).__mul__(d) # f = e * a * d
return f

𝑒 = 𝑃1(𝑏, 𝑐) =1 · 𝑏2𝑐0 +2 · 𝑏1𝑐1 +1 · 𝑏0𝑐2

𝑓 = 𝑃2(𝑎, 𝑏, 𝑐) =1 · 𝑎1𝑏3𝑐0 +3 · 𝑎1𝑏2𝑐1 +3 · 𝑎1𝑏1𝑐2 +1 · 𝑎1𝑏0𝑐3

def secure_foo(a, b, c):
P1 = beaver_poly(b, c,

coeffs=(1,2,1),
exps=((2,0), (1,1), (0,2)))

print secure_reveal(P1)
P2 = beaver_poly(a, b, c,

coeffs=(1,3,3,1),
exps=((1,3,0), (1,2,1), (1,1,2), (1,0,3)))

return P2

Beaver pass Polynomial pass

Figure 8-5: Sequre leverages Codon’s IR to optimize arithmetic expressions via either
the Beaver pass (left) or the Polynomial pass (right).

implemented in approximately 100 lines of C++ code, enables users to write secure

multi-party arithmetic expressions in their simplest form without worrying about

MPC optimizations. For instance, a hand-written implementation of the MPC-

equivalent of the 3 assignments in foo from Figure 8-5, is 158 lines of code in Python

(shown in simplified form in the bottom left). The polynomial optimization IR pass,

on the other hand, expands all arithmetic expressions in a single block into their

polynomial form and, similar to the previous pass, forwards the expanded polyno-

mial coefficients and exponents to an optimized procedure for polynomial evaluation,

reducing network overhead between the computing parties even further. Specifi-

cally, for the example shown in Figure 8-4, a state-of-the-art MPC library exchanges

3,680 bytes over the network, while Sequre decreases this to 256 bytes through the

Beaver optimization approach, or to 224 bytes through the polynomial optimization

approach.

8.3.3 CoLa: a DSL for block-based compression

Block-based data compression forms the core of many algorithms in use today, from

the well-established JPEG standard for image compression, to the recently released

137

VVC/H.266 standard for video compression. Despite the importance of block-based

compression, little attention has been given to providing language support, making

implementation an arduous task. New compression algorithms are constantly being

developed, with each iteration building on the last to improve compression perfor-

mance and cover a wider variety of data types. Even though each version is funda-

mentally similar, developers often opt to re-implement from scratch in languages like

C and C++, leading to complex codebases with hundreds of thousands of lines of code.

Much of the existing implementation complexity arises from a mismatch in the struc-

tures provided by existing languages and the structures needed for compression. The

Compression Language, CoLa, is a Codon-based DSL that focuses on providing an

intuitive, concise, expressive, and malleable interface for block-based compression im-

plementations. CoLa focuses on three fundamental components of block-based com-

pression that are not handled well in existing implementations: data representation,

data traversals, and data partitioning.

Data representation is the core abstraction in CoLa, providing native multi-dimensional

data types called Blocks and Views for handling the data in block-based compression.

Despite the wide variety of use cases handled in CoLa, the implementation in Codon

is simple, making heavy use of existing Codon features such as generics and method

overloading to provide a straightforward implementation.

The data traversal abstractions deal with how the individual elements in a Block

and/or View are traversed, often using complex patterns not easily described with

loop nests. The bottom of Figure 8-6 shows a 3rd-order Hilbert space-filling curve,

which is one type of traversal pattern used in medical image compression [7]. CoLa

defines a traversal as a series of step and rotation operations which dictate how to

move from one coordinate within a grid to the next. The top left of the figure gives

the CoLa code for an arbitrary order Hilbert curve. Codon makes this notation possi-

ble thanks to its support for annotations and its flexible front-end. The @traversal

annotation is recognized in the compiler, where the compiler automatically inserts ad-

138

1 void hilbert(int n, int *a) {
2 int i1,j1,i;
3 int b[(int)pow(4,n)];
4 int tmp;
5 if (n==1) {
6 tmp = a[2];
7 a[2] = a[3];
8 a[3] = tmp;
9 } else {

10 for (i1=0; i1<(int)pow(2,n-1); i1++) {
11 for (j1=0; j1<(int)pow(2,n-1); j1++) {
12 b[j1*(int)(pow(2,n-1))+i1] =
13 a[i1*(int)(pow(2,n))+j1];
14 b[i1*(int)(pow(2,n-1))+j1+(int)pow(4,n-1)] =
15 a[i1*(int)(pow(2,n))+j1+(int)pow(2,n-1)];
16 b[((int)pow(2,n-1)-1-j1)*(int)(pow(2,n-1)) +
17 ((int)pow(2,n-1)-1-i1) + 3*(int)pow(4,n-1)] =
18 a[i1*(int)(pow(2,n)) + j1 +(int)pow(2,2*n-1)];
19 b[i1*(int)(pow(2,n-1))+j1+2*(int)pow(4,n-1)] =
20 a[i1*(int)(pow(2,n))+j1+(int)pow(2,2*n-1)+
21 (int)pow(2,n-1)];
22 }
23 }
24 for (i=0; i<(int)pow(4,n); i++) a[i] = b[i];
25 hilbert(n-1, &a[0]);
26 hilbert(n-1, &a[(int)pow(4,n-1)]);
27 hilbert(n-1, &a[2*(int)pow(4,n-1)]);
28 hilbert(n-1, &a[3*(int)pow(4,n-1)]);
29 }
30 }

1 @traversal
2 def hilbert(order: int, i: int=0,
3 which: bool=True):
4 tparams 2
5 if i < order:
6 rrot 90 if which else 270
7 link hilbert(order, i+1, not which)
8 rstep 1
9 rrot 270 if which else 90

10 link hilbert(order, i+1, which)
11 rstep 1
12 link hilbert(order, i+1, which)
13 rrot 270 if which else 90
14 rstep 1
15 link hilbert(order, i+1, not which)
16 rrot 90 if which else 270

Figure 8-6: CoLa implementation (top left) and C implementation [78] (top right)
for a Hilbert space-filling curve (bottom).

139

ditional boilerplate information into the traversal definition. The keywords tparams,

rrot, rstep, and link are some of the custom CoLa keywords added into Codon

which control the step and rotation operations defining the traversal. CoLa’s traver-

sal syntax provides a much simpler and intuitive way to define patterns compared to

existing imperative implementations, such as the recursive loop-based C implemen-

tation in the top right of Figure 8-6.

The final CoLa abstraction, data partitioning, deals with defining how to split a Block

or View into smaller non-overlapping blocks. In block-based compression, there can

be thousands of different ways to partition a single block. Existing implementations

implicitly create these partitions on-the-fly, where the type of partition is completely

obscured by the surrounding code. CoLa provides a unique representation for parti-

tions based on And-Or trees from artificial intelligence [80], where And nodes repre-

sent a set of non-overlapping blocks derived from a parent block, and Or nodes define

different options for partitioning a parent. The top left of Figure 8-7 illustrates a

partition from AVC/H.264 video compression, showing 7 of the 259 possible ways to

partition a block. The lower left of the Figure gives the And-Or tree representation of

this. Similar to traversals, CoLa utilizes Codon’s annotations and also adds custom

keywords to provide a simple syntax for defining partitions, with the CoLa code for

defining all 259 partitions shown on the right of Figure 8-7. @ptree signals to the

compiler that this is a partition definition, and pparams, pt_or, pt_and, and pt_leaf

are custom keywords for constructing the And-Or tree.

Thanks to the wide variety of programming features already available in Codon, as

well as its flexibility for introducing custom syntax, CoLa is able to provide much

needed language support for implementing the complex features of block-based com-

pression that complicate existing implementations.

140

1 @ptree
2 def macroblock_partition(root):
3 # set the root of the tree
4 pparams root
5 M = root.dims(0)
6 pt_or:
7 pt_leaf root
8 pt_and:
9 pt_leaf root[:,:M//2]

10 pt_leaf root[:,M//2:]
11 pt_and:
12 pt_leaf root[:M//2,:]
13 pt_leaf root[M//2:,:]
14 pt_and:
15 q0 = root[:M//2,:M//2]
16 q1 = root[:M//2,M//2:]
17 q2 = root[M//2:,:M//2]
18 q3 = root[M//2:,M//2:]
19 if M == 16:
20 link macroblock_partition(q0)
21 link macroblock_partition(q1)
22 link macroblock_partition(q2)
23 link macroblock_partition(q3)
24 else:
25 pt_leaf q0,q1,q2,q3

Figure 8-7: The top left shows 7 of the 259 possible partitions for a 16 × 16 block
are shown in the top left. The bottom left shows an And-Or tree representing all 259
partitions (where “...” denotes the same sub-tree as on the left). The code on the
right shows the equivalent CoLa implementation for the PTree.

8.4 Conclusion

Although Seq has been designed from the ground up with genomics and bioinformatics

in mind, it is still a powerful tool even for general-purpose computing. Codon extends

that notion by factoring out Seq’s domain-specific components, and augmenting the

compiler with a plugin architecture. Seq’s intermediate representation in turn enables

the system to be extended with new optimizations, analyses, data types, and even

control-flow structures for new domains. Thereby, Codon aims to have the same effect

that Seq has in genomics, albeit in a range of new areas.

141

142

Chapter 9

Applications and Results

9.1 End-to-End Applications

A typical genomics analysis pipeline currently consists of four fundamental types

of stages: (i) data pre- and post-processing, (ii) reference sequence processing, (iii)

read sequence processing, and (iv) downstream analysis. Each of these stages employs

different classes of algorithms and has distinct performance challenges (e.g. processing

of reads often involves memory-bound operations whereas downstream analyses are

frequently numerically-intensive). Thus, unique optimization techniques must be used

at each stage in order to achieve ideal scalability and performance.

To demonstrate the utility of Seq, we re-implemented eight standard, real-world ap-

plications to evaluate the performance of the compiler’s domain-specific optimizations

and the resulting code complexity across these stages, as compared to existing highly-

optimized and widely-used C, C++, Java or Python implementations—and, in some

instances, their equivalents using Rust, Julia, and C++ genomics libraries. Here we

describe each of these applications in greater detail, as well as what is gained by port-

ing them to Seq. An overview of these applications in the context of the genomics

pipeline is given in Figure 9-1, which also shows the speedups attained by Seq.

143

FASTQ

AlignSequencing
reads

FASTA

Reference
sequence

Index

Call & phase variants

rs123 rs291

rs334

Process

BAM

Compare

Reference sequence processing

Downstream analysis

Data pre- & post-processing

8x
faster Seq

CORA (C++)
Homology table construction

3x
faster Seq

mrsFAST (C)
Hamming-based all-mapping

2x
faster Seq

AVID (C++)
Global alignment

2x
faster Seq

BWA-MEM (C)
Finding SMEMs

3x
faster Seq

minimap2 (C)
Smith-Waterman alignment

15x
faster Seq

GATK (Java)
RNA-seq post-processing

12x
faster Seq

HapCUT2 (C & Python)
Haplotype phasing

Read sequence processing

Lower is better

Lower is better

Lower is better

Lower is better

14x
faster Seq

UMI-tools (Python)
scRNA-seq whitelisting

Lower is better

Figure 9-1: Seq performance improvements demonstrated on eight common, state-of-
the-art applications. Comparisons based on a typical genomics pipeline using the Seq
language and compiler to implement applications: global alignment (from AVID) un-
der “Compare” for comparative genomics; homology table construction (from CORA)
and Hamming distance-based all mapping (from mrsFAST, which also performs align-
ment) under “Index” for reference sequence indexing; finding super-maximal exact
matches, or SMEMs (from BWA-MEM) and Smith-Waterman alignment (from min-
imap2) under “Align” for read sequence alignment; RNA-seq read post-processing
(from GATK SplitNCigar) and single-cell RNA-seq barcode whitelisting (from UMI-
tools) under “Process” for data pre- and post-processing; and haplotype phasing under
“Call & phase variants” for numerically-intensive downstream analysis. The accom-
panying bar charts show runtimes of the original tools compared to the Seq versions.

144

Before we begin, let us provide a few notes about the re-implementations described

below. First, all the tools we compared against are well-tested and highly optimized

(often by a large team of developers), and provide several additional options aside

from the functionality being compared against in this work. Our goal here is to

show that the same—or even much better—results can be achieved in a fraction of

the time and development effort with a high-level programming language given the

proper compiler support.

To ensure fairness, all of the reported results, unless otherwise specified, were gener-

ated in single-threaded mode, and unless explicitly specified, the outputs produced

by our re-implementations exactly match those of the tools being compared against.

Finally, we would like to note that our memory measurement metric—the maximum

resident memory used by a process—is far from perfect. This metric is heavily im-

pacted by system-specific memory management; for example, macOS automatically

compresses the working set of high-memory processes, and thus reports lower mem-

ory usages (a side-effect of this strategy is occasional slow-down of such processes).

Furthermore, this metric struggles with garbage collection-based runtimes such as

Seq’s, Java’s, Python’s and Julia’s, as it often reports memory usages higher than the

actual value.

In the results below, runtimes are reported in an “hh:mm:ss” format (or “mm:ss”

or simply “ss” for shorter runtimes), and memory usages are given in gigabytes.

Experiments for which memory usages are not reported used less than 1 GB of RAM.

“Seq imprv.” refers to Seq’s runtime improvement.

Benchmarking details All experiments in this section were run on the following

systems:

1. dual-socket system with Intel Xeon Gold 5218 CPUs (2.30 GHz) with 16 cores

each (totalling 32 cores and 64 hyper-threads) and 768GB DDR4-2933 RAM

and Linux OS.

145

2. desktop iMac with Intel Core i9-9900K CPU (3.60 GHz) with 8 cores (totalling

16 hyper-threads) and 64GB DDR4-2667 RAM and macOS Big Sur.

The Seq version is 0.10.1. https://github.com/seq-lang/seq-benchmarks con-

tains detailed instructions for reproducing the results in this section.

9.1.1 Reference sequence processing

Genome homology table construction (CORA) CORA [128] is an all-mapping

tool for next-generation sequencing (NGS) reads. In other words, given a read (or a

read pair), CORA reports all alignments (up to some edit or Hamming distance) of

that read in a reference sequence. To achieve this goal, the primary data structure

used by CORA is the homology table, which stores groups of “homologous” regions in

the reference, and is used to convert a single alignment as reported by an off-the-shelf

mapper like BWA, into a list of all mappings satisfying the distance criteria. Two

versions of the homology table are built: exact and inexact. The exact homology

table stores in a compressed form pairs of equal 𝑘-mers (with 33 ≤ 𝑘 ≤ 64) from

the reference, along with their loci (where “compression” is done by merging two

or more consecutive homologous pairs into a single group). Similarly, the inexact

homology table stores pairs of unequal 𝑘-mers whose Hamming distance is less than

some threshold. CORA’s definition of homology also allows for cases where one 𝑘-mer

is homologous to the reverse complement of another 𝑘-mer.

The process of constructing the homology table involves many of the operations that

Seq optimizes, including 𝑘-merization, reverse complementation, 𝑘-mer matching and

Hamming distance calculations. Indeed, we implemented CORA’s homology table

construction in Seq, and compared both performance and lines of code with the orig-

inal, highly-optimized C++ implementation. We used a 𝑘-mer length of 64 and a

maximum Hamming distance threshold of 1 for the inexact homology table. Exact

homology table construction was single-threaded, whereas the inexact table’s con-

struction was allowed to use all 48 threads of our machine.

146

https://github.com/seq-lang/seq-benchmarks

Genome homology table construction (CORA)
Linux Time Memory Seq imprv. Time Memory Seq imprv.
CORA (C++) 1:32:09 206.7 7.9× 11:42:44 329.6 3.7×
Seq 11:44 72.5 — 3:07:47 50.8 —

(a) Exact matching (b) Inexact matching

Table 9.1: Performance improvements in homology table construction from using
the Seq language and compiler. Due to the memory requirements, we only ran this
experiment on a large-memory Linux machine. The Seq version achieves nearly an
8× speed improvement while using 3–6× less memory than the original version.

Table 9.1 shows the results of the comparison. The Seq versions were substantially

smaller in terms of lines of code (over 2,500 in the original C++ version versus less than

300 in Seq—nearly 10× fewer lines) and ran substantially faster (4–8×) while using

3–4× less memory, which has been somewhat of a barrier to CORA’s use (both CORA

and the Seq re-implementation were run with 24 threads for inexact construction).

Lastly, we found the outputs of the original and Seq implementations to be very

slightly different; in particular, the original version found 4,186,875 exact homologies

in hg19 with a 𝑘-mer length of 64, whereas the Seq implementation found 4,372,977

(roughly 4% more) for the same 𝑘-mer size; all of the additional homologies were

found to be correct by a manual inspection. The additional homologies have now

been made publicly available at https://github.com/seq-lang/seq-benchmarks.

Therefore, we attribute this discrepancy to a bug in the original version. Note that

while such bugs are hard to find in large and tightly optimized C/C++ codebases,

they often become self-evident in high-level codebases that focus only on the core

algorithm, such as those produced with Seq.

