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Abstract

We explore relationships between machine learning (ML) and causal inference. We
focus on improvements in each by borrowing ideas from one another.

ML has been successfully applied to many problems, but the lack of strong theoretical
guarantees has led to many unexpected failures. Models that perform well on the
training distribution tend to break down when applied to different distributions; small
perturbations can “fool” the trained model and drastically change its predictions;
arbitrary choices in the training algorithm lead to vastly different models; and so forth.
On the other hand, while there has been tremendous progress in developing causal
inference methods with strong theoretical guarantees, existing methods typically do
not apply in practice since they assume an abundance of data. Working at the
intersection of ML and causal inference, we directly address the lack of robustness in
ML, and improve the statistical efficiency of causal inference techniques.

The motivation behind the work presented in this thesis is to improve methods
for building predictive, and causal models that are used to guide decision making.
Throughout, we focus mostly on decision making in the healthcare context. On the
ML for causality side, we use ML tools and analysis techniques to develop statis-
tically efficient causal models that can guide clinicians when choosing between two
treatments. On the causality for ML side, we study how knowledge of the causal
mechanisms that generate observed data can be used to efficiently regularize predic-
tive models without introducing biases. In a clinical context, we show how causal
knowledge can be used to build robust, and accurate models to predict the spread of
contagious infections. In a non-clinical setting, we study how to use causal knowl-
edge to train models that are robust to distribution shifts in the context of image
classification.
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Chapter 1

Introduction

Seeking guidance to help with decision making is as old as the story of humanity

itself. This need for guidance has been manifested in different ways across different

time eras, civilizations and belief systems. Cleromancy, defined as “the casting of

lots, in which an outcome is determined by means that normally would be considered

random, such as the rolling of dice, but are sometimes believed to reveal the will of

God, or other universal forces and entities” (Wikipedia contributors, 2021), is one

way to seek such guidance. For example, ancient Romans resorted to casting sortes

or lots. Ancient Judiac traditions relied on consulting the Urim and Thummim. In

West-African cultures, e.g., in Yoruba and Yoruba-inspired religions, decision-makers

resort to another type of cleromancy called Ifá divination. More recently, practitioners

in the realms of healthcare, economics, education and energy are turning to machine

learning-based cleromancy to provide guidance in key decision.

At its core, Machine Learning (ML) is a set of tools that encodes associations observed

in a training data to make predictions about unseen, or test data. Unfortunately, re-

lying on solely learned associations to make decisions might lead to suboptimal or

even catastrophic decisions. For example, we might conclude that a particular treat-

ment is associated with death if we observe that patients who receive a particular

21



treatment are more likely to die. However, looking beyond associations, and incorpo-

rating notions of causality, we would first adjust for the patients’ underlying sickness

level before deciding whether the treatment is truly dangerous. For the purpose of

reliable decision making, it is hard to overestimate the importance of developing ML

tools that encode causal relationships rather than mere correlations. This thesis will

study the exchange of ideas between causal inference and predictive machine learning

to build efficient and robust models that are reliable and useful for decision-making.

1.1 Machine learning for causality

Estimating the causal effect of an intervention or a treatment using observational

data is an oft-studied problem especially in the statistics literature (Rubin, 2006;

Pearl, 2000). For decades, statisticians developed methods primarily focused on av-

erage treatment effects, and meticulously studied the asymptotic consistency of these

methods (Abadie and Imbens, 2006; Cochran and Rubin, 1973). Interest in estimat-

ing the conditional average treatment effect (CATE) remained a secondary focus.

The availability of large data, and the advent of ML tools shifted the focus to CATE

estimation, and provided new tools to deliver on the promise of personalized, tar-

geted interventions. The theoretical lens moved from asymptotic analysis to analyses

of generalization error in finite samples (Shalit et al., 2017; Johansson et al., 2016).

This thesis contributes to the continued evolution of causal inference methods by

shifting the focus to the development of efficient and theoretically principled tools de-

signed to mitigate different types of data limitations. At the core of our contributions

is the idea that in order to make good decisions, the decision maker does not always

need the most accurate possible estimate of the CATE; bounds on causal estimates

might be both sufficient, and easier to estimate from limited data. We present one

specific case in chapter 2: estimating reliable bounds on the causal effects of treatment

options. We show that we can achieve better finite sample efficiency by estimating
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bounds on causal effects rather than directly estimating the causal effect. Leveraging

our theoretical insight, we propose a kernel-based method for efficient estimation of

bounds on the potential outcomes under different treatment choices.

1.2 Causality for Machine learning

ML methods, and especially deep neural networks (DNNs) are often brittle: they

exhibit a lack of robustness under minor perturbations in the input data, and they

are unable to circumvent issues that arise because of biased training data (Beery

et al., 2018; Ilyas et al., 2019; Azulay and Weiss, 2018; Geirhos et al., 2018). These

failure modes may seem different, but the root cause can be traced back to flaws in

the ML algorithms. Specifically, ML algorithms typically pick the model that achieves

the best training and validation errors. When the candidate function class consists

of all possible DNNs, multiple models might have a low (or even zero) training and

validation error. Some of these performant models may exhibit robustness under

distribution shift, while others may not. We refer to this as “underspecification”: the

training and validation error no longer uniquely specify or identify the optimal model.

In this thesis, we adapt ideas from causality to address the issue of underspecification,

with the ultimate goal of building robust models that learn meaningful patterns. We

do so by developing methods that require that models conform to some existing causal

knowledge in addition to having a low training and validation error. We present two

cases for “causally-motivated” predictive models.

First, in chapter 3, we develop causally-motivated regularization schemes using aux-

iliary labels to discourage shortcut learning (Geirhos et al., 2020). Shortcut learning

occurs when a predictor relies on input features that are easy to discover and are

predictive of the outcome in the training data, but do not remain predictive when the

distribution of inputs changes. For example, using the background (sand/grass) to

predict the main object (camel/cow) in an image. We assume that we have access to
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auxiliary labels (e.g., the background labels), and require that the predictor’s output

is independent of the auxiliary labels. We show that causally-movtivated regular-

ization leads to predictors that are robust to distribution shift. We also show that

even in absence of distribution shift, causally-motivated regularization leads to more

sample-efficient models.

Second, in chapter 4, we address distribution shift that arises because of the pres-

ence of asymptomatic carriers: individuals who carry a disease but do not display

symptoms, silently spreading the pathogen. At training time, sypmtomatic carri-

ers are over-represented since they are more likely to be tested for the disease. At

deployment time, we wish to compute an accurate prediction for symptomatic, and

asymptomatic carriers as well as healthy individuals. This creates a distribution shift.

Here we leverage our knowledge of existing dependencies (rather than independen-

cies) to build models that predict the onset of a contagious infection. In order to

get infected, one must be exposed to the pathogen through their network of contacts.

This implies that an individual’s infection state depends on their contacts’ infection

states. In situations where the contacts’ infection states are unobserved (e.g., untested

asymptomatic carriers), knowing that this dependency exists allows us to impute the

missing infection states, and ultimately train a model that is better able to identify

both symptomatic and asymptomatic infections.

1.3 Contributions

The core contributions of this thesis include theoretical results analyzing the sample-

efficiency of causal models, and the generalizability of prediction models under dis-

tribution shift. Guided by our theoretical analysis, we set forth novel techniques for

efficient estimation of causal models, and for building predictive models that are ro-

bust to distribution shifts. In addition, we present an application of causally-inspired

prediction models in the context of infectious disease modeling. Specifically,
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Specifically, in chapter 2 we present a study of how ML methods can be used to

make causal inference more efficient, including:

1. Theoretical analysis supporting bound estimation when it is sufficient

for decision-making. We analyze the finite sample properties of estimation

of bounds on the potential outcomes (defined as the outcomes under different

treatment decisions). Our analysis highlights a novel trade-off between confi-

dence that the bounds contain the true potential outcomes and tightness of the

bounds.

2. An algorithm to efficiently estimate bounds on potential outcomes.

Guided by our theory, we develop a non-parametric, kernel-based model to

estimate the optimal (e.g., tightest) bounds that contain the true potential out-

come with high probability. We show that our suggested approach outperforms

existing bound-estimation methods, and analyze why that happens.

In chapters 3, and 4 we study methods that utilize ideas from causality to make

machine learning more robust. Specifically, we present

3. Theoretical analysis showing that causally-motivated regularization

is statistically-efficient. We analyze the finite sample properties of models

that are explicitly regularized to conform with a priori causal knowledge during

training time. We compare their generalization error bounds to those of models

that rely on the classical L2-norm penalty, showing when and why our approach

is more efficient.

4. An algorithm to train robust prediction models using causally-motivated

regularization. Based on our theoretical findings, we present a weighting

scheme, a training objective and a two-step cross-validation algorithm that is

both statistically efficient and robust to distribution shift. We compare the

empirical performance of our approach to existing baselines, and conduct an
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ablation study to highlight the importance of each component in our combined

approach. We show that our approach yields predictors that are more robust

to distribution shift compared to baselines. Even in the absence of distribution

shift, we show that our approach gives more efficient predictors.

5. An approach for contagious infection prediction. In order to contract a

contagious infection, an individual must be exposed to the pathogen through

their network of contacts. We present an algorithm that leverages this depen-

dency between individuals to predict the probability of an untested individual

carrying the disease. In addition, we identify two properties of observed data

that can be exploited to mitigate the effects of distribution shift caused by in-

complete testing. We empirically evaluate the effectiveness of our method on

both simulated and real data. We show that predictions from our model can be

used to inform efficient testing and isolation policies. Using Electronic Health

Record (EHR) data from a large hospital, we show that our model outperforms

baselines on the task of predicting a healthcare associated infection.

We conclude in chapter 5 with a discussion of and future extensions to the work

presented in this thesis. We end with a road map for future research at the intersection

of machine learning and causality.
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Chapter 2

Estimation of Bounds on Potential

Outcomes For Decision Making

In this chapter, we use techniques developed for ML to study the generalization and

efficiency of causal models. We leverage our theoretical analysis to develop a sample-

efficient model that estimates intervals or bounds on causal effects.

In many practical situations, a decision maker wishes to intervene or assign a treat-

ment to ensure that an outcome of interest falls within a safe range. One example,

which we use throughout this chapter, is when a physician considers whether or not

to prescribe anticoagulants to mitigate the risk of stroke, as measured by the Interna-

tional Normalized Ratio (INR). The INR reflects the time it takes for blood to clot.

For previous stroke patients, a healthy INR is 2–3. Values lower than 2 signal elevated

risk of an Ischemic stroke, and higher than 3 signal elevated risk of a Hemorrhagic

stroke. To make an informed decision, the physician needs to know if the poten-

tial outcomes under treatment and non-treatment fall within 2–3. We highlight two

characteristics of this scenario that guide our approach. First, without making any

additional assumptions, learning that the difference between the potential outcomes,

i.e., the Conditional Average Treatment Effect (CATE) is 1.5, does not immediately
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imply an optimal treatment decision; it could be that the patient’s INR decreases

from 4 to 2.5 or from 5.5 to 4. Specifically, we do not assume that the outcome

remains unchanged if no treatment is administered. This is the case when the patient

has a health condition that would lead to deteriorating outcomes in the abscene of in-

terventions. In this case, information about the potential outcomes themselves under

different treatment considerations is needed. This motivates us to study estimators

of the potential outcomes, rather than estimators of the CATE. Second, knowing the

potential outcomes’ exact value is not necessary. It is sufficient to know that the

patient’s INR is somewhere between 2.2 and 2.8 if treated. For example, knowing

that it is 2.5 might not provide additional useful insight. This motivates us to study

estimators of intervals, or bounds on the potential outcomes. Together these two

characteristics motivate studying the task of estimating reliable covariate-conditional

bounds on potential outcomes using observational data.

Most existing methods for estimating causal effects and potential outcomes attempt

to fit the expected outcomes as functions of observed covariates, typically relying on

variants of Empirical Risk Minimization (ERM) strategies (Hill, 2011; Shalit et al.,

2017; Alaa and van der Schaar, 2018, 2017). Some of these methods produce pre-

diction intervals centered around the estimated expected response (outcome) surface,

which can be used to bound the potential outcome from above and below. These in-

tervals have approximately valid coverage for large samples, provided that the mean

estimate is sufficiently unbiased. However, achieving this is not always feasible in

small samples, leading to high false coverage rates (FCRs), defined as the rate at

which outcomes are observed outside of the given prediction interval.

Instead of attempting to directly fit the potential outcomes, which may be com-

plex and hard to estimate from small samples, we propose to fit simpler functions

that bound the outcomes from above and below. Within this simpler function class,

we identify estimates of the potential outcomes that maximize a utility (objective)

function specified by the decision maker. Figure 2-1 shows the intuition behind our

approach. For example, if the decision maker wants to ensure that the uncertainty in
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Figure 2-1: Illustration of the intuition behind our theoretical findings. The true
potential outcome (black/gray) belongs to a complex class. But the upper (red) and
lower (blue) bounds that correctly cover it belong to a simple linear function space.

the potential outcome estimates is small on average, they could require that the aver-

age interval width (upper bound - lower bound) is small. Alternatively, if they wish to

ensure that no patient sub-population has excessively uncertain estimates (i.e., wide

intervals) they could require that the maximum interval width is minimized.

We make the following main contributions:

1. We give results on the generalization properties of learned bounds on poten-

tial outcomes and the conditions under which estimation of such bounds yields

better sample complexity than fitting the expected outcomes using standard

risk minimization methods. Our analysis highlights a trade-off between relia-

bility (i.e., the probability that the bounds correctly cover the data) and the

complexity of the learning task.

2. We design an algorithm that finds the optimal bound estimates that maximize a

given utility or objective function while providing reliable bounds. We explore

different objective functions, analyzing the differences between the resulting

bounds, and prove equivalence to quantile regression in a special case.

3. We evaluate our algorithm on both a semi-synthetic clinical dataset and a well-

known causality benchmark. We show how our algorithm can guide treatment

decisions, and that it achieves a better trade-off between bound violations and
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utility than baseline algorithms.

2.1 Related work

Research into methods for estimating conditional causal effects has focused primar-

ily on estimating the expected potential outcomes or conditional average treatment

effect (CATE) as functions of observed covariates (Dorie et al., 2019). For example,

(Alaa and van der Schaar, 2018) showed that the CATE estimation problem is as hard

as modelling the more complex of the two potential outcomes in the minimax sense.

Similarly, (Nie and Wager, 2017) show asymptotic bounds that rely on the complexity

of the underlying function class of the CATE. More generally, recent work in CATE

estimation has focused on the learning challenges associated with the difference be-

tween the treated and control populations, and on improving finite sample efficiency

by sharing data between treatment groups (Johansson et al., 2016; Shalit et al., 2017;

Alaa and van der Schaar, 2017; Hill, 2011). In contrast, we aim to improve sample

efficiency by providing bounds on the causal estimands.

Other work focuses on estimating lower or upper bounds of Average Treatment Effect

(ATE), to account for the possibility of unobserved confounding (Balke and Pearl,

1997; Bareinboim and Pearl, 2012; Pearl, 2009; Cai et al., 2008). Recently, this type

of analysis was extended to include bounds on CATE, but again in the presence of

hidden confounding (Kallus et al., 2019). This line of work falls under sensitivity

analysis (Rosenbaum, 2014), which is distinct from our work in that we aim to find

bounds on the potential outcomes when estimating CATE is not possible because of

limited data, even if there is no hidden confounding.

Another related line of work is the problem of conditional quantile treatment effect

estimation (Koenker and Bassett Jr, 1978; Chernozhukov and Hansen, 2005). Like

our method, quantile methods give can give approximate bounds on the potential

outcomes. The distinction is that the main objective of our method is not to estimate
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the specific quantile of a treatment effect, but rather to provide the simplest functions

that bound the outcomes such that an objective function given by the decision maker

is optimized. However, as we prove later, quantile estimation is a special case of our

setting for a particular objective function.

Recently, new work extended conformal intervals (Lei et al., 2018) to causal settings

similar to ours (Lei and Candès, 2020). Our work is distinct from the work presented

in (Lei and Candès, 2020) in three ways (1) we provide theoretical guarantees for the

finite sample rather than asymptotic regime, (2) our theoretical analysis highlights a

fundamental trade-off between the statistical complexity of the learning problem and

the confidence with which the learned interval truly covers the potential outcomes.

Finally, (3) our approach allows for a more general definition of interval optimality; we

not assume that tightness of the bounds is the only important metric to be optimized,

but it allows the decision maker to define their own desiderata for optimality (e.g.,

fairness).

Our work is related to offline policy learning (e.g., Swaminathan and Joachims (2015a,b)).

The main difference between this work and ours is that we wish to obtain bounds

for the potential outcomes, not an optimal policy. This allows the decision maker

to consider the estimated effect of the treatment against a backdrop of additional

information that may not be recorded in the observational data.

2.2 Problem setup

We consider learning of bounds on potential outcomes from finite-sample observa-

tional data, adopting the notation of the Neyman-Rubin potential outcomes frame-

work (Rubin, 2005). For each unit 𝑖 (e.g., patient), we observe a set of features 𝑋𝑖 ∈
𝒳 , with 𝒳 a bounded subset of R𝑑, an action (also known as treatment or interven-

tion) 𝑇𝑖 ∈ {0, 1} and an outcome 𝑌𝑖 ∈ R. We observe these variables through samples

(𝑥1, 𝑡1, 𝑦1), ..., (𝑥𝑛, 𝑡𝑛, 𝑦𝑛)
𝑖.𝑖.𝑑.∼ 𝑝(𝑋,𝑇, 𝑌 ) and denote by 𝑛𝑡 =

∑︀𝑛
𝑖=1 1{𝑡𝑖 = 𝑡} the num-
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ber of observed samples for treatment group 𝑡 ∈ {0, 1}, and let 𝑝𝑡(𝑋) = 𝑝(𝑋 | 𝑇 = 𝑡).

The observed outcome is one of the two potential outcomes, 𝑌 (0) and 𝑌 (1), under

control (𝑇 = 0) and treatment (𝑇 = 1), respectively. We use ‖𝑎‖𝑝 to denote the

𝑝−norm of a vector a. When the subscript is omitted, we refer to the 2-norm.

We seek to learn high-probability bounds on both potential outcomes, 𝑌 (0) and 𝑌 (1),

conditioned on the set of observed features 𝑋. Since only one outcome is observed,

the other is not identifiable without strong assumptions. To that end, we assume that

the features 𝑋 are sufficient to deconfound estimates of 𝑌 (0), 𝑌 (1):

Assumption 2.2.1. The features 𝑋, treatment 𝑇 and potential outcomes 𝑌 (0), 𝑌 (1)

satisfy for some 𝜖 > 0

1. Strong ignorability: 𝑌 (0), 𝑌 (1) ⊥⊥ 𝑇 | 𝑋

2. Overlap: ∀𝑥, 𝑡 : 𝑝(𝑇 = 𝑡 | 𝑥) > 𝜖

3. Consistency: 𝑌 = 𝑌 (𝑇 )

Under Assumption 2.2.1, 𝑝(𝑌 (𝑡) = 𝑦 | 𝑋 = 𝑥) = 𝑝(𝑌 = 𝑦 | 𝑇 = 𝑡,𝑋 = 𝑥) (Imbens

and Wooldridge, 2009). This means that the distribution of potential outcomes can

be estimated through regression or other standard methods. When treatment and

outcomes are confounded, estimates of causal effects exhibit bias. For example, if

medication A was prescribed more often to terminally ill patients than the alternative

treatment B, we might learn that the life expectancy on treatment A was lower than

on B, regardless of its average causal effect. To undo this bias, it is common to use the

propensity score 𝑒(𝑥, 𝑡) := 𝑝(𝑇 = 𝑡 | 𝑋 = 𝑥) to re-weight the cohort using importance

weighting.

Definition 2.2.1. The importance weighting function 𝑤𝑡 for group 𝑡 ∈ {0, 1} is

𝑤𝑡(𝑥) := 𝑝(𝑇 = 𝑡)/𝑒(𝑥, 𝑡) .

We use 𝑤𝑖 to denote 𝑤𝑡𝑖(𝑥𝑖) for a sample (𝑥𝑖, 𝑡𝑖) ∼ 𝑝. With 𝑤𝑡 as in Definition 2.2.1,

we have, for an arbitrary function 𝑓 on 𝒳 (e.g., the expected outcome or a prediction
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loss), E𝑋 [𝑓(𝑋)] = E𝑋|𝑇 [𝑤𝑡(𝑋)𝑓(𝑋) | 𝑇 = 𝑡] . By Assumption 2.2.1, we have that the

importance weights are bounded, meaning that for some 𝐶𝑡 < ∞ and 𝑡 ∈ {0, 1}:

sup
𝑥∈𝒳

𝑤𝑡(𝑥) = sup
𝑥∈𝒳

𝑝(𝑇 = 𝑡)

𝑒(𝑥, 𝑡)
= 2𝐷∞(𝑝||𝑝𝑡) = 𝐶𝑡, (2.1)

where 𝐷𝑘(𝑝||𝑞) is the kth-order Rényi divergence, and the second equality follows

by applying the Bayes rule, and the definition of the Rényi divergence. It will

be convenient to denote 2𝐷𝑘(𝑝||𝑞) by 𝑑𝑘(𝑝||𝑞). Since 2𝐷𝑘−1(𝑝||𝑝𝑡) < 2𝐷𝑘(𝑝||𝑝𝑡), we have

𝑑2(𝑝||𝑝𝑡) < 𝐶𝑡.

2.3 Generalization of bounds on potential outcomes

Our goal is to estimate four functions; lower and upper bounds for the potential

outcome under treatment, 𝑓1(𝑥) = {𝑓 1
𝑙 (𝑥), 𝑓 1

𝑢(𝑥)}, and similarly defined functions

for the outcome under control 𝑓0(𝑥) = {𝑓 0
𝑙 (𝑥), 𝑓 0

𝑢(𝑥)}. For these estimates to be

useful for decision-making, we want to guarantee that for some small 𝜈 ′ > 0, and for

𝑡 ∈ {0, 1}, we have false coverage rate (FCR) bounded by 𝜈 ′,

FCR𝑓𝑡 := Pr
𝑋,𝑌 (𝑡)

[︂
𝑌 (𝑡) ̸∈ [𝑓 𝑡

𝑙 (𝑋), 𝑓 𝑡
𝑢(𝑋)]

]︂
≤ 𝜈 ′ . (2.2)

Without loss of generality, we will focus on estimating a lower bound for the outcome

under treatment 𝑇 = 𝑡, meaning we will focus on finding some 𝑓 𝑡
𝑙 (𝑥) such that for a

small 𝜈 > 0, we have that

Pr
𝑋,𝑌 (𝑡)

[𝑓 𝑡
𝑙 (𝑋) ≤ 𝑌 (𝑡)] ≥ 1 − 𝜈. (2.3)

Note that in expressions 2.2 and 2.3 the probabilities are defined over 𝑝(𝑋, 𝑌 (𝑡)) ̸=
𝑝(𝑋, 𝑌 | 𝑇 = 𝑡), because of confounding. However, under Assumption 2.2.1, this

probability is identifiable from observed data.
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It will be useful to restate our objective in terms of the (signed) residual of a function

𝑓 , defined next.

Definition 2.3.1. For an arbitrary function 𝑓 , the signed residuals for 𝑥, 𝑦 ∈ 𝒳 ×𝒴:

𝑟𝑓 (𝑥, 𝑦) = 𝑦 − 𝑓(𝑥).

Expression (2.3) can now be restated as Pr[𝑟𝑓 𝑡
𝑙
(𝑋, 𝑌 (𝑡)) ≥ 0] ≥ 1 − 𝜈. To be more

cautious, we might wish to leave a “buffer zone” or a margin, and instead demand that

𝑟𝑓 𝑡
𝑙
(𝑥, 𝑦) ≥ 𝛾 for some 𝛾 > 0. In this setting, a violation occurs when 𝑟𝑓 𝑡

𝑙
(𝑥, 𝑦) < 𝛾.

Larger values of 𝛾 would imply higher reliability: we are more confident that we

are unlikely to observe a violation of the bounds, i.e., unlikely to overestimate the

outcome under treatment 𝑡. With that, direct parallels could be drawn between our

setup and that of maximum-margin algorithms: we want to ensure that the signed

residual is larger than 0 by a margin of 𝛾. The larger 𝛾 is, the more confident we are

that our lower bound holds. We can now define the unobserved risk that we wish to

study:

Definition 2.3.2. For 𝑓 𝑡
𝑙 ∈ ℱ , 𝛾 > 0, we define the risk of overestimation over the

full unknown distribution:

𝑅𝑓 𝑡
𝑙
(𝛾) = E𝑋,𝑌 (𝑡)

[︁
1{𝑟𝑓 𝑡

𝑙
(𝑋, 𝑌 (𝑡)) < 𝛾}

]︁
.

To account for confounding caused by biased (non-randomized) treatment assignment,

we consider a re-weighted risk:

𝑅𝑤
𝑓 𝑡
𝑙
(𝛾) = E𝑋,𝑌 |𝑇

[︁
𝑤(𝑥)1{𝑟𝑓 𝑡

𝑙
(𝑋, 𝑌 ) < 𝛾} | 𝑇 = 𝑡

]︁
Under Assumption 2.2.1, 𝑅𝑓 𝑡

𝑙
(𝛾) = 𝑅𝑤1

𝑓 𝑡
𝑙

(𝛾). Since our notions of confidence are closely

related to the margin, 𝛾, it will be useful to reason about the magnitude of margin

violations, which is defined next.

Definition 2.3.3. For 𝑧 = {𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, where 𝑥𝑖, 𝑦𝑖 ∼ 𝑝𝑡(𝑋, 𝑌 ), known 𝑤𝑡, 𝑓 𝑡
𝑙 ∈ ℱ ,
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and 𝛾 > 0, we define the average weighted magnitude of training set violations as

𝐷𝑤𝑡(𝑧, 𝑓 𝑡
𝑙 , 𝛾) =

∑︁
𝑥,𝑦∈𝑧

𝑤𝑡(𝑥) max{0, 𝛾 − 𝑟𝑓 𝑡
𝑙
(𝑥, 𝑦)}

In the remainder of this section, we give bounds on expected margin violation as a

function of 𝐷𝑤𝑡 . We restrict our analyses to sturdy function classes, with with range

= [𝑎, 𝑏]. Formally, the definition of sturdy function classes is as follows:

Definition 2.3.4. [Restated from Shawe-Taylor and Williamson (1999)] We say that

a function class ℱ is sturdy if it maps 𝑋 of size 𝑛 to a compact subset of R𝑛 for any

𝑛 ∈ N.

We rely on the covering number as a measure of complexity of the analyzed function

classes.

Definition 2.3.5. Let (𝑋, 𝑙∞) be a pseudo-metric space defined with respect to the

𝑙∞ norm, and let 𝐴 be a subset of 𝑋 and 𝜖 > 0. A set 𝑈 ⊆ 𝑋 is an 𝜖-cover for 𝐴 if

for every 𝑎 ∈ 𝐴, there exists 𝑢 ∈ 𝑈 such that ||𝑎− 𝑢||𝑙∞ ≤ 𝜖. The 𝜖-covering number

of 𝐴, 𝒩 (𝜖, 𝐴, 𝑑) is the minimal cardinality of the 𝜖-cover for 𝐴.

We use fat-shattering dimensions to study how fast the complexity of a function class

can grow with the sample size.

Definition 2.3.6. [Restated from Bartlett and Shawe-Taylor (1999)] For 𝛾 ∈ [0,∞],

and ℱ ∈ R, we say that a set of points {𝑥𝑖}𝑛𝑖=1 is 𝛾−shattered by ℱ if there exists

{𝑠𝑖}𝑛𝑖=1 ∈ R such that for all binary vectors {𝜎𝑖}𝑛𝑖=1, there is a function 𝑓 ∈ ℱ
satisfying:

𝑓(𝑥𝑖) ≥ 𝑠𝑖 + 𝛾 𝑖𝑓 𝜎𝑖 = 1

𝑓(𝑥𝑖) ≤ 𝑠𝑖 − 𝛾 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The fat-shattering dimension can be thought of as a function from the positive reals

to the set of positive integers which maps 𝛾 to the largest 𝛾−shattered set or ∞.

2.3.1 Generalization of reliable estimators

We start by studying the risk of overestimation for re-weighted estimators. To make

our main finding simpler to follow, we focus on the class of linear functions in a kernel

defined feature space. Theorem A1 in the supplement gives the analogous bounds for

more general function spaces. We start by stating the theorem and then outline the

key takeaways from the theorem.

Theorem 2.3.1. Let ℱ be the class of linear functions in a kernel defined feature

space, 𝑧 = {𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, where 𝑥𝑖, 𝑦𝑖 ∼ 𝑝𝑡(𝑋, 𝑌 ), and 𝐶𝑡 be as defined in expres-

sion (2.1). For 𝑓 𝑡
𝑙 ∈ ℱ , and any 𝛾 > 0, let the associated 𝐷𝑤𝑡(𝑧, 𝑓 𝑙

𝑡 , 𝛾) = 𝐷 > 0.

With a probability 1 − 𝛿 over the draw of random samples, we have that:

𝑅𝑓 𝑡
𝑙
(𝛾) ≤ 4𝐶𝑡(𝑘𝑡 + log 1

𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

(2.4)

where, for 𝑡 ∈ {0, 1},

𝑘𝑡 =

⌈︂
log𝒩 (𝛾/2,ℱ , 2𝑛𝑡) +

𝐷

𝛾
log

exp(𝑛𝑡 + 𝐷/𝛾 − 1)
𝐷/𝛾

⌉︂
.

