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How to Color a French Flag
Biologically Inspired Algorithms for Scale-Invariant Patterning

Alberto Ancona, Ayesha Bajwa, Nancy Lynch, and Frederik Mallmann-Trenn

Massachusetts Institute of Technology

Abstract

In the French flag problem, initially uncolored cells on a grid must differentiate to become blue,
white or red. The goal is for the cells to color the grid as a French flag, i.e., a three-colored triband,
in a distributed manner. To solve a generalized version of the problem in a distributed computational
setting, we consider two models: a biologically-inspired version that relies on morphogens (diffusing
proteins acting as chemical signals) and a more abstract version based on reliable message passing between
cellular agents.

Much of developmental biology research has focused on concentration-based approaches using mor-
phogens, since morphogen gradients are thought to be an underlying mechanism in tissue patterning. We
show that both our model types easily achieve a French ribbon - a French flag in the 1D case. However,
extending the ribbon to the 2D flag in the concentration model is somewhat difficult unless each agent
has additional positional information. Assuming that cells are are identical, it is impossible to achieve a
French flag or even a close approximation. In contrast, using a message-based approach in the 2D case
only requires assuming that agents can be represented as constant size state machines.

We hope that our insights may lay some groundwork for what kind of message passing abstractions
or guarantees, if any, may be useful in analogy to cells communicating at long and short distances to
solve patterning problems. In addition, we hope that our models and findings may be of interest in the
design of nano-robots.
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1 Introduction
In the French flag problem, initially uncolored cells on a grid must differentiate to become blue, white or
red, ultimately coloring the grid as a three-colored triband without any centralized decision-making. Lewis
Wolpert’s original French flag problem formulation [25] and [26] has been applied and extended to under-
stand how organisms determine cell fate, or final differentiated cell type, a question central to developmental
biology. Wolpert’s formulation of positional information models is both complementary to and contrasted
with Turing’s earlier formulation of reaction-diffusion instability [24], which relies on random asymmetries
that arise from activator-inhibitor dynamics in a developmental system. Our methods make use of both po-
sitional information and initial asymmetry. However, we distinguish between absolute and relative positional
information to probe whether full knowledge of the coordinates is needed to solve the problem, or if strictly
less information suffices.

Broadly speaking, our work is inspired by the biological mechanisms leading to cell fate decisions in the
original French flag problem. These long and short-distance mechanisms inform the design of algorithms and
analyses of the problem in two distributed computing contexts. More precisely, we relate a reliable message
passing model (Section 2.2) with local cell-cell communication and a concentration-based model (Section 2.1)
with morphogen gradients over long distances.

We analyze a generalized French flag problem for k colors in these two computational models. We aim
to understand the resources and minimum set of assumptions required to solve the problem exactly or
approximately. In particular, we study the question of whether cells need to know their exact positions
and the grid dimensions in order to solve the k-flag problem. We hope that describing and quantifying the
resources and information required might have some translation back to biology, and in particular to the
mechanisms enabling scale-invariant patterning.

We begin by studying the French ribbon problem, the 1D scenario in our computational models. Both
exact and approximate solutions are possible, with a general tradeoff between precision and space complexity.
While both models easily achieve a French ribbon, extending 1D decision-making to the 2D setting is provably
difficult in the concentration model. We show that in a 2D grid with point sources at the corners, each
agent knowing its absolute distance to every source is insufficient positional information to color the grid
even approximately correctly. On the other hand, extending to the 2D setting is easy in the message passing
model. We analyze numerous efficient algorithms to demonstrate tradeoffs between time complexity, message
size, memory size and precision of the obtained French flag.

We do not claim more accurate or thorough models than those proposed by the biology community, espe-
cially since downstream protein interactions are abstracted in our models. However, we hope this work may
illuminate computational abstractions or guarantees that may be useful in analogy to cells communicating
at long and short distances to solve patterning problems.

1.1 Relevant Biology Background
Much biological research has focused on Wolpert’s concept of cellular positional information, as we do in
our analogy. A key principle of our models is that initial asymmetry and local communication eventually
leads to long-distance transmission of the relative positional information of cellular agents, allowing for
distributed decision-making. Morphogens, molecules acting as chemical signals, are thought to underlie
cell-cell communication and patterning over long distances. Exactly how these morphogens produce scale-
invariant patterns in organisms and tissues of varying size is an interesting biological question [12]. Various
other mechanisms exist for more localized cell-cell communication via cell surface receptors and the ligands
that bind to them. These include the transmembrane receptor protein Notch and its membrane-bound
protein (ligand) Delta, a system previously studied in a distributed computing context [1]. There are also
physical channels such as gap junctions in animal cells and plasmodesmata in plant cells, through which
local signalling molecules can pass [2].

One well-studied morphogen is Bicoid (Bcd) for anterior-posterior patterning in Drosophila melanogaster,
or fruit flies [18, 6]. The full Drosophila patterning is determined not by Bcd alone, but also by other
morphogens and a downstream gene network whose expression results in a sequence of decisions. Bicoid
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and Hunchback together regulate the anterior portions of the embryo while Nanos and Caudal regulate
the posterior, activating gap gene expression, in turn activating pair-rule gene expression, and leading to
the expression of segment-polarity genes and homeotic selector genes that ultimately specify the body plan
[9]. While some work focuses on how regulation and expression of this gene network encodes positional
information [13, 23, 7, 20], our analogy is to the primary morphogen inputs from maternal effect genes,
modeled as external inputs to distributed cellular agents. These inputs are the maternal effect factors –
like Bcd – which initially carry positional information. In the context of embryonic development, they are
proteins synthesized in the embryo that result from direct transmission of the mother’s genetic material [9].

