
JamNSync: A User-Friendly, Latency-Agnostic
Virtual Rehearsal Platform for Music Ensembles

by

Nanette Wu

B.S. Computer Science and Engineering and in Music
Massachusetts Institute of Technology, 2020

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 27, 2021

Certified by. .
Eran Egozy

Professor of the Practice, Music Technology
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

JamNSync: A User-Friendly, Latency-Agnostic Virtual

Rehearsal Platform for Music Ensembles

by

Nanette Wu

Submitted to the Department of Electrical Engineering and Computer Science
on May 27, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Existing technologies that support virtual rehearsals are complex and unintuitive.
Network music performance platforms promise real-time interactions between physi-
cally separated musicians, but they demand hard-to-achieve network conditions, lack
rehearsal-specific features, and require extensive knowledge of network jargon. JamN-
Sync, designed with musicians in mind, proposes a hassle-free alternative. The JamN-
Sync web application offers a recording-based, synchronous rehearsal experience using
a novel consensus protocol. Each musician only needs a basic understanding of play-
back systems and common audio devices. To account for non-deterministic audio
latency in the browser, JamNSync provides a user-friendly audio alignment tool that
efficiently automates audio processing and produces a group mix ready for immediate
feedback. Three rounds of user testing show that JamNSync holds significant ad-
vantages over current virtual rehearsal solutions. By providing an intuitive platform
for physically distanced groups to rehearse, JamNSync enables musicians around the
world to remotely make music together. This is especially valuable during times of
social isolation.

Thesis Supervisor: Eran Egozy
Title: Professor of the Practice, Music Technology

3

4

Acknowledgments

First and foremost, I would like to express immense gratitude to Eran Egozy, who

has been a mentor in every aspect of my college experience. Under his unparalleled

guidance, I’ve taken on more projects that I could have ever imagined, from anno-

tating Lincolnshire Posy for NoteStream, to developing guitar-learning software for

IMS, and even traveling to Miami to run ConcertCue with the New World Symphony.

Seeing Eran’s passion for coding and music has taught me to not only care immensely

about what I do, but also have high expectations to work hard to exceed. And that

nothing is impossible (like a 115-page thesis written in one month), give or take some

sleep. There are so few people who share our interest in music technology, clarinet

playing, and stuffed animal Zoom show-and-tells, and I am extremely fortunate to

have been mentored by Eran throughout my five years at MIT.

To my friends at the Music Technology Lab, Julia Fiksinski, Madi Wong, Crys-

tal Wang, and Emily Hu: at the end of a stressful week, I knew I could count on

memes, sleep-deprived conversations, and shared commiseration over classes to make

everything feel better.

To the music faculty at MIT, Evan Ziporyn, Natalie Lin Douglas, Eileen Huang,

Kristian Baverstam: thank you for being extremely supportive of my growth in music,

especially during the virtual pandemic 2020-21 school year. My world view of music

has changed so much during college. If it weren’t for how much I enjoyed the eclectic

and fruitful MIT music experience, I wouldn’t have wanted to commit an extra year

to write this thesis in music technology.

To my CMS group, Thomas Xiong (the stats and Z-Center king), Sylvia Biscov-

eanu, and Amy Jin: thank you for playing Messiaen with me this year and helping

me user test time after time. Not only did you guys remind me to sleep, but you guys

also boosted my mood every time we got to rehearse (in-person!) together.

Finally, to my amazing friends, An Jimenez, Priscilla Wu, Emily Zhang, and

Diana Flores, and the best mom in the world, Gangzhu Chen: thank you for being

immensely supportive in every step of this thesis. You guys are the best! (>ˆˆ)>

5

6

Contents

Chapter 1 Introduction 17

Chapter 2 Background 23

2.1 Small Group Music Rehearsals . 23

2.1.1 In-Person . 23

2.1.2 Virtual . 24

2.1.3 Characteristics of Effective Rehearsals 25

2.2 Computer Networks . 26

2.2.1 Best Effort Internet . 26

2.2.2 Transport Layer Protocols . 26

2.2.3 Port Forwarding . 27

2.2.4 Internet Connection Types . 27

2.2.5 Audio Device Connection Types 28

2.2.6 Network Architectures . 29

Chapter 3 Related Work 31

3.1 Generic Video Conferencing Systems 31

3.2 Real-Time Music Rehearsal Systems 33

3.3 Online Digital Audio Workstations (DAWs) 35

3.4 Home-Spun Solutions . 37

3.5 Summary . 39

Chapter 4 Design 41

7

4.1 Virtual Rehearsal Process . 41

4.2 Design Goals . 42

4.3 System Architecture . 43

4.4 Real-Time Rehearsal Protocol . 44

4.5 Data Organization . 46

4.6 Frontend: Client UI . 48

4.6.1 Client Usage . 55

4.7 Backend: API Design . 57

Chapter 5 Implementation 59

5.1 Frontend: React . 59

5.2 Backend: Flask . 60

5.3 Data: PostgreSQL/AWS . 61

5.4 Deployment: Heroku . 61

5.5 Technical Challenges . 62

5.5.1 Technology Differences and Inconsistencies 62

5.5.2 MP3 Web Recording Logic . 63

5.5.3 Aligning Tracks with Browser Latency 64

Chapter 6 Testing and Evaluation 65

6.1 Round 1: Solo (1 Musician) . 66

6.1.1 Tasks . 66

6.1.2 Results . 68

6.2 Round 2: Duets (2 Musicians) . 71

6.2.1 Tasks . 73

6.2.2 Results . 75

6.3 Round 3: Duets, Trio, Quartet (2-4 Musicians) 83

6.3.1 Tasks . 84

6.3.2 Results . 85

6.4 Analysis and Evaluation . 93

8

Chapter 7 Conclusion 101

7.1 Contributions . 101

7.2 Future Work . 102

7.2.1 Feature Improvement . 102

7.2.2 Feature Development . 103

7.2.3 Scalability . 104

Appendix A Software Libraries 105

Appendix B User Test Questionnaires 109

9

10

List of Figures

1-1 A screen capture of interacting with Jacktrip, a system that supports

bidirectional audio streaming using a command line interface. While

functional, this is inherently complicated for musicians. 18

1-2 A screen capture of a quartet rehearsing with JamNSync. 20

2-1 The client-server model. Clients A-F connect to the centralized server

[15]. 29

2-2 The P2P model for virtual rehearsals. Each node (A-D) represents a

musician, and each double arrow represents a connection between two

musicians [15]. 30

4-1 Virtual rehearsal as a “feedback loop”. 41

4-2 Main components of JamNSync system design with three musicians. . 44

4-3 Initial request of group record or group play using RTR. 45

4-4 Request of group stop using real-time rehearsal protocol. 46

4-5 Entity-Relationship diagram. 47

4-6 Home page interface: not logged in (top) and logged in (bottom). . . 48

4-7 Groups page interface. 49

4-8 Add (top) and remove (bottom) member modals in the Groups page. 50

4-9 Projects page interface. 50

4-10 DAW-like project page with two connected users. 51

4-11 Project page for a quartet where a single part is soloing. 52

4-12 Group buttons used to synchronize rehearsals. 53

11

4-13 Group play modals. The left image shows the request for playback

that is broadcast from the server, after a client initiates the group

play. The right image shows the alert for an immediate stop, after a

client initiates the group stop. 53

4-14 Group record modals. The left image shows the request for recording

that is broadcast from the server, after a client initiates the group

record. The right image shows the alert for an eventual stop, in which

the recording only stops after the client acknowledges the pop-up. . . 54

4-15 Audio alignment tool. 55

4-16 Frontend system flow. 56

6-1 Interface of groups listing page for individual test. 67

6-2 Interface of digital audio workstation (DAW) page for individual test. 67

6-3 Interface of audio alignment test for individual test. 68

6-4 Left: number of users who used each type of audio input device. Right:

number of users who used each type of audio output device. 71

6-5 Interface of home page for logged-in user for duet test. 72

6-6 Interface of DAW page with one active user (left) and two active users

(right). 74

6-7 Interface of alignment tool to line up a recording to a backing track. . 75

6-8 Left: interface of pop-up to request recording for the entire group. A

similar interface exists for playback. Right: interface of pop-up alert to

notify the user that a group member has stopped recording or playback. 76

6-9 Left: ratings of perceived audio quality (mean=4.6, stdev=1.9). Right:

audio input type vs. perceived audio quality ratings. 77

6-10 Example usage of JamNSync with split screen sheet music and Zoom

running in the background. 79

6-11 Left: number of users who used each type of audio input device. Right:

number of users who used each type of audio output device. 85

12

6-12 Left: ratings of perceived audio quality (mean=5.63, stdev=1.50).

Right: audio input type vs. perceived audio quality ratings. 87

6-13 User demonstrates aligning harmonies of the same part, where the

recording is visually similar to the backing mix. 92

6-14 Using a scale from 1 to 7, this figure shows the distribution of the

likelihood one would use JamNSync if in-person rehearsals were not

possible. The mean was 5.4 (std=1.26, sample size 10) for Round 2

and 6.21 (std=0.79, sample size 19) for Round 3. 94

6-15 Using a scale from 1 to 7, this figure shows the distribution of the like-

lihood one would use JamNSync if in-person rehearsals were possible.

The mean was 2.3 (std=1.41, sample size 10) for Round 2 and 3.31

(std=1.73, sample size 19) for Round 3. 94

6-16 Rating of prior experience making audio recordings versus familiarity

with a DAW (𝑅2 = 0.754, p-value = 3.82e−8). The more experience a

user had with recording, the more likely they were familiar with editing

and mixing recordings. 98

6-17 Rating of experience with application navigation versus experience set-

ting up a project (𝑅2 = 0.539, p-value = 6.39e−6). The easier a user

found it to navigate the application, the easier it was for them create

a group and set up a project. This shows that users had similar ex-

periences during non-music portions of JamNSync’s virtual rehearsal -

perhaps with higher ratings for more tech-savvy people and vice versa. 99

6-18 Rating of perceived audio quality versus rating of group feature intu-

itiveness (𝑅2 = 0.288, p-value = 0.0027). As mentioned previously,

poor audio quality in recordings greatly impacted playback of multi-

ple files simultaneously. Groups who produced high quality record-

ings tended to have a better experience during synchronized playback

and rehearsal, resulting in a more positive overall experience using the

group features. 99

13

6-19 Rating of overall experience using JamNSync versus rating of the align-

ment tool’s ease-of-use (𝑅2 = 0.290, p-value = 0.0173). People who

had a better experience with JamNSync seemed to find the alignment

tool easier to use. 100

B-1 Google Form used to conduct Round 2 of User Testing (Part 1 of 2) . 109

B-2 Google Form used to conduct Round 2 of User Testing (Part 2 of 2) . 110

B-3 Google Form used to conduct Round 3 of User Testing (Part 1 of 2) . 111

B-4 Google Form used to conduct Round 3 of User Testing (Part 2 of 2) . 112

14

List of Tables

6.1 Summary of Task 1 Results for Round 1 69

6.2 Summary of Round 2 Users . 73

6.3 Summary of Round 2 Google Form Ratings 75

6.4 Summary of Round 3 Users . 84

6.5 Summary of Round 3 Google Form Ratings 86

6.6 Comparing Rating Means from Round 2 and 3 93

15

16

Chapter 1 Introduction

Ensemble music-making is deeply rooted in the empathy and humility of collabora-

tion. Working together with a small group to perform classical music, in particular,

is an intimate experience that fosters a sense of community among both musicians

and audiences.

However, the recent COVID-19 pandemic abruptly severed connections within

these communities. While many working environments like schools and offices quickly

adapted to remote forms of communication, music groups struggled to find their place

in the virtual world. What once was a straightforward procedure to coordinate a

rehearsal became more of a logistical nightmare, wrangling uncooperative technology

to make recordings online and fighting bureaucratic processes to reserve spaces. Even

if groups found ways to get together in person, the act of rehearsing became a risky

activity that required extensive safety measures, especially for musicians that utilized

air in their performance (e.g. wind instrumentalists, vocalists).

Without accessible options to rehearse and perform, opportunities to play music

dwindled. However, at the start of the pandemic, there was an urgent need to devise

alternative methods to rehearse despite physical isolation. As such, people started

investigating tools that would enable virtual music collaboration.

In the early 2000s, network music performance (NMP) was developed to allow a

group of physically isolated musicians to interact over a network and perform as if they

were in the same room [23]. While the concept sounded nice in theory, applications

of network-based musical interaction never made big breakthroughs in practice. Due

to the time-sensitive nature of ensemble playing, it was difficult to design rehearsal

platforms that were both efficient and user-friendly. Many intrinsic characteristics of

17

the Internet, like best-effort delivery, were well-suited for most use cases of the web,

but not for low-latency audio streaming [10].

Initial NMP implementations attempted to work around limitations in network

infrastructure. Some solutions sacrificed audio quality to reduce data transfer latency.

Others removed the visual component of music performances altogether to preserve

network bandwidth [17]. However, these compromises resulted in partial solutions

on platforms that lacked usability for musicians, who are less familiar with technical

jargon. People who actually tried these NMP solutions ended up devoting much of

their rehearsal time to wrestling uncooperative technology and tolerating unintuitive

methods of rehearsing. Figure 1-1 shows one such example [11].

Figure 1-1: A screen capture of interacting with Jacktrip, a system that supports
bidirectional audio streaming using a command line interface. While functional, this
is inherently complicated for musicians.

18

Despite technological difficulties, there are still benefits to rehearsing virtually.

The Bay Berry String Quartet, a professional ensemble that relies heavily on remote

collaboration, is a strong proponent of the flexibility of virtual rehearsals as well as the

greater attention to detail resulting from the recording process [9]. Technology-based

rehearsals enable group members—at a time that best fits their schedule—to parse

out individual parts for better score comprehension and understanding of musical

decisions. This motivates a musician to take strong ownership of their parts by

paying closer attention to rhythm, intonation, and dynamics while recording. For

these reasons, there was sufficient interest to build better online rehearsal solutions.

The proliferation of commodity software and hardware enabled improved NMP

implementations with fewer trade-offs, grouped in four categories: generic video con-

ferencing systems, real-time music rehearsal systems, online digital audio worksta-

tions, and home-spun solutions (detailed in Chapter 2). Video conferencing solutions

have a simple set up process but do not prioritize music-making, resulting in extensive

audio latency and bandwidth issues. Real-time rehearsal systems offer music-specific

features but use low-latency connections, requiring specialized hardware and confus-

ing network configurations. Online digital audio workstations (DAWs) provide an

interface for users to record and edit audio directly in the browser, but lose the im-

mediacy to iterate and discuss with a group. Home-spun solutions are conveniently

asynchronous but require extensive post-processing by a single person to mix record-

ings.

While these four categories of solutions have evolved the NMP landscape, they

demand particular skill-sets and significant resources from the user. Steep learning

curves, unintuitive user interfaces, and poor audio quality all contribute to the grow-

ing pains of adopting a single NMP solution. As such, a clear winner has yet to

emerge among existing tools, creating a gap between what currently exists and what

a musician wants. This poses the research problem of investigating the possibility of

both effective and user-friendly virtual rehearsal systems.

This thesis presents JamNSync, an accessible, comprehensive solution that en-

capsulates key aspects of an in-person rehearsal (Figure 1-2). By abstracting away

19

underlying complexities of the technology, JamNSync allows musicians to rehearse in

real-time using a collaborative recording session in the browser. This system bridges

the aforementioned gap by focusing on usability — a tool created for classical musi-

cians by classical musicians.

Figure 1-2: A screen capture of a quartet rehearsing with JamNSync.

JamNSync is a web application that streamlines the virtual music-making expe-

rience for small music groups (i.e. 2 to 5 people). The user interface is a React-based

website hosted on a Flask server that facilitates storing, processing, and aligning of

tracks in real-time. To use the application, a musician just needs a microphone and

headphones to record and playback their part. They can meet their rehearsal group

on a project-specific page that resembles a lightweight DAW. There, group members

can coordinate logistics, synchronously make recordings, playback the ensemble mix

in a built-in media player, and iterate on their recordings.

20

JamNSync makes the following contributions to the broader discipline of NMP:

• A user-friendly, latency-agnostic virtual rehearsal tool for groups to record

and playback their piece with simple setup, all without sending real-time

audio over the network.

• The Real-Time Rehearsal protocol, a distributed consensus algorithm to

synchronize group recording and playback using WebSockets.

• An audio alignment tool that compensates for inconsistent browser latency

by allowing users to visually align (i.e. drag) their recording to match a backing

mix.

• A DAW-like, versioned recording system that allows a group to easily

upload, download, and share audio files.

• Built-in per-group project organization, which gives a group easy access to

manage the same set of pieces.

• A virtual rehearsal solution resembling an in-person rehearsal that allows

musicians to see their group members over a video stream and immediately

discuss what they played together.

The rest of this thesis explains the details of the JamNSync system. Chapter 2

provides background on music rehearsals and computer networks. Chapter 3 discusses

related work on NMP applications. Chapter 4 outlines the system design in terms of

frontend, backend, and data. Chapter 5 describes the system’s web-based implemen-

tation. Chapter 6 evaluates the system through user tests. Chapter 7 contains the

conclusion and future work.

21

22

Chapter 2 Background

This chapter provides an overview of small group music rehearsals (in-person and

virtual) and computer network terminology.

2.1 Small Group Music Rehearsals

2.1.1 In-Person

In a traditional in-person context, ensembles meet regularly to prepare for perfor-

mances, ranging from weekly meetings to a few rehearsals the week before a concert.

Rehearsal lengths can vary between one and three hours. The process begins with

communication over email or group chat to coordinate a time and place to meet.

On the day of the rehearsal, group members travel to their predetermined location.

