
Machine Audition Curriculum and Real-Time Music
Accompaniment

by

Nada Hussein

B.S., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

c○ Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 6, 2021

Certified by. .
Cynthia Breazeal

Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Machine Audition Curriculum and Real-Time Music

Accompaniment

by

Nada Hussein

Submitted to the Department of Electrical Engineering and Computer Science
on August 6, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

A machine audition curriculum was created as part of the MIT Media Lab’s Artificial
Intelligence Education initiative. This curriculum was geared towards middle school
students to help them understand how humans and machines perceive sound, and
allow them to apply this knowledge to create and analyze their own music. This
thesis presents the tools created to aid in the teaching of this curriculum: a new
music audition Scratch extension. This extension introduces the ability to create
and analyze music, as well as the integration of Google Magenta, a machine learning
library that allows students to generate new music or accompany music that they
have created. Through the use of this Scratch extension, it was possible to pilot the
machine audition curriculum with middle school students and show that they were
able to better understand signal properties, create and analyze their own music, and
understand the similarities and differences between human and machine audition.

Thesis Supervisor: Cynthia Breazeal
Title: Professor of Media Arts and Sciences

3

4

Acknowledgments

First, I would like to thank Stephen Kaputsos, who worked closely with me throughout

this entire project, and was there through all of the middle school pilots, successful

or not. Thank you for the time and energy you poured into this project with me to

get it to where it is today.

I would also like to thank my thesis advisor, Cynthia Breazeal, for supporting my

project throughout the process, and always encouraging me to demo my contributions

as soon as possible. Our conversations provided me with valuable feedback and ideas

to improve my Scratch blocks, both of which helped me create a project that I can

be truly proud of.

I would also like to thank the entire Personal Robots Group at the Media Lab for

supporting me throughout this project. Hearing from your own experiences with AI

education, and being able to rely on your support during a fully remote project in

COVID was truly what made this project possible. Thank you for always knowing

where I could find Scratch documentation, offering to read over my materials and

give me feedback, and hop on Zoom calls with me to learn more about my project

and give me ideas for improvement. The PRG community is a significant reason why

this experience has been so positive for me.

I would also like to thank Christina Kaputsos, who designed all of our visual assets

for the curriculum. Our story characters, Lucas and Audii, their engaging backstories,

as well as the beautiful icons for the curriculum and the Scratch extension would not

exist if not for you.

I also want to thank the Advanced Math and Science Academy Charter School,

and specifically Padmaja Bandaru, for making the time to pilot the machine audition

curriculum with us during your class time. It was a pleasure working with students

on the curriculum, and seeing student interface with the tools we had created. The

feedback and insight gained from this pilot was also invaluable to my work, and

helped me gain a deeper understanding of the needs of middle school students in

order to provide an effective learning experience. Thank you, Padmaja, for bringing

5

your educational experience and understanding of your students to our pilots, and

making them much more effective than they could have been otherwise.

I would like to thank my friends for always supporting me. Thank you for the

spontaneous boba runs, the late night virtual company when I was exhausted but

still had more to do, and the constant emotional support throughout a challenging

year.

Finally, I would like to thank my parents, Iman Salama and Ahmed Hussein, for

supporting me for years in my education and career. Thank you for always being

excited to talk to me about my work and whatever I happen to currently be learning

about, and giving me the opportunity and encouragement to discover and act on my

interests. I would not be where I am without you.

6

Contents

1 Introduction 15

1.1 Machine Audition Curriculum Overview 16

1.2 Why Use Scratch? . 16

1.3 Outline . 17

2 Related Works 19

2.1 Sight of AI Curriculum . 19

2.2 Digital Signal Processing . 20

2.3 Machine Learning . 21

2.4 Prior Scratch Functionality . 21

2.4.1 Music Visualization . 21

2.4.2 Music Creation . 22

2.4.3 Music Accompaniment . 23

3 Machine Audition Curriculum 25

3.1 Module 1: Audition Overview . 25

3.2 Module 2: Signals (Pressure Waves) 26

3.2.1 Pressure Waves . 26

3.2.2 Simple Waveforms . 26

3.2.3 Complex Waveforms . 28

3.3 Module 3: Sensation (Ear and Microphones) 29

3.3.1 Input Devices . 29

3.3.2 Dynamic and Frequency Range 29

7

3.3.3 Ear and Mic Analogs . 30

3.3.4 Signals Revisited . 30

3.4 Module 4: Perception (Brain and Computer) 30

3.4.1 Brain and Computer Overviews 31

3.4.2 Data Representation . 31

3.4.3 Perceptual Abilities . 31

3.5 Module 5: Human-AI Collaboration 32

3.5.1 Generative AI (Creative Collaboration) 32

3.5.2 Machine Audition Capstone 32

4 Research and Design 33

4.1 Scratch Activity Design . 33

4.1.1 Activity: Know Your Dynamics 34

4.1.2 Activity: Making Melodies . 34

4.1.3 Activity: Find Your Voice . 35

4.1.4 Activity: What’s Your Timbre? 36

4.1.5 Activity: More Bars, More To See 36

4.1.6 Activity: Machine Audition Capstone 37

4.2 Scratch Block Preliminary Design . 37

4.2.1 Music Analysis . 38

4.2.2 Music Visualization . 38

4.2.3 Music Creation . 38

4.2.4 Music Accompaniment . 39

4.3 Backend Library Research . 39

4.4 Scratch Asset Design . 40

5 Implementation 43

5.1 System Architecture . 43

5.2 Music Analysis . 44

5.2.1 Music Analysis Backend . 44

5.3 Music Creation, Accompaniment, and Visualization 46

8

5.4 Music Creation . 46

5.4.1 Music Creation Backend . 47

5.5 Music Accompaniment . 48

5.5.1 Music Accompaniment Backend 49

5.6 Music Visualization . 52

5.6.1 Music Visualization Backend 53

5.6.2 Plotting and Text Implementation 60

5.7 Music Creation, Accompaniment, and Visualization Integration . . . 63

6 Evaluation 65

6.1 Future Makers Spring Break Pilot . 66

6.1.1 Methodology . 66

6.1.2 Results . 67

6.1.3 Future Maker Conclusions . 68

6.2 AMSA Pilot . 68

6.2.1 Methodology . 68

6.2.2 Results . 69

6.2.3 Conclusions . 72

6.3 Summary . 73

6.3.1 Findings . 73

6.3.2 Limitations . 74

7 Future Work 75

7.1 Music Creation . 75

7.2 Music Analysis . 76

7.3 Music Visualization . 77

7.3.1 Waveform . 78

7.3.2 Fourier Transform . 78

7.3.3 Spectrogram . 79

7.3.4 Sheet Music . 79

7.4 Music Accompaniment . 79

9

7.5 Backend Architecture . 80

7.6 Further Pilots . 80

7.7 Creative Use of Scratch Blocks . 81

8 Conclusion 83

8.1 Contributions . 83

8.1.1 Scratch Contributions . 83

8.1.2 AI Education Contributions 84

A Tables 87

B Figures 97

C Links 107

C.1 Live Activities . 107

C.2 Video Walkthroughs . 108

10

List of Figures

2-1 Sight of AI: Percy and Vizzi. 20

2-2 scipy.signal Fast Fourier Transform. 21

2-3 scipy.signal Spectrogram. 21

2-4 Current Scratch Text Rendering Functionality. 22

2-5 Current Scratch Plotting Functionality. 22

2-6 Current Scratch Music Creation Functionality. 23

4-1 Lucas and Audii. 41

5-1 Music Analysis System Diagram. 45

5-2 Music Analysis Blocks and Reporters. 46

5-3 Music Creation System Diagram. 47

5-4 Music Creation Blocks and Reporters. 49

5-5 Music Accompaniment System Diagram. 50

5-6 Music Accompaniment Blocks. 50

5-7 Music Generation Sheet Music Visualization. 51

5-8 Music Generation Spectrogram Visualization. 51

5-9 Music Completion Sheet Music Visualization. 51

5-10 Music Completion Spectrogram Visualization. 52

5-11 Music Visualization System Diagram. 53

5-12 Waveform Visualization. 55

5-13 Fourier Transform Visualization. 56

5-14 Spectrogram Visualization. 57

5-15 Sheet Music Visualization. 59

11

5-16 Music Visualization Blocks. 59

5-17 Plotting Backend System Diagram. 60

5-18 Text Rendering Backend System Diagram. 62

B-1 Scratch Activity: Know Your Dynamics 98

B-2 Scratch Activity: Find Your Voice . 99

B-3 Scratch Activity: Making Melodies 100

B-4 Scratch Activity: What’s Your Timbre? 101

B-5 Scratch Activity: More Bars, More To See 102

B-6 Future Maker Signals Assessment Questions. 103

B-7 AMSA Pilot Amplitude Questions. 104

B-8 AMSA Pilot Frequency Questions. 105

B-9 AMSA Pilot Harmonic Frequency Question. 106

12

List of Tables

A.1 Initial Design of Machine Audition Scratch Blocks 88

A.2 Music Visualization Scratch Blocks 89

A.3 Music Creation Scratch Blocks . 90

A.4 Music Comparison Scratch Blocks . 91

A.5 Music Accompaniment Scratch Blocks 92

A.6 Future Makers Pilot Schedule . 93

A.7 AMSA Pilot Schedule . 94

A.8 AMSA Pre- and Post- Assessment Correctness Data 95

13

14

Chapter 1

Introduction

As part of an Artificial Intelligence Education initiative throughout the Media Lab,

the Personal Robots group has developed a machine audition curriculum aimed at

middle school students. The curriculum focuses on the mechanics of human and

computer hearing, comparing how the human ear operates to the methods in which

computers perceive and respond to audio through signal processing and machine

learning. The curriculum aims to educate students on machine audition while engag-

ing them in creative learning and computational thinking, such that they are able

to apply their learning to music projects of their own. However, it is important to

ensure that students are able to use a computational platform that makes it easy

for them to implement new ideas. A visual programming language called Scratch [5]

aims to fill this need, allowing younger students to get hands-on programming expe-

rience without the complexity of a non-visual programming language. Thus, Scratch

functionality must be expanded such that the machine audition curriculum can be

taught with Scratch as a tool to help students engage in interactive activities meant

to solidify their understanding of signal processing, music concepts, and human-AI

collaboration in music projects. To implement and pilot a successful machine audition

curriculum, the following overlapping goals were created:

1. Create a Scratch extension for use in a Machine Audition Curriculum that can

support signal analysis and visualization, and music creation and accompani-

15

ment.

2. Interface with Machine Audition Curriculum to create interactive, educational

activities that can be done using the Scratch blocks created.

3. Support middle-school students in learning about machine audition.

In this paper, I describe the machine audition curriculum, and explore the im-

plementation of Scratch blocks created to facilitate machine audition education in

middle school students, as well as the results that were found through pilots with the

students.

1.1 Machine Audition Curriculum Overview

The machine audition curriculum, designed in collaboration with other Personal

Robot Group members, guides middle school students through the mechanics of both

human and machine hearing. The curriculum covers 5 main modules – audition

overview, signals, sensation, perception, and human-AI collaboration. With these

modules, students learn about the entire hearing and perception pipeline that both

humans and machines use to understand the sounds around them. The curriculum

balances lecture format modules with discussion questions and activities designed to

engage students and solidify their learning by giving them the opportunity to talk

through the concepts. The curriculum closes with a larger-scale machine audition

capstone project, allowing student to utilize all the tools they have been introduced

to thus far in order to create their own creative musical project that combines signals

understanding with machine learning tools.

1.2 Why Use Scratch?

Scratch [5] is a block-based, visual programming language that has been used in a va-

riety of contexts to help students learn how to program. It allows students to abstract

away the complex syntax of code while learning about programming logic. Given the

16

middle school target audience, it was concluded that it is not feasible to construct

hands-on activities in a standard programming language since the students do not

have any programming knowledge. However, it is still important to allow students to

have experience with the computational element of music creation, and use these tools

to visualize what they are learning and solidify their understanding with open-ended,

interactive projects. Scratch allows younger students to create functional, creative

programs that can facilitate the learning we were hoping to provide through this cur-

riculum. Thus, it was determined that Scratch was the best fit in this context for this

curriculum, as it would improve the learning curve for younger students, and still en-

able them to experience the computational elements of music analysis, creation, and

accompaniment. Throughout this project, a new Scratch extension was built that

allowed students to create and analyze their own music, as well as utilize machine

learning in order to create more complex and interesting music to accompany their

own.