Global sequence alignment (AVID) AVID [29] is one of the fastest tools for

global alignment of large nucleotide and amino acid sequences (see also Batzoglou et

al. [18]). Although the canonical global alignment algorithm (Needleman-Wunsch) is

a slight variant of the local alignment algorithm (Smith-Waterman), only a few tools

such as FASTA [96] and AVID (released in 1989 and 2002, respectively) are able to

quickly produce global alignments between two sequences. Unfortunately, the source

147

https://github.com/seq-lang/seq-benchmarks

code of AVID is not available, and pre-built binaries are only available for a limited

number of platforms.

We re-implemented AVID’s algorithm as described in the original publication [29].

The core of AVID’s method consists of finding “Maximal Exact Matches” (MEMs)—

identical sub-sequences between the two sequences of interest that cannot be further

extended—and using them to guiding the global alignment process. MEMs are com-

monly found by recursively traversing a generalized suffix tree made from the subject

sequences. In our implementation, we used suffix arrays (SA) instead of suffix trees

(as Seq supports efficient SA operations out of the box), and a bottom-up traversal

algorithm over SAs to find all MEMs [4].

Overall, we were able to prototype the whole pipeline as described in the paper

in 170 lines of high-level Seq code. We ran AVID and Seq-AVID on the large set of

similar (similarity ≥90%) and less-similar sequences (≥70%) from the human genome

segmental duplications database [16, 92], and found that the Seq implementation

provided a 2× speedup over the original binary while maintaining a similar accuracy

(note that our re-implementation is not an exact reproduction of the original software

as the exact algorithm used by the currently available AVID binary differs slightly

from the published description; nevertheless, our implementation produces alignments

that are highly concordant with the alignments produced by the AVID binary). The

results of this comparison are shown in Table 9.2.

9.1.2 Read sequence processing

Finding SMEMs (BWA-MEM) Super-Maximal Exact Matches, or SMEMs, are

a subset of MEMs such that no two SMEMs overlap within the read sequence. SMEMs

are an integral component of many important genomics algorithms, ranging from

sequence alignment to assembly [72, 73, 122]. Because the SMEM detection algorithm

primarily involves querying an FMD-index data structure (unlike the MEM detection

algorithm, which relies on suffix tree traversal), it is inherently memory-bound, and

can be greatly accelerated by several of Seq’s compiler optimizations.

148

Global sequence alignment (AVID)
Linux Time Memory Seq imprv. Time Memory Seq imprv.
AVID (C/C++) 35:05 1.0 2.0× 34:24 2.0 2.0×
Seq 17:44 2.2 — 16:52 5.3 —

(a) 90% similarity (b) 75% similarity

Table 9.2: Performance improvements in global sequence alignment from using the
Seq language and compiler. As we only had access to the Linux binary distribution
of AVID, we had to restrict this benchmark to the Linux machine. The Seq version
achieves nearly a 2× speed improvement. Note that the results are not identical, as
the original source code is not available. However, we found out that ≥ 90% of all
generated alignment scores are nearly identical (within 10% difference) between the
tools.

To this end, we implemented BWA-MEM’s SMEM-finding algorithm in Seq, with

roughly 135 lines of code (compared to the over 500 lines of C code comprising

the original). The standard algorithm involves repeatedly querying an FMD-index

to extend matches between a read and the reference, which causes expensive mem-

ory stalls—indeed, this is the main bottleneck in the algorithm. As querying large

genomic indices is itself a prevalent operation in genomics algorithms, the Seq com-

piler automatically performs several optimizations to greatly speed up such queries.

Rather than issuing memory requests serially and forcing the entire program to stall,

Seq makes use of coroutines and software prefetching to overlap the memory-bound

stall from one query with other useful work, greatly reducing the effective stall time.

This process is shown in Figure 6-4.

While implementing these transformations by hand in existing codebases would re-

quire substantial effort (including implementing coroutines, scheduling and managing

coroutine state, dispatching queries and returning results, debugging, etc.), in Seq it

only requires a single additional @prefetch annotation—everything else is handled

automatically by the compiler. Applying this optimization to the SMEM algorithm

resulted in a roughly 2× speedup over BWA-MEM (Table 9.3).

Software prefetching is also used in BWA-MEM2, the next iteration of BWA-MEM,

which adds numerous manual, low-level performance optimizations [122]. However,

149

BWA-MEM2’s implementation does not perform a coroutine-based software context

switch like Seq compiler does; consequently, as the authors describe, it cannot fully

remedy memory-bound stalls. By contrast, Seq’s use of coroutines to overlap stalls

with useful work can often ensure that a particular address is cache-resident by the

time it needs to be accessed (i.e. when a suspended coroutine is resumed, as de-

scribed in detail in Methods). We also evaluated software prefetching without the

use of coroutines—much like what BWA-MEM2 does—but observed no appreciable

performance improvements over the coroutine-based prefetching.

In order to compare the performance of Seq with other high-performance genomics

libraries, we also implemented this experiment in Rust using the Rust-Bio library [65]

and in C++20 using the SeqAn3 library [45]. In both cases, the Seq version takes

roughly 6–9× less time to process the reads than the alternate implementations,

regardless of whether Seq’s prefetch optimization had been enabled. Finally, we would

like to point out that the Seq version is also cleaner and more adaptable: Rust-Bio

had to be manually patched1 to support exact SMEM extraction, while the SeqAn

version had lengthier code, was more verbose, and took 6× longer to compile.

Hamming-distance based all-mapping (mrsFAST) mrsFAST [54] is a perfect-

sensitivity all-mapping tool based on Hamming distance. mrsFAST employs a hash

table to index 𝑘-mers from a reference genome, and uses that table to find all mappings

of a given read that are below a user-defined Hamming distance threshold 𝑒. The

algorithm is centered around the pigeonhole principle: each read is partitioned into

𝑒 + 1 non-overlapping seeds, which guarantees that at least one seed will map to all

positions in the reference at which the Hamming distance is at most 𝑒. mrsFAST-

Ultra, the latest version of the tool, is implemented in C, and involves many of the

operations discussed here, including 𝑘-merization, reverse complementation, 𝑘-mer

hashing, indexing and of course Hamming distance calculations.

We implemented a subset of mrsFAST-Ultra for single-end mapping in Seq to further
1https://github.com/rust-bio/rust-bio/pull/392

150

https://github.com/rust-bio/rust-bio/pull/392

Finding SMEMs (BWA-MEM)
Linux Time Memory Seq imprv.
BWA (C) 1:37 0.4* 1.7×
Rust-Bio (Rust) 6:23 81.2 6.7×
SeqAn (C++) 5:16 2.5 5.5×
Seq 1:01 7.2 1.1×
Seq (prefetch) 57 7.2 —

macOS Time Memory Seq imprv.
BWA (C) 1:19 0.4* 2.3×
Rust-Bio (Rust) 4:17 61.1 7.6×
SeqAn (C++) 4:53 2.6 8.6×
Seq 50 7.3 1.5×
Seq (prefetch) 34 7.3 —

Table 9.3: Performance improvements in SMEM finding from using the Seq lan-
guage and compiler on Linux and macOS systems. The Seq version achieves nearly
a 2× speed improvement over BWA, and roughly a 6–9× improvement over high-
performance genomics libraries Rust-Bio and SeqAn. The reported timings represent
the time needed for each tool to find SMEMs in a set of FASTQ reads; index building
and loading times are not included, as they vary across the tools. Note that Seq,
Rust and SeqAn FM-index implementations are not compressed, and as such use
more RAM than BWA’s compressed implementation (marked with *). Also note that
prefetch improvements depend on the CPU cache size: large-cache machines (such as
our Linux machine) benefit less than machines with smaller CPU caches (macOS).

test the effectiveness of the compiler’s optimizations, the results of which are shown in

Table 9.4. With a distance threshold 𝑒 = 2 on chromosome 1, the Seq implementation

was ≈30% faster than the original hand-optimized C implementation, with a third

of the code size. We also implemented a version using an FM-index instead of a

hash table—a modification that requires changing only a few lines of code in Seq—

and tested it with exact matching (𝑒 = 0) on the entire genome, resulting in a 2.5×

improvement, which is particularly notable given that mrsFAST-Ultra’s is a cache-

oblivious algorithm. Ultimately, the original version is comprised of well over 1000

lines of code and takes over an hour to perform exact matching, whereas the Seq

version is comprised of 100 lines of code and completes in about 15 minutes.

151

Hamming-distance based all-mapping (mrsFAST)
Linux Time Memory Seq imprv. Time Memory Seq imprv.
mrsFAST (C) 10:39 13.1 1.3× 27:03 34.5 2.7×
Seq 8:30 17.8 — 17:25 25.1 1.7×
Seq (prefetch) N/A 10:11 25.2 —

macOS Time Memory Seq imprv. Time Memory Seq imprv.
mrsFAST (C) 8:47 13.2 1.1× 17:41 34.1 1.3×
Seq 8:08 19.0 — 20:33 25.1 1.6×
Seq (prefetch) N/A 13:17 25.2 —

(a) Inexact matching (𝑒 = 2, chr1) (b) Exact matching (hg19)

Table 9.4: Performance improvements in Hamming distance-based read alignment
from using the Seq language and compiler on Linux and macOS systems. The Seq
version achieves up to a 2.5× speed improvement over mrsFAST. The reported timings
represent the time needed for each tool to find all-mappings for a set of FASTQ reads;
index building and loading times are not included. Note that Seq uses mrsFAST’s 𝑘-
mer index for inexact matching, and an FM-index for exact matching, which explains
the somewhat varying RAM usages across the tools in different experiments.

Long-read mapping (minimap2) As third-generation sequencing becomes more

widespread, high-performance methods and tools for processing long-reads become

increasingly important [112]. minimap2 [74] is the current state of the art in terms of

long-read alignment, both in terms of performance and accuracy. The algorithm used

by minimap2 follows similar steps as AVID, and involves chaining to find overlaps

between reads and the genome, followed by dynamic programming alignment between

the seeds of a chain to obtain the final alignments.

Smith-Waterman sequence alignment is an essential kernel in many genomics ap-

plications, and is consequently a heavily researched area [48, 104, 74]. Most hand-

optimized implementations use instruction-level SIMD parallelism to accelerate the

alignment of a single pair of sequences—an approach referred to as intra-sequence

alignment. However, yet another approach is to use SIMD to accelerate aligning mul-

tiple pairs of sequences, referred to as inter-sequence alignment [104]. While inter-

sequence alignment can be substantially faster than intra-sequence alignment, it is

typically cumbersome to implement with general-purpose programming languages

due to the need to batch sequences, manage state, dispatch alignment results and

152

so on. In Seq, however, the compiler performs several pipeline transformations to

convert standard alignment to inter-sequence alignment with just a single-line code

annotation.

We implemented minimap2’s Smith-Waterman alignment step in Seq to test the com-

piler’s inter-sequence alignment optimization relative to minimap2’s SIMD-optimized

intra-sequence alignment kernel (in fact, Seq’s default alignment kernel is the same

one used by minimap2; minimap2 does not support inter-sequence alignment, how-

ever). Results of this comparison are shown in Table 9.5, where Seq’s inter-sequence

alignment optimization is up to 2.5× faster than the intra-sequence implementation.

Note that the traceback step (required to produce CIGAR strings) is not vectorized

in minimap2 nor Seq, meaning timings including CIGAR generation are expected to

be comparatively strictly slower than those without CIGAR generation. Additionally,

Seq automatically demotes sequences that do not benefit from inter-sequence opti-

mization2 to intra-sequence alignment (i.e., the same method is used to align such

pairs in both the Seq implementation and in minimap2), so consequently timings

including “all” sequences will also be comparatively slower. Nevertheless, even when

including CIGAR generation and all sequence pairs, Seq performs up to 45% better

than intra-sequence alignment.

We also implemented a simplified version of this experiment in Rust using Rust-Bio,

SeqAn3, and Julia using the BioJulia library [126], in order to compare our imple-

mentation with highly-optimized genomics libraries. For a fair comparison, we just

compared the speed of standard global alignment without the additional parameters

that Seq offers (e.g. bandwidth, Z-drop and a couple other parameters were disabled

as other libraries do not support them). Seq is roughly 7–34× faster than the alter-

natives, even without the inter-sequence alignment optimization. In more concrete

terms, Seq can find the full alignments for 50,000 sequence pairs in a few seconds, as

compared to couple minutes needed by the other tools. As such, the Seq version is
2We found that sequences >512 bases did not benefit from inter-sequence alignment; this limit

is adjustable.

153

substantially more scalable on real-world datasets.

Long-read mapping (minimap2; ≈1 million sequences)
Linux CIGAR Score-only CIGAR Score-only Seq imprv.
minimap2 / KSW2 (Seq/C) 1:28 1:14 55 46 1.3–2.6×
Seq (SSE4 inter-align) 1:23 1:02 50 35 1.2–1.9×
Seq (AVX2 inter-align) 1:07 51 30 23 1.0–1.3×
Seq (AVX-512F inter-align) 1:07 50 27 18 —

macOS CIGAR Score-only CIGAR Score-only Seq imprv.
minimap2 / KSW2 (Seq/C) 1:06 56 41 34 1.5–2.3×
Seq (SSE4 inter-align) 59 47 34 26 1.3–1.7×
Seq (AVX2 inter-align) 45 36 20 15 —

All sequences Small sequences (≤ 512)

Long-read mapping (minimap2; 50,000 sequences)
Linux CIGAR Score-only Seq imprv.
minimap2 / KSW2 (Seq/C) 16 12 1.1×
Seq (AVX-512F inter-align) 15 11 —
Rust-Bio (Rust) 6:22 3:16 19–25×
SeqAn (C++) 3:13 2:17 12–13×
BioJulia (Julia) 1:52 1:52 7–10×

macOS CIGAR Score-only Seq imprv.
minimap2 / KSW2 (Seq/C) 12 10 1.1×
Seq (AVX2 inter-align) 11 9 —
Rust-Bio (Rust) 6:10 3:16 21–34×
SeqAn (C++) 2:35 1:52 12–14×
BioJulia (Julia) 1:24 1:24 7– 9×

Table 9.5: Performance improvements in long-read mapping and sequence alignment
from using the Seq language and compiler on Linux and macOS systems. Seq versions
achieves up to a 2.5× speed improvement over standard SIMD-optimized alignment
algorithms, and up to a 34× improvement over their non-SIMD counterparts. The
reported timings represent the average time for 3 separate runs to account for SIMD-
based time variation. “CIGAR” refers to CIGAR string generation (i.e. the backtrace
step), and the “≤ 512” experiments were run on sequences shorter than that limit.
Seq’s inter-sequence optimization (“inter-align”) was applied on several instruction
sets (SSE4, AVX2 and AVX-512F). Our macOS machine did not support the AVX-
512F instruction set.

One distinct advantage of the Seq language over general-purpose languages is the

ability to incorporate complex pipeline optimizations—like those for inter-sequence

alignment and prefetching—with minimal code changes. For example, adding inter-

sequence alignment to the current C implementation of minimap2 would require large-

154

scale code refactoring to batch sequences (and other state information) before per-

forming the alignment, and the complete rewrite of a complex SIMD-based alignment

kernel, whereas in Seq all of this is handled implicitly by the compiler using coroutines,

and usually requires only a single-line code annotation, as shown in Figure 6-8.

9.1.3 Data pre- and post-processing

RNA-seq data clean-up (GATK SplitNCigar) The most time-consuming steps

in a NGS (next-generation sequencing) processing pipeline often consist of mundane

data transformations performed on large datasets prior to, during and after the align-

ment or downstream analysis steps [93]. These tasks typically employ string opera-

tions (e.g. duplicate marking, sample tagging), score recalculations (e.g. base quality

score re-calibration), and in the case of RNA-seq samples, splitting reads that span

large intronic regions. Such tasks are commonly performed by GATK and Picard

tools [30, 87]. However, these tools leave a lot to be desired in terms of perfor-

mance, mainly due to the high-level language they are written in (Java). While data

HLpost-processing tasks are often conceptually simple, the sheer volume of data (of-

ten on the order of terabytes) heavily penalizes even minor performance shortcomings

that high-level languages often bear (e.g. an unnecessary memory copy can easily add

several additional hours to the total runtime on real-world datasets). For instance,

a relatively simple tool for splitting intron-spanning reads—SplitNCigar—from the

GATK suite takes more than 10 hours to complete on a medium-sized 20GB BAM

file.

