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ABSTRACT

Some properties of the mapping of the spectrum of the input to a non-
linearity into the spectrum of the output are given. The results are
presented mainly in terms of positive operators. Special attention is
given to nonlinear tinme -invariant nonlinearities, to convolution oper-
ators, to periodic gains and to monotone or odd-monotone nonlinear-
ities. A general theorem is proven which allows to factor a large
class of operators in a causal operator and an operator whose adjoint
is causal. This thaen allows to obtain a causal positive operator from
a noncausal positive operator. The results are applied to the oper-
ator equations governing a feedback loop and soime general stability
theorems are obtained. Two important exam.ples are included and
frequency-domain stability criteria are given. The merit of using
linearization techniques to conclude stability for feedback systems is
discussed and a class of counterexamnples to the Aizerman Conjecture
is presented. Some techniques pertaining to the design of optimal

/'nonlinearities are included.

The s i s Supervisor: Roger W. 31rockett

Title: Associate Professor of Electrical Enioineeriila
--11---------~----1. .---.- - ii- . - _ _



A C K Or C) VLE; DIOG E ME NT'

The author is glad to have the opportunity to express his sincere
appreciation to Professor RIoger W. Brockett for his encouragernent,
his friendship and his hel-pful criticism. The research presented
here is .great..ly infl.uenced by his teachling and Nwork. In particular,
his coopera.tion vwais ilnstrunmental. in obtaining the rearrangement
inequalities, the instability criteria of Chapter IV and the techniques
for designin g optimal nonlinearitie s.

Many useful3. comments were received from Roberto Canales, Michael
Gruber, Ronald Skoog and severlJ other nmembers of the Control
Theory Group of the. Electronic Systenms Laboratory.

The encouraceme'nt g iven by the tlhesis readers, Professors W. M.
Siebert and Rt. N. Spann, and by his Faculty Counselor, Professor
L. A. Gould is greatly appreci.ated.

The author is indebted to the members of the Technical Staff of the
Electronic Systelns Laboratory for the excellent typing and drafting.

The research presented in this document was made possible through
the support extendedl by the National Aeronautic and Space Admini-
stration under Research Grant No. NGR-22-009(124) with the M. I. T.
Electronic Systerlms Laboratory.

,-,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_.



CONTENTS

CHAIPiED'F';R I INTRODUCTION page 1

1. 1 Genera]ities 1

1.2 Contents 3

1.3 H -istorical Note 11

CI-APTER II POSITIVE OPERATORS 14

2. 1 Introduction 14

2.Z Mathemnatical Preliminaries 16

2.3 Transform Theory 21

2.4 Sorne Simple Positive Operators 25

2.5 Periodic Gain 32

2.6 Positive Operators with Monotone or
Odd-Monotone Nonline arity 37

2.6.1 Generalizations of a Classical
Rearrangement Inequality 37

2. 6.2 -Extension to I 2 -summable Sequences 45

2.6.3 Frequency-Power Relations for
Nonlinear Resistors 50

2.7 Factorization of Operators 57

CHAPTER III STABILITY OF FEEDBACK LOOPS 70

--- 3. 1 Generalities 70

3.2 A Standard Modification for Feedback Systems 83

3,3 A Stability Criterion for Feedback Systenms
with a Linear Periodic Gain in the
Feedback Loop 86

3. 4 A Stability Criterion for Feedback Systenms
with a Monotone or an Odd-Monotone Non-
linearity in the Feedback Loop 105

CHAPTER IV LINEARtIZATION AND STABILITY OF
FEEDBACK SYSTEMS 111

4. 1 Introduction 111

4.2 About Linearization 112

4.3 Averaging Theory 115

4.4 Application of Averaging Theory 120

4.5 Counterexanlmples to Aizernman's Conjecture 122

4. 6 A Physical Interpretation of these Oscillations 125

iv



CONTENTS (Contd.)

CHAPTER V ON THE' DESIGN OF NONLINEARITIES ON page
THE BASIS OF HARlMIONIC CONTENT 127

5. 1 Unconstrained Maxinmization of a
Linear Functional 128

5.2 Maxinmization Under General Constraints 133

5.3 Conclusion and Suggestions for
Further Research 139

APPENDIX 141

REFEREN CE S 143

v



LIST OF 1;FIGURES

3.1 The Feedback SystemYl Under Consideration page 70

3.2 Illustration of Theorcnm 3. 1 75

3.3 Illustration of Corollary 3.1 75

3.4 Illustration of Corollary 3.2 79

3. 5 Illustration of the Introduction of Multipliers 80

3.6 Transforlmlations of the Feedback Loop 83

3. 7 The Feedback System Under Consideration in
Section 3.3 86

3.8 Graphic Procedure for Determining F(s) 99

3.9 Illustration of Corollary 3.8 101

3.10 Nyquist Locus of s/(s-10)(s +0.4 s+l) 102

3.11 Nyquist Locus of l/s(s+2) 103

3. 12 Regions of Stability for Example 2 104

3.13 The Feedback Loop Under Considerationin
Section 3.4 105

4. 1 The Feedback Sy-stenm 112

4.2 The Fourth Order System to which Averaging
Theory is Applied 120

4.3 Conditions on c, a, y to Obtain Counterexamples
to Aizernian's Conjecture 123

4.4 Nyquist-Locus of G(jto) and Root-locus of the
Linearized Feedback Systenm 124

4. 5 The Spectrum of the Input and the Output of the
Elenment in the Feedback Loop 125

4.6 The Spectrum of the Input and the Output of the
Elemxsent in the Forward Loop 126

5.1 Feedback Configuration 128

5.2 Maximization of the Third Harmnonic 132'

5.3 The Input Function , 138

5.4 The Optilrmum Nollinearity and the Output Signal 139

vi



CHAPTER I

INTRODUCTION

1. I Generalities

The material presented here under.the general heading of

"Nonlinear Harmonic Analysis" constitutes an attempt to analyze

some of the properties of the mapping of the spectrum of the input

to a nonlinearity into its output.

The results are applied mainly to the problem of finding suf-

ficient conditions for the stability or instability of feedback systems.

It is safe to state that there is probably no single notion m6re

familiar to systems engineers than the notion of a transfer function and

that no mathematical tool has found wider application than the trans-

form techniques. It is also realized that these ideas are useful

%mainly if one is dealing with tilme-invariant systems. The research

given here presents some relations between the spectrum of the input

to a nonlinearity and its output.

In linear ti-mel-invariant systems defined by convolution oper-

ators the spectrunm of the output is simply equal to the spectrum of

the input multiplied by the transfer function and the mapping of the

input spectrunm into the output spectrum is hence very simple. It is

thus in general advantageous to specify all quantities in ternms of their

spectra rather than as functions of time. In other words, one pre-

fers to do the analysis in the frequency--domlain rather than in the tine -

domain. If the system contains time-variant and/or nonlinear ele-

ments, the simplicity of this nmapping disappears and very often the
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analysis will then be done in the tine -domain. In particular con-

sider the system where the input, x(t), and the output, y(t), are

simpl.y related by y(t) = f(x(t),t). This characterization is very

simple in the time -domain, but unknown in the frequency-domain. To

obtain qualitative features of the behavior of nonlinear systems one

thuscgenerally uses time-dolnain methods as, for example, if-the de-

siredd feature is stability, the direct method of Lyapunov.

In at- least two situations it would be advantageous to characterize

nonlinear systems in the frequency domain; first if the input or

inputs are given'in terms of their spectra and properties of the output

or outputs are sought in terms of their spectra and, second, if the

system contains "mucqh more" linear time -invariant elements than

nonlinear or time -varying-elements. In the former. case it might be

true that if somle simple properties of the frequency-domain character-

izatioln of the nonlinear system were known the desired features of

the Qutput would follow immediately. As an example, suppose that

one wanted.to decide some features of the behavior of the output of a

particular nonlinear system with respect to all bandlimited signals

with a certain cut-off frequency. Clearly this is a very poor charac-

terization of the inputs in the time-domain and some simple

properties of the mapping into the spectrum of the output could be

sufficient to derive the desired features about the outputs. In the

latter case the simplicity of the frequency--domnain description of the

linear time-invariant part of the system in conjunction with a general

.idea about the frequency-doinain characteristics of the nonlinear or

time-varying elements might more likely yield the desired infor-

lmation than a time -domain analysis.
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As an cexa mpl c , the first situation arises in the design of

frequency converters where one tries to choose a nonlinear. system in

a certain class and which will transform a given input spectrum in

some desired fashion. The second situation arises for instance

when a simple nonlinear system is followed by a linear tine -invariant

system or in a feedback control system with a linear time-invariant

element in the forward loop and a simple nonlinear element in the

feedback loop.

The results obtained in the second, third, and fourth chapters

which are concerned with positive operators and the stability and instability

of feecroacksystems follow the lines of previously studied research

topics. The fifth chapter however touches a problem which is new

and quite promising. Indeed an attempt is made there to design non-

linearities using optimal control. The techniques presented in this

chapter are felt to be important although not many specific results

have been obtained. Indeed at all stages of the design of control

systems a great deal of electronic devices are used and this brings

with it the need for design procedures of filters, of frequency up- and

down-converters, of a-c to d-c and d-c to a-c converters, etc. This

chapter outlines some ideas regarding design procedures for systems

containing nonlinear elements and the results can be viewed as use-

ful at the level of designing individual parts, similar to the Bode-

Nyquist and sort like criteria which have proven their usefulness at

this level of the design as well as for the design of the overall system.

1.2 Contents

In the second chapter a number of positive operators are de-

rived. A precise definition of a positive operator will be given later.
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Roughly speaking an operator will be called positive if the inner

product of ally element and its ihage under the operation is positive.

Thus for example a linear transformation fronm a finite dimensional

linear vector space into itself will define a positive operator if and

only if the matrix associated with this linear transformation plus the

transpose of this matrix is positive definite. The Sylvester test

thus yields a simple necessary and sufficient condition for a finite

dimensional linear transformation to define a positive operator. For

nonlinear transfornmations or operators defined on infinite dimensional

spaces the situation is quite different and this is where the techniques

and results developed in Chapter II are useful.

Why are positive operators important ? There are several areas

both in engineering and in applied mathematics where positive oper-

ators play a central role. Here are some examples:

' (i) Many techniques, e.g., in the theory of optimal control,

in prediction theory and in stability theory require at a certain point

establishing that a certain function or functional is positive definite,

e.g., second variations in optimization theory and Lyapunov functions

and their derivatives in stability theory. This verification can often

be reduced to the verification that a certain appropriately chosen

operator is positive. In this context, it suffices to recall how often

the positive definiteness of certain matrices is invoked.

(ii) Another area of research whefe positive operators have

played an essential role is in network synthesis.' Recall that a ratio

of polynomials in s is the driving point impedance of a two-terminal

network that can be realized using a finite number of positive re-

sistors, i nductors, capacitors and ideal transformers if and only if
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this ratio of polynomials is a positive real function of s (see e.g.,

(27)). This result thus iclentifies with the-input-output relation of

these passive networks a class of positive operators. There is no

doubt that'positive operators will also play an essential role in the

synthesis of nonlinear and timee-varying networks using certain

passive devices.

(iii) An important application of positive operators is in es-

tablishing the stability of feedback systemns. Roughly speaking sta-

bility is the property of systemus in which small inputs or initial conditions pro-

duce small responses. The technique for generating stability criteria

for feedback systems front knowledge of positive operators will be

examined in detail in Chapter III but the basic idea is simple and

states that the interconnection of passive systems (positive operators)

yields a stable system.

(iv) The so-called frequency_)por-ver formulas have found wide

application in the design of parametric amplifiers. They are formulas

which constrain weighted sums of real and reactive powers entering a

.device at various frequencies to be either zero, positive or negative,

This device could fox instance be a nonlinear resistor, inductor or

capacitor. This work was initiated by Manley and Rowe who analyzed

the power flow at various frequencies in a nonlinear capacitor. Their

conclusions were the now famous Manley-Rowe frequency-power formu-

las. Their Vwork has been extended in several directions and the re-

sulting formulas have found wide application in the design of fre-

quency converters. Frequency-power formulas establish fundamental

limits on the efficiency of such devices. Other fields of interest

where these formulas have been applied are in energy conversion
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using paltramnetric devices, in hydrodynanuic and naagnetohydrody-

namic stability,' and in many other areas. In trying to bring certain

nmethods and results in these areas into harml-ony, it became ap-

parent that these frequency--power formulas are essentially particular

classes of positive operators and can be most easily understood as

(v) Another important area of application where positive operators

play an important role is to determine bounds on the optimalper-

formance of nonlinear time-varying systems. One of the most im-

portant problems in optimal control theory appears to be, paradoxi-

cally, to design suboptirnal systems. Indeed either because of

computational feasibility or because of simpler or. more convenient

implementation it is in many cases necessary to resort to suboptimal

systems. Little or no attention has been paid to the problem of a

priori predicting how far a suboptimal system is from being optimal.

In his forthcoming dissertation, R. Canales (15) shows that the ere-

quirement that a given system has a better performance than another

system with respect to some performance criterion can in many im-

portant cases be reduced to requiring that a certain suitably chosen

operator be positive. This then allows to estimate a priori bounds

for the performance of certain systems and to design feasible sub-

optinmal controls. The basic idea to introduce a positive operator is

this: if the inner product of the optin-'al control and the difference in

the derivative of the state of the first and second system is positive

(i.e., the state of the second system changes in the right (optimal)

direction when no control is applied), then the performance of the

second system will be better. In this respect it is also worthwhile to

mention that optimal control provides a way of verifying the positivity
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of an operator 0. Indeed if iinf < x, Ox > > 0 then thie operator is
x

clearly positive. I-Ioever, it ought to be mentioned that in general

optimal control techniques are not too useful in solving the problem

this way. The design of suboptimal controls thus appears to be a

promising area of positive operators. It also linlks these techniques

further with optimal control theory.

The second chapter thus starts with some mathematical pre-

liminaries and definitions and then establishes some simple positive

operators involving convolution operators and mernoryless linear or

nonlinear gains. These results lead to the Manley-Rowe frequency-

power formulas and the positive operators which yield the Popov

Criterion and the Circle Criterion for the stability of feedback sys-

tems; Then a positive operator formed by the interconnection of a

periodically time-varying gain and a linear time-invariant convolution

operator is presented. This positive operator leads to a rather ele-

gant frequency-domain stability criterion which is discussed in the

third chapter.

in the next section of the second chapter the fol'lowing problem

is completely resolved: What is the most genera] linear system which

when composed with a monotone or an odd-monotone nonlinearity

yields a positive operator? The solution to this problem presents in

a sense the answer to a question which has been studied by many

previous researchers both in connection with frequency-power formulas

and with the stability of feedback systems with a monotone or an odd-

monotone nonlinearity in the feedback loop. The results require a

considerable generalization of a classical rearrangement inequality

due to the Hardy, Littlewood, and Polya. The rearrangment ih-

equality thus obtained is felt to be of great interest in its own right.



The last section of the second chapter is devoted to the problem

of adjoining to a positive operator a causal positive operator.

Roughly speaking, an operator is causal if the output at some time

depends only on. the values of the input before that time. It is ap-

parent that causality will be a basic property of physical systems. Thus

in nmany problems in system theory e. g., in stability theory, in opti-

mal control theory, in prediction theory or in network synthesis,

causal operators are of particular interest. For instance in network

synthesis it is clear that causality will be, together with passivity,

one of the basic properties of systems which could be realized using

passive devices. The question thus arises whether or not the positive

operators discovered in the previous sections have an analogue which

is in addition causal. The answer to this question is in the affirm-

ative provided the operator admits a suitable factorization. Whether

a particular operator satisfies this condition appears to have no

general answer and the problem is one of considerable interest and

importance. Similar factorizations have received a great deal of

attention in the past particularly in the classical prediction theory.

In this section a general factorization theorem is presented which is

felt to be quite general and of intrinsic importance. Unfortunately the

result which is based on contraction arguments does not offer a

necessary condition and is rather conservative in some particular

cases.