1.3 Outline

Chapter 2 explores the current works that contribute to the development of this

project. Chapter 3 describes the full machine audition curriculum content that is

presented to students. In Chapter 4, research and design choices that were made

in creating the Scratch blocks are presented, as well as the activities that were de-

signed to be implemented during the curriculum using the created Scratch blocks. In

Chapter 5, the architecture of the Scratch extension is shared, as well as all of the

functionality it has and each block’s use case. This is followed in Chapter 6 with an

evaluation of both the curriculum and the Scratch blocks, after piloting the lessons

with middle-school students in Spring 2021. In Chapter 7, future improvements are

discussed that could be made on the Scratch blocks in order to improve their usabil-

ity and educational ability in later iterations of the curriculum and as a free-standing

extension. Finally, in Chapter 8, overall contributions of the project are discussed,

with focus on its current achievements and limitations.

17

18

Chapter 2

Related Works

This section shares existing Digital Signal Processing (DSP) libraries, machine learn-

ing libraries, and Scratch functionality that was researched to find the gaps that

needed to be filled in order to give students the tools to interact with the Machine

Audition curriculum. A similar AI educational initiative is also introduced, which

the machine audition curriculum was based on.

2.1 Sight of AI Curriculum

The MIT Media Lab has designed other curricula as part of an AI education initiative.

One of these is the Sight of AI curriculum, which focuses on human and computer

vision. The Sight of AI curriculum teaches middle school students about the impact

of vision on humans’ cognitive abilities, and compares the human eye to the processes

machines use to see through cameras. The students are then able to apply their

knowledge by creating image-driven Scratch games. This curriculum also includes

the design of two characters meant to drive the storyline behind the curriculum –

Percy, and a robot companion named Vizzi, who features a camera-like design as

seen in figure 2-1.

This curriculum became the template that was followed for the Sound of AI ma-

chine audition curriculum.

19

Figure 2-1: Sight of AI: Percy and Vizzi.

2.2 Digital Signal Processing

One of the most widely used DSP libraries is scipy.signal [4], a Python library that

is able to perform standard DSP functions, such as Fast Fourier Transforms, Short

Time Fourier Transforms, and filtering in order to extract certain frequencies from

signals. This library is able to compute these transformations quickly, and visualize

them in intuitive ways. A visual of scipy.signal’s standard Fourier Transform as well

as spectrogram visualizations can be seen in Figures 2-2 and 2-3.

This library represents an optimal signal processing backend – however, it is not

compatible with Scratch and JavaScript. To implement a DSP library in Scratch, one

would need to implement a new library, as there are currently no DSP libraries that

are supported by Scratch.

20

Figure 2-2: scipy.signal Fast
Fourier Transform.

Figure 2-3: scipy.signal Spectro-
gram.

2.3 Machine Learning

There are plenty of existing machine learning libraries, including Tensorflow [6] for

JavaScript and PyTorch [3] for Python. Google Magenta [1] is a TensorFlow-powered

machine learning library that can be used in both Python and JavaScript. It focuses

on facilitating creative generation of art and music, and is able to generate music on

command with a machine learning backend. It is able to change the music it generates

given a user’s inputs, such as temperature (how fast-paced the resulting music should

be) and the duration of music. Magenta is also able to save and visualize the music

it creates in intuitive ways. Google Magenta offers all of the music generation and

accompaniment functionality that is needed in the machine audition curriculum, so

it is an ideal candidate for the Scratch backend.

2.4 Prior Scratch Functionality

2.4.1 Music Visualization

Scratch is currently unable to support plotting visualizations, or text rendering to

label graphs. It is able to render text as speech bubbles attached to a sprite, but can

not rotate text, change sizing, or put text in a location separate from a sprite. An

example of Scratch’s current text rendering can be seen in Figure 2-4.

Furthermore, there is no plotting backend available in Scratch. The only extension

available for writing is the Pen extension, which allows users to set pen colors, and

21

Figure 2-4: Current Scratch Text Rendering Functionality.

give a command to position the pen up or down. Users control the pen’s writing by

using the character movement blocks, specifying a direction and distance to move,

and the pen draws the path the character followed. An example of this can be seen

in Figure 2-5.

Figure 2-5: Current Scratch Plotting Functionality.

Both the Pen and Motion extensions in Scratch offer suitable functionality that

can provide a robust backend for a plotting and text rendering library for music

visualization.

2.4.2 Music Creation

Scratch currently does have a Music extension. This allows users to select an instru-

ment, and play notes by specifying a key on a piano, as well as a duration in seconds.

Users can also change tempo, and include rests in their music. A visual of the Music

blocks, along with the virtual piano note selection tool, can be seen in Figure 2-6.

22

Figure 2-6: Current Scratch Music Creation Functionality.

This extension does not support changes in volume, and does not have a robust

method of storing and modifying the music. This means the code does not retain any

past information about instrument or note selection, making it impossible to build

music analysis and visualization tools off of the current implementation.

2.4.3 Music Accompaniment

Scratch does not provide any machine learning backend for music accompaniment. It

does, however, offer some extensions that interface with more general machine learning

libraries. Namely, Dancing with AI PoseBlocks [8] use a machine learning backend

and the user’s camera to allow users to create movement-based AI systems. The

backend implementation of these blocks, and the way they interface with a machine

learning library, demonstrates a reliable way of integrating machine learning and

general external libraries with Scratch.

23

24

Chapter 3

Machine Audition Curriculum

The basis of this project is the machine audition curriculum, designed and created in

collaboration with the Personal Robots Group. The curriculum is aimed at middle

school students and covers both human and computer perception of audio, ending

with a larger machine audition capstone designed to help students use all of their

new knowledge to create an exciting, human-AI collaborative music project in Scratch.

Each of the 5 modules is expanded upon further in this chapter.

3.1 Module 1: Audition Overview

In the first module of the curriculum, middle school students are introduced to the

concept of audition, or hearing. The goal is to allow them to understand how hu-

mans’ sense of hearing impacts daily life, and get them to think more consciously

about how audition plays a role in their lives. Students are then given an overview

of the challenges of audition for humans, including the idea of trying to listen to

what one person is saying in a room full of people talking, as well as the concept of

sound discrimination and identifying the source and location of various sounds. This

is then used to transition to the challenges of audition for machines, including appro-

priate hardware to correctly localize sound, and the software that allows computers

to process sounds and take action based on what they hear.

25

3.2 Module 2: Signals (Pressure Waves)

In Module 2, middle school students become introduced to the concept of signals and

waveforms, and begin to understand more about their properties. This module covers

amplitude, frequency, and higher harmonics, and explains to students how each of

these properties impacts signals, specifically in the context of music.

3.2.1 Pressure Waves

First, this module covers waves in nature to give students a visual understanding of

what a signal looks like. This begins with examples such as a drop of water hitting

a lake, and the concentric waves that ripple through the water as a result. This

section also explores pressure waves that can be seen visually with particles. This

gives students the fundamental understanding that audio signals have the shape of

these physical waves, and this helps them understand the properties that are later

introduced – amplitude, frequency, and higher harmonics.

3.2.2 Simple Waveforms

The curriculum then moves into signals more deeply, explaining the different prop-

erties of audio that humans hear: volume, pitch, and instrument type. These are

tied back to the signal properties in the waveform itself, helping students understand

what it is about the audio signal itself that makes it sound the way it does.

Amplitude and Volume

To begin, this section covers amplitude and how it contributes to the volume of a

sound. Students are taught that the height of the wave from its midpoint is called its

amplitude, and they also are introduced to the decibel scale of human hearing and how

loud different common sounds are in decibels. They are then shown a video that plays

various common sounds in order to give students a reference as to what the decibel

values mean in practice. This is followed by a video explaining volume dynamics in

sheet music, educating students about the dynamic markings: fortissimo (very loud),

26

forte (loud), mezzo-forte (slightly loud), mezzo-piano (slightly soft), piano (soft), and

pianissimo (very soft). This prepares them for both the waveform visualizations given

in Scratch, and the sheet music visualizations. These will be discussed in Chapter 5.

Frequency and Pitch

Students are then introduced to frequency and how it relates to the pitch of a sound.

This begins by explaining to students that signals have a period, or amount of time it

takes to go through one cycle. The inverse of this is frequency – how many cycles the

signal goes through per second (Hertz). Students then learn that the faster a signal

goes through cycles, the higher pitched the audio sounds. This is accompanied by

waveform visuals in order to give students an understanding of what a signal looks like

as it increases in frequency. Once this has been established, sheet music interpretation

of this is also covered. Students are taught that the staff lines in music help users

know the frequency of a note. The higher on the staff a note is, the higher pitched it

is. This paves the way for both the waveform and sheet music visualizations that are

used in Scratch.

Harmonics and Instrument

Finally, the last element of signals is higher harmonics. This section teaches students

that the frequency that relates to the pitch humans hear is the lowest one present, or

the fundamental frequency. However, the shape of the wave is what changes the sound

of the instrument heard, even if it is playing the same pitch. This is accompanied

by visuals and videos that show students how the waveform of different instruments

look different, but since their frequency is the same, they sound like the same note.

This section begins to introduce this through a frequency representation of a signal as

well, in order to help students see the actual frequency content present in these new,

complex signals. This is expanded upon in the next section, complex waveforms.

27

3.2.3 Complex Waveforms

This section covers the different frequencies present in an instrument’s signals, and

how the lowest frequency, or fundamental, contributes to pitch while the higher har-

monics contribute to the distinct sounds different instruments make.

Fundamental Frequency

First, students learned that the frequency property discussed so far, relating to pitch,

is referred to as the fundamental frequency. This is the lowest frequency present

in a signal, and is the one that contributes to the note pitch that is heard. The

Fourier transform visualization is then introduced, where students can see that they

can view the frequencies of a signal on a graph of frequency vs intensity. This shows

much more easily what frequencies are present, and it is no longer necessary to look

at complex waveforms and try to estimate frequencies. Seeing this breakdown of

frequency content allows students to have more in-depth conversations about what

it means for a fundamental frequency to change, versus the higher harmonics. This

transitions into the idea of harmonic frequencies.

Overtones

The concept of overtones, or higher harmonics, is introduced, and how they make

each instrument sound the way it does. This is explained through the frequency

representation of a signal, by showing students various plots of different instruments

playing the same note, and emphasizing that although the fundamental frequency is

the same, the intensity of the multiples of that frequency vary with instruments. The

final visualization is introduced – spectrograms. These show frequencies over time

through a colored graph, where the highest intensity of a frequency appears yellow,

and the lowest intensities appear dark blue. These are used to show students how

music can be visualized over time to see how notes change over time. This leads into

a demonstration of different instruments playing the same note consecutively, and

pointing out that each of them has the lowest frequency at the same place, but the

28

higher frequencies vary.

This module concludes the students’ learning about signals and their properties,

and from here they move on to understanding how these signals are processed by both

humans and computers, going through the pipeline from sensation to perception.

3.3 Module 3: Sensation (Ear and Microphones)

In Module 3, students begin to learn more about the physical structures of ears and

microphones, as well as all of the different hearing ranges that exist in different animal

species. They begin to understand more about how machines process audio differently

from humans, and how they follow similar patterns to humans as well. The module

focuses on the actual sensing of audio in this chapter, making sure to emphasize the

difference between this and perception, which is covered in the next module.

3.3.1 Input Devices

To begin this module, students begin to think about ears and microphones, and

their similarities and differences. This lesson features an anatomical lesson about the

human ear, as well as a lesson on the internal hardware of microphones on a high

level. The goal is to compare and contrast the two, finding analogs in the structure of

both which allows both ears and microphones to take in sound as input. This helps

students understand how human ears physically sense sound, and how this compares

to computer microphones.

3.3.2 Dynamic and Frequency Range

The lesson then moves into the idea of different ranges of hearing in different animals,

as well as in different hardware. This begins with dynamic ranges, or ranges in

volumes. For example, humans are only able to safely hear up to a certain volume,

and also can only detect volumes above a certain decibel value. Students also learn

about machine limitations, using the example of computational insect detectors and

29

how they can vary in picking up on different sounds based on their gain.

The lessons also introduce the idea of frequency ranges, or the pitches of sounds

that different animals and devices can hear. For example, dogs are able to hear

much higher frequencies than humans. Students discuss the hearing spectrum and

where different animals’ hearing ranges lie on the spectrum. They also discuss the

variability in human hearing, namely that as people age, their ability to hear higher

pitches diminishes. Infrasonic and ultrasonic hearing are quickly covered as well,

citing examples from animals and machines.

3.3.3 Ear and Mic Analogs

This section then goes into the specific analogs between the human ear and a micro-

phone. Specifically, students discuss the properties of both that allow for localization.

In humans, it is explained that the outer ear contributes to the ability to localize,

while machines rely on mic directionality and polar patterns to do the same. Students

then discuss two types of transduction: the first which happens in the middle ear, or

the mic diaphragms, respectively in humans and computers, while the second occurs

in the cochlea or through magnets and coils in microphones.

3.3.4 Signals Revisited

Finally, analog and digital signals are compared, covering how the human ear detects

analog signals while computers detect digital. This moves into discussing the human

auditory nerve, which perceives continuous signals. Students then compare this to a

machine’s analog to digital conversion (ADC), learning that machines must take in

audio by sampling it, in order to quantize and understand the sound that they hear.