They often arrive five to ten minutes early to arrange chairs and warm-up. Warm-up

includes tuning among string and wind instrumentalists, playing technical exercises,

and last-minute practicing of tricky excerpts.

After everyone has arrived, the group selects the subset of pieces to rehearse

and where to begin rehearsing. Everyone then flips their sheet music to the agreed

starting point. One group member visually cues to synchronize the start, much like

how a conductor cues the beginning of an orchestral piece. The first run-through

usually involves playing from start to finish, unless major issues required restarting.

Playing a piece from beginning to end allows musicians to identify trouble spots,

which are isolated for detailed work. Variations of rehearsing include playing slower

with a metronome (match tempo and stylistic choices), louder (check intonation and

23

blend of sound), softer (gauge balance and overall volume), and in pairs (work on

strict alignment with a subset of instruments). Once a group makes corrections, they

usually play more run-throughs, each of which is followed by a discussion to share

suggestions to improve the ensemble work. In some cases, musicians use their phones

to make audio recordings and track the progress of their piece.

Once a group finishes practicing their first piece, they repeat the process with

the next, discussing where and what to play and proceed to rehearse again. At the

conclusion of the rehearsal, group members discuss what to work on, clean the room,

and travel home.

2.1.2 Virtual

Much like the process of coordinating in-person rehearsals, the process of coordinat-

ing virtual rehearsals begins with communication over email or group chat. Groups

pick a time and virtual "meeting place" like an audio or video call. For synchronous

rehearsals, each group member must find a quiet space with sufficient Internet band-

width to participate. They typically require fifteen to thirty minutes to set up their

technology by testing audio levels, configuring network cables, and connecting exter-

nal input devices like cameras. As before, musicians will individually warm up, but

tuning occurs relative to a fixed pitch (e.g. mobile app tuner) rather than to other

group members.

After everyone arrives in the virtual space, the group verifies that each member can

be heard properly, diagnosing potential issues like echoing and microphone distortion.

The group then selects a subset of pieces to rehearse and the starting location in the

first piece. Everyone then flips their sheet music to the agreed starting point.

If the rehearsal occurs on a real-time platform (detailed in Section 3.2), a group

member might verbally count off or breathe sharply to provide an aural cue. Without

in-person body language, this helps a group start the piece together. If the rehearsal

occurs on an asynchronous platform (detailed in Section 3.4), a group needs to clearly

articulate and agree on a set of logistical steps. First, a group must agree on and

distribute a backing track (click track created from a tempo map) to ensure that

24

individually recorded parts are aligned. Then, they choose the order of recording (e.g.

piano records to the backing track, cello records to the piano part, violin records to

piano and cello). Finally, the group needs to decide how to promptly distribute their

audio file to the group (e.g. using a cloud file system).

Once group members listen to each other play, they discuss musical decisions about

their pieces. The primary form of communication is aural (e.g. voice) and sometimes

visual (e.g. text, video), which becomes challenging due to a lack of body language

and eye contact. Once the group reaches a consensus about points of improvement,

they will rehearse the piece again.

This process repeats for each piece the group works on. After a group finishes

rehearsing, they reconnect in their virtual space, discuss their next meeting agenda,

then disconnect their technology setup.

2.1.3 Characteristics of Effective Rehearsals

At each meeting, groups aim to have productive rehearsals by making significant

progress on their repertoire. Effective in-person and virtual rehearsals have these

desirable characteristics:

• Rehearsal groups spend most of their time making music: setup time should be

minimal and straightforward, so musicians can focus on making music.

• Everyone is a conductor: group members should actively influence each other

during rehearsals. Although one person cues the start, rehearsals should not

be constrained to having a single leader. Instead, rehearsals are a collaborative

effort, in which musicians react to each other in real-time.

• Iteration cycles are fast: a group immediately addresses points of improvement

after identifying them. The time between rehearsing run-throughs of the same

piece should be minimized.

• Rehearsing fosters a sense of community: it is important for each group member

to feel connected to their group. A group rehearsal is just as much a social

experience as it is a musical one.

25

2.2 Computer Networks

A computer network shares information by adhering to an agreed set of rules. The

following section provides an overview of network concepts relevant to NMP.

2.2.1 Best Effort Internet

The Internet is a system architecture designed to connect networks in geographi-

cally separated locations. Properties of the Internet’s original design still hold today,

including the notion of a “best-effort” network [14]. When transporting data, the net-

work ensures fairness among users by offering no guarantees for reliability or quality

of service. As such, the Internet does not bias certain users or data types. In the

context of NMP, the notion of best-effort poses challenges in providing high quality

audio streaming. Unpredictable network conditions cause latency and packet loss,

which are difficult to counteract in real-time [17].

2.2.2 Transport Layer Protocols

The Open Systems Interconnection (OSI) model describes a computer network using

seven abstract layers. The fourth layer is the transport layer, responsible for creating,

managing, and closing end-to-end communication between devices. Two transport

layer protocols accommodate different application needs.

Transmission Control Protocol (TCP)

TCP supports reliable data delivery. Key characteristics include the handshake (i.e.

establishes initial connection), congestion control (i.e. uses acknowledgments to en-

sure in-order delivery), and data streams split into small packets. Packets are deemed

lost when acknowledgments are stale, requiring immediate retransmission before the

next packet can be sent. However, unnecessarily retransmission can clog a network

to the point that no connection can make useful progress [18]. Since high latency

inhibits real-time virtual rehearsals, a more rapid method of data delivery is needed.

26

User Datagram Protocol (UDP)

UDP establishes low latency for connections that can tolerate loss. UDP avoids

much of the performance overhead in TCP by not guaranteeing reliable delivery. No

handshakes are needed, as no long-running connections are used to send messages

between devices. No acknowledgments are needed either, since UDP does not require

a response from the receiving party before sending data. Without needing to strictly

monitor data transfer, messages can be sent quickly but be lost or out-of-order. Since

real-time audio streaming prioritizes speed over quality, it is often better to use UDP

over TCP in NMP applications.

2.2.3 Port Forwarding

In a residential network, devices can access the Internet through a cable modem

connected to a router, a network component that sends and receives data. Modern

home routers are based on network address translation (NAT), which uses the router

as an agent between the Internet (public network) and the local home network (private

network). When public network requests arrive at a router, NAT redirects them to a

specific device within the private network. This makes private hosts publicly available

by remapping the destination address to the internal host.

To use UDP in virtual rehearsals, port forwarding must be enabled on a router. To

modify traffic flows, NAT needs to set up the appropriate forwarding state for a group

to reach each other’s private networks. Each group member sets aside a port number

on the router that can exclusively access a service in the private network. Given

that port number and the router’s public IP address, external hosts can communicate

with the internal service, allowing group members to connect in real-time and stream

low-latency audio.

2.2.4 Internet Connection Types

Two common ways to connect to the Internet use wired and wireless connections.

27

Wired (Ethernet)

Ethernet connections use physical cables between the router and the device. Iso-

lated wired connections provide reliability and stability in data transmission, as well

as high-quality data transfer. For NMP, Ethernet can support low-latency audio

streaming, but is less common in typical households. Since hardware is needed to

make an Ethernet connection, wired setups also tend to limit user mobility.

Wireless (Wi-Fi)

Instead of using wires, Wi-Fi uses radio frequency signals to connect devices to the

Internet. The main advantage of using Wi-Fi over Ethernet is convenience. Most

households have routers that, by default, support Wi-Fi connections. However, wire-

less connections are less reliable and have unpredictable latency characteristics. They

are also prone to interference by physical barriers (e.g. walls) and connections from

other devices. In the NMP context, Wi-Fi is suitable for asynchronous platforms, but

cannot support low-latency audio streams between users.

2.2.5 Audio Device Connection Types

In NMP, audio devices are needed to record input (microphone) and playback output

(speaker). Audio devices can connect to an Internet-enabled device in two ways.

Wired (Audio Jack)

Traditionally, audio devices are connected by plugging a physical cable into to an

audio jack. Wired devices generate high quality recordings by sending analog signals,

which are uncompressed and have very low latency.

Wireless (Bluetooth)

Wireless audio devices, which have seen a recent rise in popularity, use radio trans-

mission technology like Bluetooth to transport audio signals. People prefer wireless

to wired headphones for their portability and convenience of unrestricted movement.

28

However, wireless headphones are unsuited for NMP due to high latency. As such,

wired connections are typically necessary to participate in virtual rehearsals.

2.2.6 Network Architectures

Two popular network architectures establish connections between users: the client-

server model and peer-to-peer model. For NMP, one is not necessarily better than

the other; trade-offs are discussed below.

Client-Server Model

The client-server model is a traditional network model with a centralized manager

(server) that provides resources to a user (client). A server has a one-to-many rela-

tionship with clients, allowing it to simultaneously communicate with multiple users.

Figure 2-1: The client-server model. Clients A-F connect to the centralized server
[15].

Once a client successfully connects to the server, the connection is held open for

subsequent communication. The client-server model works well for virtual rehearsals

when a group lives in close proximity (i.e. in the same city, to reduce packet travel

distance). The server provides a virtual rehearsal space that users can share and

join. It also handles concurrent updates to enforce consistency and safe access to

shared data (e.g. audio files, rehearsal state). The main disadvantage of client-server

is increased latency between end-users (i.e. routes must include extra hops to the

server to determine the packet destination’s physical location). Other disadvantages

29

include higher initial setup cost to configure and maintain a server and a single point

of failure (i.e. if the server crashes, the system is entirely unavailable).

Peer-to-Peer (P2P) Model

The P2P model is a distributed application architecture that allows interconnected

users (peers) to communicate without a centralized manager. Originally created to

form groups and share audio files for Napster, the P2P model is inherently designed

for collaborative use [27].

Each peer is an equal participant that makes a portion of their resources available

to other network participants. By design, a peer is both a supplier and a consumer,

which distributes work more evenly among nodes than the client-server model does.

Figure 2-2: The P2P model for virtual rehearsals. Each node (A-D) represents a
musician, and each double arrow represents a connection between two musicians [15].

For virtual rehearsals, the main advantage of P2P is a direct connection between

users that do not need to pass through the server. Used on top of UDP, P2P direct

routing has the potential to transmit audio data very quickly. Another advantage is

resiliency: even if one computer goes down, the system remains available and easily

recoverable (i.e. other users can continue communicating while the node reconnects).

The main disadvantage is that the number of connections increases significantly for

each user added to the network. When the number of users becomes too high, send-

ing data across a fully connected network becomes unwieldy, significantly increasing

local CPU cost. However, as shown in Figure 2-2, the network complexity is still

manageable for small group rehearsals.

30

Chapter 3 Related Work

This chapter introduces related works that currently implement software-based music-

making. Four categories of NMP applications include generic video conferencing

systems, real-time music rehearsal systems, online digital audio workstations, and

home-spun solutions [34]. The subsections below describe benefits and pain points of

each category.

3.1 Generic Video Conferencing Systems

Generic video conferencing systems refer to software initially designed for remote

meetings and later adapted for music rehearsals. Real-time video support and simple

set-up processes drew musicians to these platforms. However, these solutions do not

prioritize music-making use cases. Features that popularize these systems directly

conflict with the goals of synchronous music playing, which is unideal for virtual

rehearsals.

Zoom is a comprehensive enterprise product that hosts virtual meetings [35]. Mu-

sicians flocked to this platform because of its widespread popularity during the pan-

demic. Unfortunately, many barriers arose from Zoom’s non-music specific features

like noise cancellation and single-speaker voice optimization. This made synchronous

rehearsals, where all musicians should hear each other at once, nearly impossible.

A common workaround is to do a round-robin rehearsal: one group member, the

“leader”, remains unmuted, while the rest of the group mutes themselves and plays

along to the leader. For the ensemble to hear each part, group members take turns

being the leader. The key issue in this workaround is the lack of feedback among

31

musicians. The solo player cannot hear any other musician, while other musicians

can only react to the soloist. As group sizes get larger, this process requires more

iterations, making the rehearsal process more tedious and time-consuming. For groups

like jazz combos that could tolerate some degree of latency, an alternative approach

was to intentionally ignore the delay and attempt playing synchronously. However,

variable latency, compounded with unpredictable network congestion and buffering,

also caused audio stream dropouts and artificial tempo variation. Thus, poor audio

quality prevented adoption of this idea.

Other audio issues in Zoom exacerbated the limited opportunities of feedback,

including audio that was tailored specifically to the human voice due to acoustic

filters that erroneously filtered out frequency bands of non-vocal instruments. To

compensate for this, Zoom users can turn on “original sound" to apply a less aggressive

filter. Not only was lots of manual tweaking required to determine how to reduce

sound distortion, but the audio quality was also still clearly lacking. These approaches

to work around an enterprise-oriented application are not authentic to an in-person

rehearsal.

WebEx is a popular competitor of Zoom that offers a similar set of enterprise

features [33]. Like Zoom’s “original sound," WebEx’s “music mode” preserves a mi-

crophone’s original feed. A primary difference between WebEx and Zoom is the

pricing of premium features: WebEx tends to be more affordable at a cap of 50 par-

ticipants per meeting. Nonetheless, WebEx’s features uncovering similar issues found

in Zoom.

Jitsi is a free platform that provides high video quality and encryption [22]. A

key factor that distinguishes Jitsi from other video conferencing systems is the open-

source nature of the tool. Unlike Zoom or WebEx, which requires a premium plan

for full use, Jitsi provides free meetings with unlimited meeting durations. However,

because Jitsi still prioritizes video conferencing specific features, it lacks an option

to toggle a “music mode." Instead of using Jitsi as the sole platform for rehearsing,

musicians often use Jitsi to complement virtual rehearsals (Section 3.2).

32

3.2 Real-Time Music Rehearsal Systems

Real-time music rehearsal systems refer to software specifically designed to address

audio synchronization for NMP. Current research suggests that a realistic musical

interaction between two rhythm-based instruments requires a one-way latency less

than 25 milliseconds [10]. Any larger value results in tendencies that awkwardly drag

the tempo of the music.

To achieve low latency network conditions, musicians need to use wired audio de-

vices to minimize latency. Some rehearsal systems also require home network routers

to use Ethernet and support UDP port forwarding. However, this is often difficult for

an average musician to set up and coordinate, especially to achieve optimal network

conditions.

Founded by Stanford’s CCRMA, Jacktrip is a multi-platform, high-quality P2P

solution supported by UDP that supports bidirectional audio streaming [11]. The

significant reduction in low latency, ability to work with commodity hardware, and

low financial investment make Jacktrip an appealing platform for musicians. Although

Jacktrip allows fine-grained control over network settings, like packet size, frames per

period, and bandwidth, the terminal-based interface to discover other Jacktrip clients

is unintuitive. Using IP addresses to connect to other musicians over the network

made Jacktrip difficult to use for the average user [34].

Developed as a reaction to Jacktrip’s unfriendly interface, SoundJack is another

UDP-based P2P solution that provides low latency communication [29]. A prop-

erly configured SoundJack system results in an in-person-like audio experience using

an Ethernet cable plugged into a computer network port or an external Fastmusic

box [31], a dedicated processor with pre-configured audio and network settings that

minimize latency. To improve usability over Jacktrip, SoundJack provides a browser-

based "stage" interface to easily connect to other users without needing to know each

other’s IP addresses. Many musicians also prefer SoundJack to other real-time re-

hearsal systems because of its ideal balance of features, flexibility, and complexity.

However, there is still room for improvement to make the user interface easier to use.

33

Currently, settings for low-level network parameters (e.g. jitter buffer, sample rates)

are still graphically unintuitive, time-consuming to tune, and inherently complicated.

SoundJack also disconnects frequently without notifying the user and produces delays

that are hard to diagnose. These silent failures can stall the process of synchronous

rehearsals, making it difficult to know if an issue is rooted in the equipment, the

setting configuration, or the platform itself. Becoming comfortable with this system

requires overcoming a steep learning curve, thus preventing widespread adoption.

Jamulus uses a public client-server model to coordinate musicians to jam with

their ensemble in real-time over a broadband connection [16]. Because Jamulus uses

a client-server model, packet transmission requires more network hops, making it

intrinsically harder to achieve the desired 25 ms latency. Instead of a single hop from

the source to the destination, two hops are needed to pass through the centralized

server, which directs packets to the appropriate target address. Even though an

appropriately set up recording environment in Jamulus offers high quality audio and

some degree of low latency, the user interface is outdated and much too complicated

for the average user to understand, much like SoundJack. As such, Jamulus is difficult

to set up and manage during a virtual rehearsal, and its architecture is not conducive

to guaranteeing low latency.

Jamkazam is a live music platform that was developed out of efforts to reduce

latency in cloud gaming [21]. Unlike Jamulus, Jamkazam allows users to choose be-

tween client-server and P2P architectures, depending on which model is faster for

where the user is located. Options of using an audio interface and Ethernet cables

are recommended but not required to use the application. A distinguishing feature of

this platform is the use of JamTracks: fully isolated multi-track backing tracks stored

in the cloud. While tools like SoundJack and Jamulus only offer a virtual space for

rehearsals, Jamkazam provides a library of material for musicians to work with. The

main issue with Jamkazam is its unintuitive front-end, despite claiming to offer a

user-friendly interface to mix track. New features randomly pop up in new windows

without a clear sense of organization, making application navigation confusing. Op-

tions and features are often described with wordy yet vague text description; it is

34

unclear which buttons and modals are actually interactive.

Cleanfeed is a multi-party, browser-based high definition live audio recording tool

that uses any Internet connection over TCP [12]. Designed for easy use and high

quality, Cleanfeed relieves the user of configuring low-level network parameters such

as setting buffer sizes. Cleanfeed is heavily used by broadcasters, podcasters, and

producers to allow studio operators to interact with remote guests and co-hosts with

few to no audio dropouts. However, Cleanfeed does not operate as a real-time system

for synchronous rehearsal; the desired simultaneity of virtual rehearsals cannot be

achieved because Cleanfeed does not attempt to obtain a 25 ms latency.

