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Abstract

This thesis investigates the problem of estimating the three-dimensional struc-
ture of a scene from a sequence of images. Structure information can be recovered
from images through a number of visual mechanisms such as shading, motion and
stereo. Image information is commonly available in a time-continuous fashion and
this work proposes a method for estimating structure information in a temporally
continuous manner for a variety of visual mechanisms.

Structural information about a scene is represented in a dense depth map in
which the distance to the scene is stored for each pixel location in the image. In
addition, uncertainty about the structure values is represented explicitly by the
estimate covariance. This represcntation is maintained over time by a stochastic
recursive estimator, the Kalman filter. The estimator consists of two stages which
are repeated for each new arriving image. The update stage improves the current
depth estimate by incorporating the latest image measurement. It depends on the
particular visual mechanism being employed and amounts to an iterative relax-
ation algorithm similar to conventional single-frame algorithms. The prediction
stage transforms the current depth estimate into the next time-step to account for
changes in the depth values that may occur if the camers. moves relative to the
(rigid) scene during the acquisition of the sequence. This step requires a three-
dimensional transformation (translation and rotation) of each depth map entry
followed by a resampling operation tn maintain the regular map representation.

The temporal reconstruction algorithm is described in detail for the recovery
of structure from motion with and without optical flow and for structure from
shading. Extensive experimeatal evaluation shows that the temporal algorithm
not only improves the quality of estimates significantly over time but also requires
orders of magnitude less time per image than previous "instantaneous” techniques.
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Chapter 1

Introduction

1.1 Problem Statement

How can we perceive three-dimensional structure? Brightness images of three-
dimensional scenes contain a wealth of information which humans can exploit
through a variety of mechanisms to extract information about the structure of
objects. Moreover, this cognitive process has a temporal dimension: humans can
maintain and improve an "idea” of a three-dimensional structure as they acquire
more images of a scene from varying viewpoints.

The objective of this thesis is to formalize the problem of temporal surface
reconstruction outlined above and to investigate computational visual algorithms

for its solution. Let us begin by stating the problem more precisely:

14
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Temporal Surface Reconstruction:

We are given a sequence of intensity images of a three-dimensional scene.

The objective is to estiinate the three-dimensional structure of the ob-

served scene.

The solution to the above problem will consist of answers to the following

questions:

o Representation: What are the representations of three-dimensional structure
suitable for surface reconstruction, considering in particular the ability to

.maintain the representation over time?

o Visual Mechanisms: What are the visual mechanisms that can be exploited

to recover information about three-dimensional surfaces from brightness im-

ages?

o Algorithms: What are the computational algorithms which are best suited to
exploit the above visual mechanisms and the above structure representations
to obtain estimates of th. three-dimensional surfaces which are closest to the

true surfaces at the lowest computational cost?
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This thesis will investigate one solution to the above problems and contrast it

with other possible alternatives.

1.2 An Illustrative Example

To gain some insight into the difficulties involved, let us consider a straightfor-
ward solution to the above problem. It is well-known that stereoscopic vision
is a primary source oi three-dimensional perceptive capability in humans. Marr
and Poggio [61] argue that humans match brightness "edges” in the left and right
images. The disparity betwecn matching edge locations is inversely proportional
to the distance of the corresponding point in the world. In this case, the repre-
sentation of the three-dimensional structure would be the distance of points on
the surface that project to edge locations in the image. The visual mechanism
is the inverse relationship between the distance of surface points and the dispar-
ity of matching edge locations in the image. The algorithm (such as the one by
Grimson [31)) consists of extracting edge locations, matching them in the left and
right images and calculating the depth from the resulting disparity.

Neither this description nor the original papers cited above address the tem-
poral aspect of the problem i.e. how structure information can be recovered using
stereo if an entire sequence of stereo pairs is available. Of course, it would be

straightforward to repeat the instantaneous algorithm for every pair of images
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in the sequence as it becomes available. This appears counterintuitive since the
calculation for a given pair of frames completely disregards estimates from previ-
ous frames and can therefore not hope to provide the continuous estimation and
estimate improvement which humans exhibit. We can formulate the difficulties
and disadvantages affiliated with such an "instantaneous” surface reconstruction

procedure more precisely:

1. Instantaneous structure estimates are sensitive to measurement errors and
noise. Combining estimates from a number frames introduces redundan-
cies that can be exploited to reduce the effect of errors. However, the in-
stantaneous approach cannot combine measurements and therefore has no

temporal error-reduction effect.

2. In order to combine estimates from different frames, the estimates must be

compatible. However, the relative position of camera and scene may change
during the acquisition of frames and thereby cause instantaneous structure
estimates taken at different positions to be incompatible. Transformations
of structure estimates to account for camera displacement are necessary to

overcome isolated processing of images.

3. Once temporal structure estimates are compatible, we need a procedure to

"combine” them. Measurements taken at different times may vary in terms
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of error and noise. In particular in the case where camera and scene are in
relative motion, the uncertainty in the structure estimate will vary spatially
and temporally. The instantaneous approach has no way of representing the
uncertainty and no way of using such a representation to improve estimates

of high uncertainty by combining them with others of lower uncertainty.

4. Typically, instantaneous surface reconstruction procedures such as the Marr-
Poggio/ Grimson stereo algorithm mentioned above are computationally quite
expensive. In the instantaneous scheme these expensive procédures must be
repeated for each frame and since processing is done in isolation no compu-

tational benefit can be drawn from previous estimates.

1.3 The Temporal Dimension

As we will see in more detail in chapter 2, most work in visual surface recon-
struction is of the instantaneous nature described above. The emphasis of this
thesis is on the temporal aspect of surface reconstruction and the discussion above
illustrates some of the specific issues that must be considered. At the same time,
they can serve as the basis for the set of criteria which we may use to judge the
effectivity of a temporal surface reconstruction scheme. Based on the observations

made above, the following are minimal requirements for any procedure that we
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may consider:

1. Quality improvement:

The quality of estimates should improve by combining estimates over time.

2. Motion transformations:
Estimates should be maintained in such a way that a relative motion of

camera and scene is accounted for.

3. Uncertainty representation:
Estimates should be maintained along with their uncertainty and the com-

bination of estimates should take the uncertainty into account.

4. Computational simplicity:
Results obtained in previous time steps can be used to reduce the amount
of computation necessary by providing initial values for the next step that

are close to the solution.

In search of a solution to the temporal reconstruction problem that satisfies
the above criteri'a a look at related problems in other disciplines is enlightening.
FEstimation theory addresses the problem of analyzing a set of measurements to
estimate the value of a quantity which is related to the measurements in a defined
way. This pertains to the problem at hand, since the image measurements avail-

able for surface reconstruction are related to the quantities which describe the
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surface structure in a known and predetermined way. We have seen this in the
case of stereo surface reconstruction above and have referred to this relationship

as the visual mechanism.

A brief look at the properties of recursive estimation methods provides insights

on a number of the issues mentioned previously.

¢ Measurements and estimation quantities can be modeled stochastically by
probability distributions to describe the effect of errors or measurement
noise. Uncertainty can be represented explicitly as the covariance matrix
of these probability distributions and can be used to weight measurements

of differing quality appropriately.

e Optimal solutions (in terms of the difference between estimate and true

value) have been proven and are readily available.

e Recursive estimation theory, in particular, addresses the problem of estimat-
ing the internal state of a dynamical system from external measurements.
It provides a solution to this problem which incrementally improves an es-
timate of the system’s state with every new measurement that becomes

available.
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These characteristics make it particularly interesting to investigate techniques
from recursive estimation theory for the solution of the temporal surface recon-
struction problem. As we will see, casting surface reconstruction in the framework
of estimation theory does not force us to abandon the results of instantaneous
methods but rather provides a natural way of embedding instantaneous techniques

in a temporal estimation scheme and explicitly modeling uncertainty.

1.4 Contributions

The contributions of this research work are as follows:

e The problem of temporal surface reconstruction is formulated and formalized
in the framework of recursive estimation theory. This formulation serves
as a unifying theory for previous approaches to temporal estimation and
naturally subsumes existing instantaneous procedures by embedding them

into a stochastic framework and explicitly representing uncertainty.

¢ A novel algorithm for the estimation of depth from motion image sequences
using optical flow is derived from the temporal surface reconstruction theory,
has been implemented and evaluated experimentally. Although this specific

problem has been addressed previously, the solution presented here is not
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restricted to particular types of motion and incorporates prior models of sur-
face structure (smoothness) in a new way based on the stochastic modeling

from estimation theory.

A novel algorithm for the estimation of depth from shading information is
derived from the temporal surface reconstruction theory, has been imple-

mented and evaluated experimentally.

A novel algorithm for the estimation of depth from motion image sequences
using the "direct” approach (without optical flow) is derived from the tem-
poral surface reconstruction theory, has been implemented and evaluated

experimentally.

This thesis provides extensive experimental evaluation of the temporal sur-

face reconstruction theory on a variety of real and synthetic images.

A novel algorithm for the prediction/motion warping of three-dimensional
surfaces represented as depth maps to account for the effect of rotational

and translational motion on the relative position of observer and surface.

A detailed computational evaluation of temporal surface reconstruction in

terms of complexity, run-time and implementation on parallel processors.
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1.5 Structure of the Thesis

Chapter 2: The presentation in this thesis builds on the work in instantaneous
surface reconstruction and uses techniques from estimation theory. We begin
by introducing some fundamental concepts and notation for imaging. A survey of
previous works in instantaneous recovery of structure information from a variety of
visual mechanisms is provided. Finally a set of detailed examples of instantaneous
surface reconstruction procedures which will later be embedded into the temporal
framework are studied here.

Chapter 3: This chapter summarizes previous work on the temporal aspect
of visual surface reconstruction. It provides a categorization of research according
to the representation and the type of algorithm used.

Chapter 4: Here we recapitulate the essential results from recursive esti-
mation theory that will be used in this thesis. Some interesting and relevant
properties of the Kalman filter are presented hereL

Chapter 5: This chapter qualitatively outlines the primary contribution of
this work: it describes how recursive estimation theory can be applied to the
problem of temporal surface reconstruction such that the solution addresses the
criteria set forth previously. The resulting solution is an iterative algorithm which
consists of two stages for each new image that becomes available: an "update”

stage which incorporates the new measurement into the current structure estimate
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and a "prediction” stage which accounts for relative motion between camera and
scene during image acquisition. Only the update stage depends on the visual

mechanism which is used to recover structure from image data.

Chapter 8: Here we discuss the initialization of the temporally recursive
estimation algorithm and show how a proper choice of initial values permits prior
models of surface structure such as smoothness to be imposed cn the result of the

estimation procedure.

Chapter 7: The prediction stage of the temporal reconstruction algorithm is
independent of the particular visual mechanism and is described in chapter 7. The
procedure is equivalent to the motion warping of a surface in three dimensions

and the subsequent resampling of the warped surface on a regular grid.

Chapter 8: This chapter describes the update stage of the temporal estimator
for the case of depth from motion using optical flow. It describes how to choose
the matrices and vectors that determine the filter and how the optical flow which

is used as a measurement in the formulation can be obtained from images.

Chapter 9: Here the update stage of the temporal estimator for the case of

depth from shading is described.

Chapter 10: This chapter describes the update stage of the temporal esti-

mator for the case of depth from motion without the use of optical flow.
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Each one of the chapters 8, 9 and 10 shows the result of extensive experimen-
tation with the temporal surface reconstcuction algorithms on real images for the

particular visual mechanism .

Chapter 11: Here we discuss and evaluate the temporal reconstruction al-
gorithm from various points of view. A detailed analysis of complexity and run-
time is provided. We discuss possible implementations on parallel processors and
special-purpose hardware and assess possible performance improvements. Finally,
a complete list of assumptions and approximations made throughout the thesis is

provided to help identify weak points and to serve as the basis for comparisons.

Chapter 12: This chapter contains summarizing and concluding remarks as

well as perspectives on future research.

Three appendices at the end of this thesis provide details which are not likely
to be of interest to a casual reader but are useful for the purpose of implementa-
tion for example. Appendix A describes the theoretical derivation for the implicit
Kalman filter introduced in chapter 4. Appendix B provides the detailed equa-
tions for the prediction of depth and covariance that are introduced in chapter 7.
Appendix C serves as an implementor’s handbook. In it, the the Kalman filter
equations for the filter update corresponding to the structure from optical flow
case of chapter 8 are worked out in such a detail that they may be immediately

reimplemented by the reader. It also provides a set of practical ideas which can
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support the implementation and make it more flexible.



Chapter 2

Instantaneous Surface

Reconstruction

This chapter begins by introducing some basic notation used in the recovery of
structure information from images. It then provides a survey of previous work on
the instantaneous reconstruction of surfaces from images. Finally, it gives three
detailed examples of visual surface reconstruction procedures which operate in an
instantaneous fashion in the sense described in the introduction. The goal is to
later (in chapters 8, 9, 10) embed these procedures in the Kalman filter framework

so that they may operate in a time-continuous fashion.

2.1 Basic Definitions and Notation

27
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Image Plane
(1)
Focal Point ! buy)
z
X
*Y

Figure 2.1: The imaging situation.

We begin with some basic definitions and notation which is used in all of the
surface reconstructior procedures. Figure 2.1 shows the imaging situation that
we will consider. A viewer-centercd coordinate system is introduced such that the
origin lies at the focal point, the z — y plane is parallel to the image plane and the
z-axis points outward along the optical axis. A poini P = [X,Y, Z] on the surface
of an object in the scene is projected to a point P' = [z,y, f] in the image plane
(on the surface of the CCD image sensor), where the coordinates are related by

the equations of perspective projection?!
X Y
= f— d = f— 2.1
e=fr wmd y=fy (21)

and f is the focal length of the camera.

!Shading methods use orthographic instead of perspective projection.



2.1. Basic Definitions and Notation 29

—_— ] m columns

nrows

Ax

Figure 2.2: The image s=nsor array and indexing.

The camera sensor provides measurements of brightness values on a rectangular
grid which we represent in an array (E;;) where ¢ and j index the rows and columns
of the image array as shown in figure 2.2. Note that the coordinate system is
centered on the sensor grid while the indexing of the image array begins at (0,0)
in the upper left corner in row major order. The brightness array has n rows and
m columns. If the physical size of the image sensor is w X h, the spacing between

sensor elements is

Az== and Ay=

m

SRR

(2.2)

The relationship between physical coordinates and indices in the image array is

given by

— 1)A:a: and y= (- h——l)A'y (2.3)

w

z=0-— 2
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) z w-—1 .y h—1
i=gptTy wd =gt 24

The Z-coordinate of a point P is the distance from the origin of the coordinate
system to the perpendicular projection of P onto the optical axis and is referred
to as the depth of that point. The array (Z;;) consisting of the depth values
corresponding to each of the locations in the image sensor grid is referred to as a
depth map.

For the description of relative motion between camera and scene we restrict
ourselves to rigid body motions. Svch motious can be described by a translation
vector t and a rotation matrix §2 both of which will be given relative to the
coordinate system of the camera before the motion. Points P, and P,,, before

and after the motion transformation are related by
Pyy=-t—-0P, (2.5)

In the case of small motions between frames, the rotation can be described by a

vector w:

P],+1 =—t—-wx P]. (2.6)

2.2 Instantaneous Surface Reconstruction

Research in instantaneous reconstruction of surface structure from images can be

categorized by the visual mechanism which is used. A brief overview of past work
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using this categorization in roughly chronological order follows.

2.2.1 Structure from Shading

When the image brightness can be modeled as a known function of the surface
structure, this knowledge can be used to infer the surface structure from an single
image. Horn [43] first formulated and proposed a solution to this problem in his
thesis. A variational approach was presented in [50]. Pentland [77] introduvced a
greatly simplifed solution approach by assuming that surfaces are locally spher-
ical. Photowetric Stereo [49] is an interesting variant in which several images
under different illumination conditions are used to eliminate some of the ambigu-
ity inherent in a single image. For a collection of essential papers and complete a

bibliography, the reader is referred to Horn and Brooks [46].

2.2.2 Structure from Texture

If the surface of an object is covered by a texture pattern in which texture elements
have a constant or known size, the relative size of these patterns in the image can
be used to infer the objects shape. This problem was already addressed in Horn’s
thesis [43] and received detailed attention later by Bajcsy and Lieberman (5] and in
the theses of Stevens [89] and Kender [56]. Obviously, this visual cue is restricted

to only a specific cli.ss of scenes or parts of scenes.
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2.2.3 Structure from Stereo

The strongest visual mechanism used by humans to discern the three-dimensional
structure is stereoscopic vision. Since we have two eyes, the difference in po-
sition at which a point in the scene appears in the two images can be used to
Aetermnine its depth via a simple triangulation. Marr and Poggio [60], [61] first
studied the human stereoscopic vision systen: and proposed a model for ar un-
derlyine computational mechanism. Grimson [31], [32] combined this theory with
the Marr-Hildreth approach to edge detection to formulate an algorithm that re-
covered structure information at the location of edges in the image. Using the
variational appreach later referred to as “regularization”, this algorithm recovered

dense structure information from two images.

2.2.4 Structure from Motion

When a camera moves relative to a surface, two or more images can be used
much in the same manner as in stereoscopic vision: the difference in projected
location of a scene point contains information about the three-dimensional location
of the point. While the use of small camera displacements can greatly reduce
the matching problem which plagues stereo algorithms, the fact that the relative
camera motion is either unknown or uncertain introduces other complications. A

first class of algorithms assumes that the optical flow, an approximation of the
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projection of the three-dimensional velocity field has been computed and can be
used to recover structure. Examples are Tsai and Huang [102], Bruss and Horn
(16], Longuet-Higgins and Prazdny [59], Waxman and Ullman [105], Mitiche [70],
Spetsakis and Aloimonos [88] and Heeger and Jepson[34]. Since the computation
of the optical flow is expensive, recent proposals have sought to avoid this step
and directly extract structure information from image brightness: Kanatani [55)
Negahdaripour, Weldon and Horn [75], [48] and Aloimonos and Herve [1] are

examples of this =pproach

2.2.5 Structure from Focus

For a given focal length of the imaging device, only certain scene points at a
specific distance (given by the Gaussian lens law) from the camera will appear
in focus. By looking at the frequency content of the image regions, the focussed
regicns can be identified and their depth computed using the lens law. Krotkov
(58] analyzed the performance of several criteria to identify image regions in focus
and showed how it could be used to recover depth. Pentland (78] addresses the
same problem as do Nayar and Nakagawa (73] for the case of rough surfaces. In
any case, the use of this method requires the ability to change the focal length of

the camera in a very precise and known manner.
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2.2.6 Other Related Work

Ikeuchi, Horn and Schunck [50], {47] as well as Grimson [31] had realized the need
to impose restrictions on the structure of the surfaces that they reconstructed
from various visual mechanisms. This was done both to reduce the effect of mea-
surement noise and to obtain dense information because reconstruction was only
done at sparse locations. Terzopoulos [96], [97], contribuled much to formalizing
this process by introducing the membrane and thin plate surface models and an-
alyzing them theoretically and experimentally. Poggio et al. [80] cast this as the
regularization approach to both instantaneous surface reconstruction and the so-
lution of other ill-posed problems in early vision. The deterministic regularization
approach which dominates most instantaneous procedures as we will see next was
later enhanced by probabilisitic modeling (Geman and Geman [29], Marroquin
[63], Blake and Zisserman [10] Poggio, Gamble and Little [79] and Geiger and

Girosi [26]) which are reviewed in some more detail in section 3.7.