Recall that 𝑑2, and 𝐶𝑡 are defined below equation 2.1. The proof of the theorem is

outlined in the appendix. Remarks:

1. Theorem 2.3.1 states that the expected rate of overestimation is bounded by

terms that are at most linear in 𝑘𝑡—the sum of the log covering number of ℱ
as defined by the margin 𝛾, and the ratio of the violations on the training data

to 𝛾. The fact that the covering number is controlled by the margin parameter

𝛾 shows that the complexity of this learning task relies on how certain we wish
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to be that the lower bound is not overestimated; more certainty requires a

larger 𝛾 which implies a smaller log covering number. This approach departs

from previous literature which instead shows that the sample complexity of

risk minimization relies on the covering number of a class containing the true

function (Alaa and van der Schaar, 2018). In applications where it is sufficient

to have reliable bounds on the potential outcomes to make good decisions, this

difference can be crucial—especially if the outcomes are difficult to estimate

accurately using small samples. Note that the covering number can be bounded

by the fat-shattering dimension at a scale proportional to 𝛾.

2. Both terms in 𝑘𝑡 decrease as 𝛾 increases, which means that the risk of overesti-

mation decreases as 𝛾 increases. This property is important because it implies

that we can control the risk of overestimation by requiring a large margin. To

see that, note that larger 𝛾 shrinks the space of viable functions, which de-

creases the 𝛾-covering number. The second term includes the ratio of the sum

of violations on the training set, 𝐷, which decreases as 𝛾 increases, to 𝛾. Hence

the second term also decreases as 𝛾 increases.

The following corollary builds on theorem 2.3.1 to get a bound on the generalization

error for bounds on the CATE. The risk of overestimation for the CATE can be stated

as a simple extension of theorem 2.3.1. We define the CATE as 𝜏(𝑥) = 𝑌 (𝑥, 1) −
𝑌 (𝑥, 0), where 𝑌 (𝑥, 𝑡) is the potential outcome under treatment 𝑇 = 𝑡, for patient

with characteristics 𝑋 = 𝑥. We use 𝜏𝑙(𝑥) to denote 𝑓 1
𝑙 (𝑥) − 𝑓 0

𝑢(𝑥), where 𝑓 1
𝑙 , 𝑓

0
𝑢 are

some estimates of the lower bound for the outcome under treatment and the upper

bound of the outcome under non-treatment respectively. In addition, we define:

𝑟𝑓 (𝑥, 𝑦) = 𝑓(𝑥) − 𝑦,

and for 𝑧𝑡 = {𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, define

𝐷
𝑤𝑡

(𝑧, 𝑓 𝑡
𝑢, 𝛾) =

∑︁
𝑥,𝑦∈𝑧

𝑤𝑡(𝑥) min{0, 𝛾 − 𝑟𝑓 𝑡
𝑢
(𝑥, 𝑦)}
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Corollary 2.3.1. Let ℱ be the class of linear functions in a kernel defined feature

space, 𝑧𝑡 = {𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, where 𝑥𝑖, 𝑦𝑖 ∼ 𝑝𝑡(𝑋, 𝑌 ), and 𝐶𝑡 be as defined in expres-

sion (2.1). For 𝑓 1
𝑙 , 𝑓

0
𝑢 ∈ ℱ , and any 𝛾 > 0, let the associated 𝐷𝑤1(𝑧1, 𝑓

1
𝑙 , 𝛾) = 𝐷1 > 0,

and 𝐷
𝑤0

(𝑧0, 𝑓
0
𝑢 , 𝛾) = 𝐷0 > 0 Define 𝜏𝑙 := 𝑓 1

𝑙 −𝑓 0
𝑢 . With probability 1−𝛿 over random

samples, we have that:

𝑅𝜏𝑙
(𝛾) ≤

∑︁
𝑡

4𝐶𝑡(𝑘𝑡 + log 1
𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

. (2.5)

where, for 𝑡 ∈ {0, 1},

𝑘𝑡 =

⌈︂
log𝒩 (𝛾/2,ℱ , 2𝑛𝑡) + log𝒩 (𝛾/2, 𝐿𝐷𝑡(𝒳 ), 2𝑛𝑡)

⌉︂
.

Recall that 𝑑2, and 𝐶𝑡 are defined below equation 2.1.

2.3.2 Generalization of reliable, informative estimators

Theorem 2.3.1 establishes that the probability of overestimation decreases as we in-

crease the margin 𝛾. However, arbitrarily large values of 𝛾 could result in excessively

“cautious” estimates with low risk of overestimation, at the expense of being too loose

to be useful in guiding decisions. In this work, we consider bounds to be informative

or have high utility if they imply low uncertainty in the value of the true potential

outcomes. We restrict ourselves to definitions of uncertainty that rely on the interval

width (IW) of bounds 𝑓 := (𝑓𝑢, 𝑓𝑙)

IW𝑓 (𝑥) := 𝑓𝑢(𝑥) − 𝑓𝑙(𝑥) . (2.6)

Smaller IW𝑓 (𝑥) implies that bounds are tighter, which implies less uncertainty in the

value of the potential outcomes. Intuitively, for 𝑓𝑢 and 𝑓𝑙 to give small IW𝑓 , they

need to be close to each other. We define these “close” functions and the informative

classes to which they belong as follows:
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Definition 2.3.7. Let 𝑝 ≥ 1, and 𝒳 := {𝑥 : ||𝑥|| ≤ 𝑟}. We say that two classes of

bounded linear functionals ℱ𝑙,ℱ𝑢 are informative if ℱ𝑙 ⊆ {𝒳 ∋ 𝑥 ↦→ ⟨𝑓𝑙, 𝑥⟩, ||𝑓𝑙|| ≤ 𝐴}
and ℱ𝑢 ⊆ {𝒳 ∋ 𝑥 ↦→ ⟨𝑓𝑢, 𝑥⟩,∀𝑓𝑙 ∈ ℱ𝑙; ||𝑓𝑢 − 𝑓𝑙|| < 𝐵, ∀𝑥 ∈ 𝒳 : 𝑓𝑙(𝑥) ≤ 𝑓𝑢(𝑥)}.

In words, ℱ𝑙 is the set of functions with norm ≤ 𝐴, while ℱ𝑢 is the set of functions that

are within 𝐵 distance from each 𝑓𝑙 ∈ ℱ𝑙. In addition, we specify that 𝑓𝑙(𝑥) ≤ 𝑓𝑢(𝑥)

for every 𝑥 ∈ 𝒳 .

The next theorem extends theorem 2.3.1 to these informative function classes, allow-

ing us to study the risk of overestimation for tight intervals. To improve readability,

log terms which do not affect the interpretation of the statement have been sup-

pressed. The full statement is presented in Theorem A1 in the appendix.

Theorem 2.3.2. Let ℱ 𝑡
𝑙 , ℱ 𝑡

𝑢, 𝐴, 𝐵, and 𝑟 be as defined in definition 2.3.7. Let 𝑧,

and 𝐷 be as defined in theorem 2.3.1,and 𝐶𝑡 be as defined in expression (2.1). For

𝑓 𝑡
𝑙 ∈ ℱ 𝑡

𝑙 , 𝑓 𝑡
𝑢 ∈ ℱ 𝑡

𝑢 and any 𝛾 > 0, with a probability 1 − 𝛿 over the draw of random

samples, the bound (2.4) in Theorem 2.3.1 applies with

𝑘𝑡 ≈
⌈︂(︂

𝑟(𝐴 + 𝐵)

𝛾

)︂2

+
𝐷

𝛾
log

𝑒(𝑛𝑡 + 𝐷/𝛾 − 1)
𝐷/𝛾

⌉︂
,

for 𝑡 ∈ {0, 1}

Theorem 2.3.2 gives us an idea of how to learn informative bounds that reliably cover

the potential outcomes. It suggests that one way to reduce generalization error is to

minimize 𝐴, the norm of 𝑓 𝑡
𝑙 , 𝐵 the distance between 𝑓 𝑡

𝑙 and 𝑓 𝑡
𝑢, and 𝐷, the sum of

violations on the training data.

2.4 Learning reliable, informative bounds

We present the Bounded Potential outcomes algorithm (BP) for learning informative

bounds on potential outcomes under the constraint that they are violated with low
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probability. The algorithm is flexible in that it can maximize different utilities or

notions of informativeness that the decision maker might have. For brevity, we focus

on utility as defined by small interval width. BP leverages our theoretical findings by

explicitly constraining the violations on the training data, and minimizing some loss

function, ℓ, of the interval widths.

The appropriate loss function will vary between applications. We consider optimizing

three loss functions of IW over 𝑝(𝑥): ℓ(1) represents the desire to achieve a tight

prediction bound on average, captured in the mean absolute interval width. ℓ(2)

penalizes the mean squared interval width, placing a higher penalty on points with

very wide bounds. The third ℓ(∞) minimizes the worst (widest) interval by penalizing

the maximum interval width.

We consider learning under the following conditions. Let 𝜑 : 𝒳 → R be the feature

map corresponding to a reproducing kernel 𝑘(𝑥𝑖, 𝑥𝑗) = ⟨𝜑(𝑥𝑖), 𝜑(𝑥𝑗)⟩. For treatments

𝑡 ∈ {0, 1} and bounds 𝑏 ∈ {𝑙, 𝑢} (lower/upper), let 𝑓 𝑡
𝑏(𝑥𝑖) := ⟨𝜃𝑡𝑏, 𝜑(𝑥𝑖)⟩ + 𝜌𝑡𝑏. In this

setting, all three losses (ℓ(1), ℓ(2), ℓ(∞)) are convex in 𝜃. Let sample weights 𝑤𝑡𝑖 be

defined as in Definition 2.2.1, and define ̃︀𝑤𝑡𝑖 := 𝑤𝑡𝑖/
∑︀

𝑗:𝑡𝑗=𝑡𝑖
𝑤𝑡𝑗 . Finally, let Λ(𝑓)

denote a term that measures complexity of 𝑓 , e.g., the squared norm of parameters.

We describe two versions of BP: BP-D, a decoupled version where the bounds for the

treated and control groups are fitted separately, and BP-C, a coupled version where

the two are fitted simultaneously.

2.4.1 BP-D: decoupled treatment groups

First, we consider estimating bounds 𝑓𝑢, 𝑓𝑙 on a single potential outcome 𝑌 (𝑡), in-

dependently of others. We minimize the weighted loss ℓ
(𝑝)̃︀𝑤 (𝑓) and require that the

bounds be violated only with small probability over 𝑝(𝑥). We let the loss ℓ
(𝑝)̃︀𝑤 (𝑓)

be defined by either the mean absolute interval width, ℓ
(1)̃︀𝑤 (𝑓)

∑︀
𝑖:𝑡𝑖=𝑡 ̃︀𝑤𝑡𝑖 |IW𝑓 (𝑥𝑖)|,

the mean squared interval width, ℓ(2)̃︀𝑤 (𝑓) =
∑︀

𝑖:𝑡𝑖=𝑡 ̃︀𝑤𝑡𝑖(IW𝑓 (𝑥𝑖))
2, or the maximum
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interval width, ℓ(∞)̃︀𝑤 (𝑓) = sup𝑖:𝑡𝑖=𝑡(IW𝑓 (𝑥𝑖)).

minimize
𝑓={𝑓𝑢,𝑓𝑙}

ℓ
(𝑝)̃︀𝑤 (𝑓) + 𝛼Λ(𝑓)

subject to
∑︁
𝑖:𝑡𝑖=𝑡

̃︀𝑤𝑡𝑖 max(𝑦𝑖 − 𝑓𝑢(𝑥𝑖), 0) ≤ 𝛽𝑢∑︁
𝑖:𝑡𝑖=𝑡

̃︀𝑤𝑡𝑖 max(𝑓𝑙(𝑥𝑖) − 𝑦𝑖, 0) ≤ 𝛽𝑙

𝑓𝑙(𝑥𝑖) ≤ 𝑓𝑢(𝑥𝑖) ,∀𝑖 : 𝑡𝑖 = 𝑡 .

(2.7)

Note that the constraints are defined with respect to the magnitude of the violations,

which does not immediately translate into a specific FCR. We address this issue in

section 2.4.3. Problem (2.7) can be solved separately for the two treatment groups, as

is done in two-learners or the treatment variable could be added in as a feature and

the two treatment groups can be jointly trained, as is done in single-learners (Künzel

et al., 2019). Next, we highlight some important characteristics of this estimator.

1. BP-D minimizes the lower bound in Theorem 2.3.2. Note that BP-D

is specified over the set of linear functions with kernel defined feature spaces. With

Λ defined as the 2-norm of the vector 𝜃, and because of the last constraint (𝑓𝑙 ≤ 𝑓𝑢),

with high probability the functions returned by BP-D fall within the set of functions

defined in definition 2.3.7, and hence theorem 2.3.2 is applicable here. Recall that

theorem 2.3.2 states that for the estimated functions to be optimal, 𝐴,𝐵, and 𝐷 need

to be minimized while 𝛾 needs to be maximized. Problem (2.7) directly minimizes the

𝐴,𝐵 (for 𝑝 = 1, 2,∞ depending on ℓ) and 𝐷. As for 𝛾: suppose we fix the bias to be

𝜌𝑡𝑏, then 𝛾𝑡
𝑏 = 𝜌𝑡𝑏 − 𝜌𝑡𝑏, where the latter is the bias returned by solving problem (2.7).

Because problem (2.7) minimizes 𝜌𝑡𝑏, it maximizes 𝛾𝑡
𝑏 for a fixed 𝜌𝑡𝑏. Ideally, we would

not fix 𝜌𝑡𝑏 in advance, but let it be decided by the data. We address this issue in

section 2.4.3.

2. BP-D with ℓ(1)-loss is equivalent to quantile regression. When mini-
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mizing the mean absolute interval width, our problem reuces to a quantile regression

with non-crossing constraints (Takeuchi et al., 2006) of quantiles 𝑞 and 1 − 𝑞 for for

some choice of 𝑞 ∈ (0, .5).

Theorem 2.4.1. Assume that (2.7) is strictly convex and has a strictly feasible so-

lution. Then, for any fixed quantile 𝑞 ∈ (0.5, 1), there are parameters 𝛽𝑢, 𝛽𝑙 ≥ 0

such that the minimizers 𝑓 *
𝑢 , 𝑓

*
𝑙 of (2.7) with absolute loss and the minimizers of the

quantile loss for quantiles (𝑞, 1 − 𝑞), with non-crossing constraints, are equal.

A proof is given in the appendix.

BP-D allows us to learn reliable and informative bounds but it does not make use of

the “unlabeled” data from the opposite treatment group. This is addressed next.

2.4.2 BP-C: coupled treatment groups

In the coupled problem, we make use of samples from the counterfactual treat-

ment group in two ways. First, we apply constraints that ensure that the lower

and upper bounds do not cross for counterfactual outcomes. Second, the loss func-

tions are defined with respect to the full marginal distribution of subjects (including

counterfactual treatment assignments). We define the coupled version of the mean

absolute loss ℓ(1) =
∑︀𝑛

𝑖=1

∑︀1
𝑡=0 ̃︀𝑤𝑡𝑖 |IW𝑓 𝑡(𝑥𝑖)|, mean squared interval width, ℓ(2) =∑︀𝑛

𝑖=1

∑︀1
𝑡=0 ̃︀𝑤𝑡𝑖IW𝑓 𝑡(𝑥𝑖)

2, and maximum interval width, ℓ(∞) = sup𝑛
𝑖=1

∑︀1
𝑡=0 IW𝑓 𝑡(𝑥𝑖).

The coupled problem becomes:

minimize
{𝑓 𝑡={𝑓 𝑡

𝑢,𝑓
𝑡
𝑙 }}

ℓ
(𝑝)̃︀𝑤 (𝑓 0,𝑓 1) + 𝛼 · (Λ(𝑓 0) + Λ(𝑓 1))

subject to
∑︁
𝑖:𝑡𝑖=𝑡

̃︀𝑤𝑡𝑖 max(𝑦𝑖 − 𝑓 𝑡
𝑢(𝑥𝑖), 0) ≤ 𝛽𝑢,∀𝑡∑︁

𝑖:𝑡𝑖=𝑡

̃︀𝑤𝑡𝑖 max(𝑓 𝑡
𝑙 (𝑥𝑖) − 𝑦𝑖, 0) ≤ 𝛽𝑙,∀𝑡

𝑓 𝑡
𝑙 (𝑥𝑖) ≤ 𝑓 𝑡

𝑢(𝑥𝑖) ,∀𝑡, 𝑖 : 𝑡𝑖 = 𝑡 . (2.8)
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Given the overlap assumption (stated in Assumption 2.2.1), this encourages the

counterfactual outcome intervals to be small even if the corresponding treatment

assignment is not observed. By coupling the two objectives, we allow information

to be shared between the treated and non-treated populations in a semi-supervised

way. We caution, however, that in the absence of overlap, the coupled loss might

be overly optimistic in regions of non-overlap, returning intervals that do not cover

the true data. With 𝑓𝑙, 𝑓𝑢 linear in the representation 𝜑 and Λ(𝑓) defined as the

L2 norm of the function weights, expressions (2.7) and (2.8) are both convex pro-

grams that can be readily solved by a general solver. Our code is available at

<github.com/mymakar/bpo.git>.

2.4.3 Cross-Validating BP

BP constrains the magnitude of the violations rather than the FCR directly. This

allows the algorithm to directly utilize the theory and makes the optimization prob-

lem easier. The disadvantage is that the magnitude of violations does not directly

translate into a specific FCR. We address this issue by designing a cross-validation

algorithm that picks the hyperparameters of the model to achieve a required FCR, 𝜈.

BP-C/D requires a regularization parameter, 𝛼, a level of tolerance to violations,

𝛽𝑢,𝑙, and 𝜎, which controls the kernel (e.g., the length scale for Gaussian kernels or

the polynomial degree for polynomial kernels). Suppose that we solve problem (2.7)

or (2.8) and get some estimate for the bias 𝜌𝑡𝑏, we specify an additional parameter

𝛾 > 0, and take the final estimate 𝜌𝑡𝑙 := 𝜌𝑡𝑙 − 𝛾 and 𝜌𝑡𝑢 := 𝜌𝑡𝑢 + 𝛾. This allows us to

set 𝛾 based on the data rather than specify it a priori.

The algorithm takes as an input the training data, 𝜈, ℓ, the required loss to mini-

mize, and 𝑀 , the set of hyperparameters to consider. We then split the data into

training and validation. For each set of parameters indexed by 𝑚 = [1, . . . ,𝑀 ], we

use the training set to solve problem (2.7) or (2.8). We estimate 𝜈𝑚 and ̂︀ℓ𝑚, the
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FCR and loss corresponding to 𝑚 on the held-out set. We discard of all the hyper-

parameters with a corresponding 𝜈𝑚 > 𝜈, and define 𝑀 ′ = {𝑚 : 𝜈𝑚 ≤ 𝜈}. We set

the optimal hyperparameters 𝑚* := min𝑚∈𝑀 ′ ̂︀ℓ𝑚. The procedure is summarized in

Algorithm 2.4.1. Let Ω denote a set of candidate hyperparameters. Suppose we have

𝑀 possible hyperparameters, cross-validating BP proceeds as follows:

Algorithm 2.4.1: BP 𝐾 fold cross-validation for 𝑀 sets of hyperparameters,
and required FCR = 𝜈

Input: 𝒟 = {𝑥𝑖, 𝑡𝑖, 𝑦𝑖, 𝑤𝑖}, 𝑝, 𝜈, {Ω}𝑀
Output: Ω*

1 for 𝑚 = 1 to 𝑀 do
2 for 𝑘 = 1 to 𝐾 do
3 Split 𝒟 into 𝒟𝑘

train, 𝒟𝑘
validate

4 Use 𝒟𝑘
train to solve problem (2.7) or (2.8)

5 Estimate 𝜈(𝑘,𝑚), and ||̂︁IW||(𝑘,𝑚)
𝑝 on 𝒟𝑘

validate, using the weights 𝑤𝑖

6 end
7 Compute the average metrics over the 𝐾 folds; 𝜈(𝑚) = 𝐾−1

∑︀
𝑘 𝜈

(𝑘,𝑚), and
||̂︁IW||(𝑚)

𝑝 = 𝐾−1
∑︀

𝑘 ||̂︁IW||(𝑘,𝑚)
𝑝

8 end
9 Define 𝑀 ′ = {𝑚 : 𝜈(𝑚) ≤ 𝜈}

10 Set Ω* := min𝑚∈𝑀 ′ ||̂︁IW||(𝑚)
𝑝

2.5 Experiments

We compare our model to other interval estimation methods. First is classical

confidence-interval based approaches. We use XX-CCI to refer to this approach,

where XX will be replaced by the name of the base model (e.g., if it is a Gaussian

Process, we use GP-CCI). Though popular, classical confidence intervals are known

to have poor coverage in finite samples (Sargent et al., 1992; Lei et al., 2018). Con-

formal intervals, the second interval estimation method we compare against, were

introduced as an alternative with better finite sample coverage (Lei et al., 2018).

Conformal intervals are estimated by splitting the training data into two parts. The

first part is used to train the outcome model, where parameters are picked via the
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usual cross-validation techniques. We estimate the residuals on the second subset of

the training data. If the required FCR is 𝑞, we take the 1 − 𝑞𝑡ℎ quantile of the resid-

uals to be a “shifting” parameter (akin to 𝛾 in our setting). The conformal intervals

for a test sample are taken to be the estimated outcome ± the shifting parameter.

We use XX-CI to refer to this approach. Finally, we introduce 𝛾-intervals, which we

refer to as XX-𝛾. Similar to conformal intervals, we split the data into two, fitting

the best model on the first half and then picking the smallest shifting parameter 𝛾

that achieves the required FCR on the second half. We use BP-V-Lp to refer to our

models, where V refers to the D (decoupled) or C (coupled) version and Lp refers

to the norm of the loss (1, 2, or ∞). Recall that the 1-norm is similar to quantile

regressions (QR) (by theorem 2.4.1).

We evaluate the performance of our models and the baselines on a held-out test set

with respect to two criteria: the achieved FCR, as defined in equation (2.2) and the

utility as measured by the mean IW and the max IW, as defined in equation (2.6).

Additional cross-validation details for our model and the baselines are included in the

appendix.

We analyze the performance of BP as compared to baselines in multiple settings. We

highlight the following settings where we expect BP to outperform baselines.

1. Residual distribution assumptions. Most baselines make restrictive as-

sumptions about the distributions of the residuals. When such assumptions

break, the resulting intervals are no longer tight or do not correctly cover the

outcomes. We briefly outline such assumptions:

(a) Symmetry. This assumption states that in order to get a 5% FCR, we

need to ensure that the lower and upper bounds are violated by at most

2.5% each. In some cases, the tightest bounds would be achieved by non-

symmetrical bounds, e.g., the lower bound is violated by 1% whereas the

upper bound is violated by 4%. Violations to the symmetry assumption

occur, for example, when the model is misspecified, which leads to biased
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estimates. In that case, tight bounds should reflect the direction of bias: if

the estimates are biased downwards (meaning lower than the true value),

it is more important that the upper bounds are not violated, whereas

violations to the lower bound are more permissible (since the estimate

itself is a lower value than the true outcome). We empirically analyze this

setting in section 2.5.1.1.

(b) Well-behaved residual distribution: This assumption states that the

residuals concentrate around a single, central value. Such an assumption is

also violated when there is model misspecification, or if the outcome noise

is heteroskedastic. We empirically analyze this setting in section 2.5.1.2.

2. Small samples. Most baselines estimate the conditional expectation E[𝑌 (𝑡) |
𝑥] as accurately as possible, then add, and subtract some value from that esti-

mate to get the bounds. When the observed data is not enough to accurately

estimate E[𝑌 (𝑡) | 𝑥], these bound estimates are not reliable. We empirically

analyze this setting in section 2.5.2.

When there is enough data to accurately estimate E[𝑌 (𝑡) | 𝑥], we expect BP to

perform as well as the baselines. We present this experiment setup in section 2.5.3.

2.5.1 IST data

We begin with a simple illustrative example that highlights the strengths of BP vis-a-

vis baselines and the properties of different utility functions in a practical setting. We

aim to answer the following: (1) How do different losses reflecting different notions

of utility affect the estimates? (2) How does the coupled objective make use of

counterfactual data?

We study the task of a physician deciding whether or not to prescribe Heparin, an

anticoagulant, to reduce the risk of Ischemic and Hemorrhagic strokes. Patients with
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an elevated risk of forming blood clots can reduce their risk of an Ischemic stroke by

taking Heparin. However, some patients experience excessive bleeding if placed on

Heparin increasing their risk of a Hemorrhagic stroke. In this setting, to make an

informed decision, the physician only needs to know if the INR under treatment falls

within the healthy range of 2–3 as described in the introduction. The exact value of

INR provides little additional insight.

We use data from a randomized control trial measuring the effects of Heparin (In-

ternational Stroke Trial Collaborative Group, 1997). We restrict our analysis to the

patients who received Heparin (treatment, 𝑛1 = 4530) or no anticoagulant (control,

𝑛0 = 4534). To introduce confounding, we drop 70% of the older (age > 70), un-

treated population thus ensuring a strong correlation between age and receving the

treatment. Note that the original distribution of age in the trial is skewed, with a

mean of 71.8 and a skewness of -0.79, which means that young patients are under-

represented. Figure 2-2 in shows the distribution of ages for the treated and control

groups in the training set.
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Figure 2-2: Distribution of data in the IST experiment

Because INR was not measured in the data, we simulate E[𝑌𝑖(1) | 𝑎𝑔𝑒𝑖], and E[𝑌𝑖(0) |
𝑎𝑔𝑒𝑖] according to two different scenarios described later. For both scenarios, we fit a
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kernel regression with a linear kernel (KR) for the baselines. We repeat our simulation

20 times and report averages. In each simulation, we randomly sample 3000 patients

for training and validation and 3000 held out for testing. Following Chernozhukov

et al. (2016), we use half the training data to estimate the nuisance parameter, that is

the propensity scores, and the other half to fit the potential outcomes. For propensity

scores, we fit a logistic regression. We pick the regularization parameter for the

propensity score model and all the response surface models via 3-fold cross-validation

as described in the appendix. For all experiments, we set the required FCR to be

≤ 0.01, i.e., ≤ 1%.

All models in the IST experiments presented in sections 2.5.1.1, and 2.5.1.2 rely

on inverse propensity score weighting (i.e., weighting by 𝑤𝑖) during training. All

hyperparemeters for all models are picked based on weighted performance metrics

evaluated on the held out validation set; for both kernel regression models, we pick

the regularization penalty based on the weighted loss computed on the held out

validation set. We pick the value of 𝛾 for the KR-𝛾 model based on the weighted

FCR. For our models, we pick the hyperparameters based on the weighted FCR, and

the weighted interval widths as described in algorithm 2.4.1.

2.5.1.1 Model misspecification

Here, we study a scenario where the symmetry assumption is violated because of

model misspecification.

We simulate the INR under treatment according to E[𝑌𝑖(1) | 𝑎𝑔𝑒𝑖] = 𝑆(−5, 𝑎𝑔𝑒′𝑖) +

2.5 + 𝜀, where 𝑆(𝑎, 𝑥) denotes the sigmoid function with coefficient 𝑎, 𝑎𝑔𝑒′ is the

age rescaled between -10, 10 and 𝜀 ∼Gaussian(0, 0.1). This setup ensures that the

majority of the population falls within the normal range if treated, while the few

patients younger than 60 have high INR if treated. Similarly, the outcome under

control is determined by E[𝑌𝑖(0) | 𝑎𝑔𝑒𝑖] = 𝑆(−5, 𝑎𝑔𝑒′𝑖 − 4) + 1.5 + 𝜀. This reflects

the setting where patients older than 70 (who are under-represented in the untreated
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population) would have too low an INR if not placed on Heparin.

We assume that we are restricted to linear models for interpretability reasons. In this

setting the models are inherently misspecified, which means that the residuals violate

the symmetry and well-behavedness assumptions.
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Figure 2-3: Comparing different loss functions: Plot shows results from a single
simulation. Black dots show potential outcomes on the test set, lines show fitted
values, and shaded region shows healthy range. We see that BP-D-L∞ is a “fair”
objective, ensuring that the younger (≤ 60) population has intervals as tight as those
for the older population. QR (equivalent to BP-D-L1) ensures intervals are tight for
older population but returns wider intervals for the younger population. BP-D-L2
gives an estimate “in-between” the two objectives, penalizing large intervals more
aggressively than QR/BP-D-L1. Baselines (KR-CI/KR-𝛾) return bounds that are
loose for both populations.

Table 2.1 (top), and Figure 2-3 show the results. Most notably, KR-CI and KR-𝛾

return loose estimates compared to BP/QR. This is because KR-CI assumes symme-

try of the residuals, returning overly loose upper bounds. KR-𝛾 implicitly assumes

non-fat tailedness by shifting the estimates by the same constant for all individu-

als. More generally, the baselines fail because they aim to first estimate the outcome

as best as possible, and then estimate the intervals post-training. Ultimately, the
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Figure 2-4: Decoupled and coupled versions. Plot shows results from a single simu-
lation. Black dots show potential outcomes on the test set, lines show fitted values,
and shaded region shows healthy range. We see that penalizing the counterfactual
interval widths enables the coupled objective, BP-C-L2, to return a tighter fit for
𝑌 (0) in the area where few untreated examples exist in the training data (age> 70).

model is picked based on what reduces the mean squared error, not what reduces

over/under-estimation.