3.4 Module 4: Perception (Brain and Computer)

In Module 4, students explore the way that both human brains and computers begin

to actually understand the sounds they are hearing. This involves data representation,

30

as well as complex concepts that humans can do automatically such as sound local-

ization, recognition, and understanding different auditory illusions. These processes

are explained in humans, presenting the challenges in replicating them in computers.

3.4.1 Brain and Computer Overviews

The module begins with an overview of the processing power of both brains and

computers – discussing the hardware behind computers, as well as various parts of

the brain that contribute to the real-time processing of sound. In doing this, students

build the foundation for talking more in depth about specific actions both can perform,

and can move into data representation and perceptual abilities in both.

3.4.2 Data Representation

This section discusses data representation for both brains and computers. In brains,

the engram is introduced, a unit of cognitive information that the brain uses to store

memories. This is how students can think of brains storing data. This is compared to

the computer’s analog – storing audio. Students discuss the limitations of a computer

and how its memory and processing power affects how it processes its data, and how

it must store information digitally. This leads into sampling, or the rate at which

samples are taken of audio so that it can be stored digitally, and how this can be

a tradeoff of quality preservation and storage capacity. The lesson also discusses

quantization, or having finite buckets that each value of a signal fits into so that

each value can be stored in a finite number of bits. This is further discussed through

resolution and bitdepth in audio storage.

3.4.3 Perceptual Abilities

The module then covers the perceptual abilities of both devices, and how humans can

process sound through both their brains and computers. Students discuss the ability

to recognize what a sound is, as well as the ability to localize sound. Finally, audi-

tory illusions in humans are discussed, as well as adversarial examples in computers

31

performing machine learning.

3.5 Module 5: Human-AI Collaboration

The fifth and final module of the curriculum allows students to explore their new

findings and use them to create a final Capstone project that involves music cre-

ation, processing, and accompaniment with a machine learning music library, Google

Magenta [1].

3.5.1 Generative AI (Creative Collaboration)

Students are first given an introduction to generative AI, and the kinds of machine

learning models used to create and accompany music. This begins with GANs, Gen-

erative Adversarial Networks. This model is able to create new data with the same

properties as data it is given – hence, it is very useful for accompanying music that it

has already seen, as it can generate music that sounds similar to what it has heard.

Students are then introduced to RNNs, Recurrent Neural Networks, which can be

used to generate new music on command. With these two new tools under their belt,

students are then able to move forward and use the Scratch blocks we create with

Magenta backend to work on their own machine audition projects.

3.5.2 Machine Audition Capstone

The end of the curriculum allows students to explore what they’ve learned and create

their own AI music project. This includes using all of the Scratch blocks provided,

including music creation and accompaniment, and allowing students to play with

these to create and analyze their own music. This would also interface with some

other activities, such as WaveGAN [7] and a Looper extension similar to MmTss [2]

that would allow for more machine learning and interactive music creation concepts

for students.

32

Chapter 4

Research and Design

This chapter discusses the design of the Scratch blocks, and how they were created

around the machine audition curriculum in order to best complement the teachings

with activities that were educational, creative, and suitable for middle school students.

This project only developed Scratch activities for two of the five curriculum modules:

Module 2, Signals, and Module 5, Human-AI Collaboration. The rest of the modules

were much less computationally intensive, so it was determined that Scratch would

not be needed for them. This chapter breaks down the activities that were designed,

as well as how it was determined what Scratch blocks were necessary to accomplish

the activities created.

4.1 Scratch Activity Design

This began by designing the activities that would be needed by students during the

machine audition curriculum. This was broken down into the overarching topics

students were expected to learn, and designed interactive, creative activities for each.

The activities focused on signal properties and how they translated to music, with

an additional activity for the machine audition capstone and music accompaniment

concepts.

Live links and video walkthroughs of each activity listed below can be found in

Appendix C.

33

4.1.1 Activity: Know Your Dynamics

This activity is designed to allow students to understand volume, and how it ties to

the amplitude of a signal. It is explained to students that the dynamics of music con-

vey information about volume. They are given two example sequences of music that

play the same note – one where the volume increases with each subsequent note, and

one where it decreases. These are then visualized in sheet music form, demonstrating

the dynamic markings increasing with each note. This is meant to help students get

acquainted with the sheet music visualization, and understand the dynamic markings

a bit better. Students are also provided with a waveform of the sequence, demon-

strating the amplitude increasing with each note as the volume increases, and vice

versa. From here students move into an interactive activity. They divide into groups

of 3 or 4, and at each person’s turn, they play a note sequence that varies only in

volume, and show the students just the final waveform or sheet music form of the

sequence while hiding the Scratch blocks they used to create the sequence. From here,

each student must attempt to recreate the sequence, and points are collected for each

correct answer from the group. This activity aims to help students develop intuition

for the connection between signal properties and how music sounds, and the hope

is that students are quickly able to recognize that higher amplitudes mean higher

volumes, and vice versa. In this activity, the goal is to look out for students getting

relative volumes correct, more so than absolutes (i.e. a bigger amplitude followed by

a smaller amplitude should result in a volume decrease, even if the student does not

guess the exact volumes used.)

A screenshot of the final Scratch activity can be seen in Appendix B-1. A live link

can be found here. A video demonstration of this activity in use can be found here.

4.1.2 Activity: Making Melodies

This activity moves into pitch and frequency of music. The instructors demonstrate a

major and a minor scale, and visualize both for the students. Here, they can see that

the sheet music visualizes the notes higher up on the staff as the scale progresses, and

34

https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L2%20-%20Know%20Your%20Dynamics.sb3
https://drive.google.com/file/d/1IYJ8JUXtP5uMKevGGpXBpQTZBwEddEq0/view?usp=sharing

the waveform visualization showcases higher frequency waves as the notes go up in

pitch. From here, students are divided into groups, and allowed to create their own

melodies. They create first melodies in the key C major, and visualize the sheet music

and waveform for this to show how the visualizations change as the frequencies change.

They also do this for a second melody in C minor, and analyze the visualizations that

come out of it. Students are able to discuss the reasons the visualizations change

as they modify their tunes, solidifying their understanding of pitches and how they

relate to frequencies in music. Students do not do the same group guessing game as

seen previously, since it is much more difficult to see the differences in frequencies,

and the waveform legend also shows students the note names that were used for ease

of understanding the plots.

A screenshot of the final Scratch activity can be seen in Appendix B-3. A live link

can be found here. A video demonstration of this activity in use can be found here.

4.1.3 Activity: Find Your Voice

This activity also focuses on pitch and frequency. In this activity, instructors help

students find their vocal range by singing along to a premade sequence of notes that

simply steps through the scale. These notes are also visualized in intervals so students

can see them in frequency and in sheet music visualization. Students hit play on the

sequence, and sing along to an increasing set of notes until they cannot hit the note

anymore. They repeat the process for decreasing frequencies until they hit their lowest

note. Students can then come up with their vocal range, and what voice classification

they have. Although this activity does not focus as much on signal properties, it

does help students gain intuition for these frequencies as they attempt to imitate the

sounds themselves.

A screenshot of the final Scratch activity can be seen in Appendix B-2. A live link

can be found here. A video demonstration of this activity in use can be found here.

35

https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Making%20Melodies.sb3
https://drive.google.com/file/d/1dCJNuE4_VzQ33VkrIsfHNXOmVvf8AyPb/view?usp=sharing
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Find%20your%20Voice.sb3
https://drive.google.com/file/d/1Dvm9LtAETIZABuRVQDS5LvO0HNMS--EH/view?usp=sharing

4.1.4 Activity: What’s Your Timbre?

This activity focuses on the higher harmonics of different instruments that lead them

to sound different despite playing the same notes. Instructors begin by playing the

same note on a few different instruments, and allowing students to hear the difference

between them even though the notes are the same. The instructors then visualize the

waveforms for both instruments, and show students that, although they can see the

notes are the same frequency, the shape of each waveform looks noticeably different.

The students are then introduced to the frequency visualizations - Fourier transform

magnitudes and spectrograms. Here, they are able to decompose the waveforms into

their frequency components, and can see that the lowest frequencies match, but the

higher harmonics look very different. Students are able to understand that the funda-

mental frequency is responsible for pitch, while the higher harmonics are responsible

for timbre. Students then experiment with this themselves, selecting different instru-

ments and notes to visualize so they can see how the waveforms differ with different

instruments. Instructors make sure to emphasize here that the fundamental frequency

will not change if they simply change the instrument type, but it will change if they

select a different note to play. This is meant to help students learn to differentiate

fundamental frequencies from higher harmonics visually, as well as tie it back to how

the music sounds.

A screenshot of the final Scratch activity can be seen in Appendix B-4. A live link

can be found here. A video demonstration of this activity in use can be found here.

4.1.5 Activity: More Bars, More To See

This activity is the second to focus on the timbre of different instruments. This one

allows students to begin making longer pieces of music, including verses and choruses.

Instructors start by showing students a 16 bar verse, and playing it for them. They

then display sheet music, as well as a spectrogram to show sheet music over time.

Then students are able to create their own 16 bar verses. They are asked to note what

timbres were used, and visualize their songs in spectrogram and sheet music form.

36

https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20Whats%20your%20Timbre.sb3
https://drive.google.com/file/d/1EJwDexuvYBTAilmGhTsFeoYsrYJw4LuN/view?usp=sharing

Here, students are able to see that they can only extract pitch information from sheet

music, but spectrograms are also able to display higher harmonic information that lets

them know when the instrument is changing. From here, students are able to better

understand how harmonics change the sounds they hear from different instruments

more intuitively.

A screenshot of the final Scratch activity can be seen in Appendix B-5. A live link

can be found here. A video demonstration of this activity in use can be found here.

4.1.6 Activity: Machine Audition Capstone

Finally, students are able to incorporate what they have learned about signals with

some human-AI collaboration elements. To do this, they are given the ability to create

their own music, and select instruments and volumes for each note they add. The

goal is to make this an intuitive, streamlined process so they can seamlessly create

their music. From here, they are able to visualize their music in waveform, FFT,

spectrogram, or sheet music format. To include human-AI collaboration, students

are given access to Google Magenta [1], a library that is capable of machine learning

for music generation. Students should be able to generate and accompany their own

music, and be able to analyze it in order to further solidify their knowledge from the

machine audition curriculum.

4.2 Scratch Block Preliminary Design

After creating the activities, it was possible to come up with a list of Scratch blocks

needed as well as their functionality. These blocks were divided into 4 different groups

based on functionality: analysis, visualization, creation, and accompaniment.

A table of the initial Scratch block design and functionality can be seen in Ap-

pendix A.1.

37

https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20More%20Bars,%20More%20to%20See.sb3
https://drive.google.com/file/d/1_vs22ArHQy_HWd4R8wJxZXAUuisaFJzM/view?usp=sharing

4.2.1 Music Analysis

First, students needed to able to analyze music in order to extract its properties, as

well as compare various mystery files to determine their properties relative to each

other. It was determined that students would need blocks that could return the

volume, pitch, and instrument type of a given sound file, as well as blocks that were

able to return which of two mystery files was louder or higher pitched. Students also

needed blocks that would report the instrument each of the files was using.

4.2.2 Music Visualization

Students also needed to be able to see the proper visualizations in Scratch real-time.

This meant including a waveform, an FFT magnitude, a spectrogram, and a sheet

music visualization. These visualizations also needed to have some sort of labeling so

students could pick out the important properties – amplitude, frequency, and higher

harmonics. They needed to be designed such that all the visualizations remained

up-to-date as the user created their music, and that they would be consistent with

each other every time they were called.

4.2.3 Music Creation

The bulk of the interactive element of these activities came from allowing students

to create their own music. Students needed to be able to select a volume and an

instrument type at any given point of creating music, such that the music they created

after that point had the selected properties. It was also necessary for students to be

able to quickly see what instrument and volume they had last selected, so they could

tell if they needed to use a new Scratch block to update any of these properties. It was

also important to make the process of adding notes to music as seamless and intuitive

as possible. This meant giving students some way of hearing the notes they were

selecting before they were definitively chosen for their song. Thus, it was necessary

to include a block that would allow students to choose their notes from a virtual

note player that would allow them to hear the note before selecting it, and give them

38

a duration field that allowed them to set an amount of beats to play the note for.

Finally, students needed to easily be able to erase all of their music and start again.

4.2.4 Music Accompaniment

Finally, students needed the ability to perform music accompaniment with the help

of machine learning. This simply meant giving them access to Google Magenta in

order to both generate brand new music, as well as accompany already created music.