2.2.7 Depth from Motion using Optical Flow

When « scene moves relative to an observer each scene point can be assigned
an instantaneous velocity in space. The projection of this velocity field into the
image plane of the observer is called the motion field and can be represented by

a vector (u;j,v;;) at every pixel location (z,7). A variety of methods exists that
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Figure 2.3: The first frame and an optical flow field from the pepsi sequence.

estimate an approximation to the motion field which is typically referred to as
the optical flow from a pair of images: Horn and Schunck [47], Hildreth [42],
Nagel and Enkelmann [71], Heeger [33], Anandan [3]. Two images from a motion
sequence along with the computed optical flow is shown in figure 2.3. Notice that
the optical flow estimates contain errors due to a variety of reasons.

If an algorithm for the computation of the optical flow is available (see section
8.2 for an example), we can assume that the optical flow (u,v) has been computed
for every pixel (4,7). The instantaneous depth from motion algorithm uses the
relationship between the optical flow vector of a point and the corresponding
depth value Z as the visual mechkanism. This relationship is given by the Longuet-

Higgins/Prazdny formulas [59]

-U W
u; = —%‘f’—— + Azjy; — B(z} + 1) + Cy: (2.7)
vi; = —-—+—yj—- + A(y,’ + 1) — B:c,-y,- — C':c,- (28)

Zij
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where t = [U,V, W|T is the relative translation between camera and scene, w =
[A, B,C]T is the relative rotation and (z;,y:) is the physical image plane location
of pixel (i,7).

We simplify these equations by introducing the inverse depth or disparity d =
1/Z (thereby making the problem linear) and abbreviating the known coefficients
a,;j = —U+z;W and f;; = —V +y;W as well as the known rotational comuponents
(which are independent of depth) u}; = Az;y — B(z? + 1) + Cy; and of; =

A(y? + 1) — Bz;y; — Cz;. This results in

u,-j = a‘-jd;,--i-u',-'j (29)
v; = Bidij + v (2.10)

The surface reconstruction objective is to determine the disparity map (d;;)
which satisfies (2.9) and (2.10) when given the optical flow field (u;;,v;;). Math-
ematically, the problem is overdetermined, as we have 2nm constraints for nm
unknowns so it may not be possible to satisfy all of the constraints. In addition,
the optical flow fizld is known to contain errors and to reduce their effect on the
reconstructed surface, we impose a smoothness constraint on the disparity field
(di;). This is achieved by constructing an energy function the minimum of which

is the disparity field which best reconciles the conflicting objectives

Jd)= 33 (w— iy — ) + (vij — Biydys — o)+ (2.11)
i
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M(dijar = di-1)" + (di,j — dicr3)’]
The first two terms enforce the compatibility of d with the measured optical
flow values according to (2.9) and (2.10); the last two terms penalize for large
differences in neighboring values of d and thereby enforce surface smoothness.
The “optimal” value of d;; is obtained by minimizing the functional J which
can be done by iteretive relaxation wethods (see Golub and Van Loan [3C]). The

Gauss-Seidel iteration equations in the above case would be

ot Qs — uh) + Bis(vis — o) + A
“ of + B% + 4)
15 17

(2.12)

where d;; = d;j41 + dijo1 + diy1,; + di_q,; and n is the iteration index. The
above energy functional method is used widely in surface reconstruction and is
also referred to as “regularization” (Terzopoulos [97], Poggio et al. [80]). The
surface reconstruction method described here is similar to the one suggested by

Bruss and Horn [16] and Barron [7].

2.2.8 Depth from Motion without Optical Flow

The instantaneous procedure for estimating depth from motion described in the
previous section requires the computation of optical flow. Since this is a compu-
tationally expensive procedure, Horn, Negahdaripour and Weldon [75], [48], [74],
[76] developeud a direct method for the computation of structure from image se-

quences which does not use the optical flow as an intermediate representation. It
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is briefly described below.

The brightness constancy assumption

d_f =0 (2.13)

states that the brightness of a fixed point in the scene is unchanged between
temporally subsequent image frames. This assumption is not true for most real
scenes, motions and lighting conditions but it is a popular approximation which
is also the basis for the estimation of optical flow fields (Horn and Schunck [47)).

By expanding the absolute derivative in (2.13) we obtain

0B OEdy , OF
Oz dt Oy dt Ot

=Eu+Ev+E =0 (2.14)
where E,, E,, E, are the brightness derivatives in spatial and temporal directions
and (u,v) is the optical flow introduced previously. Note that the brightness
derivatives can be approximated by taking finite differences of image brightness
values and are therefore known quantities.

Conceptually, the idea is as follows: The brightness change constraint equation
(2.14) links brightness values to optical flow. The motion field equations (2.7),
(2.8) link optical flow to rigid body motion and structure. By plugging (2.7), (2.8)
into (2.14) we obtain one equation that links image brightness values directly to

the desired depth values.

.s_é_t..{.v.w-}-Et:O (2.15)
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where t and w are the rigid body translation and rotation between camera and

scene object and

. r .
~fE, E,f + y(zEz + yEy)/f
S = —fEB, and v=| _E f—z2(zE, +yE,)/f |- (2.16)
i zE, +yE, ] i yE, — zE,

Note that s and v can be computed completely from image brightness values.
For the purpose of surface reconstruction, we transform the problem into a
linear one by using the disparity d = 1/Z instead of the depth Z. Our objective
is then to find a disparity surface which satisfies (2.15). Since (2.15) is expected
to be only approximately true and since the image brightness measurements are
noisy, we impose the additional constraint that (di;) be smooth so as to reduce
the effect of these errors. An energy functional is constructed which formalizes

these objectives

J@d) = 323 ((si-t)dij + vij - w + i)’ (2.17)

A(dijer — dijo1)® + (digrj — dicn,)’]

Again, the first term enforces the compatibility of d with the direct motion con-
straint (2.15) and the second term penalizes for large differences in neighboring
values of d and thereby enforces surface smoothness.

The “optimal” value of d;; is obtained by minimizing the functional J which

can be done by iterative relaxation methods. The Gauss-Seidel iteration equations
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are

Z+) M) — (84 - £)(vij - @ + Beis)
(%] -

4 + (S,'j . t)z (218)

in which d;; is a local sum of neighbors of d;; and n is the iteration index.

2.2.9 Depth from Shading

In shape from shading (see Horn and Brooks [46]) the visual mechanism is a
known functional relationship between the brightness E observed at a location on

the surface and the surface normal n = [—p, —g, 1] there
E = R(p,q), (2.19)

where R is called the reflectance function and p = Z, and ¢ = Z,, are the partial
derivatives of depth. Reflectance functions have been determined for a number of
surfaces such as the lunar surface and Lambertian surfaces.

The objective is to recover the surface structure Z from the image brightness
E using the known reflectance properties (2.19). As before we introduce an energy

function on the depth Z
J(2)= 33 (Byj—R(Zijea— Zijors Zinrg — Zima))' (2.20)
i
FM(Zig1 = Zig-1)' + (Zivrs — Zior5)"]

which in addition to enforcing compatibility of Z with the reflectance function

also enforces smoothness to reduce the =ffect of errors in the reflectance model
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and the measured brightness values. Note that the partial derivatives have been
approximated by finite differences for the purpose of computation.
The iterative Gauss-Seidel solution to the above minimization problem is given

by

1
zi = Z:\-[(E.-,,-_l — R ;1) Rpig-1— (Bijer — Rejia)Rpija + (2:21)

(Eit1,j — Riv1,j)Rogsrg — (Bic1,j — Ricr,j)Resim13) + 27

where

R = R(Zijn— Zij-1, Ziyrj — Zirj) (2.22)
Rpii = Ry(Zijer— Zij-1,Zivri — Zimr,;) (2.23)
Ryi; = Ry(Zijr1— Zijo1, Zinrj — Zio1) (2.24)

Zi = (Zijaa+ Zijor+ Zinrj + Zisa,5)/4 (2.25)

As the reflectance function R is usually highly nonlinear, the energy function
(2.20) can have many local minima and the convergence of the iterative scheme is

a concern; it has been addressed by alternative formulations of the energy function

(see Horn and Brooks [46]).

2.2.10 Summary

In this chapter we have seen several examples of how visual mechanisms such as

motion and shading (an example for stereo was given in the introduction chapter 1)
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can be used to reconstruct the tiiree-dimensional structure of a scene represented
in terms of a depth or disparity map. We have seen that eu.ergy functionals not
only provide a simple way to formalize the visual constraint on the surface but
also allow to incorporate additional prior information such as surface smoothzess.
Although the dense representation of a surface in depth/disparity maps is not
the only one possible, it elegantly complements the energy functional method and
contains the maximum amount of information which we can hope to recover from

the images.



Chapter 3

Related Work

This section provides an overview over previous work that addresses the problem
of reconstructing three-dimensional scenes from images in a temporal framework.
As we have pointed out in the introductory chapter 1, three attributes are useful

in characterizing the variety of approaches that have been proposed:
¢ Representations
o Visual Mechanisms
e Algorithms

We have already explored different visual mechanisms that can be used for the
reconstruction of three-dimensional structure in chapter 2. Most previous work
in 3D reconstruction is linked to a particular visual mechanism although it has

43
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rarely ever been investigated, whether a particular representation or algorithm is
better suited for reconstruction using a given visual mechanism. We will attempt
to gain some insight into the different alternatives that have been proposed while
realizing that it may be impossible to obtain an absolute and objective answer to

questions of best representation and best algorithm.

3.1 Representations

Representations for the three-dimensional structure of reconstructed scenes fall

into two categories

1. Dense representations. They usually involve some tesselation of the scene

or surface area and structural information for each tesselation unit.

2. Sparse representations. Structural information is only provided at selected

locations.

For a more complete discussion of representation alternatives for three-dimensional
shapes see Faugeras [22].

Dense representations such as depth maps, voxels, surface triangulations etc.
have the advantage of representing details of the surface structure and being well-
suited to representing the dense information that is available from images. On the

other hand, the computational burden is higher for dense representations. But
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most importantly, while most visual mechanisms such as stereo and motion can
provide dense information about surface structure, they provide usefulinformation
only at a subset of all locations in the image plane (for example near edges or in
areas of significant texture).

Sparse representations include feature points, line/edge segments, polyhedral
approximations and super-quadrics. In all cases, the representation is restricted
to certain selected locations of the three-dimensional scene. This has the advan-
tage of considerably reducing the computational complexity. On the other hand
it requires the locations of the sparse structure representations to be identified
by some other computational mechanism (which may be rather complex itself).
In addition, the sparse representation may not contain sufficient information to
perform any useful tasks based on it (such as navigation or recognition).

In comparing these representation alternatives, we can think of a sparse repre-
sentation as a subset of a dense representation. For example a feature-point based
depth estimator will retrieve structure information at selected image plane coor-
dinates while a depth ma.i: based estimator will obtain information at every image
plane location. Ideally, the dense representation would contain the same infor-
mation as the sparse representation at the feature point locations.! This thought

can be carried further: if we restrict ourselves to certain image locations because

1This is usually not the case, since dense algorithms often involve some influence between
spatially “neighboring” pieces of structure information.
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we believe that useful information can be recovered only there, we should have
some notion of what “useful” means. We are implying, that structure informa-
tion recovered at any image location has a certain “usefulness” and in selecting a
sparse representation we restrict ourselves to the locations where this utility index
exceeds a certain threshold. As a consequence, we can reconcile sparse and dense
representations by maintaining a measure of uncertainty along with each estimate
in a dense representation. Then the sparse representation can be extracted at any

time by suitably thresholding the uncertainty index.

When the temporal aspect of surface reconstruction is considered, an addi-
tional issue gains relevance in comparing representations. In qrder to combine
structure information across image measurements from several frames, it must be
possible to determine the correspondence of structure information between frames.
For sparse representations, this correspondence must be established explicitly and
can involve a rather complex matching procedure. Dense representations have an
advantage here, since structure information is available everywhere and a corre-
sponding surface point in another frame can be identified by a simple geometric

calculation.
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3.2 Algorithms

The computational procedures that are used to perform the three-dimensional
reconstruction task in a temporal fashion fall into one of the following two cate-

gories:

1. Incremental Algorithms: With each new frame of image information that be-
comes available a current representation of the three-dimensional structure

is updated.

2. Batch Algorithms: A given number of frames of image information are ac-

cumulated before the processing begins.

Incremental algorithms have a practical advantage in that they require only
the latest frame of image information to be present in memory at any given time.
On the other hand, the incrementally improved estimate after n frames may not
necessarily be the best one that could be obtained, if all n frames were available.

Batch algorithms attempt to achieve the maximal estimate quality by pro-
cessing all available frames together and determining the values for the structure
parameter that best fit the entire sequence. To do this, however, storage for all
of the frames of image information is required.

As a consequence, a decision for a particular type of algorithm will depend on

two factors: the type of representation of three-dimensional structure we are using
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and the application in which the structure information is to be employed. A dense
structural representation will favor an incremental algorithm, as it is impractical to
store dense image information for any sequence of significant length. For a sparse
set of feature points, on the other hand, storage may not be a consideration at
all. Real-time applications such as navigation require structure information to be
available and updated at any time which points towards incremental procedures.
On the other hand, a recognition task that operates on three-dimensional informa-
tion may allow an entire sequence of frames to be accumulated before processing

begins.

From & practical point of view, two additional considerations deserve attention:
First, video image acquisition devices provide a continuous stream of images that
is not limited in length at the outset. This fact does not rule out the use of batch
methods, since we could partition the stream into groups of frames that a batch
method could process. It does raise the question, however, whether the results
obtained from one group of frames can be carried over to the processing of the
next group: the very same problem we faced in extending two-frame algorithms to
image sequences. Second, batch procedures typically not only have high storage
demands but also involve rather complex numerical optimization procedures, in

particular for dense representations.
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Ideally, we would like to find an incremental method that yields the same
estimate of three-dimensional structure parameters after n frames as a batch pro-
cedure that is run on the same n frames. One incremental procedure, the Kalman
filter, which is also used in this thesis, is known to have this property under cer-
tain circumstances which will be explored in more detail in chapter 4. While these
preconditions are rarely met in practice, the recursive estimator may constitute a
compromise that enjoys the computational benefits of an incremental algorithm

while providing estimates that are comparable in quality to batch procedures.

3.3 Incremental Algorithms for Sparse Repre-
sentations

The first incremental algorithm that used a sparse represenstion was Ullman’s
“incremental rigidity scheme” {103], [104]. This method estimates the three-
dimensional coordinates of a set of points that are identified as features in a
sequence of monocular frames. The matching of points across frames is achieved
by determining the transformation and the correspondences that minimize the
amount of distortion (maximize the rigidity) of the rigid body on which the fea-
ture points lie. The algorithm uses orthographic projection and will therefore fail

for any motion with components along the optical axis. In addition, it can be
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shown that minimizing model distortion may not lead to convergence to the true
three-dimensional shape. Nevertheless, this work first identified the importance
of recovering structure information in a temporal framework, it first proposed the
use of an iterative method and it established important guidelines for later work

in this domain.

Broida and Chellappa [13], [14] first suggested the use of Kalman filtering,
an incremental stochastic estimation procedure, to obtain feature point location
estimates and improve them over time. A set of point features are matched over
a sequence of frames and estimates of their corresponding three-dimensional loca-
tions are maintained with an extended Kalman filter. The filter formulation also
includes the camera motion parameters in the filter state. The important relation-
ship between the incremental and the batch solution to the estimation problem
are addressed in this work for the first time. While the early work applied the
recursive estimator to the feature point estimation problem in a straightforward
way, which led to a highly nonlinear filter, the later work in conjunction with
Chandrashekhar [12], [18] seeks to simplify both the dynamical model and the
measurement equations. The conclusions are very similar to the ones in the work
of Faugeras et al. and to the ones in this thesis: a suitable choice of the state
and measurement quantities can greatly reduce the cownplexity of the estimation

procedure and improve the quality of the estimates.
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The INRIA vision group has pioneered the use of the Kalman filter for the in-
cremental estimation of parameters for three-dimensional geometric features such
as lines and planes. Faugeras et al. [23] used an extended Kalman filter to obtain
an estimate of the three-dimensional location of line segments observed in pairs of
stereo images. Ayache and Faugeras [4] performed the same task using a trinocu-
lar stereo system. Faugeras and Lustman [24] showed that finding corresponding
features between frames which is an essential part of any feature-based temporal
algorithm is considerably simplified if the scene can be assumed to be piecewise
planar. More recently, Jezouin and Ayache [52] investigated the tradeoffs of track-
ing and estimating point and line segment features in the image plane versus in
three dimensions using an Extended Kalman filter. It is possible to trade off
complexity of the measurement model for complexity of the matching procedure.
Navab et al. [72] explore how stereo measurements of line segments can be com-
bined in a Kalman filter framework with information obtained by tracking points
on the segments over time to produce estimates of three-dimensional position. In
applying a Kalman filter to the estimation of line segment features, two difficulties
arise: First, the line segments must be matched from one frame to the next, in
order to combine the information that is contained in these measurements. This
is not a simple task, as the above work has revealed. Second, a number of the

prerequisites for the application of the Kalman filter such as a linear measurement



52 Chapter 3. Related Work

model, non-correlation between measurement and state and non-correlation be-
tween measurements are often not guaranteed for the proposed models. Extensive
experimentation, however, seems to show that these concerns can be overcome in

practice.

Bharwani, Riseman and Hanson [8] use correspondence at the brightness level
to identify matching feature points in monocular sequences. The interesting fea-
ture of this approach is that the depth values estimated from feature matches in
all frames up to a given time are used to predict the location of the feature in the
next frame. This greatly reduces the search effort for the new correspondence,
but it does not incorporate the past estimates into the new and most current one;

it only uses them as a starting point.

Dickmans [20], [21] and Zapp [111] proposed a Kalman filtering based algo-
rithm for the analysis of monocular image sequences which he termed “4D dy-
namic scene interpretation”. The outstanding feature of this approach is that it
was implemented on specially designed hardware and successfully used for the
autonomous guidance of vehicles. The algorithm extracts the location of the road
boundary within several small rectangular windows as features and maintains an
estimate of the vehicle position relative to the edge of the road with the help of
a recursive estimator. This estimator feeds directly into a control system for the

navigation of the vehicle. Since the algorithm is implemented and integrated into
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a functioning system, many of the philosophical issues concerning representations

and algorithms are resolved against the ultimate criterion: it works.

Wu et al. [108] use an extended Kalman filter to estimate the three-dimensional
location of a set of feature points as well as the camera displacement between
frames. The particular regularity of the object used in the experiments (a cali-
bration grid) and the restriction to small motions over a short sequence greatly
simplifies the necessary matching step which is the key difficulty for sparse repre-

sentations as we have seen.

Korsten [57] investigates the estimation of rigid body parameters such as plane
normals from image sequences using a deterministic least-squares estimation pro-
cedure. This can be considered as a deterministic version of the Kalman filter-
ing algorithm used in this thesis. Since the measurement model relating image
brightness to the desired parameters is nonlinear, a linearization about the current

estimate is performed for each new frame similar to the Extended Kalman Filter.

Sobh and Wohn [86] presented an incremental algorithm that estimates the
parameters of a planar surface from optical flow fields. The temporal integration
was achieved by computing a weighted average between the parameters estimated

from the current flow field and the average of all previous fields.