Most of these positive operators give essentially properties of

the output spectrum of a nonlinearity in terms of 'the spectrum of the

input. In fact, since most of the positive operators derived here are

the composition of a nonlinear possible time-varying memnoryless



element and a convolution operator which merely represents, if its

kernel is tiTne-invariant, a multiplication in the frequency-dolmain, the

resulting formulas simply express the positivity a certain bilinear

functionals involving the input and the output spectrum, of the types

as in the frequency-power formnulas and the Manley-Rowe equations.

The third chapter is devoted to the stability of feedback loops.

The type of stability which is considered here is not very common

but rather strong and essentially requires that small inputs to the

feedback loop produce small responses. The definition of small

signals is ver)r simple if the notion of extended space and truncated

signals is introduced. A truncated signal is the original signal but

replaced by zero from some time on and a signal is said to belong to

the extended space if all its truncations belong to the space. The

stability theorems essentially put conditions on the forward loop and

the feedback loop which result in the fact that all solutions which

belong to the extended space actually belong to the space itself. This

type of stability together with a basic theorem is used to obtain some

general stability conditions. In particular the intuitive ideas that

stability follows if the open loop gain is less than unity or if the feed-

back loop is the interconnection of passive systems (positive operators)

are proven. As a refinement to these results the method of using

multipliers or factoring the forward loop in two factors one of which

is then lumped with the feedback loop is presented. The resulting

theorem is then used in two interesting examples. These stability

results also require a factorization as the one discussed in the

previous chapter.

The first practical stability theorem applies to a feedback loop

with a linear time-invariant convolution operator in the forward loop
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and a lincar periodically time -varying gain in the feedback loop. As

most recent stability criteria, the criterion requires the existence of

a mnultiplier having certain properties. However, a necessary and

sufficient condition for this multiplier to exist is given and puts con-

ditions on the variation of the Nyquist locus of the forward loop. Es-

sentially it requires that the phase of tile transfer function of the

forward loop should not change too cirastically when the frequency is

increased by an amount equal to the frequency of the periodic gain in

the feedback loop, thus.requiring a certain filtering effect.

The second practical stability theorem treats feedback systems

which have a lineai convolution operator in the forward loop whose

kernel may be time-variant and a mnonotone or an odd-monotone non-

linearity in the feedback loop. The resulting stability theorem requires

the existence of a multiplier having certain properties. This multi-

plier is less restrictive than the nmultipliers required in existing,

criteria but more research is required to obtain conditions which can

be stated.in terms of the forward loop.

The fourth chapter in a sense motivates the third chapter and

takes'a critical look at some linearization methods which are conmmonly

used to obtain stability conditions for feedback loops with one non-

linear element. A particular system is presented in which these

linearization techniques all predict stability but which nonetheless

allows periodic solutions. These conclusions are derived using the

Averaging Theory of Cesari and Hale and the example provides a class

of simple counterexamples to the well-known Aizerman conjecture.

These examples provide a case where the mapping of the input

spectrum into the output spectruIn can be quite different for a linear



and a strictly nonlinear characteristic and this then accounts for the

existence of oscillations which are not expected from consideration of a

linearized behavior.

The fifth chapter discusses the optimal design of nonlinearities.

An algorithm for choosing the nonlinearity in a certain class which

maximizes a linear functional is given and the problem of generating

a nonlinearity which, yields a given set of Fourier coefficients at the

output is discussed in sonme detail.

1 .3 Historical Note

The study of positive operators has found a great deal of interest

and application in the study of network synthesis and related areas.

These investigations however generally limit themselves to the study

of particular classes of positive operators, namely the input-output

relations of finite dimensional constant lumped networks (27). Some

extension to nonlumped networks have been made (61).

The application of positive operators to the stability of feed-

back loops was introduced by Sandberg (54) and Zames (62), and was

exposed,in its full generality by the latter author in (63). The ex-

position and the analysis presented in the third chapter are greatly

influenced by this reference which can., in the present author's

opinion, be considered a basic paper in stability theory. It is however

apparent that the ideas of positive operators are present, although

not very explicitly, in the construction of Lyapunov functions and the

resulting frequency-domain.stability criteria due to Brockett and

Willems (10). The research and the success of frequency domain

stability criteria for nonlinear time-varying systems was initiated by

Popov (47) and the most impressive results are surveyed in (11).



The -lost widely known results arc the Popov Criterion and the Circle

Criterion which is due to Sandberg (52).

The search for frequency-power formulas was initiated by the

discovery in 1996 of the now famous Manlecy-Rowe frequency-power

formulas (36' whicdh ae compiled in the book by Penfield (45). The

frequency-power formulas which are closely related to those ob-

tained here and which apply to nonlinear resistors are due to Pantell

(44), Page (43) and Black ( 7). The latter author uses the rearrange-

ment inequalities of Hardy-Littlewood and Polya (29) to obtain the

fact that the cross-correlation of the input and the output to a mono-

tone nondecreasing nonlinearity attains its maximum at the origin.

This result was originally due to Prosser (48) in-a slightlydifferent

se ttin g.

The factorization theorem obtained at the end of the second

chapter is original. Its setting using projections in a Banach Alge-

bra follows Zames and Falb (64) and its proof is inspired by a paper

by Baxter (4 ). For additional results pertaining to similar factor-

izations see for instance the book by Wiener (58), and particularly

the paper by Krein (34).

The two examples of practical stability theorems given in

Chapter III have been studied before in several places. The feedback

system with a linear time-invariant convolution operator in the forward

loop and a linear periodically time-varying gain in the feedback loop

is of the same type as the one studied by Bongiorno (9 ) and Sandberg

(51), but the result given here makes use of the fact that the feedback

gain is periodic to obtain an improved stability criterion. The sta-

bility theorem pertaining to the stability of feedback systems with a

monotone or an odd --rronotonec nondecreasing nonlinearity in the feed-
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back loop as studied in the second examlple is a generalization of

similar results obtained by several authors. In particular the papers

by Brocl]ett and Willeins (10), by Zames (63) and Zames and Falb (64),

by O'Shea (41),by Narendra and Neuman (39),by Thathachar, Srinath

and Ramapryan (55) and by Baker and Desoer (3 ) treat problenms

along the sanme lines.

For the counterexalples to Aizerman's conjecture and their

history, see the thesis by Pliss (46) and the thesis by Fitts (21).

Particularly the experinmental results described in this last reference

were instrumental in obtaining the example given in Chapter IV.



CHAPTER II

POSITIVE OPERATORS

2. 1 Introducltion.

This chapter is devoted to positive operators and starts with

a nunlber of well-known definitions f-roIn functional analysis. These

notions will then be used freely in the sequel. The definition of

linit --in -the -ne an transformns and of almost periodic functions and

some of their properties are given for easy reference. For a more

extended treatment on these subjects see e.g., (49, 56, and 8).

The first class of operators which are examined for positivity

are convolution operators, and operators in which the output is an

instantaneous function of the input. The positive operators thus dis-

,covered lead to the well-known Manley-Rowe equations and play an

important role in stability theory since they are closely connected with

the Popov Criterion and the Circle Criterion for the stability of non-

linear and time-varying feedback systelns.

-Next, attention is focused on the question what: class of convo-

lution operators can be comnposed with a positive periodically time-

varying linear gain and still yield a positive operator. The answer to

this question is that this convolution operator should itself be positive

and that the kernel of the convolution should be a string of impulses

occurring at multiples of the period of the time-varying gain. It is

shown that this result is both necessary and sufficient and the proof

relies on the fact that two operators of this type commute.

-14 -
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In the next section of this chapter, an answer to the following

question is sought: What is the most general linear operator which

when composed with a monotone nondccreasing (or an odd-monotone

nondecreasing) nonlinearity yields a positive operator ? This problem

has received a great deal of attention in the past, both in connection

with frequency-power formnulas and with the stability of feedback loops

with a monotone nonlinearity in the feedback loop. The resulting

class of positive operators is closely related to certain classes of

matrices, i.e., the dominant matrices, which play an important role

in network synthesis. The reason for this connection however re-

mains vague and deserves further investigation. As an intermediate

step in deriving this class of positive operators a considerable

generalization of a classical inequality due to Hardy, Littlewood and

Polya on the rearrangement of sequences is derived. It is felt that

the extension of this rearrangement inequality is of intrinsic im-

portance in itself and is potentially applicable in other areas of

system theory.

The last section of this chapter considers the problem of the

factorization of linear operators in a part which is causal (a lower-

triangular matrix) and a part whose tr.anspose is causal (an upper-

triangular matrix). This problem has received a great deal of at-

tention in connection with stability theory, optimal control theory

and prediction theory. The factorizatiorn theorem obtained here is

quite interesting since it applies to time-variant convolution operators

as well as to time-invariant convolution operators. It is pointed out

however that in the latter case the results are rather conservative.
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2.2 Mathematicall FPrelilinaric- s

Definitions: Let X and Y be two spaces. The product space,

denoted XXY, is the collection of all ordered pairs (x, y) with x X

and y c Y. A space X and a map, d, frown XX X into the real.s,

R, is called a metric space if (i) d(xl,x 2 ) > 0 for all xl,x 2 c X and

d(xl,X2 ) 0 O if and only if x 1 = x 2 , if (ii) d(xl,X 2 ) = d(x 2 ,x1 ) for all

XlX 2 E X and if (iii), d(x 1,x 2) + d(x, x 3 )> d(xl,x 3) for all xl,x 2,

X3 e X (the triangle inequality). A sequence {X} of elements of a

metric space X is said to converge to a point x e X if limr d(x, X)=0,
n- oo

it is called a Cauchy_ sequence if for any c -> 0 there exists an N such

that d(xn,xn) < c for all n, m > N. A nmetric space is called com-

plete if every Cauchy sequence converges. A subset X 1 of a metric

space X is said to be dense if for every xeX and every e > 0

there exists a XlEX 1 such that d(x,x)l< c. A set X is said to be

,countable if there exists a map from X into the integers, I. A,

metric space is said to be separable if it has a countable dense sub-

set.

Definitions: Let K denote the real or complex number system,

R or C, and let X be a vector space over K. A mapping, If' If,

from X into R is called a norm on .X if (i) fIxII > 0 for all xEX

and jIx ! = 0 if and only if x = 0, if (ii) IIcxI=Ic I fix I for all

x X and c E K, and if(iii) IIX1 + x 2
1 < fix 1 if + fix 2 11 for all xl,X x 2 c X

(the triangle ineqlality).; A nornmed vector space has a natural nmetric,

i.e., d(xl,x z ) lixl1 -x 21 for all x 1,x 2 cX. This metric is called

the metric induced by its norm. An inner product space over K is

a vector space over K and a mapping fronm XXX into K, called the

inner product and denoted by <. , .> such that (i) <x ,x 2 > <x 2 ,x 1 >
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( denotes complex conjugate) for all xl, X 2 C X, (ii) <cX l +c 2 x 2 , x3 >

=1 12< l +2 < X'X3 > for -all x2lx2 x3 c X and c l, c c K,

and (iii) <,x,x >> 0 for all x c X and <x, x > = 0 if and only if x=O.

It follows front these definitiQns that < x, x >1/2 is a norm on X.

This norm is called the norm induced by the inner product or the

natural norm. The metric induced by this norm will be called the

metric induced by the inner product. An important relation is the

Schwartz inequality which states that I <x ,x 2
> < |x l l 1 xII I2 f for

all x, x2 c X. (As alw'ays, unless explicitly mentioned, the norm

on an inner product space will always be taken to be the natural norm.)

Definitions: A Banach space is a normed vector space which is

complete in the nmetric induced by its norm. A Hilbert space is an

inner product space which is complete in the metric induced by its

inner product.

Exanples. A rrapping x fromn the interval (a,b) CR into K

(a = -oo and b = +co are allowed) is said to beloncg to L (a, b), p> 1

if x(t) is measurable and if f Ix(t) fPdt < 0oo. It is said to belong to
a

Loo(a, b) .if it is measurable and if Ix(t) I < M for s6nme M and

almost all t E (a,b). Two elements of L (a,b) or L (a, b) will be
p 00

considered equal if they are equal for 'almnost all t¢ (a,b), i.e., if

X1,X CL (a,b) Or L (a,b) the n x =x 2 if x l (t) = x 2 (t) for almost

all t c (a,b). With this equivalence relation, Lp (a,.b) and Lo(a, b)
b P 

are Banach spaces with IX!IL = (fIx(t)tiPdt)l/P if xcL and the
p a 

infixrnL of all nulrmbers M satisfying jx(t) I < M for almost all

tc(a,b) for xcL (a,b). L2 (a,b) is a Hilbert space with <xl,X2 >

b
= x/xl(t)x(t)dt for xl, x 2 c L 2 (a, b). An important inequality

a

(1de r's .Inequalyj) on L -spaces states that if fcTL (a, b) and
'P
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gE L (a, b) with 1- 1, then fgc L 1 (a, b) and llfg Llf-q P q Lp p

II|g|I, and if £ eCL(a,b) and geL (oa,b) then fgcL l (a,b) and

I[fgll < lfl[L Ilgl l j . Another useful fact is that if a dnd
1 -- I~~~ 1 o00

b are finite or if x(t) 0 off a bounded set, then x cLp (a, b) if

x c L (a, b) for P < pZ, and that if xcL (a,b) then xcL p(a,b) for

all p. Lp(-oo, + co) or L (-oo, + oo) will be denoted by L 1 and L
p co 00

A mapping x from I into K is said to bclong to (p > 1) if

+0o

+ cxk !P < oo. It is said to belong to £ if Ixk < M for some M

k=k-o 00 +00
and all k. I forms a Banach space with I|x |IQ = ( Z IxkKlP /P

P P k=- o

if xe p and the irifimum of all numbers M satisfying Xkl < M for
P +ox

all k if x¢el. 2 is a Hilbert space with <x,y> = Z x-kk for

x, y C. IHI1lder's inequality becomaes IIxy II -< 11X 1yIlQ with

3-+ 1, X E I and y eq and IIxY 1 t~x 11 y 111 if XCeI and
P q P

yef . Another useful fact is that fpl C if P 1l<P 2 and that

P"--C --- for all p.
p 00

Remark: For p=q=2, -l51der's inequality becomes the Schwartz

inequality. The triangle inequality for Lp, L , or Q , is often

referred to as Minkowski's inequality.

Definitions: A mapping from a space X into a space Y will be

called an operator from X into Y. Thus an operator associates with

each element xe X a unique element ye Y. X is called the domain

of 0, and is denoted by Do'O). Let O be an operator from X into

Y. The image of x c X under O will be denoted by Ox. Thus Ox c Y

by assumption. Let X and Y be subsets of a real inner product

space (i.e., an inner product space over R). An operator O from

X into Y will be called a nonnmeative operator on X (denoted
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O> 0) if <x, Ox> >_0 for all x c X. It is said to be a positive

operator on X if O - c I > 0 (I denotes the identity operator on X,

i.e., Ix; x for all x c X) for some c > 0. An operator from a

normed linear space X into a normed linear space Y is said to be

bounded if there exists a number M such that I1Ox I < M fIx 11 for

all x c X. The irfimurl of all nurnbers M satisfying the above in-

equality is called the bound of 0, denoted fo l. The range of an

operator O, from X into Y, denoted Ra(O) are all members of Y

which can be expressed as Ox for some xcX. An operator O

from X into Y. is said to be invertible if there exists an operator

-l

O 1 from Ra(O) into X such that the operator from X into itself

defined by 01'O equals the identity operator. This implies that the

operator from Ra(O) into itself defined by O 10 also equals the

identity operator. An operator from a metric space X into a metric

space Y is said to be continuous at x if {Oxn} converges to Ox

whenever {Xn} converges to x. If X, Y and Z are normed linear

spaces, if 01 is a bounded operator from X into Y and if 02 is
I

a bounded operator from Y into Z, then 0201 is a bounded oper-

ator from X, into Z, and 11O2 OL1 < 11olf l -lo 2 -1

Definitions: Let X and Y be vector spaces over K. An

operator T from X into Y is said to be linear if T(ctxl+x 2) 

= cTx1 + PTx 2 for all xl,x 2 e X and a, 3 E K. Let T be a linear

operator from a normed vector space X into a normed vector space

Y. Then T is continuous everywhere (i) if and only if it is bounded

or (ii) if and only if it is continuous at one point. Also if T is

bounded,then' IIT | sU x IfITx |f. Let X be real inner product
x space, let T be a bounded linear transfo11 X int1

space, and let T be a bounded linear transformation from X into
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itself. 'JThlen there exists a boun1Cded linear operator Tl" fromn X

inito itself such that < x, Tx > < Tx'.xl,Xz> for all xl, X2 X

Moreover |T |[ = IT'::I I, (T': T, and T is invertible if and only

if T:: is, and {T') (T-]) :: .