NINJAM is an open-source, centralized system that uses a unique representa-

tion for organizing recorded music [24]. Instead of defining tracks in terms of time

(e.g. seconds, minutes), NINJAM is based on the idea of looping music in terms of

well-defined sections such as 16-beat chunks. Because this system accepts that true

real-time synchronization is near impossible, NINJAM records and streams smaller

intervals of compressed music that are flexible with larger latency values [34]. Rather

than rehearse full-length pieces, musicians play along to previously recorded buffers of

their ensemble members. Since NINJAM is also compatible and frequently used with

Reaper, a popular DAW application for mixing technology-based music, NINJAM

is more suitable for music genres that emphasize repeating sections (e.g. electronic

dance music, pop music) and improvisation (e.g. jazz), as opposed to classical music.

3.3 Online Digital Audio Workstations (DAWs)

A DAW is an application used to record and edit audio files. While real-time systems

are specifically designed for group rehearsals, DAWs are typically intended for a single

person. However, a DAW-based framework for group rehearsals uses recording and

producing software in a way that is not its primary purpose.

Online DAWs are browser-based: they create a platform that lends itself well to

accessible and asynchronous music playing. In a typical online DAW rehearsal, one

musician records first (e.g. piano offers consistent tempo), followed by other group

35

members who asynchronously layer their tracks on the initial recording. Because

layered tracks are independent of each other, musicians can individually record at

their convenience—a major benefit to asynchronous rehearsals. Once all musicians

have recorded their parts, they export their project session as a combined group

recording, a representation of what a rehearsal might sound like. To discuss and

reflect on the recording, an ensemble might meet on a video conferencing platform like

Zoom to pinpoint areas of improvement. However, they are unable to immediately

work on identified issues and re-record on the spot. Each musician must instead

remember suggested changes for the next time they record, a task both more difficult

and unproductive than a synchronous rehearsal. Even though online DAWs provide

accessibility and flexibility for the user, major flaws stem from the loss of immediacy

of group rehearsals.

Soundtrap is a freemium browser-based cross-platform DAW acquired by Spotify

[30]. With video and text chat support, this user-friendly virtual music studio allows

musicians to collaborate in real-time with an extensive set of presets, automation,

and virtual instruments. The interface to record and playback audio tracks is well-

designed, as the visual feedback from navigating the webpage allows processes to be

self-explanatory. From an organizational standpoint, Soundtrap excels in allowing

users to organize projects into separate folders, allowing rehearsal groups to easily

track every project that is a work in progress. A musician can also invite their group

to join a session by simply sharing a web URL - no additional download or software is

needed. However, the collaborative aspect is limited: people can only see who else is

recording, listen to each other’s ideas, and discuss them in a video conference style. If a

user makes changes to a shared project page, the changes do not immediately populate

in their group member’s pages; the rest of the group can only view modifications by

manually refreshing after being prompted to do so. Synchronous performance and

immediate feedback are instrumental to virtual rehearsals but missing in Soundtrap.

Upbeat is a DAW-based platform that allows musicians to record music virtually

in real-time [32]. Upbeat offers simple recording features, unfiltered audio feeds, and

immediate playback after recording. Key features of Upbeat include a Jitsi-based

36

video feed, high quality audio stream, and an audio alignment tool that allows users

to adjust recordings based on a backing track. However, the process to transfer files

significantly impedes the rehearsal process. Upbeat requires a platform-specific file

type (.uptrk) and local audio storage. Tedious file upload and download add hassle

to the non-performing portions of the rehearsal, slowing down the rehearsal iteration

cycle. Furthermore, the visual and aural eight-beat countdown before a recording

begins (shown as two groups of four, always in a fixed tempo) is confusing for pieces

of different tempos or time signatures.

BandLab, an easy-to-use social music platform, offers a lightweight DAW that has

just enough features to run a virtual rehearsal [7]. Its interface allows musicians to

collaborate on projects with unlimited cloud storage. However, pain points include

track organization (i.e. need to make new groups for each piece), track alignment

(i.e. workstation does not consider possible delay from hardware and software - not

compatible with Bluetooth headphones and frequently need realignment), and lack of

features tailored for classical music (i.e. those familiar with more advanced recording

software, like Reaper, prefer interfaces with more functionality). Poor experiences in

setup and rehearsal turn away some users from continual usage.

3.4 Home-Spun Solutions

The previous three categories offered ways to rehearse synchronously. A home-spun

solution, however, is an asynchronous process that gives the illusion of synchronous

playing through an edited performance video. A popular example is the Zoom-like

grid of musicians who have separately recorded video and audio tracks but appear to

be playing in real-time to a listener.

To put together such a video, the group creates and distributes a backing track

to each member. Musicians follow the backing track to individually record their part

with a recording interface (e.g. Garageband, Reaper, Audacity), but cannot hear

their group members as they record. Completed recordings are uploaded to a shared

folder (e.g. Dropbox, Google Drive) that collects tracks from the group. A designated

37

member edits the tracks together and distribute the finished product. However, the

group can only iterate on their previous recording after reviewing the exported video

file. This process is inefficient and unrepresentative of a real rehearsal.

A common method of editing uses built-in computer software like Garageband

and iMovie for Mac. After video and audio files are collected, a designated editor will

mix the audio first by adjusting volume, balance, and equalizers in Garageband. The

audio mix is imported into iMovie along with the raw video files, which are used to

create a grid of videos. The completed video is exported and uploaded to a sharing

platform like YouTube for all members to stream, find points of improvement, and

discuss rehearsal methodologies.

While this process produces a perfectly aligned virtual performance, it is both

slow and artificial. Tools with more features like Reaper and Audacity have steep

learning curves that make them difficult to use. This also requires a cloud-based file

service (ex: Dropbox) to exchange files and a communication medium (ex: Zoom) to

review the mastered track, which puts a heavy burden on the designated editor to

manage files. Since audio editing can mask mistakes and intonation issues, musicians

also frequently overlook areas of improvement in their pieces.

Openshot is an open-source software that combines video and audio editing into

a single tool [25]. While a designated editor is still needed, Openshot expedites the

process of stitching together a video grid. However, issues of slow video distribution

and group discussion feedback are still present, limiting the number of iterations a

group can make per piece.

The Acapella App is a mobile split-screen video editor designed to create music

collaborations for up to nine people [1]. Unlike Openshot, this app has features

specifically designed for classical music projects. To produce a collaboration, all group

members need to download the application and decide on a recording order. The first

person to record has the most responsibility: they need to set up the project, decide

on a tempo, and choose the number of project tracks. These decisions are permanent

after project creation. The last person to record becomes the designated editor who

decides on the video layout, adjusts audio levels, and exports the completed project

38

to convenient messaging platforms (e.g. SMS). Compared to previous tools, this app

provides a simpler distribution process and a centralized space to manage recordings.

However, only one collaboration can be created at a time: free users can record only

up to one minute, and premium users can record up to ten minutes. The strict

limitation in file storage inhibits the possibility of long-term rehearsals, which are

also heavily dependent on parameters set by the first person who records.

Regardless of the platform used for media editing, a key issue of home-spun so-

lutions is the dependence on an individual. The manual editing process managed by

one person involves tedious data-wrangling to adjust video submissions (i.e. incon-

sistent file formats, lighting, frame ratios) and audio recordings (i.e. muting wrong

notes, pitch correction, balance) [26]. Moreover, a musician’s recording process be-

comes a lonely and repetitive exercise to attempt a flawless, high-quality track [19].

Thus, these home-spun solutions result in virtual music performances that are only

perceived to be in real-time and do not effectively replicate in-person rehearsals.

3.5 Summary

Given four partial NMP solutions, JamNSync aims to address the overarching prob-

lem of completeness and usability in virtual rehearsal platforms. Video conferencing

systems like Zoom lack sufficient features for musicians to rehearse synchronously.

Real-time systems like SoundJack depend on strict network conditions that require

precise and complicate setups that are inaccessible for most musicians. Online DAW’s

lack immediacy in feedback and iteration of a group rehearsal. Home-spun solutions

are wasteful of both time and storage. As such, there is significant value in investigat-

ing solutions to bridge the gap, caused by design decisions that did not fully consider

the needs of a musician, between what currently exists and what musicians want.

The approach used by JamNSync to address existing limitations in NMP shifts

the focus from complex partial solutions to a simple complete solution. The impact

of this approach is rooted in the notion of improved usability for musicians through

an accessible interface, with features tailored specifically for the users of the system.

39

40

Chapter 4 Design

This chapter introduces JamNSync’s virtual rehearsal process, design goals, and a

basic system overview. A novel consensus protocol to enable synchronous rehearsals

is presented, followed by the organization of data in a relational model and a cloud

file system. The rest of the chapter details the system’s frontend (i.e. user interface)

and backend (i.e. API) design.

4.1 Virtual Rehearsal Process

Figure 4-1: Virtual rehearsal as a “feedback loop”.

A musician begins a virtual rehearsal by assembling their computer recording

environment and checking audio device levels (“preparation” phase). This is per-

formed asynchronously to provide flexibility in a musician’s individual preparation

process. Next, the musician virtually meets their ensemble on a preferred commu-

nication medium (e.g. Zoom) and logs in to the JamNSync web application. Once

all members are present, the "performing and recording" phase begins. The group

decides on a backing track—an initial seed for the piece like a pre-made click track or

a recording made by one group member—which is then uploaded to the project and

41

shared with the group. Then, the group records a session resulting in 𝑛 recordings

for 𝑛 musicians. The first session involves everyone recording their part along to the

common backing track — this achieves part synchronization. In future recording it-

erations, the group has the choice to record along to the original backing track again

or the just-recorded takes as a backing mix. Following each iteration, recordings are

uploaded to the backend server and aligned to create a unified group recording (“au-

dio mixing” phase). The adjusted tracks are then sent back to all group members,

who synchronously listen to the mix and discuss areas of improvement (“playback

and discussion” phase). Observations from a playback session, such as dynamic and

phrasing choices, are used to inform the next recording session. The group’s collective

feedback initiates a new iteration cycle, looping back to the preparation phase again

(Figure 4-1).

4.2 Design Goals

JamNSync is designed with the following goals:

Usability for Musicians. Setting up this application should be as simple as setting

up Zoom. Computer and network jargon should be explained with musician-friendly

terminology. User interface design choices must prioritize the needs and knowledge

of musicians.

High Audio Quality. A musician’s recording should accurately reflect what

they experienced in-person. Audio data should have high fidelity to an instrument’s

dynamic range and frequency spectrum. Filtering and compression of audio data

should not compromise the quality of sound.

Completeness. The system serves as a “one-stop shop” that encapsulates the

fundamental features necessary for a productive virtual rehearsal. Users should find

everything they need for recording and playback within the application; additional

recording software should not be needed for a successful ensemble playing experience.

Fast Software Performance. The software is designed to enable productive group

42

rehearsals. Users should get through multiple iterations of recording and playback

during a virtual rehearsal. As such, file transfer and processing should be fast and

seamless; an ensemble should spend rehearsal time primarily rehearsing music.

Reliability. Musicians expect their recordings to be stored safely. Audio files

must be replicated to tolerate missing or corrupt files.

As it turns out, some of these goals work against each other (i.e. completeness

and usability). Based on feedback and results from user tests, necessary trade-offs

were made to complete and deploy a functional application.

4.3 System Architecture

JamNSync uses the client-server model over a standard Internet network to coordinate

rehearsals among group members. Since the application does not stream real-time

audio, a peer-to-peer system over Ethernet/UDP is not needed. Before any playback

begins, audio data from the recording phase is shared amongst users. This allows

remote procedure calls to initiate synchronous group recording and playback sessions.

Because this architecture is a standard web application in the browser, additional

network setup like opening firewalls or port forwarding is unnecessary, thus creating

a simpler onboarding process for users.

As shown in Figure 4-2, each musician independently connects to the server using

a browser. The server acts as a centralized manager that stores state about client

connections and group sessions. As the server processes incoming client requests, it

communicates with two external storage services to read and write data. One is a

relational database, which stores persistent object metadata and relationships. The

other is a cloud storage service, which supports an easily accessible file system that

offloads storage management and replication of larger audio files.

43

Figure 4-2: Main components of JamNSync system design with three musicians.

4.4 Real-Time Rehearsal Protocol

For the server to facilitate synchronized recording and playback, a consensus protocol

is used to coordinate communication between clients. Inspired by the voting phase of

Two-Phase Commit [8], the Real-Time Rehearsal (RTR) Protocol was developed for

synchronized group recording and playback, to mimic the conventions of an in-person

rehearsal as much as possible. The protocol has two variants — first to initiate a

group record or play session, then to stop an existing session.

Group Record / Play

Figure 4-3 shows a sequence of network requests needed to initiate a group session.

The same sequence of steps is used to initiate group record and group play. Without

loss of generality, assume client 1 initiates a REQUEST to the server (1). A wait

response is sent from the server to client 1, while a BROADCAST REQUEST is sent

from the server to the rest of the group to inform them of client 1’s request (2). All

users must agree to begin group recording or playback, so each client votes Yes or

No to participate in the synchronized session, which gets sent to the server (3). Each

group member blocks until all clients have submitted a Yes vote, but their request

44

Figure 4-3: Initial request of group record or group play using RTR.

can be cancelled at any time without aborting the entire voting process. Once the

server sees a consensus of Yes votes, it will send a BROADCAST BEGIN message

to each client, which then immediately begins local recording or playback (4a). If

any client votes No, group members continue to block until all clients agree to record

(4b).

If a request has already been made and the vote has not reached quorum, another

client may make a request to group record or play. When the server receives this

request, they will not emit any BROADCAST REQUEST messages to prevent inun-

dating clients with requests. Instead, the server will track the number of "prepared"

clients who are waiting to begin, and increment this number for each new request.

Once the total number of prepared clients matches the total number of members in

the group, the server sends a BROADCAST BEGIN message as before. If not, group

members continue to wait.

Group Stop

While a group must collectively decide to begin recording or playback, any single

group member can halt the session. The design of the group stop mechanism emulates

the stopping of in-person rehearsals (Figure 4-4).

45

Figure 4-4: Request of group stop using real-time rehearsal protocol.

To stop a session, client 1 initiates a REQUEST to the server, without loss of

generality (1). As soon as the server receives the request, it will send an acknowl-

edgment to client 1 to permit them to BEGIN stopping. Depending on the type of

group session, the server broadcasts a specific message to the rest of the group. If the

group was recording, the server will BROADCAST EVENTUAL stop, alerting the

group that a request to stop has been made, but will not actually stop the recording

until the client acknowledges the alert (i.e. clicks OK). This prevents the broadcast

from abruptly cutting off a user’s recordings, in case there were browser latency or

issues causing a delayed start. However, if the group was playing back, the server will

BROADCAST BEGIN stop to other clients — the same acknowledgment message

sent to client 1. There is less variability during a group play (e.g. no countdown, no

need to request microphone permissions), so immediately stopping playback is a safe

procedure that does not affect correctness.

4.5 Data Organization

The intrinsic hierarchy from group to project to track to take suggests a relational

model to structure project metadata. Figure 4-5 outlines the entity-relationship model

for entity sets related to JamNSync.

The corresponding database schema is derived below, where each bullet point

represents a relation and each tuple contains the fields of that relation. * indicates a

46

Figure 4-5: Entity-Relationship diagram.

primary key, and 𝑎 → 𝑏 indicates that 𝑎 is a foreign key reference to 𝑏.

• user: (id*, name, google_email, google_auth_id)

• rehearsal_group: (id*, name)

• group_membership: (user_id* → user.id, group_id* → rehearsal_group.id)

• project: (id*, name, hash, group_id → rehearsal_group.id)

• track: (id*, name, hash, project_id → project.id)

• take: (id*, take_num, date_uploaded, s3_info, latency_ms, track_id → track.id)

Some cloud storage services use a hierarchical file system. JamNSync uses a flat

hierarchy consisting of two layers: 1) projects (identified by hashes), then 2) takes

(identified by track id, take number, and timestamp). Similar to how Google Docs

assigns a single ID to a document, using a flat structure rather than a deeply nested

one makes audio files easier to access. In particular, each take has the following file

format, which provides readability and uniqueness (avoids stale data from caching

names, robust to project and track name changes).

track<track_id>_take<take_num>_<datetime>.mp3

47

4.6 Frontend: Client UI

The client interface consists of four pages: 1) Home, 2) Groups, 3) Projects, 4)

Project. The first page is publicly accessible, while the other three are only visible to

authenticated users.

1) Home

The home page is the website’s landing page, allowing a user to login and logout

(Figure 4-6). To provide a familiar authentication process, the top-right corner of

the page has a button with the symbol of a popular third party API (e.g. Google

Sign-In). An external service is preferred over building a login management system

from scratch to offload authentication logic to more secure systems [2].

Figure 4-6: Home page interface: not logged in (top) and logged in (bottom).

48

2) Groups

Figure 4-7: Groups page interface.

This page lists every rehearsal group that a logged-in user is a member of (Figure

4-7). For each group, a user can view, add, and remove members, as well as rename

and delete the group. When any group member makes an update, the change auto-

matically propagates to the entire group. The refresh button at the top queries the

database for new updates. The dashed button at the bottom of the page creates a

new rehearsal group.

Figure 4-8 shows the modal UI for adding and removing members. Currently,

the add member modal has a dropdown menu containing every member from the

database in alphabetical order. This is a temporary solution when the user base is

small. An auto-complete search functionality should be considered if the application

scales larger.

3) Projects

This page lists every project in groups that a logged-in user is part of (Figure 4-9).