Kalldahl {53] uses a set of features that have been identified and matched

over a sequence of monocular frames. He then uses two interleaved recursive
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estimators to update an estimate for both the three-dimensional locations of the
features and the relative camera motion parameters. The interleaved approach
is similar to the one outlined previously ir [36]. Due to the interleaved scheme,
all theoretical results concerning recursive estimators are not applicable and the
convergence cannot be guaranteed.

Maybank [68] investigated alternative incremental schemes for the estimation
of feature locations from a sequence of monocular images. He compared the ex-
tended Kalman filter (see the work of Faugeras et al. and Broida and Chellappa
above) which uses a first order Taylor series approximation to the nonlinear mea-
surermdent equations to a scheme in which second order derivatives of the Taylor
series are included. For a simple one-dimensional example it was demonstrated

that the second-order approximative filter produces superior estimates.

3.4 Batch Algorithms for Sparse Representa-
tions

Iu and Wohn [51] use the tracked locations of a feature point in the image through-
out a sequence of frames. The location of the corresponding three-dimensional
surface point is modeled with a truncated Taylor series, the coefficients of which

are estimated from the feature locations in a least-squares fashion.
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Spetsakis and Aloimonos [87] propose an interesting approach based on phys-
ical intuition. If observations of a set of feature points are available throughout a
sequence of frames, the rays through these feature points will usually not all go
through the same point in three dimensions due to noise. We can hypothesize a set
of matches and assign an error to each match which is proportional to the distance
between the rays that shouid actually coincide in one point (as if they had springs
attached between them). An optimal set of matches and consequently the three-
dimensional feature point locations can be found by minimizing the overall spring
energy. This minimization involves the solution of an eigenvalue problem for a
matrix with O(n?) elements where n is the number of frames. Consequently, this
can be rather complex in practice and experimental evaluation with real images

is necessary.

Shahriat and Price [85] use a single point feature that has been identified and
matched across a sequence of monocular frames. They show that the translational
component of interframe motion can be eliminated if the five frames are used.
The resulting equations can be solved for the rotational motion component using
a nonlinear least squares procedure. Then structure information can be obtained
for other features on the same rigid surface. The key question of how the feature
matching is achieved across frames is not addressed in this work. It is also left

open, how more than one feature or the use of more than five frames could help
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in reducing the effect of errors in the matching and thereby improve the quality

of the estimates.

Sawhney and Oliensis [82] provide an interesting solution to the case in which
a set of feature points is obtained from a monocular sequence of a rotating rigid
object. Under these circumstances, the trajectory of the feature points in the
image plane is shown to be a conic section. A conic section is fit to the ob-
served features in a least-squares sense and the corresponding three-dimensional
conic-section is computed. This involves the solution to an eigenvalue problem
for a three-dimensional matrix. Although the central problem of feature-point
correspondence is not addressed in this work, results from real images and the
computational simplicity indicate that this algorithm can be very useful in prac-

tice.

Recently, Tomasi and Kanade [99], [100] described a mathematically elegant
and computationally simple method for the estimation of structure from a set of
matched feature points in a monocular sequence. They showed that the observed
feature point locations are the result of multiplying two matrices, one describing
the scene structure and the other describing camera motion between frames. Both
can be obtained by a singular value decomposition. This work is ongoing and
current limitations such as the orthographic projectior model and the batch nature

of the processing are being addressed.
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3.5 Incremental Algorithms for Dense Repre-

sentations

Matthies, Szeliski and Kanade [66], [67] independently developed a Kalman filter
based algorithm for the dense estimation of depth from a monocular motion se-
quence that is very similar to work presented in this thesis (originally [35]). Using
the optical flow as a measurement and the inverse depth as the state, structure
estimates of unprecedented quality were recovered from real images for pure trans-
lation of the camera perpendicular to the optical axis. The theoretical foundation
was expanded to aliow for more general motions. This work was instrumental in
introducing recursive estimation for dense structure representations to the vision
community. Matthies [64] later applied the Bayesian estimation framework to the
dense estimation of depth from sequencc. of stereo images. His thesis thoroughly
evaluates the method from both a theoretical and an experimental point of view
which prompted me to exclude stereo as a visual mechanism from my own inves-
tigations. One shortcoming of this work, however, is the prediction stage of the
filter, which achieves temporal consistency of estimates. The filter design requires
the motion of the stereo cameras to be restricted to a translation along a line

perpendicular to the optical axis.

Szeliski [95], [94] explored a volumetric dense representation for three-dimensional
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structure. Octrees represent tesselations of space in which a unit can either be
occupied or empty. Szeliski showed how such a representation can be used in a
the recursive, Bayesian estimation of structure from optical flow fields and from

the silhouette of a rotating object.

3.6 Batch Algorithms for Dense Representa-
tions

Tsai [101] positioned a camera at eight fixed locations in a plane and used the
resulting images to calculate a dense depth map by extending the stereo principle
to multiple images. He shows both theoretically and through simulation that the
quality of the resulting surface estimate is improved considerably as compared to
the case in which just two frames are used.

Bolles and Baker [11] and later Yamamoto {109] introduced the concept of the
epipolar image. In this approach, the monocular images acquired by a camera
translating perpendicular to its optical axis were collected into a ”volume” of
images. Slices through this volume in the temporal direction can be analyzed
without establishing correspondences and provide information not only about rigid
body motion and structure but also about occlusion and segmentation. More

recently (6] Baker and Bolles have generalized this method to handle more complex
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motions and to work incrementally as new images become available. In this case,

the method becomes similar to previously mentioned Kalman filtering methods.

Subbarao [92], [91] estimated surface structure from measurements of opti-
cal flow over time by interpreting both the depth and the optical flow values as
functions of time and locally approximating these functions by first and second
order Taylor series. Under these assumptions, the structure parameters can be
determined in closed form. The practicality of this approach is in question, how-
ever, since it involves spatial and temporal derivatives of the optical flow and

experiments with real images were not presented.

Schott [83] investigated how shading and motion could be used for the dense
recovery of structure information in a monocular sequence. The central idea was
the extension of the brightness constancy assumption of Horn and Schunk [47} by
a term that modeled the brightness change due to shading. A second major con-
tribution was the formulation of a least-squares problem that used the enhanced
motion/shading constraint equation to recover structure information. This in-
volved the warping of image information across the sequence so as to compensate
for interframe motion, a procedure related to the prediction stage of Kalman filter
based algorithms. To solve the npnlinea.r least-squares problem complex numer-
ical optimization procedures were employed. The restriction to simple shading

models reduced the practical applicability of the algorithm.
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3.7 Other Related Work

This section summarizes previous work that does not deal with the estimation of
structure information in a temporal manner but contains representations, algo-
rithms or experiments that put temporal surface reconstruction into perspective.

Stuller and Krishnamurthy [90] were among the first to use Kalman filtering
for the estimation of visual information from image sequences. In their case, the
optical flow was the state of a dynamical system, the measurements werz the image
brightness values themselves. Although the assumptions used in this work were
fairly restrictive such as a locally planar approximation of the image brightness
function, it helped to introduce recursive estimation te the vision community.
Rougee et al. [81] designed a Kalman filter that measured the normal component
of the optical flow using the brightness constancy constraint and estimated the
full flow vector. This approach was shown to significantly improve the results
obtained by ildreth [42] on only two frames. More recently, Black and Anandan
[9] proposed a new energy function based approach to optical flow estimaticn that
achieved temporal coherence by computing a weighted average between estimates
in sequential frames.

Sethi and Jain [84] addressed the problem that most of the feature-based ap-
proaches described above seek to avoid: how to establish correspondence between

features over a sequence of frames. The algorithm is based on the assumption that
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trajectories are smooth and a utility function which measures trajectory coherence
is established. A greedy algorithm is then used to assign feature points to tra-
jectories. This algorithm requires the feature points to be available for all frames

before processing begins and can therefore be classified as a batch approach.

Franzen [25] introduced the concept of chronogeneous coordinates in which a
homogenous coordinate representation of a three-dimensional point is extended to
contain time as an additional component. Although the advantage of this repre-
sentation in accomplishing the goal of scene reconstruction was not demonstrated
in the paper, it is an interesting framework that may help put temporal estimation

schemes in perspective.

Thompson and Kearney [98] suggested that geometric representations of three-
dimensional structure may be both difficult to compute and unnecessary for most
tasks that require vision. Their proposal for "inexact vision” called for research on
qualitative representations of structure, specifically structure boundaries, time to
collision and direction of translation. Weinshall [106] recently presented results of
such research in which it was demonstrated, that information about the Gaussian
surface curvature can be extracted in a simple manner from stereo disparities or

optical flow vectors and can be used to classify surfaces.

The probabilistic modeling of surfaces for the purpose of visual reconstruction

has an extensive history. Geman and Geman [29] first showed how a constraint
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on a surface modeled by an energy function (such as surface smoothness) can be
understood as a probabilistic Markov random field model with the help of Gibb’s
distribution. In the MRF model, probabilities are assigned to configurations of val-
ues of the field representing the depth map in a limited neighborhood. Marroquin
[62] explored how this probabilistic model could be used for the reconstruction of
surfaces from visual information while imposing a smoothness constraint on the
surface but also allowing for discontinuities. Poggio et al. [79] showed how this
framework could be used to achieve the integraticn of information from differ-
ent visual mechanisms. The major disadvantage of the MRF approach was the
enormous computational demand of the simulated annealing procedure required
for the computation of the MAP surface estimate. The graduated non-convexity
scheme of Blake and Zisserman [10] and the mean-field approximation of Geiger

and Girosi [27] were eftorts directed at reducing this computational burden.

Biilthoff and Fahle [17] provide evidence, that a Bayesian framework in which
measurements are used to obtain an estimate according to the measurement un-
certainty is compatible with observations made about the binocular perception of

depth in humans.

Probabilistic models such as the Markov random fields and the Kalman filter
used in this thesis are based on the premise that stochastic modeling is possible

and that the estimate that maximizes the likelihood of coinciding with the true
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value should be chosen. But as we have seen, most stochastic models are difficult
to obtain and approximate at best. Dengler [19] therefore proposes a new objective
called the minimum description length criterion. The basic idea is that the best
representation is the one which is most concise. Promising experimental results

are presented for the application of this idea to the estimation of optical flow.

3.8 Situation of this Thesis

This thesis presents an incremental algorithm for a dense structural representa-
tion. More precisely, a Kalman filter based algorithm is used to improve estimates
of a depth map over a sequence of frames of arbitrary length. The motives for
these choices of representation and algorithm resulted from the observations made

in sections 3.1 and 3.2 and the survey of previous work:

¢ The dense representation was perceived as a superior to a sparse represen-
tation since the temporal correspondence problem is reduced to a geometric
computation. In addition, when uncertainty is explicitly modeled, a sparse

representation can be regarded as a subset of a dense model.

e Only an incremental algorithm is practical for the depth map representa-

tion both under storage and computational considerations. In addition, the
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recursive estimator can be expected to perform very close to any batch pro-

cedure.

The methodology and results presented in this thesis are the result of a series
of research efforts by the author. I have developed algorithms that use a variety
of visual mechanisms for the dense estimation of structure represented as a depth
map. They reflect the stages in which the results presented in this thesis evolved.
In [35], {37], [36] a Kalman filter based algorithm for the dense estimation of
structure from monocular optical flow was described. The algorithm would also
provide an estimate of camera motion by alternately estimating structure with
the recursive estimator and motion with a least-squares method. The next step
[39], [38] was to apply the recursive estimation framework to the reconstruction
of surfaces from monocular sequences without the use of optical flow. This work
built on the “direct” method of Negahdaripour, Weldon and Horn [75], 48] and
produced the first structure estimates from real irnages for this method. Up to
this point, all of the algorithms were designed to process depth estimates at each
pixel separately and neglect correlations for reasons of computational simplicity.
Influenced by the work of Szeliski [93], the approach was reformulated in [41]
and [40] to incorporate prior models of surface structure directly into the filtering

algorithm and to use visual cues other than motion for the reconstruction process.
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The temporal surface reconstruction framework most notably distinguishes
itself from other work in the incremental reconstruction of dense representations

in the following points

e It has been formulated and implemented for several visual mechanisms,
not only motion. This work shows, that any instantaneous energy-function
based reconstruction process can be embedded into the temporal framework

presented here.

e Prior models of surface structure are directly incorporated into the filtering
process. Previous work had included a “smoothing” step inbetween the
update and prediction parts of the filter with both theoretical and practical

disadvantages.

e The prediction stage of the filter is entirely new and requires no more re-

strictions on the motion the camera may undergo between frames.



Chapter 4

Recursive Estimation Theory

In this chapter I will briefly summarize the relevant details of recursive estimation
theory and how it applies to problems in visual surface estimation. For details

the reader is referred to Gelb [28], Brown [15]), Willsky [107] and the dynamical

systems literature.

4.1 Linear measurement filter

In 1960, Kalman [54] formulated a solution to the following estimation prob-

lem: We are given a dynamical system

Xk41 = ALxy + Wy (41)

Y = Cixi+vi (4.2)

66
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Xk o !k
Y= CuXk+ Vi

Xie1 = AxXk+ Wk

System Measurement

Figure 4.1: A block diagram of a linear dynamical system.

where w; ~ N(0,Q,) and v, ~ N(0,R.). x is referred to as the state of the
dynamical system, y is called the measurement. State and measurement noise
must be uncorrelated, i.e. E[v,w?] = 0. The block diagram in figure 4.1 depicts
the functionality of the dynamical system model.

Informally stated, we have a system that is determined by a state vector x
that changes over time as described by (4.1). While x determines the behavior of
the .system, only the measurement vector y is measurable and its relationship to
the state is given by (4.2).

The objective is to estimate x, given the measurements y, and the above
dynamics of the system. In the Kalman filter the estimate X is obtained by

repeating the following two-step process at each time k:

Update:

K. = P,C{[C/P;C{ + Ry (4.3)

xXi = % +Ki(ye - CuXy) (4.4)



68 Chapter 4. Recursive Estimation Theory

P! = (I-K.C.)Py (4.5)
Prediction:
i1 = Akkf (4.6)
Pl = APIAT+Q, (4.7)
Y« Xk _ .
—.R Update a’ >~ Predict — ¢
k

Xk xk+1
elay —

R(— Pl(+1

Figure 4.2: A block diagram of the linear Kalman filter.

Figure 4.2 depicts the operation of the Kalman filter in a block diagram. Con-
ceptually, the update stage incorporates a new measurement y, into the current
estimate of the state X, by correcting for the difference between actual measure-
ment ¥, and expected measurement C.X,. The gain K, is chosen so that the
variance of the new estimate (trace of the covariance matrix P}) is minimal. The
prediction stage transforms state and covariance estimate using the known system
dynamics. The filter is an optimal estimator in the sense that it minimizes the

length of the error vector x, — X{ which is guaranteed to always decrease.
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4.2 Nonlinear measurement filter

Many real-world systems cannot be modeled by a linear measurement equation

(4.2). A nonlinear measurement model is
Vi = f(xi) + ve. (4.8)

In this case the update equations can be reformulated:

K, = P;CI[C.P;CT + R, (4.9)
X8 = % + Ki(ye — (%)) (4.10)
P; = (I-K,C,)P; (4.11)

where C;, = df /dx,. This result is obtained (Gelb [28]) after Taylor series expan-
sion of f so that K, is only an approximation to the truly optimal gain. It is often

referred to as the eztended Kalman filter.

4.3 Implicit measurement filter

As we will see, some estimation problems in vision cannot even be formulated
in the nonlinear form (4.8) since it requires the measurement to be an explicit
function of the state vector. In these cases the relationship between state and

measurement is implicit

g(¥r — Vi, xi) = 0. (4.12)
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This case is not considered in the Kalman filter literature but in appendix A we
show that using a Taylor series expansion as for the nonlinear filter above similar

update equations can be derived:

K, = P;CT[C.P;CT +D.R,D]]! (4.13)
Xp = % +Kig(X,¥s) (4.14)
P/ = (I-K,C,)P; (4.15)

where C, = dg/0x; and D, = 0g/0y,. This result also follows from the implicit
function theorem. Just as in the previous case the gain is not truly optimal due

to the linearized approximation.

4.4 Alternative formulation of the filter

Update Predict
o) - - -~ .
Yi x; = x-k‘*' (sn) CI R: (y“- Chxk) x; N Xyor = Ay Xy
i S:= S, + CiR,(C, S S AT S\ AV
x-u x;ol
T i -
Si ay Slol

Figure 4.3: A block diagram of the simplified linear Kalman filter.

The form of the filter equations (4.3) - (4.7) is the most common one as it
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immediately reflects the operation of the estimation procedure. From a computa-

tional point of view, however, the number of matrix multiplications and inversions

is very high and can be reduced considerably (see [15]). Instead of using the co-

variance matrix P, we introduce its inverse S, = P! which could be termed the

"certainty matrix”. The filter equations now become

Update:

Sf = S; +CfR;'C,

K. = (Sf)'CiR}

X7 = % + Ku(yi — Ce%y)
Prediction:

o~ — o+
Kep1 = Akxk

SI=+1 =

(4.16)
(4.17)

(4.18)

(4.19)

(4.20)

The operation of the simplified linear filter is depicted in the block diagram

of figure 4.3. The same simplifications apply to the nonlinear filter (4.9) - (4.11)

without modification and for the implicit filter (4.13) - (4.15) by replacing R, with

D,,R,.Df. In each case the number of matrix cperations is reduced considerably.
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4.5 Filter update and energy functionals

I will show that the update stage of the filter minimizes a simple energy function

on the state vector. The energy function
1 . 1
E(xt) = E(x+ —x )8 (xT —x7)+ E(y -Cxt)TRY(y - Cx*) (4.21)

has a minimum state x* that is "closest” to both the current state x~ and the
current measurement y each weighted by its covariance matrix (It can be derived
by marginalizing the posterior Gaussian distribution of x* given the measurement
y). In addition, if S™ is non-diagonal the energy function will enforce a corre-
lation of the elements of the vector x* among each other (such as a smoothness
constraint).

Differentiation with respect to x* yields

% = (8" +CTR'C)x* -S™x —CTR 'y =0 (4.22)
which simplifies to
xt =x" 4+ (S*)'CTR}(y - Cx") (4.23)

if we introduce S* = 8~ + CTR™'C. This is just the modified update equation
for the Kalman filter (4.17) and S* is the updated covariance matrix (4.16).
As we have seen in chapter 2, energy functionals are used in instantaneous

surface reconstruction to formulate constraints on the desired surface. The fact
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that the update stage of the Kalman filter minimizes such an energy functional,
will help us to establish the essential connection between the Kalman filter update

and conventional surface reconstruction techniques.

4.6 Properties of the Kalman filter

A number of properties of the Kalman filter are noteworthy, beyond the fact that

it minimizes an energy function.

e The estimates of the linear Kalman filter can be shown to be optimalin the
sense that the expected deviation between the estimate and the true value is
minimal among all possible estimators (linear or nonlinear). For this reason,
the linear Kalman filter is frequently referred to as the minimum variance

estimator.

e By considering the probability density functions of the estimation and mea-
surement processes, we can show that the estimate of the Kalman filter is
the one of mazimum likelthood in the sense that the conditional probability
density of the current estimate given all previous measurement values has a

maximum at the value that the Kalman filter computes.

e It can be shown that the linear Kalman filter estimate converges te the true

value.
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In plain terms: the linear Kalman filter will determine the correct value and do
so faster than any other estimator.