Theorem 2.1: Letd an X2 be subsets of a real inner

poduct space *and let 1 and 02 be nonnegativ ope rators on X 1

and X respectively. Then
2

(i) a Ol > 0 on X1 for all c R

(ii) 01- 02 >0 on X n X

2 2
Proof: Since (i) <x, 2Ox> a <x, OX > for all xcX,

since (ii) < x, O x + O2x > = < x, Ox > + < x, Ox > for all x c Xn X 2

and since (iii) < x; 0l x > 0 < 1Y, O1l0 >

-< OlyY >

. Y y1 Y >= <y,O 1 y>
for all xc Ra(Ol ), the theorem follows.

Thoorem 2.2: Let O be a nonnegative operator from a real

inner product spapce X into itself and let T be a bolmnded linear

operator fror X into itself. Then

(i) T*OT > 0 on X

(ii) T > 0 on X if and onlyif T' > 0 on X

Proof: Since (i) <x, T'OTx > = < Tx, OTx >

and since (ii) < x, Tx > = < T'x,x >

- < x, T"x >

and (T) = T, the theorem follows.



2.3 Transforl 'TlI)cory

I)efinitiol's: Let x C L 1, thenl the function X defined by

+0

Xo~ jo)-
X (j () -f x(t) c-j.t dt

-00

is called the Fourier tran,-sfolrm of x. Clearly Xc L , IjX 1L <
00

||x [l and if x(t) is real, then X(j=)- X(-jo). Since this transform

need not belong to L1, it is in general impossible to define the in-

verse Fourier transform. H-Iowever if X turns out to belong to L

then

+00

x(t) -- f x(j) Cetd ' w
-00

(As always, this equality is to be taken in the L 1 sense). Thus the

need of a slightly mnore general transform in which the inverse trans-

- for m can always be defined is appalrent. This is done by the limlit-

in-the--mean transform. It is well-kno·wn that if x, y e L2 n L then

< x, Y > <X, Y > (Parlsevall's Elali.ir). Let xe 2,. Since

L 1 nL 2 is dense in L2z , i.e., any L2-function can arbitrarily closely

be approximlated (in the L 2 sense) by a function in L n L 2, there

exists a sequence of functions {xn} in L 2 f l L 1 which is Cauchy

(with respect to L 2 ) and which converges to x (in the L 2 sense).

Let X be the Fourier transform of x, It follows from the Parsevaln n

relation that Ix 1 - 17~- -X -X and that Xc L 2 ThusnI fm n i nnr

since L 2 is complete, these transformls, Xn, converge to an

element X of L 2 . This element X is called the limit -in-the-nmean

transform of x. It fol!lows tl)at the limit-in-the-me an-transform nmaps

1,2 into itself and that <x, y > - ---- < X, Y > for all x, y- c L andZn 2



their ]irnit --]n--the -lIne.i' transformns X, Y. This equCLlity will be re -

ferrcd to as P]rsevr.al's .equall]. One. w.lay of defining a limit in the

mean transform is by

T

X(j ) . lian f x(t)e jC°tdt
T -co -T

where the limnit is to be talken in the .L2- sense (It is easily verified that

this constitutes essentially a particular choice for the Cauchy se-

quence {x ).) The notation that wrill be used for limit-in-the mean is
n

+ o0

X(jO) = l.i.m. f x(t)e- jw t dt

-00

With this definition of transforms, the inversion is always possible and

the i-hverse transforml formula sta-tes that

+00

x(t) 1. i .. X(jw e jwtd)

-00

Definitions: Let xc 1,(0, T), T > 0. Then the sequence

X -Xk}, kc I,defined by

T

I f .dtXk - T x(t) e dt

0

is well defined since L 2Z(0, T) C, L(0, T), and is called the Fourier

series of x(t). Clearly Xc f and x k = x whenever x(t) is

real. The Parseval relation states that if xi ,x 2 E L (0, T) and if

X1,X 2 are their Fourier series, then <xl,x > = 2rr < X1, X >.

(These inner products are of course with respect to L 2 and f2 re-

spectively.) In trying to obtain the inverse .Fourler series fornmula,
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the samle (lifficultics as in the inve'rse ]Fourier transformlr are en-

countered, and 'the saime type of solut:ion is presented. This leads to

+ co Zl. t

x(t) = 1. i.rn. T x k

k: -oo

One way of expressing this 1. i.m. summation is by

x(t) = xlia e

N- k=-N

where the limlit is to be taken in the L 2 (0, T) sense.

Definitions: Let x 'E 1, then the function X defined by

-oo

X(z) x z-k
k- - o0

exists for all Jz| - 1 and is called the z-transform of x, In trying

to extend this notion to sequences in Q2 the samnae difficulties and

the saime solution as in the previous cases present themselves. This

leads to the limit-in-the mean z-transform

+ o00
Z -k

X(z) = 1.i.. xk

oo

and the inverse z-transfornln

1
Xk -Zn (Z) 7,z

Definitions: A continutous function, x, from R into K is

said to be almoyost-per-iodic if for every c > 0 there exists a real

number I - such that every interval of the real line of lenogth £ con-

tains at least onle number T SUCh that
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t ) - x(t) < c for all t

Solme properties of alrmost-periodic functions are:

(i) Evcryy alnost periodic function is bounded and uniforlmly

continu ou s

(ii) Continuous periodic fulnctions are almost-periodic

(iii) The susns,, products and lirmits of uniformly convergent

almost periodic functions are almost periodic

(iv) The limlit of the mnean value

T

_T f x (t+i )dt

-T

as T-- co exist;s, and is independent of T for all alm-iost

periodic fuLc.tic.ts x, and the convergence is uniforl in r.

(v) If xl and x g are allmost periodic functions then so is

2111x Ii x (t -n') x2 (T) dr
T ---oo T-T

Moreover, x 1 x 2: x 2.:x 1 and xl(xZ:x3) ' .>;x :X)-x

for all almost periodic functions x 1,x 2 ,x 3 .

T

(vi) Jimi --1 f x(t) e -Wtdt
2T f

T-- 03
-T

vanishes for a.1 but a countable number of values of w.

(vii) The space of alrmost periodic functions forms an inner

T

produclt spac .e with < x 1 , X2 > = li 2f x(t)2 (t) dt
o sp-TT

for XI,x 2 a.mrost periodic functions. (This itner product
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space is however not conljlcte and nlot separable.) Let

x be an almost periodic function and let {tok } be the set

of values for which the limit in (vii) does not vanish and

let xk be the value of that limit for o- Ok' The sequence

{Xk} is called the genera].ize Fourier series of x(t). If

x(t) is real then w belongs to the set {ok} if and only if

-a does and the values xk associated with o and -6) are

conlp3.ex conjugates. The inverse Fourier series is de-

fined as

N
ijcoktx(t) = lin 7 x k e

N - - ok= -N

This limit, which exists, is to be taken in the metric in-

duced by the inner product on the space of almost periodic

functions.

.2. 4 'Some SimpJle Positive Operators

In this section a number of well-known positive operators will

be discussed and generalized. The results yield the Manley-Rowe

equations and the positive operators which led to the Popov Criterion

and the Circle Criterion for the stability of. feedback systems. The

discussion is mainly concerned with positive operators on L 2 but the

Manley-Rowe equations will also be stated (without proof) for al-

most periodic functions.

In this section L 2 is assumed to be taken over the real nunmbers.

Definitionls: Let CG denote the class of operators from 1,

into itself each element, G, of which has associated with it an ele-

Mnent G(jto) of L , writh G(jto G(-ja) and which maps an element,
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x(t), of L 2 as; follovs: let X(jw) be t:e lirnit-in-tlec--nrean trans-

form of x(t) then the function y(t) :- Gx(t) is the inverse limrit-in-

the-melan transforml of G(jo))X(jo)),

Let K denote the class of operators from L 2 into itself

each elcment, K, of which has associated with it a real clement of

L o, k(t), and which mnaps an elenaent, x(t), of L 2 , into y(t) with

y(t) - Kx(t) = k(t)x(t).

Let F t denote the class of operators from L into itself

each element, Ft, of which has associated with it a measurable

function, f(o-, t) from R X R into R, satisfying the inequality

If(o-, t) < M fo | for some M, all cr and almost all t, and which

maps an element, x(.:), of L 2 into y(t) writh: y(t) = Ftx(t) =

f(x(t), t) for all t.

Let F denote the class of operators from L into itself each

element, F, of which has associated with it a measurable fuInction,

f(o-), from R into itself, satisfying the inequality I f(o-) <M I o-

for some M and all -, and which maps an element, x(t); of L2

into y(t) with y(t) = Fx(t) f(x(t)).

It is a simple matter to verify that: the above operators are indeed

well-defined, i.e., that they map L 2 into itself. A subc'lass of oper-

ators of the class G which is particularly important \will novw be ex-

amined more closely. Let (g(t), {gk}) be an element of 1X 1 and

let tk be a nmapping from I into R. Let y(t) =-Gx(t) be formally

defined as

+co +00

y(t) C=> gk x(t-tk) t- g(t-T)x(T)dr

k= -co -oo



]LcmlnL 27. : l'hc opl rator G defined foranlily by the above

equation nmaps -L 2 into itself. Moreover G0¢cG and thle function

G(j o) associated with G is given by

+00 +00

G(jc0) - - - t- c Otdt

kz -00 -00

Proof: This is a standacrd result froml Fourier transform

theory (see e.g., (56, p 90).

Remark: Actually if g(t)c L2 and if its limnit-in-the-mean

transform of G(jc,)eL then the above lemma remlains valid.
00

The following theorems orn positive operators will now be

e sta bl]i.she d.

T'heoren' .Z 3: vely elc-1n- GC G efines a boLundded linear

transforLnatLion from L 2 .into i.tsezlf,~ IGi {-= fIG(jS ;|L and G is a

nonneat:iv_ e J ositiv:e) opereato r on L1,. ifl. if if Re G(j o) >0

t(Re G(jo:) c e for some c > 0) for al.most all co > 0. Moreover,

G c G and has the function G(ji) associated with it.

Proof: The theorem is obvious with the possible exception of

the positivity condition. This however foll.ows i:-orI Parsseval's equality.

Indeed,

4-00 /

2 r o2
-0O

0

Theorenm 2. 4: vrtyJ y vcl2?lent Kc' K definCs l a boulnded linear

transforLration- fro: IL iiot<) f| IK I i- 3(t).> Ii and K is
-0



anori.alit-iv (,,o'sritirc) p . ator oron L if and only if k(t) > 0

(k(t) > c for sorne c > 0) for almost all t. Moreover K " K,

i.e., K is self adjoint.

Proof: This theoremn is ilmnmlediate.

Theorem 2.5: Everye element Ft c F defines a bounded

ppel rator from L 2 into itsclf, II Ft 11 K' where K' = inf K over all

K such that If(-, t) < K I- I for all e and almost all t. F t is a

nonnegative jgositive)operator on 1, if and only if G-f(o-, t) > 0

(crf(o-,t) > ca- for somle c > 0) for all c- and almost all t.

Proof: This theorem is immediate.

The theorem similar to Theorems 2.3, 2.4, and 2.5 for the

class F is exactly as Theorem 2.5, with. f(o-, t) replaced by f(o),.

This follows from the fact that FCF There is however one re-

finemnent possible which is due to the fact that the function f(o-) does

not depend on the variable t explicitly. This refinement leads to

the Manley--Rowve frequency-power formulas and the Popov stability

criterion.

Definitions: A function x from R into itself is said to be
N-1

absolutely continuous if Z IX(tk)-x(t ) -0 whenever
k: 1

N-1
l Itk-tk tlI -0, for any sequence {tk}, k-1,Z,..., N, and any N.

A classic result in analysis states that a function is absolutely con-
t ,

tinuous if and only if x(t) = x(a) +f r(t)dt for some function r(t) E
a

Ll(a,b). Naturally r(t) = x(t) for almost all t. Let Sg(a,b) be

the subspace of L 2 (a, b) forned by the functions on[ a, b] which are

absolutecly continuous and which, together wit:h their derivatives be -

long to L2b(a,b). S1 denotes S (-c, + ). SZ is an inlner pro+dlct

space with the inner product as in I 2 . It is howeverC- nol conmplete.



J.jeIrn1.1 2. Z: if x- S then lirn s(t) - O 0
t-t -.I o.)

T

Proof: Since fJ x((T )2-x(--T ) 2] it follows
-T

that thcse limits exist sincc the lilmit on the left for T or T -+o ex:ists

by the Schwartz inequality. Since the limits exist and since x(t) c L2

they must be zero.

Definition: A function f from R into R is said to satisfy a

Lipshitz condition on O1 if jf(o'l)-f(o-2 )1 KJo' -~Z l for all 012 cER

and somle K. K is called a Li.pslhitz constant for f. Clearly, if f

satisfies a Lipshitz condition and if x(t) is absolutely continuous, then

y(t) 'f(x(t) ) is also absolutely continuous.

Theorem 2. 6: Assume that F cF and that the f which defines

F satisfies a Lipschitz condition onR . Then <x, -dt F x> = 0

for all c S1.2

Proof: Let y(t) F= x(t) and let K be a Lipshitz constant for f.

It is simple to show that Ij(t) l K j (t)I whenever both exist (and. thus

almost everywvhere). Thfrus the above inner product is well defined since

yeS 2 . Integration by p.arts yields

x(t) -t Yd (t)d(I f f(x(t)) dt x(t) dt

-CO -O 

x(T'r )

= - lir f f(Oi) d-
T-+o:)

x(-T)

= 0

The last equality follows from Lemman-un , 2.2.
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Re~a ]wrkv: If x c S, tUlhen th;.e .lnit-i- -the-ealc n transform of 5

exists arnd cclual.] j,:X(jc,, ) j herc X(jco) is the limit-in-the-mean trans -

forin of x . Thus Thllorcn 2. G6 ierely st:ates that

J jcoX(-j o,)Y(jc)d) lo:: 0

-cID

which is preciscly the Manllcy-R.owc power-frequenlcy formula for

cleCmecnt3s of IL,

Theorem-s . 5 and 2.6 combine to:

Theorelm 2?."7: Let F c F and assume that the f which deter-

nices F satis;fies a L-ipshlitz condition. Then (1 + a -- )F is a non-

ega__ti;v (positive) opcrator oin S if and only if o-f(cr)> 0 (o-f(r)> co

.f.OQ-r some >o_ c > 0)_ o- R.

Theorem.l 2. 2_8: Let F c F', and as sume that the function f which

.detefrinilnes FI satisfies a Lipshitz con cition on R. Let G cG be deter-

_muinl' b G)r ) j 1 Then Fi'G is a nonnegative operator on L ified G(j)--a j ...

and only' if o-f(o)> 0, for a.ll c R--

Proof: The thcorenlm is a particular case of Theorem 2.5 if

a - 0. Let therefore a ! 0. Since the operator G corresponds to a

convoluttion, Gx is absolutely continuous for all x e L 2 . Moreover,

since jco/l+ a j oc L for a / 0, Gx E S 2 for all xcE J. Thus
OD.

' ~ ~d t* <x, FGs> = <C(la x >3 Gx, GFGx >

> a < - Gx, FCGx >cit
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This last intecgral equals zero by Thlcorem 2. 6, wvlich proves tllhe

theo r cnm.

Because of their i.1 por'ta.cc it is worthwhile to state analoguaes

to Theorenms 2.5 and Z. 6 when x(t) is an almost periodic function.

Theorecn 2. 5': Let f satisfyr a I,ipshitz condition on R and

let x be almrost iod ic. Let {Xk} and {y} be generalized

Fourier serics of x and y. If cr(o-) > 0 for all o, then

and Sk be almost periodic. Then y(t) = f(x(t) ) is almost periodic.

Let {xk and { be the _eeralized Fourier series of x and y.