Another well-studied example is Sonic hedgehog (Shh), a morphogen for neural patterning in vertebrates,
including humans [19, 5]. Graded Shh signalling from an elongated source (the notochord and the floor plate
cells) induces concentration-dependent gene expression in the vertebrate neural tube. When extending the
patterning problem to a 2D grid, Shh therefore provides one empirical example of how morphogen sources
along a single axis or surface can reduce the 2D problem to a 1D problem in principle. Shh is consistent
with Wolpert’s simple positional information model to some extent, since there is a localized source and
concentration determines gene expression. However, that model does not include how cells in the target
region consume Shh and thus alter the Shh gradient, in turn altering the morphogen response [5]. Our
models leave these more complex interactions and cellular feedback which affect the gradient (as well as
signal transduction in downstream genetic regulatory networks) to future work.

1.2 Related Work on the French Flag Problem
Building on earlier work on gradients [16, 4, 21], Lewis Wolpert proposed the French flag problem and model
in the late 1960s [25, 26], focusing on the notion of positional information and its generalization to other
patterning mechanisms. By receiving information that indicates their relative position, cells in a multicellular
organism may form a size-invariant pattern, such as the three stripes of the French flag, by differential gene
expression.

Subsequent papers validated the concept of positional information through empirical studies in model
species [22, 18, 6]. Crick explored diffusion as a primary mechanism of positional information [3]. Turing
studied reaction-diffusion instability as the driver of morphogenesis [24], an earlier paradigm often contrasted
with positional information. The simple notion that cells, distributed along a morphogen gradient, may learn
positional information via concentration has fundamentally altered the field of developmental biology [14, 11].

Simple early models of positional information in morphogenesis have been critiqued and extended [27,
10]. The French flag problem has been constructed under various models, including growth and repair
simulation models [15] and reaction-diffusion experimental models [28]. Recent empirical work in Drosophila
melanogaster explores positional information downstream of morphogen gradients: in gene regulation and
expression controlled by diffusing morphogens. It is possible to quantify in information-theoretic terms the
amount of information causing downstream decisions, such as decoding cellular identities using positional
information from the four gap genes [7, 20]. Furthermore, empirical measurements on the mechanisms of
cellular differentiation validate the information capacity of regulatory elements to be sufficiently complex [23]
and show that cells can detect particular morphogens with enough precision to determine cellular outputs
[13].

To the best of our knowledge, no one has yet explored the original French flag problem in a distributed
algorithms setting, with agents analogous to cells. We are able to reduce the complexity of some of our
proposed algorithms using previous work on approximate counting algorithms [17, 8].

1.3 Results
We first present our results for the concentration model, where we assume that each node on a line only has
access to morphogens concentrations c1 and c2 emitted from the endpoints of the line. We define the model
formally in Section 2.1.

On the positive side, it is possible to solve the French ribbon problem exactly.
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Theorem 1.1. Algorithm Exact Concentration Ribbon solves the k-ribbon problem in the concentration model
for an n-process line graph of arbitrary finite length a, with constant time and communication complexity,
given that processes have knowledge of morphogen concentrations c1 and c2, which have reached steady states,
as well as the gradient function.

On the negative side, we show that extending to the French flag (2D-case) with just four point-sources
at the corners is infeasible. Here, symmetry prevents us from obtaining a ε-approximate algorithm in this
model.

Theorem 1.2. Consider the concentration model. Fix any ε ∈ (0, 1/6). No algorithm can produce an
ε-approximate French flag.

This is in sharp contrast to the message passing model where even exact solutions are possible. Our
results are summarized in Table 1. The exact statements can be found in Section 4.

Algorithm Rounds Memory per Agent # Msgs Bits per Msg Exact Reference
Exact Count (2− 1/k)n 3 log n+O(1) O(n) O(log n) X Thm. 4.2
Exact Silent Count 3n 2 log n+O(1) O(n) O(1) X Thm. 4.3
Bubble Sort 3n O(log k) O(n2) O(log k) X Thm. 4.4
Approx Count 2n 2 log log n+O(1) O(n) O(log log n) × Thm. A.2

Table 1: Comparison of our algorithms in the message passing model. For brevity we ignore additive O(k)
terms in the round complexity.

It turns out that the time complexity of Algorithm Exact Count is tight up to an additive 2k term, which
we show in Theorem 4.6, regardless of k and the starting agent. We would also like to highlight the memory
and message complexity of Bubble Sort, which is independent of n and in fact constant assuming k = O(1).
Finally, we show in Section 4.4 and Section A.1 how all of these algorithms can be extended to the 2D case.

2 Models and Notation
We now define the models formally. Throughout this paper we assume the number of colors k to be constant1.

2.1 Concentration Model
For concentration-based solutions to the French flag problem, we assume that each agent receives concen-
tration inputs from up to four source agents s1, s2, s3, and s4. The measured concentration a cell at 2D
coordinate C = (x, y) receives from source si, i ∈ [4] is given by the following gradient function λi(C) and
assume (i) that the function is invertible and (ii) that the function is monotonically decreasing in dist(C, si),
where dist(C, si), denotes the distance between cell C and the source si. For concreteness, consider the
following power-law function

λi(C) =
1

dist(C, si)α
(1)

where α is the power-law constant. This family of functions is also handy for the 1D case with coordinate
C = x and source si, i ∈ [2] in Section 3, where we argue that coloring correctly can be reduced to comparing
λ1(C)/λ2(C) to 2α and 2−α.