For our purposes, it is useful to see if these properties of the Kalman filter
persist if some of the rather stringent preconditions are dropped. We will consider

three cases that are relevant to the work in this thesis:

e Ifthe noise processes on state or measurement are not Gaussian, the Kalman
filter is no longer an optimal estimator, however, it is still the optimal linear
estimator. In other words, there may be nonlinear estimators that converge

-faster than the Kalman filter, but among all linear estimators, it is the best.

e If the noise processes of state and measurement vector are not uncorrelated,
an alternative formulation of the Kalman filter (see [28]) exists which has
all the properties of the original version. Using the original version of the
filter on a problem with correlated noise processes (effectively ignoring the

correlation) results in a loss of the optimality property of the filter.

e The nonlinear and implicit versions of the Kalman filter use Taylor series ap-
proximations to the nonlinear functions. As a consequence, they need not be
optimal or even converge. Gelb (28] writes about the extended Kalman filter
on page 189: “There is no guarantee that the actual estimate obtained will

be close to the truly optimal estimate. Fortunately, the extended Kalman
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filter has been found to yield accurate estimates in a number of important

practical applications.”




Chapter 5

Recursive Estimation and
Temporal Surface

Reconstruction

In this chapter we will investigate how temporal surface reconstruction can be
formulated as a recursive estimation problem. At the heart of this formulation is
the task of determining the quantities that constitute the state and measurement
variables of the dynamical system as well as its state and measurement equations.
Other sections in this chapter are devoted to discussions of the update and pre-
diction stages of the Kalman filter for temporal surface reconstruction and the
initialization of the filter.

76



5.1. Intuitive concepts 77

5.1 Intuitive concepts

Intuitively, the temporal surface reconstruction problem maps nicely into a dy-
namical system so that the desired surface structure can be estimated with a
recursive estimation procedure. In our case the surface or structure is unknown
and we would like to estimate it. In addition, the surface may change over time
due to the possible relative motion between observer and scene. Likewise, a dy-
namical system has an internal state that changes dynamically over time and is the
subject of the recursive estimation. Hence, we can think of the three-dimensional
surface structure as the state of a dynamical system.

For the purpose of estimation, we have available to us the sequences of images
or derived quantities such as the optical flow. They are related to the unknown
surface structure via the “visual mechanism” such as stereo, motion or shading.
Similarly, the measurement part of a dynamical system relates the externally
available measurement vector to the unknown internal state vector. This suggests
that we could interpret the images/optical flow as measurement values and the
visual mechanism as the measurement equations of a dynamical system.

These choices for the state and measurement vectors determine a dynamical
system that models the imaging process for a temporally dynamic surface. Figure
5.1 qualitatively depicts this dynamical system.

The system model (the left block) describes the dynamic change in the state
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Relative Motion | Surface | visual Image
of Surface State Mechanism Measure-
ment
System Measurement

Figure 5.1: The qualitative dynamical system that describes the imaging process
for temporally dynamic surfaces.

vector which is the depth map in our case. Therefore the system dynamics corre-
sponding to (4.1) must describe the change in depth values from one time instant
k to the next. As we are assuming rigidity of scene objects, a temporal change
in depth values can only be due to a relative motion between the camera and
the surface. Hence, the system dynamics are simply the kinematic transformation

(translation and rotation) of points in space.

The measurement model (the right block) describes the relationship between
the state (the depth in our case) and the measurable values {the image values). In
accordance with (4.2) the measurement model will therefore encapsulate the visual
mechanism which does precisely this: it relates structure and image values. As a
consequence. the measurement model depends on the specific visual mechanism
tha! is being used for the surface reconstruction. In the case of stereo for example,

the measurement equation describes the relationship between stereo matches and
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the distance to scene points. For shape from shading, the measurement <ncap-
sulates the reflectance function that relates brightness and depth gradients. The

construction of a recursive estimator will have to be different for each case.

5.2 A Recursive Estimator for the Temporal

Surface Model

Now that we have gained some insight on how a temporal surface can be modeled
as a dynamical system, we will construct a recursive estimator, that will recover
the surface when given the measured image values. This section gives a general
description of the filter construction and operation. A detailed discussion of each

aspect of the recursive estimator follows in the subsequent chapters.

As we recall from chapter 4 and figure 4.2, the Kalman filter maintains an
estimate X, of the state of a dynamical system along with its covariance Py by
processing the sequence of measurements y, and corresponding covariances R,.
The processing proceeds in two stages for each iteration k: the update and the

prediction stage.
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5.2.1 The Filter State and Measurement

Our first task is to determine the state and measurement vectors along with their
associated covariance matrices such that the resulting recursive estimator will
provide a solution to the temporal surface reconstruction problem. The intuitive

model of the dynamical system outlined above provides the basis for our choices.

Following the intuitive concepts introduced in section 5.1, the state vector
represents the surface structure that weintend to recover. A structural description
of a visual scene is given by a depth map (Z;;) (see section 2.1) in which the
corresponding depth value is stored for each pixel (7,;) in the image plane. To
construct the state vector x; of the dynamical system we collect all depth values
of frame k into a column vector which is accomplished by adjoining the rows of

the depth map

ZD,O
T Zo.x

r b :Bo

ZO.O ZO.m—l
T
(Z'J) = : : —r X = = ZO.m—-l (51)
| Zn.—-l.O et Zn—l,m—-l | ZI,O
IN-1
i Zn—l.m——l ‘
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The construction of the state vector from the depth map can be formalized as

:z:;m.,.j=Z,-j i:O,...,n—l;j:O,...,m—l. (52)

Consequently, the covariance matrix P of the state vector is an N x N matrix
that contains the variances of the depth estimates in the diagonal and the covari-
ances between depth values in the remaining entries. Note the extraordinary size
of this matrix, as N is the number of pixels in the image value array! A matrix of
this size is beyond computational manageability. Fowever, by using the inverse
S = P! in the simplified version of the Kalman filter (see section 4.4) and by
taking advantage of the local nature of surface correlation, the filter operates with
a sparse, banded representation of the inverse covariance matrix that requires

significantly less storage. Details are described in section 6.3.

The measurement vector y represents the image values that are available to us
through the visual mechanism.! The image brightness values are given in an array
(E;;) and can therefore be mapped into the measurement vector y in exactly the

same way as the depth map was mapped into the state vector above. We collect

1 As we have seen in chapter 2 these values need not be exclusively image brightness but could
also be optical flow or stereo matches. For the purpose of introducing the concepts, we will work
with image brightness in this section and describe alternatives in the following chapters.
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all the elements of the image frame (E;;) into a column vector y, so that

Eo o
[ ] Eo,1
i ] Yo
Eoo -+ Eom-a
5
(Eij) = : : —y= = | Eom- (5.3)
| En—l.O v En—l,m—l ] El.O
Yn-1
f En-l,m—l j
which can be written explicitly as
Yim+; = Eij t=0,...,n—-1;7=0,...,m—1. (5.4)

The covariance matrix R of the measurement vector represents the uncertainty
in the image values. In the case of brightness measurements E;; for example,
this uncertainty is due to measurement noise the distribution of which can be
assumed to be Gaussian N(0, o) as required by the Kalman filter. If pixel noise is
uicorrelated and identically distributed the measurement covariance is R = o°I
where I is the identity matrix. Note that R is once again a matrix of very large
dimensions (here N x N) but remains computationally manageable due to its

special structure.

5.2.2 The Filter Update Stage
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Y« R xl'( S;
- Update -
Image Updated
Values Depth Map
X«| Current

S.| Depth Map

Figure 5.2: The update stage of the Kalman filter for temporal surface reconstruc-
tion.

The next task is to establish the operation of the update stage of the recursive
estimator. As shown in figure 5.2, this part of the filter combines the latest
measurement y, with the current estimate X; to compute the updated estimate
%} . In terms of the surface reconstruction problem: the update stage will combine
the newly obtained image values with the current estimate of surface structure to

produce an improved structure estimate.

As a consequence, this update process depends on the specific image values
that are used as measurements and the specific visual mechanism that is used
to link them to the surface structure values. For each visual mechanism such as

stereo, shading or motion, the measurement equation

y=Cx o y=f(x) or g(x,y) (5.5)

will be different and so will the corresponding update stage. Chapter 8 describes
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the update stage for temporal surface reconstruction from optical flow measure-
ments in detail. Chapter 9 does the same for the shading mechanism and chapter
10 focuses on the direct motion mechanism.

There are, however, a number of general statements that can be made about
the update stage without restriction to a particular visual mechanism that high-
light the similarity between the update procedure and the instantaneous surface
reconstruction techniques from chapter 2.

The update stage of the simplified recursive estimator (4.16), (4.17), (4.18)

involves the matrix inversion of the certainty matrix S{:
- " AT - -
X =% +(S{)T'CeRi (v — Ci%y) (5.6)

We abbreviate the residual p = %§ — %; and q = CTR;*(y, — CrX;) and the
problem simplifies to

p=(S)"q (5.7)
where S} is a sparse, banded matrix. * Due to this sparse nature of the matrix
S} we can solve (5.7) by an iterative relaxation method such as Jacobi or Gauss-
Seidel (see Golub and Van Loan [30]). Gauss-Seidel is the preferred method for

serial implementations and is described by the fellowing iteration equation

n 1 n
PP = —( - 3 Sup™) (5.8)
'Jll .
JeL(s)

3S} is only sparse and banded in general if we make the assumption of a viewpoint indepen-
dent surface model as explained in section 6.3.
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where L(t) is the set of indices 7 with non-zero entries in the ith row of S. The
iterative process is initialized with p = 0 (this requires only a small number of
iterations in the steady state of the filter estimation) and the state vector can be
obtained easily from %{ = % + p. Algorithmically, the update stage (5.8) of the
Kalman filter is therefore exactly the same iterative Gauss-Seidel procedur= used
for instantaneous surface reconstruction such as (2.12), (2.18) and (2.21).

From section 4.5 we recall that the update stage of a Kalman filter determines

the new estimate %; such that it minimizes an energy function

E(x™) = —(x* = x7)TS (x* —x7) + =(y - Cx*)TR }(y - Cx*)  (5.9)

SR
| =

which enforces

o Compatibility of the new estimate %X{ with the current measurement y,.

o Closeness of the new estimate %X} to the previous estimate X .

o "Smoothness” or similar correlation of the elements of X for appropriate

values of S™.

If we now remember that each one of the instantaneous surface reconstruction
procedures in chapter 2 employed an energy function that enforced compatibil-
ity of the reconstructed surface with the measured image values as well as surface

smoothness we come to the followiag realization: The update stage of the recursive
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estimator for a given visual mechanism is identical to the corresponding instanta-

neous surface reconstruction procedure with two important additional features:

e The recursive estimator additionally enforces "closeness” to the estimate

from the last iteration and thereby carries over the information from previous

estimates.

o The energy terms are weighted with the covariance matrices so as to explic-

itly take the uncertainty into account.

In other words: the Kalman filter performs a (stochastic weighted) surface recon-
struction at each time k and thereby accomplishes the primary goal of extending

surface reconstruction into the temporal domain.

5.2.3 The Filter Prediction Stage

X; S; . x- . S- .
Predict e
Updated Predicted
Depth Map Depth Map

Figure 5.3: The prediction stage of the Kalman filter for temporal surface recon-
struction.

Here we discuss the basic operation of the prediction stage of the recursive

estimator. As shown in figure 5.3, this part of the filter takes the updated estimate
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% and its covariance/certainty S{ at time & and predicts what these values will be
at time k+ 1. For the purpose of temporal surface reconstruction, this means that
the prediction stage must transform the estimate of surface structure (depth map)
corresponding to the image values in frame k to the depth map corresponding to

frame k + 1.

Under the rigid body assumption, the only way in wkich a change in surface
structure can occur between frames is by a relative motion of the surface with
respect to the camera. At first glance, this appears to be a very simple task. Let
the motion between time k and k + 1 be represented by a translation t and a
rotation 2. The depth value Z;; at location (z;,¥;) in the depth map corresponds
to a point P = (¢Z/f,yZ/f,Z] on the surface. This point will move according to

the kinematic equation

Piy1 = —t — 2P, (5.10)

The predicted surface can therefore be obtained by applying this transformation
to all the points P, corresponding to entries (7,7) in the current depth map/state
vector and filling the predicted depth map with the Z-coordinates of the trans-

formed points Ppy,.

This approach is missing one important point: The depth map entry Z;; must

be the distance along the optical axis at which a ray through pixel (z;,y:) strikes
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the surface. When a depth map entry Z;; ic converted to a point P and trans-
formed according to (5.10) not only does the distance Z change but also the X
and Y coordirates of P may change and hence the image plane location (z;,¥;).
The transformed Z may have to be assigned to a new depth map location (7', j').
In essence, it is necessary to resumple the warped surface at the depth map grid
point locations.

In addition the prediction stage must accomplish the transformation of the
covariance/certainty matrix S in such a way that the resampling of the warped
surface is taken into account. Fortunately, the prediction of the depth map and
its covariance are independent of the particular visual mechanism that is used
to recover structure from image values. Chapter 7 describes the algorithm for

prediction of the depth map state vector and the associated covariance in detail.

5.2.4 Filter initialization

Since the filter process is recursive in nature it must be initialized at some point.
We must provide initial values for the state x, and the associated covariance
matrix Py. The standard procedure in recursive estimation is to initialize the
entries of X, to zero and the entries of Py to oo. This reflects the fact that the
uncertainty in the initial value is very high.

In our particular case, however, some additional information is available and
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can be used to initialize the state estimate. As the detailed derivation in chapter
6 will show, a proper initialization of the inverse covariance matrix S can be
used to incorporate prior models of the surface structure such as the smoothness

constraints that we are already familiar with.

5.3 To Do

This section enumerates the components that constitute a temporal surface re-
construction algorithm. The purpose is two-fold: First, it will give the reader an
overview of what to expect in the following detailed description of the parts of the
temporal method. Second, since visual mechanisms other than the ones discussed
in this thesis can be embedded into the temporal reconstruction framework, this

section provides a recipe for the embedding.

1. Pick a state vector x and an meausurement vector y. For the purpose
of surface reconstruction the state vector will be the concatenation of all
depth values Z;; or related values such as the disparity as shown in (5.1).
The measurement vector must contain values that are directly obtainable

from the imaging process.

2. Determine the relationship between the state x and measurement y from

the particular visual mechanism. Find the matrix C from either
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y = Cx if the relationship is linear
y=f(x) C= Z%% if the relationship is non-linear
g(x,y)=0 C= g—é if the relationship is implicit non-linear

In the implicit non-linear case, the matrix D = g;‘/ must also be determined.
The linear case is the prefeired one and can often be attained through suit-

able choice of the measurement vector.

3. Determine the covariance R of the measurement vector. If the measurement
vector consists of the brightness values, they can be modeled as independent
and identically distributed, and R = o%I. If the measurement vector is de-
rived from the brightness values, the variances must be propagated through

the relationship used in the derivation to obtain R.

This three-step process determines all of the quantities necessary for the update
stage of the filtering algorithm (4.16) - (4.18). Examples of this process for three
different visual mechanisms are given in chapters 8, 9 and 10.

Two other steps are necessary before a temporal surface reconstruction algo-
rithm can be implemented: the prediction and initialization. Both, however, are
independent of the visual mechanism. They are described in chapters 7 and 6 and

can be implemented directly regardless of the particular application.



Chapter 6

Filter Initialization and Prior

Surface Models

This chapter describes how initial values for the state 3%, and the certainty matrix
Sy can be chosen. Moreover, we show that a proper choice of Sy will enforce prior

models that we may Lave of the surface structure such as smoothness.

6.1 Surface Models

Surface models represent information about the structure of a surface that we may
have even before we begin any surface reconstruction from images. Smoothness
is the most common example of a prior model used in computational vision. Sur-
face models have evolved f om simple deterministic models to complex stochastic

91
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models. The work of Szeliski 93] provides an excellent overview and serves as the

basis for the presentation in this chapter.

A common representation of prior models is in terms of energy functions on
the depth map entries. They impose a certain constraint on the surface when it
is computed as the minimum of the energy function. An example that we have
already encountered in chapter 2 on instantaneous surface reconstruction is the

membrane model

E(Z) = 2 S (Zupr; — Zi3) + (Zijur = Zis) (6.1)
2

8]

Introduced by Terzopoulos [96] and Grimson (31], this model is used as a “sta-
bilizer” in the regularized solution of ill-posed early vision problems (Poggio et
al. {80]). The effect of the energy function is easily identified: it penalizes for
differences betweer horizontally and vertically neighboring depth map entries and
thereby forces the surface to be smooth. If used alone, any constant surface (Z;;)
will minimize the energy function (6.1). Alternative surface models such as the
thin plate model have also been studied extensively in the work cited above and

can be used in the same way as the membrane model in the following derivation.

If we collect all the depth map entries into a one-dimensional vector

Tim+j = Zij t=0,....,n=-1;7=0,....m—1 (6.2)
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Figure 6.1: The interaction between depth map entries in the membrane surface
model.

the membrane energy model can be written as a quadratic form

where S is a sparse banded matrix with 5 entries per row:

-1 Il=k-1k+1Lk—-mk+m
Skd =< 4 [ =k (6.4)

0 otherwise

The matrix S establishes an interaction between a depth map entry Z;; and its
four-connected neighbors as shown in figure 6.1. Note that the construction of the

vector x is identical to the one used for the state vector of the recursive estimator

(5.1).
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6.2 Probabilistic Surface Models

Surface models represented by energy functions can also be modeled stochastically.
This is a prerequisite for the application of probabilistic estimation techniques
such as Bayesian estimators that represent uncertainty. The idea is to model the
surface by giving a probability distribution for the depth field. Geman and Geman
[29] showed how to arrive at a probability distribution for the field values given

the energy function constraining its shape. It is the Gibb’s distribution

o(x) = EREECT)

= T exp(=E(x)/T) (6:5)

where T is the "temperature” of the field. If E(x) involves only interactions
among neighboring field values as for the membrane energy above the probability
distribution describes a Markov Random Field, a widely studied stochastic model

for surface structure (Marroquin {63], Poggio et al. [79)).

We observe two key features of the stochastic model for membrane-type sur-
faces: The distribution {(6.5) is a multivariate Gaussian distribution and the co-
variance of the distribution is P = S~ (for suitable choice of T'). The certainty
matrix S plays the central role in this formulation as it encapsulates the particular

prior model that is being imposed on the surface.
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6.3 Filter Initialization

The Kalman filter estimation process (4.16) - (4.20) must be initialized by choosing
initial values xq, So for the state vector and the associated certainty matrix. These

choices must be made such that
x ~ N(x0,55") (6.6)

at the outset, i.e. such that they determine the prior stochastic model of surface
structure. As we have seen above, the choice of the certainty (inverse covariance)
S determines the surface model. If, for example, we set Sy as in (6.4), we will
impose membrane smoothness as the prior model on the surface. This is done
throughout the experiments described in this thesis. Other prior models such as
the thin plate can be imposed in the same way described above.

As mentioned before, any surface of constant depth
z:;m+j=Z;j=ZO i=0,...,n—1;j=0,...,m—1 (67)

minimizes the constraint energy for the membrane model (6.1). In the experiments
in this thesis, we chose Z, to be an average value of depth in the scene as it may
be obtained from a crude depth sensor such as an ultrasonic device.

The sparse and banded structure of the matrix S is of particular importance
for the calculation of the Kalman filter update (4.16) - (4.18) which requires the

inversion of S. In general, the inversion is a formidable task considering that S is
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of size nm x nm. If S is sparse and banded, the inversion can be accomplished
through an iterative process such as (5.8) that costs only O(nm).

