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Abstract

Although researchers increasingly adopt machine learning to model travel behavior, they pre-
dominantly focus on prediction accuracy, while largely ignore the ethical challenges and the
adverse social impacts embedded in the machine learning algorithms. This study introduces
the important missing dimension - computational fairness - to travel behavioral analysis.
It highlights the accuracy-fairness tradeoff instead of the single dimensional focus on pre-
diction accuracy in the contexts of deep neural network (DNN) and discrete choice models
(DCM). The author firstly operationalizes computational fairness by equality of opportunity,
then differentiates between the bias inherent in data and the bias introduced by modeling.
The models inheriting the inherent biases can risk perpetuating the existing inequality in
the data structure, and the biases in modeling can further exacerbate it. The author then
demonstrates the prediction disparities in travel behavioral modeling using the National
Household Travel Survey 2017. Empirically, DNN and DCM reveal consistent prediction
disparities across multiple social groups, although DNN can outperform DCM in prediction
disparities because of DNN’s smaller misspecification error. To mitigate prediction dispari-
ties, this study introduces an absolute correlation regularization method, which is evaluated
with the synthetic and the real-world data. The results demonstrate the prevalence of pre-
diction disparity in travel behavior modeling, which can exacerbate social inequity if the
prediction results without fairness adjustment are used for transportation policy making.
As such, the author advocates for careful considerations of the fairness problem in travel
behavior modeling, and the use of bias mitigation algorithms for fair transport decisions.
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Chapter 1

Introduction

Recent years, an increasing literature has adopted machine learning models, particularly

deep neural networks (DNNs), to predict travel behavior. The common practice of machine

learning is to identify the best model by fitting the training data and being evaluated on

the test data, with the objectives of performance optimization and output prediction in var-

ious scenarios [70, 22]. Comparing DNN with the traditional logit models, previous studies

have shown that DNN has higher predictive power and typically makes fewer mistakes in

predictions compared to the multinomial logit models (MNL) [38, 55]. Specifically, DNN

is powerful owing to factors such as the relaxation of linear relationships among variables

[83], automatic feature learning [83] and the ability to accommodate various data structures

[59, 43].

However, machine learning also poses tremendous ethical challenges. Many studies found

that the machine learning models can produce much worse prediction results for disadvan-

taged groups such as black people, female and low-income population, leading to unfair treat-

ment on these populations. For example, the software based on machine learning algorithms

to predict future criminals is biased against blacks [5]. Research on online advertisement

showed that ads (e.g. people smart ads, public records ads) for public records on a person

appears disproportionately higher for black-identifying names [78]. Literature concerning

text classification demonstrated gender bias in word embeddings trained on Google News,

which systematically associate men with computer programmers and women with home-

makers [15]. Although the fairness problem in machine learning has been revealed across a

large number of contexts, thus far no study has examined the computational fairness issue in
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travel behavior modeling. In fact, fairness has been an enduring topic in the transportation

field [73, 63, 66]. The traditional transport fairness research either adopts a highly quali-

tative approach or presents quantitative metrics without being integrated with algorithms.

In this computational era, it is critical to demonstrate the risks of naively adopting models

without fairness concerns and showcase the integration of fairness metrics into modeling

practices and policy decisions.

Motivated by these research gaps, this research investigates how to measure, evaluate, and

mitigate prediction disparities of travel behavior models regarding the protected variables

- race, gender, income, medical condition and region. The author takes the following three

steps. First, the author introduces equality of opportunity to measure computational fairness

in travel behavioral modeling based on the fairness theory in the machine learning research.

Second, the author identifies and measures the prediction disparities in travel behavior mod-

eling using binary logistic regression (BLR) and DNN. Third, building upon the approach

by Beutel et al. [11], the author adopts an absolute correlation regularization method to

mitigate the prediction biases, and evaluate the performance of the new model with bias

mitigation. The second and the third steps are deployed on both synthetic datasets and the

NHTS dataset. Experiments conducted on the synthetic datasets show how the prediction

disparity varies with data structure, number of predictors, sample size and the degree of

model misspecification. The fairness analysis is then deployed on the NHTS 2017 dataset

which has wide coverage of geographic areas and populations with different characteristics,

as well as the large sample size and the diversity of input features.

Prediction disparities could bias transport policy decisions unfavorably against socially dis-

advantaged groups, such as low-income and ethnic minority populations. For example, when

the estimation of African-American communities’ mobility needs for transit has a higher er-

ror rate, the transit agencies would make more mistakes in considering adding more bus

routes and investing in new transit stations for the minority neighborhoods. Echoing Title

VI, the DOT regulations at 49 CFR Part 21 are designed to ensure that "no person in the

United States, based on race, color, or national origin, is excluded from participation in,

denied the benefits of, or otherwise subjected to discrimination under any program that

DOT financially assists" [79]. Therefore, people from different groups of interest (such as
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race, gender, income) should be treated fairly by the models and algorithms which have

been widely deployed to inform transportation project planning and policy making.

The paper is organized as follows: the next section reviews travel behavior modeling and

fairness in machine learning. Section 3 introduces data and models, where I introduce

the methods of measuring and mitigating prediction disparities, and also illustrate how

the methods are tied to the fairness theories in machine learning. Section 4 presents the

results, which include the simulation experiments on the synthetic data, the quantification of

prediction disparity across various dependent variables and protected variables in the NHTS

data, as well as the results of bias mitigation for both the synthetic and the NHTS data.

Section 5 and 6 summarizes the key findings and discusses the future research directions.
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Chapter 2

Literature Review

Discrete choice modeling has been used in numerous studies in the transportation field

regarding people’s travel behavior predictions. With the development of the artificial intelli-

gence, machine learning techniques such as DNN have become increasingly popular and been

adopted widely to achieve higher prediction accuracy [28, 82, 4]. Researchers adopted DNN

to predict travel mode choices [85, 19], car ownership [70], traffic accidents [91], travellers’

decision rules [80], driving behaviors [50], traffic flows [71, 86] and many other decisions in

the transportation field. Some researchers focused on comparing the performance of various

machine learning models such as DCM, DNN, SVM, random forest on travel behavior pre-

diction [23, 84, 69, 56, 77]. However, nearly all of these studies evaluate the performance of

different models in terms of accuracy, stability and interpretability.

The previous machine learning literature has presented a great body of evidence showing

that a model can act discriminatorily on one population in a variety of settings including,

but not limited to, criminal risk assessment [5, 24], clinical care [72, 44], online advertisement

delivery [30, 78], text classifications [34, 15] and credit risk evaluation [31, 61]. Approaches

have been taken to understand and address unfairness in machine-learned models, which

include formalizations of fairness in machine learning [26, 41], designing fairness-enhancing

algorithm [40, 53, 89] and solving the fairness concerns in real-world industries [58, 47]. In

contrast to the rich literature in computer science focusing on fairness analysis, no study

has investigated the fairness issue in travel behavior prediction.

On the other hand, fairness has long been a crucial concern in transportation planning,
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and there has been numerous studies conducting transport equity analysis [13, 42, 62, 32].

Among the variety of equity-focused transportation studies, most of them carried out fairness

discussions in terms of how the subject matter of planning such as transportation infras-

tructure, mobility services, opportunities and rights are distributed among the population

[73, 63]. Research in this domain usually involves the cost and benefit analysis of specific

groups or individuals concerning a specific transportation project [63]. The analysis of cost

may include transportation cost [66] and environmental cost [76], such as the air and noise

pollution produced by transportation-related construction. The benefit analysis focuses on

the benefits people receive in terms of accessibility, mobility and economic vitality [13, 67].

In these studies, fairness is usually evaluated based on the distributions of costs and ben-

efits among different demographics, neglecting the fact that the machine-learned models

deployed to estimate travel demand - which is critical for costs and benefits analysis - itself

can be unfair [8, 41]. Therefore, instead of focusing on substantive fairness which emphasizes

resource allocation and decision making, the author takes a step back and examines bias

exhibited in the model estimation results. As such, this study aims to enrich the fairness

discussion by focusing on the machine learned models, investigating the fairness issue that

comes up in the modeling process and analyzing the biases that arise in the modeling results.

The Fairness, Accountability, and Transparency in Machine Learning (FAT/ML) commu-

nity states the fairness principle as "Ensure that algorithmic decisions as well as any data

driving those decisions can be explained to end-users and other stakeholders in non-technical

terms." [1] This principle is applied in this research and the detailed definitions of fairness

are described below. The word "bias" is used to refer to the systematic favoring of one

group over another by the algorithm in this research.

2.1 Fairness Notion

Table 2.1 summarizes five core fairness notions that are most widely known in the computer

science literature: equality of opportunity, equality of odds, demographic disparity, fairness

through unawareness and counterfactual fairness. These five fairness criteria either belong

to the disparate impact analysis or the disparate treatment analysis.
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Table 2.1: Different Types of Fairness Criteria

Type of Analysis Fairness Criterion

Disparate impact
analysis

Equality of opportunity
Equality of odds

Demographic parity
Disparate treatment

Analysis
Fairness through unawareness

Counterfactual fairness

Among a variety of fairness notions, this paper uses equality of opportunity to define fair-

ness. Equality of opportunity is a relaxation of the fairness measure equality of odds, and

equality of odds states that the protected and unprotected groups should have equal rates

for true positives and false positives [68, 49]. Since in practice achieving equal rates for

both measures (true positives and false positives) is usually hard, equality of opportunity

is adopted instead in many cases stating that the protected and unprotected groups should

have equal true positive rates [68, 49]. A similar fairness definition - “reciprocal equality of

opportunity” - is also adopted in this study, which requires the protected and unprotected

groups having equal true negative rates [12].