Each group section contains a "+ Project" button to add a new project. Each project

has a three-dots menu for the user to rename or delete the project, and a "Rehearse!"

49

Figure 4-8: Add (top) and remove (bottom) member modals in the Groups page.

button to access the Project page. When any group member makes an update, the

change automatically propagates to the entire group. The refresh button at the top

queries the database for new updates.

Figure 4-9: Projects page interface.

Inspired by Soundtrap’s interface, the design of assigning projects to a group

resolves the lack of organization in BandLab—where projects are standalone—that

frustrated groups who wanted to work on multiple pieces at the same time.

50

4) Project

The project page is a simplified DAW that allows a group to synchronously record

and playback multiple parts (Figure 4-10). Here, the word "part" is synonymous

with "track", chosen to provide more user-friendly terminology. DAWs are typically

quite complex, supporting a large set of features. JamNSync borrows the familiar

DAW interface for recording but prioritizes usability for musicians by only offering

the subset of features necessary for a virtual rehearsal.

Figure 4-10: DAW-like project page with two connected users.

The page has three horizontal sections: the header, project parts, and master

controls. Located under the navigation bar, the header displays the piece title, a

refresh button to update the latest project information, and a horizontal list of users

who are currently online.

The second section, the project parts, contains a visual list of instrument parts

created by the group. The top of each list item contains the part name, a button

to select/unselect the part for recording, and a three-dots menu to rename/delete

the part and realign takes. When a user selects a part, the list item highlights with

a dark blue accent on the left. When another group member selects a part, the

list item is semi-highlighted with a light blue accent on the left, and the button to

select/unselect becomes disabled with the name of that member. The bottom of

51

each list item contains a file upload button if no prior takes exist. Otherwise, that

area contains options to mute, solo, adjust volume, and download/select/delete takes.

When a part is soloing, all other tracks automatically mute (Figure 4-11). Multiple

parts can be soloed together to listen to any subset of parts. The bottom of the

project parts also has a dashed button to create a new part.

Each recording automatically creates a new take on the selected part. When a

user records, their part will mute while the other parts play. This simulates the in-

person experience of hearing other group members during rehearsals. The volume of

each part can also be dynamically adjusted during playback.

Figure 4-11: Project page for a quartet where a single part is soloing.

The third section houses the master controls for the project. Under the "Master

Controls" label, three buttons activate recording, stopping, and playing respectively.

The record button creates a new take for a selected part, while the stop and playback

buttons apply to all parts. If the user is playing or recording, only the stop button is

active. If the user has stopped, only the play and record buttons are active. Before

any recording begins, JamNSync requests user microphone permissions in the browser;

recording will not be allowed until they are granted. The master controls also show

the scrolling time over the total time (determined by the longest part), which stops

52

playback when it reaches maximum time. The scrolling time is bolded black during

playback, and bright red during recording. This provides a clear visual indicator of

an active session. The controls also have a master volume slider and a button to

download a mix of the latest takes.

If more than one user is online, four gray buttons (see Figure 4-12) used for the

RTR protocol appear next to "Master Controls". If only one user is online, the

buttons are hidden. By default, group stop and cancel request disable until group

record or group play is selected. During an active request, a label to the right of the

buttons appears to show the number of clients who are ready to record/playback over

the number of clients online (e.g. “1/2 ready for record” or "3/4 ready for play").

Figure 4-12: Group buttons used to synchronize rehearsals.

Figure 4-13 and 4-14 show the visualization of the group playback and recording

variant, respectively, of the RTR protocol discussed above.

Figure 4-13: Group play modals. The left image shows the request for playback that
is broadcast from the server, after a client initiates the group play. The right image
shows the alert for an immediate stop, after a client initiates the group stop.

To provide the illusion of group rehearsal, a user can make a recording to a backing

mix: a subset of project parts played simultaneously as the user records. After

recording to a backing mix, an audio alignment tool pops up immediately when the

recording stops (Figure 4-15). Due to variable latency in the recording infrastructure

53

Figure 4-14: Group record modals. The left image shows the request for recording
that is broadcast from the server, after a client initiates the group record. The right
image shows the alert for an eventual stop, in which the recording only stops after
the client acknowledges the pop-up.

(i.e. browser, audio devices, application logic), it is difficult to predict a single latency

value to uniformly adjust all recordings. Instead, a visual tool assists users in properly

aligning their recording.

The alignment tool plays the first seven seconds of the recording and a backing

mix. The top of the tool provides the reasoning for the tool and a brief overview of

its suggested usage. The top waveform visualizes the backing mix of all parts that a

user listened to while recording (i.e. unmuted, non-selected). The bottom waveform

visualizes the user’s recorded track. Each waveform has a volume slider to adjust the

balance between tracks while aligning. The pale yellow rectangle with the bolded left

edge functions as a visual alignment guide to help align peaks in the waveforms.

To perform the alignment, the user drags the recording waveform left and right.

A pixel-to-milliseconds conversion determines the amount of latency adjustment per

drag. Independent of the waveform dragging, the yellow rectangle can also be dragged

left and right to help with the visual alignment. The cursor indicates which parts are

interactive in the alignment tool (shows "not-allowed" cursor when hovering over the

backing mix, "ew-resize" cursor when hovering over the recording track, "grab" cursor

when hovering over the visual alignment guide). If the user is unable to properly align

their recording the first time, they are able to click the three-dots button on their

part to realign their take, which pops up this alignment tool once again.

54

Figure 4-15: Audio alignment tool.

The bottom of the tool has buttons to scrap the recording, toggle play/stop of

the excerpt, and submit the alignment to finalize the take.

4.6.1 Client Usage

Figure 4-16 outlines the client usage flow. A musician accesses the application website

through a browser. Using a third-party login API, the musician signs in on the home

page, navigates to the "Groups" page to create or select a group, then the "Projects"

page to create or select a project within a group. Selecting a project redirects them

to the project-specific page, where they can choose to solo or group record/playback.

55

Figure 4-16: Frontend system flow.

Individual use involves creating a part, uploading and recording new takes, and

listening to single-part recordings. Group use requires an additional communication

tool to facilitate rehearsals. Rather than embed video or audio calls in the page,

user tests suggested that people prefer existing mediums to communicate (Zoom,

FaceTime), as custom video chat integrations tended to suffer in quality. External

conferencing software will not affect application performance since JamNSync does

not require low latency audio streaming (no competition for network bandwidth),

which also keeps the website lightweight with fewer dependencies.

Once all members have connected on a video chat platform and are online on the

project page, they can begin a rehearsal by creating and selecting their own parts.

When a group is ready to record, they will mute their video call, record a take, align

that take, then unmute the call. They can then listen back to the combined recordings

together and discuss the music. If desired, they can repeat the process again. Users

are also able to upload and download takes to their liking.

56

4.7 Backend: API Design

When the client makes requests to fetch and update project data, the server translates

them into database and cloud storage queries. JamNSync’s API design specifies 1)

REST endpoints over HTTP for browsers to read and write to external storage services

and 2) event handlers over WebSockets to support the RTR protocol.

REST Endpoints

Endpoints that manipulate entities (listed in Section 4.5 are prefixed with /api and

suppors a subset of CRUD (create, read, update, delete) operations. Two additional

authentication endpoints are prefixed with /auth (login, logout).

• users: GET all users

• groups: GET all groups

• group: GET/PUT/DELETE group, POST new group

• group membership: GET all members in group, POST/DELETE member

• project: GET/PUT/DELETE project, POST new project

• track: GET/PUT/DELETE track, POST new track

• take: GET/DELETE take, POST new take

Event Handlers

To handle incoming events to synchronize group record and playback, four dictio-

nary data structures maintain state for each group session (where below, a room is

equivalent to a group session):

1. client_names: maps a client connection identifier → client name

2. all_clients_by_room: maps a project hash → list of online client connection

identifiers

57

3. prepared_play_by_room: maps a project hash → list of client connection

identifiers who have requested group play (or voted yes for playback)

4. prepared_record_by_room: maps a project hash → list of client connection

identifiers who have requested group record (or voted yes for recording)

The following event handlers registered on the server support the real-time re-

hearsal protocol and enable group record/play functionality:

• connect: add new user to client_names

• join project: add new user to group session state

• leave project: remove user from group session state, emit updates for online

users/waiting clients/claimed tracks

• disconnect: remove user from all group session state, emit updates for online

users/waiting clients/claimed tracks

• request group record: initiate RTR protocol for group record

• request group play: initiate RTR protocol for group play

• request group stop: initiate RTR protocol for group stop

• cancel request: remove client from prepared_<play/record>_by_room and

emit update to group

• get all online users: return sorted list of client names active on the project

• catch up new member: if new member joins after a request to group record/play

begins, pick any existing member in the group and ask them to relay the latest

information that the server does not store (online users, who selected what

track) to the new client

Another set of event handlers synchronize shared data in a group. The server emits

updates to a group whenever a member makes an update to the following entities:

group, project, track.

58

Chapter 5 Implementation

JamNSync is a single-page web application built with React.js (JavaScript, HTML,

CSS) and Flask (Python), deployed using Gunicorn on Heroku. A PostgreSQL

database and Amazon S3 bucket provides data storage and management. The source

code used for deployment can be found at the GitHub repo below:

https://github.com/nanettewu/jamnsync

5.1 Frontend: React

Class components implement the four pages described in Section 4.6. To navigate

between pages, React Router is implemented such that the Home page uses a built-in

route, while the Groups, Projects, and Project page use custom Private routes visible

after authentication. Common packages utilized in the application are listed below

(see Appendix A for full list of npm packages).

• socket.io-client: synchronously updates state and supports group recording/playback

• Material UI: provides pre-built icons with tool tips to expedite development

• react-google-login: manages authentication through Google Sign-In. Uses local

storage to persist login information to cache credentials.

• react-st-modal: contains pre-built pop-ups, confirmations, alerts.

• react-dropdown: allows users to select takes and add group members with drop-

down menu.

59

https://github.com/nanettewu/jamnsync

• rc-slider: shows a slider for per-track and master volume adjusters.

Audio

Recording is implemented using the Web-Audio-Recorder package with 320 kbps bit

rate, 44.1 kHz sample rate MP3 files. A three-second circular timer (react-countdown-

circle-timer) is shown before recording to display a continuous countdown that is both

visually and aurally independent of specific tempos.

Playback is implemented using embedded HTML5 audio elements. Each track

contains a separate element, which is buffered for immediate playback and loaded

with the user-specified take. As such, multiple elements can be played back at the

same time to provide the illusion of a mixed track, but kept separate to provide

fine-grained play/pause and volume control.

<audio

id={‘audio-file-<trackid>‘}

src={‘<s3-url>?cacheblock=true‘}

preload="auto"

autobuffer="true"

/>

The audio alignment tool uses wavesurfer.js to visualize audio waveforms, react-

draggable to drag the recording waveform and visual alignment guide, and crunker

to mix MP3 tracks into a single file. Crunker frequently used the wrong sample

rate, which was automatically detected by a user’s browser depending on OS and

device. A modified version of crunker was used to force 44.1 kHz sample rates by

deterministically setting the AudioContext’s sample rate on initialization.

5.2 Backend: Flask

The audio processing backend is written in Python as a Flask service. API endpoints

defined in Section 4.7 are implemented as Flask routes (routes.py), protected with

60

login-required decorators. Pydub is used to manipulate uploaded audio files by con-

verting sample rates, appending silence, and trimming extra spaces - enabling latency

adjustments for each take. Flask-SocketIO implements event handlers (routes.py) in

conjunction with socket.io-client in the frontend. Flask-Login (auth.py) provides user

authentication and session maintenance. The backend is also responsible for manag-

ing data transfer (audio files, metadata, musician/ensemble descriptors). Appendix

A contains a full list of Python packages used to build the Flask server.

5.3 Data: PostgreSQL/AWS

A PostgreSQL database implements the relational model defined in Section 4.5. The

backend uses SQLAlchemy to interface with the database to manage CRUD opera-

tions. Entities are defined as SQLAlchemy models (models.py), and Flask-Migrate

handles alteration to the database schema using Alembic. Any deletes on hierarchical

relationships are chained (e.g. delete group will delete all projects and their associ-

ated tracks and takes). Database queries are performed at the group level to grab

larger chunks of data at a time and avoid repeated smaller calls (i.e. any callback in

the React application requests to reload everything).

A public AWS (Amazon Web Services) S3 bucket is used to store audio files.

Access methods (aws.py) use awscli and boto3 to upload and download audio files

with the bucket. CORS settings allow access from all origins and "?cacheblock=true"

is appended to each S3 file URL is used to defeat the browser cache when retrieving

files. Using a cloud service guarantees the reliability design goal through replication.

5.4 Deployment: Heroku

The application is deployed to Heroku1 as a single Flask server. Using a managed

platform such as Heroku simplifies the server setup process. Since Google’s OAuth

requires HTTPS, the application is deployed on a Heroku hobby web dyno, which
1At the time of deployment, the application was located at https://jamnsync.herokuapp.com/.

The website was taken down after user testing.

61

provides automated SSL certificate management to enable HTTPS. A Heroku add-on

(Heroku Postgres) hosts the database server. To start the web server on command,

a single command in the Procfile is needed. Using Gunicorn as the WSGI applica-

tion server and eventlet to support socket.io connections, JamNSync is run with the

following command:

web: gunicorn --worker-class eventlet -w 1 audio_processing.app:app

Because Flask supports static files, a simple deployment strategy uses the Flask

project to serve both React and Flask. The production-ready React bundle of npm

run build is copied into the Flask server, which also contains built-in API endpoints.

When the server initializes, Flask is directed to point at the folder containing the build

and an index.html to download the entire application. Any change to the frontend

code requires a new build that is recopied into the project. Although this strategy is

not ideal for permanency, it is convenient and simple for research.

The Flask server also requires manually configured environment variables, includ-

ing AWS keys, a Google Client ID, and the Flask server’s secret key.

5.5 Technical Challenges

5.5.1 Technology Differences and Inconsistencies

Because of differences in browsers, audio devices, and operating systems, platform-

specific bugs were hard to diagnose and reproduce.

The Google Chrome browser was initially used for website development but was

found to have non-deterministic problems recording and playing MP3 audio. Because

recording logic used the default AudioContext initialization, JamNSync was auto-

detecting sample rates depending on a client’s browser environment, which caused

differences in the recording infrastructure among users. As such, MP3 files inconsis-

tently sped up or slowed down, and often contained stuttering interference. During

playback, project tracks were periodically out of alignment without clear reason, per-

haps due to heavy CPU or memory usage. Since these problems occurred arbitrarily,

62

it was near impossible to pinpoint the cause. Pivoting to Firefox provided more

consistency, but the reasoning behind the improved stability is unclear.

Varying grades of equipment (Apple AirPods, studio microphones) also produced

recordings of distinctly different quality. Different devices also produced a range of

audio sample rates (16 kHz, 44.1 kHz, 48 kHz), causing misalignment in both mixing

and playing tracks.

Differences in operating systems also caused problems that were only uncovered

in user testing. Although system tests passed in local development, they revealed

issues with warped audio, user interface sizing, and concurrency when the app ran

on different machines. Even after finding a bug, it could not be reproduced locally

without the user who discovered it. Moreover, fixing bugs for one operating system

sometimes introduced new bugs in others. With limited development and testing

resources on this project, it was difficult to guarantee a consistent experience across

multiple environments.

5.5.2 MP3 Web Recording Logic

There are several ways to record and encode MP3 files in the browser. However, it

was surprisingly difficult to find a package that offered consistently high audio qual-

ity. Packages that were easy to integrate (e.g. pre-built React components) ended up

being hard to customize without a thorough understanding of their implementation.

Some also had stale dependencies on outdated browser versions, which were confus-

ing to update and replace. Creating implementations from scratch allowed complete

control over customization and development, but the process was incredibly tedious

with a steep learning curve. Since "do-it-yourself" tools are usually not rigorously

tested, they also often break down in edge case usages. The final solution uses We-

bAudioRecorder.js, an open-source recording library using the Web Audio API, which

strikes a balance between convenience and customization.

63

5.5.3 Aligning Tracks with Browser Latency

Recording audio in a web browser introduces variable latency, which pads a non-

deterministic amount of silence at the beginning of a recorded track. If a user played

their raw recording at the same time as the backing mix, they would notice their

recording consistently lagged. To compensate for variable latency, tracks in the same

project need to be aligned to start playing at the same time. This requires finding the

numerical latency offset for a user’s choice of computer, browser, and audio devices.

The original plan was to automate the alignment process, possibly using a manu-

ally tuned value slider (picks a fixed value) or a user calibration system (determines

latency value by measuring once before recording) - all to get as close as possible to

the actual latency value. However, even with tuning an estimated latency value, la-

tency was not consistent between takes. There was some combination of potential lag

from the browser, React application, and audio devices that caused different takes

to always be out of sync without clear reason. As such, the solution to automate

alignment was rendered infeasible.

Therefore, it was necessary to perform a take-specific alignment in a simple and

user-friendly manner. Soundtrap uses a look-up table that maps a client setup (i.e.

browser and operating system choice) to its measured latency value, but collecting

sufficient data for such a table was out of scope for this thesis. Instead, the visual

alignment tool from Upbeat was the inspiration for manually adjusting latency per

take [32]. The frontend logic determines the latency value, which is sent to the server

to perform audio manipulation using pydub.

64

Chapter 6 Testing and Evaluation

We tested application features iteratively in three rounds. Round 1 consisted of solo (1

musician) tests, which used formative evaluation to qualitatively assess the usability

of browser recording and playback. Round 2 consisted of duet (2 musicians) tests,

which evaluated concurrency within the smallest distributed network of clients, who

use different recording software and hardware. Round 3 consisted of duet, trio, and

quartet (2-4 musicians) tests, which used varying ensemble sizes to gauge the efficacy

of real-time collaborative rehearsals. In Round 2 and 3, we used both formative and

summative evaluation to determine the overall usability of the system.