We show that such post-processing can be done faster and easier by re-implementing

GATK’s SplitNCigar tool in Seq. By relying on automatic, conservative memory

management and thus avoiding unnecessary memory copy operations, we were able

to obtain 14× faster runtimes while using up to 10× less memory than the original

GATK implementation (note that both Java and Seq rely on a garbage collector for

managing memory). In concrete terms, this means that a 10-hour post-processing

step can be completed in a less than an hour with Seq. Results of this comparison

155

RNA-seq data clean-up (GATK SplitNCigar)
Linux Time Memory Seq imprv. Time Memory Seq imprv. Time Memory Seq imprv.
GATK (Java) 2:30:55 11.0 14.5× 7:29:52 11.8 9.8× 10:09:08 11.6 10.4×
Seq 10:23 0.7 — 45:54 4.0 — 58:36 2.0 —

macOS Time Memory Seq imprv. Time Memory Seq imprv. Time Memory Seq imprv.
GATK (Java) 1:42:06 8.2 13.4× 5:05:12 10.0 10.4× 8:28:29 11.7 12.6×
Seq 7:38 0.6 — 29:16 4.1 — 40:19 1.9 —

(a) 1.8 GB BAM (b) 13 GB BAM (c) 20 GB BAM

Table 9.6: Performance improvements in RNA-seq data post-processing from us-
ing the Seq language and compiler on Linux and macOS systems. The Seq version
achieves up to a 14× speed improvement over GATK SplitNCigar with significantly
lower memory usage. Both tools were run on single-ended BAM files with no optional
tags.

Single-cell data pre-processing (UMI-tools)
Linux Time Memory Seq imprv.
UMI-tools (Python) 1:01 0.1 10.2×
Seq 6 0.0 —

macOS Time Memory Seq imprv.
UMI-tools (Python) 56 0.1 14.0×
Seq 4 0.0 —

Table 9.7: Performance improvements in single-cell barcode whitelisting from us-
ing the Seq language and compiler on Linux and macOS systems. The Seq version
achieves a ≥10× speed improvement over UMI-tools.

are shown in Table 9.6.

Single-cell data pre-processing (UMI-tools) Single-cell sequencing technolo-

gies typically employ short sequence barcodes to differentiate cells within the se-

quenced sample. However, a sequencing dataset often contains more barcodes than

the sequenced cells due to sequencing errors and biases. Thus, the first step in any

single-cell RNA-seq pipeline consists of whitelisting true barcodes that identify cells,

and discarding others based on abundance levels. This task is commonly performed

with Python-based tools such as UMI-tools [116].

We have ported this pre-processing step to Seq in less than 90 lines of code, achieving

more than a 10× speedup over the original version. Results of this comparison are

shown in Table 9.7.

156

9.1.4 Downstream analysis

Haplotype phasing (HapTree-X) Haplotype phasing is the process of separating

variants into a set of maternal and paternal alleles, and can provide valuable biologi-

cal insights beyond what can be gained from raw genotypes alone [6]. HapTree-X is a

phasing algorithm implemented in Seq on top of HapTree [23], which utilizes Bayesian

optimization to infer optimal haplotypes from aligned genomic data. In contrast to

other case studies that focus mostly on discrete optimization and sequence opera-

tions, the HapTree-X phasing algorithm is a probabilistic optimization framework

that spends most of its runtime doing numerical computations and graph traversals.

Furthermore, HapTree-X is a complete genomics analysis pipeline that needs to pre-

process and analyze large BAM files prior to the haplotype phasing step. As such, it

is an excellent test of Seq’s versatility and applicability to applications that require

both efficient sequence processing and high-performance numerical algorithms.

Performance of Seq/HapTree-X on three diverse datasets spanning multiple sequenc-

ing technologies, relative to another two state-of-the-art phasing tools, is shown in

Table 9.8. HapTree-X was faster than phASER (Python), and had comparable per-

formance to that of HapCUT2 (C), on smaller RNA-seq and medium-sized exome

datasets. However, we found that the performance gains increased with the scale of

the data: on a large 120GB WGS BAM, HapTree-X was 3× faster than HapCUT2,

while on a high-coverage 10X Genomics dataset (≈200GB BAM file), HapTree-X

achieved up to a 12× speed up over HapCUT2 (C++, Python). Furthermore, paral-

lelizing the HapTree-X pipeline and running it on four threads (by simply converting

a few nested function calls into a Seq pipeline) further decreased the total runtime

over 2×, totalling in a nearly 25× speed increase. In absolute terms, HapTree-X was

able to phase a 200GB file in less than an hour as compared to the 22 hours needed

by the fastest alternative tool [23] (note that Table 9.8 reports the measurements on a

smaller subset of the original 120GB 10X BAM file; the results for the original dataset,

as well as other datasets, are available in [23]). We should mention that HapTree-X

is not a re-implementation of HapCUT2 or a similar tool, but a completely new tool

157

Haplotype phasing (HapTree-X)
Linux Time Memory Seq imprv. Time Memory Seq imprv. Time Memory Seq imprv.
HapCUT2 (C) 1:23 0.1 1.0× 4:16 1.4 0.7× 1:53:00 7.2 11.5×
phASER (Python) 1:53 0.7 1.3×
HapTree-X (Seq) 1:25 2.9 — 5:47 1.0 — 9:49 5.6 —

macOS Time Memory Seq imprv. Time Memory Seq imprv. Time Memory Seq imprv.
HapCUT2 (C) 1:29 0.1 1.7× 4:14 1.1 1.1× 1:29:19 7.9 12.1×
phASER (Python) 1:14 0.7 1.4×
HapTree-X (Seq) 52 2.9 — 3:47 1.0 — 7:24 5.9 —

(a) Small RNA-seq BAM (3 GB) (b) Medium WXS BAM (17 GB) (c) Medium 10X BAM (13 GB)

Table 9.8: Performance improvements in haplotype phasing from using the Seq lan-
guage and compiler on Linux and macOS systems. The Seq version achieves up to a
12× speed improvement over other tools.

that uses a different algorithm [23]; however, as all tools utilize many common data-

processing steps that take the vast majority of time (SAM/BAM pre-processing, read

analysis, etc.), it is fair to say that most of the speed improvements are due to Seq’s

optimizations.

9.2 Bioinformatics-Specific Benchmarks

We additionally evaluated the performance of Seq on the following three benchmark

suites, designed to mimic both hypothetical and real-world genomics applications:

1. The Computer Language Benchmarks Game suite [53] restricted to DNA bench-

marks (3 benchmarks)

2. Sequence manipulation suite, developed in-house (3 benchmarks)

3. Genomic index queries (2 benchmarks)

Benchmarking details We compared Seq with C++ (compiled with both GCC

v7.4.0 and Clang v6.0.1), Julia v1.0.3, Python v2.7.15, PyPy v2.7.13 [27], Shed Skin

v0.9.4 [47] and Nuitka v0.6.2 [56]. Other “compiled Python” implementations such as

Numba are geared towards numerical rather string or DNA processing, and had issues

efficiently compiling our benchmarks, or were abandoned. All experiments were run

on a dual-socket system with Intel Xeon X5690 CPUs (3.46 GHz) with 6 cores each

158

0

1

2

3

4

RC

Sp
ee

du
p

0

1

2

3

16-mer
0

0.2

0.4

0.6

0.8

1

1.2

CpG

0

0.2

0.4

0.6

0.8

1

FASTA

Sp
ee

du
p

0

2

4

6

8

RevComp
0

1

2

3

𝑘-nucleotide

0

0.5

1

1.5

SNAP

Sp
ee

du
p

0

0.5

1

1.5

2

SGA

Seq
C++/Clang
C++/GCC
Julia
Python
PyPy
Shed Skin
Nuitka

Figure 9-2: Seq evaluation results on several genomics benchmarks, showing speedups
over Clang. The Seq implementations used in these charts use Seq-specific types and
constructs that are not available in Python. Note that only Seq, Clang and GCC
were tested on the SNAP and SGA benchmarks. Seq performs at least as good as
(and in many cases much better than) the C++ implementations in nearly every
benchmark, excluding FASTA which, as we note in the text, is not as common a
real-world application as the others.

159

(totalling 12 cores and 24 hyper-threads) and 138GB DDR3-1333 RAM with 12MB

LLC per socket. C++ implementations were compiled with -O3 -march=native. Julia

was run with --check-bounds=no -O3 parameters. Shed Skin was run with -l -o

optimizations, and Nuitka was run with the noasserts,no_warnings options en-

abled. Note that Seq binaries (unlike C++ or Julia) do include bounds checks.

For the Benchmarks Game suite, we used the FASTA, RevComp and 𝑘-nucleotide mi-

crobenchmarks. Other benchmarks in this suite are not directly relevant to genomics

or bioinformatics in general, but we expect Seq’s performance on them to be on par

with that of other LLVM-backed languages. Briefly, the FASTA benchmark entails

generating random sequences in the FASTA format; RevComp entails reverse com-

plementing a set of longer sequences, which is done through Seq’s domain-specific

sequence type; 𝑘-nucleotide entails counting 𝑘-mers of various lengths, which we im-

plemented using Seq’s 𝑘-mer types.

For the in-house suite, we designed three microbenchmarks that capture common

genomics operations on a large set of reads:

1. RC: Output the reverse complement of each read, also implemented using se-

quence types. Unlike RevComp, this benchmark runs on millions of shorter reads

rather than a few long reads.

2. 16-mer: Count the number of symmetric 16-mers in all reads (where a 16-mer

is symmetric if its first half is identical to the reverse complement of its second

half). The Seq implementation for this benchmark uses match on sequences,

and is based on example (b) in Figure 3-7.

3. CpG: Count the number of CpG regions (i.e. regions that consist of C and G

characters, such as CGC but not CCC or GGG as they lack a G and C, respectively)

in all reads, and report the lengths of the shortest and longest CpG regions in

the sample.

The final benchmark suite demonstrates the utility of Seq’s domain-specific genomic

160

index query optimizations. Here, we use the genomic indices implemented in the

widely-used tools SNAP v1.0 (beta 23) [129] (a sequence alignment tool) and SGA

v0.10.15 [113] (a de novo assembly tool). SNAP uses a hash table of 20-mers, which

we re-implemented from scratch in Seq (see Appendix B.1). SGA, on the other hand,

uses an FM-index, whose C++ implementation we wrapped in Seq. Both indices are

used to query 𝑘-mers from our test dataset. For both SNAP and SGA, we compared

the performance of our base Seq implementation, a Seq version that performs pipeline

optimizations for index prefetching (code difference of one line) and a C++ implemen-

tation (results shown at the bottom of Table 9.10). Both of these benchmarks consume

roughly 30GB of RAM.

Each benchmark was executed five times for each language/compiler, and the averages

are reported (with the exception of Julia, Python, Shed Skin, PyPy and Nuitka, which

were run three times as they took orders of magnitude longer in some cases). The

input dataset consisted of 100 million 75bp DNA reads randomly chosen from the

HG00123 sample [1] (because SGA’s index is an order of magnitude slower than

SNAP’s, we downsampled our input dataset to 25 million reads for SGA). Results are

shown in Figure 9-2, where speedups over Clang-compiled C++ are given.

9.2.1 Improvements over Python

Seq programs can be written in one of two ways: in plain Python or using idiomatic

Seq (as in the implementations described above). The Pythonic implementations

utilize the coding conventions set by the Python community, and can be run by

both Python and Seq directly. The alternative style involves the use of idiomatic

Seq constructs and data types to manipulate genomic data; of course, these are not

available in plain Python.

We compared the performance of Pythonic and idiomatic Seq implementations to that

of Python, PyPy, Shed Skin, Nuitka and Julia in Table 9.9. All of the implementations

in the second benchmark suite (with the exception of idiomatic Seq) are line-by-line

identical in terms of the algorithm. In particular, the Python implementations use

161

Table 9.9: Seq runtime compared to Python, PyPy, Shed Skin, Nuitka and Julia
(seconds). “Seq (Py.)” (Pythonic Seq) uses the same code as Python, whereas “Seq
(Id.)” (idiomatic Seq) uses Seq-specific language features and constructs.

Seq (Py.) Python PyPy Shed Skin Nuitka Julia Seq (Id.) Speedup
FASTA 111.3 68.6 15.6 99.4 7.1 10.7 0.7–10×
RevComp 97.5 15.5 16.0 54.3 9.1 1.3 7–75×
𝑘-nucleotide 255.8 59.2 211.8 174.1 196.0 19.7 10–13×
RC 195.1 2,160.0 231.2 912.1.6 913.7 764.7 48.3 5–45×
CpG 60.6 3,591.0 203.7 1,336.9 1,596.4 947.7 60.6 16–60×
16-mer 159.8 15,440.2 463.4 2,139.9 6,042.3 1,030.9 95.6 5–161×

the exact same code as the Pythonic Seq implementations for RC, CpG and 16-mer.

Even by just directly running Python code, Seq is able to outperform Python by a

factor of 11 to 100.

A similar pattern can be seen in the first benchmark suite, where Seq significantly

outperforms both the Python and Julia implementations. The only exception is the

FASTA benchmark, where Seq is slightly slower than Julia. While this could be

further optimized, we chose to keep the version that is most similar to Python. Addi-

tionally, we note that the FASTA benchmark as specified by the Computer Language

Benchmarks Game is not a realistic application in genomics, as one would rarely be

generating sequences rather than reading them from a preexisting dataset.

Idiomatic versions further boost the improvement up to 160×, and showcase the

impact of individual domain-specific optimizations: RC and RevComp utilize Seq’s

highly optimized reverse complementation constructs; 16-mer showcases the gains—

both in terms of readability and performance—of sequence-based match statements;

𝑘-nucleotide shows the performance improvement gained by using Seq’s native 𝑘-mer

types. A few of the idiomatic versions also rely on pipelining to perform further

optimizations, which is described in more detail below.

Note that runtime becomes prohibitive as the number of reads to be processed in-

creases; while the performance of compiled Python (i.e. PyPy, Shed Skin and Nuitka)

and Julia is acceptable if the number of reads is low (as in the first benchmark suite),

it rapidly deteriorates once the read count becomes an order of magnitude larger.

162

Table 9.10: Seq runtime compared to C++ as compiled with Clang and GCC (sec-
onds). “Pythonic Seq” uses the same code as Python, whereas “Idiomatic Seq” uses
Seq-specific language features and constructs. For SNAP and SGA the difference be-
tween the without-prefetch and with-prefetch Seq programs is just a single @prefetch
annotation.

Seq C++ C++ Seq Speedup
Pythonic Clang GCC Idiomatic

FASTA 5.6 5.7 10.7 0.5×
RevComp 9.5 9.5 1.3 7.3×
𝑘-nucleotide 54.6 54.3 19.7 2.8×
RC 195.1 178.6 170.7 48.3 3.5×
CpG 60.6 55.7 44.8 60.6 0.7–0.9×
16-mer 159.8 214.1 201.7 95.6 2.1×

Seq C++ C++ Seq Speedup
w/o prefetch Clang GCC with prefetch

SNAP 328.1 450.5 327.5 211.9 1.5–2.1×
SGA 453.0 569.3 610.1 409.6 1.4–1.5×

Even 100 million reads as used here is quite minuscule compared to real datasets.

Given the results above, the comparisons below focus only on the C++ implementa-

tions.

9.2.2 Improvements over C++

Table 9.10 compares the Seq and C++ implementations of each benchmark. Again,

all of these implementations (with the exception of idiomatic Seq) are line-by-line

identical in terms of the algorithm. The performance of Pythonic Seq code is on

par with that of C++ code—in most cases, it is the same as or slightly better than

Clang’s (we use Clang as a baseline since both Clang and Seq rely on LLVM for

general-purpose optimizations). Note that g++ is sometimes able to outperform the

LLVM-based backends of Seq and Clang. However, once Seq applies domain-specific

optimizations, it outperforms even g++ by up to 4×. For example, in the third set

of benchmarks (SNAP and SGA), Seq achieves a 50% speedup after adding a one-line

domain-specific prefetch annotation to the original code, resulting in up to a 2×

163

Table 9.11: Seq runtime compared to that of several highly-optimized bioinformat-
ics libraries (in seconds) on in-house benchmarks. C++ times are also included for
reference.

Seq C++ SeqAn BioPython BioJulia
GCC C++/GCC PyPy Julia

RC 48.3 170.7 137.6 68.4 348.9
CpG 60.6 44.8 46.7 332.7 244.1
16-mer 95.6 201.7 70.8 1,276.1 247.2

speedup over C++.

Prefetch variability

Index prefetching is useful during genomic index lookups, and is able to speed up both

𝑘-mer hash tables and FM-indices by 50%. However, we observed the performance

of prefetching to be application- and data-dependent: while in almost all evaluated

datasets (spanning various technologies such as recent third-generation 10x Genomics

linked-reads [132] and “classic” second-generation Illumina short-reads; detailed re-

sults omitted for brevity) it produces a steady improvement in the range 20–50%, in

one dataset it led to a 35% slowdown. However, the fact that it is a one-line change

means that any user can easily experiment and judge whether it works well for their

use-case.

Compilation time

Seq can be used in two modes: as a JIT interpreter or as a compiler. In our ex-

periments, Seq’s compilation times are faster than, or similar to, those of the C++

compilers. Note that Seq relies on LLVM’s optimization pipeline, and therefore em-

ploys the same optimization passes (and linker) as Clang. We also observed that Seq

is an order of magnitude faster than Nuitka or Shed Skin with respect to compilation.