Equality of opportunity is a type of “disparate impact” analysis which evaluates fairness

based on model impact (results) - specifically whether policies or practices have a dispro-

portionately adverse impact on protected classes [8]. This fairness notion is chosen as it is

inherently connected with the notion of equality of opportunity in the traditional transporta-

tion equity literature. In the traditional transport equity literature, equality of opportunity

focuses on the applications and resource allocations. It asserts that the education, employ-

ment and consumer opportunities accessible to residents should be equal between different

groups [63]. The violation of equality of opportunity in the travel behavior predictions can

consequently affect the transportation resources different populations can get, thus will per-

petuate inequality of opportunity in reality.

In addition to equality of opportunity, another widely-adopted fairness measure focusing on

disparate impact is “demographic parity” [68, 49], which is achieved when the likelihood of a

positive outcome is the same regardless of whether the person is in the protected group. For

example, when studying gender fairness in predicting the usage of public transit, the demo-
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graphic parity is achieved when the proportion of people predicted as using public transit

frequently is the same between male and female. Equality of opportunity is preferred to

demographic parity since the latter fails to account for discrimination which is explainable

in terms of legitimate grounds [14].

Apart from disparate impact analysis, another strand of research - called “disparate treat-

ment” analysis - evaluates fairness in terms of treatment rather than modeling result to see

if the decisions are made (partly) based on the subject’s sensitive attribute information [88].

This type of fairness includes “fairness through unawareness” and “counterfactual fairness”.

In the definition of fairness through unawareness, an algorithm is fair as long as any pro-

tected attributes are not explicitly used in the decision-making process [45, 36]. On the

contrary, counterfactual fairness deems a predictor to be fair if its output remains the same

when the protected attribute is flipped to its counterfactual value [41, 60]. Disparate treat-

ment emphasizes explicit formal classification and intentional discrimination. Therefore, in

many machine learning modeling cases where there is no discriminatory intent, disparate

impact doctrine is more suited to analyzing unintended biases in data mining compared with

disparate treatment doctrine.

The various fairness definitions can also be categorized based on whether they are individual-

focused or group-focused. Group fairness, such as equality of opportunities, requires a fair

model to treat different groups equally, whereas individual fairness refers to the rule that

deems a predictor fair if it produces similar outputs for similar individuals [41, 52]. Though

the author uses equality of opportunities as the fairness definition in this research, the above-

mentioned fairness definitions can be adopted for future studies in this area.

2.2 Sources of Bias

There are many ways that the bias can seep into the data and the modeling process and

consequently lead to the discriminatory prediction results, and the source of bias can happen

at the data collection phase or the modeling phase. Below the author lists the sources of

bias that have been widely discussed in the machine learning community.
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• At the data collection phase

1. Representation bias

Representation bias happens if the data for the protected groups are incorrect or

nonrepresentative [6]. For instance, in a survey collection process, if the authorities

heavily depend on mobile phone for data collection, they may exclude a large portion

of the protected population who do not frequently use phones. Survey conducted in

English may also exclude people who do not speak English [6]. Therefore, the con-

clusions drawn from these data will not generalize well to the protected populations.

2. Sampling bias

Previous research has found that even the individual records in a dataset are of high

quality and can represent the subpopulation well, the statistical bias can still exist.

It is often because the protected group have much fewer number of observations than

the other group in the training data, and this is often known as the imbalanced data

problem [8, 68]. Research showed that if a particular class is underrepresented in the

sample, the results of the analysis of that sample may skew against the underrepre-

sented class [35, 8].

3. Feature selection bias

Feature selection bias happens when the selected variables fail to capture enough

details that account for different outcomes [8, 68]. This bias occurs often because

it is cost efficient for the decision maker to rely on easily accessible information to

make decisions [8].

• At the modeling phase

1. Algorithmic bias

Algorithmic bias is defined as the bias added by the algorithm itself and not present

in the input data [7]. This bias exists inherently because the goal of the algorithm

is to minimize its prediction error, and there is no motivation for the algorithm to

enhance prediction fairness in the training process [57].

21



2. Bias attributed to the variable correlation

The algorithm can also produce discriminatory result because of the correlations in

the data. If the protected variable is highly correlated with an explanatory variable,

then the algorithm will necessarily result in systematically less favorable prediction

result for the protected group by using this explanatory variable as the predictor

[8, 35]. This bias may occur even if the protected variable has been removed from

the dataset, the variables are diverse and granular, and the data are free from latent

prejudice or bias [8]. As stated by Hajian et al. (2016), this is a novel and challenging

research area for the data mining community [48].

Figuring out the exact sources of bias for a specific data analytic task is difficult. As such,

the author tries to gain a better understanding about the bias emerging from the modeling

phase by conducting a series of synthetic experiments.

2.3 Method to address the prediction bias

The methods to mitigate the bias fall into three categories:

• Pre-processing

Collecting more data from the protected groups to create a more balanced and diverse

dataset is the most straightforward way to alleviate the prediction bias. However, this

approach is often costly, and may not be feasible in many situations.

Data augmentation is an alternative approach to increase the size and diversity of the

training data. It is often applied in the computer vision and the natural language

processing fields, such as cropping, darkening and flipping the input images [6].

Another widely used technique is resampling, which is to randomly sample more data

from the protected group [37]. An variant to this is the synthetic minority over-

sampling technique, which is to generate "synthetic" minority class members and used

them in the training process [20].

Recent years, scholars also try to optimize the data transformation strategy for data
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discrimination prevention. For instance, Flavio et al. (2017) proposed a convex opti-

mization for learning a data transformation that can controlling discrimination, lim-

iting distortion in individual data samples, and preserving utility [18].

• In-processing

In-processing techniques try to modify and change the learning algorithms to remove

discrimination during the model training process. This is achieved either by modifying

the objective function or adding a constraint. Some popular in-processing methods

include model regularizations [11, 74], adversarial training [12, 89, 65], variational fair

autoencoders [64, 27], transfer learning [75] and multi-task learning [29]

• Post-processing

Post-processing techniques take the model predictions and protected variables and

calibrate the model’s result to meet the fairness criteria. Post-processing algorithms are

easy to apply to existing classifiers without retraining [10]. For instance, Hardt et al.

(2016) solved a linear program to find probabilities with which to change output labels

to optimize equalized odds [49]. Kamishima et al. (2012) gave favorable outcomes to

disadvantaged groups and unfavorable outcomes to privileged groups in a confidence

band around the decision boundary with the highest uncertainty [54].

In this research, an in-processing approach is taken, and the bias mitigation method is

adapted from the work of Beutel et al. (2019) [11].

2.4 Computational Fairness in different domains

In this section, the author highlights some domain-specific computational fairness problems

that have been studied in previous literature.

• Criminal risk assessment

The machine learning bias problem in criminal risk assessment was widely popularized

by Angwin et al. (2016), who studied COMPAS which is a tool for the criminal risk

assessment [5]. They found that a nonrecidivating black defendant is twice as likely

to be assessed as high risk as a white defendant, and a recidivating black defendant

is nearly half as likely to be assessed as low risk as a white defendant. Chouldechova

23



(2017) showed mathematically how these differences can result in disparate impact un-

der policy wherein a high-risk assessment leads to a stricter penalty for the defendant.

Such policies may be used to inform bail, parole or sentencing decisions. They found

that in both the nonrecidivating and the recidivating subgroups, black defendants are

observed to receive higher sentences than the white defendants [24].

• Mortgage lending

Machine algorithms are increasingly adopted in high-stakes decisions such as mort-

gage lending, insurance and employment. Hardt et al. (2016) demonstrated that if

the loan company goes with the max profit strategy, the minorities may be classified

poorly and so treated poorly [49]. Bartlett et al. (2019) empirically found that on-

line lenders charge higher interest rates to African American and Latino borrowers,

earning 11.5% higher profits on such loans [9]. Studies also showed that despite the

direct discrimination that the mortgage lending decisions are explicitly based on the

protected attributes, the indirect discrimination can also exist. The indirect discrim-

ination refers to the situations where the treatment is based on apparently neutral

non-protected attributes but still results in unjustified distinctions against individuals

from the protected group [90]. For instance, if the ZIP code of an individual is used

for deciding whether to grant a loan, the decision could exhibit racial discrimination

since ZIP code could indicate race.

• Health care

As AI techniques become increasingly popular in health care applications, researchers

found evidence of disparate impacts of AI adoption in health care. Chen et al. (2019)

found machine bias with respect to gender and insurance type in terms of ICU mortal-

ity and insurance policy for psychiatric 30-day readmission. For gender, female patients

have a higher model error rate than male patients; for insurance type, public insur-

ance patients have a much higher model error rate than private insurance patients [21].