Although the sparse banded nature of Sy is not preserved by the filter predic-
tion equations, we can make the simplifying assumption that prior models such
as surface smoothness are independent of the camera viewpoint and should there-
fore be unaffected by the Kalman filter equations. This allows us to separate the
inverse covariance matrix S, at time k into a diagonal matrix St and the prior

matrix S:

Sk =S, +S. (6.8)

Note that we can safely replace S, with S; in the filter update equation (4.16)
by subtracting S on both sides while we ignore the transformation of off-diagenal
elements in the (4.20). This is an important contribution to the computational

feasibility of the temporal surface reconstruction scheme.



Chapter 7

Filter Prediction

This chapter describes the prediction stage of the recursive estimator for temporal
surface reconstruction. The algorithm accomplishes the warping of a depth map
corresponding to a rigid body motion. In addition, the prediction of the covari-
ance matrix corresponding to the depth map state vector is described. As an
alternative, a computationally less expensive approximative prediction algorithm

concludes the chapter.

7.1 Prediction of the Depth Map

The prediction stage (4.6), (4.7) of ti.c filter process must account for changes
in the state vector that occur between sequent:al measurements. For the depth
estimation process this is equivalent to a change in depth from one frame to

97
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the next which can only be due to a relative motion between scene and imaging
system. The prediction process must iherefore transform all depth map entries

according to this relative motion. This is a purely geometric transformation.

Surface Z(x,y)

'Image Plane

SN XY

Transformation
Frame k = Frame k+1

L Q

Figure 7.1: A surface corresponding to a depth map and the effect of a motion
transformation.

We are given a depth map (Z;) at time k, the relative motion between camera
ang scene from k to k + 1 as a translation vector t and a rotation matrix §2 and
the projection geometry (focal length f, pixel spacing Az, Ay and image size
w x h). This situation is shown in figure 7.1. The objective is to determine the
depth map (Z;;) at time k + 1.

The idea of the algorithm is as follows: each entry Z;; in the depth map

corresponds to a point P;; in space via perspective projection. The transformation
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of P;; from time k to k + 1 can then be accomplished by applying the rotation
matrix and the translation vector. Since the transformed points P/, will not
necessarily project back onto depth map grid points 2t time k + 1 it becomes

necessary to interpolate and resample the surface.

I will now describe the steps of the algorithm in more detail:

1. Inverse Projection:

Each depth map entry Z;; corresponds to a depth value at physical location

z=(-(w-1)/2)z  and w=(i—(h—1)/2)Ay  (T.1)

in the image plane. This represents a point P; = [X,Y, Z]7 in space, the
coordinates of which are given by inverting the perspective projection equa-

tions:

(7.2)

2. Warping:
Now we can account for the relative motion between frames by applying the

rotation and translation transformations to each point F;;:

P =—-t-0NPF; (7.3)

3. ftesampling:

The straightforward approach would be to project the points P); back into
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the image plane to obtain the new depth map. However, this will not main-
tain the representation of depth on a grid corresponding to the image pixels
since the warped points do not necessarily project onto grid point locations
(shown in figure 7.1 on the right). It is necessary to resample the warped

depth map at grid point locations.

Surface

Triangle
Facet

Y (L) £ (1+1,j+1)
Image Plane f

i %

Y )

Triangle
Facet

T

Figure 7.2: Triangular facet subdivision.

To accomplish this we group the pixel locations (7, 7) into triplets by dividing
each grid square into two triangles as shown in figure 7.2. We approximate
the surface between the 3D pcints P;; corresponding to a triplet by a plane.

Although other surface approximations are possible (bilinear, bicubic etc.)
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they make the resampling more difficult. After warping (7.3) each triplet
still defines a plane so that the warped surface can be approximated by its

planar triangulation.

To resample the triangulated surface at grid point (z;,y;) we must determine
the intersection of the ray through the grid point with the closest spatial
triangle in the warped surface approximation. This is accomplished by ini-
tializing the new depth meap with oo everywhere and repeating the following

steps for each warped triplet of points Pj;:

o Project all three corner points P’ = [X*,Y’, Z'|T back into the image
plane using
, X' Y’

== and y'= 7 (7.4)

e Determine all the grid locations (7, j) that lie within the backprojected

triplet of points (z',y').

o For each grid location (i,7) identified in the previous step find the
intersection of the ray through that grid point with the spatial triangle
under consideration. If the Z value of the intersection point is less than

the one stored in the depth map at (¢,) then replace it by Z.

We notice that the ray through a given grid point can have multiple inter-

sections with the warped surface which means that part of the surface has
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been occluded by another region. In this case the algorithm chooses the

physically correct value: the one closest to the camera.

4. Unassigned grid points:
The resampling procedure will not necessarily assign a depth value to each
grid point that physically corresponds to new areas in the scene that became

visible due to the camera motion. In general, we can say nothing about the

correct depth value at these locations. If, however, we assume that the
surface is somewhat smooth then we can extrapolate the depth values at

these points from known values at neighboring locations.

So far I have described how the prediction of depth corresponding to (4.6) can
be accomplished. Due to the discrete grid representation of the depth map the
piecewise linear surface approximation was introduced and hence the prediction

algorithm only approximates the Kalman filter state prediction (4.6).

7.2 Prediction of the Depth Covariance

The simplified Kalman filter represents uncertainty in the depth map state vector
by the inverse S = P! of the covariance matrix (certainty oatrix). The prediction
stage of the recursive estimator must therefore determine the certainty Sy, after

a possible motion transformation when given the certainty S,.
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As we have seen in chapter 6, the matrix S; can be decomposed

Sk = gk + S. (75)

where Sy, is a diagonal matrix containing the inverse variances of the depth values
in the state vector and S is the sparse banded matrix that represents the prior
model that we may have imposed on the surface. Our prediction algorithm will
only transform the inverse depth variances while leaving the prior model unaf-

fected.

It is possible to propagate the variance values through the prediction equations
used for the depth values above. This requires a Taylor series approximation of the
nonlinear projection equations and the assumption of stochastically independent
depth map entries (which is not the case if a non-trivial prior model is imposed).
The description of the algorithm is rather lengthy and has therefore been included

as appendix B.

A more practical approximation was proposed by Szeliski [93] and seems to
work jurt as well: Due to the piecewise planar surface approximation in the pre-
diction of the depth values, a small error is introduced. The variance o% of the
depth value Z reflects the uncertainty in the prediction and should therefore be

inflated by a small multiplicative factor € to reflect the higher uncertainty. For
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the update of the diagonal inverse covariance matrix S this means

3

() = ) (1.6

The depth map prediction algorithm described previously may leave some lo-
cations on the image grid “unassigned” corresponding to regions in the image
that appear in frame k -+ 1 and were not visible in frame k. Although the al-
gorithm eventually fills in these locations with neighboring values, the filled-in
depth information has very high uncertainty and the diagonal values in the pre-
dicted certainty matrix Si,, must reflect this. To accomplish this, the diagonal
entries in S, that correspond to formerly “unassigned” grid locations in the

depth prediction are set to the same value that 3 was initialized with (see chapter

6).

7.3 An Efficient Approximative Prediction Al-

gorithm

The prediction algorithm for depth and certainty described above is the compu-
tationally most expensive part of the temporal surface reconstruction procedure
(see section 11.1). This is mainly due to the resampling step. This section de-
scribes an approximative resampling algorithm that is considerably less complex

and yields good resu'ts in practice.



7.8. An Efficient Approzimative Prediction Algorithm 105

As before, we are given a depth map (Z;;) on a rectangular grid. Suppose that
the depth map has been warped according to the interframe motion as described
in steps 1 and 2 of the prediction algorithm in section 7.1. The new depth value
Z;; as well as its new location (z;,y;) have been calculated but z; and y; may not

coincide with the coordinates of any grid point.

Z(xl.y_l)

Z(X4lY4)

Z(x2.¥2) Z(xa.¥s)

Figure 7.3: Distance weighted resampling of depth values.

For the computation of the new depth map value Z(z,y) at a grid location
(z,y) we will consider all of the warped depth values Z that are closer to (z,y)
than to any other grid location. Suppose that there are n such depth values and
that they are subscripted k = 1,...,n. This is shown in figure 7.3 for n = 4.

The new depth map value Z(z,y) is computed as the weighted sum of the
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Z(Zie, Yi)

Z(z,y) = Z e Z(Tk, Yi)- (7.7)

A good weighting function should fulfill the following requirements:

e The wy should decrease as the distance d} = (z — z)? + (yx — y)* decreases.
We therefore choose the weighting factors to be
1
&
n 1 *
3

This clearly fulfills all of the above requirements but some special cases must

(7.8)

WE =

be considered. Suppose all n estimates involved in the interpolation have equal

distance dp = d from the grid-point. In this case

=

™ =
DIF:
k=1

which means that all estimates are weighted equally as one would expect. A more

(7.9)

we =

31—

tricky case occurs when some number ! of the estimates are actualiy located at
the grid-point, i.e. dy = 0 for k = 1,...,l. For estimates on the grid-point we can

rearrange the expression for the weights (7.8) to obtain

1

wk= —

d’ 2 N
-3+ 54

‘ k

o~ -

(7.10)

+1
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as dp — 0 for k = 1,...,l. Similarly we rearrange the expression for the weights

in the case of an estimate that does not coincide with the grid-point
d;

&

wy = p P T — 0 (7.11)
foode 2 d
k=141
as dp — 0 for k = 1,...,l. In other words we ignore all estimates that are not

on the grid-point and obtain the interpolated value as the mean of the estimates
located at the grid-point.

The idea of distance-weighted resampling can be implemented in an algorithm
that runs in time proportional to the number of entries in the depth map (Z;;) by
maintaining a weight array (w;;).

1. Initialize the predicted depth map (Z!‘j“) and the weight array (w;;) to zero.

2. For each 1 and each j do the following:

(a) Calculate the point P = [X,Y, Z] corresponding to Z. Apply the rigid
body motion transform to P and project it back into the image plane

(see section 7.1). The result is Z at location (z,y).

(b) Calculate the (possibly non-integral) grid coordinates (z,j) correspond-
ing to (z,y) using equation (2.4) and the clos=st integral grid point
coordinates (m,n) = (r(¢),r(;)) where r() is the rounding operator.
The physical grid point coordinates (p, q) closest to the warped depth

map value are obtained from (m,n) via equation (2.3).
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(c) Calculate the distance between depth map value and closest grid point
d=(z—p)+(y—q)
If d is not zero then add 1/d to W, and add Z/d to Z%}}.
if d is zero and wy,, is less than zero, then decrement wy,, and subtract
Z from Zkt!.
If d is zero and w,,, is greater or equal zero, then set wn, = —1 and

set Z,';tl = —7.

3. For each m and each n do the following:

If wpn, is positive, set Zkt! = ZEH1 /.

Upon completion, the depth map (Z%%!) will contain the predicted depth val-
ues where w,,, is non-zero. If w,,, is zero, the location (m,n) is “unassigned”
and a filling algorithm such as the one outlined in section 7.1 can be applied. If
we apply the same calculations to the diagonal entries of the certainty matrix Sk,

the algorithm also accomplishes the prediction of the certainty matrix.



Chapter 8

Filter Update: Depth from

Motion Using Optical Flow

In this chapter we will explore the application of the temporal surface reconstruc-
tion algorithm to the problem of estimating depth from motion using optical flow.
A corresponding instantaneous algorithm that accomplishes this task when given
a single measurement of the optical flow was described in section 2.2.7. Only
the update stage of the recursive estimator is dependent on the visual mechanism
being employed. Therefore, the focus in this chapter is exclusively on that part
of the algorithm.

109
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8.1 The Update Algorithm

When an observer moves relative to a scene, each scene point can be assigned
an instantaneous velocity in space. The projection of this velocity field into the
image plane of the observer is called the optical flow and can be represented by a
vector (u;;,v;;) at every pixel location (7,7). The relationship between the optical
flow, the motion t = (U, V,W|T, w = [4, B,C]T and the inverse depthd =1/Z is
given by the Longuet-Higgins/Prazdny formulas [59]

u; = (=U+z;W)di; + Azjy: — B(z? + 1)+ Cy: (8.1)

= (U +z;W)d + ujj

vi; = (=V+y;W)di; + A(y} + 1) — Bzjy: — Cxz; (8.2)

(=V +yW)d +vj;
where (z;,y;) is the physical image plane location of pixel (7,5). We will assume
that the dimensions of the optical flow fields (u;;), (vi;) and the disparity field
(di;) are n x m.

The state vector x is constructed by concatenating the rows of the disparity

ficld to an nm-dimensional vector:
:B,'m.,.j:d;j i=0,...,n—1;j=0,...,m—1 (83)

The measurement vector y is constructed by combining the adjoined rows

of both the (u;;) and (v;;) fields minus the rotational components (which are
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independent of depth) into a 2nm-dimensional vector:

Yim+j = Uij — U; 1=0,...,n—1 (8.4)
Yim+j+nm = Vij — v:j ] = 0, ceeym — 1 (8.5)

With these choices we can write the motion field equations (8.1), (8.2) for all
pixels in the form of a linear Kalman filter measurement (4.2) y = Cx where C

is 2 2nm X nm matrix with

(
——U+z,-W k:im+j

Crjim+; = J -V+yW k=im+j7+nm (8.6)

0 otherwise

\

Finally we must consider the covariance matrix R of 2 measurement y. We
assume that an optical flow measurement (u;;,v;;) has an error distribution that

18 Gaussian with covariance

R, = Pij Tij (8.7)
Tij 4ij
where p, ¢ and r depend on the algorithm that is used to compute the optical flow
measurements from image brightness values. An example of such ar algorithm
and the resulting covariance values is given in section 8.2.

The measurement covariance matrix R can now be constructed by collecting

all the covariance matrices of individual optical flow measurements, under the
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assumption that optical flow measurements are uncorrelated:

¢; k=im+j+nmili=tm+j+nm
i k=im+jl=im+j+nmandk=im+j+nml=im+

0 otherwise

(8.8)

The above choices for the state x, the measurement y, its covariance R and
the measurement matrix C completely determine the update stage of the Kalman
filter. By plugging these values into the update equations (4.16), (4.17), (4.18),
the filter update can be performed. The detailed equations which are obtained
after these algebraic manipulations have been summarized in appendix C so that
the reader can easily implement the temporal surface reconstruction from optical

flow.

Note that the resulting Kalman filter is linear. However, the Kalman filter
convergence and optimality properties of section 4.6 do not necessarily apply for
the following reasons: The error in the optical flow estimates will generally not
have a Gaussian distribution. Moreover, neighboring optical flow estimates usually

exhibit correlation.

The formulation of the estimation of dense depth from optical flow in terms of

a Kalman filter was first done by Matthies, Szeliski and Kanade [67] and by Heel
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[37] as & special case of the above presentation. Both assumed non-correlation as
the prior model (i.e. all non-diagonal elements of 8 are zero). In this case each

disparity map entry (i,5) can be updated independently from all others
St = S +d*p+bqg+ 2abr (8.9)
et = z7 +[a(pu + rv — ad) + b(ru + qv — bd)}/ ST (8.10)

where we have omitted the subscripts ¢,j and have abbreviated a = U + z;W
and b = V + y;W. Couasequently, the iterative relaxation algorithm is avoided
and only a small number of multiplies and adds are required at each pixel. Both
formulations then tried to impose the surface smoothness constraint by explicitly

smoothing the depth map after the update stage of the filter.

8.2 Computation of Optical Flow and its Co-

variance

The temporal surface reconstruction from optical flow requires that the optical
flow field (u;j,v;;)T has be calculated at every pixel (i, ). Algorithms that accom-
plish this task have been studied in detail: The differential method by Hofn and
Schunck [47], the edge-based approach of Hildreth [42], Nagel and Enkelmann’s
enhanced second-order differential approach [71], Heeger’s spatio-temporal filters

[33], and Anandan’s correlation-based scheme [2] are prominent examples. The
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recursive estimator for temporal surface reconstruction does not require the use
of any one particular algorithm. However, the optical flow algorithm employed
will determine the uncertainty in the measurement provided to the Kalman filter
and hence the covariance matrix R. For this reason »nd for the sake of providing
an example, a matching optical flow algorithm similar to the one by Anandan is
described here and the derivation of the measurement covariance R is given.

Let us begin by recalling that the optical flow is an estimate of the projection
of the 3-D velocity field into the image plane. An optical flow field will therefore
contain a vector (u;j,v;;) for every point P projected into the image describing
which point P’ it projects to in the next image.

The main idea that is exploited in the sum-of-squared differences (SSD) optical
flow is depicted in figure 8.1. For a given point P = (z,y) in image 1 we wish to

determine where it moves to ir image 2. We assume two things:

o The interframe displacements do not exceed a certain number of pixels in

each dimension.

o The brightness in an area surrounding the point remains approximately

unchanged by the motion.

The first assumption leads to the concept of a search area which is an area of
pixels in image 2 that we will consider as possible correspondences for P. The

second assumption introduces the sum of squared differences. As a measure of how
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Neighborhood N Neighborhood N

;K

Search Area S

Image 2

Figure 8.1: Computation of SSD optical flow

well P corresponds to each candidate point P’ in image 2 we will use the differ-
ence between a neighborhood surrounding P and the corresponding neighborhood
around P’. The measure is computed as the sum of the squared differences of cor-

responding pixel values over the entire neighborhood. More formally, if we let

Es (i, 7) denote the brightness value at location P = (4,5) in image 1 and E;(4,7)

a brightness value in image 2 then for every P = (4,7) in image 1 we seck a
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P' = (i +v,j + u) in image 2 such that

min 55D(u,v) = min ST E(G+kj+1)— E(i+v+k,j+u+ D] (811)
u,ve u,ve kleN

N is called the neighborhood, S is referred to as the search-area. The displacement
(u,v) is called the optical flow vector at point P. !

The displacement (u,v) that minimizes (8.11) is determined only to pixel ac-
curacy. It can be improved to sub-pixel accuracy as follows: consider the surface
of the sum-of-squared differences SSD(u,v). In searching for the minimum of
(8.11), we have calculated samples of this surface at the integral grid point loca-
tions-within the search area S. Suppose that (u,v) was the integral displacement
found to yield the minimal value of the SSD function. The true sub-pixel displace-
ment is the minimum of the continuous SSD surface and is located between (u,v)
and the neighboring integral displacements v — 1,2 4+ 1 and v — 1,v + 1 respec-
tively. We will determine the minimum of the continuous SSD-surface, by fitting
a quadratic function to the minimum SSD and its neighbors and then analytically
determining its minimum.

We fit a one-dimensional quadratic function to the samples in both the « and »

dimensions respectively. 2 An example of an SSD-surface with the neighborhoods

1The displacement (u,v) that minimizes (8.11) is in terms of indices in the image array. The
optical flow in terms of physical distances is easily obtained by raultiplication with the pixel
distance (Az, Ay).

2We could fit a two-dimensional quadratic to the sample points in the immediate neighbor-
hood, but this surface may have a minimum outside the neighborhood and may therefore not
always be practical.
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indicated as well as the corresponding interpolation in the u direction is shown in

figure 8.2.