Though we choose a power-law for convenience, our upper bounds and lower bounds hold for more
general gradient functions satisfying constraints (i) and (ii). Deriving precise thresholds for λ1(C) and

1However, for clarity, we sometimes highlight the dependency on k.
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λ1(C) is more difficult when the thresholds fall close together or when the gradient function is complicated.
The more difficult these conditions, the less biologically practical it may be.

We do not assume any noise, so agents have arbitrarily good precision in measuring concentration.
Additionally, we assume that the cells do not receive any other input apart from measured concentration. In
particular, they do not have any other positional information such as knowledge of their coordinate or the
total ribbon or flag size. We assume that all agents behave identically, performing the same algorithms.

For the French ribbon, we assume that the two sources s1 and s2 are positioned at the ends of the line.
For the French flag we assume the si ∈ [4] to be positioned at the four corners. We make this assumption in
order to understand if the concentration model is ‘strong’ enough to solve the French flag problem without
any additional communication. Assuming that additional sources are placed at convenient positions such as
(a/3, 0) for example, defies the idea of of scale invariant systems. The corner points are already distinguished
in that they only have two neighbors, and if one were to place a constant number of sources, these positions
are somewhat natural.

2.2 Message Passing Model
We first consider a 1D version of the French flag problem which we call the French ribbon problem. We
assume a line graph consisting of n nodes which we refer to as agents. We later consider the 2D version, the
standard French flag problem. Here, the graph is a a × b grid on n = a · b agents. We assume synchronous
rounds. In each round, agents can communicate reliably with neighboring agents.

We assume that all agents perform the same algorithm and have no knowledge of their global position,
but have a common sense of direction dir ∈ {up, down, left, right}. In particular, agents at the edges know
that they are endpoints of rows or columns (or both, if they are corners). Initially, all but one arbitrary
agent (the starting agent) are asleep. We refer to this agent as the source s.

The goal is to design algorithms that solve the French ribbon problem. Eventually, each agent must output
a color so that the line is segmented into three colors: blue, white, and red from left to right. Formally, if b,
w, and r denote the number of agents of each respective color, max{|b−w|, |b− r|, |w− r|} ≤ 1. In addition,
each color should be in a single, contiguous sub-line of G—blue, white, red from left to right. We also define
the more general 1D k-Ribbon problem in the same model, in which there are k distinct colors {1, ..., k}
which must form bands of approximately equal size, in increasing numerical order, along a line graph of n
agents.

A solution to the French flag problem requires that every agent outputs a single color, such that the
grid is divided into three vertical blocks. Every row must abide by the requirements of the French ribbon
problem, such that the left side is blue and the right side is red. Furthermore, an agent should be the same
color as the agent above and below it in its column. The 2D k-Flag problem generalizes in the same manner
as above.

2.3 Notation
We say a k-colored flag of dimensions a× b is an ε-approximate (French) flag if for every color z ∈ {1, ..., k}
the following hold. For each agent u with coordinates (x, y):

1. if x ∈
[
( z−1
k + ε) · a, ( zk − ε) · a

]
, then the agent has color z.

2. if u has color z, then x ∈
[
( z−1
k − ε) · a, (

z
k + ε) · a

]
.

Intuitively speaking, the definition ensures two properties. First, agents that are clearly within one stripe
should have the corresponding color. Second, agents that are close to a color border (c1, c2) should have
either color c1 or c2.

5



3 Concentration Model Results

3.1 1D Exact Concentration Ribbon
Algorithm Exact Concentration Ribbon

We consider an n-process line of arbitrary finite length a in the concentration model. Assume morphogens
m1 and m2 (with concentrations c1 and c2) are each secreted by one of the endpoint processes. We assume
the underlying gradient function for concentration given position x is the inverse power law in α, which is
assumed to be noiseless.

Assume that m1 is secreted at x = 0 and m2 is secreted at x = a, we have c1 = 1/xα and c2 = 1/(a−x)α.
The ratio of c2 to c1 is then (a − x)α/xα. Each agent computes this ratio independently from measured
the values of c1 and c2. Let ratio = c2/c1. After calculating its measured ratio, each agent computes the
smallest color z such that ratio ≥ ((z − 1)/(k − z))α, decides color z, and halts.

Importantly, the algorithm is size-invariant. We prove below that it holds for any line graph of arbitrary
finite length.

Proof of Theorem 1.1.
To prove correctness of Algorithm Exact Concentration Ribbon, consider a particular agent p on a line

graph of fixed length a. Note that the tz are strictly increasing. Let t0 = 0. Suppose the color agent p should
get is z∗. For z∗ < k, it thus suffices to show that c2/c1 ≥ tz∗−1 and c2/c1 ≤ tz∗ using that the tz are strictly
monotonically increasing. For z∗ = k we only require the first condition and therefore we assume henceforth

z∗ < k. We have c2 ≥ 1/
(
k−z∗−1

k a
)α

and c1 ≤ 1/
(
z∗

k a
)α

, giving c2
c1
≥ ( z

∗
k a)

α

( k−z
∗−1
k a)

α =
(

z
k−z−1

)α
= tz∗−1.