Researchers also summarized the negative consequences associated with the machine

bias. Consider a situation where the hospitals constructed a model to predict the

length of stay of the inpatients in order to allocate the limited case management

resources among them. If the ethnic minority neighborhoods predicted greater length
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of stay, these health care resources may be directed to the richer, ethnic majority

neighborhoods and away from these ethnic minority neighborhoods [72].
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Chapter 3

Data and Methods

3.1 Equality of opportunity as the definition of fairness

This study measures fairness by equality of opportunity, mathematically denoted as 𝑃 (𝑦 =

1|𝑧 = 0, 𝑦 = 1) = 𝑃 (𝑦 = 1|𝑧 = 1, 𝑦 = 1), in which 𝑦 represents the binary travel behavioral

outcomes, 𝑦 represents the predicted values, 𝑧 represents the protected variable such as

race and gender. Intuitively, equality of opportunity requires the predicted travel behavior

to be conditionally independent of the protected attributes given that the real outcome

is positive [49]. Taking racial disparity as an example, equality of opportunity implies

that the predicted travel demand is independent of the travelers being in the minority

or majority groups, thus achieving a socially non-discriminatory predictive performance

[81]. A related concept is referred to as reciprocal equality of opportunity, denoted as

𝑃 (𝑦 = 1|𝑧 = 0, 𝑦 = 0) = 𝑃 (𝑦 = 1|𝑧 = 1, 𝑦 = 0), implying that the predicted travel

behavioral outcome is conditionally independent of the protected attributes given that the

real outcome is negative [12].

3.2 Data and Variables

In this study, the numerical experiments are conducted on two datasets: a group of syn-

thetic datasets and the 2017 National Household Travel Survey data. For each of these

two datasets, both BLR and DNN are deployed for model estimations. The experiments on

the synthetic data are used to systematically show how the covariance between a protected

variable and an explanatory variable may lead to disparate results, and how this prediction
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disparity varies with the covariance of these two variables, the sample size, and the number

of input variables. The author then tests the bias mitigation method on the synthetic data.

For the NHTS data, the author examines the prediction disparity for a series of protected

variables (e.g. race, gender, income, medical condition and urban-rural divide) and different

dependent variables. The bias mitigation method is later tested on this real-world dataset

as well.

3.3 Models and Bias Measurement

In this study, the author adopts two models BLR and DNN for model predictions, which

are later evaluated by fairness metrics for different demographics.

3.3.1 Binary Logistic Regression (BLR)

As a classic travel behavior modeling method, BLR has been widely deployed to predict the

probability of a certain outcome. The outcome probability is defined as follows:

𝑃 (𝑦𝑖 = 1|𝑥𝑖) =
1

1 + 𝑒𝑥𝑝(−(𝛼+ 𝑥⊤
𝑖 𝛽))

where 𝑦𝑖 identifies the dependent variable for individual 𝑖, 𝑥𝑖 represents the vector of all

the independent variables, 𝛼 is the intercept, 𝛽 is the vector of parameters associated with

attribute 𝑥𝑖, which is estimated by the negative log likelihood loss function.

3.3.2 Deep Neural Network Modeling (DNN)

DNN usually outperforms traditional method regarding prediction accuracy, because of the

non-linear transformation. The outcome probability derived from the DNN deployment can

be expressed as [69, 84]:

𝑃 (𝑦𝑖 = 1|𝑥𝑖) =
1

1 + 𝑒𝑥𝑝(−Φ(𝑥𝑖,𝛽))

where Φ(𝑥𝑖,𝛽) represents a layer-by-layer transformation: Φ(𝑥𝑖,𝛽) = (𝑔𝑚∘ ...𝑔2∘𝑔1)(𝑥𝑖;𝛽),

in which each 𝑔𝑙(𝑥
⊤
𝑖 𝛽) = 𝑅𝑒𝐿𝑈(𝑥⊤

𝑖 𝛽 + 𝑏𝑙) denotes one standard module in DNN which

consists of linear and rectified linear unit (ReLU) transformations. The architecture of the

DNNs used in this study is shown in Figure 3-1, which includes 3 hidden layers and 200
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Figure 3-1: DNN architecture

neurons in each layer. Noted that the protected variable 𝑧 is also included in 𝑥 as an

explanatory variable.

3.3.3 Bias Measurement

After applying BLR and DNN models for a specific prediction task, the author measures

the fairness metrics of the prediction result. Based on the fairness definition of equality

of opportunity, the unfairness occurs when the machine-learned models offer much worse

quality results for some demographic groups than others [49], and the degree of unfairness is

measured by the false positive rate (FPR) gap or the false negative rate (FNR) gap between

two groups depending on the specific context. The two fairness metrics are calculated as:

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅)𝐺𝑎𝑝 =
𝐹𝑃𝑧=0

𝑇𝑁𝑧=0 + 𝐹𝑃𝑧=0
− 𝐹𝑃𝑧=1

𝑇𝑁𝑧=1 + 𝐹𝑃𝑧=1
(3.1)

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅)𝐺𝑎𝑝 =
𝐹𝑁𝑧=0

𝑇𝑃𝑧=0 + 𝐹𝑁𝑧=0
− 𝐹𝑁𝑧=1

𝑇𝑃𝑧=1 + 𝐹𝑁𝑧=1
(3.2)

In the above expressions, 𝑇𝑃𝑧, 𝐹𝑃𝑧, 𝑇𝑁𝑧, and 𝐹𝑁𝑧 represent the number of true positives,

false positives, true negatives and false negatives in class 𝑧, with 𝑧 = 0 representing the

disadvantaged group. For example, when examining the racial bias in predicting the frequent

usaage of rideshare, 𝐹𝑁𝑧=0 represents the number of individuals in the minority group who

frequently use rideshare but are wrongly categorized as not doing so, and 𝐹𝑃𝑧=0 represents

the number of individuals in the minority group who do not frequently use rideshare but
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are wrongly categorized as doing so. Higher false negative rate or false positive rate for the

minority group intuitively suggests that the algorithm makes more mistakes on the ethnic

minority group with regard to predicting whether an individual uses rideshare frequently,

which might lead to significant mismatch between demand and supply of the TNC service

in the minority neighborhoods. Therefore, this fairness definition captures the essential

intuition in transport equity discussions. For these two fairness matrices, lower absolute

value is better.

3.4 Bias Mitigation

Adapted from the work of Beutel et al. (2019) [11], this research mitigates the prediction

disparity through adding a regularization term to the loss function. While Beutel et al.

(2019) [11] used the correlation between the output distributions of two groups as their

regularization term since the outputs in their studies are continuous scores, the author uses

the correlation between the predicted probability distributions of two groups instead, which

makes the regularization term differentiable in our classification tasks. This regularization

loss term helps shrink the difference of prediction disparity across groups towards zero.

Compared with other approaches which generally come with notable engineering concerns,

this approach is lightweight, can be easily adapted to real-world system and has achieved

good empirical results [11]. The loss function is specified as:

min
𝑝

(1− 𝜆)𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦 + 𝜆|𝐶𝑜𝑟𝑟(𝑝(𝑥), 𝑧|𝑦 = 𝑞)| (3.3)

where

𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦 =

𝑁∑︁
𝑖=1

[−𝑦𝑖𝑙𝑜𝑔(𝑝(𝑥𝑖))− (1− 𝑦𝑖)𝑙𝑜𝑔(1− 𝑝(𝑥𝑖))] (3.4)

𝐶𝑜𝑟𝑟(𝑝(𝑥), 𝑧|𝑦 = 𝑞) =

∑︀
𝑖∈𝑆𝑞

(𝑝(𝑥𝑖)− 𝑝(𝑥𝑖))(𝑧𝑖 − 𝑧𝑖)

(
√︁∑︀

𝑖∈𝑆𝑞
(𝑝(𝑥𝑖)− 𝑝(𝑥𝑖))2 + 𝜖) * (

√︁∑︀
𝑖∈𝑆𝑞

(𝑧𝑖 − 𝑧𝑖)2 + 𝜖)
(3.5)

𝑆𝑞 = {𝑖|𝑦𝑖 = 𝑞} ; 𝜖 = 𝑒−20 (3.6)

In the above equation, 𝑥𝑖 is the vector representing the explanatory variables. 𝑦𝑖 denotes

the true outcome and 𝑝(𝑥𝑖) represents the estimated probability of the output 𝑦𝑖=1 using

the explanatory variables. 𝑞 equals 1 if the false negative bias is examined and equals 0 if the
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false positive bias is examined. 𝑧𝑖 denotes the value of the protected variable. 𝜖 is added to

prevent the denominator from becoming zero. 𝑆𝑞 represents the set of samples with 𝑦𝑖 = 𝑞,

which is used to compute the correlation loss.

𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦 is a negative log likelihood loss function for the DNN. The correlation term is a

penalty added to the model based on the distribution of the predictions. By reducing the

correlation between 𝑝(𝑥𝑖) and 𝑧𝑖 conditioning on 𝑦𝑖 = 𝑞, it minimizes the conditional de-

pendence between the distribution of the predicted probabilities and the group membership

determined by the protected variable. 𝜆 is a parameter controlling the tradeoff between

primary loss and the fairness loss. When 𝜆 = 0, no bias mitigation is employed. In this

research, the author demonstrates the effectiveness of using this fairness-adjusted loss func-

tion in both BLR and DNN.
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Chapter 4

Experiments

In this section, the experiment results for the synthetic datasets and the NHTS dataset are

reported. For both synthetic and NHTS data, we first conduct BLR and DNN for model

estimations, then examine the fairness issues on the prediction results, and lastly apply the

bias mitigation methods. DNN is implemented using the TensorFlow library in Python.