Manual optimizations

In general, it is not straightforward to compare benchmark results across different

languages in a meaningful way, given that each language has its own set of idioms

164

and conventions, often resulting in algorithmic differences. For example, if one invests

enough time, it is always possible to write C++ implementations that match Seq’s

performance, since both ultimately compile to machine code. For this reason, the

in-house benchmarks above all follow the same high-level algorithm, even if there

may be room for further manual optimizations. The other two sets of benchmarks

do include hand-optimized C++ implementations, however: FASTA, RevComp and

𝑘-nucleotide implementations are taken from The Computer Language Benchmarks

Game (excluding multi-threaded implementations), and SNAP and SGA are real-world

implementations that are widely used in practice.

We additionally compared to the highly-optimized bioinformatics libraries SeqAn

v2.3.2 [45] (C++), BioPython v1.74 [38] and BioJulia (BioSequences v1.1.0) (https:

//biojulia.net), results for which are shown in Table 9.11. Seq outperforms both

BioPython and BioJulia by a large margin. Seq also substantially outperforms SeqAn

on RC; on CpG, the plain C++ implementation actually outperforms both; lastly,

SeqAn outperforms Seq on 16-mer. Note that Seq matches SeqAn’s performance if the

same low-level implementation is used (the SeqAn implementation differs and is less

flexible because Seq’s sequence pattern matching cannot be expressed in SeqAn/C++).

However, we purposefully compared against the (somewhat slower) pattern matching

Seq implementation to show that even the “simplest” implementations in Seq are

close performance-wise to the highly-optimized implementations provided by other

libraries. Finally, these libraries are unable to easily express the benchmarks from

the two other suites (and also lack a prefetching mechanism similar to what Seq

uses in SNAP and SGA), which is why we limited this comparison to the in-house

benchmarks.

9.2.3 Effects of parallelization

To evaluate the performance of Seq’s parallel pipelines, we implemented parallel ver-

sions of two of our in-house benchmarks, CpG and 16-mer (the third, RC, performs

substantially more I/O and hence does benefit much from parallelism), as well as

165

https://biojulia.net
https://biojulia.net

Table 9.12: Seq runtimes on multiple threads (seconds).

Threads 1 2 3 4 Speedup
CpG 58.1 29.6 19.9 15.3 3.8×
16-mer 86.7 43.6 29.9 22.8 3.8×
SGA 355.1 184.0 125.4 95.1 3.7×
SGA (pref.) 217.7 128.0 90.3 71.8 3.0×

SGA’s FM-index querying (both with and without prefetch optimizations). To this

end, we “block” input reads into batches of 100,000, which are processed as a whole

by each task; tasks themselves are then executed in parallel via Seq’s parallel pipe

operator.

Results are shown in Table 9.12, where Seq scales almost linearly up to 4 threads on

our in-house benchmarks. For these small applications, we find I/O to be a bottle-

neck beyond 4 threads. In a real-world setting where reads would take substantially

longer to process, we would expect I/O to play a less significant role, allowing a

greater degree of parallelism. Taking these parallel implementations into account,

Seq’s largest speedup over Python (which cannot be easily parallelized due to the

global interpreter lock) is over 650×. Finally, Table 9.12 also shows that even Seq’s

prefetch optimizations benefit from parallelization.

9.3 General-Purpose Benchmarks

Because Seq can (with some restrictions) fully type check Python programs ahead

of time, it can be used to compile regular Python code to native machine code even

outside of genomics and bioinformatics. In Figure 9-3, we show Seq’s advantage over

standard CPython and PyPy (note that we have shown above that PyPy handily out-

performs other implementations like Nuitka or Shed Skin, so we limit this comparison

to PyPy for brevity). For most benchmarks, Seq is orders of magnitude faster. This

difference is especially apparent for the loop benchmark, which iteratively calculates∑︀104−1
𝑖=1

∑︀104−1
𝑗=1 (𝑖 + 𝑗); Seq’s static typing and coroutine optimizations are able to op-

timize out the two loops entirely, replacing them with the result of the summation at

166

compile time.

Benchmarking details All benchmarks in this section were run on a dual-socket

system with Intel Xeon E5-2695 v2 CPUs (2.40 GHz) with 12 cores each (totalling

24 cores and 48 hyper-threads) and 377GB DDR3-1066 RAM with 30MB LLC per

socket, and Linux OS.

We selected several benchmark applications from Python’s own benchmark suite3,

aside from loop which was taken from a PyPy tutorial4, and is a simple double for-

loop. We narrowed the benchmark suite by removing applications that relied on un-

supported external libraries or modules (as they are not compatible with Seq natively,

although they can be used in practice via Seq’s out-of-the-box Python interoperabil-

ity). Other benchmarks were preserved. A few of these benchmarks required slight

modifications to be compatible with Seq’s type system, such as specifying members

of classes in advance (akin to Python’s “data classes”), although we are currently

working on extending LTS-DI to fully support such programs. The benchmark appli-

cations are as follows:

• loop: Simple double for-loop to compute ∑︀104−1
𝑖=1

∑︀104−1
𝑗=1 (𝑖 + 𝑗).

• norm (bm_spectral_norm.py): Spectral norm benchmark – calculates the spec-

tral norm of an infinite matrix with specific entries; involves floating-point op-

erations and list creation/iteration.

• nbody (bm_nbody.py): 𝑛-body simulation of several planets – repeatedly up-

dates the momentum and position of each body in the system; involves list

accesses, updates and iteration as well as floating-point arithmetic.

• float (bm_float.py): Floating point-heavy benchmark – optimizes a vector in

3-dimensional space based on some criteria; as the name suggests, primarily

involves floating-point operations, as well as list iteration.
3https://github.com/python/pyperformance
4https://realpython.com/pypy-faster-python

167

https://github.com/python/pyperformance
https://realpython.com/pypy-faster-python

100

103

106

loop

Sp
ee

du
p

0

20

40

60

norm
0

5

10

15

nbody

0

10

20

30

float

Sp
ee

du
p

0

10

20

30

go

Seq
PyPy
Python

Figure 9-3: Comparison of Python (CPython 3), PyPy and Seq on several benchmarks
from Python’s benchmark suite (https://github.com/python/pyperformance).

• go (bm_go.py): AI for playing the Go board game – chooses a move in a Go

game based on a tree search; involves tree construction and traversal as well as

updating game state.

Similarly, Figure 9-5, shows the effects of the get/set optimization (discussed in Chap-

ter 7) on a simple word-counting application (Figure 9-4). Note that the implemen-

tations for the Python, PyPy, and Seq versions are exactly identical. Nonetheless,

the Seq version is twice as fast as Python and about 20% faster than C++. Enabling

the get/set optimization results in a further 12% performance improvement.

9.4 Conclusion

This chapter showcases the collective impact of Seq’s compiler optimizations on real-

world, widely-used applications, as well as on a number of smaller benchmarks. Be-

yond just performance improvements, Seq affords programmers the ability to put

aside low-level software design or performance considerations, and to simply focus

on the high-level application and algorithm being implemented. Most of the C/C++

168

https://github.com/python/pyperformance

1 #include <iostream>
2 #include <fstream>
3 #include <sstream>
4 #include <string>
5 #include <unordered_map>
6 using namespace std;
7

8 int main(int argc, char *argv[]) {
9 cin.tie(nullptr);

10 cout.sync_with_stdio(false);
11 ifstream file(argv[1]);
12 unordered_map<string, int> wc;
13 for (string line; getline(file, line);) {
14 istringstream sin(line);
15 for (string word; sin >> word;)
16 wc[word] += 1;
17 }
18

19 cout << wc.size() << endl;
20 }

1 from sys import argv
2 wc = {}
3 filename = argv[1]
4

5 with open(filename) as f:
6 for l in f:
7 for w in l.split():
8 wc[w] = wc.get(w, 0) + 1
9

10 print(len(wc))

Figure 9-4: C++ (left) and Python/Codon (right) implementations for a simple word
counting program.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Python

PyPy

C++

Seq

Seq (opt.)

Speedup

Figure 9-5: Runtimes for generating the word counts of 100 million lines of English
Wikipedia text [51]. Speedups are relative to Python, and “Seq (opt.)” enables Seq’s
dictionary get/set IR optimization. The implementations are shown in Figure 9-4.

169

applications, in fact, were made several times shorter by Seq in terms of code size.

Programming ease and simplicity has implications not only for initial development,

but also for long-term maintenance, refactoring, and updating.

170

Chapter 10

Related Work

10.1 Genomics

A number of software libraries for bioinformatics and computational genomics have

been developed for a variety of programming languages, such as Biopython [38] for

Python, BioPerl [117] for Perl, SeqAn [45] for C++, Rust-Bio [65] for Rust or Bio-

Julia [126] for Julia [24]. We have shown comparisons to most of these libraries in

Chapter 9. Further, some of these libraries are bound to low-level host languages

(C++, Rust), preventing inexperienced programmers from easily using them; oth-

ers are bound to high-level languages that suffer from poor performance (Python,

Perl). Languages like Julia attempt to bridge the gap between these extremes, but

are infrequently used in practice [105]. Seq, by contrast, brings high-performance to

a familiar, widely-used language (Python) that is among the most prevalent in the

field. Furthermore, many of the optimizations performed by the Seq compiler are

simply infeasible for libraries to replicate; for example, the inter-sequence alignment

optimization described in Chapter 6 requires a global view of the program, the ability

to generate arbitrary code, the ability to convert functions to coroutines at compile

time and so on—these transformations are inherently out of reach for libraries, and

require a domain-specific compiler. Consequently, libraries are unable to match Seq’s

171

performance on many of the applications re-implemented in this work.

Another line of work focuses on integrating various high-level code blocks into a

pipeline framework that can be efficiently run on large clusters and cloud-based

systems—examples include the Broad Institute’s HAIL project and Workflow De-

scription Language [123]. While these methods indeed allow for large-scale parallelism

and a relatively high-level description of a given problem, they are cumbersome to use

as they require rather expensive infrastructural setup and administration costs, and

do not tackle the problem of single-machine optimizations, which is still a significant

bottleneck in many pipelines.

Seq is inspired by many successful DSLs that already exist in other fields of computer

science [101, 3, 14, 131, 34, 36, 62, 63]. Despite their substantial success in these other

areas, computational biology has yet to adopt a comparable DSL. SARVAVID [81]

is a DSL designed for computational genomics applications, which provides a set of

high-level genomics kernels and exposes them as language constructs. For exam-

ple, common operations such as k-merization, index-generation, index-lookup,

similarity-computation and clustering are provided. While such an approach

provides efficient implementations of these kernels and combinations thereof, it lacks

generality, which is gravely needed in the field as new sequencing technologies pro-

duce new types of data that in turn necessitate novel algorithms. Seq aims to provide

a more general, lower-level language, with general-purpose constructs that can be

used to build a variety of kernels efficiently. SARVAVID is also not available online—

neither source code nor compiled binaries—and is not used in practice.

10.2 Type Checking

Much work has been done on applying type inference to various dynamic languages

in general, and to Python in particular. Here is a short, and by no means complete,

survey of past work:

172

Mypy The most popular type checker for Python is arguably mypy1. Mypy is more

of a linter or a static analysis tool than a traditional type checker: it is completely

orthogonal to the Python runtime, its usage is optional, and it does not impact

the performance of a program. It attempts to cover the whole language in all its

intricacies, and performs a decent job of spotting common typing pitfalls in Python

code. As Python code often cannot be fully analyzed by static analysis tools, mypy

is forced to leave some types ambiguous (represented as an Any type). Mypy also

requires manual type annotations in certain complicated scenarios, since it cannot

infer complex polymorphic types automatically. Other similar type checkers and

linters include Pylance2 and Pytype3.

RPython RPython [9, 103] is a restricted subset of the Python language that aims

to be amenable to static analysis tools. As RPython can be statically analyzed, it

can also be unambiguously typed. RPython’s type system is quite different from ML-

based systems: RPython’s “annotator” (the key typing module) computes program

flow graphs, and then continually propagates types through flow graphs in a top-

down fashion. This approach is inspired by older work that focuses on localized type

inference of atomic types [32]. While some aspects of RPython are highly similar to

LTS-DI (e.g. some of the core language restrictions and its localized nature), RPython

does not use an ML-like system, and the supported syntax is more restricted than

what LTS-DI supports (with the exception of the inheritance, which LTS-DI currently

does not support). The overall goal of the project is also different: RPython is not

intended to be used in a standalone manner, but as a building block for creating

dynamic interpreters. It currently serves as the key component of the JIT translator

in the PyPy project [26]. PyPy itself is a full re-implementation of the Python

language and uses RPython only when it is possible to do so.
1http://mypy-lang.org
2https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
3https://github.com/google/pytype

173

http://mypy-lang.org
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://github.com/google/pytype

Starkiller Starkiller [106] is another static type inference method that utilizes the

Cartesian Product Algorithm [5] for type inference. Starkiller is flow-insensitive and

does not claim to support all the intricacies of Python’s semantics. Similar to LTS-

DI, Starkiller relies heavily on monomorphization—the technique of instantiating new

functions for different input arguments—to simulate Python’s duck typing. However,

it does not support exceptions or generators and is furthermore not available anymore.

It also targeted a much earlier Python version as it was developed before 2004.

Python compilers Projects such as Cython [22], PyPy [26], Numba [66], Shed

Skin [47] and Nuitka [56] all aim to generate efficient code by relying on ideas such

as static type checking and (JIT-) compiling rather than interpreting Python. Most

of these implementations, however, either still rely on the Python runtime, and are

thus bound to its inherent performance overhead, or support a small subset of Python

(e.g. Numba is only applicable to functions that perform numerical computations).

Other similar implementations (e.g. Pythran, Pyston, Grumpy) are either geared

more towards numerical computing or are no longer under active development.

Dynamic-like languages Initial versions of Seq utilized a simple uni-directional

type system akin to C++’s. This approach is also shared by Crystal [82], a static,

compiled version of Ruby. In such a system, each type must be decided at once, and

expressions are not allowed to have an undecided type at any point once they have

been seen during type checking. While this approach is both simple and efficient,

it is not powerful enough to cover much of Python’s syntax and requires excessive

type annotations, especially for optional and container types—both staples of any

Python codebase. Furthermore, it does not allow for lambda functions nor several

other syntactic elements prevalent in Python code.

Non-Python type systems Many type systems were designed for other dynamic

languages such as Ruby, including InferDL [59], Hummingbird [102] and PRuby [52].

Another notable example is TypeScript4. These approaches often rely on heuristics
4https://www.typescriptlang.org/

174

https://www.typescriptlang.org/

such as matching variable names to class types, approximations which are then mod-

elled as constraints and used to infer types. While this results in good coverage of the

language, these approaches have many of the same disadvantages as mypy and other

Pythonic type checkers—they are essentially auxiliary to the program and allowed

to fail. LTS-DI, on the other hand, necessitates a complete view of all types in a

program in order to facilitate the generation of native machine code and does not

aim to cover every feature of the host language.

10.3 Intermediate Representations

While Seq IR is not the first customizable IR, it differs from frameworks like MLIR [68]

in its approach. Rather than support customization of everything, Seq’s IR offers a

clearly-defined, restricted way for DSL writers to add new features. This improves

compatibility and makes Seq a fully batteries-included framework. In terms of struc-

ture, SIR takes inspiration from LLVM and Rust’s IRs [121]. These IRs benefit from a

vastly simplified node set and structure, which in turn simplifies the implementation

of IR passes. Structurally, however, these representations are too low-level to effec-

tively express many optimizations used by Seq. In particular, they radically restruc-

ture the source code, eliminating semantic information that must be reconstructed

to perform transformations. To address this shortcoming, many IRs like Taichi [58]

and Suif [127] adopt hierarchical structures that maintain control-flow and semantic

information, albeit at the cost of increased complexity. Unlike Seq’s, however, these

IRs are largely disconnected from their languages’ front-ends, making maintaining

type correctness and generating new code impractical or even impossible. Therefore,

SIR takes the best of these approaches by utilizing a simplified hierarchical structure,

maintaining both the source’s control flow nodes and a radically decreased subset of

internal nodes. Importantly, it augments this structure with bidirectionality, making

new IR easy to generate and manipulate.

175

10.4 Extensible Compilers

Many frameworks for implementing DSLs rely on “embedding” into another language

and extending its features with metaprogramming techniques. Delite [31] is one such

tool, relying on Scala’s rich operator overloading support to implement custom syn-

tax. The framework represents applications as valid Scala code, and constructs an

intermediate representation at runtime; DSL optimizations can manipulate this IR

through “rewrite rules” and “traversals” before final compilation. AnyDSL [70] takes

a similar approach of embedding in a new language called Impala. While these tools

can achieve considerable customization, they are necessarily limited by their parent

languages in terms of syntax and typing flexibility. Further, since both derive from

strongly-typed languages and do not tie in with their host type system, they are

unable to reach the level of expressiveness provided by dynamic languages. Other

frameworks like Sham [125], based on Racket, embed in dynamic languages and emit

IR. However, these approaches are difficult to work with in practice and rely on lan-

guages that are either new themselves or not widely used, limiting adoption. By

contrast, Codon tackles the DSL problem in the context of an existing, widely-used

dynamic language, which comes with its own unique challenges that are not directly

addressed by prior work.