In addition, table 2.1 (top) shows that BP-D-L∞ achieves the smallest maximum IW.

BP-D-L2 and QR (equivalent to BP-D-L1) achieve the smallest mean IW, with the

former achieving a smaller max IW. Figure 2-3 explains why. BP-D-L∞ achieves the

smallest max IW since it penalizes large intervals in the younger population at the

cost of fitting a wider interval for age ≥ 60. Such an objective is most appropriate

when notions of fairness might be at play, such as if a physician wants to ensure that

younger patients are never given abnormally large intervals compared to the older

group. QR/ BP-D-L1 achieves a tight mean IW for the older population but does

less well on the younger population. Such an objective is appropriate when we want

estimates that are as tight as possible on average, even if that entails computing

wide estimates for small subpopulations. BL-D-L2 falls between the two extremes of
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Table 2.1: IST results. Table shows results averaged over 20 simulations, confirming
conclusions from figures 2-3 and 2-4.

Model FCR Mean IW Max IW

𝑌 (1) results

BP-D-L2 0.007 (0.0036) 1.04 (0.05) 2.15 (0.19)
BP-D-L∞ 0.007 (0.0037) 1.16 (0.06) 1.16 (0.06)
QR/BP-D-L1 0.007 (0.0043) 1.07 (0.09) 2.25 (0.26)
KR−𝛾 0.004 (0.0081) 1.96 (0.09) 1.96 (0.09)
KR-CI 0.0 (0.0) 2.41 (0.07) 2.41 (0.07)

𝑌 (0) results

BP-C-L2 0.007 (0.0059) 1.35 (0.17) 1.62 (0.26)
BP-D-L2 0.005 (0.0051) 1.37 (0.13) 1.72 (0.2)

BP-D-L∞ and BP-D-L1/QR; its mean IW is slightly higher than that of BP-D-L1

(for the younger population) and lower than that of BP-D-L∞, its max IW is lower

than that of BP-D-L1 but higher than that of BP-D-L∞. This is because the L2 loss

penalizes large IWs more aggressively than L1.

Recall that here the physician’s objective is to correct the patients’ INR level without

overshooting, hence ensuring that the patients’ INR falls within the healthy range.

A physician who prescribes Heparin only when they are certain that a patient’s INR

would fall in the normal range (i.e., both upper and lower bounds fall in the normal

range) would not prescribe heparin to anyone if they rely on KR-𝛾, KR-CI, or BP-

D-L∞ estimates. The latter has the advantage of providing tighter bounds for the

younger patient group, whereas the former three also fails on that task.

Table 2.1 (bottom) shows that the decoupled version achieves a smaller mean and

max IW compared to the coupled version, though the difference is not statistically

significantly different. Figure 2-4 gives insight into the difference between the two

versions. The coupled objective returns tighter intervals for the majority of the pop-

ulation, that is patients with age > 70, who are under-represented in the control

group. This happens because the coupled objective has an incentive to minimize the

interval width for older, untreated patients since a wider counterfactual interval for
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the older treated patients is penalized, whereas the decoupled objective is unaware of

these patients.

2.5.1.2 Heteroskedasticity

Here, we study a scenario where the well-behavedness assumption is violated because

of heteroskedasticity.

We use the IST data, and for brevity focus only on the outcome under treatment,

𝑌 (1). Specifically, we generate the outcome under treatment as 𝑌 (1) = 𝑥2 + 𝜀, where

𝑥 is the age rescaled to fall between -2, 2, and 𝜀𝑖 is drawn from a Gaussian distribution

with mean 0 and standard deviation = 0.1 if 𝑥 ≤ 0, and from a Gaussian distribution

with mean 0 and standard deviation = 0.1+𝑥 otherwise. We set the required FCR to

be ≤ 0.01. Since our main aim is to analyze how the different models perform when

when heteroskedasticity occurs, we focus only on tightness of bounds as an objective.

Table 2.2 shows the results averaged over 20 simulations. It shows that of all the mod-

els that achieve the required FCR, BP-D-L2 achieves the tightest intervals. Figure 2-

5 shows why: neither BP-D-L2 and QR (equivalent to BP-D-L1) make assumptions

about well-behavedness of the residual distribution. They give adaptive intervals,

which are tight when the heteroskedastic noise is low, and loose when it is high. In

addition, BP-D-L2 has a better performance than BP-D-L1 because it places a higher

penalty on very large intervals. In this specific example, because the majority of in-

dividuals have age greater than 60, and hence fall in the area where the dispersion is

high, the L2 penalty ends up achieving tighter intervals than the L1 loss.

2.5.2 Small ACIC data

Here, we study a setting where the data available for training might not be enough

to accurately estimate E[𝑌 (𝑡) | 𝑥]. We evaluate our approach in a challenging, high-
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Table 2.2: IST heteroskedasticity results. Table shows results averaged over 20 sim-
ulations 2-5.

Model FCR Mean IW Max IW

BP-D-L2 0.007 (0.005) 5.55 (0.56) 10.68 (2.35)
QR/BP-D-L1 0.006 (0.0031) 6.49 (0.96) 11.63 (2.37)
KR-𝛾 0.065 (0.0086) 3.98 (0.06) 3.98 (0.06)
KR-CI 0.007 (0.0052) 6.94 (0.69) 6.94 (0.69)

dimensional task: semi-simulated data from the Atlantic Causal Inference Conference

Competition (Dorie et al., 2017). In this task, 58 variables were extracted from the

Collaborative Perinatal Project, a study on pregnant women and their children. The

treatment assignment and the response surfaces were simulated. We focus on the

simulation with limited overlap and high heterogeneity where the treatment response

surface is polynomial and the response surface is exponential (setting number 12).

We sample 200 data points for the training/validation of the main models, and 1000

for our test set. We sample 1000 data point for training/validation of the propensity

score models. Propensity scores are estimated using 3 fold cross-validation.

To fit the potential outcomes, we use an RBF kernel for our BP/QR models. We

also use an RBF kernel for the kernel regression models. We only present KR-CI,

excluding KR-𝛾 since it performs comparably to KR-CI. In addition, we include

single-learners (Künzel et al., 2019) with Gaussian processes as the base-estimators

(GP), and Bayesian Additive Regression Trees (BART; Hill (2011)). For the latter

2 models, we compute the classical confidence intervals (GP-CCI, and BART-CCI),

and a variant of the 𝛾-intervals (GP-𝛾, and BART-𝛾). Here, 𝛾 is used as a scaling

rather than a shifting parameter; for an estimated outcome 𝑦, and estimated standard

deviation �̂�, the lower/upper bounds are estimated as: 𝑦± 𝛾 · �̂�, and the optimal 𝛾 is

picked based on cross-validation as described previously.

All models except BART rely on inverse propensity score weighting (i.e., weighting

by 𝑤𝑖) during training, and validation1. Similar to the IST experiments, we use the
1We note that training BART without inverse propensity score weighting is consistent with

previous implementations of BART in causal settings e.g., in Hill (2011); Shalit et al. (2017)
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Figure 2-5: IST heteroskedasticity results. Plot shows results from a single simulation.
Black dots show potential outcomes on the test set, lines show fitted values. The plot
show that BP-D-L2 and QR (equivalent to BP-D-L1) are the only ones that are
able to fit adaptive intervals (wider where there is high heteroskedasticity). BP-D-L2
achieves the tightest intervals on average.

weighted FCR to pick the value of 𝛾 for BART-𝛾, GP-𝛾, and KR-𝛾. Because BART-

CCI does not utilize the propensity scores at any part of the training and validation

pipeline, we use all 1200 samples to train the BART-CCI models.

We focus on getting the tightest bounds, so we only present results from BP-C-L2.

We measure the performance of the models at required FCR = {0.001, 0.005, 0.01,

0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2 }.

In this setting, the small sample size makes it hard to get an accurate estimate of

the potential outcomes, which may belong to a complex function class. This can be

thought of as a “forced” model misspecification since the limited data does not afford

us the ability to fit the true function, and limits us to simpler function classes. This is

once again, a setting where we expect our models to outperform baselines that make
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strong assumptions about the residuals.

Figure 2-6 shows the mean achieved FCR on the 𝑥− axis, and the mean IW on the

𝑦−axis for our model and baselines averaged over 20 simulations. First, we see that

the mean IWs for all the models decrease as the achieved FCR increases. This confirms

our theoretical findings of a trade-off between confidence that the bounds cover the

potential outcomes and complexity of the function class; lower required FCRs (i.e.,

higher confidence that the bounds cover the true date) are associated with simpler

function classes, which sacrifices accuracy, leading to higher mean IW. Second, we see

that our models achieve interval widths that are tighter than all other kernel-based

methods, and comparable to BART at every value of achieved FCR. Note, however,

figure 2-7 shows that our models achieve smaller violation compared to BART. This

implies that our models are better able to exploit the trade-off between confidence

and complexity.

Results from GP-CCI, and BART-CCI are excluded from the plots, and presented

in the section A.5.2 in the appendix since they achieve very large violations. Unlike

the IST setting, in this high dimensional setting, diagnosing why classical confidence

interval methods fail to correctly cover the potential outcomes is difficult. Comparing

the results from the CCI models to their 𝛾 counterparts point to the notion that CCI

models might be underestimating the conditional variance. Another conjecture to

explain the poor coverage by CCI methods is that because of model misspecification,

or bias due to imperfect estimation in finite samples the true potential outcomes lie

outside of the estimated confidence interval as illustrated in figure 2-8. We note that

these findings conform with previous studies which show that CCI methods tend to

have poor coverage in finite samples (Sargent et al., 1992; Lei et al., 2018).
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Figure 2-6: Small ACIC data results: comparing tightness of estimated intervals:
Plot shows the mean interval width for different values of the achieved FCR on a
held-out test set, averaged over 20 simulations. Our approach (BP) achieves a mean
interval width comparable to the best performing model (BART), and better than
other kernel-based methods.
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Figure 2-7: Small ACIC data results: comparing violation to the required FCR.
Plot 2-7 shows the violation of the required FCR (= achieved - required) at different
values of required FCR, averaged over 20 simulations. Models above the dotted black
line are in violation of the required FCR. Our approach (BP) achieves lower violation
of the required FCR.
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Figure 2-8: Illustration of a possible failure mode for CCI methods. Dotted grey
line shows the true potential outcome, grey cloud shows Gaussian noise. Red line
shows the estimated potential outcome which is imperfect due to finite sample error
or model misspecification. Red cloud shows the estimated confidence interval. The
true potential outcome falls outside of the estimated confidence interval for some
subpopulations.

2.5.3 Large ACIC data

We repeat the same analyses presented in section 2.5.2 but here we consider a larger

sample size than that presented in the previous section. Instead of sampling 𝑛 = 200,

we sample 1000 data points for training and validation of the main models2. In this

setting, all models are better able to fit the true outcomes since the larger sample

size affords us the ability to fit more complex models. Figures 2-9, and 2-10 show

the results. Once again we see that our models outperform all kernel based methods.

Here we see that BART-𝛾 achieves a tighter interval width than our model for the

same level of FCR violation. This highlights the strength of tree based models in that

they fit highly adaptive “kernels”. We note that the typical BART intervals, computed

using the classical confidence intervals achieved high violations of the required FCR.

Similar to the small sample setting, results from GP-CCI, and BART-CCI are ex-
2Similar to the small ACIC data analysis, BART-CCI uses all 2000 data points for training since

it does not rely on inverse propensity score weighting at any point in the training, and validation
pipelines
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cluded from the plots, and presented in the section A.5.2 in the appendix since they

achieve very large violations.
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Figure 2-9: Large ACIC data results: comparing tightness of estimated intervals:
Plot shows the mean interval width for different values of the achieved FCR on a
held-out test set, averaged over 20 simulations. Our approach (BP) outperforms all
kernel-based methods in terms of mean interval width. BART with 𝛾-intervals, a
tree based method returns tighter interval widths compared to our approach, at a
comparable achieved FCR (see plot 2-10).
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Figure 2-10: Large ACIC data results: comparing violation to the required FCR. Plot
shows the violation of the required FCR (= achieved - required) at different values of
required FCR, averaged over 20 simulations. Models above the dotted black line are
in violation of the required FCR. Our approach (BP) achieves lower violation of the
required FCR.
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2.6 Summary

In this chapter, we establish that the sample complexity of learning bounds on poten-

tial outcomes depends on how confident we wish to be that the bounds cover the true

potential outcomes. For applications where it is sufficient to have reliable bounds on

the potential outcomes, and the outcomes are complex functions, our findings indi-

cate how to simplify the learning problem. Based on these findings, we introduced an

algorithm that maximizes an objective, specified by the user, subject to constraints

that guarantee validity of the bounds with high probability. Using semi-synthetic

data, we showed that our method outperforms baselines, estimating tight prediction

intervals without violating a required level of false coverage rate.

We note that our approach would be favorable even in the context of a randomized

control trial, where the treatment assignment is not biased. The core discovery that we

present here is not predominantly addressing bias issues which arise in observational

data. Rather, we emphasize that one of the main contributions presented in this

chapter is exploring a novel trade-off between utility of a learned estimator and its

statistical complexity, which depends on its credibility.
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Chapter 3

Causally-motivated Shortcut Removal

Using Auxiliary Labels

In this chapter, we use ideas from causal inference to develop efficient and robust

predictive models. We show that our causally-motivated regularization scheme leads

to predictors with low generalization error within, and outside of the training distri-

bution.

3.1 Background

Despite their immense success, predictors constructed from deep neural networks

(DNNs) have been shown to lack robustness under distribution shift (Beery et al.,

2018; Ilyas et al., 2019; Azulay and Weiss, 2018; Geirhos et al., 2018), especially

naturally occurring distribution shifts (Taori et al., 2020). One particular mechanism

for this brittleness is shortcut learning (Geirhos et al., 2020). Shortcut learning occurs

when a predictor relies on input features that are easy to represent (i.e., shortcuts)

and predictive of the outcome in the training data, but do not remain predictive

when the distribution of inputs changes. For example, a DNN trained for image
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classification could exploit correlations between the foreground and background in

the training distribution, and use a representation of the background as a shortcut to

predict the foreground (Beery et al., 2018; Sagawa et al., 2019). This can occur even

if the foreground object alone is sufficient to achieve optimal predictive performance

(Nagarajan et al., 2020; Sagawa et al., 2020a).

Throughout this chapter, we use the example of classifying the foreground object

as land or water bird. The two classes are visually distinct but the majority of the

former often appear on land backgrounds, and the latter on water backgrounds. DNNs

that exploit shortcuts could achieve strong performance on unseen instances from the

training distribution, but would fail if the foreground object and background were

correlated differently in the test distribution (e.g., if water birds appeared on land

backgrounds).

In this chapter, we consider the problem of learning a performant predictor whose risk

is invariant to interventions that change the correlations between irrelevant factors

and the main label. Ideally, such a predictor would rely exclusively on input features

that are invariant to irrelevant factors. However, identifying such invariant input

features in the standard supervised learning setup is difficult, for the same reason that

shortcut learning is successful: in learning setups where there are many distinct ways

to construct predictors that perform well on held-out data (i.e., when the learning

problem is underspecified (D’Amour et al., 2020)), the influence of correlated factors

is difficult to disentangle without additional supervision (Locatello et al., 2019).

For this reason, we focus on a modified setting where we are also given an auxiliary

label that gives information about the irrelevant factor. Such labels often appear

in the form of metadata associated with training data—for example, labels of the

background—but are often not available at test time. In this setting, we propose

an approach that exploits this auxiliary label to construct a predictor whose risk

is approximately invariant across a well-defined family of test-distributions. Our

method makes use of two tools from causal inference in combination: (1) weighting
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the training data to mimic an idealized population, and (2) enforcing an independence

implied by the causal Directed Acyclic Graph (DAG) in that idealized population.

While each of these approaches has been applied separately, we show here through

both theoretical arguments and empirical analysis that these methods are particularly

effective when applied together.

Our methodological contributions can be summarized as follows:

1. We suggest an approach that relies on auxiliary labels to discourage shortcut

learning. We specify a set of distribution shifts across which a robust model is

risk-invariant.

2. We give a theoretical justification of our approach, highlighting that in some

scenarios it yields models that have a lower generalization error than typical

regularization schemes. We also show that our approach is robust to a set of

distribution shifts.

3. We empirically validate our theoretical findings using a semi-simulated bench-

mark, showing our approach has favorable in- and out-of-distribution general-

ization properties.

4. We compare against baselines that ablate each part of our approach to show

that their combination yields more performant, stable training.

The remainder of the chapter is organized as follows. In section 3.2, we formally

introduce our objective. We also discuss important properties of the unconfounded

distribution, where the main label and the auxiliary label are independent. In sec-

tion 3.3, we present our main approach, and briefly state the main claims that guide

the design of our approach. We revisit these claims in section 3.4 with a greater de-

tail, giving theoretical justification for each. In section 3.5 we present our empirical

analysis. We conclude the chapter with a summary in section 3.7.
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3.2 Preliminaries

3.2.1 Setup

We consider a supervised learning setup where the task is to construct a predictor

𝑓(X) parameterized by weights w that predicts a label 𝑌 (e.g., foreground object)

from an input X (e.g., image). In addition, we have an auxiliary label 𝑉 (e.g.,

background label) available at training time that labels a factor of variation along

which we hope the model will exhibit some invariance. Throughout, we will use capital

letters to denote variables, and small letters to denote their value. Our training data

consist of tuples 𝒟 = {(x𝑖, 𝑦𝑖, 𝑣𝑖)}𝑛𝑖=1 drawn from a source training distribution 𝑃𝑠.

We restrict our focus to the case where 𝑌 and 𝑉 are binary and 𝑓 is a classifier.

Specifically, we will consider functions 𝑓 of the form 𝑓 = ℎ(𝜑(x)), where 𝜑 is a

representation mapping and ℎ is the final classifier.

We assume that 𝑃𝑠 has a generative structure shown in Figure 3-1, in which the

inputs 𝑋 are generated by the labels (𝑌, 𝑉 ). We assume that the labels 𝑌 and 𝑉 are

correlated, but not causally related; that is, changing the value of 𝑉 does not imply

a change in the value of 𝑌 , and vice versa. Such correlation often arises through

the influence of an unobserved third variable such as the environment from which the

data is collected. We represent this in Figure 3-1 with the dashed bidirectional arrow.

In addition, we assume that there is a sufficient statistic X* such that 𝑌 only affects

X through X*, for which the sufficient reduction X* = 𝑒(X) is unknown. For this

reason, we denote X* as unobserved in Figure 3-1. The fact that X* is a function of

X only implies that X* is invertible, i.e. for all X, X* can be exactly recovered from

X. We state that formally in the following assumption

Assumption 3.2.1. (Invertability) There exists some function 𝑒 such that X* = 𝑒(X)

for all X.
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3.2.2 Risk Invariance

X*

X

𝑌

𝑉

Figure 3-1: DAG depicting the setting we consider in this chapter. The main label 𝑌
and auxiliary label 𝑉 generate observed input X, but 𝑌 only affects X through the
sufficient statistic X*.

We define the generalization risk of a function 𝑓 on a distribution 𝑃 as 𝑅𝑃 =

E𝑋,𝑌∼𝑃 [ℓ(𝑓(𝑋), 𝑌 )], where ℓ the logistic loss.

We focus on obtaining an accurate risk invariant predictor, with the property that

the risk is invariant across a family of target distributions 𝑃𝑡 that can be obtained

from 𝑃𝑠 by interventions on the causal model in Figure 3-1. Specifically, we consider

interventions on the confounding relationship between 𝑌 and 𝑉 that keep the marginal

distribution of 𝑌 constant. Each distribution in this family can be obtained by

replacing the source conditional distribution 𝑃𝑠(𝑉 | 𝑌 ) with a target conditional

distribution 𝑃𝑡(𝑉 | 𝑌 ):

𝒫 := {𝑃𝑠(X | X*, 𝑉 )𝑃𝑠(X
* | 𝑌 )𝑃𝑠(𝑌 )𝑃𝑡(𝑉 | 𝑌 )}. (3.1)

This family allows the dependence between 𝑌 and 𝑉 to change arbitrarily.

We make the following overlap assumption on the source distribution:

Assumption 3.2.2. (Overlap) 𝑃𝑠(𝑉 )𝑃𝑠(𝑌 ) ≪ 𝑃𝑠(𝑉, 𝑌 )

Given the family 𝒫 , we define the set of risk invariant predictors to be all predictors

that have the same risk for all 𝑃𝑡 ∈ 𝒫 ,

ℱrinv = {𝑓 : 𝑅𝑃𝑡(𝑓) = 𝑅𝑃 ′
𝑡
(𝑓) ∀𝑃𝑡, 𝑃

′
𝑡 ∈ 𝒫}.
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An optimal risk-invariant predictor 𝑓rinv has the property

𝑓rinv ∈ arg min
𝑓∈ℱrinv

𝑅𝑃𝑡(𝑓) for any 𝑃𝑡 ∈ 𝒫 .

Risk invariance is an appealing property because guarantees about the performance of

the predictor 𝑓rinv derived under one distribution can be adapted to other distributions

in 𝒫 .

3.2.3 The Unconfounded Distribution 𝑃 ∘

Within the family of distributions 𝒫 , we pay special attention to the unconfounded

distribution 𝑃 ∘ ∈ 𝒫 where 𝑃 ∘(𝑉 | 𝑌 ) := 𝑃𝑠(𝑉 ). Under 𝑃 ∘, 𝑌 ⊥⊥ 𝑉 and the dashed

bidirectional arrow in Figure 3-1 can be dropped. Both our methodological approach

and theoretical analysis revolve around mapping the problem of learning a risk in-

variant predictor under 𝑃𝑠 to the problem of learning an optimal predictor under

𝑃 ∘.

𝑃 ∘ has two useful properties that are revealed by the DAG in Figure 3-1: (1) un-

der the unconfounded distribution 𝑃 ∘, the optimal predictor (with some abuse of

notation) would take the form 𝑓(X*), and (2) for any predictor of the form 𝑓(X*),

the joint distribution 𝑃 (𝑓(X*), 𝑌 ) (and thus the risk) is invariant across the family

𝒫 . Together, these imply that the optimal risk-invariant predictor 𝑓rinv(X*) is the

optimal predictor under 𝑃 ∘. We state this formally in the following proposition.

Proposition 3.2.1. Under 𝑃 ∘, the Bayes optimal predictor is (i) only a function of

X*, and (ii) an optimal risk-invariant predictor 𝑓rinv with respect to 𝒫.

Proof is in the appendix. This motivates our approach to design an objective that

enables efficient estimation of the optimal predictor under 𝑃 ∘, even when the training

data 𝒟 are drawn from a different distribution, 𝑃𝑠.
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3.3 Approach

Here, we describe our approach to learning an optimal risk-invariant predictor 𝑓rinv(X)

from training data 𝒟 ∼ 𝑃𝑠. Our approach relies on the following claims, which follow

from the causal structure of the problem:

1. When the source distribution is the ideal distribution 𝑃 ∘, enforcing an inde-

pendence implied by the causal DAG leads to efficient estimation (proposi-

tion 3.4.3). It also shrinks the gap between the error on the target distribution

𝑃𝑡 and 𝑃 ∘ (proposition 3.4.6)

2. From any source distribution 𝑃𝑠, we can efficiently learn the optimal predictor

under 𝑃 ∘ by enforcing the independence implied by the DAG, and applying

appropriate weights to examples (proposition 3.4.5).

We will formally discuss these claims in the next sections. Based on these claims, we

construct our strategy in two steps. We begin by designing a regularizer for efficiently

training a predictor 𝑓 in the unconfounded setting where 𝒟 ∼ 𝑃 ∘. We then show how

this can be generalized to training distributions 𝒟 ∼ 𝑃𝑠 using importance weighting.

Regularization under 𝑃 ∘ We design our regularizer to leverage the auxiliary label

𝑉 , using two facts that hold under 𝑃 ∘: (1) 𝑉 ⊥⊥ X*, and (2) the optimal predictor

is a function of only X* (proposition 3.2.1). Based on these facts, we specify a regu-

larizer for 𝑓 that encourages 𝑓(X) ⊥⊥ 𝑉 . We do this by penalizing the distributional

discrepancy between conditional distributions of the representation 𝑃 ∘(𝜑(X) | 𝑉 = 0)

and 𝑃 ∘(𝜑(X) | 𝑉 = 1) that would be identical under independence. Although any

number of estimable distributional discrepancy metrics could be used, here we choose

to use the Maximum Mean Discrepancy (MMD), defined as follows:

Definition 3.3.1. Let 𝑍, and 𝑍 ′, be two arbitrary variables with 𝑍,𝑍 ′ ∈ 𝒵, and their
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corresponding distributions 𝑃𝑍 and 𝑃𝑍′. And let Ω be a class of functions 𝜔 : 𝒵 → R,

MMD(Ω, 𝑃𝑍 , 𝑃𝑍′) = sup
𝜔∈Ω

(︀
E𝑃𝑍

𝜔(𝑍) − E𝑃𝑍′𝜔(𝑍 ′)
)︀
.

When Ω is set to be a general reproducing kernel Hilbert space (RKHS), the MMD

defines a metric on probability distributions, and is equal to zero if and only if 𝑃𝑍 =

𝑃𝑍′ . Throughout, we will assume that our predictor 𝑓 and our loss ℓ are contained

in Ω, and in practice choose Ω to be the RKHS induced by the radial basis function

(RBF) kernel. We will use the shorthand MMD(𝑃𝑍 , 𝑃𝑍′) to denote MMD(Ω, 𝑃𝑍 , 𝑃𝑍′).

See Gretton et al. (2012) for a review of MMD and its empirical estimators.

Weighting to Recover 𝑃 ∘. When the training data is drawn from some 𝑃𝑠 ̸= 𝑃 ∘,

we weight the data to obtain empirical risk and MMD expressions that are unbiased

estimates of the expressions we would obtain if 𝒟 ∼ 𝑃 ∘, and proceed as before. In

particular, we define weights

𝑢(𝑦, 𝑣) =
𝑃𝑠(𝑌 = 𝑦)𝑃𝑠(𝑉 = 𝑣)

𝑃𝑠(𝑌 = 𝑦, 𝑉 = 𝑣)
, (3.2)

such that for each example, 𝑢𝑖 := 𝑢(𝑦𝑖, 𝑣𝑖). For any distribution 𝑃𝑠, these are im-

portance weights that map expectations under 𝑃𝑠 to expectations under 𝑃 ∘. In the

appendix, we show that the reweighted risk is an unbiased estimator of the risk under

𝑃 ∘, i.e., that

E𝑃𝑠

[︁
�̂�u

𝑃𝑠(𝑓)
]︁

= 𝑅∘(𝑓),

where �̂�u
𝑃𝑠(𝑓) =

∑︀
𝑖 𝑢𝑖ℓ(𝑓(x𝑖), 𝑦𝑖), and 𝑅∘(𝑓) = EX,𝑌∼𝑃 ∘ [ℓ(𝑓(X), 𝑌 )].

Method Putting the different components of our approach together gives us a final

objective to optimize: let 𝜑𝑣 denote {𝜑(x𝑖)}𝑖:𝑣𝑖=𝑣, and 𝜑u
𝑣 denote its re-weighted

analogue, and let 𝑢𝑖 be as in equation 3.2. For 𝒟 ∼ 𝑃𝑠, and some 𝛼 > 0, the main
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objective to minimize is:

ℎ*, 𝜑* = argmin
ℎ,𝜑

∑︁
𝑖

𝑢𝑖ℓ(ℎ(𝜑(x𝑖), 𝑦𝑖) + 𝛼 · M̂MD
2
(𝑃𝜑u

0
, 𝑃𝜑u

1
). (3.3)

To estimate M̂MD
2
, we use a weighted version of the U-statistic estimator presented

in Gretton et al. (2012). Specifically, we compute:

M̂MD
2

=
∑︁

𝑖,𝑗:𝑣𝑖,𝑣𝑗=0

𝑢𝑖𝑢𝑗𝑘𝛾(𝜑𝑖, 𝜑𝑗) +
∑︁

𝑖,𝑗:𝑣𝑖,𝑣𝑗=1

𝑢𝑖𝑢𝑗𝑘𝛾(𝜑𝑖, 𝜑𝑗) − 2
∑︁

𝑖,𝑗:𝑣𝑖=0,𝑣𝑗=1

𝑢𝑖𝑢𝑗𝑘𝛾(𝜑𝑖, 𝜑𝑗),

where 𝑘𝛾(𝑥, 𝑥′) is the radial basis function, with bandwidth 𝛾.

Cross-validation The objective function in (3.3) depends on two hyperparameters.

The first is the cost of the MMD penalty 𝛼, and the second is 𝛾, the kernel bandwidth

necessary to compute the MMD term. Unlike the usual regularization schemes, the

MMD-regularization term also depends on the distribution of the data, and is subject

to errors caused by finite samples. In other words, it is possible to overfit this objective

such that the MMD on the training data is 0 but it remains large on a validation

set. For this reason, we follow a two-step cross-validation procedure. In the first step,

we calculate the weighted MMD on each of the 𝐾 validation folds. We then exclude

all models that achieve a weighted MMD that is statistically significantly different

from zero. This gives us a subset of the function candidates that encode the desired

invariances. In the second step, we pick the best performing model out of this subset

of candidate functions.