BLR is implemented using the scikit-learn library when examining the fairness issues while

using the TensorFlow library for bias mitigation, since TensorFlow allows us to modify the

loss function.

Experiments conducted in TensorFlow all use the mini-batch stochastic gradient descent

method with the batch size equaling 1,000 and the step size equaling 0.0001 in each training.

The author draws samples without replacement to generate the mini-batches within an

epoch. After a mini-batch is generated, the algorithm calculates the prediction loss and

updates the coefficients. The model which produces the lowest training loss among the 50

epochs is chosen and later performs prediction over the test data. The author ran 5 trials

of 5-fold validation for each experiment.

4.1 Synthetic experiment

In the simulations, the author considers the type of bias that arises when the true predictor

and the protected variable are highly correlated. In this case, the true predictor of the

outcome also happens to serve as a reliable proxy for class membership in the training set

[8, 92]. For example, if the usage of rideshare is positively associated with income, and
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ethnic minorities in the training data tend to have lower income, the algorithm will tend

to predict low usage of rideshare for the minority population, even if the true contributing

factor for rideshare usage is income rather than race. This type of bias is inherent in the

existing population inequality and has been less emphasized in the previous literature.1

4.1.1 Data generation process

In the synthetic dataset, each data point can be represented by a tuple (𝑧𝑖,𝑥𝑖,𝑘𝑖,𝑦𝑖), where

𝑧 represents the protected variable (e.g. race, gender), 𝑥 is the explanatory variable that

is correlated with 𝑧 (e.g. income), 𝑘 is a vector of explanatory variables which does not

include 𝑥 and 𝑧. 𝑦 represents the binary outcome.

First, 𝑥 and all the elements in 𝑘 are drawn from the standard normal distributions and are

independent with each other. 𝑧 is generated as a binary variable that is positively correlated

with 𝑥 and is independent with 𝑘. The label 𝑦 is drawn from a binomial distribution with

probability 𝑃𝑟(𝑦 = 1) = 1
1+exp (−𝑉 ) . The systematic utility function 𝑉 takes 𝑥 and 𝑘 as the

input variables.

The author tests two scenarios with the true utility function taking a linear form and a

quadratic form respectively. Let 𝑉 = 𝛼+𝑤𝜑(𝑥,𝑘). In the first scenario, 𝜑(𝑥,𝑘) takes the lin-

ear transformation: 𝜑(𝑥,𝑘) = [𝑥, 𝑘1, 𝑘2, ..., 𝑘𝑑]. The weight for 𝑥 is set as 1, and the weights

for other explanatory variables takes {-0.5,0.5} with equal probabilities. In the second sce-

nario, 𝜑(𝑥,𝑘) takes the quadratic transformation: 𝜑(𝑥,𝑘) = [𝑥, 𝑘1, ..., 𝑘𝑑, 𝑥
2, 𝑘21, ..., 𝑘

2
𝑑]. The

weights for 𝑥 and 𝑥2 are set as 1 and 0.5, and the weights for other explanatory variables

takes {-0.5,0.5} with equal probabilities. This data generation process makes sure that the

mean value of 𝑧 is 0.5, which means that there are approximately equal numbers of 𝑧 = 0

and 𝑧 = 1, thus giving us a balanced dataset. The detailed descriptions about the data

generation process can be found in Appendix A.

1Besides this inherent bias, other sources of bias could exist, such as the imbalanced training data problem.
This problem arises when the disadvantaged group have insufficient training data or is misrepresented, in
which case the model will either fail to learn a correct statistical pattern or favor the majority group during
the estimations, since the training data in the disadvantaged groups often misrepresent the true population
when they are insufficient [87, 46, 72, 39, 17].
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The cases where 𝐶𝑜𝑣(𝑧, 𝑥) is non-negative and 𝑥 positively affects 𝑉 are examined. The

author therefore uses 𝑧 = 0 to mimic the disadvantaged population and uses 𝑧 = 1 to

mimic the privileged population, since in the real world the privileged population (e.g. the

ethnic majority group) is often positively correlated with the factor (e.g. income) that has

a positive effect on the utility of an advanced mobility service (e.g. the utility of using a

ride-hailing service).

4.1.2 Fairness measurement results

In the prediction phase, the author uses 𝑧, 𝑥 and 𝑘 as the explanatory variables for both the

logit model and the DNN model, so these two choice models are defined as 𝐿𝑜𝑔𝑖𝑡(𝑧, 𝑥,𝑘)

and 𝐷𝑁𝑁(𝑧, 𝑥,𝑘).

First, we want to examine how fairness measure and accuracy vary regarding the correlation

between the sensitive attribute 𝑧 and the explanatory variable 𝑥, the sample size and the

number of explanatory variables in the data generation process. Therefore, the author runs

experiments along these three dimensions, and when each dimension is examined, the author

sets the other two dimensions as the default values. The default values for 𝐶𝑜𝑣(𝑧, 𝑥), sample

size and number of explanatory variables are 0.2, 106 and 5. For each experiment, three

datasets are randomly generated based on the above data generation process.2

Figure 4-1 presents the results of the linear data generating process, while in Figure 4-2,

the true data generating process is quadratic in variables. In both figures, the first row

shows the FNR gap (see Equation 3.2) between the disadvantaged group (defined as 𝑧 = 0)

and the privileged group (defined as 𝑧 = 1) as the measure of fairness and the second row

shows the prediction accuracy. The x-axis of the first, second and third columns respectively

represent the covariance between 𝑧 and 𝑥, the number of explanatory variables in the data

generation process and the sample size. Each figure plots both the BLR and DNN results,

which are represented by the blue and orange colors. The figures plot the values averaged

2Occasionally, the data generation process in Scenario 2 produced datasets with highly unbalanced out-
comes (e.g. when the minority class accounts for less than 30% of the total samples). In that case, the author
would drop that unbalanced dataset and generate another one. The author iterated this process until all
the datasets are roughly balanced (when the minority class accounts for 40%-50% of the total samples)
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(a) FNR gap vs. Cov(𝑧, 𝑥) (b) FNR gap vs. # predictors (c) FNR gap vs. Sample Size

(d) Accuracy vs. Cov(𝑧, 𝑥) (e) Accuracy vs. # predictors (f) Accuracy vs. Sample Size

Figure 4-1: Fairness metric and accuracy with different parameters (BLR vs. DNN): true model
taking the linear form; estimation models: 𝐿𝑜𝑔𝑖𝑡(𝑧, 𝑥,𝑘) and 𝐷𝑁𝑁(𝑧, 𝑥,𝑘). 𝐿𝑜𝑔𝑖𝑡(𝑧, 𝑥,𝑘) adopts a
linear specification, so both models contain the true model.

across 5 trials of 5-fold validation in 3 datasets for each experiment; the error bar indicates

the standard deviation multiplied by 1.96, which approximates the confidence interval of the

estimations.

As shown in Figure 4-1, the results of BLR and DNN mostly overlap since they both recover

the true linear model. Figure 4-1a shows that the FNR gap increases with 𝐶𝑜𝑣(𝑧, 𝑥), indi-

cating that as 𝑥 becoming more positively correlated with 𝑧, the algorithm is more likely

to falsely associate the disadvantaged population (𝑧=0) with the negative outcomes, even

if their real outcomes are actually positive. Prediction disparity is a metric relatively inde-

pendent of the predictive performance, as there is no difference in prediction accuracy with

different 𝐶𝑜𝑣(𝑧, 𝑥) (Figure 4-1d); it is also not due to the unbalanced training data problem,

as the outcome variable, the protected variable and all the explanatory variable are balanced

in the training data. The prediction disparity is purely inherent in the relationship among

variables in the data. Figure 4-1b shows that the FNR gap decreases with the number of

explanatory variables, which is probably because increasing the number of predictors dilutes

the influence of 𝑥 on the outcome. Figure 4-1c shows that the variances of the fairness and

accuracy estimations decrease as the sample size increases.
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(a) FNR gap vs. Cov(𝑧, 𝑥) (b) FNR gap vs. # predictors (c) FNR gap vs. Sample Size

(d) Accuracy vs. Cov(𝑧, 𝑥) (e) Accuracy vs. # predictors (f) Accuracy vs. Sample Size

Figure 4-2: Fairness metric and accuracy with different parameters (BLR vs. DNN): true model
taking the quadratic form; estimation models: 𝐿𝑜𝑔𝑖𝑡(𝑧, 𝑥,𝑘) and 𝐷𝑁𝑁(𝑧, 𝑥,𝑘). 𝐿𝑜𝑔𝑖𝑡(𝑧, 𝑥,𝑘) fol-
lows a linear model specification, so it has the misspecification error.

Figure 4-2 shows the results of prediction fairness and accuracy when the true data gener-

ation model takes a quadratic form. In this case, the BLR with linear specification has the

model misspecification error while DNN does not. Figure 4-2a shows that the prediction

disparity still increases with the increase of 𝐶𝑜𝑣(𝑧, 𝑥), and DNN is always associated with

smaller FNR compared with BLR for 𝐶𝑜𝑣(𝑧, 𝑥)>0. This result indicates that the model

misspecification not only induces more prediction error, but also harms prediction fairness.

Figure 4-2b shows that though increasing the number of explanatory variables can reduce

the prediction disparity, the magnitude of the prediction disparity caused by the model mis-

specification was not significantly reduced. Figure 4-2c indicates that the fairness prediction

result becomes more stable as the sample size increases.