176

Chapter 11

Conclusion

The creation of high-performance, maintainable bioinformatics software is undoubt-

edly a difficult task, as evidenced by the field’s unfortunate track record of poor soft-

ware development, maintenance, and testing practices. A key cause of this, among

other factors, is a lack of domain-specific development tooling, debugging facilities

and general programming infrastructure. While several software libraries have been

developed as an attempt at answering this problem, libraries are unable to perform

many of the optimizations discussed in this work and hence cannot achieve optimal

performance in many key situations. Additionally, these libraries are still bound

to their host languages, usually at the detriment of either performance or software

maintainability.

The fundamental difference with Seq is that its entire software stack, from the lan-

guage itself to the standard library to the compiler and even runtime, is designed

and implemented with the domain of bioinformatics in mind. “Owning” the entire

stack in this way comes with numerous distinct advantages. For example, datatypes

or compiler optimizations relevant to new sequencing platforms can be incorporated

seamlessly into the framework, circumventing large code rewrites or potentially even

algorithmic changes. Additionally, as GPUs, FPGAs, and cloud computing become

increasingly prevalent in the field, new compiler backends for Seq—including new

177

compiler optimizations pertinent to each computing platform—would enable exist-

ing code to run without changes on these backends, and is ongoing work within the

Seq project. Indeed, many novel, promising computer architectures such as memory-

driven computing [21] require specific optimizations and program transformations to

be fully taken advantage of; these can be performed automatically by the Seq com-

piler.

Yet another unique advantage of a framework like Seq lies in its ability to provide

domain-specific debugging or visualization support; as the compiler has knowledge

of sequences, 𝑘-mers and operations involving them, debugging or visualization tools

can be seamlessly integrated into the Seq framework, allowing users to track and

observe in a meaningful way how data is transferred and manipulated throughout a

program. None of these possibilities are easily attainable without having a software

stack designed from the ground up for genomics and bioinformatics. In fact, such

domain-specific languages are widely used in a variety of other fields for similar rea-

sons, including computer graphics [101], tensor algebra computing [62] and physical

simulations [63].

11.1 Future Work

The work presented here serves as a foundation for bioinformatics-specific compilers,

languages, and optimizations, but ultimately still only scratches the surface of what

is possible. There are many exciting avenues for further research and exploration,

including:

• New compiler backends. In this thesis, we primarily focused on CPU-based

computing, but as mentioned above, bioinformatics and many other fields alike

are increasingly moving towards new computing platforms like GPUs, cloud

computing, or even FPGAs. Each of these provides unique opportunities and

challenges in terms of compilation, optimization, and execution.

• New compiler optimizations. There are a number of interesting domain-specific

178

optimizations that we have yet to explore. For example, can the compiler deduce

the best way to encode sequences based on context, be it an ASCII encoding,

2-bit, or something else? Can we further exploit the unique, non-uniform struc-

ture of the genome to attain better performance? Can we use subtle properties

of sequences, like error profiles, to our advantage in certain situations? Each of

these questions is an exciting research direction and warrants further investiga-

tion.

• Full Python compatibility. Seq is able to statically compile a large subset of

Python, but there is still substantial room to close the gap even further. For

example, it would be possible to use union types to allow for some of the cases

that Seq currently cannot handle, as well as to extend the system to support

dynamic polymorphism.

11.2 Closing Remarks

Seq is, to the best of our knowledge, the first programming language tailored for

bioinformatics that combines high-performance and scalability with a familiar, high-

level, and easy-to-maintain programming system or language. It is the first step

towards a rich ecosystem providing software development environments, visualiza-

tion tools, and debugging support, all designed with the domain of bioinformatics

in mind. By offering biologists, bioinformaticians and other researchers a scalable

way to prototype, experiment and analyze large biological datasets through a famil-

iar, high-performance language, we hope that Seq will act as a catalyst for scientific

discovery and innovation.

179

180

Appendix A

Seq Tutorial

Here we will demonstrate the capabilities of Seq by implementing a short and fast

read alignment pipeline, named SeqMap, with only 35 lines of high-level Python

code. Further details, together with the links to the test datasets, can be found at

https://docs.seq-lang.org/tutorial/workshop.

We will test SeqMap on the following data:

1. Chromosome 22 as the reference sequence (chr22.fa), and

2. A simulated set of 1 million 101bp reads (reads.fastq).

We assume that Seq has been properly installed and configured; for more details on

how to do this, please visit https://seq-lang.org. We also assume that a reader is

familiar with the basic bioinformatics formats (FASTA, FASTQ, etc.).

A.1 Reading Sequences from Disk

The first step of processing any kind of sequencing data is to read it from disk. Seq

has builtin support for many of the standard file formats in bioinformatics, such as

FASTA, FASTQ, SAM, BAM and CRAM.

181

https://docs.seq-lang.org/tutorial/workshop
https://seq-lang.org

Let’s write a program to read our FASTQ file and print each record’s name and

sequence on a single line:

from sys import argv

from bio import *

for record in FASTQ(argv[1]):

print record.name, record.seq

Now we can run this Seq program as follows:

seqc run section1.seq data/reads.fq > out.txt

and peek into the out.txt:

chr22_16993648_16994131_1:0:0_2:0:0_0/1 CTACCAAACACCTACTTCGTTTCCTAACATCACTTTAATTTTATCTTAGAGGAATTCTTTTCCCTATCCCATTAAGTTATGGGAGATGGGGCCAGGCATGG

chr22_28253010_28253558_1:0:0_0:0:0_1/1 AGTGTTTTGCCTGTGGCTAGACTAAAAATAAGGAATGAGGGGGGTATCTTCCACTCTTGCCCTCTCATCACCCTATTCCCTATATCCAGAACTCAGAGTCC

chr22_21656192_21656802_0:0:0_2:0:0_2/1 ATAGCGTGGATTCCTATGACATCAAGGAGCTATTTTATTTGGTAAAACGAAAAAGCACAATAATGAACGAACGCAAGCACTGAAACAGTGGAGACACCTAG

chr22_44541236_44541725_0:1:0_0:0:0_3/1 CTCTCTGTCTCTCTCTCTCCCCTAGGTCAGGGTGGTCCCTGGGGAGGCCCCTGGGTTACCCCAAGACAGGTGGGAGGTGCTTCCTACCCGACCCTCTTCCT

chr22_39607671_39608139_0:0:0_2:0:0_4/1 ATTGGCTCAGAGTTCAGCAGGCTGTACCAGCATGGCGCCAGTGTCTGCTCCTGGTGAGGCCTTACGGACGTTACAATAACGGCGGAAGGCAAAGGCGGAGC

chr22_35577703_35578255_3:0:0_1:0:0_5/1 TGCCATGGTGGTTAGCTGCACCCATCAACCTGTCATCTACATTAGGTATTTTTCCTAATGCTATCCCTCCCCTAGCACCCTACCCTCTGATAGGCCCTGGT

chr22_46059124_46059578_1:0:0_1:0:0_6/1 AATCAGTACCAAACAATATATGGATATTATTGGCACTTTGTGCTCCCTCTGCCTGAACTGGGAATTCCTCTATTAGTTTTGACATTATCTGGTATTGAACC

chr22_31651867_31652385_2:0:0_2:0:0_7/1 ATCTAGTGACAGTAAGTGGCTGATAAAGTGAGCTGCCATTACATAGTCATCATCTTTAATAGAAGTTAACACATACTGAGTTTCTACTATATTGGGTCTTT

chr22_24816466_24817026_1:0:0_1:0:0_8/1 CACCTCTAGGGCTCAAGGGGCAGTTCCTCCATTCCTCAGCAGTGGCGCCTGTGGAACTGTGTCCTGAGGCCAGGGGGTGGTCAGGCAGGGCCTGGAGTGGC

chr22_27496272_27496752_1:0:0_1:0:0_9/1 CTTAGCCCCATTAAACACTGGCAGGGCTGAATTGTCTGCTGCCATCCATCACACCTTCTCCCCTAGCCTGGTTTCTTACCTACCTGGAAGCCGTCCCTTTT

...

That was it! FASTA, BAM and other file formats can be read in a very similar way.

Note that since this data is simulated, each read’s name (e.g. chr22_16993648_...)

indicates the locus at which the read was obtained.

A.2 Building an Index

Our goal is to find a “mapping” to the genome for each read in a FASTQ file. Compar-

ing to every position on the reference sequence would take far too long. An alternative

is to create an index of the 𝑘-mers from the reference sequence and use it to guide

the mapping process [128].

Let’s build a dictionary that links each 32-mer to its position (locus) on the reference

sequence:

182

K = Kmer[32] # make a type alias to improve the readability

index = {}

for record in FASTA(argv[1]):

for pos,kmer in record.seq.kmers_with_pos[K](step=1):

index[kmer] = pos

Of course, there will be 𝑘-mers that appear multiple times, but let’s ignore this detail

for now and just store the latest position we see for each 𝑘-mer.

Another important issue is reverse complementation: some of our reads will map

in the reverse direction rather than in the forward direction. For this reason, we

will build our index in such a way that a 𝑘-mer is considered “equal” to its reverse

complement. One easy way to do this is by using canonical 𝑘-mers, i.e. the minimum

of a 𝑘-mer and its reverse complement. For example, the canonical form of GCT is its

reverse complement, AGC, since the reverse complement is lexicographically smaller

(i.e. comes first alphabetically). On the other hand, the canonical form of CGC is

itself, since it is lexicographically smaller than its reverse complement, GCG. Here is

the new code:

index = {}

for record in FASTA(argv[1]):

for pos, kmer in record.seq.kmers_with_pos[K](step=1):

index[min(kmer, ~kmer)] = pos

Note that we will have to use canonical 𝑘-mers when querying the index as well.

Now we have our index as a dictionary (index), but we do not want to build it each

time we perform read mapping, since it only depends on a (fixed) reference sequence.

So, as a last step, let’s dump the index to a file using the pickle module:

import pickle, gzip

with gzip.open(argv[1] + '.index', 'wb') as jar:

pickle.dump(index, jar)

183

Let us run the program from the command line:

seqc run section2.seq data/chr22.fa

We should now be able to see a new file data/chr22.fa.index which stores our

serialized index.

Note that thus far, Seq both feels and behaves like a typical Python program.

A.3 Finding Seed Matches

At this point, we have an index we can load from disk. We will use it to find candidate

mappings for our reads. Let us first split each read into 𝑘-mers, and report a mapping

if at least two 𝑘-mers “support” a particular locus.

The first step is to load the index:

index = None

with gzip.open(argv[1] + '.index', 'rb') as jar:

pickle needs to know the original structure type

index = pickle.load[Dict[K,int]](jar)

Now we can iterate over our reads and query 𝑘-mers in the index. We need a way to

keep track of candidate mapping positions as we process the 𝑘-mers of a read: we can

do this using a new dictionary candidates that maps candidate alignment positions

to the number of 𝑘-mers supporting the given position [128]. Then, we just iterate

over candidates and output positions supported by 2 or more 𝑘-mers. Finally, we

clear candidates before processing the next read:

candidates = {} # map position to a count

for record in FASTQ(argv[2]):

for pos, kmer in record.read.kmers_with_pos[K](step=1):

found = index.get(min(kmer, ~kmer), -1)

if found > 0:

184

candidates.increment(found - pos)

for pos, count in candidates.items():

if count > 1:

print record.name, pos + 1

candidates.clear()

Let us run the program and peek at the output:

seqc run section3.seq data/chr22.fa data/reads.fq | head

chr22_16993648_16994131_1:0:0_2:0:0_0/1 16993648

chr22_28253010_28253558_1:0:0_0:0:0_1/1 28253010

chr22_44541236_44541725_0:1:0_0:0:0_3/1 44541236

chr22_31651867_31652385_2:0:0_2:0:0_7/1 31651867

chr22_21584577_21585142_1:0:0_1:0:0_a/1 21584577

chr22_46629499_46629977_0:0:0_2:0:0_b/1 47088563

chr22_46629499_46629977_0:0:0_2:0:0_b/1 51103174

chr22_46629499_46629977_0:0:0_2:0:0_b/1 46795988

chr22_16269615_16270134_0:0:0_1:0:0_c/1 50577316

chr22_16269615_16270134_0:0:0_1:0:0_c/1 16269615

Notice that most positions we reported match the position from the simulated read

name (the first integer after the _); not bad for such a short program!

A.4 Smith-Waterman Alignment and CIGAR String

Generation

We now have the ability to report approximate mapping positions for each read.

However, we usually need more precise alignments, which include information about

mismatches, insertions and deletions. Luckily, Seq makes sequence alignment easy:

to align sequence 𝑞 against sequence 𝑡, you can just do:

aln = q @ t

185

aln is a tuple of alignment score and CIGAR string (a CIGAR string is a way of en-

coding an alignment result, and consists of operations such as M for match/mismatch,

I for insertion and D for deletion, accompanied by the number of associated bases; for

example, 3M2I4M indicates 3 (mis)matches followed by a length-2 insertion followed

by 4 (mis)matches).

By default, Levenshtein distance is used, meaning mismatch and gap costs are both 1,

while match costs are zero. More control over alignment parameters can be achieved

using the align method:

aln = q.align(t, a=2, b=4, ambig=0, gapo=4, gape=2)

where a is the match score, b is the mismatch cost, ambig is the ambiguous base

(N) match score, gapo is the gap open cost, and gape the gap extension cost (i.e. a

gap of length 𝑘 costs gapo + (𝑘 · gape)). There are many more parameters as well,

controlling factors like alignment bandwidth, Z-drop, global/extension alignment and

more; please check the standard library reference for further details.

To align a read to the reference, we will use a simple query.align(target):

candidates = {}

for record in FASTQ(argv[2]):

for pos, kmer in record.read.kmers_with_pos[K](step=1):

found = index.get(min(kmer, ~kmer), -1)

if found > 0:

candidates.increment(found - pos)

for pos, count in candidates.items():

if count > 1:

get query, target and align:

query = record.read

target = reference[pos:pos + len(query)]

alignment = query.align(target)

print record.name, pos + 1, alignment.score, alignment.cigar

186

candidates.clear()

Now, run the program and observe the output:

seqc run section4.seq data/chr22.fa data/reads.fq | head

chr22_16993648_16994131_1:0:0_2:0:0_0/1 16993648 196 101M

chr22_28253010_28253558_1:0:0_0:0:0_1/1 28253010 196 101M

chr22_44541236_44541725_0:1:0_0:0:0_3/1 44541236 196 101M

chr22_31651867_31652385_2:0:0_2:0:0_7/1 31651867 190 101M

chr22_21584577_21585142_1:0:0_1:0:0_a/1 21584577 196 101M

chr22_46629499_46629977_0:0:0_2:0:0_b/1 47088563 110 20M1I4M1D76M

chr22_46629499_46629977_0:0:0_2:0:0_b/1 51103174 134 20M1I4M1D76M

chr22_46629499_46629977_0:0:0_2:0:0_b/1 46795988 128 20M1I4M1D76M

chr22_16269615_16270134_0:0:0_1:0:0_c/1 50577316 118 101M

chr22_16269615_16270134_0:0:0_1:0:0_c/1 16269615 202 101M

Most of the alignments contain only matches or mismatches (M), which is to be ex-

pected as insertions and deletions are far less common. In fact, the three mappings

containing indels appear to be incorrect!

A more thorough mapping scheme would also look at alignment scores before report-

ing mappings, although for the purposes of this tutorial we will ignore such improve-

ments.

A.5 Pipelines

Pipelines are a very convenient Seq construct for expressing a variety of algorithms

and applications. In fact, SeqMap can be thought of as a pipeline with the following

stages:

1. read a record from the FASTQ file,

2. find candidate alignments by querying the index, and

187

3. perform alignment for mappings supported by 2+ k-mers and output results.

We can write these stages as separate functions in Seq as follows:

def find_candidates(record):

candidates = {}

for pos, kmer in record.read.kmers_with_pos[K](step=1):

found = index.get(min(kmer, ~kmer), -1)

if found > 0:

candidates.increment(found - pos)

for pos, count in candidates.items():

if count > 1:

yield record, pos

def align_and_output(t):

record, pos = t

query = record.read

target = reference[pos:pos + len(query)]

alignment = query.align(target)

print record.name, pos + 1, alignment.score, alignment.cigar

and then chain them into a pipeline:

FASTQ(argv[2]) |> iter |> find_candidates |> align_and_output

Notice that find_candidates yields candidate alignments to align_and_output,

which then performs alignment and prints the results. In Seq, all values generated

from one stage of a pipeline are lazily passed to the next stage. Lazy passing allows

the Seq pipeline to behave like Bash streams: no new item will be generated until

the current item is processed. The Seq compiler performs many domain-specific

optimizations on pipelines, one of which we focus on next.