We recruited participants who are representative users of the application: MIT

undergraduate, graduate, faculty, and alumni musicians covering a spectrum of music

technology expertise. All participants had formal music training and experience with

creating audio recordings. The final system test involved professional musicians and

MIT chamber music students, who actively used Zoom, SoundJack, BandLab, and

Audacity/Google Drive to make music during the pandemic. These four tools cover

the four categories of virtual rehearsal tools discussed in the related works (Chapter

3) respectively.

During testing, all participants accessed the web application using Firefox on their

personal laptops (both Mac and PC). They also used their own recording equipment,

ranging from wired professional audio devices to wireless Apple AirPods. We inten-

tionally did not enforce a standardized set of headphones and microphones in order

to expose our system to different recording environments. This allowed us to better

understand how different grades of audio devices can impact the user experience.

65

6.1 Round 1: Solo (1 Musician)

In the first round of testing, our main objective was to assess the usability of the

web browser as a recording interface. By understanding if the proposed system was a

viable method of recording and playback for a single user, unexpected problems with

the basic interface could be isolated from more complex issues involving multiple

users, such as race conditions and data inconsistency.

We recruited five participants from the MIT EECS community. All users were

graduate students or upperclassmen with formal music training (defined by taking

private music lessons in childhood) and extensive technology experience (defined by

academic experience with web interfaces). Each participant used their built-in com-

puter microphones and speakers in testing. Two participants actively rehearsed in

MIT’s chamber music ensembles during the pandemic and were familiar with virtual

rehearsal software described in the related works (Section 3). With the participants’

joint music and technology experience, we anticipated finding bugs more efficiently

and receiving actionable suggestions on the overall web design. Our small testing

pool size was chosen to quickly identify and solve common issues. Over Zoom, we

conducted each test as a 30-minute session, where the participant had access to a

video stream and screen-sharing capabilities. We provided them a link to the web-

site hosting the application. Once the participant navigated to the homepage of the

website, we asked them to share their screen.

6.1.1 Tasks

Each participant was given two tasks. They were asked to verbalize their thought

process as they completed each task.

Task 1: Record and playback an audio track

Given minimal instruction, users were tasked with figuring out how to navigate

through the application pages. To do so, they needed to log in through the upper-

right hand button, navigate to the groups page (Fig. 6-1), create a new group and

66

project, navigate to the project’s DAW page (Fig. 6-2), create a new track, then

record and playback. If they succeeded in completing the task, we asked them to

download and email their recording to us for further review.

Figure 6-1: Interface of groups listing page for individual test.

Figure 6-2: Interface of digital audio workstation (DAW) page for individual test.

Task 2: Figure out how the audio alignment tool works.

Users were instructed to click the "Test" button on the DAW page and experiment

with an initial version of the audio alignment tool (Fig. 6-3). Pre-existing track

were provided: a 104 BPM click track as the backing track and a misaligned clarinet

recording as the recording track. This task required users to read the instructions

at the top of the pop-up modal, click the "Play" button to find that the tracks were

out-of-alignment, and drag the recording to align it with the backing track.

67

Figure 6-3: Interface of audio alignment test for individual test.

After both tasks were attempted, we conducted a post-test interview to determine:

1) which parts of the system were self-explanatory, 2) which parts of the system were

hard to use and unintuitive, 3) recommendations for improving the system, and 4)

how a multi-user based interface might look.

6.1.2 Results

All five users completed the first task in under one minute. A summary of the user

descriptions and feedback is outlined in the table below. Only one user completed

the second task without extra guidance and intervention.

Task 1: Record and playback an audio track

All users were able to complete the task, by navigating from the home page to the

DAW interface, in under a minute. They reported that the UI generally straightfor-

ward and intuitive, particularly with the recording controls.

When users played back their audio files, a common observation was the poor

audio quality. We immediately noticed that this negatively impacted their testing

experience based on their facial reactions when listening to recordings. Upon closer

investigation, the audio recording packages used in this design had low bit rate (128

68

Table 6.1: Summary of Task 1 Results for Round 1
User Instrument Chamber

Musician
Reported

Audio Quality
Recording

Length (sec)
OS

1 Guitar No 3/10 10 Windows
2 Piano Yes 4/10 10 Mac
3 Cello Yes 4/10 30 Mac
4 Voice No 6/10 8 Mac
5 Ukulele No 6/10 15 Mac

Each participant used their own instrument, laptop, and recording devices. A
participant who identified as a chamber musician was actively participating in the
MIT Chamber Music Society. The reported quality was provided verbally at the end
of a testing session. Participants were not given any constraints on recording length.

Kbps) and buggy recording and encoding logic. Using Google Chrome as the browser

of choice also tended to produce interference in output recordings (i.e. clicks, blips,

bursts of repeated sound). We asked users to test their audio recordings with an

offline recording software, which resulted in high quality recordings and verified that

their audio devices were not the source of the issue. To diagnose audio quality in

future tests, we added comprehensive console logging in the application’s recording

logic and kept record of each participant’s browser choice.

Furthermore, many users found it hard to find their bearings to get started. Al-

though the learning time was only five minutes, the lack of text-based instructions

and labels on certain controls made unlabeled components unintuitive. Some were

confused about what the "play" and "stop" buttons on the bottom of the interface

controlled. Many people were looking for a button to play each track, when the

interface should have stated that the master controls were applied to all tracks.

Users without chamber music experience had difficulty in understanding the re-

lationship between a "group" and a "project." They were confused about why the

logical relationship of a "group" was necessary to rehearse music. On the other hand,

users with extensive chamber music experience, specifically in the form of virtual

rehearsals, expected common functionalities from other DAW interfaces like track

seeking and waveform visualization.

Task 2: Figure out how the audio alignment tool works.

69

Four out of five users did not figure out how to use the audio alignment tool. While

all users appreciated the visual waveforms and the horizontal dragging for alignment,

most did not understand what the red cursor was for. The fact that the cursor

could be dragged was not immediately obvious, nor was its intended purpose to guide

alignment. Even though instructions were written at the top of the modal to inform

this process, the cursor-specific instructions were ignored because they were written

in parentheses. Furthermore, the play/stop buttons on the bottom of the modal were

unintuitive - users wanted play/pause to have more fine-grained control.

Because the audio alignment tool was necessary for correctness and completeness,

we prioritized improving the usability of this feature. Instructions on usage needed

to be clarified for users to learn its functionality on first use, and the track alignment

process needed to be simple enough for users to want to reuse in future rehearsals.

When we asked each participant about how they might imagine a multi-user inter-

face, three users preferred using existing platforms like Zoom and Facebook Messenger

to communicate. All five users wanted to have collaborative editing, such as a log

of user activity (automatically updated or manually inputted) or a Google Docs-like

cursor indicating each user’s status in the DAW. User 3, who was most familiar with

audio editing, pointed out that concurrent usage of a playback system needed to be

extremely precise; being milliseconds off in an audio track can significantly hamper

the playback experience.

Discussion

In general, users had high expectations for website speed and ease of use. While

participants tolerated inconveniences, the testing sessions showed that they implicitly

held standards from websites they access regularly. For example, users expected to

be able to click "enter" to select "OK" on pop-up modals, even though there was

no instruction indicating that was possible. Users unfamiliar with audio editing also

thought that playback was possible per track, resembling a feature found in the

interface of Spotify playlists. However, their expectation of clicking a single track

for immediate playback did not fit the intended usage of JamNSync, nor the correct

70

usage of a DAW in general.

Issues were prioritized based on the order of importance of design goals:

• Usability for Musicians: fix UI bugs identified in user tests, include more text

descriptions, add more clarity and features to audio alignment tool, add loading

icons to offer feedback when waiting for request responses

• High Audio Quality: use higher bit rate, experiment with other recording pack-

ages, try different browsers, test various audio file formats

• Completeness: consider adding missing features (e.g. visual waveform, track

seeking)

6.2 Round 2: Duets (2 Musicians)

In the second round, ten participants tested concurrent usage in a variety of environ-

ments (different laptops and recording devices). They represented a wide range of

instrument types, years of study, style of music, and previous experience with DAWs

(see Table 6.2 for details). Figure 6-4 shows the breakdown of audio hardware used

in this round.

Figure 6-4: Left: number of users who used each type of audio input device. Right:
number of users who used each type of audio output device.

71

Two types of duet tests were performed. The majority were duets between a

participant and the user test facilitator, which were easier to schedule and manage.

Two tests involved duets between participants. In both cases, we conducted each test

in a 1-2 hour Zoom session, where users set up their recording environment, attempted

three tasks, and filled out a Google Form to provide feedback on their experience.

First, we asked each user to set up their environment by: 1) downloading the

latest version of Firefox and 2) finding headphones to isolate the audio input and

output streams. Due to non-deterministic issues in audio quality from Chrome, we

decided to uniformly use Firefox during user tests. We then provided them a link

to the website hosting the application. After the participant navigated to the home

page and logged in (Fig. 6-5), we asked them to share their screen.

Figure 6-5: Interface of home page for logged-in user for duet test.

Before we assigned the user test tasks, we gave each user an overview of what

JamNSync aims to achieve, but did not offer a formal walk-through of the application.

We said this at the beginning of each test in Round 2 and Round 3:

"Due to the pandemic, we cannot rehearse music together in-person. A

handful of existing technologies try to enable people to rehearse together

despite being separated, but they’re often complicated or require special

audio equipment. My thesis aims to get around this by creating a web

app in the browser, which is easy to access and use for musicians."

72

Table 6.2: Summary of Round 2 Users
User Instrument Private

Lessons
(yrs)

Small
Group
(yrs)

Record.
Exp.
(1-7)

DAW
Exp.
(1-7)

Piece Name

1* Ukulele 8+ 2-4 2 2 Hey, Soul Sister
2 Piano <1 <1 2 3 Disney Medley
3 Guitar <1 1-2 6 6 Gymnopedie No. 1
4 Clarinet 4-8 1-2 4 4 Mozart Duet
5 Clarinet 4-8 2-4 4 4 Krommer Duet
6 Voice 8+ 8+ 6 7 Goldberg Variations
7*† Cello 8+ 8+ 2 3 Brahms Sonata
8*† Piano 8+ 2-4 4 4 Brahms Sonata
9 Voice 8+ 4-8 6 6 Not What I Meant
10 Voice 8+ 4-8 6 6 Not What I Meant

* indicates user who participated in Round 1 of testing. † indicates user who used
wireless Apple AirPods. The mean rating for recording experience was 4.2
(stdev=1.75), and the mean rating for DAW familiarity was 4.5 (stdev=1.65).

6.2.1 Tasks

Three successively harder tasks were assigned to each duet, culminating in group

rehearsal. Participants were encouraged to think out loud, ask questions, and provide

real-time verbal feedback about what was working well or what was unclear.

Task 1: Record and playback an audio track.

The first task remained the same from Round 1: create a group, create a project,

then record and playback a track. Based on user feedback from earlier tests, we found

that a simple, unguided task helped users become familiar with the application. If

they were able to finish the task, the user was prompted to download their first take,

later uploaded to the Google Form questionnaire.

Task 2: Record, align, and playback an audio track using a backing track.

For the second task, we asked participants to create and upload a backing track to

the DAW interface (Fig. 6-6, left). Duets with two participants were asked to take

turns attempting this task and provide commentary while observing their partner.

No further guidance was provided after they uploaded the track.

Once the participant finished recording, they were asked to articulate their thought

73

Figure 6-6: Interface of DAW page with one active user (left) and two active users
(right).

process as they used the alignment tool to compensate for the delay from system

latency. The interface of the alignment tool at the time of the test is shown in Figure

6-7. Once the tracks were aligned, users were asked to review and playback the track.

Task 3: Rehearse a piece with a duet partner.

Unlike the first two tasks, task 3 was completely guided by the facilitator to make sure

both partners were in sync and completed the same process. They were instructed

to simultaneously open their project’s DAW page (Fig. 6-6, right), and take note of

the active users displayed in the heading and the new group buttons on the bottom

of the page.

First, the duet was asked to playback ("group play") the existing backing track

to acquaint themselves with the functionality of the group buttons. Then, they were

instructed to click "group record" and "group stop" (Fig. 6-8), which prompted them

to record, align, and upload their track. A few more cycles of group playback and

recording were requested, sometimes without the backing track.

After all tasks were attempted, we conducted a short post-test interview to gauge

interest in future features, including track seeking and embedded video call. Each

user was also asked to fill out a Google Form questionnaire (Appendix B).

74

Figure 6-7: Interface of alignment tool to line up a recording to a backing track.

6.2.2 Results

Table 6.3: Summary of Round 2 Google Form Ratings
Question 1 2 3 4 5 6 7 Avg Std
Prior experience making recordings 0 3 0 3 0 4 0 4.2 1.75
DAW familiarity 0 1 2 3 0 3 1 4.5 1.65
Rating: application navigation 0 0 1 0 1 2 6 6.2 1.32
Rating: group creation and project set-up 0 0 0 0 2 4 4 6.2 0.79
Rating: group features 0 0 1 0 4 5 0 5.3 0.95
Rating: alignment tool ease-of-use 0 0 1 2 1 3 3 5.5 1.43
Rating: audio quality 1 0 2 1 3 1 2 4.6 1.90

Each row represents one question, and each table entry indicates the number of
participants who responded with the column label for that row’s question (1 to 7).

Task 1: Record and playback an audio track.

As expected from Round 1 of user testing, all users completed this task in under two

minutes. Each recording was under a minute, and they were later downloaded for us

to review audio quality.

In terms of what participants liked, users found that application navigation was

easy and intuitive: it was clear on the homepage which tabs were clickable and which

weren’t. Group member creation was also straightforward. The countdown to record

75

Figure 6-8: Left: interface of pop-up to request recording for the entire group. A
similar interface exists for playback. Right: interface of pop-up alert to notify the
user that a group member has stopped recording or playback.

for three seconds was also well-received, as it gave sufficient time even for a pianist

to go up to initiate the request and go back to their piano.

In terms of what was frustrating, users found some recordings too loud. They

wished they had visual feedback for the volume of their audio stream to understand

when they were clicking and needed to adjust sound levels. People were also unwilling

to fully read instructions with actionable words (i.e. "Click ’Groups’") since they

assume immediate understanding, which caused some confusion during initial set up.

There were also some issues regarding the user interface. Some users inquired about

"missing" features that they were familiar with in other recording interfaces, like a

waveform visualization, clearer (i.e. green) play button, and more text descriptions

for controls. Other users were confused by misleading UI: they were confused that

the application allowed them to click play even though there were no recordings to

play, and they weren’t sure which track was actually selected (i.e. looking for a bolder

background color and active hover state).

There were two areas of mixed feedback. The first was regarding audio quality,

which had improved as noted by participants who also tested in Round 1. However,

since users provided their own audio devices, the perceived audio quality ratings were

76

quite varied as shown in Figure 6-9. Users were very aware of their microphone’s

expected audio quality. Some thought the quality was "accurate for what I expected

my laptop to be [and] surpassed my expectations of what I thought the app would

be", or that it was "surprisingly nice for my built-in mic and recording through the

browser". Others thought "the audio quality was bad, with loud and soft spots", but

one user stated it was "certainly because [they] used AirPods, which have terrible

mics". The most prominent issue was periodic clicks in the recordings, described as

"peaking", "popping", and "crackling". There was also a "tsh" sound at the beginning

of some notes, and a high-pitched overtone with others, but these issues occurred

inconsistently and did not hamper the overall experience. When we asked some

users to test recording in an offline platform, the noisy interference was eliminated,

indicating issues with the browser recording or audio processing logic.

Figure 6-9: Left: ratings of perceived audio quality (mean=4.6, stdev=1.9). Right:
audio input type vs. perceived audio quality ratings.

The second area of mixed feedback was for the recording experience. Users found

that it was overall smooth, easy to manage, and intuitive; recording on JamNSync

was "not more difficult than Audacity or any recording software." However, users

were bothered by small inconveniences from hidden failures, such as hanging browser

requests for microphone permissions that, if not accepted, still permitted a recording

session that ultimately failed due to blocked permissions. Some users also found it

troublesome that they could not tell whether they were clipping. The most common

issue occurred when they had to select a track before recording. Some thought it was

confusing to see an error message (i.e. "Select a track to record!") when there was

only one track to record to. We thought this design would teach them how to select

77

a track when the interface was still simple (i.e. before multiple users signed on), and

they were able to learn the track selection after the initial hiccup.

An interesting observation was that users tended to only look at their sheet music

or microphone when recording. Although they asked for more visual feedback, it

would only be necessary at the beginning and end of their recording session. As such,

we focused on highlighting key aspects of the interface used right before and after

recording and playback (like a bolder color for elapsed time).

Task 2: Record, align, and playback an audio track using a backing track.

Nine out of ten users were able to successfully complete this task. The user who was

unable to complete the task encountered a bug in which the alignment tool incorrectly

played the backing tracks at the wrong playback speed. This bug was fixed prior to

subsequent user tests.

Users appreciated being able to version takes and found that the tool was easy to

learn: "if I used this a couple of times, I would’ve understood how to do it well". How-

ever, file upload speed varied among users. Faster internet connections uploaded files

in less than three seconds, while slower connections took over 15 seconds. Nonetheless,

this was more of an annoyance than a roadblock in completing the task.

Most of the feedback from this task came from using the audio alignment tool.

Participants who were familiar with audio editing and annotation tools (e.g. Sonic

Visualizer) liked how silence was automatically inserted and clipped (rather than

having to manually do so on other platforms). For experienced DAW users, the tool

was intuitive, and no instruction was necessary for them to figure out how to drag

the cursor and align the recorded track (i.e. "Oh, that’s totally off, let me fix this").