Minimal SSD ssd(x)
(xy’) Fitted

l._+_l Curve
T

I

x-Neighborhood

X
y-Neighborhood -1 0 1
Subpixel Minimal
Minimum SSD
Figure 8.2: Subpixel interpolation of the optical flow
More formally we fit the quadratic
s(z) =az’ + bz + ¢ (8.12)

to the three samples s_,, s, 57 where the origin is located at the center of the
neighborhood (z stands for either u or v dimension here). The coefficients of the

best-fitting surface are

e = ';'(31’1'3—1)"30 (8.13)
b= o1 -am) (8.14)

c = 8g. (8.15)
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Once these coefficients have been determined we find that the subpixel minimum

of the surface is located at

z' = —b/2a (8.16)

and the value there is

s(z') = ¢ — b*/4a. (8.17)

From our formulation, z’ is a value between —1 and 1 and is simply added to the

integral value of the optical flow determined from (8.11).

In their work, Matthies, Szeliski and Kanade [65] give an elegant derivation
of the variance in an optical flow estimate obtained by the SSD method. Their
method was restricted to translational camera motions perpendicular to the opti-
cal axis, so that optical flow would have only a u component. As a consequence,
the derivation of the variance was also restricted to this case, but can be extended

to the general case presented here as follows.

We model the images E,(i,7) and E,(Z,7) as originating from a single noise-
free image with additive, uncorrelated Gaussian noise of variance v}, where FE; is

displaced by (u,v) at location (%, 7) with respect to E;

Eq(i,j) = E(3,7) + na(3,5) and Ex(i+v,j +u) = E(3,5) + na(3,5) (8.18)
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Now the expression for the SSD error (8.11) becomes *

SSD(,3) = Tipew B +hj+1)—EG+o—vtkj+i—utl)+

na(i 4 k5 +1) — ng(i + K, + D). (8.19)

By Taylor series expansion of E around (u,v) and retaining the linear terms, we

have

SSD(i,?) = a(i—u)? +b(a—u)(d—v)+c(v—v)* +d(i—v)+e(d—v)+ f (8.20)

where

a = Y Eli+kij+1) (8.21)
k,leN
b = 2> E.(i4+kj+DE(GE+Ej+]) (8.22)
k,leN
c = Y, ENitkj+1) (8.23)
k,JJeN
d = 25 E(i+kj+0)(mE+ki+1)—n(i+kj+1)) (8.24)
kleN
e = 25 E(i+kj+D(n(i+kj+1)—na(i+k,j+1) (8.25)
k,eN
f = Z (ni( + k7 +1) —n2(i+ k5 + l))’. (8.26)
kleN

E. and E, denote a suitable discrete approximation to the partial derivatives of

E in the z and y directions.

3As is pointed out in [65], the last term is actually na(i+ & — v+ k,j + & — u + 1) but can
safely be approximated as is done here.
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The minimum of the quadratic error function (8.20) is located at

T —1u 1 be — 2cd

T Yac— 0
D — v e bd — 2ae

(8.27)

For the computation of the covariance matrix of this estimate we note that only
the quantities d and e contain the noise processes and are stochastic while a, b

and c are deterministic. From (8.24), (8.25) we compute the covariances

o} = 8oka (8.28)
o} = 8oic (8.29)
cov(d,e) = 4okb (8.30)

and from there the covariance matrix of an optical flow vector

pr 402 2c(4ac — b?) b

= 4ac - b2
r g s b 2a(4ac — b?)

(8.31)

is readily obtained. This covariance matrix is used in the construction (8.8) of the
update stage for the temporal surface reconstruction from optical flow.

Note that the derivation of the measurement covariance described here is spe-
cific to the SSD optical flow estimation algorithm. However, the procedure of
propagating the noise in the brightness measurements through the equations of

the optical flow algorithm can be applied to other methods as well.
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8.3 Experimental Evaluation

In this section I will present the results of experiments with the temporal surface
reconstruction algorithm using cptical flow. In both cases, a CCD camera with a

focal length of 10 mm translated relative to the scene.

8.3.1 Bottle Experiment

In the first experiment (first presented in [37]) a the camera translates vertically
over a scene consisting of a small spray bottle on a table before a flat background.
The bottle was 730 mm away from the camera, the background was 1000 mm

away. The camera translated 8§ mm between each of the 7 frames in the sequence.

Figure 8.3: The first two images the bottle sequence.
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Figure 8.4

Figure 8.3 shows the first two images from the bottle sequence. Figure §.4

shows the optical flow fields computed from the first two image pairs of the bottle

8.2.

ion

in sect

tching optical flow algorithm described above i

he ma

t

sequence using

Variance data was also computed as described in that section. From the optical

flow, we can see the translational motion of the camera in a vertical direction.

This data is used in the simplified reconstruction scheme (8.9) in which non-

is assumed as a prior model and a separate binomial filtering

ion of pixels

correlat

is performed between update and prediction stage of the filter to enforce

step

is flat with a value of 900 mm. The recon-

smoothness. The init

ial depth map

structed structure of the scene after every iteration of the algorithm is shown as

frame in figure 8.5 from left to right and top to bottom.

a wire



8.3. Ezperimental Evaluation 123

The run-time of the filtering algorithm was approximately 1 minute per frame

for the 300 by 300 image on a Sun 3/60 if the optical flow has been precomputed.

8.3.2 Pepsi Experiment

In a second experiment, a soda can was placed on a table at 570 mm, before a
background parallel to the image plane at 1240 mm. The sequence of frames taken
by the camera is shown in figure 8.6. The camera translated t = [1.5,0,0] mm
between frames.

From this image sequence a sequence of optical flow fields was precomputed
using the matching algorithm described previously in section 8.2. The first three
optical flow fields are shown in figure 8.7 and the translational motion is evident to
the human observer. Note that the optical flow fields are rather noisy, in particular
in the image regions of fairly uniform brightness, as no smoothness constraint has
been imposed.

The disparity map state vector was initialized to a value of 1/ 7o = 1/1000 ev-
erywhere. The Kalman filter temporal surface reconstruction scheme was applied
to the optical flow data using the thin plate prior model of surface smoothness.
Fourty Gauss-Seidel iterations were used at each time step. With these param-
eters, each temporal iteration takes about 30 seconds on a Sun Sparcstation I if

optical flow has been precomputed for the 200 by 200 images. Figure 8.8 shows
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a perspective wireframe rendering of the three-dimensional structure recovered
using this algorithm after each iteration. A closeup of the final result is shown
in figure 8.9. It is noteworthy, that considerable error remains even after 10 it-
erations and it is particularly prominent where the input optical flow contained
errors. This is simply a reflection of the fact that image areas of nearly uniform

brightness allow little information about structure to be estimated from motion.
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Figure 8.6: The first 9 images from the pepsi sequence from left to right and top
to bottom.
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Figure 8.8: Wire frame renderings of the structure recovered after each of the first

9 iterations of the temporal surface reconstruction algorithm from the optical flow
of the pepsi sequence.
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Figure 8.9: A closer look at the structure recovered after the 9th iteration of the
temporal structure estimator using optical flow on the pepsi sequence




Chapter 9

Filter Update: Depth from

Shading

In this chapter we will explore the application of the temporal surface reconstruc-
tion algorithm to the problem of estimating depth from shading. A corresponding
instantaneous algorithm that accomplishes this task when given a single image was
described in section 2.2.9. Since only the update stage of the recursive estimator
is dependent on the visual mechanism, the focus in this chapter is exclusively on
that part of the algorith.m.

130
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9.1 The Update Algorithm

In shape from shading [46] it is assumed that the image brightness E observed at

a location on the surface is a known function of the surface normal [—p, --¢, 1]
E = R(p,q). 9.1)

where R is called the reflectance function. Reflectance functions have been deter-
mined for a number of surfaces such as the lunar surface and Lambertian surfaces.
By noting that p = Z, and ¢ = Z, (the partial derivatives of depth) and choosing
a discrete approximation we obtain

Zijsr = Zij1 Ziqr,j — Z-'-l.i)

By = M= 24y

(9.2)

This formula can be used as the nonlinear measurement equation y = f(x) (4.8)

if we construct the state x by concatenating the rows of the depth map

z;m+,~=Z,~,- i:O,...,n——l;j:O,...,m—l (9.3)

and the measurement vector y by concatenating the rows of the image brightness

field

y,-m+,-=E.~,~ i=0,...,n—-1;j=0,...,m—1. (9.4)
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The matrix C = % is found to be

4

R,/2Az k=mm+j5+1

~R,/20z k=im+j—1

Cimtik =\ R,/20y  k=(+1)m+j (9-5)
-R28y  k=(-1)m+j

L 2 otherwise

where B, and 2, denote the partials of R with respect to p and q.

Finally, the covariance of the measurement is
R = o;l (9.6)

if we assume brightness measurements to be uncorrelated at different pixels and
identically distributed with variance o%.

Special thought must be given to the filter initialization, as the measurement
9.2 and therefore the filter update are a function of derivatives of the depth Z.
Initializing the state vector to a constaat value as suggested in chapter 6 is useless
in this case, as it constitutes a local minimum in the solution space in which
the iterative update scheme (5.8) becomes stuck. The solution is to initialize the
depth to random numbers which will guarantee that the derivatives p,q will be
non-zaro.

As with all shape from shading algorithms, convergence and local minima are

a particular difficulty. The implementation must take into account integrability
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of the derivatives and boundary conditions among others. In dealing with these
problems, I have followed the suggestions of Horn [45]; the paper contains a careful
discussion of implementation details for shape from shading algorithms.

A notewortky pcint is the fact th;t conventional shape from shading is for-
mulated for orthographic projections while the prediction stage of the tcmporal
reconstruction scheme assumes perspective projection. It is possible to reformu-
late the shape from shading algorithms for perspective projection ai the cost of
increased mathematical complexity. In my implementation, I instead reformu-

lated the prediction stage of the reconstruction scheme to work with orthographic

projection.

9.2 Experimental Evaluation

The implementation of this Kalman filter for structure from shading (first pre-

sented in Heel [41]) uses the thin plate (6.1) as the prior model.

9.2.1 Sphere Experiment

For this experiment a synthetic image of a semi-sphere on a planar background
was created using the Lambertian shading model. Brightness values are in the
range [0, 1] and Gaussian noise of variance 0.05 was added. The camera translated

uniformly in both in both z and y directions.
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(7) (8)

Figure 9.1: The first 8 images from the sphere sequence from left to right and top
to bottom.
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Figure 9.1 shows the first 8 frames from the sequence of sphere images. Note
that these images are only 50 by 50 pixels in size and have been enlarged for better

inspection. Note also the visible effect of noise in the images.

The temporal surface reconstruction scheme was applied to the sphere sequence
with natural boundary conditions imposed. Fifty Gauss-Seidel iterations were
used per frame. Figure 9.2 shows wire frame renderings of the structure obtained
after each iteration of the temporal reconstruction scheme. Figure 9.3 compares
the structure obtained after the eighth iteration of the algorithm with the ground

truth.

Since a synthetic sequence was used, the ground truth structure was known and
can be compared quantitatively to the estimate. Figure 9.4 shows the development
of the root mean squared error of the estimate with respect to the ground truth

as a function of the frame number.

The convergence behavior of the temporal depth from shading algorithm is
of particular interest. I compared it with Horn’s [45] Height and Gradient from
Shading on a single frame. Horn’;s algorithm will typically require about 1000
iterations and it may diverge for some illumination directions of the sphere. The
temporal algorithm will diverge in the same cases, however when it converges,
it required only about 50 iterations per frame. This is of course mainly due to

the fact, that initialization of the iterative update procedure for each frame uses
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(1) (2) (3)
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Figure 9.2: Wireframe renderings of the first 8 structure estimates for the sphere
sequence.
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Figure 9.3: Wireframe renderings of the final structure estimate from the sphere
sequence and the ground truth structure used to generate the corresponding syn-
thetic image.
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the predicted data from the previous temporal iteration while the single-frame
algorithm “starts from scratch”.

When noise is added, as in the above experiment, the temporal algorithm
converges even when the single-frame algorithm does not and the result was in all
cases closer to the ground truth than the single-frame algorithm. This is to be
expected, as the temporal algorithm can use redundant measurements to reduce
the effect of noisy measurements while the single-frame algorithm can only impose

a surface smnoothness constraint to eliminate noise.

9.2.2 Crater Experiment

In this experiment, images of Mars taken by the Viking orbiter were analyzed.
Figure 9.5 shows a sequence of images of a crater on the surface that were taken
from a larger image to simulate a translatory motion of the orbiter (recall that we
are using orthographic projection). A vertical translation corresponding to about
one pixel per frame was used.

The tempora! surface reconstruction algorithm was applied to this sequence
using fixed boundary constraints (i.e. the boundary was constrained to a constant)
and 40 Gauss-Seidel iterations per frame. The light source direction was estimated

at (p,,q,) = (0,10) and this estimate was verified by evaluating the resulting

shading. The wire frame rendering of the recovered structure after each time step
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(1)

Figure 9.5: The first 9 images from the Mars crater sequence.
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is shown in figure 9.6 from a viewpoint located just above the surface. A closeup
of the result after nine iterations is shown in figure 9.7.

Since the ground truth structure is not known in this case, a quantitative eval-
uation of the result of the estimation is difficult. A method commonly used in
shape from shading in this case is to shade the reconstructed surface using the
same light source direction that was used in the reconstruction and to compare
the resulting image with the input image. As Horn points out in [45], it is also
imperative to additionally shade the surface using other light source directions.
Figure 9.8 shows the result of shading the structure estimate from the ninth iter-
ation-using both the light source direction (0, 10) used for reconstruction and the
light source direction (0,—10) that illuminates the surface from “above”. These

images can be compared with the lasl one in the sequence of figure 9.1
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 9.6: Wireframe rendering of the structure estimates from the Mars crater
sequence after each iteration.
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Figure 9.7: A closer look at the structure recovered after the 9th iteration of the
temporal structure estimator using shading on the the crater sequence
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Figure 9.8: The result of shading the structure estimate from the ninth iteration
of the temporal reconstruction scheme with the original light source direction and
a light source positioned on the opposite side of the crater.



Chapter 10

Filter Update: Direct Depth

from Motion

In this chapter we will explore the application of the temporal surface reconstruc-
tion algorithm to the problem of estimating depth from motion without the use
of optical flow. A corresponding instantaneous algorithm that accomplishes this
task when given a single measurement of the optical flow was described in section
2.2.8. The focus in this chapter is exclusively on the update stage of the recursive
estimator, as it is the only part that is dependent on the visual mechanism.

145
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10.1 The Update Algorithm

Based on the brightness constancy assumption

% =0 (10.1)

Horn, Negahdaripour and Weldon [75], [48] derived a relationship that links image

brightness E directly to motion t, w and disparity d and obviates the need for

expensive computation of the optical flow:
(s-t)d+v-w+E =0 (10.2)

wheré s = [-E,,—E,,zE, + yE,|T and v = [(1 + y*)E, + zyE.,—(1 + *)E. -
zyE,,yE. — zE,|T. Given at least two frames E and the motion t, w we can
compute the partial dertivatives E., E,, E, and hence the vectors s, v. Then d is
easily computed.
We can construct a state vector x by concatenating all the rows of the disparity
map
Timyj = dij t=0,...,n-1;7=0,...,m—1 (10.3)
The measurement vector y is comprised of the brightness values E;j; from two
sequential images k = 0, 1, so that spatial and temporal brightness derivatives can

be computed:

Yemnt+im+i = Lijk i=0,...,n—1;j=0,...,m—1;k=0,1 (10.4)
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For the sake of simplicity we will assume a simple discrete derivative operator that

can easily be replaced with a more elaborate one:

E; ;0 — Eij-

(i) = —H =S (10.5)
Eir150 — Eioyj

E,(i,j) = *""‘;Ay (10.6)
Ei;1 — Ei;

E(i,j) = — =22 (10.7)

where Az, Ay denote the pixel distances and At is the time between frames.
With these choices we see that the measurement equation (10.2) is of the

implicit type (4.12) g(x,y) = 0. The matrix C = dg/dx is diagonal with
Cimjimss = —Ea(i,5)U — Ey(i,5)V + (zE=(3,5) + yE, (3, 5))W.  (10.8)

The matrix D = dg/Jy is sparse and banded with 6 bands:

4

—as((~U 4+ zW)dij + Azy — B(1+2*) 4+ Cy) Il=im+j—1
2= ((-U + zW)d;; + Azy — B(1 + z*) + Cy) l=im+j+1
L((-V+zW)d;; + A(1+y?*)-Bzy—-Cz) I=(i-1)m+

- 2Ay

Dimyju = ;i—;((—V +zW)d;; + A(1 + y*) — Bzy — Cxz) Il=(G+1)m+j

—a l=tm+]
2 l=im+j+nm
{ 0 otherwise
(10.9)

If we assume our measurement values E to be identically distributed Gaussian
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random variables with variance ¢% then the measurement covariance is given by
R =il

The above choices for the state x, the measurement y, the measurement ma-
trices C and D as well as the measurement covariance R completely determine
the update stage of the implicit Kalman filter and the update can be preformed

by plugging these values into the equations (4.16), (4.17) (4.18). *

10.2 Alternative Formulation of the Update Al-
gorithm

In designing the Kalman filter the choice of the depth as the state and the bright-
ness as the measurement in the above formulation, leads to the implicit nonlinear
filter. Other choices are possible and may lead to other properties of the estima-

tion algorithm. One such alternative is presented here.

If we solve the brightness constancy constraint (10.2) for the depth Z = 1/d

s-t

Z=-—5t
V’U'{"Et

(10.10)

we can precompute an estimate of the depth map values. Now we designate the

1Note that the update equations are slightly modified in the case of the implicit filter as
described in section 4.4.
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depth values Z;; to be not only the state x

Timtj = Zij 1=0,...,n —1;7=0,...,m—1 (10.11)
but also the measurement y

Yim+; = Zij t=0,...,n-1;7=0,...,m— 1. (10.12)

Now the relationship between state and measurement is given by the measure-
ment matrix C which is simply the identity matrix. Through this choice of the
measurement vector the filter actually becomes linear (4.4)!

The disadvantage of this formulation is that the covariance R of the measure-
ment is more complex. To obtain an estimate of the variance in a given depth
value Z we will propagate the noise in the brightness measurements E through
equation (10.10). We assume that the brightness E at every pixel is corrupted by
Gaussian noise n of variance 0% that is identically distributed at every pixel and
mutually uncorrelated between pixels.

First we express the depth Z from (10.10) explicitly in terms of the brightness

derivatives:

_ aE. +bE,
" E,+cE. + dE,

(10.13)

where

a = fU—-—zW (10.14)
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b = fV_—yW (10.15)
c = (zyA-{f*+=*)B)/f+yC (10.16)
d = ((f*+vy*)A-zyB)/f -=zC (10.17)

Recall that f is the focal length, t = [U,V,W]|T and w = [4, B,C]".
If the discrete approximations for the derivatives E., E,, E, suggested by Horn
[44] are used, eight brightness values E;,z = 1,...8 at the corners of a spatio-

temporal cube contribute to the value of Z in (10.13)
Z = f(Er,...,Es) (10.18)

Under the assumption that the nonlinear function f can be locally approximated

by the first-order terms of its Taylor series, the depth variance is given by

8,082
oy =d5 ) (=) (10.19)
Z E; aE‘)

If we apply this formula to our expression (10.13) for the depth, the variance

is found to be

3= (PG + (P (e + (5 (5gy) (o)

where

07z aFE, + (ad — be)E,,

8E, _ (E:+ cE, + dE,)? (10.21)
0Z bE, — (ad — bc)E,

- 22
oL, (E. + cE. + dE,)? (10.22)
55 ol ol (10.23)

dE, "(E. + cE, + dE,)*
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If we assume that depth map values are uncorrelated, the measurement co-

variance R is diagonal

Rimyjimti = 03 (10.24)

Actually, with the discrete derivative operator chosen above, the depth value Z;;
is correlated with its eight-connected neighbors. The correlation can be computed

in the same way as the variance calculation shown here.