Moreover, c2 ≤ 1/
(
k−z∗
k a

)α
. and c1 ≥ 1/

(
z∗−1
k a

)α
. Hence, c2

c1
≤

(
z∗−1
k a

)α
( k−z

∗
k a)

α ≤
(
z−1
k−z

)α
= tz∗ . This

completes the correctness proof.
Finding color z takes constant time since we assume k = O(1), and constant space to store the measured

concentrations, calculate the concentration ratio, and calculate thresholds.
Note that there is no message passing in this model. Therefore in the synchronous model, the time

complexity of this algorithm is O(1) assuming the morphogen concentrations have reached steady state.

3.2 2D Concentration Lower Bound
In this section we prove Theorem 1.2, showing that the concentration model, without absolute positional
information, cannot produce a correct French flag (or even a good approximation) regardless of the gradient
function. The idea of the proof is as follows. Given an arbitrary flag G of dimensions a × b, we show that
we can construct a flag G′ with dimensions a′ × b′ such that there are two agents in both flags that 1) have
exactly the same distances from the respective sources and 2) must choose different colors. Since the two
agents have the same respective distance to every source, they receive the same concentration input and
cannot distinguish between the settings, making it impossible to always color correctly. See Figure 1 for an
illustration. To show that such a flag G′ exists, we frame the constraints as a system of equations and we
show that there exists a valid solution. A formal proof can be found in Appendix B.

4 Message Passing Model: Exact Coloring
Before we present our algorithms, note there is a trivial algorithm that works as follows for k = 3. The
starting agent sends a wakeup message to the leftmost and rightmost agents. Then start a counter from each
of these agents. When a agent receives the counters cleft and cright, it can determine in which stripe it is
by testing whether cleft/cright ≥ 2 or cleft/cright ≤ 1/2. This idea generalizes to arbitrary k.

The algorithms we present improve on the trivial algorithm in various ways. Table 1 summarizes the
tradeoffs of our approaches in the message passing model. As a starting point, we observe that each agent
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a

b
(x,y)

a′

b′
(x’,y’)

Figure 1: The l.h.s. depicts an arbitrary original flag. In the proof of Theorem 1.2 we argue how to
construct a new flag (r.h.s.) such that there are two agents in both flags that 1) have exactly the same
distances from the respective sources and 2) must choose different colors. Since the two agents have the
same respective distance to every source, they receive the same concentration input and cannot distinguish
between the settings, making it impossible to always color correctly. We construct the new flag by changing
the aspect ratio in a way that maintains the distances. The figure in the middle depicts this transformation.

can learn the number of agents to its left and right, from which information it can determine its own color
[26]. This principle is central to some of our algorithms.

Observation 4.1. An agent in the k-ribbon problem may determine its correct color knowing the number
of agents on both sides of it on the line, and knowing which side should be color 1.

4.1 Exact Counting
Algorithm Exact Count

The starting agent stores the value nmid ← 0 and sends nmid + 1 in both directions. Intuitively, the value
measures the distance to the starting agent. All other agents upon waking store the received value as nmid
and forward the value nmid + 1 to the next agent in the same direction. Each agent also stores t ← nmid
and increments t every round after.

When the left endpoint receives a value for nmid, it decides on color 1 and sends n` = 1 to its right
neighbor. The right endpoint does the same, but with color k and in the opposite direction. Each agent
stores nd for either direction d ∈ {`, r} which is the number of agents to the left (right, respectively). Upon
receiving nd, the agents forwards nd + 1 in the same direction.

After an agent receives both n` and nr, it decides its color using Observation 4.1. In order to get an
improved time complexity, an agent may also decide early: if an agent has a value nd and t ≥ 2((k − 1) ·
nd)− nmid, it should decide color 1 if d is ` or color k otherwise.

Theorem 4.2. Algorithm Exact Count solves the k-ribbon problem and requires at most (2 − 1
k ) · n + k

rounds, (4− 2
k ) · n log n message bits, and 3 log n+ log k +O(1) bits of memory per agent.

Proof of Theorem 4.2.
We first address correctness. Any received value of n` or nr is the number of agents to the left or right

of the agent, because they start at 1 for agents one unit away from the endpoints, and increment as they
are passed along the line. If an agent halts early, then t ≥ 2((k− 1) · nd)− nmid for that agent. Note that it
only takes 2(nd̄) − nmid time for the nd̄ message to reach an agent, so nd̄ > 2((k − 1) · nd), indicating that
the agent is in the d-most band of the ribbon and thus decides correctly.
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We next show round complexity, in two cases. Consider the case in which the starting agent has at least
n/k agents to its left and right. Then both endpoints will wake up within at most (1 − 1

k ) · n rounds, and
the nd messages will propagate across the line in n additional rounds, after which all agents will have values
for n` and nr. Thus, the total number of rounds will be at most (2− 1

k ) · n.
Consider the other case, when the starting agent has n̂d ≤ n/k agents in direction d. After (2 − 1

k ) · n
rounds, agents at distance at most (2 − 1

k ) · n − n̂d from the endpoint in the d direction will have a value
for nd, and agents at distance at most (2 − 1

k ) · n − (n − n̂d) = (1 − 1
k ) · n + n̂d from the other direction

d̄ will have a value for nd̄. Note that since n̂d ≤ n/k, all agents must then have a value for nd, because
(2 − 1