Then

_, Jk Xkk Y
k

Proof: The proofs are completely analogous to the proof of

Theorems 2.5 and 2.6.

Remark: As pointed out by Penfield (45), the Manley-Rowe

are essentially conservation laws and hold for a very wide class of

systems.
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2. 5 l'eriodic Gain:

I'The result: i.n thi.s section is novel., It represents a positive

operator formned by the interconncction. of a periodically time-varying

gain and a linear time--in variant convolution-type operator. The

proof is very sinmpl.e and the positive operator will lead to a rather

elegant frequency-domiain stability criterion which will be discussed

in the next chapter.

Definitions: Let T be a positive number, and let K denote the

subclass of K detcimined by the functions k(t) which in addition satis-

fy k(t+T) = k(t) for almost all t. Let G T denote the sul-bclass of ele-

ments of G determined by tlhe functions G(jw) which in addition satisfy

G(j(c+. irT - )) - G(jo) for almost all w.

Lemma 2. 3: Let K C K and G ¢ GT . Then K and G commute

on 12., i. e., KGx = GKx for all x C L 2.

Proof: Since both K and G are bounded linear operators from

L 2 into itself, KG and. GK are. Thus by continuity of bounded linear

operators, it suffices to prove the lemjina for a dense set in 1 2 .

Define the sequence {gk }, k E I by

2ir/T

J- f G(jco) e0 ikT dcogk f2

It follows from the thleory of Fourier series that {gk} c 12 and that

+N

G(jo) =: 1. i. 3mT. a gl = ejlC k T

k=-oc, k -N
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Let v be any clemntclt of L 2 n I I. Thcn

N

WN(t) E gk v(t--kT) c L I 1
k--N

Let V and W N be the limiit-in-the-rmean transforms of v and w N. Then

N

lo))- gk' ej V O)

k= -N

inequality that

N

k- -N

that w.N approaches in the L 2 -Wense the function whose limit-in-the-

mean transform is G(jo)V(jc). Thus

wNt) 1. , m gk v(t- kT)k--- k=-N

isits, belongs to L 2 and Vjcs (j)(j) as limit- in-the-meaollows tder's

form. This holds for all v L 2 0 L1. The lemmna xill now be proxren

for all x c L2 LI. Since tn Kx the abo-e atal)sisfor all x cL 2 i L 1. Since then EKx ¢ L 2 F Li, the above analysis
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appl)lies for both. x and Kx. I-Iowver

k(t) Kk x(t - k) - gk k(i-. kT) x(t-kT) for all k c I.

It follows thus that

N N

k(t) E gk x(t-kT) gkk(t - kT) x(t - kT)

k=-N k=-N

which after taking.the limit-in-the--mearis of both sides and observing

that k C L yields the lemmna for all x C L 2 n L 1. Since L 2 n L 1 is

dense in L 2 , the lemma follows.

-Remrark: Tihe conclsion of Lernmma 2. 3 is irnmmediate if one is

satisfied with the following formal argument:

Since Fx(t) 2 f x(t - nT) ard k(t) = k(t - nT)
n

n= -0o

+1-oo +0o

KFx(t) - k(t) f x(t - nT) f k(t - nT) x(t - nT) FKx(t)
·-- I n

n = ok) n= .-o0

Definition: An operator 0 from X into itself is said to possess

asquare root, denoted by 01/2, if there exists an operator, o1/2

from X into itself such that 0 01/2 0/2.

Lemma 2. 4: Let K c K be determined by k(t), and assume that

k(t) > 0. The K/2 exists. Mo eovel 1/2 E K arid K2 K if

K . . 'NT'

Proof: The element of K determined by k(t) possesses all

the rclquired properties.

Theorem 2. 9: Let K KT and let G c CGJ Then KG and GK

are nonneg ative (positive) operators on L, if k(t) > 0 and if
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Re G(jco) > 0 (k(t) > c- and Re G(j.c) > c for some c > 0) for allmost all

t and o > 0. Moreover, the elcerents of GT which satisfy the above

inelquality are the most goneral elements of G which yield nonnegative

(positive) operators KG anld GK for all K c K, which are determline d

bya k(t) satisfying k(t)> 0 (k(t) > c for sorme c > 0) for almost all t.

Proof: The first part of the theorem follows from Lemma 2. 3 if

it is proven for KG. But by Lemmas 2. 3 and 2. 4

< x, KGx > = < x, K1/2G Kl/2x >

Since K/2 c K, it is self-adjoint, and thus

< x, KGx > = < K 1 x, GK/x >

which is nonilegative by Theorem 2. 3. To prove the positivity condi-

tion, write KG as KG - (K - C I)G + cG and apply the previous part of

this theorem and Theorem 2. 3.

For the converse part of the theorem, assume first that

Re G(jw) < 0 for all c in a set of positive measure. Then picking

K = I and applying Theoremn 2. 3 yields the result by contradicti.on.

Assume next that Re G(jw) > 0 for almost all w, but that G(j(co + 2TrT j) -

G(jo) / 0 for all co in a set of positive measure, say P. This part of

the theorem is proven by choosing particular functions for k(t) and x(t)

which lead to < x, KGx > < 0. For simplicity assume that Re(G(jco) -

G(j(w+ 2rrT 1)) < 0 on the set SQ. (A similar argument holds for the

other cases). Then there exists a e > 0 such that

Re(G(jco) - G(j(o --- 2nT 1))) < -c for all co c '2 with S2' C Q a set of posi-

tive measure. Let "'n be a subset of [n2Z-T 1, (n+l)2TrT1 ] n o'

which is a positive mca surc (s;uch a subset exists since 9' is of
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positivve mInaslure). Let -1 k2-T - denote t~he set of all points xn

such that x- krT Q"n Pick X(j,) -- 1 for to c Q" -l-kZiT 

k c I uld I k < N, aind X(jc,) = 0 otherwise, and pick k(t) = 1-cos2rrT t.

Clearly k(t) > 0 and the K corr-esponding to k(t) belongs to K T. Let

1 -1 -1 1
y -- KGx. ThenY(jco) - G(j7c)X(j0o) - - G(j(o + 2arT 1)) X(j(c-2rT 1)) - 2

G(j(W) T 1)) X(j(c) - ZirT )). A simplec calculation shows that the

inner product < x, KC.'x > becomes Mlx4N Re(G(jc) - G(j(wc-2rT 1))

J(Q 'n), with M a numbeor independent of N, and p(Q'" ) the Lebesgue

measure of P" . Thus < x, KGx > can be made negative by choosing

N sufficiently large. This ends the proof of Theorem 2. 9.

Remark: Theoremn 2.9 essentially shows that the operator K can

be composed with at class of convolution operators without destroying the

positivity. Similar positive operators are, either implicitly or ex-

plicitly, the basis of mlost of the recently discovered frequency-donzain

stability criteria for feedback loops containing a timer-invariant con-

volution operator in the forward loop and a nonlinear time -varying

ele-nent in the feedback loop. For the case in which the feedback loop is

an operateor of the class K the positive operator obtained by Gruber

and Willerns (26), and in its full generality by Zames and Freedman (65)

seemns particularly interesting. By restricting the derivative of k(t),

they obtain a class of convolution operators which can be composed with

Kc K such that positivity is not destroyed. This idea is used in the

latter reference to obtain a v.ery elegant stability criterion.
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2.6 Positive O f)ertors Nith i\4OO'tonc or Odd -Monoton Non-
].ine ari t:i e; s

Iii this section an answer to t]lc following, qucstion is given:

What: is tle llost general linear operator which when composed with

a monotone nondecreasing (or an odd -monotone nondecreasing) non-

linearity yields a positive operator? The answer to this question re-

prcsents in sonme sense the solution of a problem which has been

studied by many previoXus researchers. In particular it is the prob-

lern studied by Page (43), Pantell (44), and Black (7 ) in connection

with frequency-power formuilas and it plays a central role in the

determination of stability criteria for feedback systems with a mono-

tone or an odd-monotone nonlinearity in tlie feedback loop. In the

latt:er context it has been treated by Brockett and Willemns (10),

Narendra and Neuman (39),Zmarrs(63), O'Shea (41,42 ), Zamnes and

Falb (641), Thathachar, Srinath and Rarmapriyan (55), and others.

The preliminary result obtained in this section constitutes a

considerable extension of a classical rearrangement inequality. This

inequality then forms the basis from which the positive operators of

this section are derived. It is felt that thelse rearrangement in-

equalities are of intrinsic importance and are potentially useful in

other areas of system theory. For various technical reasons, the

discussion is Inainly concerned with sequences. With some mnodi-

fications, similar results can be obtained for the continuous case.

2.6.1 Generalizations of a Classical RPearrangelne-ent In-

Chapter X of l.ardy, Littlewood and Polya's classic book on

inequalities (29) is devoted to questions relating the inner products

of si-ilazrly ordcered secquenlces to the inner pr oducts of rearralngced
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sequences. The simplles(st rcsul.t.given thcre states that if

xl x > .. >x and y > x
.. > y. and if Y> (I) YI(2) 

is any rearranlgemenllt of the y-sequence then

n n

Xk Yk >Z xk kY (k)
k=l k:-l

The informal explanation of this fact given in C9) is that given a

lever arm with hooks at distances xl,X, . x. x from a pivot and

weights Y1 Y 2 , ''' '' ,y to hang on the hoolks, the largest moment is

obtained by hanging the largest weight on the farthest hook, the next

largest weight oli the next mnost distant hook, etc.

This result has an interpretation in termis of positive operators.

Suppose that f is a function froir R into itself, and denote by x and

Fx the n-vectors whose conmponents are x l ,x2 .. .. ,x and
n

f(xl), f(x 2 ), ... f(x). Then in language of positive operators the Hardy,

i.,ittlewood and Polya rearrangement theoremn says that the operator

onl Rn defined by Ox = (I -P)Fx is nonnegative if I is the identity

matrix, P is any permutation matrix and f is monotone nonde-

creasing.

It will be shown that this result together with a result of

Birkhoff on the deconmposition of doubly stochastic matrices permits

the derivation of a nulnmber of interesting positivity conditions for a

class of operators. The results thus represent a test for checking the

positivity of a class of nonquacdratic fornms parallel to the Sylvester

test for checking the positive definiteness of a synnmmetric nmatrix.

This result is less important only because quadratic formns which go

hand in hand with linear transformnatioto ns and linear systemns are used
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1nore often ancl cn't]hus be considered to be mlore imlportant than nlon-

quadratic forms; wh]i.clh go hand in hand itll lonlincar transformations

and non] inear systems .

Rc'narlk: It: is intcresting to notice that Prosser (48) and

Black(7 ) have used the I-Iardy, Litt-lcwood and Polya rearrangemellcnt

inequality as the basis to prove that the crosscorrelation of the input

and the output to a monotone nondeccfeasing nonlincarity attains its

maximum v~ralue at the origin.

Definitions: Two sequences of real numbers {x ,x 2 , .x }

and {Y,Y 2', .. .y} are said to be similarly ordered if the inequality

Xk <xf implies that y <_ y . Thus two sequences are sinmilarly

ordered if and only if they c:an be rearranged in such a way that the

resuiting sequlences are both rmonotone nondecreasing, i.e., there

exists a permutation r,((k) of the first n integers (ir(k) takes on

each of the values 1,2, .. ,n just once as k varies through the

values I,Z, ... ,n) such that both the sequences {X r( 1) xr(2 ) ... ,x }
-- --- ' ' ' ~ r(n)

and {Y1r(1) Yr(Z)' . r(n)} are monotone nondecreasincg. Two

sequences arc said to be unbiased if x ky> O. Clearly two sequences

are similarly ordered and unbiased if and onily if the augmented se-

quences {x1,x 2 . X x, xnil} and {Y.' Y2 ' n yYn 1} with

XnS1 - y - 0 are sinmilarly orcdered. Two sequences are said to

be similarly ordered andc synmetric if they are unbiased and if the

sequences {lxl1. xlJx, . . ., !xnI} and { 1ylfy f, .IYz ., yl} ar

similarly ordered.

Examlke:. Let f(o-) be a mapping fron the real line into

itself, and consider the sequences {x 1, x 2 , .. x } and

{f(xl),f(x, .. .,f(xll)}. These two sequences will be similarly
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orderel- for all sequenles f {x 1 lx 2 .. , x if anlld only if f(o-) is a

monotone nondecrcasing function of o-, i.e. , if for all cl and 0c,

( -2 )(f(0o-) --f ( 2 ) ) > 0. They will be unbiased if and only if f(o-) is

a first and thi'rd quadrant function, i.e., if for all a-, -f(o-) > 0.

They will be similarly ordered and sym-netric if and only if f(o) is

an odd nlonotone nondecreasing function of o-, i.e., if f(o-) is mono-

tone nondecreasing and f(o-) -f(-o-) for all o-.

Definitions"': A real (nXn) matrix M = (mnk) is said to be

doubly[ hyperdonminant vith zero excess if mki < 0 for k / f, and if
n n
Z mk= E mk O for all k,Q. It is said to be doublyyp_er-
k=l =1 n n
dominant if nl < O for k / f, and if Z mk> O and Z rn O

k =1 f =1
for all k, Q. A (nXn) matrix M is said to be doubly dominant if

n n
m.>- fmnki ' and mnkk_> z mk 1. It is clear that all of the

k=l f =1
k/iI Ai

classes of im-atrices introduced above are subclasses of the class of

all matrices whose symmetric part is nonnegative definite and that

every doubly hyperdorninant matrix is doubly dominant.

Two other classes of matrices which will be used in the sequel

and have received amnple attention in the past are defined below.

Definitions: A (nXn) matrix M is said to be doutbly sto-

chastic if it is a nonnlegative matrix (i.e., m > O for all k,L)

and if its rows and columns sumr to one. A (nXn) matrix is said to

be a permutation matrix if every row and column contains n-l zero

elements and an eleme'nt which equals one. The relation between the

The term dorninanlt is standard. Hyperdonminant is prevalent, at
least in the electrical network literature. The termn doubly is used
by analogy with doubly stochastic where a property of a mIatrix also
holds for its tra.nlspose. Beyond this the noCmenclaturel originate s
with the author.
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class of doubly stochastic matrices and pcrrnutation matrices is

given in the followving lemma due to Birkhoff.

Lemma 2.5 .(3irkhoff): The set of all. doubly stochastic

matrices .forms a convex polyhedron with the permutation matrices

as vertices, i.e., if M is a doubly stochastic matrix then

N

M -- a.P.

i=l
N

with a. > 0, Z a. = 1 and P. a permutation matrix. This decompo-
i=l 1

sition need not be unique.

Proof: A short proof can be found in ( 37)

Theorem 2. 10 states the main result of this section and consti-

tutes a considerable generalization of a classical rearrangement in.-

equality due to Hardy, Littlewood and Polya (29). This inequality is

stated in Lemma 2.6.

Lemma. 2.6 ardy Littlewood and Polya_: Let {x 1,x 2, .. ,Xn}

and {{Y 1 ,Y 2 , ,yn} be two similarly ordered sequences, and let

r(k) be a permutation of the first n integers. Then

n n

-Zxkyk> xkYT(k)
k=l k=l

Proof: A simple proof can be found in (29). A convincing

plausibility argument is given in the introduction to this section. -'

Theore-nm 2.10: A necessary and sufficient condition for the
n

bilinear form nn xgkY f to be nonnegcative for all similar]ly
k,f =l

ordered sequences {Xl,x 2 ,...Xn} and {y 1,Y, '...y} is that the

matrix M - (mnkE) be doubly h-,perdominant with zero excess.ki .--.- L--,. --------- -_-
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Proof: (i) Sufficiencay: Let M be a doubly hypcrdorninant'

matrix with zero excess and let r be any positive numbler such that

r > rnk for all k, . Clearly M = r(I - - (rI-M)). Since however
__ r

-- (rI-M) is a doubly stochastic matrix, it can, by Lemnma 2. 5,be de-
N N

composed as Z at.P. with i. > 0, Z a. 1 and P. a pernmutation
-i=-l 1 1 - i-O 1 1

matrix. Thus M can be written as

N

M - p ,(I -P.i) with pi 0

i l

This decomposition of doubly hyperdominant natrices with zero excess

shows that it is enough to prove the sufficiency part of Theorem 2. 10

for the matrices I-P i . This however is precisely what is stated in

Lemma 2.6.