4.1.3 Bias mitigation results

To address prediction disparity, the author applies the bias mitigation method as illustrated

in Section 3.4 to the synthetic datasets with 𝐶𝑜𝑣(𝑧, 𝑥) = 0.2, sample size equaling 100,000

and number of predictors equaling 5. For each regularization weight 𝜆, the author runs the

training procedure 5 times for each of the 3 datasets with 5-fold cross-validation and reports

the average results in Figure 4-3 for Scenario 1 and Figure 4-4 for Scenario 2. The error

bars in the figures indicates the standard deviation multiplied by 1.96, which approximates
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(a) FNR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 4-3: Fairness and accuracy by bias mitigation weight (𝜆): true model taking the linear form
(Scenario 1)

(a) FNR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 4-4: Fairness and accuracy by bias mitigation weight (𝜆): true model taking the quadratic
form (Scenario 2)

the confidence interval.

Figure 4-3a and 4-4a show that in both scenarios, applying the regularization even with a

small weight (e.g. 𝜆 = 0.1) can substantially reduce the prediction disparity and this find-

ing holds for both BLR and DNN. Given the model misspecification for BLR in Scenario

2, Figure 4-4a shows that the method is still effective in reducing the prediction bias to as

small as zero.

Figure 4-3b and 4-4b report the corresponding model accuracy as the regularization weight

varies. The results show that when 𝜆 < 0.7, the accuracy only slightly decreases. These

results suggest that the improvement in prediction fairness can be achieved with a minimal

cost of accuracy.
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4.2 The NHTS dataset

4.2.1 Data and variables

The NHTS data are collected directly from a stratified random sample of U.S. households.

The richness of the dataset enables us to examine fairness in predictions with varying depen-

dent variables and protected attributes. Protected attributes are the variables we want to

protect against in the model prediction process, which include race, gender, income, medical

condition and urban-rural divide in this study. In terms of “race”, the ethnic minority is de-

fined as the non-white population. In terms of the variable “income”, low-income households

are identified based on the combination of household size and last year’s household income

following the 2017 Health and Human Services poverty guidelines [25]. An individual is

deemed having a “medical condition” if he or she answered “yes” to the question “do you

have a condition or handicap that makes it difficult to travel outside of the home?” in the

survey. Regarding the protected variable “region”, the question “household in urban area?

Answer ‘yes’ or ‘no’.” is used to identify whether the individual is an urban or rural resident.

The dependent variables examined in this study can be categorized into two groups: the

first group contains four variables indicating the “yes” or “no” answers to “usually work from

home”, “have the option of working from home”, “agree that travel is a financial burden” and

“agree that gas price affects travel”; the second group contains four variables indicating the

high frequent usage of four travel modes: bike, car, bus and rideshare. These eight depen-

dent variables are all binary variables, with “yes” taking the value 1. A detailed description

of these variables can be found in Appendix B.

The distributions of the dependent variables except “travel burden” and “gas price impact”

are highly skewed, and previous research has found that when the outcome class sizes are

highly imbalanced, the classification algorithms tend to strongly favor the majority out-

come class, resulting in very low or even no detection of the minority outcome class [16].

Therefore, for each of the six imbalanced dependent variables, the author balances the data

to facilitate training by downsampling the majority class. The summary statistics of the

independent and dependent variables are reported in Appendix B. The distributions of two

groups of dependent variables by different protected attributes are reported in Appendix C.
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4.2.2 Bias mitigation method with sample weights

As previously mentioned, one source of bias in the data is that the training data might not

be representative of the overall population. Luckily, NHTS contains the sample weight3 [3]

for each individual, which can be used to largely address the representation bias. The author

incorporates the sample weights in the training and evaluation phases. Weighted accuracy

and weighted fairness metrics are used for model evaluation. To be specific, the weighted

accuracy is calculated as:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑︀𝑁
𝑖 1(𝑦𝑖 = 𝑦𝑖)𝑤𝑖∑︀𝑁

𝑖 𝑤𝑖

(4.1)

where 𝑤𝑖 represents the sample weight for sample 𝑖, 𝑦𝑖 is the label and 𝑦𝑖 is the predicted

outcome. Similarly, the sample weight is applied for each sample when calculating the fair-

ness metrics (FNR and FPR). 𝑁 denotes the sample size.

Corresponding to the weighted evaluation metrics, the sample weights are also applied in

the loss function during the training process. The weighted loss function is written as:

min
𝑝

(1− 𝜆)𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦 + 𝜆|𝐶𝑜𝑟𝑟(𝑝(𝑥), 𝑧|𝑦 = 𝑞)| (4.2)

where

𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦 =
𝑁∑︁
𝑖=1

𝑤𝑖𝐿𝑖∑︀𝑁
𝑖 𝑤𝑖

; 𝐿𝑖 = −𝑦𝑖𝑙𝑜𝑔(𝑝(𝑥𝑖))− (1− 𝑦𝑖)𝑙𝑜𝑔(1− 𝑝(𝑥𝑖)) (4.3)

𝐶𝑜𝑟𝑟(𝑝(𝑥), 𝑧|𝑦 = 𝑞) =

∑︀
𝑖∈𝑆𝑞

𝑤𝑖(𝑝(𝑥𝑖)−𝑚(𝑝(𝑥𝑖)))(𝑧𝑖 −𝑚(𝑧𝑖))

(
√︁∑︀

𝑖∈𝑆𝑞
𝑤𝑖(𝑝(𝑥𝑖)−𝑚(𝑝(𝑥𝑖)))2 + 𝜖) * (

√︁∑︀
𝑖∈𝑆𝑞

𝑤𝑖(𝑧𝑖 −𝑚(𝑧𝑖))2 + 𝜖)

(4.4)

𝑚(𝑝(𝑥𝑖)) =

∑︀
𝑖∈𝑆𝑞

𝑤𝑖𝑝(𝑥𝑖)∑︀
𝑖∈𝑆𝑞

𝑤𝑖
; 𝑚(𝑧𝑖) =

∑︀
𝑖∈𝑆𝑞

𝑤𝑖𝑧𝑖∑︀
𝑖∈𝑆𝑞

𝑤𝑖
(4.5)

𝑆𝑞 = {𝑖|𝑦𝑖 = 𝑞} ; 𝜖 = 𝑒−20 (4.6)

BLR is implemented through the scikit-learn library when evaluating the fairness issues and

through TensorFlow when mitigating the bias. For DNN, all the experiments are imple-
3which is primarily calculated as the inverse of the probability of selection of the person in the given

sampling stratum from the sampling frame
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(a) (b) (c)

(d) (e)

Figure 4-5: Disparity of prediction accuracy (BLR): frequent usage of bike, car, bus and rideshare

mented in TensorFlow. Each of the experiments conducted in TensorFlow uses the mini-

batch gradient descent method with step size 0.0001 during training. The best model among

the 5000 epochs is chosen and later performs prediction over the test data. 3 trials of 5-fold

validation are conducted for each experiment.

4.2.3 Fairness issues in the adoption of BLR and DNN

The comparison of prediction accuracy with respect to various protected variables are pre-

sented by the bar charts in Figure 4-5 and 4-6 for BLR and in Figure 4-7 and 4-8 for DNN.

Each bar chart depicts the prediction accuracy of two populations grouped by a specific

protected variable (race/gender/income/medical condition/region) side by side. The height

gap of two adjacent bars shows the prediction disparity for that protected variable. Figure

4-5 and 4-7 illustrate the prediction results of the dependent variables regarding travel mode

usage by BLR and DNN. Figure 4-6 and 4-8 plot the prediction results of the dependent

variables “work from home”, “work from home option”, “travel burden” and “gas price im-

pact” by BLR and DNN. The dependent variables are specified on the x-axis of the bar charts.

The y-axis of the bar charts represents one of the error rates: FPR or FNR. The author

examines FNR for the first group of dependent variables - since we are concerned about
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(a) (b) (c)

(d) (e)

Figure 4-6: Disparity of prediction accuracy (BLR): work from home, work from home option,
travel burden, gas price impact

(a) (b) (c)

(d) (e)

Figure 4-7: Disparity of prediction accuracy (DNN): frequent usage of bike, car, bus and rideshare
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(d) (e)

Figure 4-8: Disparity of prediction accuracy (DNN): work from home, work from home option,
travel burden, gas price impact

cases where active users of a certain travel mode are not identified (Figure 4-5 and 4-7), and

FPR for the second group of dependent variables (Figure 4-6 and 4-8) - since we want to

focus on instances which have negative outcomes but are wrongly identified as positive (e.g.

people who do not have the option of working from home but are mistakenly identified as

having the option). In each bar chart, the height of a bar represents the magnitude of the

class-specific FNR rate or FPR rate. The total error rate is also presented which refers to

one minus the weighted accuracy for all samples.

First, we focus on the BLR results. Figure 4-5 and 4-6 show that prediction disparities

widely exist with the implementation of BLR. Figure 4-5 presents the false negative bias

across different populations regarding the frequent usage of different travel modes. The plots

show that except for the fairly consistent prediction accuracy between male and female, the

significant disparity of prediction accuracy exists for all other protected variables. Racial

bias is significant regarding the prediction of frequent usage of car and bus; income bias

and bias regarding the medical condition are significant regarding the predictions of car,

bus and rideshare. Among all the protected attributes, the regional disparity is the largest

with respect to predicting the frequent usage of bike, bus and rideshare. As a result, the

proportion of rural residents that use bike, bus and rideshare frequently is underestimated
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compared with that of the urban residents. If the policy makers use the modeling results to

inform transportation resource allocations such as the planning of bike lanes and bus routes

without considering the prediction bias, the rural area will very likely be under-served.