3.4 Theory

Our goal is to estimate the generalization error of our estimator presented in sec-

tion 3.3. Meaning, we wish to bound the difference between the error on any target

distribution 𝑃𝑡 ∈ 𝒫 , and the empirical error on the source distribution 𝑃𝑠. This in
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turn means that we want to control 𝑅𝑃𝑡(𝑓) − �̂�u
𝑃𝑠(𝑓). A key observation is that this

difference can be decomposed as follows:

𝑅𝑃𝑡(𝑓) − �̂�u
𝑃𝑠(𝑓) = 𝑅𝑃𝑡(𝑓) −𝑅∘(𝑓)⏟  ⏞  

Structural risk gap

+𝑅∘(𝑓) − �̂�u
𝑃𝑠(𝑓)⏟  ⏞  

Finite-sample gap

, (3.4)

where �̂�u
𝑃𝑠(𝑓) is the weighted empirical error =

∑︀
𝑖 𝑢𝑖ℓ(𝑓(x𝑖), 𝑦𝑖).

This decomposition is a summary of our strategy: we decompose the difference

𝑅𝑃𝑡(𝑓) − �̂�u
𝑃𝑠(𝑓) as the difference between the error on the target distribution and

the error on 𝑃 ∘, added to the difference between the empirical error on the source

distribution and the error on 𝑃 ∘. In the remainder of this section, we first bound

the finite-sample gap in section 3.4.1. Second, we bound the structural gap in sec-

tion 3.4.2. All proofs are in the appendix.

3.4.1 Bounding the finite-sample gap

For the purpose of studying the finite sample gap, we focus on the special case of

linear models (i.e., one-layer fully dense neural networks) to establish key insights

about the properties of causally-motivated regularization. Specifically, we consider

the special case where 𝜑 is a linear mapping, i.e., 𝜑(x) = w⊤x, and ℎ is the sigmoid,

i.e., ℎ(𝑥) = 𝜎(𝑥) = 1/1 + exp(−𝑥). Extensions of our theoretical analysis to more complex

neural networks are possible (e.g., through approaches studied in Golowich et al.

(2018)).

We will compare the efficiency of the MMD-regularization approach to the more com-

monly used 𝐿2 regularization approach. The two regularization schemes characterize
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two different function spaces:

ℱ𝐿2 = {𝑓 : x ↦→ 𝜎(w⊤x), ‖w‖2 ≤ 𝐴}, (3.5)

and

ℱ𝐿2,MMD = {𝑓 : x ↦→ 𝜎(w⊤x), ‖w‖2 ≤ 𝐴, MMD(𝑃 ∘
𝜑0
, 𝑃 ∘

𝜑1
) ≤ 𝜏}, (3.6)

Before delving into the comparison between those two function classes, we highlight

a core finding that provides intuition about the advantages of the MMD penalty.

3.4.1.1 An intuition for the MMD penalty

In the special case where 𝜑 is a linear mapping, the MMD constraint has direct

implications for the weights w. Here, the constraint restricts the projection of w

onto the dimension that distinguishes the conditional means 𝜇0 := Ex∼𝑃 ∘ [x𝑖 | 𝑣𝑖 = 0]

and 𝜇1 := Ex∼𝑃 ∘ [x𝑖 | 𝑣𝑖 = 1]. To make this precise we denote the difference between

the mean vectors as ∆ := 𝜇0 − 𝜇1. ∆ is the average change in x caused by different

values of 𝑉 . Define the projection matrix Π := ∆(∆⊤∆)−1∆⊤ = ‖∆‖−2
2 ∆∆⊤, which

projects any vector onto ∆. We then define w⊥ := Πw as the projection of w onto

the mean distinguishing direction, which can be thought of as the “bad” or “irrelevant”

dimension.

We can directly relate ‖w⊥‖ to the MMD penalty, in the following proposition.

Proposition 3.4.1. Let 𝑓(x) = 𝜎(𝜑(x)) = 𝜎(w⊤x) be a function contained in

ℱ𝐿2,MMD. Then, ‖w⊥‖ ≤ 𝜏
‖Δ‖ .

Intuitively, proposition 3.4.1 says that the MMD penalty limits the effect of the

irrelevant components of w proportionally to 𝜏 . In the image classification example,

this means that the parts of w that can distinguish between land backgrounds and

water background is limited. In a simple linear setting, this means the MMD penalty
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identifies which features in the input space are associated with a change in 𝑉 , and

penalizes their weights.

3.4.1.2 Finite-sample bound when 𝑃𝑠 = 𝑃 ∘

We are now ready to compare the efficiency of the MMD-regularization approach to

the more commonly used 𝐿2 regularization approach. We start first by analyzing the

finite-sample bound in the special case where 𝑃𝑠 = 𝑃 ∘, and consider the more general

case later.

We compare ℱ𝐿2 , and ℱ𝐿2,MMD in terms of the Rademacher complexity:

Definition 3.4.1. Let 𝜖 = {𝜖𝑖}𝑛𝑖=1 denote a vector of independent random variables

drawn from the Rademacher distribution, i.e., uniform on {−1, 1}. For a function

family ℱ , and 𝒟 ∼ 𝑃 , the Rademacher complexity for a sample of size 𝑛 is defined

as: R(ℱ) = E𝒟E𝜖

[︂
sup
𝑓∈ℱ

1
𝑛

∑︀𝑛
𝑖=1 𝜖𝑖𝑓(x𝑖)

]︂
.

For a bounded function 𝑓 ∈ ℱ , a loss function that is L-Lipschitz, and a training

data of size 𝑛, with probability 1 − 𝛿, the following holds (Mohri et al., 2018):

𝑅(𝑓) ≤ �̂�(𝑓) + 𝐿 ·R(ℱ) +

√︃
log 1

𝛿

2𝑛
, (3.7)

where �̂�(𝑓) is the empirical error = 1
𝑛

∑︀
𝑖 ℓ(𝑓(x𝑖), 𝑦𝑖)

Proposition 3.4.2 states that even in the absence of distribution shift, when 𝑃𝑠 =

𝑃𝑡 = 𝑃 ∘, explicitly penalizing MMD is advantageous because it reduces the hypothesis

space without introducing bias. Since ℱ𝐿2,MMD ⊆ ℱ𝐿2 , we expect the MMD penalty to

reduce the hypothesis space. However the key thing to note here is that this reduction

does not introduce bias. We formally show that in the following proposition.

Proposition 3.4.2. For 𝒟 ∼ 𝑃 ∘, and for any for any ℱ𝐿2 such that 𝑓rinv ∈ ℱ𝐿2,

there exists a ℱMMD,𝐿2 ⊆ ℱ𝐿2 such that 𝑓rinv ∈ ℱMMD,𝐿2. And the smallest ℱMMD,𝐿2
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such that 𝑓rinv ∈ ℱMMD,𝐿2 has MMD = 0.

To examine how much smaller ℱMMD,𝐿2 is compared to ℱ𝐿2 , we derive comparable

bounds on the Rademacher complexity of the two function classes by splitting 𝑓 in

terms of how the observed features x align with the mean difference vector ∆. Here,

we let x⊥ := Πx be the component of x that is parallel to the mean discrepancy

i.e., parallel to the “irrelevant component,” and hence perpendicular to the relevant

components. We let x‖ := (𝐼 − Π)x be the orthogonal component to the irrelevant

components (i.e., the “relevant component”).

Proposition 3.4.3. Let x⊥ := Πx, x‖ := (𝐼 − Π)x. For training data 𝒟 =

{(x𝑖, 𝑦𝑖, 𝑣𝑖)}𝑛𝑖=1, 𝒟 ∼ 𝑃 ∘, supx⊥
‖x⊥‖2 ≤ 𝐵⊥, supx‖

‖x‖‖2 ≤ 𝐵‖, then

R(ℱ𝐿2) ≤
𝐴
√︁
𝐵2

‖ + 𝐵2
⊥

√
𝑛

,

and

R(ℱMMD,𝐿2) ≤
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖√
𝑛

.

The proof shown in the appendix applies the standard Rademacher complexity bound

for the 𝐿2 class, and obtains a looser bound for ℱMMD,𝐿2 by separately bounding the

worst-case terms involving x⊥ and x‖. Comparing these bounds is instructive. In

particular, the upper bound on R(ℱMMD,𝐿2) is smaller than that of R(ℱ𝐿2) whenever

𝜏 satisfies:

0 ≤ 𝜏 < 𝐴
[︁√︁

𝐵2
‖ + 𝐵2

⊥ −𝐵‖

]︁ ‖∆‖
𝐵⊥

. (3.8)

The key part of this expression is the ratio ‖∆‖/𝐵⊥, which can be understood as

a characterization of how much of the variation in x⊥ comes from the mean-shift

in x induced by 𝑣. In particular, when the variation caused by mean shift is large,

we expect even weak MMD regularization to yield better generalization than 𝐿2

regularization alone, and we expect this effect to be even stronger when variation in
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the mean shift direction is large relative to variation in orthogonal directions. This

occurs in cases where 𝑉 controls features that are highly salient in the input x. For

example, in object recognition using images, if 𝑉 denotes the background type, we

expect ‖∆‖/𝐵⊥ to be large if the background features are very different between

𝑉 = 0 and 𝑉 = 1, but relatively consistent within values of 𝑉 . Further, if the

background accounts for the majority of pixels in each image, we expect 𝐵⊥ ≫ 𝐵‖,

resulting in an even stronger regularizing effect from the MMD penalty.

Having derived a bound on the Rademacher complexity, we can extend the results

from proposition 3.4.3 to get full generalization error bound by plugging in the

Rademacher bounds into expression (3.7). Similar to Lyle et al. (2020) and Chen

et al. (2020), among others, we focus on comparing the Redmacher complexities of

the two functions, and conjecture that the MMD-regularization does not significantly

inflate the empirical (training) error �̂�𝑃 ∘(𝑓MMD,𝐿2) relative to �̂�𝑃 ∘(𝑓𝐿2). This conjec-

ture is not unreasonable since the majority of existing DNN architectures are flexible

enough to achieve zero or near zero training error.

With that, and whenever 𝜏 satisfies inequality 3.8, the MMD regularization scheme

will have a favorable (i.e., lower) generalization error compared to that of 𝐿2 regular-

ization.

3.4.1.3 Finite-sample bound when 𝑃𝑠 ̸= 𝑃 ∘

When the data is sampled from any distribution other than 𝑃 ∘, proposition 3.2.1

does not hold, and the population risk minimizer does not correspond to the optimal

invariant risk predictor 𝑓rinv. In addition, we are not guaranteed that there exists

some value of 𝜏 such that ℱ𝐿2,MMD ⊆ ℱ𝐿2 . Recall that the smallest ℱ𝐿2,MMD has

𝜏 = 0 (see expression 3.8), the following proposition shows that when sampling from

a biased distribution, the smallest 𝜏 ′ that does not introduce bias is greater than 0.

Proposition 3.4.4. Let ℱ ′
𝐿2,MMD := {𝑓 : x ↦→ 𝜎(w⊤x), ‖w‖2 ≤ 𝐴, MMD(𝑃𝜑0

, 𝑃𝜑1
) ≤
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𝜏 ′} be the smallest function class that contains 𝑓rinv. Then 𝜏 ′ = 𝑐 ·𝐴 for some 𝑐 > 0,

and the corresponding generalization error on 𝑃 ∘ is

𝑅∘(𝑓) ≤ �̂�u
𝑃 (𝑓) + 𝐿 ·

𝐴 ·𝐵‖ + 𝑐 · 𝐴 𝐵⊥
‖Δ‖√

𝑛
+

√︃
log 1

𝛿

2𝑛
,

This means that when 𝒟 ∼ 𝑃𝑠 ̸= 𝑃 ∘, the MMD-regularized family that contains 𝑓rinv

might be larger than the 𝐿2 family. To address this issue and recover the results

from the previous section, we will rely on reweighting the training data to mimic the

independencies in the optimal distribution 𝑃 ∘.

Note that assumption 3.2.2 implies overlap of the source distribution 𝑃𝑠 with the ideal

distribution 𝑃 ∘ since 𝑃𝑠(𝑉 )𝑃𝑠(𝑌 ) = 𝑃 ∘(𝑉 )𝑃 ∘(𝑌 ). As a consequence of the overlap

assumption, we have that:

sup𝑢(𝑦, 𝑣) = sup
𝑃 ∘(𝑌 | 𝑉 )

𝑃𝑠(𝑌 | 𝑉 )
= 2Ξ∞(𝑃 ∘||𝑃𝑠) = 𝐶𝑃𝑠 < ∞ (3.9)

where Ξ𝑘(𝑝||𝑞) is the kth-order Rényi divergence, and the second equality follows

by applying the Bayes rule, and the definition of the Rényi divergence. It will be

convenient to denote 2Ξ(𝑝||𝑞) by Λ𝑘(𝑝||𝑞). Since 2Ξ𝑘−1(𝑃 ∘||𝑃𝑠) < 2Ξ(𝑃 ∘||𝑃𝑠), we have

Λ2(𝑃
∘||𝑃𝑠) < 𝐶𝑃𝑠. Following similar work (e.g., Makar et al. (2020)), we will assume

that the weights u are known, or can be perfectly estimated from the data. In

other words, we do not consider estimation error that might arise because of poor

estimation of u. Work by Foster and Syrgkanis (2019) has shown that under mild

assumptions, the error due to estimation of u from finite samples only results in a

fourth order dependence in the final classifier, and hence does not greatly affect our

derived generalization bounds.

To get the generalization error of weighted estimators, we apply results from Cortes

et al. (2010b) in the following proposition.

Proposition 3.4.5. For a training dataset 𝒟 ∼ 𝑃𝑠, a corresponding 𝐶𝑃𝑠 as defined
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in equation 3.9, u as defined in equation 3.2, 𝜀 > 0, and for universal constants

𝑐′, 𝑐′′ > 0, , with probability 1 − 𝛿:

𝑅∘(𝑓) ≤ �̂�u
𝑃 (𝑓) +

2𝐶𝑃𝑠(𝜅(ℱMMD,𝐿2) + log 1
𝛿
)

2𝑛
+

√︃
Λ(𝑃 ∘||𝑃𝑠) · (𝜅(ℱ) + log 1

𝛿
)

𝑛
,

where

𝜅(ℱMMD,𝐿2) = 𝑐′′

⎛⎝𝑐′
√︀

log(𝑛) ·
(︁
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖

)︁
𝜀

⎞⎠2

Comparing the result from proposition 3.4.4 to that of proposition 3.4.5 does not give

a clear winning strategy: it is possible to get better generalization without reweighting

if 𝜏 ′ is small enough, and it is possible to get better generalization under reweighting

if 𝐶𝑃𝑠 and Λ(𝑃 ∘||𝑃𝑠) are small enough. However, without reweighting, it is crucial for

𝜏 ′ to be large enough so that 𝑓rinv ∈ ℱ ′
MMD,𝐿2

but small enough so that the hypothesis

space is small. As we show in the empirical analysis section, typical cross validation

methods are prone to select values for 𝜏 ′ that are larger than necessary, leading to a

less robust estimator. This makes the reweighting strategy more practical, and hence

more appealing.

3.4.2 Bounding the structural risk gap

In the previous section, we showed that the MMD penalty leads to efficient estimators,

and bounds the second term in equation 3.4. In the following proposition, we show

that the MMD penalty also bounds the first term in equation 3.4, the structural risk

gap.

For this proposition, we require that 𝑦 is exactly recoverable from x. This assumption

allows us to ensure that the MMD between the different 𝑉 classes for each value of 𝑦

remains bounded. Such a strong assumption can be avoided for variants of the MMD
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penalty which explicitly minimize the MMD for each value of 𝑦. We return to this in

the discussion section (section 3.7).

Proposition 3.4.6. For training data 𝒟 = {(x𝑖, 𝑦𝑖, 𝑣𝑖)}𝑛𝑖=1, 𝒟 ∼ 𝑃 ∘, and a corre-

sponding learned 𝑓 = ℎ(𝜑(x)) with risk 𝑅∘(𝑓), suppose that 𝑦 is 𝜑−representable, i.e.,

that there exists 𝑔(𝜑(x)) = 𝑦, and that 𝑔(𝜑)ℓ(𝜑) ∈ Ω. For some 𝛽 that depends on 𝑃𝑡,

such that −2 < 𝛽 < 2, and 𝛽 = 0 if 𝑃𝑡 = 𝑃 ∘, then

𝑅𝑃𝑡(𝑓) ≤ 𝑅∘(𝑓) + 𝛽 · 𝜏.

Proposition 3.4.6 provides another motivation for using the MMD penalty. The MMD

penalty directly encourages small values of 𝜏 ; this regularizes the solution toward a

predictor that has similar risks on 𝑃𝑡, and 𝑃 ∘. This in turn means that the first term

in equation 3.4 is small, leading to low generalization error of our proposed weighted

estimator.

3.5 Experiments

We empirically analyze the performance of causally motivated regularization in two

settings. In the first setting, we consider training data that is sampled from the opti-

mal distribution 𝑃 ∘. This setting helps us study the implications of proposition 3.4.3,

which suggests that even under uncorrelated sampling, we can see improvement in

finite sample efficiency when we use the MMD penalty. In the second setting, the

training data is sampled from some 𝑃𝑠, where the auxiliary label and the main label

are correlated, i.e., 𝑉 ̸⊥⊥ 𝑌 .

To control the correlation between 𝑌 , and 𝑉 we follow a procedure similar to that

presented in Sagawa et al. (2019). Specifically, we construct a dataset that com-

bines images of water birds (Gulls) and land birds (Warblers) extracted from the

Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) with water and land
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background extracted from the Places dataset (Zhou et al., 2017). Figure 3-2 shows

examples of the generated images.

Land bird on land background
𝑦 = 0, 𝑣 = 0

Land bird on water background
𝑦 = 0, 𝑣 = 1

Water bird on land background
𝑦 = 1, 𝑣 = 0

Water bird on water background
𝑦 = 1, 𝑣 = 1

Figure 3-2: Examples of the generated images of water, and land birds on water, and
land backgrounds

We found that the original background images frequently contain landscapes that are

difficult to distinguish (e.g., water backgrounds with very small water bodies that

mostly reflect the surrounding trees). Instead, we pick 300 “clean” images for each

of the land and water backgrounds. Using those clean images, we generate 10,000

land backgrounds, and 9,000 water backgrounds by applying random transformations

(rotation, zoom, darkening/brightening) to the selected images. In the appendix, we

present the results on the original backgrounds.

For the first setting, we generate the training data from the optimal distribution 𝑃 ∘,

with 𝑃 ∘(𝑌 |𝑉 = 1) = 𝑃 ∘(𝑌 |𝑉 = 0) = 0.5. In the second setting, we generate the data

such that 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 (𝑌 = 0|𝑉 = 0) = 0.9, representing a scenario where

the majority of water birds are on water backgrounds and the majority of land birds
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are on land backgrounds. While our theory assumes a no-noise setting, to test our

model on a realistic setting, we introduce noise by randomly flipping 1% of each of

the labels. We generate a number of held-out test sets, each one corresponding to a

different probability of observing a waterbird with a water background, and similarly

with land birds.

We present results from the following variants of our approach:

1. wMMD-reg-T: this model corresponds to minimizing equation 3.3. It includes

weighting by the weights u, penalizing the MMD, followed by the two-step cross

validation process described in the implementation section.

2. wMMD-reg-C: similar to wMMD-reg-T, this model minimizes equation 3.3

but does the classical cross-validation process, where it simply picks the model

that has the best performance on the held out validation set.

3. MMD-reg-T: this model minimizes a variant of equation 3.3 that excludes

weighting by u. The optimal hyperparameters are picked using the two-step

cross-validation algorithm, taking the u−weighted estimates of the MMD and

prediction performance into account.

4. MMD-reg-uT is similar to MMD-reg-T, however it uses unweighted validation

metric estimates during the two-step cross-validation procedure.

5. MMD-reg-C: this model minimizes a variant of equation 3.3 that excludes

weighting by u, and does the classical cross-validation process.

In addition, we present results from the following baselines.

1. L2-reg: this is the standard DNN trained to minimize the empirical risk. We

introduce regularization by penalizing the L2-norm of the weights, picking the

value of the penalty from 0.0 (no regularization) or 0.0001, which is the value

typically used for this setting (Sagawa et al., 2019; He et al., 2016).
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2. wL2-reg: similar to L2-reg but also incorporates weighting using 𝑢𝑖 as defined

in 3.2.

3. Rand-Aug-C: a baseline that attempts to create a robust estimator by aug-

menting the data at training time using random flips and random rotations.

Cross-validation is done in the typical way.

For the uncorrelated setting, we only present the unweighted variants of all the models,

since the weights are roughly constant across data points in that setting.

We present the results from 20 simulations. We keep the architecture fixed across all

models. Specifically we use ResNet-50 (He et al., 2016), pretrained on ImageNet, and

fine tuned for our specific task. All models are implemented in TensorFlow (Abadi

et al., 2015).

Results: Sampling from the optimal distribution. Figure 3-3 shows the re-

sults from the first setting, where the training data is sampled from the optimal,

uncorrelated distribution 𝑃 ∘, with 𝑃 ∘(𝑌 |𝑉 = 1) = 𝑃 ∘(𝑌 |𝑉 = 0) = 0.5. The 𝑥−axis

shows 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 (𝑌 = 0|𝑉 = 0) at test time, while the 𝑦−axis shows

the corresponding mean AUROC, averaged over 20 simulations. The vertical dashed

line shows the conditional probability at training time. We see that both variants

of our proposed approach, with classical and two-step cross-validation outperform

the L2-regularized model and the random augmentation model within the training

distribution (i.e., at the dashed line) and also when there is distribution shift. This

conforms with proposition 3.4.3. Even when the data are sampled from the optimal

distribution, using a causally-motivated regularization scheme leads to more efficient

models, which translates into better performance in finite samples.
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P(Water bird | water background) at test time
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MMD-reg-T

MMD-reg-C

L2-reg-C

Rand-Aug-C

Figure 3-3: Training data sampled from 𝑃 ∘, with 𝑃 ∘(𝑌 |𝑉 = 1) = 𝑃 ∘(𝑌 |𝑉 = 0) = 0.5.
𝑥-axis shows 𝑃 (𝑌 |𝑉 ) at test time under different shifted distributions. 𝑦-axis shows
AUROC on test data. Vertical dashed line shows training data. MMD-regularized
models outperform baselines within, and outside the training distribution.

Results: Sampling from a correlated distribution. Figure 3-4 shows the results

from the second setting, where the training data is sampled from a correlated distribu-

tion with 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 ∘(𝑌 = 0|𝑉 = 0) = 0.9. The 𝑥, and 𝑦 axes are similar

to figure 3-3. Here we see that our main suggested approach (wMMD-reg-T) out-

performs other models especially at high divergence from the training distribution.

Out of all the non-MMD regularized baselines, the weighted L2-regularized model

performs best. This suggests that minimizing the empirical risk on the u−reweighted

distribution contributes to model robustness.
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P(Water bird | water background) at test time
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Figure 3-4: Training data sampled from 𝑃 , with 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 ∘(𝑌 = 0|𝑉 =
0) = 0.9. Vertical dashed line shows training data. 𝑥, 𝑦 axes similar to figure 3-
3. MMD-regularized models outperform baselines showing better robustness against
distribution shifts at test time.

Figure 3-5 shows an ablation study where we remove different components of our

model to see how each contributes to improved performance. The largest increase in

performance is attributable to weighting by u at training time, since the two weighted

variants outperform the two unweighted variants. Within those two groups, the two-

step approach with weighted validation metrics outperforms the others, especially in

terms of robustness to distribution shifts. This shows that when training models using

the MMD-penalty, it is important to take into consideration that the MMD-penalty

(unlike L2-norm regularization) also depends on the training data, and is prone to

overfitting. The results also show that it is possible to improve the performance of

models that are unweighted at training time by using our two step cross validation

approach with weighted validation metrics, since MMD-reg-T slightly outperforms

MMD-reg-C. Recall that MMD-reg-uT strictly enforces the MMD-penalty without

addressing the fact that the training distribution has been sampled from a correlated

distribution. We see that while it gives a robust model, that model has relatively poor
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performance. This conforms with our findings stated in prop 3.4.4, which implies that

there will be a bias-robustness trade-off if the correlated sampling is not corrected.

0.2 0.4 0.6 0.8
P(Water bird | water background) at test time
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wMMD-reg-T

wMMD-reg-C

MMD-reg-T

MMD-reg-C

MMD-reg-uT

Figure 3-5: Training data sampled from 𝑃 , with 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 ∘(𝑌 = 0|𝑉 =
0) = 0.9. 𝑥, 𝑦 axes similar to fig 3-3. An ablation study to show how different compo-
nents of our suggested approach (wMMD-reg-T) contribute to improved performance.

3.6 Connections to existing work

The work we presented here unifies several threads that have appeared in the ML

literature.

Shortcut learning. The majority of work addressing shortcut learning relies on

data augmentation: the practitioner defines a set of transformations (e.g., rotation,

translation, cropping) that should not affect the main label, and adds the augmented

examples to induce invariance to these transformations (Hendrycks et al., 2020; Yin

et al., 2019; Lyle et al., 2020; Lopes et al., 2019; Cubuk et al., 2018). One disadvantage

of this approach is that it assumes the set of transformations is known a priori.

If this set of transformations is misspecified, the desired robustness might not be
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achieved, as evidenced by the empirical performance of the random augmentation

baseline presented in the experiments section. Our approach is different in that we

do not claim to know these transformations. Instead, our approach leads to invariant

models by leveraging the auxiliary labels to inform the relevant transformations the

main label should be independent to.

Shortcut learning can be viewed as a consequence of model underspecification (D’Amour

et al., 2020). Many of the issues related to underspecification have appeared in the

ML literature within the context of overparameterization. For example, in Sagawa

et al. (2020b) authors observe that overparameterization exacerbates the reliance on

spurious correlations. Their suggested approach is somewhat similar to the reweight-

ing baseline (W-DNN) presented in the experiments section, which is outperformed

by our model.

Invariant representations. Our work sheds light on properties of invariant rep-

resentations, which are extensively studied in the fairness literature (Madras et al.,

2018), causality literature (Shalit et al., 2017; Johansson et al., 2016), and domain

shift literature (Tzeng et al., 2014; Long et al., 2015). Specifically, our analysis

(proposition 3.4.1) highlights how invariant representations regularize “redundant”

dimensions. We also address one key question that has been discussed extensively

recently: the question of whether there is a trade-off between invariance and ac-

curacy, or stated differently: whether invariance leads to biased estimation (Zhang

et al., 2019; Calders et al., 2009; Johansson et al., 2019; Dutta et al., 2020; Zhao and

Gordon, 2019). Propositions 3.4.2 shows that if the training data is sampled from

the optimal distribution, then the MMD penalty does not lead to bias (i.e., there is

no tradeoff). However, proposition 3.4.4 shows that naively implementing the MMD

penalty when the data is sampled from a biased distribution might lead to issues of

bias. Our analysis suggests that if coupled with the correct sample reweighting the

MMD penalty does not lead to bias.

More generally, while proposition 3.4.6 bears some similarity to statements presented
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in the domain adaptation literature (Long et al., 2015; Ben-David et al., 2007, 2010),

our work is distinct in that we do not aim to generalize to a specific target domain.

Instead, we aim to build models that generalize across a family of target domains.

One consequence of this distinction is that, unlike unsupervised domain adaptation,

we do not require access to examples from a target domain.

Causally-motivated invariance. Our work is similar to Anchor regression (Rothen-

häusler et al., 2018) in that we also view the question of invariance through the lens

of causality. Our work is distinct in that we do not assume linear relationships be-

tween X, 𝑌, and the “anchor” variable 𝑉 , and we are not limited to linear models.

Arjovsky et al. (2019) propose an invariant risk minimization (IRM) approach that is

inspired by ideas from causality. Unlike our approach, IRM does not explicitly penal-

ize dependence on the redundant dimensions, and instead relies on the idea that the

invariant risk minimizer should achieve the lowest error across datasets sampled from

different target distributions 𝑃𝑡. As others (e.g.,Guo et al. (2021); Rosenfeld et al.

(2020)) have noted, when the family of functions is as flexible as DNNs, and without

further assumptions on the training distribution, it is possible to find a predictor that

achieves the objective of IRM but is not robust. Guo et al. (2021) have attempted to

address the limitations of IRM using an MMD penalty, however, they do not correct

the estimates of the MMD for biased sampling and hence have the same limitations

as the unweighted MMD penalized models presented in the empirical section.

Similar to our work, (Wang et al., 2018) suggest a regularization scheme that discour-

ages a learned model from relying on irrelevant features. The work presented in this

chapter is distinct in that we do not require expert knowledge of the relevant features,

or factors. Janizek et al. (2020) utilize the causal DAG to induce robustness to dis-

tribution shifts. However, they rely on adversarial training to induce independence,

which has been shown to be unstable. In addition, they enforce the independence on

the source distribution, without utilizing a reweighting scheme which may introduce

bias (see proposistion 3.4.4).
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3.7 Discussion

We presented an approach to using auxiliary labels to build models that are invari-

ant to distribution shifts defined by interventions on factors that should affect the

auxiliary label but not the target label. Our analysis highlights important theoretical

properties of the MMD penalty, which is often used in the fairness, causality, and

domain adaptation literatures. Guided by our theoretical insight, we suggested a

causally-motivated regularization scheme that combines reweighting and the MMD

penalty to train robust, and accurate models. Using a well-known robustness bench-

mark, we show that our approach empirically outperforms others.