188

A.5.1 Parallelism

Pipelines can be easily parallelized with the parallel pipe operator, ||>, which tells

the compiler that all subsequent stages can be executed in parallel:

FASTQ(argv[2]) |> iter ||> find_candidates |> align_and_output

Since the full program also involves loading the index, let us time the main pipeline

using the timing module to see if parallelism helps or not:

import timing

with timing('mapping'):

FASTQ(argv[2]) |> iter ||> find_candidates |> align_and_output

Let us run this for different numbers of threads (e.g., 1 and 2):

export OMP_NUM_THREADS=1 # this sets the number of threads Seq can use

seqc run section5.seq data/chr22.fa data/reads.fq > out.txt

mapping took 48.2858s

export OMP_NUM_THREADS=2

seqc run section5.seq data/chr22.fa data/reads.fq > out.txt

mapping took 35.886s

Often, batching reads into larger blocks and processing those blocks in parallel can

yield better performance, especially if each read is quick to process. This is also very

easy to do in Seq:

def process_block(block):

block |> iter |> find_candidates |> align_and_output

with timing('mapping'):

FASTQ(argv[2]) |> blocks(size=2000) ||> process_block

The effect of batching is clearly visible now:

export OMP_NUM_THREADS=1

189

seqc run section5.seq data/chr22.fa data/reads.fq > out.txt

mapping took 48.2858s

export OMP_NUM_THREADS=2

seqc run section5.seq data/chr22.fa data/reads.fq > out.txt

mapping took 25.2648s

A.6 Domain-Specific Optimizations

Seq already performs numerous domain-specific optimizations under the hood. How-

ever, we can give the compiler a hint in this case to perform one more: inter-sequence

alignment (see Supplementary Note 3 for more details). This optimization entails

batching sequences prior to alignment, then aligning multiple pairs using a very fast

vectorized (SIMD-optimized) alignment kernel.

In Seq, we just need one additional function annotation to tell the compiler to perform

this optimization:

@inter_align

def align_and_output(t):

...

Let us run the program with and without this optimization:

without @inter_align

seqc run section5.seq data/chr22.fa data/reads.fq > out.txt

mapping took 43.4457s

with @inter_align

seqc run section6.seq data/chr22.fa data/reads.fq > out.txt

mapping took 32.3241s

The timings with inter-sequence alignment will depend on the SIMD instruction sets

190

your CPU supports; we ran our experiments on an AVX2-compatible machine.

A.7 Final Code Listing

Here is the final 35-line long code listing for our toy mapper. Note that achiev-

ing the same result in general-purpose languages—particularly with inter-sequence

alignment—would require several hundred or potentially thousands of lines of code.

1 # Usage: seqc run section6.seq <FASTA path> <FASTQ path>

2 from sys import argv

3 from time import timing

4 from bio import *

5 import pickle

6 import gzip

7

8 K = Kmer[32]

9 index = None

10 reference = s''

11 for record in FASTA(argv[1]): # Take the first sequence

12 reference = record.seq

13 with gzip.open(argv[1] + '.index', 'rb') as jar: # Load the index

14 index = pickle.load[Dict[K, int]](jar)

15

16 def find_candidates(record):

17 candidates = {}

18 for pos, kmer in record.read.kmers_with_pos[K](step=1):

19 found = index.get(min(kmer, ~kmer), -1)

20 if found > 0:

21 candidates.increment(found - pos)

22 for pos, count in candidates.items():

23 if count > 1:

24 yield record, pos

191

25

26 @inter_align

27 def align_and_output(t):

28 record, pos = t

29 query = record.read

30 target = reference[pos:pos + len(query)]

31 alignment = query.align(target)

32 print record.name, pos + 1, alignment.score, alignment.cigar

33

34 with timing('mapping'):

35 FASTQ(argv[2]) |> iter |> find_candidates |> align_and_output

A.8 Using Non-Seq Libraries

There are cases where you might want to access some Python (or C) library that

is not yet ported to Seq. For example, you might want to use Biopython [38] to

parse a rare or non-standard file format. To allow seamless integration with existing

ecosystems, Seq supports running pure Python code, as well as using Python libraries

and objects directly within Seq code.

For example, suppose you need to analyze the output of a NCBI BLAST run, and

extract all BLAST hits within a given 𝑒-value threshold. You can use the following

code to achieve this, and then use the data from BLAST directly in Seq:

from python import Bio.Blast.NCBIXML

Everything within a @python function will be executed by the Python runtime

@python

def process_blast(file, threshold):

from Bio.Blast import NCBIXML

result_handle = open(file)

for record in NCBIXML.parse(result_handle):

192

for alignment in record.alignments:

for hsp in alignment.hsps:

if hsp.expect < threshold:

yield (alignment, hsp)

hits = process_blast('blast.xml', 0.04)

for aln, hsp in hits:

Use Python objects directly ...

print aln.accession, 'of length', aln.length

... or cast them to Seq objects for improved performance:

print str(hsp.query)[:100]

print str(hsp.sbjct)[:100]

e_value = hsp.expect.get[float]()

print e_value

For more details, please consult the official Seq documentation at https://docs.

seq-lang.org.

193

https://docs.seq-lang.org
https://docs.seq-lang.org

194

Appendix B

Selected Code Listings

B.1 Code from SNAP Benchmark

SNAP uses a hierarchical hash table as its genomic index. To index 𝑘-mers (𝑘 ≥ 16),

an array of 4𝑘−16 quadratic probing hash tables is created, indexed by every possible

length-(𝑘 − 16) prefix. Each constituent hash table is then a mapping of 16-mer to

genomic loci at which that 16-mer appears. To handle multiple loci for a single 𝑘-

mer, an auxiliary array is used, and hash table values can be pointers into this array

(determined by whether the value is greater than the largest locus). This hierarchical

structure exploits the fact that not every length-(𝑘−16) prefix appears in the genome

with equal frequency, so the size of each internal hash table can be chosen based on

the corresponding prefix’s frequency.

SNAP’s index is implemented in C++, and can be found at https://github.com/

amplab/snap. Below, we give the Seq implementation used in the SNAP benchmark.

The code that queries this table largely resembles what is shown in Figure 3-1 (both

for Seq and C++). Note that loading the precomputed table from disk is still done in

C++, and wrapped in Seq.

195

https://github.com/amplab/snap
https://github.com/amplab/snap

1 # File: hashtable.seq

2 # Implementation of SNAP aligner's hash table

3 # https://github.com/amplab/snap/blob/master/SNAPLib/HashTable.{cpp,h}

4 QUADRATIC_CHAINING_DEPTH = 5

5 class SNAPHashTable[K,V]:

6 table: array[tuple[V,K]]

7 invalid_val: V

8

9 def _hash(k):

10 key = hash(k)

11 key ^= int(u64(key) >> u64(33))

12 key *= 0xff51afd7ed558ccd

13 key ^= int(u64(key) >> u64(33))

14 key *= 0xc4ceb9fe1a85ec53

15 key ^= int(u64(key) >> u64(33))

16 return key

17

18 def __init__(self: SNAPHashTable[K,V], size: int, invalid_val: V):

19 self.table = array[tuple[V,K]](size)

20 self.invalid_val = invalid_val

21 for i in range(size):

22 self.table[i] = (invalid_val, K())

23

24 def __init__(self: SNAPHashTable[K,V], p: ptr[byte]):

25 cdef snap_hashtable_ptr(ptr[byte]) -> ptr[tuple[V,K]]

26 cdef snap_hashtable_len(ptr[byte]) -> int

27 cdef snap_hashtable_invalid_val(ptr[byte]) -> V

28 self.table = array[tuple[V,K]](snap_hashtable_ptr(p), snap_hashtable_len(p))

29 self.invalid_val = snap_hashtable_invalid_val(p)

30

31 def _get_index(self: SNAPHashTable[K,V], where: int):

32 return int(u64(where) % u64(len(self.table)))

33

34 def get_value_ptr_for_key(self: SNAPHashTable[K,V], k: K):

35 table = self.table

36 table_size = table.len

37 table_index = self._get_index(SNAPHashTable[K,V]._hash(k))

38 invalid_val = self.invalid_val

39 entry = table[table_index]

40 if entry[1] == k and entry[0] != invalid_val:

41 return ptr[V](table.ptr + table_index)

42 else:

43 n_probes = 0

44 while True:

45 n_probes += 1

46 if n_probes > table_size + QUADRATIC_CHAINING_DEPTH:

47 return ptr[V]()

48 diff = (n_probes**2) if n_probes < QUADRATIC_CHAINING_DEPTH else 1

49 table_index = (table_index + diff) % table_size

50 entry = table[table_index]

51 if not (entry[1] != k and entry[0] != invalid_val):

52 break

53 return ptr[V](table.ptr + table_index)

54

55 def __prefetch__(self: SNAPHashTable[K,V], k: K):

56 table = self.table

57 table_index = self._get_index(SNAPHashTable[K,V]._hash(k))

58 (self.table.ptr + table_index).__prefetch_r3__()

59

60 def __getitem__(self: SNAPHashTable[K,V], k: K):

61 p = self.get_value_ptr_for_key(k)

62 return p[0] if p else self.invalid_val

196

1 # File: genomeindex.seq

2 # Implementation of SNAP aligner's genome index

3 # https://github.com/amplab/snap/blob/master/SNAPLib/GenomeIndex.{cpp,h}

4 from hashtable import SNAPHashTable

5 type k16 = Kmer[16]

6

7 class GenomeIndex[K]:

8 hash_tables: array[SNAPHashTable[k16,u32]]

9 overflow_table: array[u32]

10 count_of_bases: int

11

12 def _partition(k: K):

13 n = int(k.as_int())

14 return (k16(n & ((1 << 32) - 1)), n >> 32)

15

16 def __init__(self: GenomeIndex[K], dir: str):

17 assert 16 <= K.len() <= 32

18 cdef snap_index_from_dir(ptr[byte]) -> ptr[byte]

19 cdef snap_index_ht_count(ptr[byte]) -> int

20 cdef snap_index_ht_get(ptr[byte], int) -> ptr[byte]

21 cdef snap_index_overflow_ptr(ptr[byte]) -> ptr[u32]

22 cdef snap_index_overflow_len(ptr[byte]) -> int

23 cdef snap_index_count_of_bases(ptr[byte]) -> int

24

25 p = snap_index_from_dir(dir.c_str())

26 assert p

27 hash_tables = array[SNAPHashTable[k16,u32]](snap_index_ht_count(p))

28 for i in range(len(hash_tables)):

29 hash_tables[i] = SNAPHashTable[k16,u32](snap_index_ht_get(p, i))

30

31 self.hash_tables = hash_tables

32 self.overflow_table = array[u32](snap_index_overflow_ptr(p), snap_index_overflow_len(p))

33 self.count_of_bases = snap_index_count_of_bases(p)

34

35 def __getitem__(self: GenomeIndex[K], seed: K):

36 kmer, which = GenomeIndex[K]._partition(seed)

37 table = self.hash_tables[which]

38 value_ptr = table.get_value_ptr_for_key(kmer)

39

40 if not value_ptr or value_ptr[0] == table.invalid_val:

41 return array[u32](value_ptr, 0)

42

43 value = value_ptr[0]

44

45 if int(value) < self.count_of_bases:

46 return array[u32](value_ptr, 1)

47 else:

48 overflow_table_offset = int(value) - self.count_of_bases

49 hit_count = int(self.overflow_table[overflow_table_offset])

50 return array[u32](self.overflow_table.ptr + overflow_table_offset + 1, hit_count)

51

52 def __prefetch__(self: GenomeIndex[K], seed: K):

53 kmer, which = GenomeIndex[K]._partition(seed)

54 table = self.hash_tables[which]

55 table.__prefetch__(kmer)

197

1 # File: snap.seq

2 # k-mer counting using SNAP's hash table

3 from genomeindex import *

4 from sys import argv

5 type K = Kmer[20]

6 good = 0

7 bad = 0

8

9 @prefetch

10 def process(kmer: K, index: GenomeIndex[K]):

11 global good, bad

12 hits = index[kmer]

13 hits_rc = index[~kmer]

14

15 if len(hits) > 0 or len(hits_rc) > 0:

16 good += 1

17 else:

18 bad += 1

19

20 assert len(argv) == 3

21 index = GenomeIndex[K](argv[1])

22 step = 10

23 fastq(argv[2]) |> kmers[K](step) |> process(index)

24 print good, bad

198

1 // File: snap.cpp

2 // k-mer counting using SNAP's hash table

3

4 #include <iostream>

5 #include <fstream>

6 #include <cstdlib>

7 #include <cstdint>

8 #include <cassert>

9 using namespace std;

10

11 extern "C" void *snap_index_from_dir(char *dir);

12 extern "C" void snap_index_lookup(void *idx, char *bases, int64_t *nHits, const unsigned **hits,

13 int64_t *nRCHits, const unsigned **rcHits);

14

15 // filter ambiguous bases from sequences

16 static bool hasN(char *kmer, unsigned len)

17 {

18 for (unsigned i = 0; i < len; i++) {

19 if (kmer[i] == 'N')

20 return true;

21 }

22 return false;

23 }

24

25 int good = 0;

26 int bad = 0;

27

28 int main(int argc, char *argv[])

29 {

30 assert(argc == 3);

31 void *idx = snap_index_from_dir(argv[1]);

32 const unsigned k = 20;

33 const unsigned step = 10;

34 unsigned hit = 0;

35 unsigned hit_rc = 0;

36 int64_t n_hits = 0;

37 int64_t n_hits_rc = 0;

38 const unsigned *hit_p = &hit;

39 const unsigned *hit_rc_p = &hit_rc;

40 ifstream fin(argv[2]);

41 string read;

42 long line = -1;

43

44 while (getline(fin, read)) {

45 line++;

46 if (line % 4 != 1) continue; // skip non-sequences in FASTQ

47 unsigned max_pos = 0, max_count = 0;

48 char *buf = (char *)read.c_str();

49 unsigned len = read.size();

50

51 for (unsigned i = 0; i + k <= len; i += step) {

52 if (hasN(&buf[i], k)) continue;

53 snap_index_lookup(idx, &buf[i], &n_hits, &hit_p, &n_hits_rc, &hit_rc_p);

54 ++((n_hits > 0 || n_hits_rc > 0) ? good : bad);

55 }

56 }

57

58 cout << good << " " << bad << endl;

59 }

199

B.2 Code from SMEMs Benchmark

Below is the SMEM-finding algorithm from BWA-MEM, implemented in Seq. The

@prefetch annotation tells the compiler to use software prefetching to accelerate the

FM-index queries performed in this function, leading to a 2× performance improve-

ment.

200

1 @prefetch

2 def fastmap(rec: FASTQRecord, fmi: FMIndex, out: File):

3 prev, curr, mems = list[SMEM](), list[SMEM](), list[SMEM]()

4 q, l, start = rec.seq, len(q), 0

5 while True:

6 while start < l and q[start].N(): start += 1

7 if start >= l: break

8 mems.clear()

9 prev.clear()

10 curr.clear()

11 x = start

12 if q[x].N(): return

13 ik = SMEM(fmi.biinterval(q[x]), start=x, stop=x+1)

14

15 # forward search

16 i = x + 1

17 while i < l:

18 if not q[i].N(): # an A/C/G/T base

19 ok = ~fmi[~(ik.interval), ~q[i]]

20 if len(ok) != len(ik.interval): # change of the interval size

21 curr.append(ik)

22 if len(ok) < min_intv:

23 break # the interval size is too small to be extended further

24 ik = SMEM(ok, start=x, stop=i+1)

25 else: # an ambiguous base

26 curr.append(ik)

27 break

28 i += 1

29

30 if i == l:

31 curr.append(ik)

32 curr.reverse()

33 ret = curr[0].stop

34 prev, curr = curr, prev

35

36 # backward search for MEMs

37 i = x - 1

38 while i >= -1:

39 c = i >= 0 and not q[i].N()

40 curr.clear()

41 for p in prev:

42 ok = FMDInterval()

43 if c:

44 ok = fmi[p.interval, q[i]]

45 if not c or len(ok) < min_intv:

46 if len(curr) == 0:

47 if len(mems) == 0 or i + 1 < mems[-1].start:

48 ik = SMEM(p.interval, start=i+1, stop=p.stop)

49 if len(ik) >= min_seed:

50 mems.append(ik)

51 elif len(curr) == 0 or len(ok) != len(curr[-1].interval):

52 curr.append(SMEM(ok, start=p.start, stop=p.stop))

53 if len(curr) == 0:

54 break

55 prev, curr = curr, prev

56 i -= 1

57

58 mems.reverse() # s.t. sorted by the start coordinate

59 start = ret

60 output(mems)

201

202

Appendix C

Seq Reference Guide

C.1 Seq Standard Library

This section outlines Seq’s bio library as of v0.10. Seq also supports many standard

Python modules, which abide by Python’s standard library documentation.

• bio.align: Functions for Smith-Waterman alignment, including global and ex-

tension alignment with many parameters including affine gap scores, dual gap

scores, Z-drop, bandwidth and more. This module also includes functions rele-

vant to inter-sequence alignment, including the coroutine scheduler, dispatcher,

flusher, and the data structures for managing state.

• bio.bam: Utilities for reading BAM, SAM and CRAM files. Seq interfaces with

HTSlib [28] for reading several common file formats.