They also found dragging a loopable, visual waveform to be more precise than using

a tool like Audacity, which was more of a "guessing game" to align tracks.

However, the instructions for the tool were too vague: the text at the top of

the tool lacked clarity about why the tool was necessary. Nine out of ten users just

skimmed the alignment tool instructions. Some participants thought that they had

played perfectly with the track, resulting in hesitation from the user about what they

needed to fix. As such, the alignment tool caused confusion about the source of the

78

misalignment - from playing incorrectly or technology latency. Furthermore, using

the wording of "align peaks" seemed useful in some contexts, but not all (i.e. a singer

performing an aria which is smooth and "peak-less").

The audio alignment tool also had issues with usability. Participants wanted to

drag both tracks, but there was nothing visually indicating that they could not. They

also wanted to realign the tracks, but the alignments were permanent and users had

no way of doing so. The backing track was also too loud at times compared to the

recorded track, and there was no way to adjust the volume of the tracks.

Task 3: Rehearse a piece with a duet partner.

All nine users that attempted this task was able to record pieces, but only seven

out of nine users were able to playback properly due to the incorrect playback bug

in the alignment tool. To complete the task, participants had the intuition to mute

themselves on Zoom to record together, but this may not be the case of musicians

who are not familiar with video conferencing. Figure 6-10 shows a screenshot of one

participant’s desktop that integrates JamNSync, Zoom, and their sheet music.

Figure 6-10: Example usage of JamNSync with split screen sheet music and Zoom
running in the background.

79

Participants liked how they were able to quickly iterate on alignments and submit

takes, which allowed them to spend less time discussing recording issues and more

time discussing the actual music. By having multiple parts, tracks, and projects in

one place, users noted that it was easy to navigate between different components of

a DAW. Since each group member in a group was able to align their own part to a

common backing track, the burden of one person needing to align and mix all tracks

was eliminated. When multiple users were on the DAW page, they also liked the

active status of other users to see who was present on the website: "the green circle

is the universal sign of online". One participant found it helpful to discuss what they

were hearing together in real time (i.e. "You’re rushing at bar 20, maybe you should

take more time at the upbeat"). Another participant stated that their favorite part

of using the tool was the experience of playing with others. During a group recording

session, they appreciated the feeling of playing live with their partner, even though

they were actually playing to a recent recording.

There were a few issues with the user interface. During a group recording session,

three out of ten users clicked the "stop" icon that was meant for solo stop rather than

group stop. This caused future iterations of group rehearsal to function incorrectly

since their duet partner did not know that they had stopped. There was also no

feedback for updated requests on group play and group record, which prevented the

non-initiating member of the group session from knowing the most recent group status

(i.e. knowing 1/3 ready became 2/3 ready). Finally, one user mistakenly created three

separate tracks in anticipation of needing one track for each take he wanted to record.

In this context, the word choice of "track" was ambiguous and did not clearly suggest

that one group member should be assigned one track.

During the rehearsal process, participants who frequently played with each other

missed seeing visual cues from their duet partner to transition between sections of a

piece. Without the cue of a conductor or an up-bow of a musician, it was difficult for

users to know exactly when to begin playing if there was no click track that led up

to the beginning of the recording. Some users had to think of clever ways to cue each

other over an audio stream, like a distinctly audible breath that each group member

80

takes to cue in the beginning.

When a user listens to other instrument parts while recording, they tend to match

the stylistic choices of what they hear. However, there is the potential to overcom-

pensate and over-correct to previously recorded takes, which is problematic if they

contain misleading mistakes. For example, if user A and B record a duet, and user A

accidentally rushes in take one, then user B is likely to rush in take two as B listens

to A while recording. As much as user B may try to ignore the tempo fluctuations,

it is difficult to fight against what is heard.

During this task, participants continued to have issues with the audio alignment

tool, including incorrect playback speed. Users also wanted to see a longer playback

of excerpts: matching the tempo and style of the group is especially difficult at the

beginning of a piece, suggesting that track alignment was less reliable when only given

the first seven seconds of playback.

The alignment process was more challenging when the recording did not have

evenly spaced out distinct peaks, as a click track does. One user noted that while

other alignment in other audio editing cases (e.g. subtitling) were more lenient with

being "off by tenths of a second", alignment in music recordings required stricter

precision. Letting each person do their alignment can become time-consuming if

any single group member is slow. Furthermore, the visual alignment guide was still

misleading because it resembled a playback cursor in other DAWs.

When asked about potential new features, users agreed that seeking was highly

desired, while embedded video conferencing was not. Some even thought that the

lack of seeking was a deal-breaker to convince people to use the tool, because "you

don’t want to re-record an entire track if you messed up once". If implemented

during playback, seeking would also actually allow a group to "rehearse" together by

reviewing and investigating certain spots in their piece. This issue was more prevalent

for experienced DAW users.

On the other hand, video calling within the website did not seem necessary. While

an external communication channel is needed to use JamNSync (e.g. to decide when

to record, discuss feedback), setting up and meeting a Zoom call was "easy enough to

81

coordinate". Even for duets with two participants, it was easy enough to coordinate

a Zoom call among themselves. Some thought that a chat feature would be a nice

"watered down version of communication, especially if a computer is slow and may

not be able to run intense apps like Zoom at the same time." In any case, one user

observed that it was important to not "force people" to be on a video call, or any

communication medium, by default, since most users already have a preferred medium

of communication. Since watching a video stream is typically out-of-sync and would

be distracting to watch during a recording session, an audio call may also be sufficient

in place of a video call.

Discussion

Notable observations from testing include:

• JamNSync features seems familiar to other music software interfaces. Partici-

pants often compared JamNSync to existing tools like Garageband (e.g. JamN-

Sync’s audio alignment waveform dragging: "when you see a track with a wave-

form in Garageband, you know you can control it by dragging") and Audacity

(e.g. audio controls: "the mute and solo buttons reminded me of a DAW").

• JamNSync is compatible with any audio recording device including Bluetooth

headphones. The correctness of most recording software depends on wired head-

phones due to undesirable lag from wireless connections. After each recording,

using the audio alignment tool to compensate for non-deterministic browser la-

tency comes with the added benefit of overcoming varying latencies between

audio devices. Recording also does not require device-specific configurations,

which can be a hassle in other platforms.

• Aside from seeking, JamNSync appears to cover the minimum set of audio

control features expected from a DAW. In fact, one user said that "[JamNSync]

seemed more like QuickTime rather than a DAW, which was nice because there

wasn’t an overload of features to keep working on."

82

• The protocol for group play and group record is intuitive and representative of

in-person rehearsals.

We implemented the following modifications based on Round 2 results. Due to

time constraints in implementation development, other improvements were saved for

future work (discussed in Chapter 7).

• Changing "track" to "part": use "part" instead, which is more user-friendly for

musicians with less recording experience. "Part" also has clearer implications

of being associated with a single group member.

• Audio alignment tool overhaul: support track realignment, address sample rate

mismatch when mixing backing tracks, redesign visual guide UI, elaborate on

reasoning for tool in instructions.

• UI and visual feedback improvements: enlarge buttons, unify component sizes

(i.e. buttons should have the same thickness), display "1/2 ready" for all users

during group record, show incoming updates from a group member (i.e. who

selected what track), use a "pointer" mouse cursor when things are clickable,

and add clear visual indication of active recording. With any new feature,

simplicity must be maintained while improving usability.

• Approach on instructions: reduce number of text blocks but increase the de-

scriptiveness of each to add clarity for those who want to read them.

6.3 Round 3: Duets, Trio, Quartet (2-4 Musicians)

We recruited 18 participants to test usability of the final design and implementation

(Chapter 4 and 5) with larger groups. As in Round 2, they represented a wide range of

instrument types, years of study, style of music, and previous experience with DAWs

(see Table 6.3 for details). Figure 6-11 shows the breakdown of audio hardware used.

10 duet tests were conducted between a participant and the user test facilitator

(Users 1-10). An a cappella trio test involved two returning users and one new user

83

Table 6.4: Summary of Round 3 Users
User Instrument Private

Lessons
(yrs)

Small
Group
(yrs)

Record.
Exp.
(1-7)

DAW
Exp.
(1-7)

Piece Name

1 Voice 4-8 2-4 4 4 Someone Like You
2 Voice 8+ 4-8 6 6 Love is an Open Door
3 Voice 8+ 8+ 5 4 A Spoonful of Sugar
4 Flute 8+ 8+ 7 4 Take Five
5 Clarinet 2-4 0 4 5 Carmen
6 Vibes 8+ 1-2 5 5 Jamshied Sharifi Piece
7 Flute 8+ 4-8 6 6 Four Seasons
8† Clarinet 8+ 8+ 2 2 Mozart K.487 No.8
9† Violin 8+ 8+ 6 6 Mozart K.487 No.1
10† Piano 8+ 8+ 7 7 Brahms Sonata
11 Voice 4-8 0 2 1 Star Spangled Banner
12* Voice - - - - Star Spangled Banner
13* Voice - - - - Star Spangled Banner
14 Bassoon 8+ 2-4 5 5 Peruvian Melody
15 Piano 8+ 4-8 5 4 Peruvian Melody
16 Violin 8+ 8+ 4 4 Peruvian Melody
16* Violin - - - - Messiaen Quartet
17* Cello - - - - Messiaen Quartet
18* Piano - - - - Messiaen Quartet

* indicates user who participated in Round 2 of testing. † indicates professional
musician. Any cell with - indicates data already collected in previous test. The
mean rating for recording experience was 4.87 (stdev=1.56), and the mean rating
for DAW familiarity was 4.5 (stdev=1.61).

(Users 11-13). Another trio test involved new users who had never rehearsed in person

together (Users 14-16). One quartet test involved returning users and the facilitator,

who were part of an active chamber group (Users 16-18). User 16 participated in

both a trio and quartet test.

Each test was a one-hour session hosted on Zoom, involving recording environment

set-up, a set of tasks, and a Google Form questionnaire to provide feedback.

6.3.1 Tasks

The tasks remained the same from Round 2 in both duet and trio tests. For the trios

in particular, tasks were distributed evenly so that each musician screen-shared for

84

Figure 6-11: Left: number of users who used each type of audio input device. Right:
number of users who used each type of audio output device.

one task. Because the quartet test only involved returning users, we were curious

about their rehearsal approach and offered no directions. The quartet picked the

most difficult piece among all tests (Olivier Messiaen’s Quartet for the End of Time).

Task 1: Record to and playback from an ensemble part

Task 2: Record, align, and playback an audio file using a backing part

Task 3: Record predetermined piece with small ensemble

6.3.2 Results

All users completed their tasks. Table 6.5 summarizes questionnaire responses.

Task 1: Record to and playback from an ensemble part

Like previous rounds of this task, users enjoyed the simple interface and straightfor-

ward navigation. User 1 particularly liked the "Ahh I’m not ready!" button - she

found the language both friendly and fun. User 11 appreciated how a group could

share the same set of projects that was automatically propagated to the group. Since

this user had been editing a cappella videos, they found this helpful to easily organize

multiple projects in a concert set.

The main issue was the "select-to-record" feature. Because users only had one

85

Table 6.5: Summary of Round 3 Google Form Ratings
Question 1 2 3 4 5 6 7 Avg Std
Prior experience making recordings 0 2 0 3 4 3 2 4.86 1.56
DAW familiarity 1 1 0 5 3 3 1 4.5 1.6
Rating: application navigation 0 0 0 0 0 6 13 6.68 0.48
Rating: group creation and project set-up 0 0 0 0 0 4 15 6.79 0.41
Rating: group features 0 0 0 1 3 7 8 6.16 0.90
Rating: alignment tool ease-of-use 0 0 0 0 3 9 7 6.21 0.71
Rating: audio quality 0 1 1 2 3 5 7 5.63 1.50
Overall experience 0 0 0 0 3 5 11 6.42 0.77

Each row represents one question, and each table entry indicates the number of
participants who responded with the column label for that row’s question (1 to 7).

part for this task, many were confused about why their part had to be selected before

recording. In fact, many immediately clicked the record button without selecting and

were taken aback by the pop-up asking them to select. All users ultimately figured out

the functionality without help and did not encounter this issue again. One suggestion

was to select the part by default if only one exists.

User 8, who was less familiar with music software, found the buttons very gray

and confusing. Icons like "mute" and "solo" were visually unintuitive, and "download

full mix" was semantically ambiguous. The user wanted to see more text labels with

more colors for important buttons to "pop out on the page".

Most users thought that audio quality exceeded their expectations of a virtual

rehearsal tool, but this was dependent on their microphone choice (Fig. 6-12). Blue-

tooth and inexpensive headphone microphones created the same crackling issues in

Round 2. Bigger instruments with timbres rich in harmonics (i.e. bassoon) also caused

aggressive audio clipping. User 10, a professional pianist, noticed that sustained tones

were often clipped at the end. However, musicians that used professional-grade hard-

ware experienced no peaking or distortion in their audio feed. Users from the Round

2 test also found that the audio quality improved overall using the same computer

and input devices.

An interesting observation involved User 1, who had exceptional audio quality

with standard Apple wired headphones. Because they were in a room with heavy

86

Figure 6-12: Left: ratings of perceived audio quality (mean=5.63, stdev=1.50). Right:
audio input type vs. perceived audio quality ratings.

reverberation, the unintentional sound effect improved their audio quality. This sug-

gested that the location of recording is a factor that may greatly impact perceived

audio quality, but was not properly considered during testing.

Task 2: Record, align, and playback an audio file using a backing part.

The choice of icons for play, stop, and record made this task mostly straightforward,

especially for users experienced with recording interfaces. For the purposes of record-

ing, JamNSync offered just the right number of audio control features. However, there

were two sources of confusion. First, some users were unsure if recording implied both

recording and playback; one user even tried to click the play button before record-

ing. This issue was corrected with verbal explanation from the user test facilitator.

Second, other users tried to initiate playback by pressing the space bar - a common

keystroke for playback in other music software. With no response, they wondered if

the application was broken when the feature was not supported to begin with.

As in Round 2, the facilitator provided a metronome click to use as the initial

backing track. User 6 provided their own backing track, which was a MIDI file with a

click track used to record a large ensemble piece. However, because the duet did not

play until much later in the piece, the user had to use Audacity to trim the file, then

re-upload the backing track to JamNSync. While slightly tedious, the workaround

was quick and clever.

Feedback for the alignment tool was positive. Users liked how the tool immedi-

ately popped up after recording, unlike BandLab and Audacity, which do not direct

attention to track alignment and require users to guess the amount of latency adjust-

87

ment. Although some new users found the tool initially hard, they understood the

usage very quickly, especially since the tool was draggable and visual. User 9, a MIT

chamber music professor, mentioned that the option to realign takes was particularly

helpful in allowing group members to align each other’s takes. When the professor

taught virtual chamber groups, her students were not familiar with track editing, but

helping them during a live coaching was tedious. The realignment feature would have

not only expedited this process but also allow her to provide immediate feedback after

each alignment.

During the alignment process, most users wanted a longer alignment period. It

was unclear why the track stopped at the seven-second mark initially, which gave

some users the impression that something went wrong with the recording. While

the looping seven-second excerpt helped users become familiar with aligning that

section, it is more likely to play out-of-tempo at the beginning of any group piece.

As discovered in previous tests, alignment issues were more obvious much further

into a piece during playback. In fact, more opportunities to become out-of-sync arise

with more complex, lengthy pieces. To support longer playback, seeking functionality

would be necessary in this tool. Users needed to hear complex sections multiple times

in order to feel confident about alignment. Users also requested a reset button (i.e.

over-dragged first time and lost the starting position).

The visual alignment guide was an interesting failure in the alignment tool. All

new users did not touch the guide on their first alignment. One user even moved the

yellow bar off to the side, so it would not block the waveforms. One potential source

of failure was in its graphical design: the visual alignment guide was introduced as

a ruler to users, but the yellow rectangle did not reminder users of one. As such,

the function was not represented by its appearance. Users familiar with DAWs like

Garageband and Logic were also frustrated that playback did not begin where the

guide was located. Nonetheless, users did not find it distracting. Once users were

directed about its proper usage, they found the guide helpful to align peaks.

User 15 suggested an alternate way to numerically align tracks. He noticed that

once the alignment was close, it became annoying to adjust the latency by moving

88

the track just a few pixels. Instead of dragging, he would have preferred to change a

numerical value (e.g. 35 to 34) to adjust the final few milliseconds of latency.

When recordings were scrapped, users appreciated the confirmation pop-up. In-

terfaces like Audacity have instant deletion; once a track is gone, it is impossible to

recover any parts or takes of the track.

Task 3: Record predetermined piece with full ensemble.

Each ensemble was able to create a set of recordings which they found satisfying.

Users who had never played together appreciated hearing each other for the first time.

Users who had played together enjoyed playing more expressively when listening to

familiar parts from their ensemble, especially when a click track was not used.

However, musicians noticed that they were always following past takes when

recording, which often contain mistakes and tempo fluctuations. After discussing

issues and potential fixes with their group, it became bothersome to listen to and

expect those variations when trying to record a new take. Even when users tried to

ignore mistakes, their in-person habits to adapt to what they are hearing in real-time

unintentionally influenced the new recording. As such, the potential of over-correcting

(described in Round 2 testing) continues to prevail.

In terms of coordinating logistics (i.e. "let’s decide to hear two bars for noth-

ing"), those with extensive small group rehearsal background had a straightforward

experience. Those lacking the background found the setup experience very frustrat-

ing. In the voice trio (users 11-13), two of three people had never sung in a small

group in-person or virtually. When the experienced third member delegated tasks,

it became very confusing where and how to start without careful elaboration. For

example, singers frequently needed to hear "the first note" - but may have already

muted on Zoom by the time they needed to recall it. The same two people also had

limited experience with audio editing, requiring significant effort to learn for the first

time. As they made more recordings, the rehearsal cycle seemed more intuitive.