(ii) Necessity: The matrix M may fail to be doubly hyper-

dominant with zero excess because mkf > 0 for some k/f in which

case the sequences with n-l zero elements except +1 and -1 in
n

respectively the k-th and Q -th spots lead to Z m kxkY y - mki < 0.
k, I =1

Assume next that the matrix M fails to be doubly hyperdominant
n

with zero excess because F mk/0O for some I (a similar argu-
n k=l

ment holds if Z mkf O for some k), and consider the similarly
ordered sequences { 1,1} and 0, 0, - ,

ordered sequences {1, .. ., 1,1-c, 1,..., 1} and (0,... 0,O, , . ,,}

with C/0, and the elements ]1+ and ¢-1 in the I -th spot. This leads
n in

to F mkxky = C mkZ n . By taking c sufficiently small
k, =1 k=l n

and of an appropriate sign Z nIkfxkyf can thus be nade
k, I =1

ne gative.

The following t-wo theorems are generalizations of Theorem

2. 10 to similarly ordered unbiased and to similarly ordered -synm-

metric sequences.
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Th'core2.. 1m1: A C1;rad :;ufficient condiltion for the
n

biliall .fo to be non .!_?Lejztive for all. simiiaarly orcdered

unlbiased eec {>:' ,X Z . Xn} ald {y d y' ', . ., y} is thtat tlhe

mnatrix M :- (]Yli;) L.f clom li n anAt.

Proof: (i) Suffjicien.c : -Let M be a doubly hypelrdollm.inant
n nn

lnatrix and c fine nl k ,- 1-mk m=1m for k, n,
11f1_I klz

and rnl 1, n-- . lnkf Then taking Xn.l 1 =Ynl:0 it follows from

n n+-l
Theorem 2. 1. that mIynk m xkYf k Z > 0 since the aug-

k, f -4 k, =1 k -
rnented (n-ln-i1Xnll) matrix M -- (rnmk), k, - 3, 2, ... ,n--1 is doubly hyper-

dominant with zero excess and since the sequences {xl,X,, ... n, X 1n}

and {YI'Y2'''''Yn' Jn--l1) with: Xn l=Yn l=O are similarly ordered.

(ii.) Neccssj!: T. 'he same sequences as in Theorem 2.10 can

be used if the rmlatrix M fails to be doubl.y hyperl do-ninant because

.,k£> O0 for some k/-f. Assumr-e next tt tht the nmltrix M fails to be
n

doubly hyperdolninaint because Enlk < 0 for sbOne Q (a simeilar
k-1

n
argunent holds if Z mnke < 0 for somne k), and consider the se.-

Q=1
quences used in Theorern 2. 10 with the additional restriction that

c> 0. Notice that these sequences are similarly orcdered anld u n-

biased. It followvs then that by taking c > 0 sufficiently slnall.
n n
E3 mkfxk Yf =¢ nkf-'n8 f can be mnade negative.

k, 1=1 k= -I
Theorem 2. 1 2: A necessar y andc sufficin lt condiitionl for the

n
bilinear form Z nk x kY to bc nonlne cative for all sinilarly.]

k, I -:1
ord(IelC, dsyrnmeg ns i 2'.l lc, , x_ } and {YIC . .· Y ) 

is thai the -maitrix M (n?.9 ) be _.ouhly dIon3illnal!t .
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Proof.: (i) StlfficJiency: Let Mi be a doubly doliniant I1mattrix.

Clearly
n 11 n

2 "rxlY.> 2 m> I'll kS x 1; I x k 
k, : -,1]. 'k,f::l k, - 1

k-- ·* k/f

The right: hand sidc of the above incquality is nonnegative by Theorem 2. 11

since the matrix \I::,(mi') with m.".- m when k_- and

mk'; I': 1l xv hen. k/Q is doubly hyperdonainant and since the

sequences {1x] ! , x2 [ ... , IXn} anrd {Iy1I IY2 I, ... Iyn[} are

n

similarly ordered and unbiased. This implies that . mrnkfkY£,> 0.
k,f=l

(ii) Necessity: Assume that the matrix M fails to be doubly
n

ment holds if mkki Imkf |< 0 for some k), and consider the se -

I k
quellces {-sgn nml, P * * -sgn mn 1 , 1E+c -sgn mn-il. * *, -sgn mr }

and {0,..., 1, ,0,..., 0) with Sg na- if a/0, sgn 0:-0,> and

1-'E- and c elements in the 1-th spots. These sequaenceas ar-e simarly
n n

ordered' and symrnetric and lead to I mkXkY I (rl - nak -

k/f

which by taking c sufficient:ly small yields 2 m k Yx< O
k,fzl

Let f be a ma.pping fro-, R into R and denote by F t1e mapping

froln. Rn into itself which, ta .kes the element col(xi+, 2 , .. ., x) into

col(f(xl),f( 2 ), . . ,f(x )). Then in terl-no of positive operators Theoremns

2.10 to 2. 12 )econlme:

Theorem 2. 13: Let iM be an _(n.Xn) mt ria ain l et f be and

( ni) mnollttoneil nlondcl rcaslcinql: f nction l

(i? mornotodc nondcrC.eardsin firnstc and e d th kiX d :c-¢adran't fZ cti)onl
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(iii) odd- io)l''I.?otoe)tn or.?_rtC( a C ing. function

" .'... .. .. . _. __......,: ..... ..... ... Y ' -- . ..... :_Thepn NIF i)? no;-7q C cr tiv oprafr oi R f all ar oanpi~i.na s f

satisfyivg).' tihe' abl4ovc ccmnclitiolns if ind o6nijLf the mat-rix M is

(i)' dol.y hiypordominant with zero excess

(ii) cdopbljy- h!p.e I'dlominant

(iii) dotblr doilominant

2.6. 2 Extension to I -summablc Sequences

In this section I is taken over the field of real. numbers
p

unless otherwise mentioned.

Defilnitions: Let £(Qz, I) denote all boundcd linear trans -

fornmations fromn Q2 into itself. Let R c£(t2, 2). Then R de-

termines (see e. g. ( 2, p. 50)) an array of real numbers {rk },k, cI,
+00

such that y=Rx is defined by yk- 2 rk x1 for x {xk} and
k= -oo

y {Yk},kcI. This infinite sum exists for all xcL2 and the resulting

sequence belongs to t2 A standard resul.t in the theory of bounded

linear operators in -Ililbert space (see e.g.,(2 ; p.52)) states that the

array {rt J}, k,l cI corresponding to the adjoint of R, R" satisfies

r k - rk for all Q, k c I. It is not known wh]at arrays in turn de-

termine elements of £(I£, 12). The following lemma however covers

a wide class.

Lemma .2.7: Let the array {rk }J)c¢I be such that the se-

quences {rkl} belong to £ 1 for fixed k and I, uniformnly in k and
+ 00 +n

1, i.e., there exists an M such that Z IrkI KM and C [ irk£ K<M.
I = 0 k=-- -c

Then {rk } determiilles an element R of £( 2, 2) and IRI I< lM.

Proof: The Schwartz inequality and F'ubini' s Theorem for se -

quences (17, p. 245) yield the following inequalities
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( ,I ' /i) •(>2(X Irv Ix|
00E·~~·~ +-) Co+--co -:

*-f-o~ 1/2-c~~1/2

to oo 

* ·( I I .P_ --o

In what follows an important role will be played by some par-

ticular elerments of 2(T 2 , 2 ) and some particular sequcnces which

will now be introduced.

Definitions: The definitions of sirnilara_. ordered, similarly

ordered unbia:sed and similarly_ ordered synnmrnetric infinite sequences

are cormnpletely analogous to the case of finite sequences and wil]l not

be repeated here. It is possible to show that two sequences in Q2

are sirnilarly ordered if and only if they are siinil.arly ordered and un-

biased. Let M be an elecnent of o(Z, 2), and let {mkn},k,'YcI be the

assoc.iat'ed array. M is said to be doulr ly _jhperdo;:inant if Inak < 0

+co q-+0 --
for k /- and if Z nk and Z nkU exist and are nonnegative for

k.,-o. '.
+oo

all I and k. M is said to be doubly domninanr, t if rnf I [n)nk 2 |
k- -oo

+0 ' k/S
and nkn > _ Z Imk I .

It is clear fromn Lenmnmla 2..7 that if an array or real numbers

{lk2 }, k, I-c I satisfies the doubly domnillance condition and if the se-

quen{ce {k c f, t]e, {rk; .} d etermines-1 a]n eleml'ent;, My, of



-47 -

f(SC2, 2) w ith f [1•| Z sup ImkM Thus it is a silrmple rnmatter to
kc I

check whether ain elenment of £(£ 2 , 2) is doubly lyperdomlinalt or

doubly domninant.

Th followingr extcrision of Thcorclrns 2. 11 and 2. 12 holds:

Theoremia 2. 14: Let 1 4 be aln lement _of £( 2, 2 ). Then a

necessary arid sufficient condiition for the inne r _;rodquct < x, My>

to be nonne gative for all

(i) sin-ilarly ordered uni as d 2 secliences x anld y

(ii.) similarl.y ordercd symnetric -seseuences x and y

-is thcat M be

(i) dou!blyhyper dom inant

(ii) doub].c donminant

Proof: It is clear'that all finite subsequences of x and y

are. simlilarly ordered and unbiased or similarly ordered and sym-

metric. Hence, by Theoremins 2. .1 and 2. 12 all finite trunlcations of

the infinite suni in the inner product < x, My> yield a nonnegative

number. Thus the limit, since it exists, is also nonnegative.

Of particular interest are the arrays {rk}, k, f cI for which

the entries depend on the difference of the indices k and f only.

These arrays are said to be of the Toeopli:z, type and have been iin-

tensively studied in classical anal.ysis (see c.g., (25)). It follows

from Lemnma 3.7 that if the array {rkf=rk )}, k, fI is of the Toeplitz

type then it detern-mines an el.ement of £(£2z, 2 ) if {rk},kcI, belongs

to I1 (In fact the elemlcents of £(£2, f2 ) for which the associated array

is of the Tocplitz type stand in one-to-onie corresponde-nvce to all t -

sulnnlabl]e sequencets wo ie 3 ialit --in -tl -i- me an z -tr a.nsformn bl on gs to

L for z ::l .) An cl].cin-.nt of f('£2, ? 2 ) is said t:o be of the To pl.itz
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ty-pc if lhe associated array is of the 'Toeplitz type. An elerlecnt R

of C£(.2, 2) wlichl is of the Tocplitz type determnines thus a sequence

{rk),kCI with {'k)}(- and wlhose lilmit:-in -th c-imean z-transform

belongs to I, ' for Izf:- 1. T'Jhe inportance of these linear trans-
c0

format:ions stcmsffrolm the fact tha' they define convolution operators

with a time -invari.ant kernel and are therefore closely associated with

time -invariant sys'temns,

Definitions: A sequence of real numnbers {ak},kcI, is said to
+00

be ].yCerdonlinant if {al}c 1 , if ak< for all k-/0 and if a > 0.
k- k1 k- k o ,k-

+ o0
It is said to be dominant if and if { > Z |a|

TIeorem 2. 15. lct M be an eleonnt of '£(2' . ) which is

of the Toep]lit.z_tjpe. Then a necessary_ and sufficient condition for the

innerl. r1odu ct <x, My> 'to be nonneogative for all

(i) similarly ordered unbiased £ 2-seq uences x and y

{(ii) simiiarby orldered symmetric Q2 -secuences x and y

is that the se e { } hich is determined b M be

(i) _hjpe rdominant

(ii) dominant

Proof: This theorem is a special case of Theorem 2. ].4.

Theorems 2.14 and 2. 15 have an obvious interpretation in

terms of positive operators. Moreover Theorem 2. 15 yields some

simple properties of the input and the output: spectra to (odd) monotone

nondecreasing nonlinearitics. This is stated explicitly in Theorem 2. ].5'

Definitions: Let. A denlote the class of operators froi-a I

into itself, each elemCent, A, of which has associated with it a

function A(z) with A(z)c L for jz| I. 1, witlh A(z) - A(z)-and
00
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whic]h m)aps an clemenlt of I2 as follows: let X be the linmit-in-

the--mean)l z--tranllsform1- of x. Then lihb sequence y is the inverse

z-tralns;form )- Of the flnict:ion A(z)X(z).

Let Jt dle['ote(' the class of operators froml Q2 into itself,

each element, F, of which has associated with it a function, f(o-),

froml R inlltC itself, satisfying the inequality [f(co) < M la I for

some M and all o-, and which maps the sequence x-{xk}, keI of

1Z into the sequence y:'{yk} with yk--f(xk).

It is a simple. -nratter to verify that these operators are in-

deed well defined, i.e., that they nmap 12 into itself. The class

A stands in one-to-o-ne correspondence with all P 2 -sequences

whose limit-in--the--mnean z-transform belongs to L for lzl--l.
00

Moreover if {ak} cP 2 and A(z)cL for Iz|1l are such. a sequence
00

and its limit-in-thel-meal z-transform then the element of A which

has the function A(z) corresponding with it rnaps P2 into itself by

the convolution

Yk ak -XI
l= -oo

Theorenm 2. 15': Let AcA and Fc F. Then AF is a non--

negative _o operC-ator on P if

(i) the f corresponding to FI is a (odd) moinotone non-

decreasino firs. and third q uadran t fun cti on

(ii) the inverse z-tra.nsform of .iA(z) is__yperdo.inant

doninantl

Moreover the c]lc-ments of A satisfyina _iil are the most .genral.

elements of A ilich yie.d a nonnegative op-erator, 'AF, on P,

for any__ F c F sa-Jtisfyirgl (i) . A F is' a positive oper2ator O-1 f.. if
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A--I and IP-cI sattisfL_ i) land Ji) for some c> 0.

Proof: The theorem followvs fronm Theorem1- 2.15.

TI'heore 2. 15' thus states that if X(z) and Y(z) are the

liinfit-in-the-mean z-transformls of the input andl the output of a

(odd) monotonec nondecrcas-ing nonlinearity then

A(z)X(,z)Y(z) dz> 0

where A(z) is the z-transform of any (dominant) hypcrdominant

sequence.

2.6.3 Frequency-Power Relations for Nonlinear Resistors

In this sectioil a class of positive operators formed by the

composition of a linear time -invariant convolution operator and a

(oddcl) monotone nondecreasilng nonl.inearity will be derived. The

analysis is done for operators on *L2 but the results are also

stated for almost-periodic functions thus placing the positixve oper-

ators obtained in this section in the context of the classical frequency-

power relations for nonlinear resistors.

In this section L is taken over the field of i:eal numbers

unless otherwise mentioned.

Definitions: Let M denote the class of operators from L2

into itself each element of which belongs to F and for which the as-

sociated function f is a m onotone nondecreasing function, i.e.,

(o-l-C2)(fcrl)-f(o2))> O for all cr1,o2e R.,

Let S denote the class of operators fromn L 2 inlto itself each

elemflel)t of which bclongs to M and for which the associated function

f is in addition an odd function, i.e., f(o-) -f(-o-) for all o c R.



Let X1' XZ C Ji'' Theon x 2 (t ± t) C LJ2 for all T c R, and

1 x2('r) 1l I2 -- 11(t )IL Z . The crToiscor-clal- ,tion function of x1

and x is defined as; tlc function RXz(T) x l(t) xZ(t-T)> Note

that the Schwla'tz incquality yields that IRx2 (T) I JIxl< I xZ IL2X

Moreover, since thc ].imnt-in -tlhe-ncean transforms of x(t) and

x(t+-l-) are given by X(j,) and X(j)c'jWT respectively it follows thus

+o0

froma Parseval ' s rel..tion that R X1 ( T ) Z- Xl(jw)X (joe w.

-00

The theorern whilch follows is a generalization of a well-known fact

about autocorrelation functions: it states that the crosscorrelation

function of x and y attains its maximu-m at the origin provided x

and y are related through a monotone nondecreasing nonlinearity.