One of the core findings of this work is fact that mapping the observed distri-

bution onto an “ideal” unconfounded distribution is advantageous since it allows

building robust classifiers. In this chapter we focused on one such distribution,

𝑃 ∘ = 𝑃𝑠(X|X*, 𝑉 )𝑃𝑠(X
*|𝑌 )𝑃𝑠(𝑌 )𝑃𝑠(𝑉 ) but our results (e.g., proposition 3.2.1) ex-

tend to a wider family of ideal distributions where the marginal distribution over 𝑉

is allowed to vary arbitrarily. Formally, this distribution is defined as

𝒫∘ = {𝑃𝑠(X|X*, 𝑉 )𝑃𝑠(X
*|𝑌 )𝑃𝑠(𝑌 )𝑄(𝑉 )} ,

for 0 < 𝑄(𝑉 ) < 1. We chose to fix 𝑄(𝑉 ) = 𝑃𝑠(𝑉 ) since it is the closest possible

distribution to the source distribution, i.e., it has the smallest divergence Λ(𝑃 ∘‖𝑃𝑠).

Having a lower divergence is favorable, since lower Λ(𝑃 ∘‖𝑃𝑠) leads to tighter gener-

alization error (see proposition 3.4.5).

Limitations and extensions. Some of the results in this chapter require a more

stringent assumption, that is 𝑦 is exactly recoverable from x. We note that this as-

sumption can be relaxed for a slightly different version of the MMD penalty. Specif-

ically, let MMD𝑦 := MMD(𝑃 (𝜑(x𝑖) | 𝑉 = 0, 𝑌 = 𝑦), 𝑃 (𝜑(x𝑖) | 𝑉 = 1, 𝑌 = 𝑦)) the

assumption of perfect recoverability can be avoided for the conditional version of our
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penalty, defined as

MMD′ =
∑︁
𝑦

MMD𝑦.

However, such a penalty “slices” the data into four (rather than two) inevitably smaller

subgroups. The data available to estimate each of MMD0, and MMD1 is smaller

leading to less accurate estimates. This is especially problematic when the training

process relies on stochastic gradient descent where small batches are used to estimate

MMD′.

For this reason we opted for the version of the MMD penalty which aggregates the

two 𝑦 groups in estimating the MMD and relied on the assumption of recoverability of

𝑦. Further research that “switches” between the two MMD penalties in the abundance

of data would strengthen our approach.

Another possible limitation to our approach is that it requires a priori knowledge

of the shortcut that might be exploited by the model. However, if the shortcut is

unknown, practitioners can use interpretability methods to understand the main fac-

tors that the model relies on. If the interpretability analysis reveals that the model

is relying on a shortcut, and if an auxiliary label that corresponds to that shortcut

is available, our proposed approach can then be used. For example, in image clas-

sification, saliency maps can reveal the learned factors that influence the prediction

the most (Simonyan et al., 2013). In contexts other than image classification, other

interpretability tools such as Shapley values are more appropriate (Lundberg and Lee,

2017; Wang et al., 2021).

In addition, we make an assumption similar to the overlap assumption in causality.

In other words, we assume that the correlation between the main and auxiliary labels

cannot be perfect at training time. Extensions of this work that relax this assumption

would require making stronger assumptions about the properties of 𝑓 , but they might

make the approach more applicable.
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Finally, as presented, our approach allows for only one binary auxiliary label. Ex-

tensions that consider non-binary auxiliary labels, as well as multiple auxiliary labels

would lead to models that are even more robust.
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Chapter 4

Exploiting structured data for

learning contagious diseases under

incomplete testing

In the previous chapter we investigated how penalizing predictive models to encode

independencies implied by the causal graph can lead to efficient and robust models.

In this chapter, we focus on predictive models incorporating known dependencies. We

study such models in the context of infectious disease prediction.

Preemptively identifying individuals at a high risk of contracting a contagious in-

fection is important for guiding treatment decisions to mitigate symptoms, and pre-

venting further spread of the contagion. In this chapter, we study how to build

individual-level predictive models for contagious infections while explicitly address-

ing the challenges inherent to contagious diseases.

Building accurate infection prediction models is hindered by two main factors. First,

contagious infections defy the usual iid assumption central to most machine learning

methods. This is because an individual’s infection state is not independent of other

individuals’ infection states. Previous work has often relied on expert knowledge to
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construct exposure proxies (Wiens et al., 2012; Oh et al., 2018). It is then assumed

that conditional on the exposure proxy and individual characteristics, individual out-

comes are independent of one another. Such an assumption may be violated if the

exposure proxy is noisy or misspecified leading to inaccurate predictions.

Second, the observed data is biased. The primary clinical purpose of testing for a

disease is to provide guidance for treatment decisions for the individual being tested.

Therefore, there is a strong bias in who is tested–people for whom knowing whether

they have the disease will affect treatment (e.g., symptomatic individuals) are far

more likely to be tested than other members of the population. But for many infec-

tious diseases, only a fraction of those individuals carrying the pathogen experience

noticeable symptoms. We use the term “incomplete testing” to describe the scenario

where only a small, biased subset of infected individuals get tested. Incomplete test-

ing makes learning accurate models difficult since the collected labels are missing not

at random leading to biased, inconsistent estimates. At deployment time, we wish to

apply the model to the full population of uninfected, and symptomatic individuals as

well as asymptomatic carriers. Since uninfected individuals, and asymptomatic car-

riers are often under-represented at training time relative to deployment time, there

is a distribution shift.

In this chapter, we leverage the non-independence of outcomes, and a priori knowl-

edge of transmission patterns to construct robust predictors. Specifically, we use the

knowledge that infections are caused by exposure to the pathogen through contacts to

impute missing infection labels. Our proposed approach uses the fact that an individ-

ual’s infection state provides useful information about their contacts’ true infection

states. This information is used to generate pseudo-labels for untested individuals,

mitigating issues caused by incomplete testing. The key idea behind our approach

is that highly structured patterns of contagion transmission can serve as a comple-

mentary signal to identify even untested carriers. The stronger that signal is, the less

impact that incomplete testing will have. Our contributions can be summarized as

follows:
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1. We identify two properties of the collected data that can be exploited to mitigate

the effects of incomplete testing.

2. We present an algorithm that leverages that insight to predict the probability

of an untested individual carrying the disease.

3. We empirically evaluate the effectiveness of our method on both simulated data,

and real data for a common and serious contagious disease. We show that

predictions from our model can be used to inform efficient testing and isolation

policies. Using Electronic Health Records (EHR) from a large hospital, we show

that our model outperforms baselines on the task of predicting a healthcare

associated infection.

4.1 Related work

Infectious disease modeling. Modeling the transmission of infectious diseases

has been extensively studied in the epidemiology literature using SIS/SIR models

and several other variants (Kermack and McKendrick, 1927). These epidemiological

models focus on the aggregate levels of infections in a community. In contrast, we focus

on predicting individual level infections. In the machine learning literature, previous

work has has often relied on expert knowledge to construct exposure proxies (Wiens

et al., 2012; Oh et al., 2018). They assume that conditional on the exposure proxy

and individual characteristics, individual outcomes are independent of one another.

Similar to our approach, Fan et al. (2016) and Makar et al. (2018) take into account

structured data, namely contact networks to compute infection estimates. We differ

from these approaches in that (1) we do not make parametric assumptions about the

joint distribution of the observed or latent variables; instead we use nonparametric

models (neural networks) to model the infection states, (2) we do not assume that all

infections will become symptomatic as is done in Fan et al. (2016), and (3) unlike the

approach taken by Makar et al. (2018), we model time evolving sequences of infections
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taking into account the exposure states of potential asymptomatic carriers.

Semi-supervised learning. Our proposed approach relies on transductive reason-

ing to generate labels for untested individuals. In that, it is related to semi-supervised

learning methods, such as pseudo-labeling (Lee, 2003), and self-training (Robinson

et al., 2020). However, in traditional pseudo-labeling, the transductive power comes

from the fact that points similar to each other in the input space have similar outputs.

Here, the rich structure in the data allows for more: we can construct pseudo-labels for

untested individuals not just by relying on their similarity to other labeled instances,

but also by observing their observed contacts’ infection states. Our empirical results,

and analysis are similar in spirit to concepts presented in the semi-supervised lit-

erature, specifically the cluster assumption (Seeger, 2000; Rigollet, 2007), which we

discuss later.

Graph Neural Networks. Our proposed approach incorporates knowledge of the

contact network. In that it is similar to Graph Neural Networks (GNNs), which

utilize relational data to generate prediction estimates (Zhou et al., 2018). GNNs fall

into two categories. The first relies on transductive reasoning and cannot generalize

to new communities (e.g., Kipf and Welling (2017)). The second relies on inductive

reasoning, which can be used to generate estimates for previously unseen graphs (e.g.,

Hamilton et al. (2017)). Our work is similar to the latter category with an important

distinction: our approach leverages unlabeled data giving more accurate, and robust

estimates.

Our work can be viewed as combining the strengths of semi-supervised learning, and

GNNs to address limited testing. We augment the strengths of those two approaches

with ideas from domain shift and causal inference, such as importance weighting

(Cortes et al., 2010b) to address biased testing.
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4.2 Problem setting

Setup. Let 𝑦𝑡 ∈ {0, 1} denote an individual’s true infection state at time 𝑡, with

𝑦𝑡 = 0 if an individual is not infected and 1 if they are. We use x𝑡 ∈ 𝒳 𝑡 to denote a

vector of the individual’s features at time 𝑡, and define 𝐽 𝑡
𝑖 to be the set of indices of

𝑖’s contacts at time 𝑡. We assume that contact network is fully observed, i.e., that the

contact indices are known. We note that the assumption of fully observed networks

is less likely to be violated in the context of hospital associated infections, where the

majority of patients’ interactions and contacts are routinely recorded. Our results on

real data show that even with incomplete networks, our approach outperforms others.

Let 𝑒𝑡𝑖 ∈ R≥0 denote 𝑖’s exposure state at time 𝑡, with 𝑒𝑡𝑖 =
∑︀

𝑗∈𝐽𝑡
𝑖
𝑦𝑡𝑗. The exposure

state is fully observed only when all of 𝑖’s contacts have been tested, but otherwise

either partially observed or unobserved. Define x𝑡 = x𝑡||𝑒𝑡, where || is the concatena-

tion operator, i.e., x𝑡 ∈ 𝒳 𝑡 × R≥0. Let 𝑜𝑡 ∈ {0, 1} denote the observation state, with

𝑜𝑡 = 1 if an individual’s label is observed, i.e., if the individual has been tested for

the infection. We use the super-script :𝑡 to denote variables from time 𝑡 = 0 up to

and including 𝑡, e.g., x:𝑡 = [x0, ...,x𝑠, ...,x𝑡].

Throughout, we use capital letters to denote variables, and small letters to denote

their values. We use 𝑃 (𝑋 𝑡, 𝑂𝑡, 𝑌 𝑡+1) to denote the unknown distribution over the full

joint. Under biased testing, we have that 𝑃 (𝑋 𝑡|𝑂𝑡 = 1) ̸= 𝑃 (𝑋 𝑡|𝑂𝑡 = 0) ̸= 𝑃 (𝑋 𝑡).

We assume that 0 < 𝑃 (𝑂𝑡 = 𝑜|𝑋 𝑡 = x) < 1, for all x ∈ 𝒳 , and 𝑜 ∈ {0, 1}.
This is the same as the overlap assumption in the causality literature. In addition,

we assume that 𝑖’s outcome is conditionally independent of 𝑖’s contacts given x𝑖

(which is itself a function of the contacts’ outcomes). We consider the case where

we have access to (1) a labeled (i.e., tested) set of individuals 𝒟1 = {𝒟𝑡
1}𝑇𝑡=0 =

{(x𝑡
𝑖, 𝑦

𝑡
𝑖), . . . (x𝑡

𝑛𝑡
1
, 𝑦𝑡

𝑛𝑡
1
)} ∼ 𝑃 (𝑋 𝑡, 𝑌 𝑡+1|𝑂𝑡 = 1), and (2) an unlabeled (untested) set

of individuals 𝒟0 = {𝒟𝑡
0}𝑇𝑡=0 = {x𝑡

𝑖, . . . ,x
𝑡
𝑛𝑡
0
} ∼ 𝑃 (𝑋 𝑡|𝑂𝑡 = 0), such that for each

𝑖 ∈ 𝒟0 ∪𝒟1, and each 𝑡 ∈ [0, 𝑇 ], we have that 𝐽 𝑡
𝑖 ∈ 𝒟0 ∪𝒟1. We use 𝒰 𝑡 to denote the

set of indices of untested individuals at time 𝑡.

93



Notation Meaning

𝑦𝑡𝑖 𝑖’s infection state at time 𝑡
x𝑡
𝑖 𝑖’s features at time 𝑡

𝑒𝑡𝑖 𝑖’s (partially) observed exposure state at time 𝑡
x𝑡
𝑖 The concatenation of x𝑡

𝑖, and 𝑒𝑡𝑖
x:𝑡 The collection of an individual’s features, and exposure states from

time 𝑡 = 0 till 𝑡 = 𝑡, i.e., x:𝑡 − [x0, ...,x𝑠, ...,x𝑡]
𝐽 𝑡
𝑖 The set of indices of 𝑖’s contacts at time 𝑡

𝑜𝑡𝑖 Observation state for the infection label. 𝑜𝑡𝑖 = 1 if 𝑖’s infection state
is observed at time 𝑡 (i.e., if 𝑖 was tested for the infection at time 𝑡),
and 0 otherwise

𝒟1 Data (x, 𝑦 tuples) for tested individuals
𝒟0 Data (x) for untested individuals
𝑤𝑡(x𝑡

𝑖) Probability that an individual with characteristics x𝑡
𝑖 gets tested

𝒰 𝑡 the set of indices of untested individuals at time 𝑡.
𝒜𝑡

𝑖 The set of ancestors of 𝑖 at time 𝑡 whose outcomes are unobserved
i.e., 𝒜𝑡

𝑖 = 𝐽 𝑡(𝑖) ∩ 𝒰 𝑡

Table 4.1: Summary of notation used in chapter 4

Learning objective. We want to learn 𝑓 : x:𝑇 → 𝑦𝑇+1. To focus the discussion

on the novel component of our approach, we first consider a setting in which we

predict the outcomes for a single time step: making predictions for 𝑡 = 2, using

data from 𝑡 = 0, 1, dropping the time superscript when it can be inferred from

the context. We present the full model predicting infection sequences over time in

section 4.4. Let ℓ be the logistic loss. Our goal is to find 𝑓 ∈ ℱ , where ℱ is

some hypothesis space such that the risk of incorrectly classifying the infection state

𝑅(𝑓) = E𝑋,𝑌 [ℓ(𝑓(𝑋 𝑡), 𝑌 𝑡+1)] is minimized. We briefly consider a scenario where we

have oracle access to the infection states of the untested population, but we return to

the more realistic, non-oracle scenario later. Note that having access to the untested

population’s infection states implies that exposure states are also fully observed (by

definition of the exposure states). Under the conditional independence assumption,

we can view the risk as a sum of independent losses. Define the inverse probability

of being tested as 𝑤𝑡(𝑋) = 𝑃 (𝑂𝑡 = 𝑜)/𝑃 (𝑂𝑡 = 𝑜|𝑋𝑡), following Robins (1998), and Robins
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et al. (2000). Because of the overlap assumption, under biased testing we have that:

𝑅(𝑓) = 𝑅𝑤𝑡

(𝑓) = E[𝑤𝑡(𝑋)ℓ(𝑓(𝑋), 𝑌 )], (4.1)

(Cortes et al., 2010b). 𝑅𝑤𝑡
(𝑓) cannot be directly computed since the expectation is

defined with respect to the unobserved distribution. However, by Cortes et al. (2008)

the following reweighted empirical loss is an unbiased estimator of 𝑅𝑤𝑡
(𝑓):

𝜀(𝑓) =
∑︁

𝑖∈𝒟𝑡
0∪𝒟𝑡

1

𝑤𝑡
𝑖ℓ(𝑓(x𝑡

𝑖), 𝑦
𝑡+1
𝑖 ),

where 𝑤𝑡
𝑖 = 𝑝(𝑂𝑡 = 𝑜𝑡𝑖)/𝑔(𝑜𝑡𝑖|x𝑡

𝑖), 𝑝(𝑂𝑡 = 𝑜𝑡𝑖) is the empirical estimate of 𝑃 (𝑂𝑡 = 𝑜), and

𝑔(𝑜𝑡𝑖|x𝑡
𝑖) is the estimated probability of getting tested conditioned on individual char-

acteristics. Without oracle access to untested individuals’ infection states, we cannot

directly minimize 𝜀(𝑓) for 𝑖 ∈ 𝒟𝑡
0. In addition, without access untested individuals’

infection states, the samples x𝑡 ∼ 𝑃 (𝑋 𝑡|𝑂𝑡 = 1) are incomplete. This is because x𝑡
𝑖

includes 𝑒𝑡𝑖, which is a function of 𝑦𝑡𝑗 : 𝑗 ∈ 𝐽 𝑡
𝑖 . We only fully observe 𝑒𝑡𝑖, and hence x𝑡

𝑖

for individuals whose contacts have all been tested. To address this, we define 𝑄 as

the set of all possible distributions over 𝑦𝑡𝑖 for 𝑖 ∈ 𝒟𝑡
0. Our risk is now defined with

respect to both 𝑄, and 𝑓 .

Let 𝑦𝑖 ∼ 𝑄, 𝑒𝑡𝑖 =
∑︀

𝑗∈𝐽𝑡(𝑖) 1{𝑗 : 𝑜𝑡𝑗 = 1} · 𝑦𝑡𝑗 + 1{𝑗 : 𝑜𝑡𝑗 = 0} · 𝑦𝑡𝑖,𝑗, x̂𝑖 = x𝑡
𝑖||𝑒𝑡𝑖, and

�̂�𝑡
𝑖 = 𝑝(𝑂 = 𝑜𝑖)/𝑔(x̂𝑖, 𝑜𝑖), our task is to find 𝑄 and 𝑓 , such that the following empirical

risk is minimized:

𝜀(𝑓,𝑄) =
∑︁
𝑖∈𝒟𝑡

1

�̂�𝑡
𝑖ℓ(𝑓(x̂𝑡

𝑖), 𝑦
𝑡+1
𝑖 ) +

∑︁
𝑖∈𝒟𝑡

0

�̂�𝑡
𝑖ℓ(𝑓(x̂𝑡

𝑖), 𝑦
𝑡+1
𝑖 ). (4.2)

We next consider how to leverage properties of the problem to efficiently minimize

𝜀(𝑓,𝑄).
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4.3 Exploiting structure as a regularizer

We seek to constrain the candidate sets ℱ and 𝑄 to avoid overfitting. To do so, we

exploit both the interdependence among individuals’ infection states and the avail-

ability of unlabeled data. Recall that the exposure state of an individual is the sum of

that individual’s contacts’ infection states. This means that when we draw 𝑦𝑡𝑖 from 𝑄,

we are implicitly drawing the exposure states for 𝑖’s contacts’, by definition of 𝑒𝑡𝑖. This

becomes obvious if we decompose 𝑒𝑡𝑖 as follows: 𝑒𝑡𝑖 =
∑︀

𝑗∈𝐽𝑡(𝑖) 1{𝑗 : 𝑜𝑡𝑗 = 1} · 𝑦𝑡𝑗 +1{𝑗 :

𝑜𝑡𝑗 = 0} · 𝑦𝑡𝑖,𝑗, and 𝑦𝑡𝑖,𝑗 ∼ 𝑄. This decomposition immediately implies two properties

that should hold for “good” 𝑄’s. First, 𝑄 should assign infection states, 𝑦𝑡𝑖 , that are

consistent with 𝑖’s contacts’ infection states. Consider the case where two individuals

𝑖, and 𝑗 came into contact with each other at 𝑡 = 𝑡. Suppose that 𝑗 tests positive

at time 𝑡 + 1. For simplicity, suppose that 𝑖, and 𝑗 have no contacts other than

each other. Here 𝑄 should assign 𝑖 a high probability of infection because in order

to become infected 𝑗 must have been exposed to the pathogen through 𝑖. Second,

note that 𝑄 is assigning pseudo-labels for the infection states of untested contacts,

this means that 𝑄’s imputed labels should be similar to the labels predicted by 𝑓 . A

good regularization method should then explicitly encourage the pseudo-labels to be

similar to the estimated labels from 𝑓 . This intuition is encoded in the main loss in

our proposed approach:

𝑓 *, 𝑄* = min
𝑓,𝑄

1

𝑛𝑡
1

∑︁
𝑖:𝑜𝑡𝑖=1

�̂�𝑡
𝑖ℓ(𝑓(x̂𝑡

𝑖), 𝑦
𝑡+1
𝑖 ) +

𝜆

|𝐽 𝑡
𝑖 ∩ 𝒰 𝑡|

∑︁
𝑗∈𝐽𝑡

𝑖∩𝒰𝑡

�̂�𝑡−1
𝑗 ℓ(1{𝑓(x𝑡−1

𝑗 ) > 𝜏}, 𝑦𝑡𝑖,𝑗)

(4.3)

where |.| denotes the set cardinality, 𝜆 ≥ 0, and 𝜏 are parameters to be picked via

cross validation, 𝑦𝑡𝑖,𝑗 ∼ 𝑄*, and 𝑒𝑡𝑖 =
∑︀

𝑗∈𝐽𝑡(𝑖) 1{𝑗 : 𝑜𝑡𝑗 = 1} · 𝑦𝑡𝑗 + 1{𝑗 : 𝑜𝑡𝑗 = 0} · 𝑦𝑡𝑖,𝑗.
When 𝜆 > 0, this objective is somewhat similar to pseudo-labeling (Lee, 2003), it

would encourage the votes of each of 𝑗’s contacts to conform with the prediction

from 𝑓 , and implicitly with one another. When 𝜆 = 0, equation 4.3 prioritizes finding

good predictions for the labeled data, ignoring possible structure implied by the data.
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Note that in the second term in equation 4.3, we have 𝑓(x𝑡−1
𝑗 ), rather than 𝑓(x̂𝑡−1

𝑗 ),

meaning we assume no imputed exposure component for contacts at time 𝑡− 1. This

is only because we are considering the simple setting where 𝑡 − 1 = 0, i.e., 𝑡 − 1

is the beginning of the observation period and no exposure has happened yet. We

later consider more complicated settings where the contacts’ inputs also include an

exposure state.

4.3.1 When does structure work as a regularizer?

We now ask: when do we expect equation 4.3 to yield models superior to those that

ignore structure? First, if the imputed 𝑦.,𝑗 concentrates around significantly different

values for 𝑗 : 𝑦𝑗 = 1, and 𝑗 : 𝑦𝑗 = 0, we expect minimizing equation 4.3 to yield

better models. We stress that we do not require 𝑦 to be an accurate estimate of the

true labels, but only require that there is significant separation between the imputed

values for untested-infected individuals and untested-uninfected individuals, i.e., they

are distinguishable. This distinction means that even noisy and inaccurate estimates

of 𝑦 can be sufficient. In practice, high separability should occur, even in settings of

low and biased testing, assuming the observed data satisfies a property we refer to as

the potency property. The potency property can be viewed as an extension of the

margin condition in classification (Tsybakov et al., 2004; Audibert et al., 2007). It

implies that infections cluster so that infected-untested individuals tend to have many

more infected contacts than do uninfected-untested individuals. Such a condition will

be satisfied if the infection is sufficiently contagious.

Second, even if the imputed 𝑦 allows high seperability, but x̂ makes it difficult to

identify a learnable mapping from x̂ to 𝑦, minimizing equation 4.3 instead of the ob-

jective on only the labeled data does not help. Such is the case when untested-healthy

and untested-infected individuals “look” the same, meaning they have very similar

characteristics and exposure states. This property is often referred to as the cluster

assumption in semi-supervised learning literature (Rigollet, 2007; Seeger, 2000). The
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cluster assumption states that individual characteristics, and exposure states tend to

form near discrete clusters, with homogeneous labels within each cluster. Intuitively,

it means that we can learn the correct clustering of individuals that separates infected

from uninfected individuals, up to a permutation of the labeling. We refer to this

property as the dissimilarity property.

The degree to which these two properties are satisfied in the observed data will

depend largely upon the infection being studied and the environment in which it is

spreading. However, as we show in section 4.5, even when these properties do not

hold, our proposed approach performs as well as the best baseline. I.e., even in the

worst case scenario, the regularization “does no harm.”

4.4 Proposed method

Our proposed model, a Model for Infections under Incomplete Testing (MIINT) lever-

ages labeled and unlabeled data to predict sequences of infections over time. MIINT

minimizes a slight variant of equation 4.3, which is modified to predict the spread of

infection over time. Let 𝒜𝑡
𝑖, be the set of ancestors of 𝑖 at time 𝑡 whose outcomes are

unobserved, i.e., 𝒜𝑡
𝑖 = 𝐽 𝑡(𝑖) ∩ 𝒰 𝑡, 𝒜𝑡−1 =

⋃︀
𝑗∈𝒜𝑡

𝑖

𝐽 𝑡−1(𝑗) ∩ 𝒰 𝑡−1, etc. The loss at time 𝑡

is defined as:

ℒ𝑡 =
1

𝑛𝑡
1

∑︁
𝑖∈𝒟1

�̂�𝑡
𝑖ℓ(𝑓(x̂𝑡

𝑖), 𝑦
𝑡+1
𝑖 ) +

𝑡∑︁
𝑠=0

𝜆

|𝒜𝑡
𝑖|
∑︁
𝑗∈𝒜𝑠

𝑖

�̂�𝑠
𝑗ℓ(1{𝑓(x̂𝑠

𝑗) > 𝜏}, 𝑦𝑠𝑖,𝑗), (4.4)

and the objective is to find 𝑓 *, 𝑄*, such that:

𝑓 *, 𝑄* = min
𝑓,𝑄

1

𝑇

∑︁
𝑡

ℒ𝑡.

It is possible to consider the family of candidate functions ℱ to be any family of non-

parametric estimators. For our implementation, we take ℱ to be the space of recurrent

neural networks (RNNs). We assume that 𝑓 does not vary over time (though that is
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an assumption that could be relaxed). We propagate the predicted state forward in

time, meaning 𝑓 takes in x𝑡, 𝑒𝑡 and 𝑦𝑡 to predict 𝑦𝑡+1. This ensures that exposures

at time < 𝑡 are taken into account when predicting infections at time 𝑡. Note that

equation 4.4 can be decomposed into the independent sums of individual losses, as

well as their ancestors’ losses. This means we can use stochastic gradient descent,

with gradient updates defined with respect to mini-batches, as is typically done.

One limitation is that equation 4.4 as stated would require keeping track of all the

ancestors’ states since 𝑡 = 0, which can be prohibitive for long observation periods. In

practice, one would consider a subset of 𝒜𝑡
𝑖 based upon the properties of the disease

being studied.

The algorithm used to train MIINT, similar to pseudo-labeling (Lee, 2003), is an ex-

pectation maximization algorithm, where we iterate between computing the expected

label for the untested samples (i.e., finding the optimal �̂�, and identifying the opti-

mal 𝑓 that maximize the likelihood of the observed labels under �̂�) until convergence.

Convergence is achieved when the change in loss defined over the samples with ob-

served labels in a held out validation set is < 𝜖 for some small 𝜖. For our purposes,

we find it sufficient to let 𝑄 be a deterministic function rather than an actual dis-

tribution. However, our approach is extendable to allow 𝑄 to be a distribution, for

example using techniques described in Tran et al. (2017).

Finally, recall that we need to estimate �̂�𝑡
𝑖 = 𝑝(𝑂 = 𝑜𝑖)/𝑔(x̂𝑖, 𝑜𝑖). We follow Chernozhukov

et al. (2017) in using an independent sample to estimate 𝑔. Importantly, 𝑔 depends

on x̂. So we follow an iterative process: after every epoch of training, we use the most

updated 𝑓 to estimate the unobserved outcomes in the validation set, and hence to get

an estimate for 𝑒 and x̂ for the independent weighting sample. We use these imputed

values to learn an updated 𝑔. The updated 𝑔 provides estimates for the weights of

the training samples of the main prediction model, which are used to reweight the

loss function for the next epoch, and so forth.
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4.5 Experiments

We evaluate our model on a simulated, and a real data setting. All models presented

in this chapter are implemented using Tensorflow (Abadi et al., 2016).

In the simulated setting, unlike the real data setting, we have access to the true

infection state, which allows us to evaluate the performance of the model and baselines

under different patterns of infection. In both settings, we present results from our

model (MIINT) and five baselines:

1. Optimistic Model (OM): a model that assumes that all unobserved labels are

equal to 0,

2. No Exposure Model (NEM): a model that ignores exposure, and attempts to

predict infections solely based on the individual characteristics,

3. GraphSAGE (GNN): a graph neural network that takes into account the con-

tact network, and observed infection states (Hamilton et al., 2017) but ignores

untested individuals,

4. Pseudo-Labeling (PL): a semi-supervised learning method that takes into ac-

count untested individuals but ignores the graph structure (Lee, 2003),

5. ORacle Model (ORM): an unattainable model that has oracle access to the

true labels for the whole population.