In terms of the dependent variables, when estimating the high frequent usage of rideshare,

it is found that for all the protected variables, the disadvantaged group always has higher

FNR than the other group with either BLR or DNN. This finding indicates that the com-

munities where these disadvantaged social groups (the ethnic minority, female, low-income

group, people who have medical conditions and rural residents) dominate could procure less

ride sharing service if the decision makers use these data for rideshare demand estimation

and do not account for the prediction disparity.

Figure 4-6 illustrates significant racial bias, income bias and health-related bias for the

predictions of “travel burden” and “gas price impact”. In other words, the ethnic minority

population, the low-income population and people with health conditions are more likely to

be predicted as “regarding travel as a financial burden” and “agreeing that price of gasoline

affects travel” when the true outcome is actually negative. These biases could lead to dis-

advantageous consequences for the vulnerable populations. For example, given that banks

are less likely to loan to someone if they perceived that person to be under financial stress,

if the ethnic minorities suffer from higher FPR in travel burden prediction, they will more

likely get rejected when applying for loans.

Next, the author compares the results between BLR and DNN. The prediction disparity and

the total error rate of BLR are considerably larger than those of DNN in all the scenarios,

showing that the prediction disparity of BLR largely comes from model misspecifications.

By reducing model misspecification, the implementation of DNN can not only increase pre-

diction accuracy, but also improve computational fairness. These findings are consistent

with the simulation results as illustrated in Figure 4-2, which show the positive relationship

between the magnitude of fairness gap and the degree of model misspecifications.

However, the prediction results of DNN (Figure 4-7 and Figure 4-8) also show that even if

the prediction achieves very high accuracy (>94% for all dependent variables in Figure 4-7
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and >85% for all dependent variables in Figure 4-8), the fairness gap still exists, and for

some sensitive variables the prediction disparity can be higher than 15% (e.g. the FNR gap

for the frequent usage of rideshare prediction between rural and urban residents). This find-

ing tells us that deploying complex models aiming at improving prediction accuracy cannot

guarantee to eliminate prediction biases. Therefore, dedicated method should be deployed

to mitigate the unintended bias other than merely attempting to improve the model predic-

tion power.

Besides, except for the racial difference in bike frequency prediction, the signs of the fairness

gaps for other protected variable and dependent variable combinations are the same between

BLR and DNN. The consistency between the two models suggest that the prediction dispar-

ity may reveal the bias inherent in the existing inequality in the society which is baked in the

data. For example, in the predictions of mode usage, it is found that the socially disadvan-

taged groups such as the ethnic minority group and people having medical conditions tend

to suffer from higher FNR in the predictions of car and rideshare usage, probably because

they are negatively associated with certain factors (e.g. income) that positively contribute

to the usage of these modes which are more expensive compared with other modes.

4.2.4 Bias mitigation results

The author adopts the absolute correlation regularization method to mitigate the unin-

tended bias for both BLR and DNN models. The method is applied to mitigate two types

of prediction disparities: the FNR gap for estimating the frequent rideshare usage between

rural and urban residents, and the FPR gap for the prediction of “travel burden” between the

ethnic minority group and the majority group, as the initial prediction disparity in these two

prediction tasks is substantial compared with those in other prediction tasks. In Figure 4-9

and 4-10, plot (a) reports the average prediction disparity and plot (b) reports the average

prediction accuracy in 3 trials of 5-fold cross-validation with varied bias mitigation weight

(𝜆). In both plots, higher weight indicates larger punishment on the prediction bias.

Both Figure 4-9 and 4-10 demonstrate the effectiveness of the bias mitigation method. The

prediction disparity decreases as 𝜆 increases, and this effect is particularly significant for

BLR. The blue curves in these two figures show that the fairness gap diminishes sharply
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(a) FNR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 4-9: Fairness and accuracy by bias mitigation weight (𝜆): regional bias in the prediction of
frequent rideshare usage

(a) FPR gap vs. Regularization Weight (b) Accuracy vs. Regularization Weight

Figure 4-10: Fairness and accuracy by bias mitigation weight (𝜆): racial bias in the prediction of
travel burden

even if only a small degree of bias mitigation weight is applied.

In Figure 4-9, it is found that increasing 𝜆 from 0 to 0.2 can reduce the FPR gap from

62.4% to -6.4% for BLR and from 14.5% to 4.8% for DNN, only at the expense of reducing

the overall accuracy from 77.7% to 76.6% for BLR and from 94.5% to 90.6% for DNN, and

similar effect is found in Figure 4-10. These results indicate that with the adoption of the

bias mitigation method, we can reduce the fairness gap in BLR to a similar level of that in

DNN. In Appendix D, the author also shows the convergence of the loss functions in training.
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Chapter 5

Conclusions

This study investigates equality of opportunity as a measurement of computational fairness

in travel behavior modeling with BLR and DNN. Fairness has long been a critical concern

in transportation studies. However, past transportation equity studies generally evaluated

equity based on the cost-benefit analysis for different populations and neglected the po-

tential fairness problem in the machine-learned models. This research aims to enrich the

transportation equity research by emphasizing the integration of fairness metric into the

modeling process to improve fair transportation decision making and resource allocations.

First, this research uses the concept of equality of opportunity to define computational fair-

ness in travel behavior modeling, which is measured by the gap of true positive rates between

two groups of populations. This definition is connected to the equality of opportunity in

traditional transportation equity literature, since choice probabilities in the discrete choice

models are a natural metric for opportunities. The unfair prediction of choice probabilities

in modeling can lead to the allocation of inadequate transportation resources to the disad-

vantaged neighborhood.

Then, the author conducts the simulated experiments to show two sources of prediction

disparities: the bias inherent in the data structure and the bias in the modeling process.

Prediction disparity increases as the correlation between the protected variables and the

explanatory variable(s) increases, exhibiting the bias inherent in the data structure but not

caused by modelers. The inherent bias illustrates how prediction disparities may still exist

without the presence of human errors. When the true model specification cannot be cap-
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tured by BLR but can be captured by DNN, DNN can produce lower prediction bias than

BLR, owing to its ability to capture the complex relationships among variables. This type

of bias is the algorithmic bias that can be mitigated by choosing a more fitting model, thus

is a sort of human bias.

Next, the author conducts the computational fairness analysis on the NHTS dataset using

BLR and DNN. The results reveal the prevalence of the prediction disparities in travel be-

havior modeling particularly when BLR is adopted. Though the magnitudes of unfairness

are different, the signs of the fairness gap (e.g. which group has higher FNR/FPR) are

the same between BLR and DNN in the vast majority of the prediction cases, probably

reflecting the bias inherent in the existing population disparity. The regional disparity in

the predictions of the frequent usage of bike, bus and rideshare is the largest among all

the protected attributes, indicating that the resources regarding the bike, bus and rideshare

services allocated by the predictions will be withheld from the rural residents compared with

the urban residents. When estimating the high frequent usage of rideshare, the disadvan-

taged group has higher FNR than the other group for all the protected variables, indicating

that these disadvantaged social groups might receive insufficient ride sharing service if the

TNC companies use these data for rideshare demand estimation but do not consider the

prediction disparity.

Finally, the author adopts the absolute correlation regularization method to mitigate the

bias in the BLR and DNN prediction using the synthetic and the NHTS datasets. The

method proves to be effective for both BLR and DNN. When the initial fairness gap is

large, applying the bias mitigation method with only a small weight of regularization can

considerably improve the fairness result. Though there is an accuracy-fairness trade-off in

most predictions, we can achieve substantial improvement in prediction fairness with only a

small reduction of accuracy by careful selection of the bias mitigation weight.

All in all, the author argues that researchers and policy makers should be aware of the

normative aspect in the seemingly value-neural machine learning predictions, since the pre-

diction disparities can lead to severely unfair treatment on the already marginalized social

groups. Only after acknowledging the existence of the biases, can policy makers start to
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adopt effective remedies.
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Chapter 6

Discussions and Future Work

This research mainly focuses on ways to address fairness from a modeling perspective. How-

ever, improvement is also needed on the institutional side. One important way to achieve

fair outcomes is to have a “human in the loop.” [6] Firstly, the decision makers should en-

sure that the data collection and modeling process can be monitored or queried externally,

and then invite representatives from different population groups, especially the disadvantage

population groups, to audit the decision making process, from data collection to algorithm

implementations. Second, the decision makers should also ensure that there are specific

people responsible for addressing the machine bias issues.

This study demonstrates that adjusting BLR and DNN models to reduce prediction disparity

may lead to lower prediction accuracy, but how to trade off accuracy and fairness essentially

involves a value judgement, on which the author does not take a stance. In fact, this needs

to be figured out on the basis of different normative principles, and may involve some ethical

debates about what should be considered “fair” in a given context. Therefore, it is crucial to

involve people who will be influenced by the data analysis results to jointly define what is

a fair decision making system. In addition, mitigating the unintended prediction biases can

involve more costs. Policy makers should determine whether the gain in computational fair-

ness can outweigh the efforts of improving computational fairness, such as employing bias

mitigation algorithms or collecting data that represent the socially marginalized groups.