10.3 Experimental Evaluation

This section shows the results of experiments with the alternative implementation
of the temporal reconstruction scheme for direct structure from motion. The
same camera and experimental setup previously described in section 8.3 were
used. The pepsi experiment below uses the same sequence of images introduced
in that section, so that an immediate comparison of the two structure from motion
techniques is possible. The thin plate model of surface smoothness was used with

between 20 and 50 Gauss-Seidel iterations per frame.

10.3.1 Wave Experiment

This first experiment was designed to evaluate the performance of the tempo-

ral reconstruction scheme quantitatively. A simple planar scene was created by
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Figure 10.1: The wave experiment scene

mounting a poster (to obtain the desired texture for motion) on a wall parallel to
the camera’s image plane at a distance of 1000 mm. The camera translated by
t = [1.5,0,3.0] mm relative to the surface. The last of a sequence of 10 frames
taken by this camera is show in figure 10.1 .

The recovered structure after 1 and 10 iterations of the temporal surface re-
construction algorithm is shown in figures 10.2. Since the thin-plate model of
surface smoothness favors fronto-parallel surfaces and would therefore lead to a
misrepresentation of the noise reduction effect achieved by temporal integration,
it was turned off in this experiment. Figure 10.3 shows the development of the
root mean squared error with respect to the ground truth as a function of the

frame number.
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Figure 10.2: Wireframe renderings of the structure from the wave scene after 1
and 10 iterations of the filter.

10.3.2 Pepsi Experiment

This experiment uses identically the same images as the one described in section
8.3. The result of applying the temporal reconstruction algorithm directly to this
motion sequence as opposed to computing the optical flow is shown in figure 10.4.
A closeup look at the wireframe rendering of the structure obtained after the
eighth iteration is shown in figure 10.5. It is noteworthy that each iteration of
the the filter takes approximately 30 seconds on the 200 by 200 images. This is
the same time required by the optical flow based algorithm with the difference,

that in the latter case, the optical flow must also be computed. Depending on the

parameters of the optical flow algorithm, this may require up to 20 minutes!
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RMS Depth Error vs. Frame Number
Wave Sequence

Millimeters
-
L~

. <

Frame Number

Figure 10.3: Development of root mean squared depth error as a function of the
frame number.

10.3.3 Cup Experiment

This experiment was designed to evaluate the performance of the temporal
reconstruction algorithm on a complex scene. A cup, a set of books and a staple-
remover were placed on a table before a planar background on - bich a poster
was mounted. A top view of the layout of the experiment is shown in figure 10.6.
The camera translated t = [2,0,4] mm between frames to acquire the sequence of

images shown in figure 10.7.

Figure 10.8 shows wire-frame renderings of the structure estimates after each

one of the temporal iterations. A closeup of the structure after the ninth iteration
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Figure 10.5: A closer look at the structure recovered after the 8th iteration of the
temporal structure estimator using direct motion on the the pepsi sequence

is shown in figure 10.9. Note that what looks like a woman’s face in the image is
acutally a poster and appears flat in the depth map while a small spoon in the

cup that is barely visible in the image shows up clearly in the structure rendering.
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Figure 10.6: A top view of the scene layout for the cup experiment.
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Figure 10.7: The first 9 images from the cup sequence.



159

10.8. Ezperimental Evaluation

; NN
N R A
2 AN 2

NN
§\ NS

: mS ?mma 2
AN

)
)

—~
] D a0
N’ N’ N’
\.\\“\&.\NE NS
A //ﬂ 3 5 et
RN j N
4 i
~~ —~~— )
— < ~
e Nt N—rt ~—

SN N i A
27NN SN
\\V“\e‘ 3\ Q\\.“\\\‘\jr. R
i )

f the structure recovered from the cup se-

ring o

Wire frame rende
quence after each temporal iteration.

.
.

Figure 10.8



160 Chapter 10. Filter Update: Direct Depth from Motion

Figure 10.9: A closer look at the structure recovered after the 9th iteration of the
temporal structure estimator using direct motion on the the cup sequence



Chapter 11

Features and Faults

This chapter discusses the temporal surface reconstruction scheme from several
different perspectives. The first section is devoted to the analysis of complexity
and run-time of the algorithm. The second investigates the possibility of im-
plementing the algorithm on a parallel processor and analyzes the complexty
of such an implementation. The third section summarizes the assumptions and
approximations made in applying recursive estimation to the temporal surface

reconstruction problem.

11.1 Computational Complexity and Run-Time

To analyze the serial complexity of the temporal reconstruction algorithm, let

us consider the update and prediction stages separately and focus on a single

161
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iteration (time-step) of the filtering algorithm. As before we will assume that the
image and the depth map have dimensions n x m. The state and measurement
vectors X,y in the algorithms presented in this thesis contain O(nm) values. The
associated covariance matrices R,S as well as the measurement matrix C have

O(n*m?) elements but due to their sparse nature, only O(nm) are non-zero.

The update stage (4.16), (4.17), (4.18) requires multiplications and additions
of the above vectors and matrices. Due to the sparse and banded nature of the
matrices, this can be accomplished in time O(nm). In addition, the matrix S
must be inverted, which is achieved by the iterative Gauss-Seidel process (5.8).
One iteration of this algorithm requires time O(nm) so that the overall complexity
of the update stage is O(knm) where k is the number of iterations used in the
Gauss-Seidel process. In our experiments, k was a small number, usually 20 to

50.

The prediction stage requires for each point in the depth map to be warped
and then the depth map must be resampled. The warping processes each depth
map entry once and therefore has complexity O(nm). In the resampling step each
of the 2(n — 1)(m — 1) warped triangular surface facets could in the worst case
be intarsected by all of the nm rays through grid point locations leading to a run
time of O(n?*m?). This, however, is clearly a degenerate case that can be ruled out

for small motions and real visual surfaces where a bounded small number of ray
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intersections per triangulation facet can be safely assumed to reduce the expected
run time to O(nm). For convex surfaces, for example, a ray can intersect the
surface at most two times. The approximative prediction algorithm presented in

section 7.3 has a worst-case run-time of O(nm).

In summary, the worst-case complexity of the temporal surface reconstruction
algorithm is O(n?m?). For all practical purposes, however, the expected run-time
is only O(nm) per time-step. Note that this complexity for a single measurement
is the same as any one of the instantaneous surface reconstruction procedures from

chapter 2.

In terms of the actual run-time for the implementations, the following results
were obtained. The implementations were done on a Sun SPARCstation 1. On
an image of size 256 x 256, onc iteration of the temporal surface reconstruction
takes between 20 and 30 seconds depending on the visual mechanism used for
the filter update. This time is almost evenly divided between the update and
prediction stages where the time spent in the update stage is proportional to
the number of Gauss-Seidel iterations. This is significant, as we have seen in
the depth-from-shading example, in comparing the run-time with the repeated
application of an instantaneous procedure. In the latter case, the Gauss-Seidel
algorithm “starts from scratch” for each new measurement and may require a

large number of iterations to converge. In the former case of temporal surface
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reconstruction, the Gauss-Seidel process in the update stage can be initialized with
the predicted depth map from the previous time-step and will require considerably
less iterations.

As a conseque ce, for all practical purposes, the temporal surface reconstruc-
tion algorithm is computationally less ezpensive than the repeated application of

an instantaneous surface reconstruction.

11.2 Parallel Implementations

The temporal surface reconstruction procedure can benefit greatly from an imple-
mentation on a parallel processor as we wili see in this section. We will investigate
the complexity of an implementation on a SIMD processor such as the Connection
Machine (TM).

The update stage can be implemented efficiently by arranging the processors
in a two-dimensional grid and assigning one processor to each pixel of the im-
age/depth map. Then the Jacobi method (see Golub and Van Loan [30]) can be
used to solve the sparse matrix inversion problem (5.7). The update of a given
pixel requires interaction with the four-connected neighbors. By our arrangement
of processors, all values of the depth map can be updated at once, so that one
Jacobi iteration can be computed in constant time. Therefore, the update stage

of the temporal surface reconsruction takes only O(k) time where k is the number
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of Jacobi iterations used.

For the prediction stage, we begin with the same arrangement of processors as
above. Each processor computes the warping (7.3) of the point corresponding to
its depth map entry. Obviously, this can be accomplished in a single time-step.
Now the resulting depth value must be propagated to the new location (2, j) in the
depth map for the resampling. Assuming that each processor can communicate
with its four-connected neighbors, this may take time O(n + m) (in the same
worst-case scenario described for the serial case above) but for real surfaces and
small motions this propagation will extend over only a small number of processors
(pixels). After the propagation, each processor determines its new depth value by
intersecting a ray through its location with the triangle facet given by the depth
values that have been propagated to it (or by the simplified weighted scheme).

This is again a constant-time operation.

In summary, a parallel SIMD implementation of the temporal surface recon-
struction algorithm will require computation time proportional to the number of
iterations k used in the update stage. I am aware of one effort to actually carry
out such an implementation at the ETH Ziiric. Most importantly, a SIMD im-
plernentation such as the one above is amenable to implementation directly on a

single chip. Among the existing implementations of vision algorithms on single
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chips, the analog VLSI approach of Mead {69] is most easily extended to the recur-
give estimation task required for temporal surface reconstruction. The "artificial
retina” can perform relaxation algorithms such as the one needed for the update

procedure of the Kalman filter in a truly time-continuous fashion.

Another more common type of specialized hardware can effectively support
the temporal surface reconstruction procedure. Graphics workstations such as
the Silicon Graphics (TM) provide a fast storage called the Z-buffer that can
be used to hold the depth map state vector and can be accessed quickly. The
resampling step in the prediction stage is equivalent to the z-buffered rendering of
a surface given as a triangular mesh. This is a common operation in these systems

and is supported by special hardware.

Since the Kalman filter operations are linear, it is not surprising that the nec-
essary computations can be implemented on a network-type architecture. Yeates
[110] describes how a Kalman filtering algorithm can be implemented on a fully
connected two-layer network by having the network use Newton'’s algorithm to per-
form the necessary matrix inversions. Network implementations are of particular
interest because of the high speeds that can be achieved due to massively-parallel
processing and because of the similarity to neuronal computation mechanisms

found in humans.
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11.3 Assumptions and Approximations

In applying the Kalman filter to the temporal surface reconstruction problem, we
have made a number of assumptions and approximations. In some cases, these
simplifications cause some of the useful propesties of the filter (see section 4.6)
to be lost. Additionally, it is important to understand these approximations in
order to evaluate the temporal surface reconstruction scheme and its limitations.
In what follows, the assumptions and approximations made throv..out the thesis

are compiled, evaluated and possible remedies are discussed.

1. Eztended Kalman filter:
Two of the visual mechanisms investigated in this thesis, structure from
shading in chapter 9 and the first approach to structure from motion with-
out optical flow 10, section 10.1 model the relat’onship between state and
measurement as a non-linear one. This necessitates the use of the extended
Kalman filter or the implicit Kalman filter. From section 4.6 we recall that
these versions of the filter are only approximative and convergence is not

guaranteed.

In some cases, it is possible to formulate the filter in the desired linear
form by making a different choice for the measurement vector y or the

state Xx. An example is the alternative temporal reconstruction scheme for
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direct structure from motion in section 10.2. By choosing the measurement
vector to consist of the depth Z directly, the relationship to the state vector
became linear and trivial. On the other hand, however, the derivation of the
measurement covariance R requires another Taylor series approximation. In
summary: we can trade off non-linearities in the measurement relationship

for non-linearities in the measurement covariance.

Correlation of measurements:

In determining the covariance matrix R of the measurement vector, we have
neglected the effect of correlation between elements of the measurement
vector in the case of structure from motion using optical flow chapter 8 and
in one of the cases of structure from motion without optical flow chapter
10, section 10.2. This approximation simplifies the computation, since it
ignores off-diagonal elements of the matrix R and makes the inversion of R
required in the update stage of the filter (4.17) much easier. However, as we
know from section 4.6, the convergence of the filter is no longer guaranteed

under this approximaticn.

There are two possible solutions to this problem. The first is to make a dif-
ferent choice for the elements of the measurement vector y. This may lead
to a much simpler covariance matrix as in the example of direct structure

from motion chapter 10, section 10.1. This is the tradeoff discussed under



11.8. Assumptions and Approzimations 169

the previous item. The second solution is to explicitly compute the covari-
ances and carry them through the computation. It would be interesting to
investigate, whether this additional effort results in significantly improved

estimates.

3. Moise distribution:
The optimality of the linear Kalman filter requires the noise distribution to
be Gaussian. In both of the linear filters described in this thesis (structure
from motion using optical flow chapter 8 and structure form motion without
optical flow chapter 10, section 10.2) the measurement quantities (optical
flow and depth) will in general not have a Gaussian distribution, so that the

optimality property is losi.

As mentioned in section 4.6, the Gaussianity of measurement noise is neces-
sary to show optimality of the Kalman flter among all possible estimators.
If a Gaussian noise model is not applicable, there mzy be a non-linear es-
timator that outperforms the Kalman filter, but it remains optimal among

linear estimators. This assumption is therefore not a crucial one.

4. Prediction Resampling:
The resampling algorithm in the prediction stage (chapter 7) approximates

the surface as being planar between sampling locations. This will introduce
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an error into the depth estimates, the magnitude of which depends on the
frequency content of the surface. This will influence the convergence prop-
erty of the filter, in particular it may prevent the estimate from converging

completely to the ground truth.

It is possible to improve the prediction stage to reduce the effect of this ap-
proximation. We could, for example, do a bilinear or bicubic approximation
of the surface within a given facet. Such an approximation, although com-
putationally more expensive, would also be compatible with the smoothness
assumption on the surface structure. Whether or not a more accurate pre-
diction stage is appropriate depends largely on the accuracy of the estimates
obtainable with a given visual mechanism. The experimental results in this
thesis indicate that for structure from motion, the errors as a result of the vi-
sual mechanism are far larger than any errors introduced by approximations
within the filter while in structure from shading this may not be the case.
Note that a small decrease in the certainty value of each depth estimate is

used to explicitly represent the error introduced by the prediction stage.

Certainty Prediction:
The prediction (4.20) of the certaint: matrix S will in general not preserve
the sparse and banded nature of this matrix. Since this property is crucial to

maintain computational manageability, the change in off-diagonal elements
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was neglected by the separation in equation (6.8). This may cause the filter

to lose its optimality and even its convergence property.

It will be very difficult to relax this assumption, since the computational
feasibility depends on it. There are two arguments to support this approxi-
mation. First, it can be understood as a viewpoint-independent prior model
of surface structure and therefore has some justification in a physical sense.
Second, the experiments show that smooth surfaces can be recovered with
this approximation. It may therefore be a tolerable one for practical pur-

poses.

In addition to these assumptions and approximations made in the temporal
reconstruction algorithm itself, there are two other sources of error that must be
weighed carefully against the ones cited above in deciding where to begin with
improvements.

The first is a systematic error in the modeling of the visual mechanism. In
the structure from shading case (chapter 9) for example, the relationship between
image brightness and surface gradients is only approximately modeled by the
reflectance function (9.1) and does not follow this model exactly in real images. In
the case of structure from motion without optical flow, the relationship between
brightness gradients and depth is only approximately given by the brightness

constancy assumption (10.2). These systematic errors depend on the particular
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image under consideration and can far outweigh the effect of the approximations
made in constructing the filter algorithm.

The second is the approximate nature of the prior surface model. The ground
truth surface will generally not obey a membrane or thin-plate model so that the
smoothness constraint may actually drive the solution away trom the true values.
In particular, real surfaces contain depth discontinuities that cannot be modeled
in this simple way and are therefore inaccurately recovered. While there exist
methods for incorporating discontinuities into the prior surface model (see section
3.7), they are computationally more expensive and do not eliminate the adverse
effect of an error in the prior model.

The analysis of these approximations and assumptions leads to one conclusion:
theoretically derived properties of the temporal surface reconstruction scheme will
be limited in their practical applicability. Experimentation must show how useful

the method is for a given visual mechanism.



Chapter 12

Conclusion

The temporal surface reconstruction method presented in this thesis provides a
way in which low-level “instantaneous” structure estimation procedures for vari-
ous visual mechanisms can be embedded in a recursive estimation framework and
thereby applied continuously to a sequence of frames. In the introduction chapter
1 we listed three requirements that a time-continuous structure estimation proce-
dure should meet. Here we evaluate the temporal surface reconstruction method

with respect to those criteria:

1. Quality improvement:
The update stage of the filter incorporates each measurement in such a way,
that the resulting state has minimal error variance. In the ideal filter the
variance is guaranteed to always decrease over time.

173
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2. Motion transformations:

The prediction stage of the Kalman filter accounts for possible camera trans-

formations between frames.

3. Uncertainty representation:
Uncertainty is represented explicitly by covariance/certainty matrices and
the update stage that combines old estimate and new measurement to pro-
duce a new estimate weights its inputs with their covariances to take this

uncertainty into account.

4. Computational simplicity:
The temporal surface reconstruction runs faster than the repeated applica-

tion of instantaneous procedures while producing estimates of higher quality.

Although recursive estimation meets all of our initial requirements, we have
seen that the nonlinearity of some visual mechanisms torces us to make assump-
tions that may cause scme of the desirable theoretical properties of this scheme to
be lost. Under such circumstances, experimentation plays an important part in
verifying the validity of assumptions and approximations and I believe the results
presented here to be at least encouraging.

The appealing feature of this approach is the fact that it provides not only a

uniform theoretical framework for temporal surface reconstruction but also yields
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algorithms of manageable complexity with robust results on real images. In addi-
tion, it constitutes a unifying theoretical framework for previous work in surface
reconstruction from sequences of images. Previous work on incremental estima-
tion of dense structure by Matthies, Szeliski and Kanade (see section 3.5) and
Heel (see section 3.8) can be understood as the application of simplified versions
of the temporal surface reconstruction scheme to specific visual mechanisms.
Future work in temporal structure estimation will proceed along five major

lines:

1. Opportunities for relaxing the current set of assumptions and approxima-
tions necessary to apply recursive estimation to the temporal surface estima-
tion problem (see section 11.3) will be explored. This can be achieved, for
example, through new choices for the measurement vector, improved predic-
tion schemes and enhanced modeling of uncertainty. Other sources of error
sucil as the prior surface model and the modeling of the visual mechanism

will also be the subject of improvement efforts.

2. Alternative representations for structure information will be investigated
under the recursive estimation framework. One example is the voxel repre-
sentation or the octree representation (see Szeliski [95], [94]). They can help

overcome a major disadvantage of all of the previous representations: they
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can represent structure information that is not currently in view of the cam-
era but was actually acquired much earlier in the image sequencs and then
disappeared from view. A second example are feature-based representations

and how they can be understood as a sampling of a dense representation.

Other visual mechanisms will be embedded into the temporal framework
and the models for exisiting visual mechanisms will be enhanced so that a
reformulation of the embedding may become necessary. In particular, the
problem of sensor fusion in wh' ' structure information is obtained from
several visual mechanisms or non-visual sensors can be solved in an elegant
way using the temporal reconstruction mechanism by simply expanding the

measurement vector y to include all the measured quantities.