Theorem) 2. 16: Let FcM, x cL and let y=-Fx. Then

R (0) > BR (t) for all t cl. If F beloln s in addition to S then

R (0) > I (t) I for all t .R.
xy xy o

Proof: Let F(O-) f f(x)cdx. F(o-) is a convex function of ur

since its derivative exists and is monotone nondecreasing. The con-

vex function inequality (5 ) yields that (o-l-o -)f(o-l)>F(C l)-F((cr) for

all 0-1,- 2 c R. (Thi s inequality can simnply. be obtained by integrating

f(o-)- f(uy) versus o- frontm 1 to °-2.) Taking o-1 =x(t+-T) and

2 ::--x(t) it follows thus that

(x(t) - x(t4)) y(t) > F(x(t)) - F(x(t--r))

which yields, after inte.gratioln,that

-I-co + 00

R (0) - Rx(n') > f '(x(t))dt- F(X(t-r))Clt 

. _co -oo



T'I'hec intel-c3 orls on t.he ri llht halnd s-ide exisi sincei by assur i'ptionll Fc N.

and th us If((l) 1< (K 1- I for sonae K and all o Ce, ,wllich iml-plie s that

IF(0) < I1o 1 for al]l o- cR. -Ience Rx(0) >R y(t) for all IF c M

and t c R.

If f is in addili:ion odd then the convex function inequality can

be rewritten as ({rl-(-o-))f(o-l) > F(ol)-F'(-o-2 ), which using the fact

that f is an odd function yields that (o-l1+- 2)f(ul)> F(cl)-F(- 2).

Using exactly the sanae' argumlent as above this then leads to

Rx (0) + rxy(t) > 0 for a.l. t cR. Thus R > R xy(t) | for all FcSxy xy xy- xy

and tc-R.

Remark: Using an analogous argument as the one used in (59),

it can be shown tbhat the above theorem is also sufficient in the sense

that if y=Fx for somne FEF and if R (0) > Rxy(t)(Rxy(0)>_ xy(t) [),

for all x LIZ and tc R, then F c M(.

: Theoreml 2.17- Le: FcM(SJ and let Gc G bc determninedyb

the' function G(jco) gwiven by the Fourier--Stfieltjes inte gr al

G(jo) = 1- f e -J°Td¥(T)

-,,3

wherc V() is anZ- monotone nondecreasing fucnctioi n a.1 all function of

bounded variation)l of total variation less than or equal to uiy.. Then

GF is a nonnegative operator on L,2 .

Proof: Assumy.e first that F JF. This theorem follows then

from the prevrious theoremn if it is noted that R y(O) > 0 and that the

operator G corresponds to the convolution defined by

y Gx x (t) f x(t -T) dVi(T)
fc
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Let y - Ix. Thus < x, Gy> c Rxy ( 0) + ( )q -\xy(T ) ] dV (T)xY xy

where c =l- tlhe total variationil of V. Note that tlhe: above integrals

exist since R1 is bounded and since V is of bounded tot-al vari-xy

ation. Thus <x, Gy> - <x, GFx > > 0 by Theoroem 2. 16. The odd-

m0onotoine case is proven in a similar way.

Renlark: GF will be a positive operator on 1, if F - I¢c l(E )

for some c > 0 and if the total variation of V is (strictly) less than

unity.

Theorem 2. 18: Let F and G satisfy_ the conditions of

Theorem 2.17, .and assurne that the function f which deternmines F satis-

dfies a Lipshitz condition,_tl-en (G + a d-)F is a nonnegative operator

on S1 for all a E R.

Proof: This theorem follows from Theorems 2.6 and 2. 17.

T- heorem 2.18 states thus that if X and Y are the limit-in-

the-mean transforml-ls of x and y=Fx with x and F as in Theorem

2. 18, then

+00

f M 1 (j) X(jW) Y(jW) do > 0
-00

for all functions Ml(jco) given by the Fouricr -Stieltjes integral

00

where ac R and V 1(T) satisfies the: conditionls of T'heoremn 2.17.

There is however one refinement possibtle to this result which

has no ininmmedtiate interpretation in terms of positive operators



-54 -

unless additionl i srooil.]e; assuni-ptions arLe nlmade on x. Indced,

considcler teic funcl.tions of thec, for-m

~~+00c --· 03 3

dM(j) . dV (T
and J· T

x --O

exist for x( >0, and g(-) is any bounded real-vlusied function of T

which is conta bnuous at the origin and with (copact sets) ch.tcan be~ 2 - and S ~- 2

shown that under th-le se conditions M2(jC3) is well-defined). It is

then possible to show using an argunlmen:t which is completely analogous

to the one used previously that the integral

f M(jco)X(jw) Y(jco) d

00

exists and is nonnegative for any M(jo) Mn(jco) +- Mv(jno) with

Mwl(jc) and M 2 (jo) of the form given above.

Functions of this type have beon studied in probability

analysis in connection with characteristic functions of (possibly de-

fective) probability distribution functions and infinite:ly divisible

distributions. (See e g., (2;0)) . It is an interesting and somewvhat

puzzling fact that they alseo occur in the present context.

The followiino sirp].e functiols of (i) belong to this class

(fo- the noiiotonc case) and are of ptarticular interest.
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M(j) o) - ye Ih werc ^J and Tr are real nunltbers

satisfy'ing 0 < T < 1 and 0 < T < 2

Mx(jc) - 1 - e(co) where e(c) is any real valued, no:;-

negative ceven function of w which is

convex for - > 0 and with e(0) < 1.

TT o >M(jco) :: [c[|f[ ].-t.-j6tan.2. ] for W >_0

M(-jH) =- M(jo) for co < 0

M(jo0) - 1[ 14-jb n-- ] for t < 0
0

where T,6 and wo are real numbeors satisfying 0 <T <2, T / 1,

|I < 1, and c)O > 0. For the details in the calculations sce((20), p. 541)

In the rema:-nder of this section these results will be tied in

with the classical frequen'cy--powcr formul.as. A nonlinear resistor

with an almiost periodic input absorbs power at some frequencies

and supplies power at others. Using the bounds on the cross-

correlation of the input and the outpult, similar to those obtained in

Theorem 2.16, a general relation between the power at the different

frequencies follows and son-ime interestinng frequency-power formulas

are thus obtain.ed.

Definition: A positive nonlinear resistor is a two-terminal

device for %which the current: oiutput is given as an instantaneous

function of the voltage input, i.e. , the output- y(t) is. given in terms

of the input x(t) by the rela"ltion y(t) - f(x(t)), xwhere f is .mapping

froam R into itself. Moreover the functionl f satisfies

(i) f(O) =: 0

.... (ii) exists and is nonnecaijati for all -

Let x be an alm-ost-p eriodic function of tit. It fo].lows thll?;

froml thc- smloothnrlcss conditi c s on) f lheal. is als;o 'lnr-eo.;t -lpe0riclic:.
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)cfllili.oLns: Let be la. ba)L.sic fr',que,'c com-non to both

x(t) and y(t) and let xk anld y)r be the corrlesponding ,'o01uier co-

fficienlt-;. L,et t > 0. 'Jllen the co9p-ijclx voCe1, the active _ o r

and the rea'(lc:ivc__poe.-c r a Lbsorbed by the nonlinear resistor at fre -

qucncy o) are defined as respectively

-ik - Xk Yk Pk Re R k Im R k

F requency_-P-ower formrrulas are relations between the active and re-

active po\vers absorbcd by the nonlinear resistor at the different

frequenlcie s.

Using exactly the same methods as in the previous section the

following general. frequency-power relation can be obtained in a

straightforw-ard fashion

Re ' 0 Rk M(jick) > 

where M(jw) is anly function of the type given above. The particular

choices of M given above lead to the following sirmple frequency-

power formulas

Z (1. -ye ) I > 0 where y and T are
k> O0

real nunm-ber s

satisfying O < ' Y 1 and O < T < 2

3 (1-e(Iok))lk >0O

%?k>0

where c(,)) is any real. valued, nonne gative, even function of w

which is convex; for (o > O0 and with e(0) < ]

z [ k 1k (Pk + Qk 6 tan- ) 

(k> 0



ok
k; k -1- I 6 lo )> 0

(0

where T, 6 alnd wo are real nulnbers satiIsfyilng O T < < 2, T / 1,

I 1< 1, and co > 0.

'Reenark: For nonlinear capacitors with voltage versus charge

characteristic v - f(q ) where f satisfies the same assumptions as

above, analogous frequency power forrulas can be obtained with R
JR k k
j kTreplaced by . The same is true for nonlinear inductors with cur-
ck

rent versus flux characteristic i:.-f(aT) with Rk replaced by Rk/jcok.

2. 7 Factori zation of Operat-ors

Before motivating the analysis which follows one definition is

needed which will help to fix the ideas.

Definition: Let S be a subset of R, and let Y be the space

consisting of all mappings from S into some space V. Let 0 be

"an operator from XCY into Y. The operator 0 is said to be a

causal operator on X if for any T cS and any xl,x 2 eX, with

xl(t) - x 2 (t) for all tES with t < T, then 0x l (t) - 0x2 (t) for all tES

with .t < r. Thus a causal operator is one in which the value of the

output at any time t does not depend on the values of the input after

that time t. A causal operator is often called nonanticipative.

In many problems in system theory, e.g., in stability theory,

in optimal control theory and in prediction theory there is particular

interest in causal operators. For instance, in network synthesis it is

expected that a synthesis procedure for passive nonlinear network-s

will require two basic properties of the operator defininlg the input-

output relation, nanaely positivity and causality. The imlportance to
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stability theory of generatinl positive operators which are also causal

will becoe mol'(re apparent ill the next chapter. In this section some

techniques for generating a causal positive operator froJn an arbi-

trary positive' operator are developed. The basic idea is simnple and

is expressed in the next thcorenm.

Theorerl 2. ]9: Let: 0 be a nonnegative operator on an inner

product space X and assume that 0 can be factored as 0::0 0+ with

0+ a causal operator on X and 0 a bounded linear operator on

X which is invertible and such that (o is a causal operator on X.

Then 0+(0-')-] is a nonne a.ctiv;e caulsal operat:or on X.

Proof: Let xcX. Then <x, 0 ) -lx>=<(O )(0 lx0+(0 )x>
____ 0(0+ X x>=<(0

=<(0-0*)-x, o (O X) >

>0

Furthermore, since 0 and (0') are causal operators on X,

so is 0 +(o ) Thus 0 +( ) is a nonnegative causal operator on X.

The above theorem and the resulting possibility of generating

a causal positive operator from a noncausal positive operator show the

importance of obtaining sufficient conditions for a factorization as

required in the theorem to be possible. Simnilar problems have re- -

ceived a great deal of attention in the classical prediction theory , in

the theory of linear integral equations and in probability theory. It:

brings to mind some of the work of Wiener (58) and KIrein (34) but the

existing re sult s deal ahl ost Exclusively xith inear time-invariant convoluti onl -

type operators in Hilbert spaces and the analysis uses the fact that

these operators are commultative in an essential way. The operators

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ X-
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which will. bc considered here, however, need not have this property.

The results obtainc ed by these authors. are heice not inlllediately ap -

plicab].e and a factorizatioin theorel]-n which aj'plieis to mlore general

operators.is requlired. The factori zt-ion t-leoremn obtained in this

section is felt to be of great interest in its own righlt. It applies to

linear convolution operators whose kerncl rnight be time-varying and

which need therefore not be colrnmut'ative.

The factorization problel-n is one of considerable interest and

inmportance and the natural sctting for the study of such factorizations

appears to be a Banach Algebra (64,34). Assume thus that the oper-

ators under consideration form a BanLach Algebra . As is easily veri-

fied, the causal operators will then fornm a subalgebra since causal

ope}r'ators are closed under addition, under conmposition and under

nmultiplication by scalars. This is the reason for the introduction of

the projection operators and for stating the theorem in terms of

-'arbitrary projections and eleinents of a Banach Algebra.

The general. factorization thcorem thus ob';ained is then

specialized to certain classes of linear operators in Hilbert space.

It will also be indicated that in the case of certain convolution ope r-

ators with a tine -invariant kernel the results are rather conservative

and that less restrictive factorization theorems due to lKrein (34, p. 198)

exist. The setting of the factorization probleml is the samne as used

by Zalnes and Falb (64), but the results are more general, The

nmethod of proof is inspired by a paper by }?axiter (4 ).

Definitions: A -3analch Al]e bra is a norinecd linear vector

space, o-, over the real or comnplex field which is comnplete in the

metric induced by its. norm-l and wvhich has a 1appinp (r_]iamtpi cacjoao)
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froml oXo- into o dcfillecd. This multiplication is associative, is

distributive with respcct to addition, is related to scalar nmul.tipli-

cation by a(AB)=A(aB)- :(aA) B, and to the norm on oc by !JA1l31< IAI li B11

for al.l A, B co- and all scalars a. A Banach Algebra is said to have

a unit eleiment if there exists an element Ic o- such that AI--IA---A for

all Aco-. An element A of a Banach Algebra with a unit elemnent is

said to be invertible if thefre exists an element, A l, of o- such that

AA- =A- A=I. A boufided linear transformation, ir, from O- into itself

is said to be a pcK-j cion on o- if ir :-n and if the range of ir forms

a subalgebra of o'. Note that the range of a projection is thus as-

sumed to be closed under addition and multiplication. The norm of

·rf, llTl is defined in the usual way as the greatest lower bound of all

numbers M wlhich satisfy l|rA II <_M 11AI for all Ac o-.. 0 denotes

the identity transformation"' on o-.

The following factorization theorem states the main result of

this section.

Theoremr 2.20: Let r- be a Banach Al aebra with a unit ele-

ment afnd let wrf - and r --: 0 - 1r+ be projections onl_ -. Let o-+ and

o- be the anges of r and r, and assume that 11r+ || < 1 and that

IIt rI < 1. Let Z be an element of o-. and let p be a nonzero scalar.

If IZ II < pl, the n there exist elements Z + co- and Z E o- sutch that

(i) M = pI-Z=Z Z

(ii.) % and Z. are invertible

Not to be confuLsed with J, the unit element of -.
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(iii) iZ and (') - 1 belo.gr toa' otI and Z" and ) 1

belong to o-O- I.

Proof: Since the proof of tihe theoremi is ratl)er lengt-hy, it is

subdivided iint-o sevcral lemnllnaLs.

Icrlnma ?. 8: Let {Ak} { ) and {Nk}, k:l, ,.. ., be se-

'quences of ].ernelnts of o-, rr- and o- respectively and assume that

for somle r > 0 and all r < r

(i) the series A I+ Akrk

k= 1

P = II Pkr

k=l

oo

- kand N I > Nkr convrerge

(ii) A = PN

Then A uniquelry deternlines the sequences {Pk and {Nk}.

Proof: Equating coefficients of equal powers in r in the
n -1

equality A=PN leads to P-+N =-A and P +N =A - E P N
n -n n k=l k n-k

n-l n-1
for n 2,3,.... Thus P lT (A - Pk Nn 'k ) ancd N :-T (An - l PkNk)

n n kIIlk l n n kl 

which shows that A uniquely deterl-,ines P and N provided it
1n . n

- uniquely deternines P:', P and N.. N Sinlce A uniquely1 n-1 1' ' n-1

deterrnincs P an N1 by 'l -' Al and Nl = A the r esult fol-

lows by induction.

-' : cl denotes all. lcem-ents of c- xwhich a re of the forlml R-a aI
with R co - and a a scalar. 0- O is cdefineO atnlocousily.



:Lei]72nal 2_. 9: '11h'e elqucitions

P I + rTr' 1' (ZP)

and N I Z- rlr(NZ)

have a unique solution Pc o- and Nc F for all [r < p 1 More-

over, these solutions are given by the convergent series

coo o

P Z Pkr and N Nkrk

k-O k=O

with P No I, Pk-l -- (%Pk) and N lr(NZ). Notice that
o ki-l ' k Fan k

P E+-@I and that N¢ (r-O I.

Proof: I'he result follows from the inequalities

IIrirt(Z(A-B3)) |I|<p[- 1 IZ 11 IIA-B 11

Ir'rT-((A-BN 7Z) |L ,|p jl Z, I| ||A -B 11

and the Contraction Mlapping Principle. Moreover, it is easily veri-

fied that the successive approximations obtained by this contraction

mapping with P o=N =I yield the power series expressions of P and
0 0

N as claimed in the lemma.