• bio.bed: Utilities for reading BED files.

• bio.block: Utilities for pipeline or I/O “blocking”, which entails batching ele-

ments into larger blocks. Blocking is particularly effective when running paral-

lel code and when each data element is quick to process—in this case, blocking

amortizes the thread management cost over many data elements.

203

• bio.builtin: Collection of commonly-used bio functions, including functions

like revcomp (reverse complement), split (subsequence iteration), kmers (𝑘-

merization) and many more.

• bio.bwa: Interface to external BWA alignment tool [73], allowing the use of

BWA within a Seq program to align sequences to a reference.

• bio.bwt: Low-level implementation of the “Suffix Array by Induced Sorting”

(SA-IS) algorithm for linear-time SA construction [91]. This module also in-

cludes methods for building the SA, Burrows-Wheeler transform (BWT), and

longest common prefix (LCP) array for DNA and protein sequences.

• bio.c_htslib: C bindings for HTSlib.

• bio.fai: Utilities for reading FAI (“FASTA index”) files. FAI files serve as

indices for much larger FASTA files.

• bio.fasta: Utilities for reading FASTA files optionally accompanied by an

indexing FAI file. The module provides options for validation, compressed I/O,

and sequence copying.

• bio.fastq: Utilities for reading FASTQ files. The module provides options for

validation, compressed I/O, and sequence copying.

• bio.fmindex: Implementation of FM-index and FMD-index data structures.

These data structures can either be constructed from a given sequence object

or directly from a FASTA file.

• bio.intervals: Utilities for working with genomic intervals. Includes a suffix

array implementation for storing sets of intervals, finding intersections, and so

on.

• bio.iter: Utilities for iterating over sequences from a file, with one sequence

per line.

204

• bio.locus: Standardized genomic loci. Representing a genomic locus is often

cumbersome due to the discrepancy between 0-based and 1-based indexing, the

need to maintain chromosome names, and other miscellaneous considerations—

this module offers a standardized representation of genomic loci that also ac-

counts for reverse strands.

• bio.pseq: Implementation of the pseq type for storing protein sequences, as

well as many methods for operating on them.

• bio.seq: Implementation of the seq type for storing DNA/RNA sequences, as

well as many methods for operating on them.

• bio.vcf: Utilities for reading VCF files.

In-depth documentation is available at https://docs.seq-lang.org/stdlib/bio.

C.2 Seq vs. Python – A Cheat Sheet

C.2.1 Additional types

• seq: Represents a genomic sequence.

• Kmer[𝑁] (1 ≤ 𝑁 ≤ 1024): Represents a 𝑘-mer of length 𝑁 . 𝑁 must be

constant.

• Int[𝑁] (1 ≤ 𝑁 ≤ 2048): Represents a signed 𝑁 -bit integer (standard int is

an Int[64]). 𝑁 must be constant. The common type definitions i8, i16, i32

and i64 are provided in the standard library for convenience.

• UInt[𝑁] (1 ≤ 𝑁 ≤ 2048): Represents an unsigned 𝑁 -bit integer. 𝑁 must be

constant. The common type definitions u8, u16, u32 and u64 are provided in

the standard library for convenience.

• Ptr[T]: Represents a pointer to type T; primarily useful for C interoperability.

205

https://docs.seq-lang.org/stdlib/bio

• Array[T]: Represents an array of type T (essentially a pointer with a length).

C.2.2 Additional keywords and annotations

• @type: Indicates that a given class should be treated as a named tuple.

• @extend: Adds the given methods to an existing type.

• @prefetch: Indicates that the annotated function should be subjected to the

prefetch optimization (Chapter 6).

• @inter_align: Indicates that the annotated function should be subjected to

the inter-sequence alignment optimization (Chapter 6).

• match/case: Match statement (note that upcoming Python versions will in-

clude structural pattern matching as implemented in Seq; refer to https:

//www.python.org/dev/peps/pep-0622 for additional information).

• __ptr__: Obtains a pointer to the given variable (similar to taking the address

of a local variable in C).

• __array__: Declares a stack-allocated, fixed-size array.

Additional information can be found at https://docs.seq-lang.org/tutorial.

C.2.3 Static types

Because Seq is statically-typed, lists (for example) cannot contain elements of different

types as they can in Python. Similarly, a variable cannot be assigned to objects of

different types, nor can a function return objects of different types. Seq currently also

does not support polymorphism.

206

https://www.python.org/dev/peps/pep-0622
https://www.python.org/dev/peps/pep-0622
https://docs.seq-lang.org/tutorial

C.2.4 Tuples

Tuples in Seq are implemented as structures. Consequently, heterogeneous tuples can

only be indexed by a constant value, since otherwise the type of the index expres-

sion would be ambiguous. (Iteration over heterogeneous tuples is made possible by

unrolling the loop at compile time, though.)

C.2.5 Scopes

Seq enforces slightly stricter variable scoping rules than standard Python. In short,

a variable cannot be first assigned in a block then used afterwards for the first time

in the enclosing block. This restriction avoids the problem of uninitialized variables.

207

208

Appendix D

Seq AST and IR Listings

D.1 AST Nodes
Node Python Equivalent De-sugared to?

PassStmt pass 7

BreakStmt break 7

ContinueStmt continue 7

ExprStmt Expression. 7

AssignStmt Variable assignment. 7

UpdateStmt Variable update. 7

DelStmt del 7

PrintStmt print Function call.
ReturnStmt return 7

YieldStmt yield 7

AssertStmt assert Function call.
ImportStmt import Removed.
ThrowStmt throw 7

GlobalStmt global Removed.
YieldFromStmt yield from 7

Table D.1: Listing of simple AST statements.

209

Node Python Equivalent De-sugared to?
SuiteStmt Block of statements. 7

WhileStmt while loop 7

ForStmt for loop 7

IfStmt if/else block 7

MatchStmt n/a If statements.
TryStmt try/catch block 7

FunctionStmt Function declaration. Function.
ClassStmt Class declaration. Type and flattened functions.
WithStmt with block. 7

CustomStmt n/a DSL-specific.

Table D.2: Listing of complex AST statements.

210

Node Python Equivalent De-sugared to?
NoneExpr None Function call.
BoolExpr bool literal. 7

IntExpr Integer literal. 7

FloatExpr Float literal. 7

StringExpr str literal. 7

IdExpr Identifier. 7

StarExpr Unpack expression. Function argument.
KeywordStarExpr Keyword arg star. Function argument.

TupleExpr Tuple literal. Tuple construction.
ListExpr List literal. List construction.
SetExpr Set literal. Sect construction.
DictExpr Dictionary literal. Dictionary construction.

GeneratorExpr Comprehension. Construction and append.
DictGeneratorExpr Dictionary comprehension. Construction and append.

IfExpr Ternary operation. 7

UnaryExpr Unary expression. Function call.
BinaryExpr Binary expression. Function call.

ChainBinaryExpr Range comparison expression. Function call.
PipeExpr n/a 7

IndexExpr Index expression. Function call.
CallExpr Call expression. 7

DotExpr Member access expression. 7

SliceExpr Slice expression. Function call.
EllipsisExpr n/a Partial call.
TypeOfExpr Type-of expression. 7

LambdaExpr Lambda function expression. Function.
YieldExpr Yield-in expression. 7

AssignExpr n/a 7

RangeExpr n/a Function call.
StmtExpr n/a 7

PtrExpr n/a 7

TupleIndexExpr Tuple index expression. 7

StackAllocExpr n/a 7

Table D.3: Listing of AST expressions.

211

D.2 SIR Nodes

Description LLVM Equivalent
IntType 64-bit integer. i64

FloatType 64-bit float. double
BoolType Boolean. i8
ByteType 8-bit integer. i8
VoidType Void. void

RecordType Struct. StructType
RefType Pointer to a struct. PointerType
FuncType Function type. FunctionType

PointerType Pointer. PointerType
OptionalType Optional value. PointerType
GeneratorType Generator. PointerType

IntNType Variable length integer. i{N}

Table D.4: Listing of builtin SIR types.

Type Description
Var Variable Global or local variable.

BodiedFunc Function SIR function.
LLVMFunc Function Function implemented in LLVM IR.

ExternalFunc Function Function implemented in library.
InternalFunc Function Function implemented in compiler.

Table D.5: Listing of SIR variables.

212

Type Description
IntConst Constant Integer value.

FloatConst Constant Float value.
BoolConst Constant Boolean value.
StrConst Constant String value.

AssignInstr Instruction Sets a variable’s value.
ExtractInstr Instruction Gets a member.
InsertInstr Instruction Sets a member.
CallInstr Instruction Calls a function.

StackAllocInstr Instruction Allocates an array.
TypePropertyInstr Instruction Checks a type property.

YieldInInstr Instruction Gets a value yielded in.
TernaryInstr Instruction Ternary operator.
BreakInstr Instruction Breaks a loop.

ContinueInstr Instruction Continues a loop.
ReturnInstr Instruction Returns from a function.
YieldInstr Instruction Yields from a function.
ThrowInstr Instruction Throws an exception.
FlowInstr Instruction Executes a flow.
SeriesFlow Flow Basic block flow.

ForFlow Flow For loop.
WhileFlow Flow While loop.

IfFlow Flow Conditional flow.
IfFlow Flow Conditional flow.

TryCatchFlow Flow Exception handling flow.
PipelineFlow Flow Pipeline flow.

Table D.6: Listing of SIR values.

213

214

Bibliography

[1] 1000 Genomes Project Consortium, Gonçalo R. Abecasis, David Altshuler,
Adam Auton, Lisa D. Brooks, Richard M. Durbin, Richard A. Gibbs, Matt E.
Hurles, and Gil A. McVean. A Map of Human Genome Variation from
Population-Scale Sequencing. Nature, 467(7319):1061–1073, October 2010.

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 265–283, 2016.

[4] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53–
86, 2004.

[5] Ole Agesen. The cartesian product algorithm. In European Conference on
Object-Oriented Programming, pages 2–26. Springer, 1995.

[6] Ziad Al Bkhetan, Justin Zobel, Adam Kowalczyk, Karin Verspoor, and Ben-
jamin Goudey. Exploring effective approaches for haplotype block phasing.
BMC Bioinformatics, 20(1):540, Oct 2019.

215

[7] Erdoğan Aldemir et al. Binary medical image compression using the volumetric
run-length approach. The Imaging Science Journal, 67(3):123–135, 2019.

[8] Anaconda. Numba, 2018.

[9] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis.
Rpython: A step towards reconciling dynamically and statically typed oo lan-
guages. In Proceedings of the 2007 Symposium on Dynamic Languages, DLS ’07,
page 53–64, New York, NY, USA, 2007. Association for Computing Machinery.

[10] R. Appuswamy, J. Fellay, and N. Chaturvedi. Sequence alignment through the
looking glass. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 257–266, May 2018.

[11] John Aycock. Aggressive type inference. In Proceedings of the 8th International
Python Conference, pages 11–20, 2000.

[12] Stefan Milton Bache and Hadley Wickham. magrittr: A forward-pipe operator
for r. R package version, 1(1), 2014.

[13] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and
Saman Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, CGO 2019, page 193–205. IEEE Press,
2019.

[14] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and
Saman Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, CGO 2019, pages 193–205, Piscataway,
NJ, USA, 2019. IEEE Press.

[15] J. A. Bailey, A. M. Yavor, H. F. Massa, B. J. Trask, and E. E. Eichler. Segmental
duplications: organization and impact within the current human genome project
assembly. Genome Research, 11(6):1005–1017, 2001.

[16] Jeffrey A Bailey, Amy M Yavor, Hillary F Massa, Barbara J Trask, and Evan E
Eichler. Segmental duplications: organization and impact within the current
human genome project assembly. Genome research, 11(6):1005–1017, 2001.

[17] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature News,
533(7604):452, 2016.

216

[18] S Batzoglou, L Pachter, JP Mesirov, B Berger, and ES Lander. Human and
mouse gene structure: comparative analysis and application to exon prediction.
Genome research, 10(7):950—958, July 2000.

[19] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–
432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[20] David Beazley. Understanding the python gil. In PyCON Python Conference.
Atlanta, Georgia, 2010.

[21] Matthias Becker, Hartmut Schultze, Kirk Bresniker, Sharad Singhal, Thomas
Ulas, and Joachim L. Schultze. A novel computational architecture for large-
scale genomics. Nature Biotechnology, Sep 2020.

[22] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science Engineering, 13(2):31
–39, 2011.

[23] Emily Berger, Deniz Yorukoglu, Lillian Zhang, Sarah K. Nyquist, Alex K.
Shalek, Manolis Kellis, Ibrahim Numanagić, and Bonnie Berger. Improved
haplotype inference by exploiting long-range linking and allelic imbalance in
rna-seq datasets. Nature Communications, 11(1):4662, Sep 2020.

[24] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A
fast dynamic language for technical computing. arXiv, page 1209.5145, 2012.

[25] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Softw. Pract. Exper., 18(9):807–820, September 1988.

[26] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, ICOOOLPS ’09, pages 18–25, New York,
NY, USA, 2009. ACM.

[27] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Lan-
guages and Programming Systems, ICOOOLPS ’09, pages 18–25, New York,
NY, USA, 2009. ACM.

[28] James K Bonfield, John Marshall, Petr Danecek, Heng Li, Valeriu Ohan, An-
drew Whitwham, Thomas Keane, and Robert M Davies. HTSlib: C library for
reading/writing high-throughput sequencing data. GigaScience, 10(2), 02 2021.
giab007.

217

[29] Nick Bray, Inna Dubchak, and Lior Pachter. Avid: A global alignment program.
Genome research, 13(1):97–102, 2003.

[30] Broad Institute. Picard Tools. http://broadinstitute.github.io/picard/.

[31] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific languages.
In 2011 International Conference on Parallel Architectures and Compilation
Techniques, pages 89–100, 2011.

[32] Brett Cannon. Localized type inference of atomic types in python, 2005.

[33] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point
numbers. In Radu Sion, editor, Financial Cryptography and Data Security,
pages 35–50, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[34] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. A domain-specific approach to heterogeneous
parallelism. SIGPLAN Not., 46(8):35–46, February 2011.

[35] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
Improving hash join performance through prefetching. ACM Trans. Database
Syst., 32(3), August 2007.

[36] Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and Nick
Seltzer. Diderot: a parallel dsl for image analysis and visualization. In Acm
sigplan notices, volume 47, pages 111–120. ACM, 2012.

[37] Hyunghoon Cho, David J. Wu, and Bonnie Berger. Secure genome-wide associ-
ation analysis using multiparty computation. Nature Biotechnology, 36(6):547–
551, Jul 2018.

[38] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J
Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek
Wilczynski, et al. Biopython: freely available python tools for computational
molecular biology and bioinformatics. Bioinformatics, 25(11):1422–1423, 2009.

[39] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier, 2012.

[40] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast domi-
nance algorithm. Software Practice & Experience, 4(1-10):1–8, 2001.

[41] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. Secure Multi-
party Computation and Secret Sharing. Cambridge University Press, 2015.

[42] Morten Dahl, Chao Ning, and Tomas Toft. On secure two-party integer division.
In Angelos D. Keromytis, editor, Financial Cryptography and Data Security,
pages 164–178, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

218

http://broadinstitute.github.io/picard/

[43] Jeff Daily. Parasail: Simd c library for global, semi-global, and local pairwise
sequence alignments. BMC Bioinformatics, 17(1):81, 2016.

[44] Luis Damas. Type assignment in programming languages. KB thesis scanning
project 2015, 1984.

[45] Andreas Döring, David Weese, Tobias Rausch, and Knut Reinert. Seqan an effi-
cient, generic c++ library for sequence analysis. BMC Bioinformatics, 9(1):11,
2008.

[46] Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire Lemaitre,
Pierre Peterlongo, and Dominique Lavenier. Gatb: Genome assembly & anal-
ysis tool box. Bioinformatics (Oxford, England), 30(20):2959–2961, Oct 2014.
24990603[pmid].

[47] Mark Dufour. Shed skin: An optimizing python-to-c++ compiler. Master’s
thesis, Delft University of Technology, 2006.

[48] Michael Farrar. Striped Smith–Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics, 23(2):156–161, 11 2006.

[49] Paolo Ferragina and Giovanni Manzini. Compression boosting in optimal linear
time using the Burrows-Wheeler Transform. In SODA 2004, pages 655–663,
2004.

[50] Bryan Ford. Parsing expression grammars: A recognition-based syntactic foun-
dation. SIGPLAN Not., 39(1):111–122, January 2004.

[51] Wikimedia Foundation. Wikimedia downloads, 2021.

[52] Michael Furr, Jong-hoon An, and Jeffrey S Foster. Profile-guided static typing
for dynamic scripting languages. In Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and applications,
pages 283–300, 2009.

[53] Isaac Gouy. The computer language benchmarks game. https://
benchmarksgame-team.pages.debian.net/benchmarksgame/.