The temporal reconstruction scheme will find its way into implementations
on parallel processors and special-purpose hardware. Ideally, the processing
should be done immediately after the image acquisition and possibly on the
same chip. All indications are that this task is feasible, but much more work

is needed.

Ultimately, the temporal reconstruction scheme can only prove its useful-
ness when it becomes part of a functioning system. This will require that

the structure information produced in a temporally continuous manner is
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utilized by some other algorithm that solves a particular application prob-
lem such as the navigation of a vehicle or the identification of a target. The
navigation problem specifically is the subject of ongoing research by the

author.

Hopefully, the theoretical and experimental results in this thesis will provide
a basis for addressing these problems and contribute to a better understanding of

the temporal nature of visual analysis.



Appendix A

The Implicit Kalman Filter

In this appendix I will derive the equations for the implicit Kalman filter intro-
duced in section 4.3. The measurement equation of a dynamical system is given

by

8(Yx — Vi, Xi) = 0. (A.1)
where v, ~ N(0,R,). We postulate a linear update
% = % +Kig(XZ,y) (A.2)

where K, will be chosen to minimize the expected length of the error vector

€5 = %} — x;. With the help of the state covariance Py

El(ed)(ef)] = BI(%E — x) (% —x)T) = Pf (A-3)
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we can formulate the optimization problem as follows: determine the matrix K,

that minimizes J = trace(P}).

Under the postulated update equation (A.2) the estimation error is
e = %t - x = % + Kig(%,Y) — Xe- (A.4)
The error covariance becomes

P} = P; + Elezg(xi,y:)Kr + KeElg(%5,¥)(ex)" ] + (A.5)

K. Elg(x5,y)8" (%0, y)Ki

To find the optimal K, we differentiate J with respect to K and equate the

result to zero. We obtain

Ki = —Eler g7 (%5, ¥ )I(Elg(Xi,¥)g" (%i, )" (A.6)

This can be cimplified by Taylor series expansion of g:

e 0 . i}
8(Xe, Yi — Vi) = 8(Xc,Yi) + b';{gk?(xk - %)+ 55:('""/:) + ... (A.7)

Recall from (A.1) that the left hard side is zero and neglect the higher order terms
to obtain

g8{%,¥i) = Ci(Xy — xi) + Divie (A.8)

where

and Dj=-—> (A.9)
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Now we can substitute the linear approximation (A.8) into the expression for
the gain (A.6)

K. = -P;CI[C/P;CT + D,R,D} ]! (A.10)

where we have used the fact that E[e;vi] = 0 and E[(e;)(ez)7] = P;. The

linearized approximation also simplifies the expression (A.5) for the updated co-

variance

P; = (I - K.C\)P; (A.11)

To illustrate the operation of the implicit Kalman filter, I have simulated the

system

Thtr = Tk (A.12)

zkyk+0 = 0 (A13)

with a true value z = 5, the constant C = 10 and a measurement noise of standard
deviation o, = 0.1 (2 percent). The filter was initialized to zo = 4 and run for 500

iterations. The resulting state and variance estimates are shown in figure A.1.
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Figure A.l: State estimate and variance from the implicit Kalman filter experi-
ment.




Appendix B

Prediction of Estimate

Covariances

The prediction stage of the Kalman filter for temporal surface reconstruction
transforms the current estimate and its covariance from one time-step to the next
and thereby accounts for interframe motions of the camera with respect to the
scere. Chapter 7 describes in detail how the prediction of the state (depth values)
can be accompiished, but gives only a simple approximation for the corresponding
transformation of the covariances in section 7.2. Although this approximation is
used in most of the experiments and is compu.ationally much simpler, it is possible
to determine the predicted values of the covariance/certainty more accurately by
propagating them throngh the depth prediction equations. The derivation here

182
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takes advantage of the viewpoint-independent model of surface smoothness and
therefore only treats the diagonal of the certainty matrix S = P~!. Moreover,
since most results about random variables are in terms of variances, the derivation
is in terms of variances p which are the inverses of the diagonal entries in S.

Jt remains to determine the variance values of the warped depth map. In
essence, the warped values of Z are some function of the input values of Z i.e.
the output value is a random variable which is some function of several input
random variables. More formally: we interpret the given vaiues of Z(z;,y;) as
normally distributed random variables with variances p(z;,y;). What are the

value of p(z;,y;) after the warping?

B.1 Variance Propagation

Let us first establish some basic facts about propagation of variances. Let Z,, Z;
be two uncorrelated random variables with variances 0%,,0%,. Then the random

variable

Z =aZ +bZ, (B.1)

has the variance

0% = d*c}, + b*al, (B.2)

The only assumption made here is that Z,, Z; are uncorrelated.
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In the more general case Z can be an arbitrarv - =ction of several random

variables, say

Z = (2., 2,) (B.3)

In this case we approximate f by its Taylor series around the point of interest and
neglect all but the first-order terms. Then we apply the above rule for a linear

coiubination of random variables to obtain

Of a2\ (9f v
6Z1) UZI+(8Z2) 022 (8'4)

a7 =

where the dertivatives must be evaluated at the particular point (Z;, Z3) of inter-
est. This relationship is easily extended to n independent variables. The assump-
tions made here are zero correlation between Z; and Z; and the fact that f() can

be approximated by the first terms of its Taylor series near Z,, Z;.

B.2 Variances of the warped depth values

Having established how variances propagate through functions we need merely
determine the functional relationship between input and output depth values and
propagate the variances through these functions. Let us determine where in our
algorithm we actually compute an output value of Z and how it is computed.
There are two ways in which an output value of Z can be computed. The first

is by resampling in step 3 of the algorithm. There we compute the intersection



B.2. Variances of the warped depth values 185

of the ray through a pixel location (z,y) with a spatial triangle. The spatial
triangle is determined by the 3D coordinates of the corner points (X{, Y/, Z{) for
: = 1,2,3. So our output value of Z is some function (which is determined by the
interpolation procedure) of the corner coordinate values. Each corner coordinate
is the result of warping one point (X;, Y;, Z;) from the input surface. The warping
function is simply a linear combination of the input point coordinates. Finally we

note that the X and Y components of each original point are obtained by inverse

perspective projection
,'Z,‘ .
X; = ”'—f- and Y = £ (B.5)

Thus, each Z value obtained in step 3 of the algorithm is a function of three
depth values Z,,Z;,Z3 in the input depth map. We determine this functional

relationship below.

The second possibility is when the depth value is obtained by extrapolating in
step 4 of the algorithm. In this case a depth value Z is computed as the average
of some depth values Z,,...Z, in its immediate neighborhood. This is a fairly
simple linear relationship. The variance propagation for this case is also discussed

in detail below.
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B.2.1 Variances of interpolated depth values

We determined above that each output depth value Z is a function of three input

depth values Z,,Z,,Z;. Let us begin by determining the relationship between

these values and the corresponding values (X}, Y, 2}), (X3, Y3, Z23), (X3,Y3,Z3)

after warping. We combine the equations of motion

E F b r
X! U -1 -C
v!|=-|v | -] ¢c -1
z! W B A

with the inverse perspective projection

z;7;
X: - TZ
to obtain
X! = —U+b.,2
Y/ = -V +b,Z;
Z, = -W+b,2;
where

by = z/f+Cy/f-B
bi = —Cz/f+y/f+

b = Bz/f- Ay/f+

B

—-A

-1

A

1.

(B.6)

(B.12)
(B.13)

(B.14)
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After the motion warping, we compute the output depth by intersecting a ray

througk a grid point with a spatial triangle. As we recall, there are three cases

by which Z can be obtained within the interpolation procedure.

7. There is exactly one point of intersection between the ray and the spatial

triangie.

2. The ray lies in the same plane as the spatial triangle and it has at most one

point in common with each edge of the spatial triangle.

3. The ray lies in the same plane as the spatial triangle and it coincides with

one edge of the spatial triangle.

In the first case, the output Z value is computed as

z=2f =27
where
D = (Xi-X)(Za - Za)y - (Ya - Ya)f] -
(Yi = Ya){(Z2 = Za)z — (Xa - Xa)f] +
(21 - Zo)[(Ya - Ya)z — (X = Xa)y]
and

Dy = -X3[(Y1-Ys)(Z: ~ Z3) — (Y2 — Ya)(21 — Z3)]

(B.15)

(B.16)

(B.17)
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+Ys[(Xy — Xa)(2: — Zs) — (Xa2 — X5)(Z1 ~ Z3))
~Z3((X1 — X3)(Y2 = Ya) — (X3 — X3)(Vi - Vi)

where the primes have been omitted. If we use the above equations (B.9) - (B.11)

to replace the variables in these expressions, we find
D =aZ,2; + 072123+ cZ,23 (B.18)
where
a = bo(bay — by2f) — byi(bizz — baaf) + baa(byaz — b22y) (B.19)

b = bzl(bny - bz3y) - byl(b:3f - bz3z) + bzl(bziiy - by3z) (BQO)

¢ = —bu(bay — byaf) + bya(baaz — bz f) — bia(byaz — baay).  (B.21)

Further we have

Dy =0aZ,2,4 02,23 + cZ323 + 42,2325 + €2, 23 + [ 2,2} (B.22)
where
a = Uay —Var+Wa, (B.23)
b = Uby —Vby+ Wha (B.24)
c = U —Ver+Wes (B.25)
d = =buaay +bya; — b.aa; (B.26)
e = —byb; + byzby — b,3bs (B.27)

f = —baci +bycs — biacy (B.28)
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in which we have abbreviated

a

(4]

a3

bz

C2

as

C3

bylbz2 - by2bzl
bz!bya - bylb:B

by2 be - by3b22

bzlbz2 - b.’:ib:l
b:3bxl - bzlsz

b:szS - szsz

bzlby2 - szbyl

szbyl - b:l by3

"zzbys - byszJ-

(B.29)
(B.30)
(B.31)

(B.32)

(B.36)

(B.37)

As a result of these tedious manipulations we are now able to express an

interpolated value of Z as a function of three input depth values:

Z = Z(Zl, Zg, Z3) = f

DX(Zla Z21 Z3)

D(ZI,ZNZI!)

(B.38)

If the variances for the input depth values are py, p2,p3, we assume that they are

uncorrelated and the above functional relationship can be approximated by the



190 Appendiz B. Prediction of Estimate Covariances

first terms of the Taylor series we can use the variance propagation (B.4)

p=(or >’p1+< )P2+(3Z)3 (B.39)

to determine the output variance p. It remains to determine the partial derivatives

_‘?.Z__f_a_ﬂi_%D"D*g_g B.40
32, 132D D? ' (B-40)

The partial derivatives of D are obtained easily from (B.18)

1
g—ZQ = aZ,+cZy (B.42)
2
gZD— = bZ,+c2, (B.43)
3
and similarly those for D) from (B.22)
%gi = aZ,+bZ3+ dZ,23 + CZ:? (B44)
1
aD
_é_z_* = aZy+cZy +dZ, 25+ f22 (B.45)
2
3D)\ v
823 = bZl + 622 + lezz + ZCZIZ:; + ZfZQZ:;. (B.46)

Note that a, b and ¢ are computed differently for D and D). We must also take
care not to confuse the coefficient f used in the expression for Dy with the focal
length f. This result enables us to compute the variance p of every output depth
value Z obtained by interpolation in the case where the ray has exactly one point

in common with the spatial triangle.
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In the second case listed above we consider how a depth value is obtained if
the interpolation ray is paralle! to the spatial triangle but does not coincide with
one of its edge segments. In this case we recall that Z is obtained by interpolat-

ing between the two endpoints (X1,Y;, Z;) and (X3,Y3, 2;) of the triangle edge

segment:
Z = ffdi (B.47)
with
d=z(Y1 - Y2) —y(X: — X2) (B.48)
and
dy = (X; - Xp)V2 - (h - V)X, (B.49)

All coordinate components are after the motion warping although the primes
have been omitted. We express both d and dy in terms of the depth values of the

endpoints Z, and Z, before motion warping as done before:

d=aZ,+b2, (B.50)

where
a = zby —yby (B.51)
b = yb.y — zby, (B.52)

and similarly

dy=aZ,+ b2, + cZ,2, (353)
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in which

e = byU—b,V (B.54)
b o= bV —b,U (B.55)
c = b,lbyg—bylbzg. (B.56)

We compute the partial derivatives

d
qu_, - (B.57)
% - b (B.58)
and
'g—;':\' = a+C22 (B.59)
1
ad
521 = b+cZ, (B.60)
2
which we need for
07 _ shd-digy B.61
2 - & (B.61)
07 _ and-doh B.62
7 - & (B.62)

Then the variance p of the output Z becomes

02, 92,
p=( Zl) P +(3Z2) P2 (B.63)

In the third and last case the interpolation ray coincides with at least one edge

segment of the spatial triangle. Suppose the depth values of the endpoints are Z,,
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Z, before motion warping. After motion warping they become
Zi=-W+b,2, and Zy=-W+ba2; (B.64)

Recall that the algorithm assigned the smaller of the two values Z],Z; as the

output value Z. Hence, if Z] < Z; then the output variance would be
p=0bipm (B.65)

otherwise

p =blp (B.66)

From the point of view of implementation we see that the computation of
variances cannot simply be added to the depth computation outlined in the pre-
vious section. A completely diflerent approach is necessary in order to have the
bzi, byi, b,i values available in the interpolation stage. Although the depth com-
putation is identical the abstraction from the underlying geometry makes it less

intuitive.

B.2.2 Variances of extrapolated depth values

Some of the output depth values are obtained through extrapolation in step 4 of
the prediction algorithm. As described above we use a very simple extrapolation
procedure. In which an unassigned depth valu: is set to the average of its as-

signed neighbors. This extrapolation was motivated by assuming smoothness of
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the surface. Nevertheless, the choice of variance at this location should indicate
the fact, that no information was available there so that subsequent updates can
contribute maximally to the value at this point. This is particularly important
when objects enter the field of view that exhibit 2 depth discontinuity with re-
spect to the previously visible objects. We therefore reset the variance value of

extrapolated depth map entries to their initial values (see chapter 6).



Appendix C

An Implementation Example

This appendix describes the implementation of the temporal surface reconstruc-
tion algorithm for the structure from optical flow visual mechanism described
in chapter 8. Although the update stage of the filter is completely specified by
the choices of state, measurement and the associated covariances in that chapter,
the execution of the update procedure (4.16), (4.17), (4.18) still requires some
straightiorward manipulations that are shown here for one example. Anyone try-
ing to implement a temporal surface reconstruction algorithm will find the details

presented here useful.

C.1 The Update Equations

195
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- T -

c’ R C

Figure C.1: The structure of the matrices in the filter update stage

We begin by simplifying the covariance/certainty update (4.16)
S{ =S; + CIR;'C, (C.1)

Recall that the matrix C is a 2nm X nm matrix and R is a 2nm x 2nm matrix with
the sparse banded structure shown in figure C.1. Because of the sparse nature of
the matrix R, the inverse R™! is easy to obtain: it is sparse and banded with the

same structure as R. The elements are

Ti-x:l = ri+nm.i+nm/D{ for 0 < i< nm

7' = Ticamionm/Di_am fornm <i < 2nm
7‘.'—,;1+nm = —Tiitnm/D; for0 <i<nm
7'i_+lnm.i = ~Tienm,i/ Di for0 <:<nm

where Di = TiiTitnm,i+nm — Titnm,iTi,i+nm. Note that Tii4+nm = Tifnm,i.

The matrix CTR™!C is a nm x nm diagonal matrix, so that only the diagonal
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elements of S are updated in (C.1):

2

+ 2 - 92
_ CiTii CiisrmTitnm,i+nm 2Cinm,iCii+nmTii4nm
5+ = s= 11 Li=rm 1) 1) (C.2)

TiuaTitnm,i+rnm — Tii+nmTitnm,i

The state update (4.17), (4.18)
xf =%, + (S TCIR (vh — Cey) (C.3)
is performed through the iterative Gauss-Seidel solution of (5.7)
p=(S{)"'q (C.4)
where p = X — % and q = C{R;'(y, — C.%;). To compute q, we begin with
V=Y — CeX;
Vi = Y — GiTi for0 <i<nm
Vi = ¥i— CiicnmTiam fornm <1< 2nm
This vector v is multiplied from the right with CTR;!, a matrix that we
have already determined above in the computation of the covariance update. The
resulting vector q is
g = [(CitnmiTii = CiTiitnm)(Yrinm — Cignm,iZi) + (C.5)
(CiiTitnmyitnm — CijitnmTitnmi)(¥i — €:zi)]/ (TiiTignmitnm — TigtnmTitnmi)
Having obtained q, we compute p by applying the Gauss-Seidel algorithm (5.8)

to the relationship (C.4) and then the updated stz te vector is just

% =% +p. (C.6)
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C.2 Hints and Hacks

In this section, four optional techniques are presented, that give you more control

over the reconstruction process or improve the subjective quality of the results.

1. The covariance update (C.2) can result in negative values in the diagonal
of the certainty matrix S}. This is perfectly normal if the full matrix S
is maintained. However, we approximate the certainty matrix by a sparse
banded version (6.8) in which only the diagonal varies. As a consequence,

the diagonal values take the role of inverse variances and should be positive.

A positive sign of the update certainty values can easily be insured by first
computing the s} as in (C.2) and if the result is negative, we set the mea-

surement covariances 7iinm, Ti+nm, t0 zero and recompute both s} and

q;-

2. Instantaneous structure estimatio. algorithms (see chapter 2) allow to con-
trol the influence of the smoothness term on the reconstructed surface by
means of a parameter A. This explicit control can also be established in
the temporal reconstruction algorithm. We begin by writing the separation
(6.8) of the matrix Sy into the diagonal representation of uncertainty Sx and

the representation of surface smoothness S, the latter term now weighted
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with A:

S, = S + AS. (C.7)

The Gauss-Seidel iterations for the update now have the form

1

(n+1) —(n) -

( = —(q; + by X C.8
P; = St 4) (q P ) ( )

(n

i

(n)

where 5\™ is the sum of the four values of p that are nearest neighbors to p;
on the depth map grid in the case of a membrane model of smoothness. This
explicit control of the resulting surface smoothness is useful for subjective
evaluations. Compare, for example, the result of the pepsi experiment in

section 8.3 in which explicit smoothness control was used and the result on

the same sequence in section 10.3 without smoothness control.

3. The depth Z is always positive and usually also bounded from above. The
subjective quality of results can be improved, by introducing a limit check
just after the state update of the filter which ensures that depth values
are positive or within certain bounds. Two strategies are possible: One is
simply to truncate depth values to bring them into the desired range. An
alternative more compatible with surface smoothness is to fill in depth values
outside the range with the average of neighbors that are within the range.
In either case, the certainty value corresponding to a modified depth value

must be reset to its initial value to indicate the complete uncertainty about
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the actual value there.

Very few images allow three-dimensional structure to be recovered every-
where with a given visual mechanism. The reason is that preconditions for
the visual mechanism such as the applicability of a particular reflectance
function or the brightness constancy assumption are not met. An example
of such a situation is the surface of the soda can in the pepsi experiment
which has large regions of uniform brightness, so that the brightness con-
stancy constraint does not allow the extraction of information. In all these

cases, it is impossible to recover structure data in certain image regions.

It is, however, possible to subjectively improve the structure estimate in
these regions. The key idea is that low quality depth estimates will be
identified by low values in the corresponding certainty values. A useful
strategy is to designate all structure estimates with certainty below a chosen
threshold as "low quality” and to fill them in with neighboring depth values

of higher quality.
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