Iemrna 2.1 0: The solutions P and N to the equations of

Lemma 2.9 -are invertible for all Jr I< 1P and

Pl= I- rwr+(NZ)

N = I - rTr(ZP)

-1 o_ -1 (
Moreover, N 1 p-I - rZ for all I. Notice that p-1 G I

and that N -1C+ O- I.

Proof: Froni- the equations defining P and N it followrs that

for |r| < |P| 'lr,+(N7Z) ||< J-;Il zll- and lrr,-(zP) [1< -..-.-I1.L

Since all clemients of o- which are of the forin I-B with !P) II < 1 a-re
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invertible, it: follows thus thaLt I-riri(NZ), I-r-,-(ZP) and I-rZ are

invcrtible for r < lp -1/z2. Furthermiore tlheir inverses are given

by the convcrgcnt series

00

k-i

00

(I-r'r-(ZP)- 1 (TrZP))rk

k=l

00

(I-rZ) 1 I+ > rkk

k=l

Fromn the equations co P and N it follows that for Ir I lpf-1

(I-rZ) P-I-r'i-{ZP) and 1\(I-rZ) I-r+r{(NZ) and thus that for

Ir[< Zpl-1/2, (I-rZ) =P(I-rr-(ZP)) -(I-rlr-(NZ))- N. Since all

factors in the above equalities are given by the convergent series given

above and in Lemma 2.9, and since a-+ and or- are closed under

multiplication, Lemma 2.8 is thus applicable. This yields for

Irll!jpI-/2 P-(I-rT(NZ))- , N-(I-r~r-(ZP))- and PN--(I-rZ)- 1

Thus fo' Jrl< lpl- 1 /2 the following equalities hold:

P(I-rr4+(NZ)) = (I]rT+ (NZ)) P=I

N(I-riT-P)-:(Irr-Z)N-I

{l-rvr~(ZP))(I-r1T {NZ,)) :I-rZ

Since, for r 1 < Ipl- , all to ers in the above equalities are given

by geometrically convergent power series in r, they are analytic

functions of r for Ir < I p '. Since equality holds for Ir l<lpl-J/

it is thus concluded from analyticity that equalit-,y holds for a'll

r ?_1l P-' Thli s ecnd; hlie proof of Len-ma.a Z ]0
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Plo- O r'ltO3tsn . (: Le- cp1ill the above lernnla. l'he

theorem follows with Z% -p(J-p lir (ZP)), -p N, ?-l+ f(NZ)

and (Z-+1} P.

Under a suitable choice of the Banach Algebra and the pro-

jectioni operators a number of intercsting corollaries to Theorem 2.20

hold, two of which will. now be given.

Definitions: Let R be an element of £(f 2, g) and let {rk },

k, fc I be the corresponding array. R is said to belong to

£+(fZ' 12 ) if rk:-0 for all k<f. It is said to belong to -( 2, QI2) if

R'" belongs to t+ (I2' £2 )'

Coroll]ar'y 2. 1 Let Z be an element of L£(2, Q2 ) which is

such that Z-c I is doubly dominant for some > 0. Then there exist

clemlnents M and N of L(i 2 , P) such that

(i) Z = MN

(ii) M and N have a bounded inverses M-1 and N - 1

(iii) N and N belong to £ L+(f, Q ) and M and M 1 belono

to 2,i 2 .) .: 

Coro].lall 2.2: L.et A(z) -c be the z-transforln of a sequence

which is dominant for some c>0. Then there exist functions Al (z)

and A (z) such that

(i) A(z) - A-(z) AlF(z)

(ii) A+ ( z) and (A (z) ) - are tc z-transforms of f -scqunct ce s

ak} Ld ,k} wit. h a bk =-0 for k< 0 ad A (z) and

(A(z)) 1 are the z-tralnsformnas of -sequences {ak}

and {bk) withl a k bk 0 for k> 0.

Proof: It will, be shown that these corollaries follow fron-m

Thecorem 2.20 unlder a suitable choice of thCe P;ra.!ch Al.gcbra o- and

tlhe projcctions ;- anld u.
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Corollary 2,.1 follows froml Theormc 2.20 with the Banach

Algebra ar all members of £(2z, £2 ) such that if A e o- and if

{ak£ ) ,} k, fcI is the corresponding array, then the sequences {akf 

belong to 21 for fixed k and 2, uniformnly in k and f, i.e., tlhere

-+00 +00

exists an M such that Z lak 1<M and. lfak£' <_M. Multi-
k:: - oo .e -0

plication is defined in the usual way as composition of elements of

(BZ, f2) I'The normn is defined as the greatest lower bound of all

numbers M satisfying the above inequalities. The nonobvious ele-

ments in the verification of the fact that o- forms a Banach Algebra

are that O- is closed under multiplication, that IIAB 11< IIA |1. IB ii

for all A, B c o-, and that o- is complete. Closedness under multi-

plication followirs fromn Fubini's Theorem for sequences (17,p.245) and

the inequalitie s

+00 +00 +0oo -+ 

X I akibil! IIakilIbilI
k-- -oo i- -o3 k=-oo i=-oo

+ 00 + 00

> I i I I ki
i=-o k- -oo

< IA |1 JIB ||

also aki b I < IAI IIB

1--00 i=--z00

These. inequalities also sho-w that fIAB 11< _lA ii . 1.11 . Completeness

follows fromn thle fact that 21 is conaplete (31). The projection oper-

ator r+- is defined by rr+A::-l with if {ak2 } and {bki}, k,fcl are

the corresponding arrays, then ak =bk f for all k> 2, and b k--0



-66 -

otherwisc ir- is definlcd by n-r::0-ir' It is cle;,rl tlhat f7ri I' 1

and that r- -- I . 'he: only fact that. is left to be shown is that if

for somre c > 0, Z - c I is doubly domnin;,nt then Z can ble written as

Z pI - A with Aff II < p. It is easily verified that any p with

p p > Sup Zk yields such a decomposition.
kc l

The proof of Corollary 2.2 is comnpletely along the lines of the

proof of Corollary 2.1 but with a Bai{ach Algebra a- all 1 sequences,

multiplication of A- {ak} and B - {bk} defined by AB-C={ck}

+00 +00
with ck Z ak1 b and IIA11 z faki . The projection oper-

f =- o0 k=-oo

ator i+ is defined by r+A-=B with A={ak}, B={bk}, bk=ak for

k >0, and b k for k < O. ff- is defined by w-= 0-r + .

Remark: The factorization in Corollary 2.2 is valid under much

weaker conditions than stated. Indeed although dominance of the in-

volved sequence is certainly sufficient for the factorization to be pos-

sible, it is by no means necessary as is shown by the following

theorem- due to Krein (34, p. 198).

Theorem 2.21 ({reii): Let A(z) be the z-transform of an - -i

sequencd. Then there exist functions AT(z) and A(z) such that

(i) A(z) A(z) A(z)

(ii) A+ (z) and (A (z))1 ae thez transforms of gl-seqences

{ak} {b+ wi'h ak+ bk - 0 for k < 0 and A-(z) and

(A-(z)) - l are the z-transformns of f 1l-scq. uelces {ak} and

{bk} with a k = bk= 0 for k > O

if and only if A(z) / 0 for z,[::] and the i..crceasec in the. aroun.ent

of the function A(z) as z moves aroundci the circle fz. |-- is zero.
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M.oQ-eore. all factori. zati on ]i ch s;t-i fi.er;s con liti.ns ) tan(l. (i). diff.c 

92, .I~_l?. 91!lg ro -it.;..l).!1 i( t!ive c ua;[:t.

Proof: A proof can be found illn (34,, Theoremn 5 .1)

It is clear that if A(,z) - c is the z-transformn of a. do-rinant

sequence from some c > 0 then A(z) satisfies the conditions of the

above theorerm since then ReA(z) >c > 0 for zfI=l.

Remark. An interesting question is if it is possible to

extend Corollary 5. 1 so that it would cover Theorem~ 2. 2 and be-

come an extension of it. Unfortunately this has not been possible as

yet. Two possible avenues of generalization are:

1. Find a class of elements of £(,2' 2 ), which canll be

factored at MZN with M and N invertible elements of £(2, I2)'

M,M -IE£+(,2 f2 ) and N,'N- 1c£-(fZ Z) and Z-cI doubly dominant,

for some c> 0. Clearly to find the most general class is just as

difficult as to do the original factorization (this can be seen by

taking Z=I). However it might obtain some results by adding sonle

additional restrictions on0 M and N.

2. See what the methods used by Krein in (34) have to say

about the factorization of generalized Toeplitz-type elements of

£(£2 f2) for which the corresponding array {rkf , k, £eI is of

the form

A_1 A A]

* A A A0
A1 A Al

* * -1 o 1 '
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whic'r {Ak), k c I is a sequence of (nXn) rmatrices, such that

{ [IAk II} c ¢1' The conditions would naost likely be in ternas of the

generalized z-transfornml of {Ak} for z = 1, i.e., in terms of

the mnatrix

A(z) = l -k
k:z - oo

for IYI 1.

Remark: The factorization analogous to those obtained in

Corollaries 2. 1 and 2.2 but for convolution operators on IZ with time e-

varying kernels is straightforward and will not be explicitly given.

The analogue to Theorem 2.21 for the operators with a time invariant

kernel follows since it gives a necessary and sufficient condition.

Another useful factorization theorem which is due to Krein and

which is less restrictive than the analogous factorization obtained in

Theorem 2.20 regards another class of convolution operators.

Let G 1 be a class of operators from L2 into itself each element

of which is determined by an element (g(t), {gk}) of L1XI 1 and by a

mapping {tk} from I into R. The operator CG G1 maps x c L

into y with

+ oo 0+o /

y(t) = gkx(t-tk) +f g(t-T)X(T) dT

k= - oo -co

It is simple to verify that G is well defined, i.e., that it maps L 2
+ I

into itself. Let G1 denote the subclass of G for which the de-

termining elenient of L 1XIl and the mapping '{tk} satisfy g(t)=0 for t< 0 anC

tk> 0 for all kc I. Let G1 denote the subclass of G1 for which the

determining element of L1XI1 and the mnapping {tk} satisfy
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g(t) 0: O for t > 0 and t k < 0 for all ke I. Clearly Gc(C1 if and

only if G Gc

Theormcn_ 2 22 (I2 ] eip): .Jc t Gc G1 . Then there exist elemenlts

c+ G and C G such that-

(i) G G G

(ii) G+ acl CG a-re invertible

(iii) G + and (G) c G, and G and (G) c- 1

if and only if IG(jc)j > c for some c> 0 and all wo R and the in-

crease in the argument of the function G(jo) as w varies from -oo

to +oo is zero.

Proof: A slightly weaker version of this theorem is given by

Krein (34 p. 17.8, Theorem 2.1). However the extension to cover

Theorem 2.22 presents no apparent difficulties.



CHAP'?TER III

STABIIITY OF tFEEDBACK LOOPS

3. ] Generaliti.es

In this chapter sonec sufficient conditions for the stability of

feedback loops of the type shown in Fig. 3. 1 will. be derived. The

results obtained in this section are along the lines of those obtained

by Sandberg (54) and particularly by Zames (63 )."

U1 + _ y

+ -. 2 }U2

Fig. 3.1 The Feedback System Under Consideration

i-J 'Before introducing formal definitions of stability it is neces -

sary to define what is meant by a solution.

Definition: Let S be a subset of R and let Y denote the

linear vector space of all maps from S into a linear vector space V.

Let Ul,u 2 E Y and let G 1 and G 2 be operators fromn subsets of Y

into Y. (Note that the domain of G] aid G2 need not be all of Y.)

The quadruple el,yl,e 2 ,y 2 is said to be a solution of the feedback

loop if el,Y l,e 2 ,y 2 c Y, if e] E DIo(G), c 2 c Do(G2 ) and if the

equations

Other pertinent references are the papers by Zarantonello-(66),
Minty (38), Blrowder (34) andcl Koloctner (32). F for an ac:count: of re-
lated problemlns, see the book by Sa.;ty (50).

-.70-
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el '= Ul -Y2

Gee2 2q Y 1Y1 = Gle1

Y2 = G 2e 2

are satisfied for all arguminents t c S.

Next, the notion of an extended space will be introduced.

lDefinition': Let xcY and let T c S. Then the T-truncation of

x, denoted by P x, is defined by P x = x for all arguments t c S with
T T

t< T and P x =0 for all t cS with t> T. Let X CY be a normed
T

linear space. The extended spjace X is the space of all elemenents
e

xcY for which P XX for all -Te S. It is assumned that P is a
T

bounded operator fronl X into itself, i.e. , that P xcX for all

x C X and -r c S, and that thle bound of P orn X, | PTii, is less

than or equal to unity, i. e., II PTX I< ljxjj for all x c X and 1-eS.

Since P PT' P is thus a projection on X for all T CS. Let
- T T 'r

sup S denote the supremum of all clenments of S if S is bounded

from above or +co if S is not bounded from above. It is assumed

'that if {Tk}, k c I, is any nondecreasing sequence of elements in S

ith lim Tk sup S, then liram PTR x[ =- I|x|[ for all xcX. Con-
k- co k

versely, if x c Xe and if the sequence of real. numbers flP Xl } is
T i

bounded then it is assumed that this implies that xc X and that

lix I = 1im lip xll. '(This limit,exists since the sequence { li P Xk
k -- oo k k

is nmonotone nondecreasing in k.) Thus if xcX then xcX if and

only if Ilt x i <L M for all -r S and some coinstant M and if xC X

thoen lix |I su-- u1) x i l. || If X is all inner product space, then P is
Tc T

self-adjoini and <x I P X > <P X IP X > for all x xF X and1' T T T 2 1 2

T C S.



All the prclin.linarics are now available to define the type of

stability which will be considered in the sequel.

Definition: The feedback system under consideration is said to

be X-st:abe if ul,u 2 c X implies that all solutions with el,yl,

%23 Y 20 Xe yield el, y 1 , e 2 , Y2 X and satisfy the inequality

Ilel II1l t y 1+ le, [[ q- II Y2 11 < K1 u l1 - K g2IU 1Z

for some constants K 1 and K 2 .

At this point, son-e restrictive assuml)tions will be made about

the operators G0 and G 2 appearing in the feedback loop. The re-

sults obtained below hold under less restrictive conditions, Since

however these resitiictions are reasonable and satisfied in most

practical situations no effort was made to reduce them to their

minimrality in an attempt to keep the analysis as sinmple as possible.

Restriction 1: It is assumed that Do(G ), Do(G 2 ) X, and that

for any xe Xe, Glx, G x c X Furthermore G 1 and G 2 are as-

sumed to be causal operators on X , i.e., P x - P x implies thate -- T 2

PTG X I = -X. ancd P 1x P G X for all xi)x2 c X
1 2 ' e

and -rcS. An equivalent way of stating this causality assumption is

to as surne that · P commnutes on X with both P G and

P G
T 2C

Definition: Let 0 be an operator froml X into itself. 0 is

said to be a bounded operator on Xe if there exists a number M

such that IP Ox; II < M II P x |f for all x c X and r c S. Thc
r T e.

extendcd bound of a bounded operator 0 on X, denoted l Ioi , ise e

defined as theinfinnumxl of all real numnbers M whiich satisfy the above

inequality for all x C Xc and T c S. Recall that: if 0 is a boulnded
C
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Operator fromn X into itself tlhen the bound of 0 on X, denoted

11 |II, was defined as th]einfinmIn of all reil numbers M which

satisfy the inequality IIOx 11< l[lIfx 11 for all x cX. The lemma which

follows shows that the bound and the extended bound of a causal

operator are equal.

Lemma 3. 1: Let 0 be an operator from X into itself. If 0e

is causal and bounded on X then- 0 mraps X into itself, is bounded

on X and l10 ie - 0 11 . Conversely if 0 is causal., maps X into

itself and is bounded on X then 0 is bounded on X and 110 11= 110 e e

Proof: Let x c X, then Ox c X and 11 P Ox < HO 11e IIP x |1

< 110 11 Ix I I- Hence Ox c X and Iox 1< |10 [Ie I|x II. Thus 0 is

bounded on X and i10o 1< 11011 e. Let xEXe, then IP Ox! =

PO xP o P x I < I oPx I < II P xI . ence lio I1 < 11011. Thus 0

maps X into itself and o 011I = 110 II. Conversely, let x E Xe, then

I P Ox =- II P xOP X| OP i 11<i < 11° IP x11. This shows that 0 is

bounded on X and that 10 11 e< 110 1. Let xc X, then lip Ox IIe e- .