They also needed the option to select how fast-paced they wanted the resulting music

to be, as well as what duration of music they wanted. the goal was to give students

some amount of information about how these blocks worked, and introduce them to

the general concept of machine learning, without overwhelming them with machine

learning content in a primarily signal processing curriculum. Thus, the blocks needed

to abstract away the machine learning backend, and simply give students the ability

to select a block that would generate or accompany music on command, leaving the

harder machine learning concepts to Scratch. This meant that the extension needed

to integrate Magenta fully into this section of the blocks, such that users would not

have control over the actual machine learning backend, and could simply use the

blocks to generate music at will.

The implementation of each of these blocks will be covered in Chapter 5.

4.3 Backend Library Research

After designing the Scratch block functionality needed, more research was conducted

on existing backend JavaScript libraries that could be used in Scratch in order to

minimize redundant work. A few crucial libraries were found that were used in the

Scratch backend and allowed higher-quality, quicker development of the blocks. It

was also necessary to get familiar with Scratch’s current functionality, and determin-

ing how to use the existing functions in the machine audition extension’s backend.

Namely, it was decided to utilize the Scratch Pen extension as the main backend for

visualization, such that it could be used to write wrapper functions to provide plots

39

and sheet music given a music data structure. The Scratch Music extension was used

as inspiration for the Music Creation blocks, to recreate a similar backend that also

added new functionality and different data storage such that it would both accom-

plish the machine audition education goals, as well as offer a more optimal way of

representing data for the functionality needed.

Various DSP libraries were also researched for the signal processing portion of the

Scratch blocks, but it was determined that it would be better to do this manually. This

was due to the fact that DSP libraries are meant to analyze real-world signals, and will

introduce various artifacts that are a result of sampling rates, real-world noise, finite

signal discontinuities, etc. Because it was important not to confuse students with

these concepts, the signal processing functions were designed from scratch to perform

an "ideal" signal analysis, such that each frequency was represented as a perfect

delta in frequency domain rather than having any artifacts of real-world signals.

This would allow students to focus more on the theory behind signal processing and

understanding music, as opposed to learning about all the different ways signals can

change in the real world.

4.4 Scratch Asset Design

Because this curriculum was targeted at middle schoolers, it was important to ensure

that the visuals and storyline behind the curriculum was engaging for the target

age group. As such, the curriculum was designed to follow a character’s story, and

build out a backstory that would guide the students along the curriculum, providing

context and engaging stories as well as attention-grabbing badges as they completed

different modules and activities. This was made possible by a freelance designer who

also designed the assets for the Sight of AI Curriculum. We were able to come up

with a fitting character and robot companion to build the curriculum around.

The curriculum ended up with a character named Lucas and a robot companion

named Audii, who captured the concept of machine audition through his design. We

see a visual of Lucas and Audii in Figure 4-1.

40

Figure 4-1: Lucas and Audii.

These characters are used throughout the curriculum, with the backstory that

Audii was discovered by Lucas in an old abandoned warehouse. As students progress

through the curriculum, Lucas and Audii gain new knowledge and skills, as they each

understand their own senses of hearing, human and machine.

41

42

Chapter 5

Implementation

This chapter covers the implementation of the Scratch blocks for the machine audition

curriculum. The blocks were added as an extension to Scratch, written in JavaScript.

The blocks are divided into four categories that share a backend to maintain real-

time concurrency. The blocks fit into either music analysis, music creation, music

visualization, or music accompaniment. First, this chapter will explain the structure

of the code as a whole and how these sections interacted with each other before

describing the backend implementation and system architecture of each individual

section.

Two different types of Scratch blocks were implemented in this extension – com-

mand blocks and reporter blocks. Command blocks are primarily utilized in cases

where the user is modifying or creating new functionality, while reporter blocks pro-

vide users with information that has already been stored, and do not directly alter

the code.

5.1 System Architecture

The Scratch blocks created all share the same backend and data structures, in order

to ensure that the blocks maintain the same information in real-time. It is important

for students to be able to create music that allows them to modify instruments and

volume before adding a note with the properties they selected. They also needed to

43

be able to view the properties they had selected at any given time, so these variables

needed to be stored separately from the music the user was creating. Finally, it

needed to be ensured that any music that was created with machine learning could

also be added to the music the user had added and played in the same way. Both

the music creation and accompaniment results then needed to be shared with the

visualization backend, so students could analyze their own creations. This resulted

in two separate system architectures – one combines music creation, visualization,

and accompaniment, while music analysis was a separate system since it did not have

any information overlap. This chapter will break down both of these systems in the

following sections – first Music Analysis in its free-standing form, and then how the

other three modules were structured and how they worked together.

5.2 Music Analysis

In this set of blocks, students need to learn intuitively how to hear the difference in

signal properties. The goal is to give them the opportunity to compare two mystery

sound files, each playing one note each, and ask Scratch about the properties of

each sound file. For example, students should be able to ask which of the two files

is louder, which is higher in pitch, and what instrument is being played in either.

To do this, the backend needed to be able to play and analyze both files that were

requested by the user, as well as update reporter variables as to which was louder,

higher, and what instrument each was, so the user could simply request an answer

to one of these questions. These blocks did not need to have the same backend as

the other categories, as they did not overlap in information. The students needed to

be given simple music examples, in order to help them begin to isolate the different

signal properties and their impact on music.

5.2.1 Music Analysis Backend

The Music Analysis blocks were intended to perform controlled comparisons between

single note sequences to allow students to explore how signals properties change the

44

music they produce. The system diagram for these blocks can be seen in Figure 5-1.

Figure 5-1: Music Analysis System Diagram.

In these blocks, a backend directory of 4 different single note files at different

instruments, volumes, and pitches for students to select from. Upon selecting a

file, students could implement a block that played the file by way of interfacing

with a player that had access to each of the backend files. Students could also use

the comparison block and select two mystery files from the dropdown to compare,

at which point they could toggle reporters for the instruments played, as well as

which was louder or higher. The way these properties are determined can be seen in

the system diagram above – because they were premade files, the code could store

premade answers for each of these blocks. Every time a student ran a new comparison

block, the backend would update each of the reporter variables, so that they could

be updated in the user’s view. Figure 5-2 displays the Scratch blocks, as well as the

45

Figure 5-2: Music Analysis Blocks and Reporters.

reporters that are toggled on and the resulting answers that appear in Scratch.

See Appendix A.4 for a full table of the Music Analysis blocks.

5.3 Music Creation, Accompaniment, and Visualiza-

tion

The music creation, accompaniment, and visualization blocks all needed to share in-

formation such that the blocks would all have updated music as the user changed and

added to their music. In the next few sections, each of these systems are explained

conceptually, before going into the backend of each. It will then be explained how

these systems communicated information to each other as well, and how system up-

dates were optimized to be as infrequent as possible while still maintaining consistent

information across all subsystems.

5.4 Music Creation

In this set of blocks, students needed to be able to create music by adding notes in

a sequence, and change the volume and instrument that is playing each note. To do

this, the extension needed a way to store the music the user has added so far, as well

as keep track of what the volume and instrument settings were when each note was

46

selected. This way, it would be ensured that each selected note would be played at the

correct volume and by the correct instrument. Students also needed to be provided

with a way to clear their music and start from scratch. Finally, students had to be

able to see what the current volume and instrument choices were so they could know

whether they needed to make a change with a set volume or set instrument block.

This would allow for better usability, and lower redundancy in users’ code.

5.4.1 Music Creation Backend

Music Creation is the foundation for both music accompaniment and visualization.

Figure 5-3 shows a system diagram of the music creation subsystem.

Figure 5-3: Music Creation System Diagram.

A few important variables are kept track of here: the note list is used to build

up the music the user has created so far, and the volume and instrument variables

47

are used to create notes with the correct properties as the user adds them. Users

can update these two variables with dropdown menus, and set volumes in terms of

dynamic markings (fortissimo, pianissimo, etc.) as well as select from a chosen list of

instrument options. This will then update the volume and instrument to use for every

subsequent note the user plays. The user can then use the play note block to select

new notes – this will display a virtual piano dropdown that the user can play notes

on before making their selection. From here, the Scratch block will simply append

to the note list a tuple that consists of the note frequency the user selected, the note

duration that they gave in beats, the current instrument, and the current volume. It

will also play the note that has been selected by the user in the correct volume and

instrument when they click the Scratch block. When the user presses the reset music

block, the note list is emptied and ready to build new music. When the user presses

play on the blocks, the note list will be used to synthesize the music. This is done

by using the Scratch Music backend in order to play the correct instruments at the

correct durations, pitches, and volume.

Two reporter blocks are also included – current volume and current instrument.

These allow the user to see what the last selected instrument and volume were, such

that they can easily check what volume and instrument any new notes will be played

as, so they can then change them if needed. This supports larger scale music creation

and allows users to work more efficiently.

In Figure 5-4 a visual is shown of each of these Music Creation Scratch blocks,

as well as the reporters that are included for users to keep track of instrument and

volume choices.

A list of music creation Scratch blocks can be seen in Appendix A.3.

5.5 Music Accompaniment

This set of blocks was simply meant to interface with Google Magenta. The goal

was to give students the option to randomly generate entirely new music, or auto-

complete music they had already created, or accompany the music they had created.

48

Figure 5-4: Music Creation Blocks and Reporters.

It was also important for students to be able to see visualizations for this created

music, and integrate it with their manually created music if possible. Thus, the

music accompaniment blocks also needed to see the same data structures as music

creation so they could add to the same music, and it also needed to be handed off

to music visualization so students could see what their music looked like with the

visualization blocks.

5.5.1 Music Accompaniment Backend

The music accompaniment blocks give users the ability to generate, complete, or

accompany music. Users are given the ability to modify the length of music that is

created, as well as the temperature, or how quickly the notes change in the music.

The system diagram for this system can be seen in Figure 5-5.

When Magenta is called, it is able to return and play the music that it created

from the inputs that the user provided. If the user is using the generation block, the

created music note list is rest to turn into the Magenta output. If the user chooses to

complete their music, the Magenta output simply gets added to the already existing

note list. This Magenta music can then be played once the code has finished running,

49

Figure 5-5: Music Accompaniment System Diagram.

and users can listen to their new generated music the same way they do in the music

creation subsystem.

Figure 5-6 shows a visual of each of these Music Accompaniment Scratch blocks.

Figure 5-6: Music Accompaniment Blocks.

50

An example of the Magenta music generation block can be seen in Figures 5-7 and

5-8.

Figure 5-7: Music Generation Sheet Music Visualization.

Figure 5-8: Music Generation Spectrogram Visualization.

An example of the Magenta music completion block can be seen in Figures 5-9

and 5-10.

Figure 5-9: Music Completion Sheet Music Visualization.

51

Figure 5-10: Music Completion Spectrogram Visualization.

A list of music accompaniment Scratch blocks can be seen in Appendix A.5.

5.6 Music Visualization

In order to support all of the ways to view music, it was important to allow students

to see a waveform, Fourier transform, spectrogram, and sheet music visualization for

any music they had created either manually or through machine learning with the

Google Magenta backend. To do this, the visualization blocks needed access to the

music creation data structures in real-time, such that they could visualize the music

the user had created correctly. Each visualization also needed to restructure the note

sequence in a different way based on how it used the information. For example,

sheet music visualizations needed to know the note conversion from a piano key to

a note name, and durations needed to be converted to a note type (quarter, eighth,

whole, etc.). Spectrograms, on the other hand, required a Fourier transform given

the instrument that was playing the note, and this then needed to be converted into

a sequence of frequencies over time to be plotted. Music visualization also needed to

incorporate the music accompaniment results as well, if the student had generated

their music or added to it with Google Magenta. Each of the four visualizations is

explained in depth below.

52

5.6.1 Music Visualization Backend

With the music creation and accompaniment done, the music lists now needed to be

represented in four different ways: waveform, Fourier transform, spectrogram, and

sheet music. The system diagram for the music visualization backend can be seen in

Figure 5-11.

Figure 5-11: Music Visualization System Diagram.

There is a fair amount of overlap between the visualization types that Scratch

provides. These are broken down separately, noting the overlaps throughout.

Waveform

The waveform visualization plotted a time-domain signal that represented the music

the user had selected. To do this, the note list first needs to be converted into

a series of frequencies, number of samples, and an amplitude. Each piano key is

53

converted to its frequency value in Hz, and the duration in seconds is converted to

a number of samples such that the resulting graph will look continuous. To do this,

every duration was multiplied by 10000, essentially aiming to have 10000 samples

per second. Finally, the amplitude was simply a scale factor where 1 was fortissimo,

and 0.1 was pianissimo, and the values in between followed a log scale to reflect

the human hearing range. Once these values had been found, for each note, the

code looped through the number of samples, and computed the value that would

correspond to its fundamental frequency, according to Equation 5.1.

𝑥[𝑛] = sin(Ω𝑛) (5.1)

Here Ω is defined to be the corresponding frequency found, and n is the sample

being plotted. This creates a simplified wave that is still visible by the user in Scratch

once it is plotted, and makes it easy for users to determine how long the period is.