Group record and play worked well: updates, requests, and alerts happened very

quickly. Audio files transferred almost instantly and preserved quality after distri-

bution. Users appreciated the built-in synchronicity of group recording, which was

89

superior to having group members independently press the record button and hope

that everyone is in sync. In fact, this experience reminded some users of Netflix Party.

Two problems were identified with the group rehearsal synchronization. First,

users were misled by the wording of "group play" - some thought the button would

group tracks together for playback, rather than synchronously playback all tracks

for members of a group. Improved UI for group controls can address this issue.

Second, there was ambiguity in which features propagated among users. Because

group members saw each other’s parts and takes immediately after creation, they

expected muting, soloing, and volume adjust to do so as well. There was no feedback

or instructions on the page detailing this scenario, causing confusion during group

playback discussions.

The quality of group playback was strongly dependent on the audio devices used

by the group. The more users there were, the more likely bad microphones would add

extraneous noise to their recordings. These issues compounded when different parts

were superimposed on each other for playback. Recording along to the backing mix

became more difficult, as the number of pops and glitches increased with the number

of parts in the mix. User 16, who rehearsed with both a trio and quartet, commented

that she had two very different experiences between tests. The quartet rehearsal went

significantly better because of a better choice of microphones among the group (even

though logistics to plan the Messiaen Quartet were more challenging).

The lack of seeking functionality was also brought up in this round of testing. If

any user misplaced a single beat, it was difficult to fix later on. For perfectionists,

this stalled progress for rehearsals because they stopped the full group recording to

address a small mistake. On the other hand, some users felt bad interrupting the

recording and admitted to their mistake after everyone finished, which could not be

used in the next iteration of playback anyway. Users also asked about rehearsing

specific sections by using splices of the backing mix where a subset of instruments

plays (i.e. clarinet and violin play from rehearsal letter F to G).

The most difficult part of this task was the alignment, especially for users who

participated in larger group tests. Six out of nine users expressed frustration during

90

the trio and quartet rehearsals. Similar issues from Round 2 were found: the first set

of beats were typically less in time than later beats. Misalignment was also easier to

identify later in the piece, which was not possible with the current alignment tool. As

such, users mentioned that trying to achieve perfect alignment was "a slippery slope"

- a potentially very tedious and time-consuming process. In these larger groups, we

observed that the same people always took longer than others to get the perfect track

alignment. As such, the slowest person to align tracks (a non-musical task) becomes

the bottleneck of the rehearsal progress, which is not ideal.

Two user tests had notable observations. First, the duet of Take Five with User

7 showed the jazzy pieces had more room for error in alignment than classical and

pop pieces. Not only was precision of alignment not necessary, but aligning tracks

"slightly behind the beat" actually gave the piece the right character, rather than

strictly aligning peak-to-peak.

The second interesting test was the Messiaen quartet rehearsal. The group ini-

tially rehearsed the sixth movement, which involved all instruments playing the same

sequence of notes. Using a backing track was not suitable because each measure did

not have the same number of beats, and having a subdivided click would be too fast

and annoying to listen to. Instead, the pianist recorded alone first to create a backing

track. After everyone recorded, the alignment process was easier because waveforms

looked similar between parts. However, the issue of precision was extremely frus-

trating. A slight misalignment in one instrument made the playback experience near

intolerable, especially because the group was accustomed to rehearsing in-person.

The issue of one instrument always being slightly ahead or behind would never occur

in-person, because musicians continually adjust to each other’s tempo.

After the sixth movement proved to be difficult, the group rehearsed the first

movement, which had a consistent time signature but was musically difficult to put

together. Because all four instruments did not begin at the same time, the group had

to find ways to produce in-tempo sounds in order to align their tracks. As such, other

members counted "1, 2, 3; 1, 2, 3" at the beginning, which did help but felt quite

unnatural for a rehearsal.

91

Discussion

Compared to Round 2, people noted many UI improvements in the questionnaire,

but did not consciously notice them during user testing. The most helpful improve-

ment was the highlighted part when selected and "1/4 ready for play" during the

group record/playback request. Another user favorite was adjusting volumes in the

alignment tool as well as the "invalid tooltip for dragging the backing track". To

further improve the alignment tool, each part’s exact take number and volume level

should be passed into the alignment tool (currently just taking the latest take and

full volume) to make sure the alignment mix represents what the user heard during

recording. While users also perceived better audio quality overall, it is likely due to

the use of better equipment during this round of testing.

The key feature that made the experience worse was the misleading visual align-

ment guide. Even when the guide helped align peaks, it still led to aural misalignment

due to the different attack and decay times per voice and instrument. Aligning tracks

was also harder with larger groups due to audio quality issues and parts not beginning

within the first seven seconds.

User 1 found that recording harmonies of the same part (in which waveforms

looked similar) made the visual alignment process a lot easier (Fig. 6-13). Conversely,

the more distinct parts are, the more difficult they may be to align. The same logic

applies to trickier pieces with difficult, syncopated rhythms.

Figure 6-13: User demonstrates aligning harmonies of the same part, where the
recording is visually similar to the backing mix.

92

A positive side effect of synchronous, recording-based virtual rehearsals is that

users are fully present during rehearsal. Because all group members must agree

before group recording or playing back, any user that zones out or slacks off must

re-focus in order to accept the request and move forward. The moment of full focus

at the beginning of JamNSync’s virtual rehearsal is less guaranteed during in-person

rehearsals, where people can easily "check-out" during long rehearsals.

The following table and figures quantifies improvement from Round 2 to Round 3.

Table 6.3.2 compares means and standard deviations of Google Form questions with

numerical ratings. Figure 6-14 and 6-15 show positively shifted distributions for the

likelihood to use JamNSync if in-person rehearsals were not possible and possible.

Table 6.6: Comparing Rating Means from Round 2 and 3
Rating Round 2

Mean (stdev)
Round 3

Mean (stdev)
∆ Mean

Application navigation 6.2 (1.32) 6.68 (0.48) 0.48
Group creation and project set-up 6.2 (0.79) 6.79 (0.41) 0.59

Alignment tool ease-of-use 5.5 (1.43) 6.21 (0.71) 0.71
Group features 5.3 (0.95) 6.16 (0.90) 0.86
Audio quality 4.6 (1.90) 5.63 (1.50) 1.03

Between the two rounds, the mean for each rating increased while the standard
deviation decreased. The positive delta is attributed to improved usability, with the
exception of audio quality (people used better audio devices in Round 3).

6.4 Analysis and Evaluation

Based on questionnaire answers, all 16 users who had experience with virtual music

rehearsals began doing so after the pandemic started in March 2020. As such, virtual

rehearsals were popularized by the pandemic; otherwise, there was no reason not to

rehearse in person. Participants had used tools like Zoom, SoundJack, BandLab,

and Audacity prior to testing JamNSync, and found them frustrating to use for the

reasons outlined in Chapter 3. Results from user testing show that there is a low

barrier to using the JamNSync system, which holds significant advantages over the

four categories of NMP platforms. All quoted phrases are attributed to user testers.

93

Figure 6-14: Using a scale from 1 to 7, this figure shows the distribution of the
likelihood one would use JamNSync if in-person rehearsals were not possible. The
mean was 5.4 (std=1.26, sample size 10) for Round 2 and 6.21 (std=0.79, sample size
19) for Round 3.

Figure 6-15: Using a scale from 1 to 7, this figure shows the distribution of the
likelihood one would use JamNSync if in-person rehearsals were possible. The mean
was 2.3 (std=1.41, sample size 10) for Round 2 and 3.31 (std=1.73, sample size 19)
for Round 3.

94

• Generic Video Conferencing System (Zoom): JamNSync allows multiple musi-

cians to be heard at once. JamNSync also provides a clean audio feed that does

not distort quality during playback.

• Real-Time Music Rehearsal Systems (SoundJack): JamNSync is a more user-

friendly, "no-hardware alternative to SoundJack" that requires little setup and

no administrative approval. JamNSync’s UI and controls are tailored to mu-

sicians and do not require extensive prior training. Overall sound quality is

improved, since SoundJack "sacrifices quality to a great degree for latency".

While users were "very hesitant to try SoundJack with people who were not

tech-savvy", they were more willing to try JamNSync with other musicians.

• Online DAWs (BandLab): JamNSync offers per-group project organization with

a simple sign-up process. JamNSync also layers tracks faster, even with multiple

users online. While other platforms may have more features, JamNSync offers

just enough controls for a user to record and playback audio.

• Home-Spun Solutions (Audacity and Google Drive): JamNSync saves a lot

of hassle for a delegated person to stitch tracks together. Users align their

own parts which parallelizes the alignment work. JamNSync also acts as a

"middle man" that centralizes file upload and rehearsing in a single virtual

space, reducing the time to export and upload large audio files.

In general, people were likely to use JamNSync if in-person rehearsals were not

possible. JamNSync was a "nice middle ground" that "fills a hole for real-time remote

rehearsals" as other options were inconvenient or limiting. "Even though groups still

aren’t playing synchronously with one another, [this tool had aspects of low latency

by giving] people the ability to iterate quickly together." The collaborative aspects of

JamNSync created a unified alternative to send and receive tracks, and the interactive

components made rehearsal "a more social experience". Users with no prior virtual

rehearsal experience appreciated the intuitive application flow. One user who had not

played with others since the pandemic started found it fun and rewarding to rehearse

95

with someone for the first time in months. The trio that never met in-person was

able to make light-hearted side conversation while recording, which is hard to achieve

on other virtual platforms. One user even compared JamNSync to the experience of

playing multiplayer games like Fortnite, where users host an audio call on Discord

while playing together on a separate game platform. However, several participants

found this tool better suited for recording final takes than for in-depth rehearsing.

Unless the group was well-prepared, users found this tool geared towards practicing

shorter excerpts of pieces. The lack of seeking functionality prevented users from

practicing specific sections of music, which would be inefficient with limited practice

time.

However, people were unlikely to use JamNSync if in-personal rehearsals were

possible. While some saw potential for JamNSync to bring people together in far

geographical locations or when practice rooms were unavailable, "nothing really com-

pares" to hearing live music; as one user states, "you don’t need to record or set

up Zoom and mic settings to rehearse [in-person]". Experienced chamber musicians

noted the difficulty in "replicat[ing] immediate feedback you get in [a] live setting:

people automatically adjust their pitch, tone, and intensity to each other, which makes

a big difference [in the final product]". The lack of body language also made it tricky

to align parts. Even with the benefit of having tangible recordings, each recording

did not accurately represent the sound of a group from the perspective of a player

in a physical room, since volume levels were determined by microphone settings. In

fact, people who were skeptical of virtual rehearsals all together "would rather play

solo music as opposed to any kind of recording" and "would rather just practice on

[their] own and not have to deal with the overhead of working through a website,

particularly [with] things like aligning audio and communicating about when to start

and stop recording". There were also limitations in the types of pieces groups could

play. Although the tool may be well suited for pop singers, other types of music

like jazz benefit from real-time feedback and improvisation, which is not suited for

recording-based rehearsals.

Notable takeaways include:

96

• Partitioning the work to independently align individual tracks can greatly speed

up audio alignment of a small group piece. However, the slowest person to align

their track due to perfectionist tendencies or lack of experience can greatly

impede efficiency and progress of a virtual rehearsal.

• A secondary real-time communication tool is necessary to use JamNSync. The

experience “was made easier with video calling during the rehearsal", but with-

out video call (and premium Zoom educational accounts which remove time

limit constraints), coordination among group members may be difficult.

• One user stated that “whenever [they] think about rehearsing music with others

virtually, it always feels like a big ordeal to undertake”. This was not the case

with JamNSync.

• Habits from in-person rehearsals carry well into JamNSync virtual rehearsals.

For example, breathing sharply (i.e. "the sniff") before starting a piece helped

users begin recording at the same time.

• Using JamNSync requires good organization and participation from group mem-

bers. Coordinating where to start recording, initiating and stopping playback

sessions, and leading discussions on areas of improvement will not work with

passive members. This is easier to do in-person with body language, and harder

to gauge solely through a video call.

• Rehearsing with JamNSync allows groups to review a rehearsal in real-time,

which is hard to do in-person (one person must go out of their way to record).

Using the video call and synchronous playback allow users to immediately

quickly identify mistakes and differences in stylistic choices.

• User feedback revealed expectations tailored more to a recording platform than

a group rehearsal. Because users could immediately playback what they re-

hearsed, they had higher standards for their virtual playing, with aspirations to

make a single flawless take with perfect tone quality (uncommon in-person).

97

To perform holistic analysis on the user tests, we merged user ratings from Round

2 (Table 6.3) and Round 3 (Table 6.5) into one dataset. We present four figures,

each representing a pair of ratings that presented an interesting finding. Each figure

is a scatter plot with a linear regression line. The blue shading represents a 95%

confidence interval for the regression estimate.

Using a significance threshold of 0.05, we found that the p-value is statistically

significant in each comparison. Strong correlations were found between recording

experience and prior DAW experience (Fig. 6-16), as well as navigation rating vs

setup rating (Fig. 6-17). Weaker correlations were found between overall experience

and alignment tool ease-of-use (Fig. 6-19), as well as audio quality rating versus

group features rating (Fig. 6-18).

Figure 6-16: Rating of prior experience making audio recordings versus familiarity
with a DAW (𝑅2 = 0.754, p-value = 3.82e−8). The more experience a user had with
recording, the more likely they were familiar with editing and mixing recordings.

98

Figure 6-17: Rating of experience with application navigation versus experience set-
ting up a project (𝑅2 = 0.539, p-value = 6.39e−6). The easier a user found it to
navigate the application, the easier it was for them create a group and set up a
project. This shows that users had similar experiences during non-music portions
of JamNSync’s virtual rehearsal - perhaps with higher ratings for more tech-savvy
people and vice versa.

Figure 6-18: Rating of perceived audio quality versus rating of group feature intuitive-
ness (𝑅2 = 0.288, p-value = 0.0027). As mentioned previously, poor audio quality in
recordings greatly impacted playback of multiple files simultaneously. Groups who
produced high quality recordings tended to have a better experience during synchro-
nized playback and rehearsal, resulting in a more positive overall experience using
the group features.

99

Figure 6-19: Rating of overall experience using JamNSync versus rating of the align-
ment tool’s ease-of-use (𝑅2 = 0.290, p-value = 0.0173). People who had a better
experience with JamNSync seemed to find the alignment tool easier to use.

100

Chapter 7 Conclusion

As a musician-tailored, browser-based application, JamNSync addresses the skepti-

cism and difficulty [13] in continuing music rehearsals during the COVID-19 pan-

demic. An accessible and user-friendly alternative to existing rehearsal software,

JamNSync justifies using technology to enable—rather than overcomplicate—remote

music-making. Eliminating tedious set-up prerequisites and network jargon allows

JamNSync to reach a wider population of musicians. This democratizes opportuni-

ties to make music during a time of social distancing and isolation.

However, as the pandemic ends, people will prefer to make music in-person once

again over any virtual rehearsal space. Nonetheless, JamNSync remains relevant

not only within the NMP community but also among small music groups. There

is potential for JamNSync to connect musicians separated by distance and provide a

virtual rehearsal space for small music groups that otherwise have no means of making

music together. As such, JamNSync offers just the right amount of convenience and

functionality for people to consider it a viable solution for remote music-making.

7.1 Contributions

This thesis makes the following contributions:

First, a user-friendly, latency-agnostic virtual rehearsal tool as a complete solution

for small music groups. With little setup, a rehearsal group can efficiently record and

playback their desired piece in a web browser. This can be accomplished without

sending real-time audio over the network.

Second, the real-time rehearsal protocol that provides a synchronous recording

101

and playback experience for a group. Using a voting consensus algorithm supported

by event handlers over WebSockets, the RTR protocol simulates the experience of

an in-person rehearsal. The protocol requires all users to agree before recording and

playing back together, but allows any user to stop a group session.

Third, a visual audio alignment tool that adjusts latency differences between a

recording track and a backing mix. Instead of placing the burden on a single person

to master the tracks, each musician is responsible for adjusting their own recording.

This distributes the work across the group, thus reducing rehearsal bottlenecks.

Fourth, a built-in per-group project organization that lends itself to managing

pieces within a group. Rehearsal groups working on multiple pieces can track their

projects in a centralized location, rather than split their work in different tools.

Fifth, a DAW-like, versioned recording system that allows a user to easily down-

load takes. Instead of tracking different projects in multiple Google Drive folders,

JamNSync centralizes file upload and download where the actual recording happens.

Finally, JamNSync creates an experience that imitates in-person rehearsals. At

the end of a synchronous recording cycle, the feeling of watching other group members

finish playing and discussing trouble spots is familiar to rehearsing in-person.

7.2 Future Work

Though the core of the JamNSync system has been implemented, there are many

extensions that should be considered:

7.2.1 Feature Improvement

Higher Audio Quality

Crackling and popping in recordings require further investigation. While users can

tolerate occasional distortions, it is evident from other web tools like Soundtrap and

Upbeat that a solution exists to produce clean audio recordings.

102

Overhaul Visual Alignment Guide UI

Because the appearance of the visual alignment guide is not indicative of its function,

the usage of the guide remains unclear. An alternative design can consider iMovie’s

track seeking and editing cursor, which shows the mouse cursor as a vertical line that

extends across all tracks. Any click along the timeline moves the playback cursor to

the location of the click, which links the cursor to the playback time.