Further benefit-cost analysis is necessary to bridge the gap between the algorithmic fairness

tools and the social justice needs in the real world.
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On the other hand, this research also reveals the needs to incorporate the fairness analysis

into future transportation studies. Several potential applications of the algorithmic fairness

analysis by travel modes and their policy relevance are discussed below.

• Ridehailing service

The ridehailing system often experiences an imbalance between the travel demand and

vehicle supply. As a result, the TNC companies like Uber adopt a vehicle rebalancing

strategy that proactively relocates the vehicles based on the expected demand for trips

[2]. The goal of the strategy is to minimize the operational cost by reducing the empty

vehicle miles travelled while providing a reasonable waiting time for the passengers [33].

Since the feet repositioning algorithms require forecasts of future demands, the bias ex-

hibited in the demand prediction may lead to unfair ridehailing service provision among

different neighborhoods. To be specific, if the ridehailing demand for the marginal

neighborhood (e.g. the neighborhood where the disadvantaged population dominates)

is systematically underestimated, the vehicles allocated to these neighborhoods may

not be enough to serve the demand.

Therefore, the TNC companies should scrutinize the fairness dimension of their de-

mand forecasting tools, and take actions to address the demand forecasting bias if

the algorithmic fairness problem exists. In this way, the company can contribute to

the social fairness of the system and build up their reputations, but this may require

giving up a proportion of their profits.

The transportation authority should also conduct the fairness assessment of the algo-

rithms used by the TNC companies. Unfortunately, the authority often does not have

the access to the data and algorithms. Therefore, the TNC companies should consider

increasing the transparency on the algorithmic decision making process to show that

the modeling result is fair and unbiased.

• Emerging transportation technology: autonomous vehicle, electric vehicle
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The computational fairness analysis is especially important for estimating the demand

of the new mobility services, such as autonomous vehicle and electric vehicle. These

new mobility services either have not been introduced, or have not been widely imple-

mented in the U.S. Therefore, the vehicle providers may depend on the demand predic-

tion models to determine how many vehicles and how much corresponding service to

provide. A biased demand prediction model can therefore lead to the under-provision

of the new mobility infrastructure, product and service. Intuitively, the disadvantaged

populations are more likely to have a higher FNR than the privileged population. This

is because previous research has shown that more prosperous people are often more

acceptable of the new mobility service [51], whereas the disadvantaged populations

usually have lower income.

For the autonomous vehicle, using the fairness-adjusted demand estimation model will

change the downstream supply-side decisions such as service allocation and vehicle

routing, matching and rebalancing. The magnitude and significance of the change is

yet unknown, which needs further investigation.

Other than the service provision solutions, the pricing scheme can also be affected

by the fairness-adjusted model. To determine a road pricing or congestion charging

strategy, the traffic demand information such as the origin-destination demand esti-

mation is usually required. Therefore, the biased demand estimation may also affect

the pricing decisions.

In terms of electric vehicles, the decision of where the electric vehicle charging stations

should be allocated among different regions also take the spatial demand estimations

as the input. If the demand analysis is biased against the marginal neighborhood, the

service providers may underestimate the needs for electric vehicles in those neighbor-

hoods, leading to insufficient provision of the charging stations.

• Active travel modes: public transit, walking, biking

Incorporating fairness metric into the demand prediction for active travel modes in-
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cluding public transit, walking and biking can inform equitable transportation infras-

tructure planning related to these modes.

For public transit, the fairness-aware estimation model should be applied to predict

the demand that can serve as an input for the bus line/subway line planning, fleet size

arrangement and headway optimization. For walking, the fairness-adjusted demand

model should be utilized for the determination of sidewalk investment, and the fairness

analysis should also be incorporated into the pedestrian safety analysis. For biking,

the fairness-adjusted demand estimation is also important for the bike-sharing facility

investment and the bike plane planning.

Unlike the vehicle supply optimization problem where the decision is made at real-

time, the infrastructure planning for active modes is usually a long-term decision, and

will have enduring impact on the transportation system. Therefore, it is especially

important to assess the algorithmic fairness in the whole model development process.
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Appendix A

The Synthetic Data Generation Process

The label 𝑦 is generated based on the following equations:

𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖 = 𝑓(𝑥𝑖,𝑘𝑖) + 𝜀𝑖 (A.1)

𝑃𝑟(𝑦𝑖 = 1) =
1

1 + exp (−𝑉𝑖)
(A.2)

Equation A.1 denotes the true utility function specification, where 𝜀 is the extreme value

distributed random term. Equation A.2 is the Sigmoid function calculating the probability

of the binary outcomes. In simulations, for each individual 𝑖 we draw 𝑦𝑖 from a binomial

distribution which takes value 1 with 𝑃𝑟(𝑦𝑖 = 1). Noted that this is where the sampling

errors may occur.

(𝑎𝑖, 𝑥𝑖) ∼ 𝑁

⎛⎝0,

⎛⎝ 1 𝐶𝑜𝑣𝑎𝑥

𝐶𝑜𝑣𝑎𝑥 1

⎞⎠⎞⎠ (A.3)

𝑧𝑖 =

⎧⎪⎨⎪⎩
1, if 𝑎𝑖 ≥ 0

0, if 𝑎𝑖 < 0

(A.4)

𝑘𝑖 ∼ 𝑁(0, 𝐼) (A.5)

𝑧, 𝑥 and 𝑘 are derived based on Equation A.3, A.4 and A.5. 𝑎 is an intermediate variable

serves for the creation of 𝑧. 𝑎, 𝑥 and all the elements in 𝑘 are drawn from a multivariate

Gaussian distribution with zero-mean and unit-variance. The above variables drawn from

this distribution are all independent to each other, except that 𝑎, 𝑥 are correlated with the

covariance being 𝐶𝑜𝑣𝑎𝑥. 𝑧 takes value 1 if 𝑎 ≥ 0 and takes value 0 otherwise. Therefore, the
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mean value of 𝑧 is 0.5, indicating that the number of positive values and negative values of

𝑧 is approximately the same. In our simulations, the value of 𝐶𝑜𝑣𝑎𝑥 varies across 0, 0.25,

0.5, 0.75, 1. The corresponding values of 𝐶𝑜𝑣(𝑧, 𝑥) are 0, 0.1, 0.2, 0.3, 0.4, each of which is

empirically calculated as the value of 𝐶𝑜𝑣(𝑧, 𝑥) averaged across the 3 independently gener-

ated datasets used in the simulations for each 𝐶𝑜𝑣𝑎𝑥.

𝑓(𝑥𝑖,𝑘𝑖) in Equation A.1 indicates the true systematic utility function. We consider two

scenarios:

𝑓(𝑥𝑖,𝑘𝑖) = 𝛼+ 𝑥𝑖𝛽𝑥1 + 𝑘𝑖
⊤𝛽𝑘1 (A.6)

𝑓(𝑥𝑖,𝑘𝑖) = 𝛼+ 𝑥𝑖𝛽𝑥1 + 𝑥2𝑖𝛽𝑥2 + 𝑘𝑖
⊤𝛽𝑘1 + (𝑘𝑖 ⊙ 𝑘𝑖)

⊤𝛽𝑘2 (A.7)

In Scenario 1, the utility specification takes a linear form (Equation A.6). We set 𝛼 to 0

and 𝛽𝑥1 to 1. Each entry of 𝛽𝑘1 takes {-0.5,0.5} values with equal probabilities. As such, 𝑥

will have the strongest positive influence on 𝑉 compared with other explanatory variables.

In Scenario 2, the utility specification takes a quadratic form (Equation A.7). We set 𝛼 to

-0.5, 𝛽𝑥1 to 1 and 𝛽𝑥2 to 0.5. Each entry of 𝛽𝑘1 and 𝛽𝑘2 takes {-0.5,0.5} values with equal

probabilities.

This setup for both scenarios makes sure that 𝐸(𝑉 ) equals 0, so on average the numbers of

outcomes 𝑦 taking the value 1 and 0 are approximately the same.
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Appendix B

Descriptive Statistics

1. Dependent variables: travel behavior and attitude indicators

• Work from home: "Do you usually work from home?" (Yes=1)

• Work from home option: "Do you have the option of working from home?"

(Yes=1)

• Travel burden: "Do you agree that travel is a financial burden?" (“Strongly agree”

or “Agree”= 1)

• Gas price impact: "Do your agree that gas price affects travel?" (“Strongly agree”

or “Agree”= 1)

2. Dependent variables: variables regarding travel mode usage

• Frequent usage of bike: "Do you use bike for travel daily or a few times a week?"

(Yes=1)

• Frequent usage of car: "Do you use car for travel daily or a few times a week?"

(Yes=1)

• Frequent usage of bus: "Do you use bus for travel daily or a few times a week?"