They are still able to see where frequencies go higher vs. lower, and when amplitudes

increase or decrease. Finally, the harmonic frequencies need to be added. The code

has stored a dictionary for each instruments’ higher harmonic content, where the

harmonic multiples have been mapped to an intensity. This is then used to build up

on the original fundamental frequency with an equation that looks closer to Equation

5.2, and mimics a simplified Fourier synthesis equation.

𝑥[𝑛] =
∑︁
𝑘

ℎ[𝑘] sin(Ω𝑘𝑛) (5.2)

Here h[k] is defined as the harmonic intensity, and k is the harmonic multiple

itself. This builds up a waveform that has the correct fundamental frequency, and

showcases each instruments’ unique wave shape.

Once the code has all of these samples, the result is a list of sample indices and

sample values. Plotting can then be implemented to put each of these on a graph in

Scratch. Care is also taken to change the line color every time a switch is made to a

new frequency in order to ensure students can make out the differences. If a frequency

is repeated, it is plotted in the same color as all other portions of the wave that were

54

the same frequency. The frequencies are labeled in a legend in the upper right corner,

so students can know what note made each frequency. Finally, the graph is labeled

as a waveform visualization, and the axes are labeled as sample versus amplitude.

A visual of the Scratch waveform can be seen in Figure 5-12.

Figure 5-12: Waveform Visualization.

The waveform has a few constraints – first, it can only visualize 4-5 notes at a

time. This is due to the fact that adding more notes would make the graph cover too

much time, and it would become increasingly difficult to make it visually look like it

had different frequencies. It is proposed that if a user needs to see more music than

just 4-5 notes, they could switch to a more space-efficient representation, like sheet

music or spectrograms, both of which do not need to sample a large amount of the

signal to show any useful information.

Fourier Transform

To do a Fourier transform, a modified, simpler version was implemented in order

to reduce any artifacts that would be seen from a real Fourier transform. Firstly,

the frequency values themselves were immediately converted to a value in Hz that

would represent the fundamental frequency. From here,the backend data structure

55

that stores each instruments’ harmonic values and intensities was used to generate

the harmonic information for each note, scaled by the fundamental frequency being

played. The code was then able to plot an XY axis where the X represented the

frequency, and the Y represented the intensity. The same plotting backend as the

waveform was then used in order to plot a discrete stem plot of points that repre-

sented these frequency/intensity pairs. If there were multiple notes that had the same

frequency, the intensities for those frequencies added, since this is what would happen

in an ideal scenario where windowing and finite-length signals would not contribute

to artifacts and potential aliasing.

A visual of the Scratch Fourier transform can be seen in Figure 5-13.

Figure 5-13: Fourier Transform Visualization.

The Fourier transform is limited in that it does not currently have color coding.

This makes it difficult to tell what frequency is coming from a fundamental versus a

harmonic frequency. This could be changed such that fundamentals would have one

color while harmonics had another, or fundamentals were color coded to match their

harmonics. It is also lacking in a legend that could help students better understand

what frequencies they were seeing in this graph.

56

Spectrogram

The spectrogram followed closely from the Fourier transform, however, it also needed

to keep track of timestep information. For each note, the code is able to extract the

fundamental and harmonic frequencies by the same method as seen in the Fourier

Transform visualization. However, it also keeps track of the start and end time in

beats of each of these notes. From here, the spectrogram is plotted on an XY axis,

where the X axis represents time, the Y axis represents frequency, and the intensity is

shown as a color value where dark blue is 0 intensity, and yellow is highest intensity.

The spectrogram is then plotted such that the entire background is painted dark blue,

and each frequency is represented as a horizontal yellow line at the corresponding Y

value, stretching from the start to end time value. This two-toned graph does not

represent a spectrogram for a more complicated, real-world signal, as it would end

up with more smearing and variety of color in a real-world signal. However, this

simplification allows students to gather the information they need without being

overwhelmed by the artifacts caused in the real world.

A visual of the Scratch spectrogram can be seen in Figure 5-14.

Figure 5-14: Spectrogram Visualization.

The spectrogram was less limited than other visualizations, since it maintained

57

the time information, did not require a lot of space for each note, and was also

able to preserve higher harmonic information so students could see when instruments

changed, versus when the note itself changed. It could use more labeling to explain to

students what each frequency represents, but otherwise preserves accurate and easy

to read information.

Sheet Music

Finally, sheet music was implemented for this project. To create this, the note list first

had to be converted once more. Here, the piano notes were mapped to a corresponding

place on the grand staff, where it was noted whether the note was in treble or bass

clef, and then what spacing it would fit on (0 being just below the bottom line, 1

being intersected by the first staff line, etc.) The code had to map which note type

each duration would get (whole, half, quarter, etc.) based on the number of beats the

user had selected. Once this was done, the grand staff lines were drawn by simply

creating the set of 2 staffs, 5 lines each, to represent the grand staff. The code also

used data points to construct a treble and a bass clef, as well as a time signature

that was made common time as default. From here, each note that had been played

in the music was plotted on the sheet music in its corresponding note type. This

implementation also dynamically kept track of how many beats had been used, and

when it hit 4 beats, drew a measure bar. If a note was too long to fit into the measure,

ties were employed to split up the note length into two, such that the first half would

be the end of one measure and the second half would be the beginning of the next

measure. The music also included dynamic markings for each note, writing out the

music term for the volume that the user had chosen every time it switched from a

previous setting. The code also ensured appropriate rests in the opposing clef rather

than leaving the other clef empty.

A visual of the Scratch sheet music can be seen in Figure 5-15.

The sheet music could have a few more changes made to it to improve – first,

there can be more dynamic rearranging of rests such that the rest durations will add

up if there are multiple right after each other. Furthermore, more support should be

58

Figure 5-15: Sheet Music Visualization.

added for more complicated note ties, as currently this can only support ties up to

eighth note duration. Support could also be expanded for different time signatures.

Otherwise, the sheet music is performing well as is.

The visualization blocks can be seen in Figure 5-16.

Figure 5-16: Music Visualization Blocks.

A list of all of the music visualization Scratch blocks and their functions can be

seen in Appendix A.2.

59

5.6.2 Plotting and Text Implementation

Two main contributions to Scratch that this project provided were plotting, as well

as text rendering. Here the backend for both of these systems is broken down, as well

as how they were integrated into the Machine Audition extension.

Plotting Implementation

Implementing plotting was one of the biggest challenges of this project. Scratch prior

to this project did not have plotting capabilities, so an entire framework for plotting

was written within Scratch for this project. A system diagram for plotting can be

seen in Figure 5-17.

Figure 5-17: Plotting Backend System Diagram.

The plotting backend primarily used the Scratch Pen extension to do this. The

code had tie a pen to an invisible sprite, and use the backend pen controls as well as

60

the sprite movements to create functions that would draw things like axes, legends,

continuous and stem plots, and sheet music. The pen extension was used to control

the color of the lines, as well as whether the pen was up or down (writing or not).

It then had to use the sprite movement controls in the backend such that the sprite

would follow the path of the pen, creating the drawings needed. In the future, plotting

would be separated from Sprite movement, but currently Scratch does not support

this.

In order to implement plotting, an input list of (x, y) coordinates was used,

which had been post-processed from a note list data structure. This ensured that

the plotting function itself was normalized to work for any set of data. From here,

the values were normalized on the x and y axes such that the values would fill up the

entire space of the graph. Once had this new list of data points was created, the code

needed to follow a loop over the data points to make sure to raise the pen, set a new

XY, and lower the pen, before drawing a connecting line to a new point by setting

a new XY again. This loop then created the axes, the axis labels, and the plotted

points that were displayed by Scratch.

A legend was also implemented – this was useful for the waveform visualization

in particular. A user could specify the label they wanted, as well as the color they

wanted for each label, and Scratch would create a white box with black outline labeled

’Legend’ in the top right corner. From here, it would use the pen extension to draw

a square of each color the user had requested, and use the text rendering backend to

write the label next to each. These colors were then used in waveform visualization

to ensure that the plot changed colors when the frequency changed, as this was how

it was made easier for users to tell the different frequencies apart. This could also

be added to the Fourier Transform visualization such that users could keep track of

fundamental vs. harmonic frequencies better.

This was used for the waveform, Fourier transform, and spectrogram visualiza-

tions. Separate functions were written for the actual content of each plot, as the

process varied for each. A separate initializing function was created for sheet music,

as it needed to include staff lines, as well as the clefs, notes, and dynamic mark-

61

ings, which were all implemented through text rendering. Overall, it was possible

to combine the axis creation for Fourier Transform and spectrogram, and the plot-

ting functionality for waveform, spectrogram, and fourier transform depending on the

different types of plots wanted, but the different visualizations branched off from here.

Text Rendering Implementation

Text rendering was the next important contribution to Scratch. This method was

used not only for text and labeling visualizations, but also for creating all of the

symbols in the sheet music (different notes, clefs, dynamic markings, rests, etc.). A

system diagram of the text rendering backend can be seen in Figure 5-18.

Figure 5-18: Text Rendering Backend System Diagram.

The text rendering utilizes a file that stores the names of different characters,

and maps them to a list of normalized data points such that they are all the same

62

height, and the first point always starts at the bottom left corner of the character.

The width of the character is also stored so that the code knows much space to

skip before drawing the next character, in order to ensure uniform spacing between

characters. This file is then used to call a function to write a string, such that the

function receives a string to write, and for each character in the string, the data

points that correspond are looked up, as well as the spacing. The function is also

given a starting position, (x, y), as well as a size scaling factor. This is then used to

create a full datapoint set that will then be traced with the Pen extension in order to

create the string. From here, the pre-existing Scratch Pen extension is used, which

has a penUp() and penDown() function, to decide whether the cursor will write or

not. The code then uses the util.setXY() function such that for each character, the

pen is put down starting at the initial (x, y) position, then uses setXY() for each data

point in the list after scaling it by the scale factor. The code then makes sure to call

penUp() again so there is no connection between letters. This is repeated for each

letter, skipping by the appropriate amount for each letter to make room for the next

one. This then creates the final string at the correct size and in the correct location.

5.7 Music Creation, Accompaniment, and Visualiza-

tion Integration

Because music creation, accompaniment, and visualization all utilize the same data

structures, some design thought needed to go into ensuring that all information would

stay correctly updated. The goal was to complete as few updates as possible while

still maintaining concurrent information. These three subsystems shared, volume, in-

strument, and note list information, so it was important to ensure that these variables

remained consistent throughout.

The note list was shared between each of these libraries, as it was necessary

to keep them all updated together so that visualizations would match the music

and vice versa. It was also important to transfer knowledge about the instruments

63

and volumes chosen at any given point so that this information would also stay

consistent throughout. As music creation updated music, this new data would be

sent to visualization and accompaniment as the user called blocks from those sections.

This also followed for any other transfer between block subsystems – the code did

not update any other subsystem until the user called a block in a new system, and

then it made sure to do all of the data transfer before the new system could make

any changes to anything, in order to ensure it was working with the most updated

states. Each time a block using note list was called, the original note list stored in

music creation was sent along, so the other subsystems could update as necessary.

64

Chapter 6

Evaluation

The Machine Audition curriculum and accompanying Scratch blocks were used in two

different middle school pilots. The goal was to evaluate our curriculum and Scratch

blocks based on the original goals set for the project:

1. Create a Scratch extension for use in a Machine Audition Curriculum that can

support signal analysis and visualization, and music creation and accompani-

ment.

2. Interface with Machine Audition Curriculum to create interactive, educational

activities that can be done using the Scratch blocks created.

3. Support middle-school students in learning about machine audition.

In order to evaluate these goals, it was necessary to separately evaluate both the

usability of the Scratch blocks on their own, as well as how well they facilitated the

discussion around the machine audition curriculum. It was also important to ensure

that students had learned about the signals properties that had been discussed, and

that the Scratch blocks had enabled them to understand them better.

Two iterations of the curriculum were piloted to evaluate these goals – the first

was a part of a FutureMakers workshop held in March 2021 over students’ spring

break over Zoom. This pilot had students ranging from 5th to 11th grade. A new

iteration was then piloted in June with the Advanced Math and Science Academy

65

Charter School (AMSA), with two 8th grade classes. This chapter will describe the

pilot methodologies, the evaluation assessments created to gauge the material being

piloted, and the findings that came of both pilots.

6.1 Future Makers Spring Break Pilot

The Future Makers pilot occurred over one week, in 3 hour blocks each day. This was

conducted entirely over Zoom, and consisted of students from 5th to 11th grade.