Web Audio Scheduler

Playing multiple files simultaneously relies on preloading audio in the browser and

sufficient computation power to initiate playback events at the same time. A more

reliable method of playback uses a high level scheduling system provided by the Web

Audio API. To start files at a precise time, an AudioContext object’s currentTime

property (accurate to 15 decimal places) can be exploited. In this way, all files can be

specified to play at a precise time relative to the AudioContext [3]. Using a scheduler

can also transfer audio file latency adjustment logic to the frontend.

Group Controls Interface

The current placement of the group controls implies functionality independent of solo

audio controls. Instead, they should be integrated into a single set of audio controls,

which switches from solo to group mode when multiple group members are online.

If a user wants to individually record or playback, they can hold the shift button to

reveal the solo options — similar to Audacity’s audio controls design.

7.2.2 Feature Development

Seeking

It is imperative to implement pausing and advancing during playback. This offers a

more complete rehearsing experience by replaying trouble spots. One idea considers

Spotify’s playback system designed to seek with a draggable progress bar.

103

Rehearsal Playback Annotations

Playback annotations can help groups revisit key timestamps during playback. For

example, any user can press the space bar during playback to bookmark a time to

listen later. The annotation can contain the creator’s name, an editable label, and a

timestamp - much like annotations used in Sonic Visualizer [28].

Speed Adjustment

Time-stretching without pitch manipulation allows users to playback audio at any

tempo. This feature eliminates the need to generate new backing tracks or re-record

all tracks when a group wants to change tempo. A built-in speed adjusting playback

extension should resemble what already exist in DAWs like Audacity.

Embedded Video Call

Embedding an open-source video conferencing tool like Jitsi integrates the full re-

hearsal experience into a single page. This makes JamNSync more lightweight —

favorable for computers with difficulty running Zoom with other applications. The

Jitsi API also provides programmatic control to mute the talk-back channel (i.e. be-

fore group record), taking a step out of the existing rehearsal process.

7.2.3 Scalability

Multiple Browser Support

Bugs internal to the system caused audio and synchronization issues in browsers other

than Firefox. This needs to be fixed so JamNSync works in all browsers.

Record Parts Starting at Different Times

The alignment tool should allow users to play back any desired length or portion of

a piece. This removes the constraint that pieces require all parts to play within the

first seven seconds.

104

Appendix A Software Libraries

Javascript Packages

Name Usage Documentation Link

@material-

ui/core

Pre-built React components for

basic web app functionalities

https://material-ui.com/

@material-

ui/icons

Material icons used for DAW au-

dio controls

https://material-ui.com/components/

material-icons/

crunker Helper library to process audio

files with Web Audio API

https://github.com/axios/axios

ffmpeg Javascript version of ffmpeg to

manipulate audio data

https://github.com/Kagami/ffmpeg.

js/

rc-slider React component used for volume

slider in DAW interface

https://www.npmjs.com/package/

rc-slider

react Main user interface library to de-

sign web application

https://reactjs.org/

react-

countdown-

circle-timer

Display countdown prior to begin

recording

https://github.com/vydimitrov/

react-countdown-circle-timer

react-dom DOM-specific methods to render

React elements

https://reactjs.org/docs/react-dom.

html

react-

draggable

Used in audio alignment tool to

drag recorded file

https://www.npmjs.com/package/

react-draggable

105

https://material-ui.com/
https://material-ui.com/components/material-icons/
https://material-ui.com/components/material-icons/
https://github.com/axios/axios
https://github.com/Kagami/ffmpeg.js/
https://github.com/Kagami/ffmpeg.js/
https://www.npmjs.com/package/rc-slider
https://www.npmjs.com/package/rc-slider
https://reactjs.org/
https://github.com/vydimitrov/react-countdown-circle-timer
https://github.com/vydimitrov/react-countdown-circle-timer
https://reactjs.org/docs/react-dom.html
https://reactjs.org/docs/react-dom.html
https://www.npmjs.com/package/react-draggable
https://www.npmjs.com/package/react-draggable

react-

dropdown

Dropdown component to select

takes for each project track

https://github.com/fraserxu/

react-dropdown

react-

google-login

Google OAuth sign in and log in

component for React

https://github.com/anthonyjgrove/

react-google-login

react-router Navigational components to easily

switch between web pages

https://reactrouter.com/

react-router-

dom

DOM bindings for React Router https://www.npmjs.com/package/

react-router-dom

react-scripts Scripts and configuration used by

Create React App

https://www.npmjs.com/package/

react-scripts

react-st-

modal

Customizable pop up dialog com-

ponents

https://nodlik.github.io/

react-st-modal/

socket.io-

client.js

Supports real-time, bi-directional,

event-based communication be-

tween browser and server

https://socket.io/docs/v4/

client-initialization/

wavesurfer.js Customizable audio waveform vi-

sualization

https://wavesurfer-js.org/

Web Audio

Recorder

Record audio input (Web Audio

API AudioNode object) and en-

code as MP3 audio file

https://github.com/higuma/

web-audio-recorder-js/

106

https://github.com/fraserxu/react-dropdown
https://github.com/fraserxu/react-dropdown
https://github.com/anthonyjgrove/react-google-login
https://github.com/anthonyjgrove/react-google-login
https://reactrouter.com/
https://www.npmjs.com/package/react-router-dom
https://www.npmjs.com/package/react-router-dom
https://www.npmjs.com/package/react-scripts
https://www.npmjs.com/package/react-scripts
https://nodlik.github.io/react-st-modal/
https://nodlik.github.io/react-st-modal/
https://socket.io/docs/v4/client-initialization/
https://socket.io/docs/v4/client-initialization/
https://wavesurfer-js.org/
https://github.com/higuma/web-audio-recorder-js/
https://github.com/higuma/web-audio-recorder-js/

Python Packages

Package Usage Documentation Link

alembic Database migration tool used with

SQLAlchemy

https://alembic.sqlalchemy.org/en/

latest/

awscli Amazon Web Services (AWS)

command line interface to config-

ure credentials and region

https://aws.amazon.com/cli/

boto3 AWS SDK for Python to manage

audio file storage in S3

https://boto3.amazonaws.com/v1/

documentation/api/latest/index.html

eventlet Concurrent networking library to

synchronize group members

https://eventlet.net/

ffmpeg Audio converter used by pydub to

manipulate audio files

http://ffmpeg.org/ffmpeg.html

Flask Micro web framework used for the

system’s web server

https://flask.palletsprojects.com/

en/1.1.x/

Flask-Login Flask extension that provides user

session management (i.e. log in,

log out)

https://flask-login.readthedocs.io/

en/latest/

Flask-

Migrate

Flask extension that handles

SQLAlchemy database migrations

using Alembic

https://flask-migrate.readthedocs.

io/en/latest/

Flask-

SocketIO

Flask extension that enables low

latency bi-directional communica-

tion between client and server

https://flask-socketio.readthedocs.

io/en/latest

Flask-

SQLAlchemy

Flask extension that adds support

for SQLAlchemy

https://flask-sqlalchemy.

palletsprojects.com/

gunicorn Python Web Server Gateway In-

terface (WSGI) HTTP server

https://gunicorn.org/

107

https://alembic.sqlalchemy.org/en/latest/
https://alembic.sqlalchemy.org/en/latest/
https://aws.amazon.com/cli/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://eventlet.net/
http://ffmpeg.org/ffmpeg.html
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
https://flask-login.readthedocs.io/en/latest/
https://flask-login.readthedocs.io/en/latest/
https://flask-migrate.readthedocs.io/en/latest/
https://flask-migrate.readthedocs.io/en/latest/
https://flask-socketio.readthedocs.io/en/latest
https://flask-socketio.readthedocs.io/en/latest
https://flask-sqlalchemy.palletsprojects.com/
https://flask-sqlalchemy.palletsprojects.com/
https://gunicorn.org/

jmespath Query language to extract JSON

elements in API responses

https://jmespath.org/

MarkupSafe Helper library to escape charac-

ters in text for HTML and XML

https://markupsafe.palletsprojects.

com/en/1.1.x/

numpy Multi-dimensional array library

used to manipulate audio files

https://numpy.org/doc/stable/

psycopg2-

binary

PostgreSQL database adapter to

connect to interface with database

https://www.psycopg.org/docs/

pydub Audio file processor to edit and

trim recorded audio files

https://github.com/jiaaro/pydub

python-

dateutil

Format audio file timestamps

stored in database

https://dateutil.readthedocs.io/en/

stable/

python-

dotenv

Reads database and Flask en-

vironment variables as key-value

pairs from .env files and Heroku

https://pypi.org/project/

python-dotenv/

pytz Provides world timezone defini-

tions to calculate accurate audio

file timestamps stored in database

https://github.com/newvem/pytz

rsa Helper RSA library to support

cryptographic signing in Flask.

https://stuvel.eu/software/rsa/

s3transfer Helper library to manage AWS S3

file transfers

https://github.com/boto/s3transfer

shortuuid Generates URL-safe hashes to

concisely identify each project

https://pypi.org/project/shortuuid/

sox Sound processing library to ma-

nipulate recorded audio files

https://pysox.readthedocs.io/en/

latest/

SQLAlchemy Object relational mapper that

provides a simple API to interact

with PostgreSQL database

https://www.sqlalchemy.org/

108

https://jmespath.org/
https://markupsafe.palletsprojects.com/en/1.1.x/
https://markupsafe.palletsprojects.com/en/1.1.x/
https://numpy.org/doc/stable/
https://www.psycopg.org/docs/
https://github.com/jiaaro/pydub
https://dateutil.readthedocs.io/en/stable/
https://dateutil.readthedocs.io/en/stable/
https://pypi.org/project/python-dotenv/
https://pypi.org/project/python-dotenv/
https://github.com/newvem/pytz
https://stuvel.eu/software/rsa/
https://github.com/boto/s3transfer
https://pypi.org/project/shortuuid/
https://pysox.readthedocs.io/en/latest/
https://pysox.readthedocs.io/en/latest/
https://www.sqlalchemy.org/

Appendix B User Test Questionnaires

Figure B-1: Google Form used to conduct Round 2 of User Testing (Part 1 of 2)

109

Figure B-2: Google Form used to conduct Round 2 of User Testing (Part 2 of 2)

110

Figure B-3: Google Form used to conduct Round 3 of User Testing (Part 1 of 2)

111

Figure B-4: Google Form used to conduct Round 3 of User Testing (Part 2 of 2)

112

Bibliography

[1] Acapella [Mobile application]. (2015). Retrieved from
https://www.mixcord.co/pages/acapella

[2] Add Google Sign-In to Your Web App [Computer software]. (2020). Retrieved
from https://developers.google.com/identity/sign-in/web

[3] Advanced Techniques: Creating and Sequencing Audio. (2021, March 7). Web
APIs - MDN. Retrieved May 23, 2021, from
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API/
Advanced_techniques.

[4] Agora.io [Computer software]. (2019). Retrieved from
https://www.agora.io/en/

[5] Awesome Networked Media [Computer software]. (2020). Retrieved from
https://github.com/omarcostahamido/awesome-networked-media

[6] AWS Cloud Products [Computer Software]. (2020). Retrieved from
https://aws.amazon.com/products/?nc2=h_ql_prod_fs_f

[7] Bandlab [Computer software]. (2014). Retrieved from
https://www.bandlab.com/

[8] Bernstein, Philip A., et al. Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, 1987. Retrieved from
https://research.microsoft.com/en-us/people/philbe/ccontrol.aspx.

[9] BSQ. (2020, March 13). Virtual Rehearsing. Retrieved October 28, 2020, from
https://bayberrystringquartet.com/2020/03/13/virtual-rehearsing/

[10] Carôt, A., & Werner, C. (2007, September). Network music performance-
problems, approaches and perspectives. In Proceedings of the “Music in the Global
Village”-Conference, Budapest, Hungary (Vol. 162, pp. 23-10). Retrieved Octo-
ber 27, 2020, from http://www.carot.de/Docs/MITGV_AC_CW.pdf

[11] Chafe, C. & Caceres, J. (2009). Jacktrip: Under the Hood of an Engine for
Network Audio. Retrieved November 3, 2020, from
https://ccrma.stanford.edu/groups/soundwire/publications/papers/
2009-caceres_chafe-ICMC-jacktrip.pdf

113

[12] Cleanfeed [Computer software]. (2016). Retrieved from
https://cleanfeed.net/

[13] Crimmins, P. (2020, April 02). Some choirs rehearse remotely while others wait
out coronavirus pandemic. Retrieved October 27, 2020, from
https://whyy.org/articles/choirs-make-the-most-of-virtual-
rehearsals-during-coronavirus-pandemic

[14] Clark, D. (August 1988). The Design Philosophy of the DARPA Internet Pro-
tocols. ACM SIGCOMM Conference, 18(4), 106-114. Retrieved April 24, 2021,
from https://doi.org/10.1145/52325.52336

[15] Egozy, E. (2020). Low Latency Audio at MIT: Overview and Core Concepts.
Retrieved from https://canvas.mit.edu/courses/9153.

[16] Fischer, V. (2015). Case Study: Performing Band Rehearsals on the Internet
with Jamulus. Retrieved November 3, 2020, from
https://jamulus.io/PerformingBandRehearsalsontheInternetWith
Jamulus.pdf

[17] Gu, X., Dick, M., Kurtisi, Z., Noyer, U., & Wolf, L. (2005). Network-centric
music performance: practice and experiments. IEEE Communications Magazine,
43(6), 86-93. Retrieved October 28, 2020, from
https://ieeexplore.ieee.org/abstract/document/1452835

[18] Handley, M. (2006). Why the Internet only just works. BT Technol J, 24,
119–129. Retrieved April 24, 2021, from
https://doi.org/10.1007/s10550-006-0084-z

[19] Hardman, R. (2020, April 23). Social Distancing, Lagging Technology Make
Choir Rehearsals A Challenge. Retrieved September 30, 2020, from
https://www.wnpr.org/post/social-distancing-lagging-technology-
make-choir-rehearsals-challenge

[20] Howell, I., et al. (2020, March 25). Audio Quality of Four Video Conferencing
Platforms. Retrieved October 28, 2020, from
https://www.ianhowellcountertenor.com/preliminary-report-testing-
video-conferencing-platforms

[21] Jamkazam [Computer software]. (2020). Retrieved from
https://www.jamkazam.com/

[22] Jitsi [Computer software]. (2003). Retrieved from
https://github.com/jitsi/jitsi-meet

[23] Lazzaro, J., & Wawrzynek, J. (2001, January). A case for network musical per-
formance. In Proceedings of the 11th international workshop on Network and
operating systems support for digital audio and video (pp. 157-166). Retrieved

114

October 28, 2020, from
https://john-lazzaro.github.io/sa/pubs/pdf/nossdav01.pdf

[24] NINJAM [Computer software]. (2005). Retrieved from
https://www.cockos.com/ninjam/

[25] OpenShot [Computer software]. (2008). Retrieved from
https://www.openshot.org/

[26] Pogue, D. (2020, June 4). How to Make Your Virtual Jam Session Sound-and
Look-Good. Retrieved September 30, 2020, from
https://www.wired.com/story/zoom-music-video-coronavirus-tips/

[27] Saroiu, S., Gummadi, K., and Gribble, S. (2002, January). A mea-
surement study of peer-to-peer file sharing systems. In Proceed-
ings of Multimedia Computing and Networking. Retrieved from
https://people.mpi-sws.org/ gummadi/papers/p2ptechreport.pdf.

[28] Sonic Visualizer [Computer software]. (2021). Retrieved from
https://www.sonicvisualiser.org/

[29] SoundJack [Computer software]. (2020). Retrieved from
https://www.soundjack.eu/howto/

[30] Soundtrap [Computer software]. (2012). Retrieved from
https://www.soundtrap.com/

[31] Symonics’ Fastmusic Box [Computer hardware]. (2012). Retrieved from
https://symonics.com/fastmusic/.

[32] Upbeat [Computer software]. (2020). Retrieved from
https://upbeatmusicapp.com/

[33] WebEx [Computer software]. (1995). Retrieved from https://www.webex.com/

[34] Xambó, A. (2020, June 02). Network Music Performance During COVID-19 and
Beyond: A Quick Review of Available Software. Retrieved October 28, 2020,
from http://annaxambo.me/blog/research/2020/06/02/network-music-
performance/

[35] Zoom [Computer software]. (2011). Retrieved from http://zoom.us/

115

	Introduction
	Background
	Small Group Music Rehearsals
	In-Person
	Virtual
	Characteristics of Effective Rehearsals

	Computer Networks
	Best Effort Internet
	Transport Layer Protocols
	Port Forwarding
	Internet Connection Types
	Audio Device Connection Types
	Network Architectures

	Related Work
	Generic Video Conferencing Systems
	Real-Time Music Rehearsal Systems
	Online Digital Audio Workstations (DAWs)
	Home-Spun Solutions
	Summary

	Design
	Virtual Rehearsal Process
	Design Goals
	System Architecture
	Real-Time Rehearsal Protocol
	Data Organization
	Frontend: Client UI
	Client Usage

	Backend: API Design

	Implementation
	Frontend: React
	Backend: Flask
	Data: PostgreSQL/AWS
	Deployment: Heroku
	Technical Challenges
	Technology Differences and Inconsistencies
	MP3 Web Recording Logic
	Aligning Tracks with Browser Latency

	Testing and Evaluation
	Round 1: Solo (1 Musician)
	Tasks
	Results

	Round 2: Duets (2 Musicians)
	Tasks
	Results

	Round 3: Duets, Trio, Quartet (2-4 Musicians)
	Tasks
	Results

	Analysis and Evaluation

	Conclusion
	Contributions
	Future Work
	Feature Improvement
	Feature Development
	Scalability

	Appendix A Software Libraries
	Appendix B User Test Questionnaires