(Yes=1)

• Frequent usage of rideshare: "Do you use rideshare at least once in the past 30

days?" (Yes=1)
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Variable Mean Std. Min Median Max

Socio-demographics:
Age 45.834 17.372 6.0 45.0 92.0
*Gender (Male=1) 0.479 0.500 0.0 0.0 1.0
*Ethnic minority (Yes=1) 0.240 0.427 0.0 0.0 1.0
*Low income household (Yes=1) 0.130 0.337 0.0 0.0 1.0
*Medical condition (Yes=1) 0.065 0.246 0.0 0.0 1.0
Driver status (Yes=1) 0.915 0.280 0.0 1.0 1.0
Education: Less than high school (Yes=1) 0.068 0.252 0.0 0.0 1.0
Education: High school graduate (Yes=1) 0.190 0.392 0.0 0.0 1.0
Education: College degree (Yes=1) 0.293 0.455 0.0 0.0 1.0
Education: Bachelor’s degree (Yes=1) 0.245 0.430 0.0 0.0 1.0
Home ownership (Yes=1) 0.661 0.473 0.0 1.0 1.0
Primary activity: absent (Yes=1) 0.027 0.163 0.0 0.0 1.0
Primary activity: homemaker (Yes=1) 0.073 0.260 0.0 0.0 1.0
Primary activity: unemployed (Yes=1) 0.035 0.184 0.0 0.0 1.0
Primary activity: retired (Yes=1) 0.158 0.365 0.0 0.0 1.0
Primary activity: going to school (Yes=1) 0.067 0.250 0.0 0.0 1.0
Born in the U.S. (Yes=1) 0.861 0.346 0.0 1.0 1.0
More than one job (Yes=1) 0.075 0.263 0.0 0.0 1.0
Health level (Excellent=1, Poor=5) 2.142 0.960 1.0 2.0 5.0
Job: Sales or service (Yes=1) 0.168 0.373 0.0 0.0 1.0
Job: Clerical or administrative support (Yes=1) 0.070 0.256 0.0 0.0 1.0
Job: Manufacturing type (Yes=1) 0.087 0.282 0.0 0.0 1.0
Work for pay (Yes=1) 0.069 0.253 0.0 0.0 1.0
Level of physical activity 2.173 0.594 1.0 2.0 3.0(Never/rarely=1, Vigorous=3)
In public or private school (Yes=1) 0.024 0.154 0.0 0.0 1.0
Full-time worker (Yes=1) 0.504 0.500 0.0 1.0 1.0
Household Variables:
Number of drivers in the HH 2.038 0.945 0.0 2.0 9.0

Note: the sample weights are used to compute the summary statistics; (*) denotes the independent
variables that are also treated as the protected variables based on which we examine the prediction
disparities.

Table B1: Summary statistics of the explanatory and dependent variables
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Variable Mean Std. Min Median Max

Last year’s household income (K $) 84.009 64.924 5.0 62.5 250.0
Number of household members 2.915 1.435 1.0 3.0 13.0
Number of household vehicles 2.187 1.305 0.0 2.0 12.0
No child in the HH (Yes=1) 0.352 0.478 0.0 0.0 1.0
Youngest child’s age < 15 in the HH (Yes=1) 0.343 0.475 0.0 0.0 1.0
Youngest child’s age < 21 in the HH (Yes=1) 0.102 0.303 0.0 0.0 1.0
Number of workers in household 1.495 1.004 0.0 1.0 7.0
Built Environment:
*Household in urban area (Yes=1) 0.836 0.371 0.0 1.0 1.0
Northeast Region (Yes=1) 0.178 0.382 0.0 0.0 1.0
Midwest Region (Yes=1) 0.217 0.412 0.0 0.0 1.0
Gas Price ($) 2.395 0.208 2.0 2.4 3.0
% of renter-occupied housing in the block group 31.226 22.877 2.0 20.0 97.5
Housing units/sq.m in the block group 3.004 5.409 0.0 1.5 30.0(in thousands)
Second City (Yes=1) 0.201 0.401 0.0 0.0 1.0
Suburban (Yes=1) 0.235 0.424 0.0 0.0 1.0
Small Town (Yes=1) 0.195 0.396 0.0 0.0 1.0
Number of workers/sq.m in the census tract 1.751 1.703 0.0 1.5 5.0(in thousands)
MSA population> 1 million, without rail (Yes=1) 0.282 0.450 0.0 0.0 1.0
MSA population < 1 million (Yes=1) 0.299 0.458 0.0 0.0 1.0
Population size of the MSA (in millions) 1.959 1.643 0.0 2.0 4.0
In an urban area (Yes=1) 0.741 0.438 0.0 1.0 1.0
In an urban cluster (Yes=1) 0.095 0.293 0.0 0.0 1.0
Area surrounded by urban areas (Yes=1) 0.000 0.022 0.0 0.0 1.0
Urban area size (in millions) 1.018 0.910 0.0 0.8 2.0
Travel Pattern and Internet Usage:
Flexible work time (Yes=1) 0.307 0.461 0.0 0.0 1.0
Travel day began at home location (Yes=1) 0.938 0.241 0.0 1.0 1.0
Frequent internet use (Yes=1) 0.955 0.208 0.0 1.0 1.0

Dependent Variables:
Work from home option (Yes=1) 0.184 0.388 0.0 0.0 1.0
Work from home (Yes=1) 0.116 0.321 0.0 0.0 1.0
Travel is a financial burden (Yes=1) 0.396 0.489 0.0 0.0 1.0
Gas price affects travel (Yes=1) 0.478 0.500 0.0 0.0 1.0
Frequent usage of bike (Yes=1) 0.066 0.248 0.0 0.0 1.0
Frequent usage of bus (Yes=1) 0.063 0.243 0.0 0.0 1.0
Frequent usage of car (Yes=1) 0.926 0.262 0.0 1.0 1.0
Frequent usage of rideshare (Yes=1) 0.114 0.317 0.0 0.0 1.0

Note: the sample weights are used to compute the summary statistics; (*) denotes the independent
variables that are also treated as the protected variables based on which we examine the prediction
disparities.

Table B2: (Cont.) Summary statistics of the explanatory and dependent variables
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Appendix C

Distribution of Dependent Variables by

Protected Variables

Protected Variable Dependent Variable
Type Value WFH WFHO TB GPI

Race Minority 29.73% 31.25% 46.6% 56.59%
Majority 34.02% 33.79% 33.02% 42.98%

Gender Male 33.52% 37.67% 34.21% 43.66%
Female 33.19% 28.92% 35.95% 46.37%

Income Low 37.62% 15.53% 56.81% 67.23%
Middle or High 33.1% 34.29% 33.14% 43.07%

Medical Condition With 49.72% 31.54% 49.2% 57.53%
Without 32.99% 33.41% 34.1% 44.19%

Region Urban 32.71% 34.9% 33.63% 42.71%
Rural 35.9% 26.76% 40.67% 53.85%

Sample Size 160110 204603 703647 703647
Number of Positives 53400 68296 247300 317432

Note: “WFH” stands for “work from home”, “WFHO” stands for “work from home option”,
“TB” stands for “travel burden”, “GPI” stands for “gas price impact”; each percentage
number indicates the proportion of positives to the total number of the corresponding
dependent variable in the subset of the corresponding protected variable; since the outcome
distributions of “WFH” and “WFHO” are highly skewed, for these two variables the data is
balanced so that the ratio of the major outcome class to the minor outcome class instances
is 2:1.

Table C1: Summary statistics of dependent variables by protected variables in the training
data set
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Protected Variable Frequent Usage of
Type Value Bus Bike Car Rideshare

Race Minority 55.03% 30.91% 48.35% 37.28%
Majority 27.1% 33.83% 71.28% 32.56%

Gender Male 33.03% 35.99% 66.65% 35.09%
Female 33.67% 30.96% 66.6% 31.75%

Income Low 62.76% 39.06% 29.27% 20.76%
Middle or High 28.54% 32.82% 73.98% 34.34%

Medical Condition With 46.37% 26.01% 38.92% 13.31%
Without 32.21% 33.88% 69.98% 34.53%

Region Urban 37.81% 35.8% 63.82% 37.96%
Rural 10.79% 23.09% 78.85% 11.43%

Sample Size 72235 130939 95323 181132
Number of Positives 24106 43712 63504 60378

Note: since the distributions of the travel mode usage are highly skewed, for each dependent
variable the data is balanced so that the ratio of the major outcome class to the minor outcome
class instances is 2:1.

Table C2: (Cont.) Summary statistics of dependent variables by protected variables in the
training data set
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Appendix D

Convergence of Loss Values in the Training

Process

The convergence of loss values during the training process is shown in Figure D1, where we

try to mitigate the prediction disparity between rural and urban residents when predicting

the frequent usage of rideshare using DNN. The bias mitigation weight is 0.8. The primary

loss refers to (1 − 𝜆) times the cross-entropy loss which is used to increase the prediction

accuracy, whereas the fairness loss refers to 𝜆 times the correlation loss which is applied to

mitigate the prediction bias. The total loss is computed as the sum of the primary and the

fairness loss.

From Figure D1a, we can see that in the first few epochs, the reduction of total loss is

mainly driven by the reduction of fairness loss as the values of both losses drop sharply.

As the fairness loss drops to nearly zero, the algorithm then primarily tries to mitigate the

(a) Training data (b) Testing data

Figure D1: Change of loss values in the training process. Protected variable: urban-rural divide;
dependent variable: the frequent usage of rideshare; mitigation weight (𝜆): 0.8.
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prediction loss, while the fairness loss remains very small in the following training steps.

The testing data shows similar trends of loss values during the training process (Figure

D1b), except that the fairness loss never drops to the near-zero level. All in all, Figure

D1 illustrates how our bias mitigation method works, and how the algorithm manages to

substantially reduce the fairness loss at the early stage of training.
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