6.1.1 Methodology

The Future Makers pilot was fully remote and lasted a week. Each day consisted of

two 90 minute sessions, separated by an hour lunch break. The youngest students

were in 5th grade, while the oldest was in 11th grade. Each day only 2-3 students

were in attendance, and no student was able to attend every day of the week. In that

time, the pilot was able to cover Modules 1 and 2 of the curriculum over this week:

Audition Overview and Signals (Pressure Waves). At the beginning of each module,

students were given a pre-assessment to gauge their prior knowledge of the material.

From here, the pilot followed a Zoom lecture format, with a screenshare of the slides

for each module. This was accompanied by supplementary videos to explain more

abstract concepts, as well as discussions every so often to help students test their

understanding of the material thus far. At the end of each module, a post-assessment

was given, which was the exact same questions as the pre-assessment, in order to

compare what students had learned. It took about 2 days to get through Module 1,

before the Wednesday session had to be cancelled due to low attendance. The students

then were able to get through a portion of Module 2 on Thursday and Friday, but

were not able to introduce any Scratch activities. Thus, the pre- and post-assessments

were given for both modules, but only the amplitude and pitch portions of module 2

were taught, not harmonic frequencies. Furthermore, no student took both the pre-

and post-assessment for the same module. A table detailing the schedule of this pilot

can be seen in Table A.6.

66

The evaluation assessment used for this pilot can be seen in Figure B-6.

6.1.2 Results

As mentioned before, this pilot ended up being inconclusive. Not only were students

in and out during the pilot due to other obligations, the group also had a much too

wide age range to keep everyone engaged. Because the pilot ran over spring break,

the program was fairly relaxed and led to poor attendance. It was discovered that the

5th graders were struggling with filling out the Google forms that had been provided,

and were often needing much more time than anticipated just to fill them out.

Only three data points were gathered for the signals module pre-assessment of the

curriculum. When asked the four questions in Figure B-6, students were also asked

to give explanations for their answers, which were then used to determine if students

had truly grasped the curriculum material. Students were able to get the amplitude

question right 100%, and were also able to cite the height of the wave as the reason.

However, the frequency question was answered correctly by only 2 of the 3 students,

but both of those students were able to explain the reason why. The third student

conflated amplitude and frequency, saying "The blue one is a little bit higher," as

their reasoning for why they chose D4 instead of the correct answer, C5.

None of the students were able to answer the fundamental frequency question

correctly. Two students wrote that they did not know the answer in the explanation

box, while the third wrote "It’s not intense,", for their choice, citing the height of the

frequency value rather than looking for the lowest frequency on the X axis.

Finally, students were also not able to answer the question relating to higher har-

monics, and being able to determine whether the two graphs represented instruments

playing the same note. Students cited reasons such as "the bass has some missing

notes," showing that they were not able to identify the properties of fundamental

versus harmonic frequencies.

By the end of the module, the students that had answered the pre-assessment were

not in attendance, and the students who were in attendance were not able to fill out

the form. Thus, it was not possible to make any conclusions about the effectiveness

67

of this curriculum from the Future Makers pilot.

6.1.3 Future Maker Conclusions

This pilot resulted in a new understanding of the target audience for the curriculum.

It was concluded that 5th graders were too young, as they lacked the ability to think

about abstract concepts such as audio waves and signal processing. On the other end,

it was determined that although the high schoolers were interested in the material,

the way the lessons were presented was a bit too juvenile for them. The high schoolers

also ended up spending a lot of time waiting, while the younger students took more

time to complete the same activities. Thus, it was concluded that the optimal age

range for this curriculum was 6th to 8th graders. This knowledge of a new age range

allowed another pilot to be set up with the 8th grade class at AMSA.

As far as feedback for the actual curriculum content and Scratch, the results

unfortunately did not yield much information. This was due to the fact that there

were not enough data points to come to any general conclusions, and the students were

also not able to get through enough of the material. No student was in attendance

for both the pre- and post-assessment of any module, so no useful data could be

gathered about the knowledge gained from the lessons. The students also were not

able to get through any Scratch activities, which meant there was no feedback about

their usability or educational ability.

6.2 AMSA Pilot

6.2.1 Methodology

The AMSA pilot was conducted over the course of 2 weeks. 2 different class sessions

piloted the curriculum, both with the same teacher in a computer science class at

AMSA. Each class met twice for the pilot, for a total of 2.5 hours. During the first

session, the students filled out a pre-assessment and then went through Module 1 of

the curriculum. They also went through the early stages of Module 2, so that the

68

next lesson could be interactive Scratch activities instead of lecturing. During the

second session, students were able to complete a more interactive session in which

they went through the first 2 Scratch activities that had been designed. This allowed

for a chance to assess the usability of the blocks, as well as how much they impacted

students’ learning. The students then completed the post-assessment for modules 1

and 2. This pilot resulted in 11 valid data points, all of which completed both the

pre- and post- assessments for both modules.

A schedule for this pilot can be seen in Table A.7.

6.2.2 Results

In the AMSA pilot, significantly more material and activities were covered compared

to the previous iteration. This pilot provided valid data points to assess the ability

of the curriculum to teach students about signals and machine audition. First, the

students were able to cover the entirety of Modules 1 and 2, and user test some of the

Scratch activities. A significant amount of data was also collected from the students,

and everyone filled out the pre- and post-assessments given, resulting in valid data

points for comparison. A full table of student correctness scores over the course of

the pilot can be found in Table A.8.

Amplitude

The assessment questions for amplitude can be seen in Figure B-7.

In the first pre-assessment amplitude question, the two signals have the same

frequency, and only differ in amplitude. 18 students, or 78% of the class, were correctly

able to identify the higher amplitude signal. All of the students that got the question

correct were able to identify that this was due to the height of the waveform. Of the

students who answered incorrectly, 3 conflated amplitude and frequency, incorrectly

citing higher frequency contributing to higher volume. This was incorrect both due

to the conflation of the properties, as well as the fact that the signals were both the

same frequency. The remainder of the students explained that they had guessed. In

69

the same post-assessment amplitude question, all 23 students were correctly able to

identify the higher volume signal. They were all further able to explain the property

that contributed to this in their answer.

In the second pre-assessment question, the correct higher volume signal also had

a lower frequency. This question was designed to catch students’ confusion between

amplitude and frequency signal properties. In the pre-assessment, 14 students, or 60%

of the class, were correctly able to identify the higher amplitude signal. Every student

who got this question wrong cited the higher frequency contributing to higher volume.

In the post-assessment, all 23 students, or 100% of the class, got this question correct.

The students also all correctly cited the amplitude as contributing to volume. This

was a significant discovery, showing that over the course of the curriculum, students

were successfully able to separate the amplitude and frequency properties of a signal,

and understand that just the height of a wave contributed to the volume of the music.

Frequency

The assessment questions for frequency can be seen in Figure B-8.

In the pre-assessment for frequency, the first question followed a similar structure

to the first question in amplitude. These two signals did not differ in amplitude,

and only differed in frequency. Initially, 19 students, or 82% of the class, were able

to answer this question correctly. Of the students who answered incorrectly, 3 had

the relationship backwards, citing longer wavelengths to mean higher frequency. The

remaining student did not know. In the same post-assessment question, 100% of the

class was able to answer correctly. Furthermore, every student was able to correctly

explain that this was due to the shorter period of the wave.

In the second pre-assessment question, the signals were deliberately designed such

that one signal had a higher frequency, but lower amplitude, and vice versa. This

was again meant to test for conflation of signal properties. Initially, 20 students,

or 86% of the class, answered this correctly. All of the students who were incorrect

cited the wrong property, claiming that the higher amplitude meant that the signal

was higher frequency. In the post-assessment, again, 100% of the class was able

70

to answer correctly and cite the correct signal property as explanation. From this,

it was possible to again conclude that the frequency module of the curriculum was

successfully able to teach students how to identify frequency properties of a signal.

Harmonic Frequencies

The assessment question for harmonic frequencies can be seen in Figure B-9.

Both of the frequency plots shown are playing the same note, as can be seen by

the matching fundamental frequency value at 400. In the pre-assessment for this

question, however, only 6 students, or 26% of the class, were able to correctly answer.

Of the students who were correct, only 2 cited the fundamental frequency matches to

be the reason. The rest of the students incorrectly cited the fact that there was the

same number of frequencies, or that the frequency values all matched. Of the students

who answered incorrectly, most said that they were not the same note because the

graphs were not exactly the same, and a handful of students did not know.

In the post-assessment question, there was not much improvement. Only 7 stu-

dents, or 30%, answered correctly. Of those students, only 3 were able to cite the

fundamental frequency, while the others again cited the location of all of the frequen-

cies present. The students who got the question wrong again claimed this was due to

the fact that it was not the exact same graph.

Unfortunately, this concluded that the timbre and higher harmonics module of

the curriculum was not successful. By the end of the pilot, students were not able

to identify the difference between fundamental and harmonic frequencies visually.

Although they were able to think critically about the placement of the frequencies,

they could not determine that the lowest frequency was related to pitch, while the

higher harmonics were related to timbre.

Scratch Interactions

The AMSA pilot allowed for the testing of 2 Scratch activities with the students:

Know Your Dynamics and Making Melodies. This gave the opportunity to see how

usable the blocks were, as well as how much they were able to aid in students’ un-

71

derstanding of the curriculum. As the students worked in Scratch, it was possible to

see that they could easily begin using the blocks and understand their functions, and

it was not found that users were getting stuck on the actual implementation of their

Scratch projects. In the Know Your Dynamics activity, students worked in groups to

make their secret volume-varying music, before showing students their visualization

and having students recreate it. The students split up into 3 groups of 4 per section.

In both sections it was possible to see that every student was able to guess the correct

amplitude order relatively. For example, if the original signal started at fortissimo

and then went down to mezzo-piano, even if students did not guess these exact vol-

umes, they were still able to conclude that the volume had lowered relatively. This

happened across the board, and it was observed that there was a 100% accuracy rate

for relative volume answers. The students were also all able to create their music in

just a few minutes, and come up with their answers in a similar amount of time. This

showed that the activity was easy to use, and did not get students stuck trying to

figure out the workflow.

Making Melodies was a bit more difficult for the students. It is believed that this

activity introduced too many music terms, and needed to be much simpler. This

activity did allow students the opportunity to create music, and they did not struggle

to utilize the blocks. They were given a few minutes per music creation, and were able

to create something in that time. However, students really struggled to understand

major and minor scales, as well as the intervals that were discussed in the lesson.

This was where all of the questions came from, showing that the biggest challenge

with this activity was the music terminology. However, students were able to create

and analyze their music, and make sense of the relative changes in frequency in the

waveform visualization as they modified their music.

6.2.3 Conclusions

Firstly, the second pilot showed definitively that this curriculum is long and difficult

to get through in shorter periods of time. Students were only able to get through

Modules 1 and 2 in 3 hours, and were not able to do all of the associated Scratch

72

activities in that time. In the future, it would be necessary to allocate 3-4 times

this amount of time to the curriculum in order to possibly get through the entire

curriculum. This might mean that the optimal curriculum timeline would be the 3

hours a day schedule that was attempted in FutureMakers, but with an older group

of students that would progress through the curriculum faster. Alternatively, this

curriculum may need to be broken up into smaller sections, perhaps first covering

signals in one curriculum, before a separate curriculum that would then cover the

machine learning portions of this curriculum.

From the material students were able to get through, the section that needed

rethinking was the connection from timbre to higher harmonics. The instructors were

able to go over the baseline information, but did not end up intuitively explaining to

the students how to determine the difference between fundamental frequencies and

harmonic frequencies. This might have been partially due to not doing the Scratch

activity that related to it, so in the future more data would be needed from the activity

before being able to definitively conclude what needed to change in the lesson plan.

6.3 Summary

6.3.1 Findings

During these two pilots, it was possible to determine that the optimal target audi-

ence for the curriculum was 6th to 8th graders. It was also found that students were

able to use the Scratch blocks effectively, and were able to understand their function

intuitively. They were able to engage in the activities provided for them in Scratch

with ease, and were clearly utilizing the lessons presented in their discussions around

the Scratch blocks. The students also displayed a newfound strong understanding

of the relationship between amplitude and volume, as well as fundamental frequency

and pitch, by the end of the curriculum. They also remained engaged and in discus-

sions every time they were asked questions, and generally were answering correctly

when called on. This showed that the curriculum itself was maintaining student’s

73

engagement, and they were showing an interest in the way the content was being

presented.

6.3.2 Limitations

One of the main elements of Module 2 that students seemed unable to grasp after

the curriculum pilots was timbre and higher harmonics. Although students were able

to understand that timbre was caused by the higher harmonics of a signal, they were

unable to differentiate between fundamental and harmonic frequencies on a Fourier

transform plot or a spectrogram. Furthermore, students did not have as much time as

needed with curriculum. This meant it was not possible to pilot some of the Scratch

activities, and some blocks unfortunately went untested.