For all models, we weight the loss from each individual by the inverse of their esti-

mated propensity to be tested, 𝑤𝑡
𝑖 , which is estimated using an independent sample

following Chernozhukov et al. (2017). For our model, we use the iterative weighting

technique outlined in section 4.4. For all these models, we keep the neural network

architecture fixed. We use cross-validatation to get the values of 𝜆, and 𝜏 . Results

from unweighted models and details about cross-validation and network architecture

are included in the appendix.
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4.5.1 Simulation experiments

The simulation experiments demonstrate how MIINT can be used to inform testing

and isolation policies that lead to reduction in infection rates, as well as empirically

validate our conjectures regarding the conditions under which MIINT is expected to

perform better than other methods.

Setup. We simulate a world in which there are three types of people: symptomatic

if exposed (𝐺0), asymptomatic (but infected) if exposed (𝐺1), and immune (𝐺2).

If exposed, individuals in group 𝐺0 become infected and symptomatic, hence they

are more likely to get tested. If exposed, individuals in group 𝐺1 become infected

without displaying symptoms. This group is unlikely to get tested. Finally, 𝐺2, the

immune group, is unlikely to get the infection even if exposed. To simulate individuals’

characteristics (i.e., x), we map the distinct groups to the distinct MNIST digits, 0,

1, and 2. We use MNIST images because (1) they provide a complex input space

compared to randomly generated data, and (2) images can be easily classified as

similar or dissimilar, which enables us to design experiments where the dissimilarity

property can be manipulated, as described later.

Let 𝜈𝑖 denote the pixels of an MNIST image 𝑖. For 𝐺0 we randomly sample without

replacement 𝑛/3 · 𝑇 elements from the set {𝜈𝑖}𝑖:𝑑𝑖=0, where 𝑛 is the total sample size,

and 𝑇 is the time horizon. For 𝐺1, and 𝐺2 we sample from {𝜈𝑖}𝑖:𝑑𝑖=1, and {𝜈𝑖}𝑖:𝑑𝑖=2,

respectively. Note that the infection states will be different within each group, since

infection also depends on the exposure state, and injected noise. We draw the edge

sets {𝐽 𝑡(𝑖)}𝑖∈𝑛,𝑡∈[0,𝑇 ] according to a stochastic block model, parameterized by the

matrix 𝐵, where 𝐵𝑘,𝑙 is the probability that an individual from 𝐺𝑘 forms an edge

with an individual from 𝐺𝑙. 𝐵 is important in simulating different levels of carrier

potency. When 𝐵1,𝑘/𝐵1,2 for 𝑘 = {0, 1} approaches 1, members of the asymptomatic

carrier group are equally likely to form an edge with individuals who are not immune

(𝐺0) as with individuals who are immune (𝐺2). In this setting, a carriers’ contacts

have a 50-50 percent chance of becoming infected, depending on whether they belong
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to the immune group. This is a low carrier potency setting, which is unfavorable for

our approach. On the other hand, if 𝐵1,𝑘/𝐵1,2 = 5, for example, individuals in 𝐺0, and

𝐺1 are 5 times more likely to form an edge with someone in a susceptible group as

compared to forming an edge with an individual in the immune group 𝐺2. In this

setting, the carriers’ contacts are more likely to be from the susceptible group, hence

they will have a higher chance of becoming infected. This a favorable high carrier

potency setting.

We mimic the situation where testing started after a significant proportion of the

population has been exposed by randomly setting the true exposure state of 20%

of the population to be 1 at time 𝑡 = 0. We set the exposure for each individual

𝑒𝑡𝑖 =
∑︀

𝑗∈𝐽𝑡
𝑖
𝑦𝑡𝑗 ≥ 1, and the true infection label 𝑦𝑡+1

𝑖 = 1{𝑖 ∈ (𝐺0, 𝐺1)} · 1{𝑒𝑖,𝑡 = 1}.
We introduce noise by randomly flipping the labels of 1% of the population. If an

individual tests positive at time 𝑡 < 𝑇 , their label remains positive until 𝑡 = 𝑇 .

We define 𝑝obs to be the proportion of the population tested (their true label is

observed). We pick the probability of observing 𝑖’s label based on 𝑖’s true infection

state, meaning, 𝑝(𝑜𝑖|𝑦𝑖 = 1) ̸= 𝑝(𝑜𝑖|𝑦𝑖 = 0). For all the simulations, we set 𝑇 = 6 and

we draw 500 × 6 samples for each of the training, validation, and testing sets. We

simulate an independent sample to compute the weights 𝑤𝑖, so we also draw 500 × 6

samples that are used to train and validate weighting models. For each experiment,

we draw 10 different datasets, and report the mean and standard deviation of the

performance metric across the 10 draws.

In the first two experiment settings, we empirically validate our conjectures about

the two properties that enable our model to outperform others, and explore what

happens as these favorable properties are weakened to the point of non-existence.

Sensitivity to the potency property. Here, we fix 𝑝obs = .1 and 𝑝(𝑜𝑖|𝑦𝑖 = 1)/𝑝(𝑜𝑖|𝑦𝑖 = 0) =

5, and sweep over carrier potency by varying the value of 𝐵1,𝑘/𝐵1,2 from 1 (low po-

tency) to 5 (high potency). Figure 4-1 shows 𝐵1,𝑘/𝐵1,2 on the 𝑥−axis and the AUROC

on the 𝑦−axis. The plot shows that MIINT outperforms other baselines when there
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is high potency, and as potency declines, its performance becomes similar to that of

the other baselines. This supports our conjecture that our regularization approach

is advantageous when the true infection states for an untested individual is strongly

related to their contacts’ infection states.
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Figure 4-1: Impact of varying levels of carrier potency controlled by 𝐵1,𝑘/𝐵1,2. Our
model outperforms baselines, especially in cases with high potency.

Sensitivity to the dissimilarity property. Here we examine what happens when

the cluster assumption breaks down, meaning when untested individuals with similar

characteristics have different infection states. We do so by moving the untested, and

possibly infected1 individuals to “look” similar to the immune individuals. Specifi-

cally, we sample pairs of images {(𝜈𝑖, 𝜈𝑗)}𝑖,𝑗:𝑑𝑖=1,𝑑𝑗=2. We then use VoxelMorph (Bal-

akrishnan et al., 2018), a learning-based framework for deformable, pairwise image

registration to learn a function that gives us a deformation field which we then apply

it to pairs of images, moving 𝜈𝑖 to look more similar to 𝜈𝑗. Using VoxelMorph in this

way allows us to control the degree of similarity between images.

Figure 4-2 shows a sample image morphing for a pair of images using VoxelMorph.
1Individuals in 𝐺1 are only infected if they get exposed.
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Figure 4-2: Varying similarity between asymptomatic carrier features and immune
individual features using VoxelMorph (Balakrishnan et al., 2018)

Figure 4-3 shows the results of this setting. The 𝑥−axis can be viewed as the degree of

similarity between the two untested groups with 0 being dissimilar (i.e., the original

images without any deformation) and 1 being very similar (i.e., all images of the

digit 1 look almost identical to 2’s). The 𝑦−axis is the average AUROC. We see that

all models perform worse as members in 𝐺1 look more and more similar to those

in 𝐺2. We also see that MIINT outperforms all baselines when the two groups are

dissimilar, and performs as well as the others when the mapping from input space to

label becomes more difficult.
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Figure 4-3: Impact of high (=.9) and low (=.1) similarity between the characteristics
of the untested-uninfected and untested-infected populations. Our model outperforms
baselines when the two populations are dissimilar.
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The previous two experiments confirm our conjectures about the properties neces-

sary for MIINT to perform well, and imply that MIINT “does no harm”: at worst

it performs comparably to alternatives, and at best it can give significantly better

performance.

In the next two settings, we investigate the effect of bias and limited testing.

Impact of biased testing. To explore the impact of biased testing under favor-

able conditions, we create high potency by setting 𝐵1,𝑘/𝐵1,2 = 5 for 𝑘 = {0, 1}. We

set 𝑝obs = .1, and sweep over the odds of testing conditional on group member-

ship. Results are shown in figure 4-4, where the 𝑥−axis shows the odds of testing

(= 𝑝(𝑜𝑖|𝑦𝑖 = 1)/𝑝(𝑜𝑖|𝑦𝑖 = 0)), and the 𝑦−axis shows the AUROC on the held-out test set,

averaged over 10 simulations. We see that the weighted version of MIINT outperforms

all others. This happens because NEM completely ignores exposure, OM assumes that

90% of the population (1− 𝑝obs) has 𝑦𝑖 = 0 (which affects its estimate of 𝑒𝑡), whereas

MIINT tries to impute the labels for those 90% based on their neighbors infection

states. Here the difference between OM and NEM is not large because 𝑝obs = .1,

which is very low. This means that the exposure estimate that OM relies on is a poor

estimate. Results from the subsequent experiment highlight that.

In addition, we see that PL has very high variance for highly biased testing. This

makes sense because PL assigns labels for the untested population by considering

similar patients in the tested population. Under highly biased testing, the labeled

and unlabeled population are drastically different, making it difficult to generalize to

the unlabeled population without leveraging the rich structured data.

Impact of limited testing. The setup for this experiment is similar to the previous

one but here we fix the testing odds, 𝑝(𝑜𝑖|𝑦𝑖 = 1)/𝑝(𝑜𝑖|𝑦𝑖 = 0) = 5, and sweep over the

level of testing 𝑝obs. Figure 4-5 shows the results, with 𝑝obs on the 𝑥−axis and the

AUROC on the 𝑦−axis, averaged over 10 simulations. We see that weighted MIINT

performs as well as the other models at the two extremes of testing levels, and does

better at all other levels of testing. Here we see that OM outperforms NEW when the
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Figure 4-4: Impact of biased testing, 𝑥−axis shows the odds ratio of testing given
characteristics (= 𝑝(𝑜𝑖|𝑦𝑖 = 1)/𝑝(𝑜𝑖|𝑦𝑖 = 0)), 1 implies randomized testing. Our model does
better than baselines for most levels of bias, and similar to baselines at extreme bias.

level of testing is sufficiently high, which is expected since OM inherently assumes no

unobserved infections. As the testing levels increase, that assumption becomes more

correct. The performance of NEM also improves with higher levels of testing since it

has access to a cleaner 𝑦 label, however, it is never able to perform as well as MIINT

or OM because it does not take exposure as an input.

In the final set of experiments, we show the utility of having an accurate infection

prediction tool in curbing the spread of infections.

Informing testing and isolation policies. We highlight how our model can inform

efficient testing and isolation policies. We simulate biased and limited testing by

setting 𝑝(𝑜𝑖|𝑦𝑖 = 1)/𝑝(𝑜𝑖|𝑦𝑖 = 0) = 5, and 𝑝obs = .1 respectively. We set 𝐵1,𝑘/𝐵1,2 = 5,

making it a high potency setting where MIINT is expected to perform well. We

mimic a situation where no isolation interventions are taken at training time. At

deployment time, we fix a testing budget of at most 𝑝test% of the total population

on each time step. We use the predictions from each model to inform who gets

tested by picking the top 𝑝test% with the highest predicted probability of infection.
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Figure 4-5: Impact of limited testing. Our model does better than baselines at every
level of testing. Our model achieves near oracle accuracy at low levels of testing bias,
and high proportion tested.

Of those tested, individuals who are truly infected are “isolated” by setting their

edges for the subsequent time steps to 0. They are also taken out of the population

eligible for further testing. We compute the infection rate, 𝜋𝑀 for a model 𝑀 as

𝜋𝑀 = 𝑛−1 ·∑︀𝑖 max𝑡 𝑦𝑖,𝑡. We define 𝜋0 as the infection rate under a no-action policy,

that is if no isolation interventions are taken. Our main metric of interest is the

reduction in infection rate relative to the no-action policy = 𝜋0 − 𝜋𝑀/𝜋0. Figure 4-6

shows the reduction in infection rate on the 𝑦−axis for different values of the testing

budget 𝑝test% on the 𝑥−axis. In addition to the main baselines, we also show results

from a random testing policy. The results show that for any given testing budget, our

model outperforms all feasible baselines leading to uncovering more individuals who

should be isolated, thus achieving a higher reduction in infection rates. The results

imply that our model is able to achieve near oracle infection control with 70% testing,

compared to ≈ 90% for the baselines.
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Figure 4-6: Reduction in infection rates relative to a policy that does not isolate
infections (no-action policy) as the daily testing budget varies. Our model achieves
the highest reductions in policy relative to all realistic (i.e., non-oracle) models.

4.5.2 Real data experiment

Here, our task is to predict the onset of Clostridioides difficile infections (CDI) among

patients in a large urban hospital. CDI is a contagious bacterial infection that attacks

the gut, and causes over 300,000 infections annually in the US (Magill et al., 2014).

As with most contagious infections, asymptomatic carriers of CDI exists and can

contribute to the spread of the infection (Riggs et al., 2007).

Setup. Using Electronic Medical Records of a large urban hospital, we extract daily

characteristics of patients who were admitted to the hospital between 09/01/2012

and 06/01/2014. We follow similar inclusion criteria as Oh et al. (2018); Makar et al.

(2018), outlined in detail in the appendix. We collect all patient characteristics avail-

able upon admission (e.g., gender, age, medical history) as well as daily characteristics

(e.g., lab tests). We collect contact networks, where an edge exists if two patients are

in the same room on the same day or if they came into contact with the same nurse

on the same day.
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Here, we have partial access to the true infection states, since not all the patients

are tested, making accurate evaluation of different models difficult. However, the

hospital’s testing protocols allow us to construct a proxy “true” label and a proxy

“observed” label. In this hospital, whether a patient is diagnosed as CDI positive or

not is a result of a one or two-step testing protocol. In the first step, an enzyme

immunoassay (EIA) and Glutamate dehydrogenase (GDH) test are conducted. If

the results of the two tests are discordant, a second step of testing is conducted.

Specifically, the hospital uses a polymerase chain reaction (PCR) assay to act as a

tie-breaker. Previous studies comparing the outcomes of the two groups (those who

have non-discordant EIA/GDH+ results vs. discordant and PCR+) have shown that

the former experiences more severe complications (Origüen et al., 2018; Polage et al.,

2015). This implies the EIA/GDH+ label can act a proxy for symptomatic infections,

whereas PCR+ might be picking up on patients who are carrying the bacteria but

have low toxin levels and therefore mild or no symptoms.

In this experiment, we hide the PCR+ labels during training, presenting them as

untested individuals to all models. At test time, however, the true positives are

defined to be patients who tested positive with either EIA/GDH or PCR. In addition

to the baselines outlined in section 4.5.1, we allow one of the models full access to

the EIA/GDH+ and PCR+ labels, and refer to it as a “partial oracle” model (POM)

since it has access to the PCR+ labels, but not the full infection states. The latter

are unavailable because the majority of patients in the hospital are not tested. We

also compare our results to the state-of-the-art prediction model for CDI (Wiens

et al., 2012), which is a logistic regression model that takes into account the varying

importance of different risk factors over the hospitalization, and relies on medical

knowledge to construct exposure proxies. We refer to this model as the Expert driven

Logistic Regression (ELR).

We split the data into 5 subsets based on time. The first subset holds 6 months of

data and is used to train the main infection prediction models. The second and third

subsets contain 5 months of data each, and are used for validation and testing of the
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TPR@ FPR=10% AUROC

POM 0.49 (0.014) 0.73 (0.003)
NEM 0.33 (0.008) 0.69 (0.006)
NEM–U 0.45 (0.009) 0.7 (0.006)
OM 0.44 (0.008) 0.74 (0.006)
OM–U 0.45 (0.012) 0.7 (0.005)
ELR 0.53 (0.008) 0.82 (0.006)
GNN 0.24 (0.005) 0.59 (0.005)
GNN–U 0.22 (0.007) 0.55 (0.007)
PL 0.26 (0.008) 0.62 (0.005)
PL–U 0.58 (0.012) 0.78 (0.006)
MIINT–U 0.6 (0.007) 0.81 (0.006)
MIINT 0.51 (0.007) 0.78 (0.007)

Table 4.2: Performance metrics for CDI prediction on the test set.

main prediction model. The last 2 subsets are used for training and validation of the

weighting models, and each contain 2 months worth of data. We report the AUROC,

the True Positive Rate (TPR) at the threshold which achieves a False Positive Rate

(FPR) of 10% on the test set.

Table 4.2 shows the results on the test set. We present the results from all the models

which incorporate weighting by 𝑤𝑡
𝑖 , and their unweighted counterparts, with the suffix

−− 𝑈 . Standard deviations are calculated by taking 100 bootstrap replicates of the

test set data. For several models, the unweighted model outperforms its weighted

counterpart. We see that unweighted MIINT outperforms almost all others on both

reported metrics. The one exception is ELR: MIINT and ELR achieve comparable

AUROCs but MIINT has a significantly better TPR. MIINT outperforms POM even

though the latter has access to better labels. We hypothesize that this is because in

addition to accurately estimating the PCR+ patients, MIINT is also capturing truly

untested infections, and utilizing these estimates to accurately impute the exposures

of the EIA/GDH+ patients as well as the PCR+ patients.
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4.6 Summary

We presented MIINT, a model that predicts contagious infections. Unlike other

models, MIINT works well even when labels are generated using biased and limited

testing. It does so by exploiting the fact that, in practice, data related to contagious

diseases are not i.i.d. The key idea is that highly structured patterns of contagion

transmission can serve as a complementary signal to identify even untested carriers.

The stronger that signal is, the less impact that biased and incomplete testing will

have.

We identified two properties that determine the extent to which MIINT outperforms

other approaches. The first states that the more contagious the infection, the better

MIINT performs. The second is the degree to which characteristics of untested and

infected individuals and characteristics of the untested and healthy individuals form

discrete clusters–an important property in general for semi-supervised learning.

We showed empirically that MIINT can be used to guide testing policies that lead to

reduced infection rates, and that even if the two properties outlined above are absent,

MIINT still performs well. In an experiment using EHR data, we showed that MIINT

outperforms baselines when when used to predict CDI.

In conclusion, we believe this work is a first step down an important path. If predictive

models are to play a useful role in limiting the spread of contagious infections, they

must take into account the interdependence of outcomes, and the fact that untested

individuals are capable of spreading the disease before they have been diagnosed.
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Chapter 5

Conclusion

More than ever, society is relying on models developed using observational data to

guide various decision-making processes. In this thesis, we present an approach to

building robust and sample-efficient models by combining ideas from machine learning

and causal inference.

We highlight some of the challenges that render learned models unfit for decision

guidance, and how the work presented in this thesis tackles them.

Inaccurate causal inference because of limited data. Estimation of conditional

average treatment effect (CATE) is commonly used as the basis for contextual decision

making in fields such as healthcare, education, and economics. In many cases, the

CATE is defined by a function that is complex, and hard to estimate accurately

from finite, or limited data. In chapter 2 we make the observation that it is often

sufficient for the decision maker to have estimates of upper and lower bounds on the

potential outcomes of decision alternatives. We show that, in such cases, we can

improve sample efficiency by estimating simple functions that bound these outcomes

instead of estimating their conditional expectations. Our analysis highlights a trade-

off between the complexity of the learning task and the confidence with which the

learned bounds hold. Guided by these findings, we develop an algorithm for learning

113



upper and lower bounds on potential outcomes that optimize an objective function

defined by the decision maker, subject to the probability that bounds are violated is

small. Using a clinical dataset and a well-known causality benchmark, we demonstrate

that our algorithm outperforms baselines, providing tighter and more reliable bounds.

Our contributions are especially useful when the amount of training data available is

limited.

Predictors that fail to generalize beyond the training distribution. Predic-

tors that can reliably guide decision making are often expected to be invariant to

inconsequential changes in the data generating process. However, many predictors

constructed from deep neural networks (DNNs) lack robustness under distribution

shift (Beery et al., 2018; Ilyas et al., 2019; Azulay and Weiss, 2018; Geirhos et al.,

2018), including naturally occurring distribution shifts(Taori et al., 2020). In chap-

ter 3, we study a flexible, causally-motivated approach to enforcing such invariance to

distribution shifts. Our approach uses auxiliary labels, typically available at training

time, to enforce conditional independences between the latent factors that determine

these labels. We show both theoretically and empirically that causally-motivated reg-

ularization schemes (a) lead to robust estimators that generalize well under distribu-

tion shift, and (b) have better finite sample efficiency compared to usual regularization

schemes, even in the absence of distribution shifts.

Inaccurate infection prediction caused by asymptomatic carriers By identi-

fying individuals at elevated probability of being infected, ML algorithms can inform

decisions on whom to isolate to control the spread of an infectious disease. One of the

main challenges of building ML models for accurate infection prediction is the presence

of a distribution shift caused by asymptomatic carriers, who are under-represented

at training time because of biased testing. In chapter 4, we show that we can build

reliable infection prediction models even when the observed data is collected under

limited, and biased testing that prioritizes testing symptomatic individuals. Our anal-

ysis suggests that when the infection is highly contagious, incomplete testing might

be sufficient to achieve good out-of-sample prediction error. Guided by this insight,
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we develop an algorithm that predicts infections, and show that it outperforms base-

lines on simulated data. We apply our model to data from a large hospital to predict

Clostridioides difficile infections; a communicable disease with high morbidity that is

characterized by asymptomatic (i.e., untested) carriers. Using a proxy instead of the

unobserved untested-infected state, we show that our model outperforms benchmarks

in predicting infections.

5.1 Future directions in machine learning for causal

inference

Minimal causal estimates. Estimating the conditional average treatment effect

(CATE) is often hailed as the golden ticket to guiding personalized intervention de-

cisions. However, in cases where the CATE is complex and hard to learn from finite

data, insisting on estimating accurate CATE makes causal inference an inefficient and

unreliable tool, and hinders its practical adoption. The path for widespread use of

causal inference tools starts with the realization that every decision is different, and

there should not be a one size fits all approach to building models; in some cases aim-

ing to estimate the CATE might be necessary, but in most cases minimal estimates

of the causal effect of an intervention might be sufficient.

The work presented in chapter 2 is one example of tailoring the estimation question to

fit the specific needs of the decision maker. The guiding principles behind this work

can be utilized to design efficient, and useful causal effect estimation methods in many

practical settings. For example, ranking the causal effect of different intervention

choices on an outcome of interest is often useful when considering multiple treatment

choices. In that setting, we can get an accurate ranking without estimating the CATE

for each one of the treatment choices. Viewing causal estimation through the lens

of minimalism sets us on a path where model-driven evidence-based decision making

can become a reality not a distant ambition.

115



Causal models for infectious diseases. Making intervention decisions in the

context of infectious diseases is particularly challenging because one patient’s treat-

ment affects more than just that patient’s outcomes, it also affects their contacts’

outcomes and intervention decisions. Estimating the causal effect of interventions in

this context is challenging for the same reasons: the traditional assumptions about

the independence of each unit of treatment (i.e., each patient) that enable consistent

estimation are violated.

Existing work in the area of causal inference on networked-data has focused on asymp-

totic consistency of causal estimators (e.g., Ogburn et al. (2017); Sofrygin and van der

Laan (2016)) but no finite sample analysis of this set of causal problems exists to date.

Establishing the finite sample proprieties of causal estimators in the context of net-

worked data is an important future direction that will enable us to understand how

well these estimators generalize to different contact networks, and different diseases

with varying levels of contagiousness.

Because of the challenging nature of causal estimation on networked data, aiming

to estimate the precise CATE of different interventions is often infeasible, even with

abundant data. Developing methods, and theoretical analysis for minimal causal

estimates in this context could enable physicians, and key decision makers to design

effective interventions that curb the spread of infections.

5.2 Future directions in causal inference for machine

learning

Causally-motivated regularization. Limiting model capacity to avoid overfitting

is one of the most fundamental core concepts in ML. Historically, we have relied on

mechanical regularization to control model capacity, for example limiting the norm

of the weights parameterizing a model, choosing a larger kernel bandwidth to ensure
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that a model is sufficiently smooth, and so forth. As deep learning method gain more

popularity, mechanical regularization schemes are losing favor for at least two reasons.

First, they are challenging to explain, and justify: do we need to regularize the weights

of all the layers to get a sufficiently complex model? Does regularizing the weights

of the final layer suffice? Second, as our empirical analysis in chapter 3 highlights,

mechanical regularization might not lead to robustness against distribution shifts:

limited capacity models do not always translate to robustness.

Against this backdrop, the appeal of conceptual, or causally-motivated regularization

schemes is increasing. Methods that limit the model capacity by ensuring that it

obeys known independencies (chapter 3) or dependencies (chapter 4) allow efficient

and robust estimation. However, little is known about the theoretical properties of

causally-motivated regularization schemes. Rigorous comparisons between different

methods of enforcing invariance are lacking. For ML, and specifically deep learning,

to deliver on its promise of reliable and efficient predictors we need to have a better

theoretical, and empirical understanding of how causally-motivated regularization

works.

Auditing predictive models. The impressive infiltration of ML tools into key areas

of our lives, from housing and insurance to personalized medicine and criminal justice

has brought issues of fairness, and interpretability to the forefront. As ML becomes

more widely used, we must address whether the core concepts that a model encodes

conform to societal standards, and code of ethics. This in turn means that we need

to be able to be able to explain the core paradigms encoded in the inner workings of

ML models.

Viewed through a causal lens, the question of looking into the inner workings of a

deep neural network, for example, is equivalent to asking “what is the causal graph

implied by this neural network?” A promising direction here is adapting methods of

causal discovery (Glymour et al., 2019) to learn the causal graphs implied by learned

models. The road to discovering the causal structures implied by ML models starts
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with improving the existing causal discovery methods. For example, much is still

unknown about the finite sample properties of different causal discovery algorithms.

5.3 Future directions in healthcare

Developing novel methods backed up by rigorous theory in machine learning and

causal inference is important in its own right. However, for these tools to have a

significant impact in healthcare settings, they need to address real medical needs.

One of the most promising directions in healthcare research is designing decision-

guidance tools that complement rather than replace existing human expertise. For

example, a physician might be well trained in giving prognoses based on the patient’s

symptoms, but she cannot quickly ascertain the viral load that her patient has been

exposed to through the patient’s daily contacts.

To complement existing expertise, we must first understand what they are, and where

the areas of true need exist. We conclude this thesis with the remark that meaningful

progress in the area of machine learning, causality and healthcare has to be the

result of deep and continuing collaborations between computer scientists and medical

experts. To move forward, we must first understand each other’s concerns, needs,

limitations, and abilities.
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Appendix A

Appendix to chapter 2

A.1 Proof of theorem 2.3.1

Before delving into the proof, we define the empirical proportion overestimated:

Definition A1. For 𝑓 ∈ ℱ , 𝛾 > 0, a sample 𝑧 = {𝑥𝑖, 𝑦𝑖}𝑛𝑖 drawn from a fixed but

unknown distribution 𝑝𝑡, known weights 𝑤, we define the empirical risk when the

distribution with respect to 𝑝:

𝜖𝑤𝑓 (𝑧, 𝛾) =
∑︁
𝑖

𝑤(𝑥)1{𝑟𝑓 (𝑥, 𝑦) < 𝛾}.

To construct the proof, we will first study the overestimation risk when there are

no training set violations (Lemma A3). To extend our results to cases where there

are training set violations, we rely on a technique, presented in Shawe-Taylor and

Cristianini (2002) and used in Schölkopf et al. (2001), which allows us to ignore small

violations in the training data at the cost of a more complex function space. This

function space (formally defined in definition A2) is constructed by creating an “aux-

iliary function” that picks specific points to have a non-zero violation. Its complexity

depends on the allowable violations. By augmenting the result from lemma A3 with
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the auxiliary function space, we get theorem A1, a general version of theorem 2.3.1,

which gives a bound on the overestimation risk for general sturdy function spaces. Fi-

nally, we give the proof for linear function spaces, which is presented in theorem 2.3.1

in the main text.

To build up to lemma A3, we restate the following two previously established results.

Lemma A1. Due to Shawe-Taylor and Williamson (1999): Let ℱ be a sturdy func-

tion class, then for each 𝑁 ∈ N+ and any fixed sequence 𝑋 ∈ 𝒳 𝑛 the infimum

inf{𝛾 : 𝒩 (𝛾,ℱ , 𝑋) < 𝑁}

is attained

We assume that 𝑓 1
𝑙 , 𝑓 0

𝑙 , 𝑓 0
𝑙 and 𝑓 0

𝑢 belong to a sturdy function class, as defined in

definition 2.3.4.

The following lemma due to Cortes et al. (2010a) bounds the second moment of the

weighted loss.

Lemma A2. Due to Cortes et al. (2010a). For 𝑥 ∈ 𝒳 , a weighting function 𝑤𝑡 on

𝒳 , a loss function ℓ, and some function 𝑓 ∈ ℱ , the second moment of the importance

weighted loss can be bounded as follows:

E𝑋|𝑇
[︀
𝑤2

𝑡 (𝑋)ℓ2𝑓 (𝑋) | 𝑇 = 𝑡
]︀
≤ 𝑑2(𝑝||𝑝𝑡)

We now study the overestimation error when there are no training set violations,

i.e., when 𝐷 = 0. A direct analogy can be drawn between the following lemma

(lemma A3) and hard margin one-class SVMs studied in Schölkopf et al. (2001),

whereas theorem 2.3.1 is analogous to the soft margin case.