k ) · n − n̂d ≥ (2 − 2
k ) · n ≥ n. The only agents that do not also have a value for nd̄ are those with at

least (1− 1
k ) ·n+ n̂d agents in direction d̄, or equivalently those with nd ≤ n− ((1− 1

k ) ·n+ n̂d) = n/k− n̂d.
But for these agents, if t ≥ 2((k − 1) · nd)− nmid, they have already halted. Since nmid = n̂d − nd, we have
2((k−1) ·nd)−nmid = 2((k−1) ·nd)− n̂d+nd = (2k−1) ·nd− n̂d ≤ (2k−1)(n/k− n̂d)− n̂d ≤ (2k−1)n/k =
(2− 1

k ) · n. Thus, these agents halt early after at most (2− 1
k ) · n rounds.

We finally argue message bit complexity and space requirements. At any round, only two messages may
be sent, each with values at most n; thus, after (2− 1

k ) ·n rounds, at most 2 log n((2− 1
k ) ·n) = (4− 2

k ) ·n log n
message bits are sent. Each agent needs to store three values in Θ(n), which takes 3 log n+O(1) bits. Each
agent must also store k using log k bits.

4.2 Exact Silent Counting
The message passing model is reliable, so we improve the message bit complexity in Theorem 4.2 by using the
lack of a message as information. We give an algorithm that uses silence at a small cost to round complexity.

Algorithm Exact Silent Count

The starting agent sends the message 0 to the left and 1 to the right. If it is an endpoint, the starting agent
sends a 0 and a 1 in the same, 2-bit message to its neighbor. Agents will forward any received messages in
the same direction, except endpoints which will send the messages back.

The agents do additional processing. The endpoint on the d side sets nd ← 0 upon waking and never
modifies it. Otherwise, the first time an agent receives a message from direction d, it sets nd̄ ← 0, and each
round thereafter the agent increments nd̄, until it receives a message from the d̄ direction, at which point it
stops incrementing nd̄ and sets nd̄ ← nd̄/2. When an agent has final values for n` and nr, and has sent 0 to
the left and 1 to the right, it decides its color based on its stored values of n` and nr using Observation 4.1
and halts.

Theorem 4.3. Algorithm Exact Silent Count solves the k-Ribbon problem and requires 3n rounds, 6n mes-
sage bits, and 2 log n+ log k +O(1) bits of memory per agent.

Proof of Theorem 4.3.
We show correctness for the case when the starting agent is not an endpoint; we leave that end-case for

the reader. W.l.o.g. consider an agent that first receives a 0 from the right. After 2n` rounds, the 0 bit
will return to the agent after having been forwarded to the left endpoint and back, so the stored value of n`
at the end of the round will be correct. After 2nr more rounds, the 0 bit is received again from the right
and nr is correctly set. Thus, as long as the agent receives the 0 bit 3 times, it will color itself correctly.
The 0 bit must then travel from the starting agent to the left, back to the right endpoint, then back to the
left endpoint; at that point, all agents to the left of the starting agent will correctly color themselves. As
long as the agents to the right of the starting agent return the 0 bit leftward, this will occur. We thus have
correctness, because all agents only halt after forwarding the opposite bit back to the other side. The same
argument applies to the 1 bit in the other direction.

The bits travel at most 3 times fully across the line each, so all agents will terminate after at most 3n
rounds. Each round has only 2 bits sent, so the algorithm has message bit complexity 6n. Each agent stores
k and two values in Θ(n), which requires only 2 log n+ log k +O(1) bits of memory each.
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4.3 Bubble Sort Approach
Here we show how to use bubble sort to color the flag. Assume blue, white and red are 1, 2, and 3 respectively.

Algorithm Bubble Sort

The idea of the algorithm is to color each agent alternating with the colors of the flag, to ensure correct total
counts of each color without knowing the ribbon length upfront. The algorithm performs swaps in parallel
to ensure that blue elements ripple to the left, white elements to the middle, and red elements to the right.
In order to avoid cases in which a agent would like to swap its color with both neighbors at same time, we
also ensure through message passing that each agent knows whether it is at an odd or even position and
whether the current round is odd or even. In an even round, any agent at an even position swaps the value
(color) with its right neighbor if the right neighbor has a larger value. Odd rounds are analogous.

For the analysis, it seems rather complicated to define potentials that describe the color distribution
of the elements at any round in order to guarantee enough progress in every round. Instead, we use the
following trick in the analysis. Instead of coloring each agent alternating with blue, white and red, we ‘color’
each agent with a unique ID such that all blue agents have smaller IDs than all white agents and all white
agents have smaller IDs than all red agents. We can then reduce the problem to a distributed bubble sort
on n distinct elements, allowing for an elegant proof by induction.

Theorem 4.4. Algorithm Bubble Sort solves the 1-D k-Ribbon problem and requires at most 3n rounds,
n2 log k message bits, and O(log k) bits of memory per agent.