74

Chapter 7

Future Work

The limitations of COVID as well as the 2 semester timeline made it clear that more

work could have been done to improve the Machine Audition curriculum and its

Scratch blocks. It was also discovered through further data in the pilots that there

are various areas where the Scratch blocks could be made more intuitive or more

engaging, or simply have more widespread use cases. This chapter breaks down all

the future work that can be done primarily on the Scratch blocks themselves as a tool

for future iterations of the machine audition curriculum as well as for independent

creative use.

7.1 Music Creation

As is, the machine audition Scratch blocks have some limitations that make it difficult

to create more complicated music. First, in future iterations the Scratch blocks should

be extended to support simultaneous note playing. Currently, the backend player is

only able to handle one note at a time, and running multiple players at once introduces

concurrency issues that stop the player entirely. It is important to modify this such

that multiple players can be running at once in order to play multiple notes at the

same time, as this will significantly expand the variety of music that students can

create with these Scratch blocks. This would also pave the way for the inclusion of

chords as input, such that students could simply use a block that allowed them to

75

give a multi-note chord name, and they could include that in their music without

having to choose each individual note of the chord. That chord could then be played

with all notes simultaneously with the support of a threadsafe player. Furthermore, it

would be important to support multiple instruments playing at the same time as well,

so that each of these music parts can be played by different instruments in order to

introduce more full orchestra music for students to create. Currently, if two different

instruments are selected concurrently, the block that was selected slightly later will

be chosen for both.

Furthermore, the current method of adding notes to a song is somewhat tedious,

as it requires a separate Scratch block for each note that a student wants to add.

It would be interesting and engaging to include a recording feature, where students

could play a virtual piano while it was recording their melodies, and this would then

be transcribed in the backend into a note list, or turned into a series of Scratch blocks

that encoded the same music. This way, students could spend less time doing the

tedious work of dragging many blocks in order to create complicated music, and spend

more time working on the music itself.

Finally, the beat choices for the music creation blocks are somewhat limited cur-

rently. In the future, the beat choices could be expanded to include notes that are

shorter than 1/8th notes in order to allow for more complex, fast-paced music. The

music creation blocks could also be extended to allow students to input rests, such

that there can be pauses in their music.

7.2 Music Analysis

Currently, the Scratch blocks created can execute a simplified Fourier transform, and

plot sheet music, frequencies, spectrograms, and waveforms. All of these have all the

information necessary for students to learn the machine audition material, but can

be improved to add more support for more complicated music and education. First,

it would be helpful if the Fourier transform functionality was made more efficient

such that it could analyze longer pieces of music in a short amount of time. The

76

spectrogram can also be improved by giving students the ability to set the window

and step size for each spectrogram iteration, in order to allow them to have better

control over the time and frequency resolution of the resultant spectrogram. This

would be meant for more advanced students who have a better understanding of signal

properties and can use that information to generate a high resolution spectrogram.

Finally, it would be ideal if students could compare any two files that they give,

and not just the default ones that were given to them. As is, students are given

a choice of mystery files to ask which is louder, which is higher pitched, and what

instrument is being played in both. However, if students could do this with their

own music files, they would be more engaged in the content and the results to these

questions, and they would be able to compare a wider variety of music in order to

better understand how these properties change the sound of music.

7.3 Music Visualization

The music visualization blocks are currently able to produce clean, easy to read visu-

alizations that allow students to understand the relative differences between different

pieces of music. However, this can be improved to encode more information.

First, the labeling on all of the plots (waveform, Fourier Transform, and spec-

trogram) can be improved. As is, the labeling is simply relative, so students can

see where higher or lower frequencies exist in their music, but are unable to see the

actual frequency values. It would be important for more complicated music creation

and signals understanding to include actual frequency values in Hz on the graphs, and

also include time labels in seconds on the spectrogram and waveform visualizations.

The plots could also use better coloring, as will be discussed in more detail for each

specific visualization.

Second, the text rendering itself still has a ways to go before it is fully robust.

Currently, text is rendered by converting a string into a series of data points that

are stored in a file for each letter in the string. Thus, if a character is not in the

file yet, it cannot be rendered and will be skipped. The code should be modified

77

to first stop failing silently, and second to be more robust and support all possible

characters. Text rendering also currently uses only one font, which could be modified

with a more robust backend. This text rendering is functional and can be used to

write text anywhere on screen at any size, but it cannot change fonts, be rotated,

or include other characters that have not been manually entered into the backend.

Given more time, the text rendering should be written in a more robust way that

allows for easy changes in font, rotation, and addition of characters.

It would be helpful if overall the visualizations were able to work more in real-

time. It would be good for students to be able to see the visualizations dynamically

change as they changed instrument type, added notes, or adjusted the volume of

their music, so they could see how these things changed their music visualizations

in different ways. Currently, the visualization only updates after it plays the music

all over again, which can be a little slow, especially if the music is longer. Having it

update dynamically would help students see in real-time how their settings change

their music, and make the entire process much smoother and faster.

7.3.1 Waveform

The waveform visualization could be made more robust by generating more than 4

colors to plot notes in. Currently, because the visualization is hard to read if more

than 4 notes are included, there is no support for longer note sequences. This support

should be added regardless, or the block should actively limit users from adding more

than 4 notes, which it does not currently.

7.3.2 Fourier Transform

Currently, there is no color coding in the Fourier transform visualization, though

it would be beneficial to users to do this. If the transform visualization was color

coded such that fundamental notes were paired with their harmonics in the same

color, or such that fundamentals were labelled as one color while higher harmonics

were another, users might be able to better understand the Fourier transform graph,

78

especially since it does not retain any time information about the signal, making it

very difficult to understand once multiple notes are added to it.

7.3.3 Spectrogram

The spectrogram visualization as is runs very smoothly, but could be improved with

some more feedback from the user. For example, offering window size and step size as

adjustable parameters for the user would allow them to explore the time and frequency

resolution tradeoff. Furthermore, the spectrogram should have more specific labelling,

showing users which frequencies are fundamental vs. harmonic.

7.3.4 Sheet Music

The sheet music visualization needs more support for the kinds of notes it can convey.

First, the sheet music currently defaults to common time, and only allows students

to choose from a set list of note durations in order to limit the necessary visualization

support. In future iterations, this should be modified to include smaller note dura-

tions, and support this in the visualization. It would also be helpful if users could

select a time signature and key signature, and these could be reflected in the sheet

music visualization. Finally, the sheet music should be modified such that it will put

notes on the appropriate clef according to the instrument that is being played, rather

than the current default of placing a note where it would be written for a grand piano.

7.4 Music Accompaniment

The current machine accompaniment module of the Scratch blocks simply plugs in a

Google Magenta backend in order to either generate, complete, or accompany music

that the user has given already. This could be improved in a few ways. First, Google

Magenta is currently only able to use a piano to create the new music. It would

be helpful to determine how to interface with the library in order to change the

instrument to reflect the setting the user had selected.

79

Furthermore, the Magenta blocks currently take a substantial amount of time to

run due to the machine learning backend. Figuring out a way to optimize this such

that it had a lower latency would be very helpful in ensuring the process of music

generation was as smooth and efficient as possible.

7.5 Backend Architecture

The Scratch blocks created added some important functionality to Scratch as a whole.

In the future, it would be much easier to modularize this code such that other exten-

sions could simply use the functions created to perform the same tasks as the machine

audition blocks. First, text rendering can now be used everywhere in Scratch, but is

still located within the code for the machine audition extension. In the future, the

text functionality should be moved into a new file such that other extensions can call

it as helper functions for use in other extensions. Second, the plotting functionality

should also be moved to a separate file such that other extensions can use plotting

in their own code easily. Finally, the sheet music visualization can be used with

any music now, provided that a helper function is created to refactor the music data

structure into a format that my code can understand. In the future, plotting, sheet

music, and text rendering can all be converted into backend code that all extensions

can use, as these are the three main contributions that have been made to Scratch as

a whole.

7.6 Further Pilots

Finally, it would be important to plan more pilots in the future to cover more of

the Scratch blocks that were created. It would be helpful to try out these blocks

in more curriculum pilots, as it was only possible to test in one environment that

gave good data. It would be important to test this on a wider audience of students

with a more diverse set of skills, in order to ensure that these blocks are actually

kid-friendly and self-explanatory enough to be used by any middle school student,

80

regardless of Scratch or signals experience. More user testing is required in order

to determine whether these blocks contribute to students’ learning in the machine

audition curriculum, especially in the timbre module, as well as the final machine

audition capstone projects.

7.7 Creative Use of Scratch Blocks

In the pilots that did run, students only used the blocks in structured activities that

were premade. Thus, the most the students were able to change was selecting a new

instrument, a new volume, or adding extra notes to the music. This was helpful for

assessing the blocks’ ability to assist in students’ learning, but it did not provide much

insight into the usability of the blocks on their own. In the future, piloting a more

creative workshop where students could more freely use the blocks would be much

more helpful for understanding what the actual variety of creation these blocks offer.

This would also enable more data collection to understand what parts of the Scratch

block design is non-intuitive or tedious, so the blocks could be improved.

81

82

Chapter 8

Conclusion

8.1 Contributions

This paper shares the design process behind a machine audition curriculum targeted

at middle school students, with the goal of educating students on the differences

between human and machine audition. The curriculum focuses mainly on compu-

tational signal processing and educating students on signal properties and how they

impact music, as well as the human-AI collaboration that can help create new pieces

of music which then can be analyzed as well.

A new Scratch extension was designed and developed that allows users to create,

analyze, and computationally generate and accompany music. This involved the

ability to create music and adjust its volume and instrument type over time, visualize

these signals in many different formats to understand how the properties of signals

changed the way music sounds, and the ability to easily utilize Google Magenta to

use machine learning to generate and accompany music.

8.1.1 Scratch Contributions

Main additions to Scratch include the ability to plot time-domain graphs, as well as

Fourier transform magnitudes, spectrograms, and sheet music. These visualization

blocks can be used to plot any music file in order to better understand its properties.

83

This functionality was able to use the Scratch Pen extension in order to easily create

plots, and can now be used across Scratch as a whole to plot any dataset in the Scratch

window. The sheet music visualization can also be used with any data structures that

are properly formatted to represent music notes over time. Furthermore, Scratch

functionality was added that allows text rendering at any location on screen. This

allows for the design of future educational blocks that can create and label diagrams

for use in other curricula. Finally, a simplified digital signal processing functionality

was added to Scratch – users can now re-purpose these blocks in order to perform

an Fourier transform, or a short-time Fourier transform, and extract the frequency

content of a signal, either across the waveform in its entirety, or over time. This can

then be used with other code blocks as information or to be plotted.

8.1.2 AI Education Contributions

This project also shows significant progress made in tuning the curriculum to be

better suited to students. It was possible to determine that the curriculum was best

suited to students in 6th to 8th grade, and that any younger will not be able to

think about the abstract concept of signals as easily, while older students will not

be as engaged by the character designs and the lecture presentations that have been

designed.

It was also possible to give students the opportunity to play with the Scratch

blocks on their own in new and creative ways, and see that students were able to

easily use the Scratch blocks to generate music successfully, and they were also able

to visualize their music and understand what the plots were saying. It was also found

that the Scratch activities were able to facilitate discussion among the students as

they interacted with each other in groups, helping them solidify their understanding

of the topics at hand as they worked.

Finally, students’ learning from the curriculum was tested. It was found that the

curriculum as is currently does a good job of helping students understand frequency

and amplitude as signal properties, as well as how they impact the pitch and volume

of a sound, respectively. However, there was a point of improvement in the higher

84

harmonics and timbre lesson. Although students were able to realize that higher

harmonics impacted timbre, they were not able to identify when two different notes

were being played, versus when it was simply two instruments. This meant the

difference between fundamental frequencies and harmonic frequencies had not been

explained visually, and would need to emphasize this in spectrogram visualizations in

the future.

This project provided a powerful new Scratch extension capable of signal process-

ing, music creation, signal visualization, and computational music generation through

Google Magenta. This project was able to contribute to the Media Lab’s current AI

Education initiative, and provide an engaging, middle school curriculum that students

definitively learned from.

85

86

Appendix A

Tables

87

Block Name Functionality
Music Comparison

Volume Comparison Takes in two single-note music files, and determines the
amplitude (volume) of both

Pitch Comparison Takes in two single-note music files, and determines the
fundamental frequency (pitch) of both

Timbre Comparison Takes in two single-note music files, and determines the
harmonic frequencies (timbre) of both

Music Creation
Create New Sound File Initializes empty music storage data structure that the

user can iteratively add notes to
Set Amplitude Takes in a volume in dB, stores this in amplitude vari-

able in order to add a later note to the sound file
Set Frequency Takes in a frequency in Hz, stores this in frequency vari-

able in order to add later note to the sound file
Set Instrument Takes in an instrument name, stores this in instrument

variable in order to add a note to the sound file later
Set Duration Takes in duration in seconds, stores in duration variable

in order to add a note to the sound file later
Add Note Takes in amplitude, frequency, duration, and instrument

variables (if all filled in) and adds a note with the given
specifications to the sound file

Music Visualization
Time-Domain Signal Takes in an audio file, plots signal in time domain and

labels important features of the signal (amplitude, fun-
damental frequency, etc.)