Lemma A3. Let ℱ be the class of linear functions in a kernel defined feature space,

𝑧 = {𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, where 𝑥𝑖, 𝑦𝑖 ∼ 𝑝𝑡(𝑋, 𝑌 ), and 𝐶𝑡 be as defined in (2.1). For 𝑓 𝑡
𝑙 ∈ ℱ ,
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and any 𝛾 > 0, let the associated 𝐷𝑤𝑡(𝑧, 𝑓 1
𝑡 , 𝛾) = 0. With a probability 1− 𝛿 over the

draw of random samples, we have that:

𝑅𝑓 𝑙
𝑡
(𝛾) ≤ 4𝐶𝑡(𝑘𝑡 + log 1

𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

. (A.1)

where, for 𝑡 ∈ {0, 1},

𝑘𝑡 =

⌈︂
log𝒩 (𝛾,ℱ , 2𝑛𝑡)

⌉︂
.

Proof. For a given 𝑓 1
𝑙 ∈ ℱ :

𝑃
(︁
𝑅𝑓1

𝑙
(𝛾) − 𝜖𝑤𝑓1

𝑙
(𝑧, 𝛾) > 𝜀

)︁
= 𝑃

(︁
𝑅𝑓1

𝑙
(𝛾) > 𝜀

)︁
≤ 2𝑃

(︁
𝜖𝑤

′

𝑓1
𝑙
(𝑧′, 𝛾) >

𝜀

2

)︁
,

where the equality follows from the fact that the empirical error on the estimation

data will always be 0 by definition of 𝛾. And the inequality follows from applying the

double (ghost) sample trick. Suppose that such an 𝑓 1
𝑙 exists. Pick a fixed 𝑘 such that

𝛾𝑘 = inf{𝛾 : 𝒩 (𝛾,ℱ , 2𝑛1) ≤ 2𝑘} ≤ 𝛾 .

By Lemma A1, and assumption of sturdiness, we have that this 𝛾𝑘 exists. Consider

the 𝛾𝑘-covering, 𝑈 . There exists another 𝑓∙ ∈ 𝑈 such that the distance between 𝑓 1
𝑙

and 𝑓∙ is ≤ 𝛾𝑘 ≤ 𝛾, meaning 𝑓∙ satisfies:

𝑃
(︁
𝜖𝑤

′

𝑓1
𝑙
(𝑧′, 𝛾) >

𝜀

2

)︁
= 𝑃

(︁
𝜖𝑤

′

𝑓∙ (𝑧′, 0) >
𝜀

2

)︁
This limits the complexity of the function class from infinite to having a covering

number = 𝒞𝛾
ℱ . Swapping samples between the estimation and the ghost sample, this

will create a random variable 𝑆 ′ = 1
𝑀

(𝜖
𝑤′

1
𝑓∙ (𝑧′1, 0)+ . . .+𝜖

𝑤′
𝑚

𝑓∙ (𝑧′𝑚, 0),+ . . .+𝜖
𝑤′

𝑀
𝑓∙ (𝑧′𝑀 , 0))

for 𝑀 = 2𝑛1 , where the subscripts of 𝑤′ and 𝑧′ denote the sample index. Note that

E𝑥∼𝑝𝑡 [𝑆
′] = 𝑅𝑓∙(0) and let 𝑆 denote 𝑆 ′ − E𝑥∼𝑝𝑡 [𝑆

′], with E𝑥∼𝑝𝑡 [𝑆] = 0. Let 𝜎2(𝑆) =
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E[𝑆2] = E[(𝑆 ′−E𝑥∼𝑝𝑡 [𝑆
′])2]. By Lemma A2, we have that 𝜎2(𝑆 ′) ≤ 𝑑2(𝑝||𝑝1)−𝑅𝑓∙(0)2.

By Bernstein’s inequality:

𝑃
(︁
𝑅𝑓∙(0) − 𝜖𝑤

′

𝑓∙(𝑧′, 0) >
𝜀

2

)︁
≤ exp

(︁ −3𝑛1𝜀
2

24𝜎2(𝑆) + 4𝐶1𝜀

)︁
,

and a union bound over the function space:

𝑃
(︁
𝑅𝑓∙(0) − 𝜖𝑤

′

𝑓∙(𝑧′, 0) >
𝜀

2

)︁
≤

𝒩 (𝛾,ℱ , 2𝑛1) exp
(︁ −3𝑛1𝜀

2

24𝜎2(𝑆) + 4𝐶1𝜀

)︁
Putting it all together:

𝑃
(︁
𝑅𝑓1

𝑙
(𝛾) − 𝜖𝑤𝑓1

𝑙
(𝑧, 𝛾) > 𝜀

)︁
≤ 2𝑃

(︁
𝑅𝑓∙(0) − 𝜖𝑤

′

𝑓∙(𝑧′, 0) >
𝜀

2

)︁
≤ 2𝒩 (𝛾,ℱ , 2𝑛1) exp

(︁ −3𝑛1𝜀
2

24𝜎2(𝑆) + 4𝐶1𝜀

)︁
Setting 𝛿(𝜖) to match the upper bound, inverting w.r.t. 𝜖 and removing the (negative)

term 𝑅𝑓∙(0)2 from the right-hand side, we get that stated bound with probability

1 − 𝛿.

Next, we define the auxiliary function space, which will allow us to study non-zero

training set violations.

Definition A2. [Restated from Schölkopf et al. (2001), definition 13] Let 𝐿(𝒳 ) be

the set of real valued, non-negative functions 𝑓 on 𝒳 with support supp(𝑓) countable,

that is the functions in in 𝐿(𝒳 ) are non-zero for at moust countably many points.

We define the inner product of two functions 𝑓, 𝑔 ∈ 𝐿(𝒳 ) by:

𝑓 · 𝑔
∑︁

𝑥∈supp(𝑓)

𝑓(𝑥)𝑔(𝑥).

The 1-norm on 𝐿(𝒳 ) is defined by ||𝑓 ||1 =
∑︀

𝑥∈supp(𝑓) 𝑓(𝑥). Let 𝐿𝐷(𝒳 ) := {𝑓 ∈
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𝐿(𝒳 ) : ||𝑓 ||1 ≤ 𝐷}. Define a transformation, or embedding of 𝒳 into the product

space 𝒳 × 𝐿(𝒳 ) as follows:

𝜛 : 𝒳 → 𝒳 × 𝐿(𝒳 )

𝜛 : 𝑥 → (𝑥,∆𝑥),

where

∆𝑥 =

⎧⎪⎨⎪⎩1, 𝑦 = 𝑥,

0, otherwise

For a function 𝑓 ∈ ℱ a set of training examples 𝑧 of size 𝑛, define the function

𝑔𝑓 ∈ 𝐿(𝒳 )

𝑔𝑓 (y) :=
∑︁
𝑥,𝑦∈𝑧

𝑤1(𝑥) min{0, 𝛾 − 𝑟𝑓1
𝑙
(𝑥, 𝑦)}∆𝑥(y),

where y = {𝑦𝑖}𝑛𝑖=1

We can now state the risk of overestimation for general sturdy functions.

Theorem A1. Let ℱ be any sturdy function class defined over input space 𝒳 , 𝑧 =

{𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, where 𝑥𝑖, 𝑦𝑖 ∼ 𝑝𝑡(𝑋, 𝑌 ), and 𝐶𝑡 be as defined in (2.1). For 𝑓 𝑡
𝑙 ∈ ℱ , and

any 𝛾 > 0, let the associated 𝐷𝑤𝑡(𝑧, 𝑓 1
𝑡 , 𝛾) = 𝐷 > 0. With a probability 1 − 𝛿 over

the draw of random samples, we have that:

𝑅𝑓 𝑙
𝑡
(𝛾) ≤ 4𝐶𝑡(𝑘𝑡 + log 1

𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

. (A.2)

where, for 𝑡 ∈ {0, 1},

𝑘𝑡 =

⌈︂
log𝒩 (𝛾/2,ℱ , 2𝑛𝑡) + log𝒩 (𝛾/2, 𝐿𝐷(𝒳 ), 2𝑛𝑡)

⌉︂
.
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Proof sketch. The proof extends lemma A3, replacing the function class ℱ with the

function class of the augmented space, that is ℱ+𝐿(𝒳 ) := {𝑓+𝑔 : 𝑓 ∈ ℱ , 𝑔 ∈ 𝐿(𝒳 )}.
The details of the proof are identical to theorem 14 in Schölkopf et al. (2001), and

are hence omitted.

The following lemma, restated from Shawe-Taylor and Cristianini (2002) gives a

bound on the auxiliary function complexity for linear functions (defined in kernel

spaces).

Lemma A4. Due to Shawe-Taylor and Cristianini (2002). For 𝐷 > 0, all 𝛾 > 0:

log𝒩 (𝛾, 𝐿𝐷(𝒳 ), 𝑛)

≤
⌊︂
𝐷

2𝛾

⌋︂
log

(︂
exp(𝑛 + 𝐷/2𝛾 − 1)

𝐷/2𝛾

)︂

Finally, by replacing the auxiliary function term from theorem A1 (that is log𝒩 (𝛾/2, 𝐿𝐷(𝒳 ), 2𝑛𝑡))

with its bound for linear functions acquired from lemma A4 (that is log exp(𝑛𝑡+𝐷/𝛾−1)
𝐷/𝛾

),

we get the proof for theorem 2.3.1.

A.2 Proof of corollary

Corollary A1 (Restated Corollary 2.3.1). Let ℱ be the class of linear functions in

a kernel defined feature space, 𝑧𝑡 = {𝑥𝑖, 𝑦𝑖}𝑖:𝑡𝑖=𝑡, where 𝑥𝑖, 𝑦𝑖 ∼ 𝑝𝑡(𝑋, 𝑌 ), and 𝐶𝑡 be

as defined in expression (2.1). For 𝑓 1
𝑙 , 𝑓

0
𝑢 ∈ ℱ , and any 𝛾 > 0, let the associated

𝐷𝑤1(𝑧1, 𝑓
1
𝑙 , 𝛾) = 𝐷1 > 0, and 𝐷

𝑤0
(𝑧0, 𝑓

0
𝑢 , 𝛾) = 𝐷0 > 0 Define 𝜏𝑙 := 𝑓 1

𝑙 − 𝑓 0
𝑢 . With

probability 1 − 𝛿 over random samples, we have that:

𝑅𝜏𝑙
(𝛾) ≤

∑︁
𝑡

4𝐶𝑡(𝑘𝑡 + log 1
𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

. (A.3)
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where, for 𝑡 ∈ {0, 1},

𝑘𝑡 =

⌈︂
log𝒩 (𝛾/2,ℱ , 2𝑛𝑡) + log𝒩 (𝛾/2, 𝐿𝐷𝑡(𝒳 ), 2𝑛𝑡)

⌉︂
.

Proof. Consider the event:

𝐸 =
{︀
𝑥 : 𝜏(𝑥) < 𝜏𝑙(𝑥) − 2𝛾

}︀
where 𝑥 ∼ 𝑝. Note that event 𝐸 implies that one of the following two events must

hold:

𝐸1 =
{︀

(𝑥, 𝑦) : 𝑟𝑓1
𝑙
(𝑥, 𝑦) < 𝛾

}︀
for 𝑡 = 1.

𝐸0 =
{︀

(𝑥, 𝑦0) : 𝑟𝑓0
𝑢
(𝑥, 𝑦) < 𝛾

}︀
for 𝑡 = 0.

Note that 𝑝(𝐸1) = 𝑅𝑓1
𝑙
(𝛾). So, theorem A1 implies that

𝑝(𝐸1) ≤
4𝐶𝑡(𝑘𝑡 + log 1

𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

for 𝑘𝑡 as defined in theorem A1. Similarly 𝑝(𝐸0) = 𝑅(𝑓 0
𝑢), and by a similar construc-

tion can obtain the bound on 𝑝(𝐸0). Using a union bound we have that

𝑝(𝐸) = 𝑝(𝐸1 ∪ 𝐸0) = 𝑝(𝐸1) + 𝑝(𝐸0) − 𝑝(𝐸1 ∩ 𝐸0)

≤ 𝑝(𝐸1) + 𝑝(𝐸0),

which completes the proof.
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A.3 Proof of Theorem 2.3.2

To build up to the proof of theorem 2.3.2, we first seek a bound on the fat-shattering

dimension of functions defined in definition 2.3.7. This bound is constructed in a

similar spirit to theorem 1.6 in Bartlett and Shawe-Taylor (1999). Specifically, to get

a bound on the fat-shattering dimension, we rely on the lemmas A1 and A2. The

former shows that the sum of any shattered set is far from the remainder of that set,

the latter shows that the same sums cannot be too far apart.

Lemma A1. Let ℱ𝑢,ℱ𝑙, 𝐴,𝐵 be as defined in definition 2.3.7. Let 𝐼 = {𝑥𝑖}𝑛𝑖=1, where

𝑥𝑖 ∼ 𝑝(𝑋, 𝑌 ).For a fixed 𝛾 > 0, if 𝐼 is 𝛾−shattered by ℱ𝑙 then every subset 𝐼 ′ ∈ 𝐼

satisfies:

min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

≥ 2𝑛𝛾

𝐴 + 𝐵

Proof. If 𝐼 is 𝛾 shattered by ℱ𝑙, denote the corresponding “witness” vector by {𝑠𝑖}𝑛𝑖=1,

then for all 𝜎 = {𝜎1 . . . 𝜎𝑖 . . . 𝜎𝑛} there is an 𝑓 with ‖𝑓𝑙‖ ≤ 𝐴 such that 𝜎𝑖·(𝜃⊤𝑥𝑖−𝑠𝑖) ≥
𝛾 for 𝑖 = 1 . . . 𝑛. Suppose that:

∑︁
𝑖∈𝐼′

𝑠𝑖 ≥
∑︁
𝑖∈𝐼∖′𝐼

𝑠𝑖 (A.4)

Then fix 𝜎𝑖 = 1 if 𝑖 ∈ 𝐼 ′. In that case we have that

⟨𝑓𝑙, 𝑥𝑖⟩ ≥ 𝑠𝑖 + 𝛾 ∀𝑖 ∈ 𝐼 ′ (A.5)

⟨𝑓𝑙, 𝑥𝑖⟩ < 𝑠𝑖 − 𝛾 ∀𝑖 ∈ 𝐼 ∖ 𝐼 ′. (A.6)
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Pick 𝑓𝑢 ∈ ℱ𝑢 such that ||𝑓𝑢 − 𝑓𝑙||𝑝 = 𝐵′ ≤ 𝐵, and:

⟨𝑓𝑢 − 𝑓𝑙, 𝑥𝑖⟩ ≥ 𝑠𝑖 + 𝛾 ∀𝑖 ∈ 𝐼 ′ (A.7)

⟨𝑓𝑢 − 𝑓𝑙, 𝑥𝑖⟩ < 𝑠𝑖 − 𝛾 ∀𝑖 ∈ 𝐼 ∖ 𝐼 ′. (A.8)

Showing that such a function exists is trivial: simply take 𝑓𝑢 := 𝑓𝑙. For that we have

||𝑓𝑢 − 𝑓𝑙|| = 0 ≤ 𝐵, which means that the function does exist in ℱ𝑢.

From expression A.5, we have that:

⟨︀
𝑓𝑙,

∑︁
𝑖∈𝐼′

𝑥𝑖

⟩︀
=

∑︁
𝑖∈𝐼′

⟨𝑓𝑙, 𝑥𝑖⟩ ≥
∑︁
𝑖∈𝐼′

𝑠𝑖 + 𝐶𝑎𝑟𝑑(𝐼 ′)𝛾,

where 𝐶𝑎𝑟𝑑(.) denotes the cardinality. Similarly for 𝐼 ∖ 𝐼 ′, we have that

⟨︀
𝑓𝑙,

∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
<

∑︁
𝑖∈𝐼∖𝐼′

𝑠𝑖 + 𝐶𝑎𝑟𝑑(𝐼 ∖ 𝐼 ′)𝛾

Combining the expressions for 𝐼 ′ and 𝐼 ∖ 𝐼 ′, and from expression A.4:

⟨︀
𝑓𝑙,

∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
≥ 𝑛𝛾. (A.9)

We now construct the same arguments for the distance. Let 𝑓𝑑 := 𝑓𝑢 − 𝑓𝑙. From

expression A.7, we have that:

⟨︀
𝑓𝑑,

∑︁
𝑖∈𝐼′

𝑥𝑖

⟩︀
=

∑︁
𝑖∈𝐼′

⟨𝑓𝑑, 𝑥𝑖⟩ ≥
∑︁
𝑖∈𝐼′

𝑠𝑖 + 𝐶𝑎𝑟𝑑(𝐼 ′)𝛾,
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and from expression A.8:

⟨︀
𝑓𝑑,

∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
<

∑︁
𝑖∈𝐼∖𝐼′

𝑠𝑖 + 𝐶𝑎𝑟𝑑(𝐼 ∖ 𝐼 ′)𝛾

Combining the two, and from expression A.4:

⟨︀
𝑓𝑑,

∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
≥ 𝑛𝛾. (A.10)

Putting expressions A.9 and A.10 together,

⟨︀
𝑓𝑙,

∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
(A.11)

+
⟨︀
𝑓𝑑,

∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
≥ 2𝑛𝛾. (A.12)

Note that by Cauchy-Schwartz,

⟨︀
𝑓𝑙,

∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
≤ ‖𝑓𝑙‖

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦

≤ 𝐴

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦

≤ 𝐴 min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

.
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and,

⟨︀
𝑓𝑑,

∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⟩︀
≤ ‖𝑓𝑑‖𝑝

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑝

≤ 𝐵′
⃦⃦⃦⃦∑︁

𝑖∈𝐼′
𝑥𝑖 −

∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑝

≤ 𝐵

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑝

≤ 𝐵 min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

.

For expression A.11 to hold:

𝐴 min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

+ 𝐵 min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

≥ 2𝑛𝛾

(𝐴 + 𝐵) min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

≥ 2𝑛𝛾

min
𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

≥ 2𝑛𝛾

(𝐴 + 𝐵)
,

which completes the proof.

Lemma A2. Let ℱ𝑢,ℱ𝑙, 𝑟 be as defined in definition 2.3.7. Let 𝐼 = {𝑥𝑖}𝑛𝑖=1, where

𝑥𝑖 ∼ 𝑝(𝑋, 𝑌 ).For a fixed 𝛾 > 0, if 𝐼 is 𝛾−shattered by ℱ𝑙 then every subset 𝐼 ′ ∈ 𝐼

satisfies: ⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
≤ √

𝑛𝑟

The proof is identical to Lemma 1.3 in Bartlett and Shawe-Taylor (1999), and is hence

omitted.
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Lemma A3. Let ℱ𝑢,ℱ𝑙, 𝐴,𝐵, 𝑟 be as defined in definition 2.3.7. For a fixed 𝛾 > 0,

the 𝛾−fat shattering dimension of ℱ𝑙 can be bounded as follows:

fat(𝛾,ℱ𝑙) ≤
(︂
𝑟 · (𝐴 + 𝐵)

2𝛾

)︂2

Combining the results from Lemmas A2 and A1, we get that:

2𝑛𝛾

𝐴 + 𝐵
≤ min

𝑞∈{𝑝,2}

⃦⃦⃦⃦∑︁
𝑖∈𝐼′

𝑥𝑖 −
∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
𝑞

≤
⃦⃦⃦⃦∑︁

𝑖∈𝐼′
𝑥𝑖 −

∑︁
𝑖∈𝐼∖𝐼′

𝑥𝑖

⃦⃦⃦⃦
≤ √

𝑛𝑟,

which gives us that:

√
𝑛 ≤ 𝑟(𝐴 + 𝐵)

2𝛾
,

which completes the proof.

Theorem A1. Let ℱ 𝑡
𝑙 , ℱ 𝑡

𝑢, 𝐴, 𝐵, and 𝑟 be as defined in definition 2.3.7, 𝑧, and 𝐷

as defined in theorem 2.3.1,and 𝐶𝑡 be as defined in expression (2.1). For 𝑓 𝑡
𝑙 ∈ ℱ 𝑡

𝑙 ,

𝑓 𝑡
𝑢 ∈ ℱ 𝑡

𝑢 and any 𝛾 > 0, with a probability 1− 𝛿 over the draw of random samples, we

have that:

𝑅𝑓 𝑙
𝑡
(𝛾) ≤ 4𝐶𝑡(𝑘𝑡 + log 1

𝛿
)

3𝑛𝑡

+

√︃
8𝑑2(𝑝||𝑝𝑡)(𝑘𝑡 + log 1

𝛿
)

𝑛𝑡

. (A.13)

where, for 𝑡 ∈ {0, 1},

𝑘𝑡 =

⌈︂(︂
2𝑟(𝐴 + 𝐵)

𝛾

)︂2

log

(︂
8𝑛𝑡(𝑏− 𝑎)2

𝛾2

)︂
log

(︂
4𝑒𝑛𝑡(𝑏− 𝑎)𝛾

𝑟2(𝐴 + 𝐵)2

)︂
+

𝐷

𝛾
log

𝑒(𝑛𝑡 + 𝐷/𝛾 − 1)
𝐷/𝛾

⌉︂
.

Using Corollary 3.8 Shawe-Taylor et al. (1998), we can log𝒩 (𝛾/2,ℱ , 2𝑛𝑡) by its fat

shattering dimension. Combining the results from lemma A3 and theorem 2.3.1, we

get the final result.
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A.4 Equivalence to quantile regression

Consider the following problem

minimize
𝑓𝑢,𝑓𝑙

ℓ
(1)
�̃� (𝑓𝑢(𝑥𝑖), 𝑓𝑙(𝑥𝑖))

subject to
∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max[𝑦𝑖 − 𝑓𝑢(𝑥𝑖), 0] ≤ 𝛽

∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max[𝑓𝑙(𝑥𝑖) − 𝑦𝑖, 0] ≤ 𝛽

𝑓𝑢(𝑥𝑖) ≥ 𝑓𝑙(𝑥𝑖), ∀𝑖 : 𝑡𝑖 = 𝑡

(A.14)

Theorem A1. Assume that (A.14) is strictly convex and has a strictly feasible so-

lution. Then, for any fixed quantile 𝑡 ∈ (0.5, 1), there is a parameter 𝛽 ≥ 0 such

that the minimizer of (A.14) with weighted absolute loss and the minimizer of the

werighted quantile loss, for quantiles (𝑡, 1− 𝑡) with non-crossing constraints, are equal

and have false coverage rate 1 − 𝑞.

Proof. Problem (A.14) with absolute loss ℓ(𝑦, 𝑦′) = |𝑦 − 𝑦′| can be stated as

minimize
𝑓𝑢,𝑓𝑙

∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 |𝑓𝑢(𝑥𝑖) − 𝑓𝑙(𝑥𝑖)|

subject to
∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max[𝑦𝑖 − 𝑓𝑢(𝑥𝑖), 0] ≤ 𝛽

∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max[𝑓𝑙(𝑥𝑖) − 𝑦𝑖, 0] ≤ 𝛽

𝑓𝑢(𝑥𝑖) ≥ 𝑓𝑙(𝑥𝑖), ∀𝑖 : 𝑡𝑖 = 𝑡

Let 𝑄𝛽(𝑓𝑢, 𝑓𝑙) = �̃�𝑡𝑖 |𝑓𝑢(𝑥𝑖) − 𝑓𝑙(𝑥𝑖)| denote the objective and 𝐹 the feasibility re-

gion. Introducing Lagrange multipliers for the first two constraints, we obtain the
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regularized objective

𝐿(𝑓𝑢, 𝑓𝑙, 𝜆𝑢, 𝜆𝑙) =
∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖|𝑓𝑢(𝑥𝑖) − 𝑓𝑙(𝑥𝑖)|

+
𝜆𝑢

𝑛

𝑛∑︁
𝑖=1

max(𝑦𝑖 − 𝑓𝑢(𝑥𝑖), 0) − 𝛽

+
𝜆𝑙

𝑛

𝑛∑︁
𝑖=1

max(𝑓𝑙(𝑥𝑖) − 𝑦𝑖, 0) − 𝛽

and by convexity and strict feasibility, strong duality holds through Slater’s condition,

min
𝑢,𝑙∈𝐹

𝑄𝛽(𝑢, 𝑙) = max
𝜆𝑢,𝜆𝑙≥0

min
𝑢≥𝑙

𝐿(𝑢, 𝑙, 𝜆𝑢, 𝜆𝑙) .

By strict convexity, for each 𝛽 ≥ 0, the minimizers 𝑢*, 𝑙* on either side are equal for

the maximizers 𝜆*
𝑢, 𝜆

*
𝑙 . Now, consider the following objective, equivalent in minima

to �̃�(𝑓𝑢, 𝑓𝑙, 𝜆𝑢, 𝜆𝑙),

�̃�(𝑓𝑢, 𝑓𝑙, 𝜆𝑢, 𝜆𝑙) :=
∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 |𝑓𝑢(𝑥𝑖) − 𝑓𝑙(𝑥𝑖)|

+ 𝜆𝑢

∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max(𝑦𝑖 − 𝑓𝑢(𝑥𝑖), 0)

+ 𝜆𝑙

∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max(𝑓𝑙(𝑥𝑖) − 𝑦𝑖, 0)

We can separate �̃� into terms for which 𝑦𝑖 ≥ 𝑓𝑢(𝑥𝑖) and 𝑦𝑖 ≥ 𝑓𝑙(𝑥𝑖) respectively,

adding and subtracting
∑︀

𝑖 𝑦𝑖

�̃�(𝑓𝑢, 𝑓𝑙, 𝜆𝑢, 𝜆𝑙)

= (𝜆𝑢 − 1)
∑︁

𝑦𝑖≥𝑢(𝑥𝑖)

�̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑢(𝑥𝑖)) −
∑︁

𝑦𝑖<𝑓𝑢(𝑥𝑖)

�̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑢(𝑥𝑖))

+ (1 − 𝜆𝑙)
∑︁

𝑦𝑖≥𝑓𝑙(𝑥𝑖)

�̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑙(𝑥𝑖)) −
∑︁

𝑦𝑖<𝑓𝑙(𝑥𝑖)

�̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑙(𝑥𝑖))

Now, let 𝜆𝑢 = 𝜆𝑙 = 1/(1 − 𝑞) for 𝑞 ∈ (0, 1), which means (1 − 𝑞) ≥ 0. Multiplying by
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(1 − 𝑞) leaves us with

�̃�(𝑓𝑢, 𝑓𝑙, 𝜆𝑢, 𝜆𝑙)

∝
∑︁

𝑦𝑖≥𝑓𝑢(𝑥𝑖)

𝑞 · �̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑢(𝑥𝑖))+

∑︁
𝑦𝑖<𝑓𝑢(𝑥𝑖)

(𝑞 − 1) · �̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑢(𝑥𝑖))

+
∑︁

𝑦𝑖≥𝑓𝑢(𝑥𝑖)

(1 − 𝑞) · �̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑙(𝑥𝑖))

+
∑︁

𝑦𝑖<𝑓𝑢(𝑥𝑖)

(−𝑞) · �̃�𝑡𝑖(𝑦𝑖 − 𝑓𝑙(𝑥𝑖))

∝
∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max[𝑞(𝑦𝑖 − 𝑓𝑢(𝑥𝑖)), (𝑞 − 1)(𝑦𝑖 − 𝑓𝑢(𝑥𝑖)]

+
∑︁
𝑖:𝑡𝑖=𝑡

�̃�𝑡𝑖 max[(1 − 𝑞)(𝑦𝑖 − 𝑓𝑙(𝑥𝑖)), (−𝑞)(𝑦𝑖 − 𝑓𝑙(𝑥𝑖)]

=
∑︁
𝑖:𝑡𝑖=𝑡

𝜌
(𝑞)
�̃�𝑡𝑖

(𝑦𝑖 − 𝑓𝑢(𝑥𝑖)) + 𝜌
(1−𝑞)
�̃�𝑡𝑖

(𝑦𝑖 − 𝑓𝑙(𝑥𝑖)) ,

where 𝜌
(𝑞)
�̃� is the weighted quantile loss for quantile 𝑞. Recalling that our original

problem had the constraint 𝑓𝑢(𝑥𝑖) ≥ 𝑓𝑙(𝑥𝑖), we recover the non-crossing constraint.

A.5 Experiments

A.5.1 Cross-validation details

For our BP method, we have 5 hyperparameters to pick. These are 𝛼, the regular-

ization parameter, the kernel bandwidth, 𝛽𝑢 and 𝛽𝑙 which are the allowed violations.

The last parameter, 𝛾𝐵𝑃 > 0, as described in section 2.4.3. Note that the kernel

bandwidth is only relevant for the experiments done on the ACIC data, but not the

IST experiments since a linear kernel is used in the latter.
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For the kernel regression (KR), we first split the training data into 2. On the first

half, we do the typical 3-fold cross-validation to pick the model that minimizes the

weighted empirical error. This allows us to pick the kernel bandwidth, and a reg-

ularization parameter the is multiplied by the L2 norm of the weights. Again, the

kernel bandwidth is only relevant for the experiments done on the ACIC data, but

not the IST experiments since a linear kernel is used in the latter. The intervals

are then estimated in one of two ways. For KR-MI, we use the second part of the

training data to estimate the residuals. We follow algorithm 2 in Lei et al. (2018)

to get the final interval estimates. For KR-𝛾, we use the second half of the training

data to estimate the FCR, 𝜈𝛾KR , with 𝛾𝐾𝑅 defined as the “shifting” parameter, where

𝑓𝐾𝑅
𝑢 (𝑥𝑖) = �̃�𝑡(𝑥𝑖) + 𝛾𝐾𝑅 and 𝑓𝐾𝑅

𝑙 (𝑥𝑖) = �̃�𝑡(𝑥𝑖) − 𝛾𝐾𝑅, for �̃�𝑡(𝑥𝑖) being the predicted

response value. We then pick the smallest 𝛾𝐾𝑅 that does not violated the required

FCR.