[54] Faraz Hach, Iman Sarrafi, Farhad Hormozdiari, Can Alkan, Evan E. Eich-
ler, and S. Cenk Sahinalp. mrsFAST-Ultra: A compact, SNP-aware map-
per for high performance sequencing applications. Nucleic Acids Research,
42(W1):W494–W500, 2014. http://nar.oxfordjournals.org/content/42/
W1/W494.abstract.

[55] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez

219

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
http://nar.oxfordjournals.org/content/42/W1/W494.abstract
http://nar.oxfordjournals.org/content/42/W1/W494.abstract

del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–
362, September 2020.

[56] K Hayen. Nuitka, 2012.

[57] Roger Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the american mathematical society, 146:29–60, 1969.

[58] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo
Durand. Taichi: A language for high-performance computation on spatially
sparse data structures. ACM Trans. Graph., 38(6), November 2019.

[59] Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster. Sound, heuristic
type annotation inference for ruby. In Proceedings of the 16th ACM SIGPLAN
International Symposium on Dynamic Languages, DLS 2020, page 112–125,
New York, NY, USA, 2020. Association for Computing Machinery.

[60] Abdul Rafay Khan, Muhammad Tariq Pervez, Masroor Ellahi Babar, Nasir
Naveed, and Muhammad Shoaib. A comprehensive study of de novo genome
assemblers: Current challenges and future prospective. Evol Bioinform Online,
14:1176934318758650–1176934318758650, Feb 2018. 29511353[pmid].

[61] Vladimir Kiriansky, Haoran Xu, Martin Rinard, and Saman Amarasinghe. Cim-
ple: Instruction and memory level parallelism: A dsl for uncovering ilp and mlp.
In Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’18, pages 30:1–30:16, New York, NY, USA,
2018. ACM.

[62] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman
Amarasinghe. Taco: A tool to generate tensor algebra kernels. In Proc.
IEEE/ACM Automated Software Engineering, pages 943–948. IEEE, 2017.

[63] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shin-
jiro Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar,
Wojciech Matusik, et al. Simit: A language for physical simulation. ACM
Transactions on Graphics (TOG), 35(2):20, 2016.

[64] Gregory Kucherov, Karel Břinda, and Maciej Sykulski. Spaced seeds improve
k-mer-based metagenomic classification. Bioinformatics, 31(22):3584–3592, 07
2015.

[65] Johannes Köster. Rust-Bio: a fast and safe bioinformatics library. Bioinfor-
matics, 32(3):444–446, 10 2015.

220

[66] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15, pages 7:1–7:6, New York, NY,
USA, 2015. ACM.

[67] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program
analysis transformation. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 75–86, Palo Alto, California, 2004.

[68] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. Mlir: A compiler infrastructure for the end of moore’s law, 2020.

[69] Robyn S Lee and William P Hanage. Reproducibility in science: important or
incremental? The Lancet Microbe, 2020.

[70] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot, Richard
Membarth, Philipp Slusallek, André Müller, and Bertil Schmidt. Anydsl: A
partial evaluation framework for programming high-performance libraries. Proc.
ACM Program. Lang., 2(OOPSLA), October 2018.

[71] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dom-
inators in a flowgraph. ACM Transactions on Programming Languages and
Systems (TOPLAS), 1(1):121–141, 1979.

[72] Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome
de novo assembly. Bioinformatics, 28(14):1838–1844, 05 2012.

[73] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem, 2013.

[74] Heng Li. Minimap2: fast pairwise alignment for long dna sequences. arXiv
preprint arXiv:1708.01492, 2017.

[75] Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[76] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, and Richard Durbin. The sequence align-
ment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009.

[77] Heng Li and Nils Homer. A survey of sequence alignment algorithms
for next-generation sequencing. Brief Bioinform, 11(5):473–483, Sep 2010.
20460430[pmid].

[78] Jan-Yie Liang, Chih-Sheng Chen, Chua-Huang Huang, and Li Liu. Lossless
compression of medical images using hilbert space-filling curves. Computerized
Medical Imaging and Graphics, 32(3):174–182, 2008.

221

[79] Hengyun Lu, Francesca Giordano, and Zemin Ning. Oxford nanopore minion
sequencing and genome assembly. Genomics, Proteomics & Bioinformatics,
14(5):265–279, 2016.

[80] George F Luger. Artificial intelligence: structures and strategies for complex
problem solving. Pearson education, 2005.

[81] Kanak Mahadik, Christopher Wright, Jinyi Zhang, Milind Kulkarni, Saurabh
Bagchi, and Somali Chaterji. Sarvavid: A domain specific language for devel-
oping scalable computational genomics applications. In Proceedings of the 2016
International Conference on Supercomputing, ICS ’16, pages 34:1–34:12, New
York, NY, USA, 2016. ACM.

[82] Manas. Crystal.

[83] Swati C Manekar and Shailesh R Sathe. A benchmark study of k-mer counting
methods for high-throughput sequencing. GigaScience, 7(12), 10 2018. giy125.

[84] Teri A Manolio, Lisa D Brooks, and Francis S Collins. A hapmap harvest of
insights into the genetics of common disease. The Journal of Clinical Investi-
gation, 118(5):1590–1605, 2008.

[85] ER Mardis. DNA sequencing technologies: 2006-2016. Nature Protocols,
12(2):213–218, 2017.

[86] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 01
2011.

[87] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kris-
tian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey
Gabriel, Mark Daly, and Mark A. DePristo. The Genome Analysis Toolkit:
A MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Research, 20(9):1297–1303, September 2010.

[88] Robin Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3):348–375, 1978.

[89] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

[90] Gor Nishanov. Iso/iec ts 22277:2017, Dec 2017.

[91] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction
by almost pure induced-sorting. In 2009 Data Compression Conference, pages
193–202, 2009.

222

[92] Ibrahim Numanagić, Alim S Gökkaya, Lillian Zhang, Bonnie Berger, Can
Alkan, and Faraz Hach. Fast characterization of segmental duplications in
genome assemblies. Bioinformatics, 34(17):i706–i714, 2018.

[93] Takeshi Ogasawara, Yinhe Cheng, and Tzy-Hwa Kathy Tzeng. Sam2bam:
High-performance framework for NGS data preprocessing tools. PloS one,
11(11):e0167100, 2016.

[94] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee,
Nicholas H. Bergman, Sergey Koren, and Adam M. Phillippy. Mash: fast
genome and metagenome distance estimation using minhash. Genome Biol-
ogy, 17(1):132, Jun 2016.

[95] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[96] William R Pearson and David J Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences, 85(8):2444–2448,
1988.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[98] Roger D Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011.

[99] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[100] Pypl popularity of programming language index.

[101] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: a language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices, 48(6):519–530, 2013.

[102] Brianna M Ren and Jeffrey S Foster. Just-in-time static type checking for
dynamic languages. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 462–476, 2016.

223

[103] A Rigo, M Hudson, and S Pedroni. Compiling dynamic language implementa-
tions, ist fp6-004779.

[104] Torbjørn Rognes. Faster smith-waterman database searches with inter-sequence
simd parallelisation. BMC Bioinformatics, 12(1):221, 2011.

[105] Pamela H. Russell, Rachel L. Johnson, Shreyas Ananthan, Benjamin Harnke,
and Nichole E. Carlson. A large-scale analysis of bioinformatics code on github.
PLOS ONE, 13(10):1–19, 10 2018.

[106] Michael Salib. Starkiller: A static type inferencer and compiler for Python.
PhD thesis, Massachusetts Institute of Technology, 2004.

[107] R. R. Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–
59, 1997.

[108] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
fork-join parallelism into llvm’s intermediate representation. SIGPLAN Not.,
52(8):249–265, January 2017.

[109] Ariya Shajii, Ibrahim Numanagić, Riyadh Baghdadi, Bonnie Berger, and Saman
Amarasinghe. Seq: A high-performance language for bioinformatics. Proc. ACM
Program. Lang., 3(OOPSLA), October 2019.

[110] Ariya Shajii, Ibrahim Numanagić, Riyadh Baghdadi, Bonnie Berger, and Saman
Amarasinghe. Seq: A high-performance language for bioinformatics. Proc. ACM
Program. Lang., 3(OOPSLA):125:1–125:29, October 2019.

[111] Ariya Shajii, Ibrahim Numanagić, Alexander T. Leighton, Haley Greenyer,
Saman Amarasinghe, and Bonnie Berger. A python-based programming lan-
guage for high-performance computational genomics. Nature Biotechnology, Jul
2021.

[112] Ariya Shajii, Ibrahim Numanagić, Christopher Whelan, and Bonnie Berger.
Statistical binning for barcoded reads improves downstream analyses. Cell Sys-
tems, 7(2):219–226, 2018.

[113] Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large
genomes using compressed data structures. Genome Res, 22(3):549–556, Mar
2012. 22156294[pmid].

[114] Petr Šmarda, Petr Bureš, Lucie Horová, Ilia J. Leitch, Ladislav Mucina, Ettore
Pacini, Lubomír Tichý, Vít Grulich, and Olga Rotreklová. Ecological and evo-
lutionary significance of genomic gc content diversity in monocots. Proceedings
of the National Academy of Sciences, 111(39):E4096–E4102, 2014.

224

[115] Geoffrey S Smith. Polymorphic type inference with overloading and subtyping.
In Colloquium on Trees in Algebra and Programming, pages 671–685. Springer,
1993.

[116] Tom Sean Smith, Andreas Heger, and Ian Sudbery. Umi-tools: Modelling se-
quencing errors in unique molecular identifiers to improve quantification accu-
racy. Genome Research, 2017.

[117] Jason E. Stajich, David Block, Kris Boulez, Steven E. Brenner, Stephen A.
Chervitz, Chris Dagdigian, Georg Fuellen, James G. R. Gilbert, Ian Korf,
Hilmar Lapp, Heikki Lehväslaiho, Chad Matsalla, Chris J. Mungall, Brian I. Os-
borne, Matthew R. Pocock, Peter Schattner, Martin Senger, Lincoln D. Stein,
Elia Stupka, Mark D. Wilkinson, and Ewan Birney. The bioperl toolkit: Perl
modules for the life sciences. Genome research, 12(10):1611–1618, Oct 2002.
12368254[pmid].

[118] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nature Biotechnology,
35(11):1026–1028, 2017.

[119] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxi-
ang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha,
and Gene E. Robinson. Big Data: Astronomical or Genomical? PLoS biology,
13(7):e1002195, July 2015.

[120] Hajime Suzuki and Masahiro Kasahara. Introducing difference recurrence rela-
tions for faster semi-global alignment of long sequences. BMC Bioinformatics,
19(1):45, Feb 2018.

[121] Rust Team. The MIR, 2013.

[122] M. Vasimuddin, S. Misra, H. Li, and S. Aluru. Efficient architecture-aware
acceleration of bwa-mem for multicore systems. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 314–324, May
2019.

[123] K Voss, J Gentry, and G Van der Auwera. Full-stack genomics pipelining with
gatk4 +wdl +cromwell. In 18th Annual Bioinformatics Open Source Confer-
ence, page poster, 2017.

[124] Martin Šošić and Mile Šikić. Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance. Bioinformatics, 33(9):1394–1395, 01 2017.

[125] Rajan Walia, Chung chieh Shan, and Sam Tobin-Hochstadt. Sham: A DSL for
Fast DSLs, 2020.

[126] Ben J. Ward. BioJulia, accessed November 19, 2020. https://biojulia.net.

225

https://biojulia.net

[127] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-
inghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen
Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. Suif: An in-
frastructure for research on parallelizing and optimizing compilers. SIGPLAN
Not., 29(12):31–37, December 1994.

[128] Deniz Yorukoglu, Yun William Yu, Jian Peng, and Bonnie Berger. Compressive
mapping for next-generation sequencing. Nat Biotech, 34(4):374–376, 2016.
Opinion and Comment.

[129] Matei Zaharia, William J. Bolosky, Kristal Curtis, Armando Fox, David A. Pat-
terson, Scott Shenker, Ion Stoica, Richard M. Karp, and Taylor Sittler. Faster
and more accurate sequence alignment with SNAP. CoRR, abs/1111.5572,
2011.

[130] Jing Zhang, Heshan Lin, Pavan Balaji, and Wu-chun Feng. Optimizing burrows-
wheeler transform-based sequence alignment on multicore architectures. In 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-
puting, pages 377–384. IEEE, 2013.

[131] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. Graphit: A high-performance graph dsl. Proc. ACM
Program. Lang., 2(OOPSLA):121:1–121:30, October 2018.

[132] Grace XY Zheng, Billy T. Lau, Michael Schnall-Levin, Mirna Jarosz, John M.
Bell, Christopher M. Hindson, Sofia Kyriazopoulou-Panagiotopoulou, Don-
ald A. Masquelier, Landon Merrill, Jessica M. Terry, Patrice A. Mudivarti,
Paul W. Wyatt, Rajiv Bharadwaj, Anthony J. Makarewicz, Yuan Li, Phillip
Belgrader, Andrew D. Price, Adam J. Lowe, Patrick Marks, Gerard M. Vurens,
Paul Hardenbol, Luz Montesclaros, Melissa Luo, Lawrence Greenfield, Alexan-
der Wong, David E. Birch, Steven W. Short, Keith P. Bjornson, Pranav Pa-
tel, Erik S. Hopmans, Christina Wood, Sukhvinder Kaur, Glenn K. Lock-
wood, David Stafford, Joshua P. Delaney, Indira Wu, Heather S. Ordonez,
Susan M. Grimes, Stephanie Greer, Josephine Y. Lee, Kamila Belhocine,
Kristina M. Giorda, William H. Heaton, Geoffrey P. McDermott, Zachary W.
Bent, Francesca Meschi, Nikola O. Kondov, Ryan Wilson, Jorge A. Bernate,
Shawn Gauby, Alex Kindwall, Clara Bermejo, Adrian N. Fehr, Adrian Chan,
Serge Saxonov, Kevin D. Ness, Benjamin J. Hindson, and Hanlee P. Ji. Hap-
lotyping germline and cancer genomes using high-throughput linked-read se-
quencing. Nat Biotechnol, 34(3):303–311, Mar 2016. 26829319[pmid].

226

	Introduction
	The Need for a New Language
	Thesis Contributions
	Thesis Roadmap

	Background
	A Primer on Computational Genomics
	A Primer on Compilers
	Front-end
	Mid-end
	Back-end
	Domain-specific compilers

	The Seq Language
	Seq at a Glance
	Design Goals
	Sequences and k-mers
	Pipelines and Partial Calls
	Parallelism

	Pattern Matching
	The bio Module
	Other Features
	External functions
	Type extensions

	Differences with Python
	Basic types and metadata overhead
	Generic functions, methods and types
	Duck typing
	Type inference
	Limitations

	Conclusion

	Type System
	Localized Type System with Delayed Instantiation
	Static Evaluation
	Special Cases
	Optional values
	Function passing
	Miscellaneous considerations

	Examples
	Recursive flatten
	Dependent collections

	The LTS-DI Algorithm
	Notations and definitions
	The algorithm
	Differences with standard Hindley-Milner inference

	Limitations
	Conclusion

	Intermediate Representation
	High-Level Design
	Operators
	Bidirectional Intermediate Representations
	Seq IR in Action
	Passes and Transformations
	Code Generation and Execution
	Conclusion

	Genomics-Specific Optimizations
	Making Sequences Efficient
	Definitions
	Implementation

	k-mers
	Reverse complement
	k-mer hashing
	Hamming distance

	Pattern Matching
	Pipelines
	k-merization
	Reverse complementation
	Canonical k-mers
	Software prefetching
	Inter-sequence alignment

	Conclusion

	Other Optimizations
	Python-Specific Optimizations
	Dictionary get/set optimization
	Intermediate string optimizations

	General-Purpose Optimizations
	Analyses
	Passes

	Conclusion

	Beyond Genomics
	Designing Domain-Specific Languages
	A Domain-Extensible Compiler
	Extending the parser
	Extending the IR

	Examples
	Seq
	Sequre: a DSL for secure multi-party computation
	CoLa: a DSL for block-based compression

	Conclusion

	Applications and Results
	End-to-End Applications
	Reference sequence processing
	Read sequence processing
	Data pre- and post-processing
	Downstream analysis

	Bioinformatics-Specific Benchmarks
	Improvements over Python
	Improvements over C++
	Effects of parallelization

	General-Purpose Benchmarks
	Conclusion

	Related Work
	Genomics
	Type Checking
	Intermediate Representations
	Extensible Compilers

	Conclusion
	Future Work
	Closing Remarks

	Seq Tutorial
	Reading Sequences from Disk
	Building an Index
	Finding Seed Matches
	Smith-Waterman Alignment and CIGAR String Generation
	Pipelines
	Parallelism

	Domain-Specific Optimizations
	Final Code Listing
	Using Non-Seq Libraries

	Selected Code Listings
	Code from SNAP Benchmark
	Code from SMEMs Benchmark

	Seq Reference Guide
	Seq Standard Library
	Seq vs. Python – A Cheat Sheet
	Additional types
	Additional keywords and annotations
	Static types
	Tuples
	Scopes

	Seq AST and IR Listings
	AST Nodes
	SIR Nodes