Fourier Transform Takes in an audio file or its fast Fourier transform, plots
discrete Fourier transform and labels important aspects
(fundamental frequency vs harmonic frequencies, ampli-
tudes, etc.)

Spectrogram Takes in an audio file or its short-time fourier transform,
plots frequency over time and labels important aspects
(fundamental frequencies vs harmonics, amplitudes, du-
rations, etc.)

Sheet Music Takes in an audio file or short-time fourier transform,
plots fundamental frequency over time with sheet music
visual and labels note names/corresponding frequencies
Music Accompaniment

Accompany Music Takes in a music file and a genre, uses machine learning
to generate an accompaniment based on music theory
for the specified genre, returns accompaniment signal

Table A.1: Initial Design of Machine Audition Scratch Blocks

88

Block Name Input Output Functionality
Visualize Waveform None Time-domain

waveform visu-
alization

Displays time-domain sig-
nal visualization of the
notes the user has added so
far

Visualize Frequencies None Fourier Trans-
form magnitude
visualization

Displays frequency content
of notes added so far

Visualize Frequencies
Over Time

None Spectrogram vi-
sualization

Displays frequency informa-
tion over time for notes
added so far

Visualize Sheet Music None Sheet music vi-
sualization

Displays sheet music visual-
ization of notes added so far

Table A.2: Music Visualization Scratch Blocks

89

Block Name Input Output Functionality
Reset Music None None Clears music list data struc-

ture
Set Instrument Instrument se-

lection from
dropdown menu

None Updates instrument vari-
able for use in future notes

Set Volume None None Updates volume variable for
use in future notes

Play Note For
Beats

Note selection
from virtual
piano, Beats
from dropdown
menu

Playback of note
selected

Adds note, duration, instru-
ment, and volume informa-
tion to music data structure

Get Volume None Volume dis-
played on screen

Returns last volume selec-
tion

Get Instrument None Instrument dis-
played on screen

Returns last instrument se-
lection

Table A.3: Music Creation Scratch Blocks

90

Block Name Input Output Functionality
Play Mystery
File

Number from
dropdown menu

Playback of se-
lected file

Plays sound file correspond-
ing to selected number

Compare Mys-
tery 1 and
Mystery 2

2 numbers
from dropdown
menus

None Updates higher, louder, in-
strument variables with an-
swers for selected files

Higher None Higher file dis-
played on screen

Returns which of the last
two files played had a higher
pitch

Louder None Louder file dis-
played on screen

Returns which of the last
two files played had a louder
volume

Instrument 1 None Instrument 1
displayed on
screen

Returns the instrument
played in first file selected

Instrument 2 None Instrument 2
displayed on
screen

Returns the instrument
played in second file se-
lected

Table A.4: Music Comparison Scratch Blocks

91

Block Name Input Output Functionality
Generate Music
with Magenta

None Audio playback
of generated mu-
sic

Sends request to Magenta
to randomly generate mu-
sic, and stores it as user’s
created music before play-
ing it

Complete Music
with Magenta

Current music,
Duration and
tempo of new
music

Audio playback
of completed
music

Sends request to Magenta to
create music that fits with
user’s current music with
the duration and tempo
specified, adds it to user’s
music, and plays it

Table A.5: Music Accompaniment Scratch Blocks

92

Monday Tuesday Wednesday Thursday Friday
Module 1:
Why we need
audition

Module 1:
Hearing and
listening
machines

CANCELLED Module 2:
What is
sound?

Module 2:
Amplitude
and Fre-
quency

Table A.6: Future Makers Pilot Schedule

93

Class
Section

Day 1 Day 2

1 Module 1: Why we need audition,
Hearing and Listening Machines.
Module 2: What is Sound?

Module 2: Amplitude and Fre-
quency. Scratch Activities:
Know Your Dynamics, Making
Melodies.

2 Module 1: Why we need audition,
Hearing and Listening Machines.

Module 2: What is Sound?, Am-
plitude and Frequency. Scratch
Activities: Know Your Dynamics,
Making Melodies

Table A.7: AMSA Pilot Schedule

94

Assessment Amplitude
1

Amplitude
2

Frequency
1

Frequency
2

Harmonics

Pre 18 (78%) 14 (60%) 19 (82%) 20 (86%) 6 (26%)
Post 23 (100%) 23 (100%) 23 (100%) 23 (100%) 7 (30%)

Table A.8: AMSA Pre- and Post- Assessment Correctness Data

95

96

Appendix B

Figures

97

Figure B-1: Scratch Activity: Know Your Dynamics

98

Figure B-2: Scratch Activity: Find Your Voice

99

Figure B-3: Scratch Activity: Making Melodies

100

Figure B-4: Scratch Activity: What’s Your Timbre?

101

Figure B-5: Scratch Activity: More Bars, More To See

102

Figure B-6: Future Maker Signals Assessment Questions.

103

Figure B-7: AMSA Pilot Amplitude Questions.

104

Figure B-8: AMSA Pilot Frequency Questions.

105

Figure B-9: AMSA Pilot Harmonic Frequency Question.

106

Appendix C

Links

C.1 Live Activities

1. Know Your Dynamics: https://mitmedialab.github.io/prg-extension-

boilerplate/machineaudition/?project=https://nadah09.github.io/M2

.L2%20-%20Know%20Your%20Dynamics.sb3

2. Making Melodies: https://mitmedialab.github.io/prg-extension-boil

erplate/machineaudition/?project=https://nadah09.github.io/M2.L3%

20-%20Making%20Melodies.sb3

3. Find Your Voice: https://mitmedialab.github.io/prg-extension-boiler

plate/machineaudition/?project=https://nadah09.github.io/M2.L3%20

-%20Find%20your%20Voice.sb3

4. What’s Your Timbre?: https://mitmedialab.github.io/prg-extension-

boilerplate/machineaudition/?project=https://nadah09.github.io/M2

.L4%20-%20Whats%20your%20Timbre.sb3

5. More Bars, More To See: https://mitmedialab.github.io/prg-extensio

n-boilerplate/machineaudition/?project=https://nadah09.github.io/

M2.L4%20-%20More%20Bars,%20More%20to%20See.sb3

107

https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L2%20-%20Know%20Your%20Dynamics.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L2%20-%20Know%20Your%20Dynamics.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L2%20-%20Know%20Your%20Dynamics.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Making%20Melodies.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Making%20Melodies.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Making%20Melodies.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Find%20your%20Voice.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Find%20your%20Voice.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L3%20-%20Find%20your%20Voice.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20Whats%20your%20Timbre.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20Whats%20your%20Timbre.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20Whats%20your%20Timbre.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20More%20Bars,%20More%20to%20See.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20More%20Bars,%20More%20to%20See.sb3
https://mitmedialab.github.io/prg-extension-boilerplate/machineaudition/?project=https://nadah09.github.io/M2.L4%20-%20More%20Bars,%20More%20to%20See.sb3

C.2 Video Walkthroughs

1. Know Your Dynamics: https://drive.google.com/file/d/1IYJ8JUXtP5uMK

evGGpXBpQTZBwEddEq0/view?usp=sharing

2. Making Melodies: https://drive.google.com/file/d/1dCJNuE4_VzQ33VkrI

sfHNXOmVvf8AyPb/view?usp=sharing

3. Find Your Voice: https://drive.google.com/file/d/1Dvm9LtAETIZABuRVQ

DS5LvO0HNMS--EH/view?usp=sharing

4. What’s Your Timbre?: https://drive.google.com/file/d/1EJwDexuvYBTAi

lmGhTsFeoYsrYJw4LuN/view?usp=sharing

5. More Bars, More To See: https://drive.google.com/file/d/1_vs22ArHQy

_HWd4R8wJxZXAUuisaFJzM/view?usp=sharing

108

https://drive.google.com/file/d/1IYJ8JUXtP5uMKevGGpXBpQTZBwEddEq0/view?usp=sharing
https://drive.google.com/file/d/1IYJ8JUXtP5uMKevGGpXBpQTZBwEddEq0/view?usp=sharing
https://drive.google.com/file/d/1dCJNuE4_VzQ33VkrIsfHNXOmVvf8AyPb/view?usp=sharing
https://drive.google.com/file/d/1dCJNuE4_VzQ33VkrIsfHNXOmVvf8AyPb/view?usp=sharing
https://drive.google.com/file/d/1Dvm9LtAETIZABuRVQDS5LvO0HNMS--EH/view?usp=sharing
https://drive.google.com/file/d/1Dvm9LtAETIZABuRVQDS5LvO0HNMS--EH/view?usp=sharing
https://drive.google.com/file/d/1EJwDexuvYBTAilmGhTsFeoYsrYJw4LuN/view?usp=sharing
https://drive.google.com/file/d/1EJwDexuvYBTAilmGhTsFeoYsrYJw4LuN/view?usp=sharing
https://drive.google.com/file/d/1_vs22ArHQy_HWd4R8wJxZXAUuisaFJzM/view?usp=sharing
https://drive.google.com/file/d/1_vs22ArHQy_HWd4R8wJxZXAUuisaFJzM/view?usp=sharing

Bibliography

[1] Google Magenta Music. Documentation. https://magenta.github.io/magent
a-js/music/index.html.

[2] MmTss. Code. https://github.com/andrewhao/mmtss.

[3] PyTorch. Documentation. https://pytorch.org/docs/stable/index.html.

[4] scipy.signal. Documentation. https://docs.scipy.org/doc/scipy/reference
/signal.html.

[5] Scratch. About. https://scratch.mit.edu/about.

[6] TensorFlow for JavaScript. https://www.tensorflow.org/js.

[7] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis.
In ICLR, 2019.

[8] Brian Jordan, Nisha Devasia, Jenna Hong, Randi Williams, and Cynthia Breazeal.
Poseblocks: A toolkit for creating (and dancing) with AI. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 15551–15559. AAAI Press, 2021.

109

https://magenta.github.io/magenta-js/music/index.html
https://magenta.github.io/magenta-js/music/index.html
https://github.com/andrewhao/mmtss
https://pytorch.org/docs/stable/index.html
https://docs.scipy.org/doc/scipy/reference/signal.html
https://docs.scipy.org/doc/scipy/reference/signal.html
https://scratch.mit.edu/about
https://www.tensorflow.org/js

	Introduction
	Machine Audition Curriculum Overview
	Why Use Scratch?
	Outline

	Related Works
	Sight of AI Curriculum
	Digital Signal Processing
	Machine Learning
	Prior Scratch Functionality
	Music Visualization
	Music Creation
	Music Accompaniment

	Machine Audition Curriculum
	Module 1: Audition Overview
	Module 2: Signals (Pressure Waves)
	Pressure Waves
	Simple Waveforms
	Complex Waveforms

	Module 3: Sensation (Ear and Microphones)
	Input Devices
	Dynamic and Frequency Range
	Ear and Mic Analogs
	Signals Revisited

	Module 4: Perception (Brain and Computer)
	Brain and Computer Overviews
	Data Representation
	Perceptual Abilities

	Module 5: Human-AI Collaboration
	Generative AI (Creative Collaboration)
	Machine Audition Capstone

	Research and Design
	Scratch Activity Design
	Activity: Know Your Dynamics
	Activity: Making Melodies
	Activity: Find Your Voice
	Activity: What's Your Timbre?
	Activity: More Bars, More To See
	Activity: Machine Audition Capstone

	Scratch Block Preliminary Design
	Music Analysis
	Music Visualization
	Music Creation
	Music Accompaniment

	Backend Library Research
	Scratch Asset Design

	Implementation
	System Architecture
	Music Analysis
	Music Analysis Backend

	Music Creation, Accompaniment, and Visualization
	Music Creation
	Music Creation Backend

	Music Accompaniment
	Music Accompaniment Backend

	Music Visualization
	Music Visualization Backend
	Plotting and Text Implementation

	Music Creation, Accompaniment, and Visualization Integration

	Evaluation
	Future Makers Spring Break Pilot
	Methodology
	Results
	Future Maker Conclusions

	AMSA Pilot
	Methodology
	Results
	Conclusions

	Summary
	Findings
	Limitations

	Future Work
	Music Creation
	Music Analysis
	Music Visualization
	Waveform
	Fourier Transform
	Spectrogram
	Sheet Music

	Music Accompaniment
	Backend Architecture
	Further Pilots
	Creative Use of Scratch Blocks

	Conclusion
	Contributions
	Scratch Contributions
	AI Education Contributions

	Tables
	Figures
	Links
	Live Activities
	Video Walkthroughs