For the Gaussian process (GP), we pick the kernel bandwidth, the noise level added

to the diagonal of the kernel. For BART models, we use the BartMachine package

in R Kapelner and Bleich (2016). We do 3 fold cross-validation to pick the param-

eter 𝑘, which controls the prior probability that E(𝑦|𝑥) is contained in the interval

(ymin,ymax), based on a normal distribution. We set the number of trees to be 200,

since that did not seem to affect the results. For the CMGP, we pick the lengthscale

of the RBF kernels of the two response surfaces as well as the variance and correlation

parameters.

A.5.2 Small ACIC data results including CCI

Figures A-1, and A-2 are similar to figures 2-6 and 2-7 presented in the main text

but they include the performance of CCI models.
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Figure A-1: Comparing tightness of estimated intervals

0.005 0.02 0.04 0.1 0.2
Required FCR

0.0

0.2

0.4

0.6

0.8

A
ch

ie
ve

d
-

R
eq

u
ir

ed
F

C
R

Figure A-2: Comparing violation to the required FCR. Legend is the same as that in
figure A-1
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Figure A-3: Comparing tightness of estimated intervals

A.5.3 Large ACIC data results including CCI

Figures A-3, and A-4 are similar to figures 2-9 and 2-10 presented in the main text

but they include the performance of CCI models.

136



0.005 0.02 0.04 0.1 0.2
Required FCR

0.0

0.2

0.4

0.6

0.8

A
ch

ie
ve

d
-

R
eq

u
ir

ed
F

C
R

Figure A-4: Comparing violation to the required FCR. Legend is the same as that in
figure A-4
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Appendix B

Appendix to chapter 3

B.1 Proofs for section 3.2

Proposition A1 (Restated proposition 3.2.1). Under 𝑃 ∘, the Bayes optimal predic-

tor is (i) only a function of X*, and (ii) an optimal risk-invariant predictor 𝑓rinv with

respect to 𝒫.

Proof. Under 𝑃 ∘, X* 𝑑-separates 𝑌 from X, so E𝑃 ∘ [𝑌 | X] = E𝑃 ∘ [𝑌 | X*]. Thus, the

population risk minimizer is only a function of X*.

By the assumption 3.2.1, we have that X* = 𝑒(X) and hence X* can be perfectly

recovered from X. This means that E𝑃 ∘ [𝑌 | X*] can be written as a function of X,

i.e., we can define 𝑔(X) = E𝑃 ∘ [𝑌 | 𝑒(X)]. Thus, the Bayes optimal classifier 𝑓(X),

which is a function of E𝑃 ∘ [𝑌 | X] = E𝑃 ∘ [𝑌 | 𝑒(X)], can be written (with some abuse of

notation) as 𝑓(X*) (that is, a function that only varies with the value of X* = 𝑒(X)).

139



Thus, the risk is also invariant. To see that note the following:

𝑅∘(𝑓) =

∫︁
X,𝑌

ℓ(𝑓(X), 𝑌 )𝑃 ∘(X | X*, 𝑉 )𝑃 ∘(X* | 𝑌 )𝑃 ∘(𝑌 )𝑃 ∘(𝑉 )𝑑𝑌 𝑑X

=

∫︁
X*,𝑌

ℓ(𝑓(X*), 𝑌 )𝑃 ∘(X* | 𝑌 )𝑃 ∘(𝑌 )𝑑𝑌 𝑑X*

=

∫︁
X*,𝑌

ℓ(𝑓(X*), 𝑌 )𝑃 (X* | 𝑌 )𝑃 (𝑌 )𝑑𝑌 𝑑X*

= 𝑅𝑃 (𝑓),

for any 𝑃 ∈ 𝒫𝑡.

Because this classifier is optimal under 𝑃 ∘, no other risk invariant classifier can obtain

a lower risk across 𝒫 ; thus this classifier is an optimal risk invariant classifier.

B.2 Proofs for section 3.3

We show that the reweighted risk is an unbiased estimator of the risk under 𝑃 ∘, i.e.,

that

E𝑃𝑠

[︁
�̂�u

𝑃𝑠(𝑓)
]︁

= 𝑅∘(𝑓).

For any 𝑃𝑠, the u-weighted risk is equal to the risk under the corresponding uncon-

founded distribution 𝑃 ∘. That is, 𝑅u
𝑃𝑠 := E𝑃𝑠[𝑢(𝑌, 𝑉 )ℓ(𝑓(X, 𝑌 ))] = 𝑅𝑃 ∘ .

To see this, note that the conditional distribution 𝑃𝑠(X | 𝑌, 𝑉 ) is invariant across

the family 𝒫 defined in (3.1). Thus, the risk conditional on 𝑌 and 𝑉 , 𝑅𝑃𝑠|𝑦,𝑣 :=
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E𝑃𝑠[ℓ(𝑓(X), 𝑌 ) | 𝑌 = 𝑦, 𝑉 = 𝑣], does not change with 𝑃𝑠.

𝑅𝑢
𝑃𝑠 := E𝑃𝑠[𝑢(𝑌, 𝑉 )ℓ(𝑓(X, 𝑌 ))] = E𝑃𝑠[E𝑃𝑠[𝑢(𝑌, 𝑉 )ℓ(𝑓(X, 𝑌 )) | 𝑌 = 𝑦, 𝑉 = 𝑣]]

=
∑︁
𝑦,𝑣

𝑃𝑠(𝑌 = 𝑦, 𝑉 = 𝑣)𝑢(𝑦, 𝑣)𝑅𝑃 |𝑦,𝑣 =
∑︁
𝑦,𝑣

𝑃𝑠(𝑌 = 𝑦)𝑃𝑠(𝑉 = 𝑣)𝑅𝑃𝑠∘|𝑦,𝑣

= E𝑃 ∘ [E𝑃 ∘ [𝑅𝑃 ∘|𝑦,𝑣]] = 𝑅𝑃 ∘ .

B.3 Proofs for section 3.4.1

Proposition A1. (Restated proposition 3.4.1). Let 𝑓(x) = 𝜎(𝜑(x)) = 𝜎(w⊤x) be a

function contained in ℱ𝐿2,MMD. Then,

‖w⊥‖ ≤ 𝜏

‖∆‖ . (B.1)

Proof. Note that 𝜏 must be non-negative. If not, let 𝜔′ be the function that achieves

the max difference 𝜏 ′ < 0. Then we can define 𝜔′′ = −𝜔′, which achieves 𝜏 ′′ = −𝜏 ′ >

0, which is a contradiction. This means that for all 𝜔 ∈ Ω,

𝜏 ≥ |E[𝜔(x𝑖) | 𝑣𝑖 = 0] − E[𝜔(x𝑖) | 𝑣𝑖 = 1]|

Taking 𝜔(x) = w⊤x,

𝜏 ≥
⃒⃒
E[w⊤x𝑖 | 𝑣𝑖 = 0] − E[w⊤x𝑖 | 𝑣𝑖 = 1]

⃒⃒
=

⃒⃒
w⊤∆

⃒⃒
.

Note that ‖w⊥‖ = |w⊤Δ|
‖Δ‖ , which completes our proof.

Proposition A2. (Restated proposition 3.4.2) For 𝒟 ∼ 𝑃 ∘, and for any for any ℱ𝐿2

such that 𝑓rinv ∈ ℱ𝐿2, there exists a ℱMMD,𝐿2 ⊆ ℱ𝐿2 such that 𝑓rinv ∈ ℱMMD,𝐿2. And

the smallest ℱMMD,𝐿2 such that 𝑓rinv ∈ ℱMMD,𝐿2 has MMD = 0.

Proof. We prove the existence of a subset, ℱMMD,𝐿2 ⊂ ℱ𝐿2 by giving an example of

141



such a subset. Consider

ℱ𝐿2,MMD = {𝑓 : x ↦→ 𝜎(w⊤x),‖w‖2 ≤ 𝐴, MMD(𝑃 ∘
𝜑0
, 𝑃 ∘

𝜑1
) = 0},

Clearly, ℱMMD,𝐿2 ⊂ ℱ𝐿2 . We will now show that any 𝑓rinv ∈ ℱ𝐿2 is also ∈ ℱMMD,𝐿2 .

By the definition of 𝑓rinv, any 𝑓rinv ∈ ℱ𝐿2 must satisfy 𝑓rinv(x) ⊥⊥ 𝑣. Then 𝑇1(𝑓rinv(x)) ⊥⊥
𝑇2(𝑣) for any transformations 𝑇1, 𝑇2. Taking 𝑇1 to be the inverse of the sigmoid func-

tion, 𝜎−1, and 𝑇2 to be the identity transformation, we get that 𝜎−1(𝑓rinv(x)) =

𝜎−1(𝜎(w⊤x)) = w⊤x ⊥⊥ 𝑣. This implies that 𝑝(w⊤x|𝑣 = 0) = 𝑝(w⊤x|𝑣 = 1), which

in turn implies that MMD(𝑃 ∘
𝜑0
, 𝑃 ∘

𝜑1
) = 0, where 𝜑(x) = w⊤x.

Proposition A3. (Restated Proposition 3.4.3). Let x⊥ := Πx, x‖ := (𝐼 − Π)x. For

training data 𝒟 = {(x𝑖, 𝑦𝑖, 𝑣𝑖)}𝑛𝑖=1, 𝒟 ∼ 𝑃 ∘, supx⊥
‖x⊥‖2 ≤ 𝐵⊥, supx‖

‖x‖‖2 ≤ 𝐵‖,

R(ℱ𝐿2) ≤
𝐴
√︁

𝐵2
‖ + 𝐵2

⊥
√
𝑛

,

and

R(ℱMMD,𝐿2) ≤
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖√
𝑛

.

Proof. First, we derive the bound on R(ℱ𝐿2)

R(ℱ) = E𝒟E𝜖

[︂
sup

w:‖w‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖w
⊤x𝑖

]︂
= E𝒟E𝜖

[︂
sup

w:‖w‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖w
⊤(x⊥𝑖 + x‖𝑖)

]︂

Following the usual derivations (e.g., see Mohri et al. (2018)), we get the desired

result for R(ℱ𝐿2). Next, we derive the bound on R(ℱMMD,𝐿2).
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R(ℱ) = E𝒟E𝜖

[︂
sup

w:‖w‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖w
⊤x𝑖

]︂
= E𝒟E𝜖

[︂
sup

w:‖w‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖
(︀
Πw⊤x𝑖 + (1 − Π)w⊤x𝑖

)︀]︂
≤ E𝒟E𝜖

[︂
sup

w‖:‖w‖‖2≤𝐴

w⊥:‖w⊥‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖w
⊤
⊥x⊥𝑖 + 𝜖𝑖w

⊤
‖ x‖𝑖

]︂

≤ E𝒟E𝜖

[︂
sup

w⊥:‖w⊥‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖w
⊤
⊥x⊥𝑖

]︂
+ E𝒟E𝜖

[︂
sup

w‖:‖w‖‖2≤𝐴

1

𝑛

∑︁
𝑖

𝜖𝑖w
⊤
‖ x‖𝑖

]︂
,

where the last inequality follows by the subadditivity of the supremum. Again, fol-

lowing the usual derivations (e.g., see Mohri et al. (2018)), we get the required result

for R(ℱMMD,𝐿2)

Proposition A4. (Restated Proposition 3.4.4) Let ℱ ′
𝐿2,MMD := {𝑓 : x ↦→ 𝜎(w⊤x), ‖w‖2 ≤

𝐴, MMD(𝑃𝜑0
, 𝑃𝜑1

) ≤ 𝜏 ′} be the smallest function class that contains 𝑓rinv. Then

𝜏 ′ = 𝑐 · 𝐴 for some 𝑐 > 0, and the corresponding generalization error on 𝑃 ∘ is

𝑅∘(𝑓) ≤ �̂�u
𝑃 (𝑓) + 𝐿 ·

𝐴 ·𝐵‖ + 𝑐 · 𝐴 𝐵⊥
‖Δ‖√

𝑛
+

√︃
log 1

𝛿

2𝑛
,

Proof. By proposition 3.4.2, we have that the smallest MMD regularized function

class that contains 𝑓rinv when 𝒟 ∼ 𝑃 ∘ has MMD = 0. And by proposition 3.4.1 we

have in that function class ‖w⊥‖ = 0, i.e., w⊥ is the 0 vector.
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𝜏 ′ ≥
⃦⃦
E[w⊤x𝑖 | 𝑣𝑖 = 0] − E[w⊤x𝑖 | 𝑣𝑖 = 1]

⃦⃦
=

⃦⃦
E[w⊤

⊥x⊥𝑖 + w⊤
‖ x‖𝑖 | 𝑣𝑖 = 0] − E[w⊤

⊥x⊥𝑖 + w⊤
‖ x‖𝑖 | 𝑣𝑖 = 1]

⃦⃦
=

⃦⃦
E[w⊤

‖ x‖𝑖 | 𝑣𝑖 = 0] − E[w⊤
‖ x‖,𝑖 | 𝑣𝑖 = 1]

⃦⃦
=

⃦⃦⃦
w‖

(︀
E[x‖𝑖 | 𝑣𝑖 = 0] − E[x‖,𝑖 | 𝑣𝑖 = 1]

)︀⃦⃦⃦
=

⃦⃦⃦
w‖(1 − Π)

(︀
E[x𝑖 | 𝑣𝑖 = 0] − E[x𝑖 | 𝑣𝑖 = 1]

)︀⃦⃦⃦
= ‖w‖‖

⃦⃦
(1 − Π)

(︀
E[x𝑖 | 𝑣𝑖 = 0] − E[x𝑖 | 𝑣𝑖 = 1]

)︀⃦⃦
= 𝐴 ‖(1 − Π)∆𝑃‖ ,

where the fifth equality holds because the two vectors are scalar multiples of the

same vector (they are both projections onto the vector orthogonal to ∆) so Cauchy-

Schwartz holds with equality. Also note that ‖(1 − Π)∆𝑃‖ = 0 if and only if ∆𝑃 = ∆,

i.e., 𝑃 = 𝑃 ∘. So ‖(1 − Π)∆𝑃‖ > 0.

The generalization error bound follows immediately by plugging in the upper bound

on the Rademacher complexity into equation 3.7.

B.3.1 Proof of Proposition 3.4.5

The proof of Proposition 3.4.5 applies the techniques for estimating the generalization

error of reweighted estimators presented in Cortes et al. (2010b). To apply the Cortes

results, we need the hypothesis space to be finite, which is not true for ℱ𝐿2,MMD. To

address that, we construct a discretization or a covering of ℱ𝐿2,MMD, defined next.

Definition A1. Given any function class ℱ , a metric 𝐷 on the elements of ℱ , and

𝜀 > 0, we define a covering number 𝒩 (ℱ , 𝐷, 𝜀) as the minimal number 𝑚 of functions
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𝑓1, 𝑓2, . . . , 𝑓𝑚 ∈ ℱ , such that for all 𝑓 ∈ ℱ , min𝑖=1,...,𝑚 𝐷(𝑓𝑖, 𝑓) ≤ 𝜀, with

𝐷(𝑓, 𝑓 ′) =

√︃
1

𝑛

∑︁
𝑖

(𝑓(x𝑖) − 𝑓 ′(x𝑖))2.

Our statement also makes use of Gaussian complexities, defined next.

Definition A2. For a function family ℱ , the empirical Gaussian complexity is defined

as:

G(ℱ) = E𝒟E𝜂

[︂
sup
𝑓∈ℱ

𝜂𝑖𝑓(x𝑖)

]︂

We are now ready to present the metric entropy of the discretized hypothesis space

in this next lemma.

Lemma A1. Let x⊥ := Πx, x‖ := (𝐼 − Π)x, supx⊥
‖x⊥‖2 ≤ 𝐵⊥, supx‖

‖x‖‖2 ≤ 𝐵‖,

𝐷, 𝜀 as is defined in A1. For 𝜀, 𝑐′, 𝑐′′ > 0:

log(𝒩 (ℱ𝐿2,MMD, 𝐷, 𝜀))

≤ 𝑐′′

⎛⎝𝑐′
√︀

log(𝑛) ·
(︁
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖

)︁
𝜀

⎞⎠2

Proof. We construct our argument relying on Sudakov’s minoration, and the bound

between Gaussian and Rademacher complexities. Specifically, by Ledoux (1996), for

some 𝑐′ > 0:

G𝑚(ℱ𝐿2,MMD) ≤ 𝑐′
√︀

log(𝑛) ·R(ℱ𝐿2,MMD)

≤ 𝑐′
√︀

log(𝑛) ·
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖√
𝑛

,

where the last inequality follows from plugging in the results from proposition 3.4.3.
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By Sudakov’s minoration (see Ledoux (1996) theorem 3.18), for some universal con-

stant 𝑐′′ > 0,

log(𝒩 (ℱ𝐿2,MMD, 𝐷, 𝜀)) ≤ 𝑐′′
(︂√

𝑛 ·G𝑚(ℱ𝐿2,MMD)

𝜀

)︂2

≤ 𝑐′′

⎛⎝𝑐′
√︀

log(𝑛) ·
(︁
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖

)︁
𝜀

⎞⎠2

The final generalization error of the reweighted estimator is next.

Proposition A5. (Restated proposition 3.4.5) For 𝒟 ∼ 𝑃 , with 𝑃 ∈ 𝒫, and u as

defined in 3.2, 𝐶𝑃 as defined in 3.9,

𝑅∘(𝑓) ≤ �̂�u
𝑃 (𝑓) +

2𝐶𝑃 (𝜅(ℱMMD,𝐿2) + log 1
𝛿
)

2𝑛
+

√︃
Λ(𝑃 ∘||𝑃 ) · (𝜅(ℱ) + log 1

𝛿
)

𝑛
,

where

𝜅(ℱMMD,𝐿2) = 𝑐′′

⎛⎝𝑐′
√︀

log(𝑛) ·
(︁
𝐴 ·𝐵‖ + 𝜏 𝐵⊥

‖Δ‖

)︁
𝜀

⎞⎠2

Proof. Using the bound on the metric entropy derived in lemma A1, the proof be-

comes a direct application of Theorem 2 in Cortes et al. (2010b)

This concludes the proof for proposition 3.4.5.

B.3.2 Proof for proposition 3.4.6

Lemma A2. For training data 𝒟 = {(x𝑖, 𝑦𝑖, 𝑣𝑖)}𝑛𝑖=1, 𝒟 ∼ 𝑃 ∘, and a corresponding

learned 𝑓 = ℎ(𝜑(x)) with expected risk 𝑅∘(f), suppose that 𝑦 is 𝜑−representable, i.e.,
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that there exists 𝑔(𝜑(x)) = 𝑦, and that 𝑔(𝜑)ℓ(𝜑) ∈ Ω. Then for all 𝑦:

𝑃 (𝑌 = 𝑦)[𝑅∘
0𝑦 −𝑅∘

1𝑦] ≤ 𝜏,

where 𝑅∘
𝑣𝑦 := Ex∼𝑃 ∘ [ℓ(𝑓(x), 𝑦)|𝑉 = 𝑣, 𝑌 = 𝑦]

Proof. Without loss of generality, suppose that for 𝑦 = 1,

𝑃 (𝑌 = 𝑦)[𝑅∘
0𝑦 −𝑅∘

1𝑦] = 𝜏1 > 𝜏.

Then due to the fact that MMD ≤ 𝜏 , and by assumption that ℓ ∈ Ω

𝑃 (𝑌 = 0)[𝑅∘
00 −𝑅∘

10] ≤ 𝜏 − 𝜏1

𝑃 (𝑌 = 0)[𝑅∘
00 −𝑅∘

10] < 0

𝑅∘
00 −𝑅∘

10 < 0.

Using the shorthand 𝑅∘
Δ0 := 𝑅00 −𝑅10, the above inequality implies that −𝑅∘

Δ0 > 0.

Let
∙
ℓ(𝜑) = (2𝑔(𝜑) − 1) · ℓ(𝜑), and

∙
𝑅∘ := E[

∙
ℓ(𝜑)]. By assumption, we have that

∙
ℓ

is also ∈ Ω. However,

MMD(
∙
ℓ, 𝑃𝜑0 , 𝑃𝜑1) = 𝑃 (𝑌 = 0)[

∙
𝑅∘

00 −
∙
𝑅∘

10] + 𝑃 (𝑌 = 1)[
∙
𝑅∘

01 −
∙
𝑅∘

11]

= 𝑃 (𝑌 = 0)[−(𝑅∘
00 −𝑅∘

10)] + 𝑃 (𝑌 = 1)[𝑅∘
01 −𝑅∘

11]

= 𝑃 (𝑌 = 0)[−𝑅∘
Δ0] + 𝜏1 > 𝜏.

This contradicts the MMD condition; that for all functions in Ω, MMD ≤ 𝜏

Proposition A6 (Restated proposition 3.4.6). For training data 𝒟 = {(x𝑖, 𝑦𝑖, 𝑣𝑖)}𝑛𝑖=1,

𝒟 ∼ 𝑃 ∘, and a corresponding learned 𝑓 = ℎ(𝜑(x)) with expected risk 𝑅∘, suppose that

𝑦 is 𝜑−representable, i.e., that there exists 𝑔(𝜑(x)) = 𝑦, and that 𝑔(𝜑)ℓ(𝜑) ∈ Ω. For
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some 𝛽 that depends on 𝑃 , such that −2 < 𝛽 < 2, and 𝛽 = 0 if 𝑃 = 𝑃 ∘,

𝑅𝑃 ≤ 𝑅∘ + 𝛽 · 𝜏

Proof. We will use 𝑃𝑣|𝑦(𝑣) := 𝑃 (𝑉 = 𝑣|𝑌 = 𝑣), 𝑃𝑦(𝑦) = 𝑃 (𝑌 = 𝑦), and 𝑃𝑣(𝑣) =

𝑃 (𝑉 = 𝑣).

Note that

𝑅∘ =
∑︁
𝑦

𝑃 ∘
𝑦 (𝑦)

[︀
𝑃 ∘
𝑣|𝑦(0)𝑅∘

0,𝑦 + 𝑃 ∘
𝑣|𝑦(1)𝑅∘

1,𝑦

]︀
=

∑︁
𝑦

𝑃𝑦(𝑦)
[︀
𝑃 ∘
𝑣 (0)𝑅∘

0,𝑦 + 𝑃 ∘
𝑣 (1)𝑅∘

1,𝑦

]︀
.

And:

𝑅𝑃 =
∑︁
𝑦

𝑃𝑦(𝑦)
[︀
𝑃𝑣|𝑦(0)𝑅∘

0,𝑦 + 𝑃𝑣|𝑦(1)𝑅∘
1,𝑦

]︀
.

Taking the difference between the two:

𝑅𝑃 −𝑅∘ =
∑︁
𝑦

𝑃𝑦(𝑦)
[︀(︀
𝑃𝑣|𝑦(0) − 𝑃 ∘

𝑣 (0)
)︀
𝑅∘

0,𝑦 +
(︀
𝑃𝑣|𝑦(1) − 𝑃 ∘

𝑣 (1)
)︀
𝑅∘

1,𝑦

]︀
=

∑︁
𝑦

𝑃𝑦(𝑦)
[︀(︀
𝑃𝑣|𝑦(0) − 𝑃 ∘

𝑣 (0)
)︀
𝑅∘

0,𝑦 +
(︀(︀

1 − 𝑃𝑣|𝑦(0)
)︀
−
(︀
1 − 𝑃 ∘

𝑣 (0)
)︀)︀
𝑅∘

1,𝑦

]︀
=

∑︁
𝑦

𝑃𝑦(𝑦)
[︀(︀
𝑃𝑣|𝑦(0) − 𝑃 ∘

𝑣 (0)
)︀
𝑅∘

0,𝑦 −
(︀
𝑃𝑣|𝑦(0) − 𝑃 ∘

𝑣 (0)
)︀
𝑅∘

1,𝑦

]︀
=

∑︁
𝑦

𝑃𝑦(𝑦)
[︀
𝛽𝑦𝑅

∘
0,𝑦 − 𝛽𝑦𝑅

∘
1,𝑦

]︀
=

∑︁
𝑦

𝛽𝑦𝑃𝑦(𝑦)
[︀
𝑅∘

0,𝑦 −𝑅∘
1,𝑦

]︀
≤

∑︁
𝑦

𝛽𝑦𝜏

= 𝛽 · 𝜏

where in the fourth equality, we use the shorthand 𝛽𝑦 := 𝑃𝑣|𝑦(0) − 𝑃 ∘
𝑣 (0), and −1 <
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𝛽𝑦 < 1. The first inequality follows from lemma A2, and the last equality follows

from setting 𝛽 =
∑︀

𝑦 𝛽𝑦.

B.4 Additional experiments

Here we present the results using the full (noisy) background images. Results from the

main analysis largely hold, with the exception of the results from the training setting

where the data are sampled from the ideal distribution 𝑃 ∘. Because the backgrounds

are noisy, we see an overall higher variance in performance, so the models perform

equally well with no clear “winner”.
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Figure B-1: Training data sampled from 𝑃 ∘, with 𝑃 ∘(𝑌 |𝑉 = 1) = 𝑃 ∘(𝑌 |𝑉 = 0) = 0.5
and backgrounds are sampled from a noisy set of images. 𝑥-axis shows 𝑃 (𝑌 |𝑉 ) at test
time under different shifted distributions. 𝑦-axis shows AUROC on test data. Verti-
cal dashed line shows training data. MMD-regularized models outperform baselines
within, and outside the training distribution.
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Figure B-2: Training data sampled from 𝑃 , with 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 ∘(𝑌 =
0|𝑉 = 0) = 0.9, and backgrounds are sampled from a noisy set of images. Vertical
dashed line shows training data. 𝑥, 𝑦 axes similar to figure B-1. MMD-regularized
models outperform baselines showing better robustness against distribution shifts at
test time.

150



0.2 0.4 0.6 0.8
P(Water bird | water background) at test time

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U

R
O

C

wMMD-reg-T

wMMD-reg-C

MMD-reg-T

MMD-reg-C

MMD-reg-uT

Figure B-3: Training data sampled from 𝑃 , with 𝑃 (𝑌 = 1|𝑉 = 1) = 𝑃 ∘(𝑌 = 0|𝑉 =
0) = 0.9. 𝑥, and backgrounds are sampled from a noisy set of images. 𝑦 axes similar
to fig B-1. An ablation study to show how different components of our suggested
approach (wMMD-reg-T) contribute to improved performance.
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Appendix C

Appendix to chapter 4

C.1 Architecture and cross-validation

The core network architecture is kept constant for all models and experiments outlined

in the main text. All models have a core recurrent neural network (RNN). The RNN

takes in the individual characteristics, the infection state from the previous time

point, and an estimate of the exposure (except for the No exposure model, NEM,

which ignores exposure). For our model (MIINT), the exposure estimate is based

on the imputed values according to 𝑄, whereas for the optimistic model (OM) it is

the sum of observed neighbor infection states from the previous time point (assuming

untested is uninfected). For the Oracle model (ORM), the estimate of exposure is

the sum of true neighbor infection states from the previous time point.

The RNN inputs are passed through one fully dense layer with a tanh activation,

giving an intermediate layer of dimension = 64 units. The output is then passed to

another 64-unit dense layer which is finally passed through a sigmoid to give the final

probability of infection.

For the simulation experiment, we found that different values of 𝜏 did not affect the
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prediction much. So we set 𝜏 = .5, but pick 𝜆 based on cross-validation using a grid

of values = Cross-validation is done to pick the value of 𝜆 from the candidate values

[0, 1𝑒−1, 1𝑒−2, 1, 1𝑒1, 1𝑒2, 1𝑒3]. This is done via 2-fold cross validation. We pick the

final value to be the one that maximizes the AUROC defined with respect to the

observed labels in a held out validation set.

Cross-validation for the real data experiment is similar, though her we found that

values of 𝜏 are important, so in addition to 𝜆, we also pick the value of 𝜏 from the

candidate values [0.001, 0.01, 0.1, 0.5].

C.2 Real data

Inclusion Criteria. Similar to Oh et al. (2018); Makar et al. (2018), we exclude all

hospitalizations of patients younger than 18. We do so because predicting pediatric

CDI is a significantly different task from that of the adult population. We also exclude

patients with suspected community acquired infections, since predicting nosocomial

infections (i.e., hospital associated infections) is a significantly different task that that

of community-acquired infections. Again, we follow Oh et al. (2018); Makar et al.

(2018) in defining community acquired infections as those who get the CDI diagnosis

in the first 2 days of their visit, and those who have had a CDI infection in the 14

days prior to their hospitalization.

Patient Features. Similar to Oh et al. (2018); Makar et al. (2018), we include patient

demographics, which are available upon admission such as age, gender, number and

length of previous hospitalizations, reason and source of visit (e.g., transferred from

a Skilled Nursing Facility or admitted through the emergency room). We capture

medical history by including all ICD-9 procedure and diagnosis codes from prior

visits that happened at most 90 days prior to the main (index) visit. We collect

data from the index visit up to one day before the prediction date. This includes

medications, lab tests ordered and their results.
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