Proof. By the algorithm, we have that the ith agent chooses blue if i mod 3 = 0, white if i mod 3 = 1, and
red otherwise. Consider a ‘new’ process P ′ in which the ith agent gets the color

bi/3c if i mod 3 = 0

n/3 + bi/3c if i mod 3 = 1

2n/3 + bi/3c otherwise

Observe that when we replace the different IDs by the colors, we obtain the original process P. Therefore,
it holds that once P ′ terminates, so does P. The advantage of P ′ is that due to different values for agents,
we can prove that if we reset time at round n, we can show by an induction on i and second induction t that

pti ≤ max{i, n− t+ 2i}, (2)

where pti denotes the position of the agent with ID i at t. Fix an i and assume the claim holds for the
first i− 1 agents and for all t. We distinguish between two cases. If for all j ≤ i− 1 we have pt−1

i ≥ pt−1
j + 2,

then agent i will move one position to the left

pti ≤ pt−1
i − 1 ≤ max{i, n− (t− 1) + 2i} − 1 ≤ max{i, n− t+ 2i}.

Otherwise, note that pt−1
i can be at most 1 (moving to the right) plus the the maximum position of all

IDs j ≤ i− 1 at round t− 1, which is n− (t− 1) + 2(i− 1). We have

pti ≤ max
j≤i−1

pt−1
j + 1 ≤ max{i− 1, n− (t− 1) + 2(i− 1)}+ 1 ≤ max{i, n− t+ 2i}.

In either case the inductive step holds and thus (2) holds. Note that the agent with ID i has to be at its
correct position (i) at time t satisfying n− t+ 2i = i, i.e., when t = n+ i. Therefore the process terminates
at time t = 2n. Since we shifted time by n (starting only onces all agents are assigned a color), the total
time is 3n. The bound on the memory and message size follow trivially.
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4.4 Extending from Ribbon to Flag
We may solve the k-flag problem by extending any k-ribbon algorithm, with little loss in most parameters.

Algorithm Up & Down

The starting agent simply begins the k-ribbon algorithm for its row, and all agents in the row follow the
algorithm to completion once awakened. However, after deciding on a color but before halting, each agent in
the row sends a message to its neighbors above and below with its decided color. When an agent is awoken
with a color, it decides on that color and forwards the color either above or below before halting.

Theorem 4.5. Given an algorithm for the k-ribbon problem which takes T (n, k) rounds, M(n, k) total
message bits, and S(n, k) bits of memory per agent, Algorithm Up & Down solves the k-flag problem on a
a× b grid with at most a+ T (b, k) rounds, ab log k +M(b, k) total message bits, and S(b, k) bits of memory
per agent.

Proof of Theorem 4.5. Clearly, the algorithm takes T (b, k) rounds, M(b, k) message bits, and S(b, k) bits
of memory per agent just to complete the k-ribbon algorithm on the starting row. Subsequently, each agent
sends messages of size log k up and down its column, which takes a additional rounds and a log k additional
message bits per column, accounting for the added round and message bit complexity. The size of each agent
stays the same, because S(b, k) ≥ log k simply to represent the color the agent decides.

We note there are other reductions to the k-ribbon problem that optimize more for round complexity
rather than space and message bit complexity. For brevity, we leave these to the reader.

4.5 Lower Bounds
We show straightforward lower bounds for 1D and 2D cases in the message-passing model.

Theorem 4.6. No algorithm exists that can solve the k-Ribbon problem on an oriented line graph if all
agents are identical, even if endpoints know that they are endpoints, in less than (2− 1

k ) · n− 3 rounds.

Proof of Theorem 4.6. Suppose such an algorithm A exists. Consider a line of length n, where the starting
agent is the leftmost agent. Let p be the leftmost agent p that should choose color 1. It shall decide on color
1 in less than (2− 1

k ) · n− k rounds.
Suppose k additional agents were attached on the right side of the graph before the algorithm began, so

that there are n + k agents in the line. In this new line graph, p must decide color 0, rather than color 1;
otherwise, either there will be two more color 1 or two more color 2 agents than color 0 agents, and A would
not solve the French ribbon problem.

In order to distinguish between these two cases, p must receive information from a node to the left of
the nth agent. The nth agent will wake up at round n − 1, and the information that it is not an endpoint
must then propagate to p, which is at distance at least (1 − 1/k)n − k + 1 from the nth agent. Therefore
the information does not reach p until round (2 − 1

k )n − k. However, p halted at an earlier round by our
assumption, and therefore did not distinguish the two cases.

Theorem 4.7. No algorithm exists to solve the k-flag problem on an a× b grid in less than
max

{
(2− 1

k ) · b− k, a+ b− 2
}
rounds.

Proof of Theorem 4.7. Assume for contradiction that we could solve the problem in less than (2− 1
k ) · b− 3

rounds. Then we could solve the k-ribbon problem in less than (2− 1
k ) · n− 3 rounds by setting a = 1 and

b = n and solving the k-flag problem.
The algorithm must also take at least a + b − 2 rounds. Consider the case where the starting agent is

in the top-left corner of the grid. Then the bottom-right agent will not wake and decide its color before it
receives a message from the starting agent, which is at distance a+ b− 2.
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Conclusion
In this paper, we demonstrate that the 1D French ribbon problem can be solved exactly and approximately
in both the concentration model and the message passing model. However, the 2D French flag problem
requires additional positional information in order to satisfy size invariance.

One direct extension of this work is a randomized version of the Silent Count algorithm (Theorem 4.3).
An exciting new research direction is how other pattering problems can be solved in more general settings
and under the influence of noise. Future work could develop models that better capture important biological
constraints or shed light on other problems in developmental biology. For example, one could study models
in which part of an organism (e.g., a finger or the beak of a bird) grows over time.
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A Message Passing Model: Approximate Coloring
Here, we use the approximation approach of Morris [17] and Flajolet [8] to reduce space complexity in
exchange for a slight increase in error for the final k-ribbon. The randomized modification is made to our
deterministic exact counting algorithm.

The following theorem gives the guarantees of each counter.

Theorem A.1 ([8]). Consider the counter procedure of [8]. Using log log n + δ bits and letting β = 22−δ
,

the expectation of the log log n + δ-bit counter is logβ((β − 1) · n + β), and the value of n we could recover
from the counter has standard deviation at most n/2−δ.

Algorithm Approximate Count

The starting agent sends a bit in either direction to wake all agents. When the endpoint in the d direction
wakes up, it sets a counter cd to 0, increments it as in [8], and sends the resulting value to its neighbor. Each
agent upon receiving a message from direction d, stores the message as cd, increments it in the same way
and forwards the result to the next agent.

When an agent has received two values of cd, it does the following: For each i in the sequence 1, . . . , k,
if c` − cr ≤ logβ

i
k−i , then the agent decides on color i. If the agent has not decided on a color yet after all

i, the agent decides on color k. After deciding on a color, the agent halts.

Theorem A.2. Fix any k. For n large enough, Algorithm Approximate Count solves the ε-approximate
k-Ribbon problem for constant ε < 1

2(k−1) with probability 1− 1
32k and requires 2n rounds, O(n log log n) total

message bits, and 2 log log n+O(1) bits of memory per agent.

We restrict ε < 1
2(k−1) because otherwise the color thresholds would bleed into each other and we would

have regions with more than two valid colors. The core idea of using an approximate counter as proposed in
[8] is that when subtracting the counter from the left and from the right, we get for some β, ignoring small
standard deviations,

logβ((β − 1)n` + β)− logβ((β − 1)nr + β) ≈ log(n`/nr).

Using thresholds for each color then gives the right color. Using monotonicity of the counters, we only
need to consider O(k) different counters which allows us to take a union bound over O(k) of them, showing
that all n counters are ‘correct’.

Proof of Theorem A.2. Clearly the algorithm terminates in at most 2n rounds. Our analysis below only
works if agents have at least 2 log log n + O(1) bits of memory but does not require more than that. Only
the approximate counts, which must fit in memory, are sent as messages, and only 2 messages are sent per
round, which yields our message bit complexity.

Lemma A.3. The algorithm yields an ε-approximation if the 2(k − 1) "threshold" agents within distance
εn of a color threshold decide on the correct color.
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Proof. Note that the count from the left monotonically increases from left to right, and similarly for the
count from the right from right to left. If the two threshold agents in the ith color band color themselves
correctly, by the monotonicity of the counts, all colors between them will be i as well, and all agents close
to a threshold will only be one of the two bordering colors.

By Theorem A.1, using at least log log n+ δ bits for each counter and letting δ = log(1/ε) + 2 log(k) + 8
makes the standard deviation of the value recoverable from the counter be σ ≤ εnd/256k2 after nd increments,
where nd is the number of other agents in the d direction. Using Chebyshev’s inequality and letting

β = 22−δ
,

the probability that the counter will store a value within logβ ((β − 1)(1± ε/16k)nd + β) after nd increments
is at least 1− 1

128k2 .
Consider the agent at distance exactly εn to the left of color border i. We require for this agent that

i−1
k−i+1 ≤ n`/nr ≤ i

k−i , where n` = ( ik − ε)n and nr = (k−ik + ε)n. We will show that this holds even with
our approximate counters. We assume that the following inequality holds, and prove it later.

n`
nr

(1− 5ε′) ≤ (β − 1)n`(1± ε′) + β

(β − 1)nr(1± ε′) + β
≤ n`
nr

(1 + 5ε′), (3)

We set ε′ = ε
16k . This implies that logβ(n`nr (1− 5ε/16k)) ≤ c`− cr ≤ logβ(n`nr (1 + 5ε/16k)). For our agent

above, we have n`/nr = i−kε
k−i+kε , implying logβ( i−kε

k−i+kε (1− 5ε/16k)) ≤ c` − cr ≤ logβ( i−kε
k−i+kε (1 + 5ε/16k)).

Thus we need only verify that i
k−i ≥

i−kε
k−i+kε (1 + 5ε/16k) and i−1

k−i+1 ≤
i−kε
k−i+kε (1 − 5ε/16k), which, noting

that ε < 1
2(k−1) , can easily be shown. A similar argument shows the same result for agents up to distance

εn to the right of a border line.
With our choice of δ, we thus succeed at each threshold agent with probability at least 1− 1

64k2 (probability
both counters succeed). The probability that all succeed is, by union bound, at least 1− 2(k−1)

64k2 ≥ 1− 1
32k .

It only remains to prove (3), which we do in the following. To show this we assume that the following
inequality holds, which we will prove later.

β ≤ ε′(β − 1) min{n`, nr}. (4)

This implies,
(β − 1)n`(1± ε′) + β

(β − 1)nr(1± ε′) + β
≤ (β − 1)n`(1 + 2ε′)

(β − 1)nr(1− ε′)
≤ n`
nr

(1 + 5ε′),

where we used that ε′ ∈ (0, 2/5]. Similarly, using that ε′ ≥ 0, we get

(β − 1)n`(1± ε′) + β

(β − 1)nr(1± ε′) + β
≥ (β − 1)n`(1− ε′)

(β − 1)nr(1 + 2ε′)
≥ n`
nr

(1− 5ε′).

Therefore, (3) holds and it remains to prove (4). We note that

β − 1 = Ω(1),

and so we have

ε′(β − 1) min(nr, n`) =
ε

16k
(β − 1) min(nr, n`)

≥ ε

16k
(β − 1)

n

2k
> β.

Therefore (4) holds, which completes the proof.
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A.1 Extending from Ribbon to Flag for Randomized Algorithms
In this section we show how to extend Approx Count ensuring that round complexity is O(n) and memory
and message bit complexity is O(n log log n). Of course, one could run the 1D algorithm independently in
every row. However, this will result in many errors, which can be avoided in an elegant way.

Algorithm Boost

Instead of simply copying the color of an agent through its whole column, we can boost the probability
of assigning the correct color using the following algorithm. For any column (in parallel) count each color
separately by using message passing, starting at the top-most node of the column. Once a color reaches
T = 72 log n, declare it the winner, stop counting, and inform all other nodes on the column.

Theorem A.4. Algorithm Boost solves the ε-approximate k-flag problem for any constant ε < 1/2(k − 1)
with probability 1 − 1/n and requires 3n rounds, O(n log log n) total message bits, and O(log log n) bits of
memory per agent.

Proof of Theorem A.4. First observe that at most k · (log log n+ 72) +O(1) = O(log log n) bits memory are
necessary to implement the algorithm.

Fix an arbitrary column. Observe that an agent that is ‘ε-far’ from a border is colored correctly w.p. at
least 1− 1/(6k) by Theorem A.2.

Consider the time step t = k · T after which k · T < n rows were considered. Fix an incorrect color c′.
Let Xi = 1 if the row i has that incorrect color, otherwise Xi = 0. Let X =

∑
i≤tXi. Note that each row

is correct independently. We have E [X ] = t/(6k) = T/6 = 12 log n. Thus, using Chernoff bounds, it holds
that with probability at least 1− n4 the color c′ was not declared winning:

P [X ≥ T ] ≤ P [X ≥ 2E [X ] ] ≤ exp

(
−E [X ]

3

)
=

1

n4
.

Taking union bound over all incorrect colors shows that after t steps no incorrect color can have been
declared winner. First assume that the agent is at least ε-far from all color borders. Observe that there
are at k − 1 incorrect colors and hence, by a pigeon hole argument, we have that the agents counter for its
correct color is at least

t− (k − 1)T ≥ T.

Thus a correct color was correctly declared winning. Now suppose the agent is close to the color border
(ci, ci+1). Similarly as before the two counters have a value of at least

t− (k − 2)T ≥ 2T.

Thus at least one of the counters has a value larger than T and was correctly declared winning.
By union bound, this holds for all columns w.h.p. since there are at most n columns.

B Missing Proofs
Proof of Theorem 1.2. Fix an arbitrary grid G with dimensions a × b. We will construct a grid G′ of
dimensions a′ × b′ such that there exists a node (agent) u of G with coordinates (x, y) and a node u′ of G′
with coordinates (x′, y′) receiving identical measured gradients all sources are at exactly the same distance.
u needs to be white in G (blue in G′, respectively) in order for the flag to be ε-approximation. Since the
settings are indistinguishable, no algorithm achieving a ε-approximation is possible.

For the proof we assume w.l.o.g a > b, the proof for a < b is analogous.
We fix the points we consider halfway up, such that y = b/2 and y′ = b′/2. Our goal is to choose (x′, y′)

such that the following constraints are fulfilled
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x2 +
b2

4
= x′2 +

b′2

4
(5)

(x− a)2 +
b2

4
= (x′ − a′)2 +

b′2

4
(6)

ensuring that the distances to the corresponding sources are identical. Therefore, with this distance
information alone, nodes in the two settings cannot distinguish between the two settings. We include the
following two constraints to ensure that nodes in both settings must choose different colors, even in ε-
approximate flags

x =

(
1

3
+ ε

)
a (7)

x′ =

(
1

3
− ε
)
a′ (8)

We solve this equation by showing that there exist indeed points (x′, y′) of a a′ × b′ flag such that all of
the equations are fulfilled with physically meaningful values, implying that the coloring decision based on
these distances alone cannot be size invariant.

Subtracting (6) from (5) gives x2−(x−a)2 = x′2−(x′−a′)2, which is equivalent to 2ax−a2 = 2a′x′−a′2.
We can now plug in (7) and (8) into this and derive

2ax− a2 = 2a′x′ − a′2

⇔ 2a2

(
1

3
+ ε

)
− a2 = 2a′2

(
1

3
− ε
)
− a′2

⇔ a2

(
−1

3
+ 2ε

)
= a′2

(
−1

3

′
2ε

)

Thus we can choose a′ = a
√

1/3−2ε
1/3+2ε , which is positive for ε < 1/6. Plugging this into (8) gives x′ =(

1
3 − ε

)√ 1/3−2ε
1/3+2ε , which is also positive for ε < 1/6. Finally we have

b′ = 4x2 + b2 − 4x′2 = 4

((
1

3
+ ε

)
a

)2

− 4

((
1

3
− ε
)√

1/3− 2ε

1/3 + 2ε
a

)2

+ b2 > 0.

Thus, putting everything together, we get valid solutions for x′, y′, a′ and b′ yielding the claim.
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