!loll 1 1_<<_ 11 olie Ilxll. Hence lIOx1. O110 ll Ielxll, and l0oll<llollI
T'hus 11io 11 = 11o

Restriction 2: It is assumed that G and G. are bounded

operators on X

It is thus clear that under these restrictions the feedback system

under considerat'ion will be X -stable if and only if for ul,u 2 X

IP ,II 11 < K1 Iu 1 II1 K2 II u 11

for all solutions; 'wvith e lyl, e 2 ' Y2 C Xe, all -r c S and some constants

K 1 and K 2 . Lemnma 3.1 and Restriction 1 make the verification of

Restriction 2 simpler. Indeed it: suffices to verify that G 1 and G 2

n-lap X into itself andrl thalt: l]-ey arel bounded oplerators on X.
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Restriction 3: It is assumcd th at the oprc-ator G2 satisfies a

Lipshitz condition on X, i.e., that there 'exists a constant K (the

Iipshitz constant) such that

I!G2(x+y) - G2 11 < IIY 11y

for all x,yc X. Notice that Restriction 2 and lincarity of G 2 im-

ply Restriction 3.

Remark: There is of course nothing peculiar in making this

restriction on G2 rather than on G 1, and analogous results as the

ones obtained below can be obtained if G 1 satisfies aLipshitz con-

dition on X.

The following theorem is the basic result from which all other

stability criteria will be derived.

Theorem 3. 1: I.f rIP .(I + G 2 G 1)x f> -IPTX |j for all x E X, all

TE S and some c > 0, then the feedback system under consideration is

.- X -stable.

Proof: Let u, u 2 E X and let elYl,e 2 , Y2 be a solution with

e,y 1 ey 2 E Xe. Since el = u1 - G 2 (u 2 + Glel) it follows that

the equality e 1 + G 2 Glel U l-(G2 (u+1-Glel ) holds for all arguments

teS. Hence for all T S

PTI GG 1) PTel PTUl -PT(Gz(G 1e l + uZ ) - GZGlel)

and thus [11 (I+ GG 1 )PT 1 f11 u II - K I|G | 11 lu2 II

Using causality and the inequality in the statement of the theorem, it

follows that for all rc S

ilP -e1 < c-1 uI II +-- -1K IG? II Iu| 7
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H-Ience el c X and

Iel d1<- c 111,u 1I + -1 K IIG[l | 1ui l

which ir':plics X-stability.

Theorcln 3.1 is graphically illustrated in Fig. 3.2

PTGG2G2GI 

11PPG 2Gx .lPTX

===\=============== = P.C x P TX
for P-cG~ P Gx

,:y o.:.:.:.:.:. o o 0

Forbidder/ Region.R

, c | ~~~~~~~~~~~for PGG2Gx

Fig.3.2 Illusi-ation of Theorem 3.1 Fig. 3,3 ilustrolion of Corollary 3.1

Remark: It is very termpting to replace the inequality in the con-

dition of Theorem 3. 1 by | (I + G2G 1 )x f> c fix 11 for all xc X and some

c > 0. This however leads to fallacious conclusions. A counter-

example is provided by the Nyquist critecrion when the Nyquist locus 

of the forward loop encircles thle -1/k point.

The first corollary to Theoren-l 3. 1 provides a proof of the in-

tuitive idea that if the open loop attenuates all signals, then the closed

loop is stable. Corollary 3. 1 is graphically illustrated in Fig. 3.3.

Corollary 3.1: If |IG G ||i lesso than tun;bty then the feedback

S2rstCe uncde'r cons;ideration is X-stable
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Proof: By Lenlnla 3. 1

IPGzG x! 11 < IIG2G1 11! TX 11 for ali xC X

and thu s Pi (I G- 2G1)x > I[[X[ - IP GzG 1X

> (.1 - I!GzG 11)11 P2X 11!
which yields the conclusion by Theorem 3.1 with e =1 - JGoG 1 ii

Next, attention is focused on how the interconnection of passive

systems leads to a stable system. The outconme will be that the inter-

connection of a passive system (a nonnegative operator) and a strictly

passive system (a positive operator) is stable. This again provides

a proof of an intuitive idea.

Lemma 3.2: 'Let X be a real inner product space, and let

x,yCE X. If for some z C X with iz! / 0

(i) < x, z> > 0

(ii) <y,z> > C Ilyl[ IIz[l for some C with 0 < c < 1

Then there exists a real numlber c > - 1, depending upon E only,

such that

<x,y > > c llIII Y11WI

In fact c = -cos sin 1 E satisfies this condition.

Proof: TheGramuni an imatrix

< xy > <x, >
G(x, y. z < <y, x > <y, y > <y, z >

<z,x > <z, z>

is nonnegative definite (see e.g.,( 2 3 , p. 24 7 )).

Thus <x, x >< y, y> <z, z> + 2< x, y> <y, z> <z, x >> <x,x><y, z>

+ <y,y><x, z>+ <z, ><x, y>2

Since the len-mlla is satisfied for any c if Ilx li Or Io- IiI 0,it is
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assumned thlat ||x li /0 and that - fIIY l / 0. Aftcr some manipulations

the above inequality reduces to

<x._ V <x z> < Z> <xx > < 7.>

IIXII IIY'II IIXl II 41I 1' Y1 [zI - V IIXII IIlZ-I JHy 11 -11
which implies eitlher that

-< ->' > 0 in which case the lemlma
114Ix Ilyli 14xf 114'I Iy(ll iIzj -

is satisfied with c = 0

or that_ z,>_ f, > > _[y <_ > 7/
|lx|| Ifyif IY 11 fII ||X IfY IIzf 11 11xI j I ) I 1rII A 1

Let u and p be defined by

IIxI! 11 zf/

-< y l, 1 2
!1- -cos 

By assumption cos > , and thus I1 si-- sin . The above in-

equality becomes in terms of a and F

> Cos 11 I + IB |
'lxll !yll I

tsince cos(aII + IP) > cos (r - sin 1e)

.-1

os- COS sin -

the lenlma follows thus as claimed with c = - cos sin c.

Lemnma 3.3: Let X be a real inner product space an.d let 0

be a causal operator on X. Then 0 is a nonnegative operator on X

if and only if <P x,P Ox > > 0 for all xcX and all T E S.
T T

Proof: (i) Ony!_ if: The proof goes by contradition. Assunme

therefore tha t <P x, P Ox > < 0 for some xE X and some - c S.T· T-U
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Then <Px, 0x>- <Px, P 0x> -- <Px Ox > < O. This con-T T T T T T T

tradicts the fact that 0 is a nonnegativre operator on X.

(ii) If: The proof goes again by contradiction. Assume therefore

that <x, Ox>< 0 for some xi-X. Since <x,Ox>-::'fx+fOx [ 2-flx-OxI?2 )

it follows that IIx + Ox f|2 > fIx - Ox 1Iz. Since however the norm of

any element x X can be arbitrarily closely approximated by P x
T

for a suitable chosen T e S it follows that ip (x-t-Ox) IIz> ! I (x-Ox) 112

for some T C S. Thus <Px, P Ox><O for some x E X which yields

the contradicl:ion.

Corollary 3.2: Let X be a real inner roduct space. If G

and G 2 are nonnegati.ve operators on X one of which is positive,

then the feedback systemll under consideration is X-stable.

Proof: Assume that G 1 >c 11 and that G > O (the other case

is proven analogously), then IIG, 11 / 0. By Lenmmas 3.1 and 3.3

<P x, PTGX> > > Px,X > > C II P XG 1 II Px 1}P G1X 11 and
...T-T 1 -- 1 T T -- T

<PG P G x, PGX > = <PG2G1X, PGix > > 0. Thus by Lemma 3.2

there are two possibilities: either <P X, PG 2 G1x >

> -cos ain cl JGi i |1 PI PTX |11 IP0GGx |X or i P G1x iI' 0. The latter

case yields IIP G 2 G1iX i 0 since Gz is bounded and shows that

in this case the conditions of Theorenjr 3. lare satisfied for anyr < 1.

Assume therefore that <P x, PG GGlx> > -cos sin -El Ir' IIP X II

T 'fIfPG 2 G1Xf|lf. However; fPix + PTG2G. 1x If2 = IIP xJ112 + 2<P x-,P G 2 G 1x
+ IP TGZCG1x liz There are again two cases to consider: either

<P x, P G. G x > 0 in which case the conditions of Theorem 3. 1 are

satisfied for any c < 1, or <Px, P GCGlx > < 0 in which case

f<P x, ' G G x> < lcos Sin-lClIGI IIl- I x P x[ fIIP GzxlG i. Thus

for this case
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T T 21 -

Hencc thc inecquality

I + PTX -TG G x> ( 1 -I cos sin- 1 11 G1 I 1|)|| PI x-

is satisfied for all TCX and xcX, which yields the corollary by Theorem

3. 1 with E = f cos sin- CGll I 1 l

Corollary 3.2 and Lemrna 3. 2 are graphically illustrated in

Fig. 3.4

GIx
P.G 2 GX G

for PTG2Gix

Fi:::g. 3.4 IusIrao: of Corollciy 3.2

In an actual situation it is rather unusual that. a system will

satisfy the conditions of Coroll.ries 3.1 or 3. 2. This is the moti-

vation for the multiplier theorems,, of the type used by Popov and

which have since idely been sed in the literatur. These are no::::

shown in Fig 3. 5.shown inl Fig. 3.5.,
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Fig. 3.5 Illustration of lthe Irnfroduction of Multipliers

Theorem 3.2: Let M be a bounded causal operator on X.

If M has a bounded inverse on X and if IIP (I + MG G 1M x1)XI

> > c I!P X for all x c X, all T S and some e > 0, then the feed-

back system under consideration is X -stable.

Proof: Let ul, uZ X and let el'Yl'ez'Y2 be a solution with

el,Yl,e 2 , Y2Xe then, using an argument as in the proof of Theorem

3. lit follows that for all Tr S, P (I±- GG) P e 1=P(ul-G(Glel+u2 )

- GZe 1) for all arguments t S. Since M is causal, it follows

th at P (I+MG G )MP e lPTM(U-G(G e + -G el) which by
2 1 M T e1 2 M( 1 e+ u 2)-GGe )

·an argument as in the proof of Theorem 3.1 implies that I|MP e

< 1 IIM | IlU1i 11 +E 1K IIM Ij JIG 2 II fUZ2 |I for all T c S. Hence

-1 

Thus Me c X and since M(M Mel) Mel , this implies that

el = M Me 1 CX and that Ile 1.:< Ec IIM 1 I IIMil IIL 11 -t_

1 K JIM- I11 MI 11G2 ffz Iu If1 , which implies X-stability.

Since it is in general rather difficult to compulte the- bound of

a composition of two given ele.nements, the following corollary is

-us eful.



Corolla).r_ 3. 3: If there exist elemc.nets M, N, and R such that

(i) M satisfies tlhe conditions of Theorenem 3. 2

(ii) G can be factored as G 1 = NR and MG N and RM

are bounded operators on X

(iii) II MG2 NII ||RM |< 1

then the feedback systemn under consideration is X-stable.

Proof: Since fJMGzG1M [[1 = I[MGZNR -1IN< {{RM{ 1< 1,

the corollary follows from Theorem 3.2 and an argument as in the

proof of Corollary 3. 1.

Remarks: Notice that Corollary 3. 3 does not require N or R

to be causal. The corollary similar to the previous one, but using

positive operators, is more useful since verifying positivity is in gen-

eral a simpler task than computing bounds of operators.

CorollallX 3.4: Let X be a real inner product space. If there

.exist operators M, N and R on X such that

(i) M is a bounded causal oo_perator on X which has a
-i

bounded causal inverse, M , on X

(ii) G 1 can be factored as G 1 = NR and MG N and

-1
RM are bounded operators on X

(iii) MGzN and RM are nonnegative operators on X, one of

which'is positive, 'and MG N is'a causMal operatfor on X,

tlhen the feedback syst.emn ndledr consideration is X-stablc.

Proof: Deno:e RM by Z 1 and MG 2 N by Z 2 and assume

that Z%> cI and that Z > O (the other case is proven analogously).



Thcen

< P x, Z P x> '> c < %x, P x> >. C llzl lPXII JZlP XJ
T 1 r - 1 T T >C1 1 11 Il IT1 

and < ZZ t1-> Z 1, lx } z Px> <P Z Z P x,Z Px> > 0
andT<7PZ~x T IT -I

Thus Lem-.nma 3. 2 itnplics t:ht

< x, P z' Z P x > > - coS Silln- 1P XCz I Ir lpxIl P Zz zxfl
T T 21 T 

which leads to the conclusion by T'heorem 3.4 and the same argument

as used in proof of Coroll.ary 3. 2.

Remark: The choice of G in the factorization in Corollaries

3.3 and 3.4 is not essential and a similar corollary in which G z is

factored holds.

Corollary 3.5: Let X be a real inner product space. If there

exists an operator Z on X such that

(i) Z can be factored as Z =MN with M a bounded

linear operator as X with a bounded linear inverse,

-1
M

(ii) (M*) ,- Ml' and N are causal operators on X

(iii) G2 can be factored as G 2 - RZ
.2

(iv) R and ZG 1 are bounded nonneative operators as X,

one of which is positive;

then the feedback syst-emln umnder _donisideration is X-stable.

Proof: Assume that R> c]I and that ZGi> 0 (the other case is

proven analogously). Thus R> c I .which implies that M*RM> C Ml:M.

Simnilarly ZG 1 = MNG > 0 which ilnplies that NG1 (M*) -> 0. Since

IIMxII> |IM 1I 1 11 it follox's tl.at M-M > 1M iM -i and that

M:RM> cI =-c- 'JM -1J -1. All the elements are now available to apply

Corollary 3.4 if it can be shown that M* can be extended to a bounded
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causal operator on X e . This however is done sim.ply by defining M'-x

for xc X to be the clemn'ent of X , y, such that P y P M-::P x for

all S . Notice that the right-hand side of this equality is well

defilcnd since P xc X
T

3.2 A Standard Modification for Feedback Srstenms

Since it is generally easier to identify positive operators the

question arises whether or not there exist certain transformations which

will put the feedback system in a form in which positive operators can

be used. This is done by the standard nmanipulation shown in Fig. 3.6.

iU2 + e1 Yi

' --- n-L - 2 -- 2

2 Ie2 + 2-

GUII I-~-d C r h I':

Fig. 3,6 Tr(c;ssfolprmatiot is of th .Feedoick Loop

Let k be a scalar such thcatt I+kG is invertilble on X and such1 e

that (1 -+kG1 ) 1 is a boulded causal operator on X . It: will. now be

shown :hat; underlc the.se assump,.loios it is possible to cldefillne a newv
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fecdback systemn such that the stability of the resulting feedback

systemn implies the stability of the original one.

LemIna 3. 4: Let G G (I +kG ) 1 and G' G- k I. Then
1 1 ] 1 a G2 =G 2

every solution {e 1 , Y1 , e 2, Y2) to the original feedback system. (with

the operators G 1 and GZ) which is such that el,yl, e 2,Y 2 Xe yields

a solution to the feedback system defined above (with the operators

G; and G ) with

* U1 U1' u uz e -e- kyl e'2 e22 u 2'2 1
u ek1 2

Yl Y' Y2 Y2 ke2

Furthermore, if the second feedback system is X-stable, then so is the first.

Proof: The verification of the first statement is straightforward

and will not be carried out explicitly. The stability part follows from

the relations bet:weente solutiozi as given in the lemmna.

The unanswered question is of course to determine for what oper-

ators G and scalars k the operator (I+kG) exists and is a bounded

causal operator on X . For the operators as in the classes G and Ft

.introduced in. the second chapter, it is possible to give at least a

partial answer. The first is the well-known Nyquist criterion.

Let (g(t), {gk})¢ L 1 x Qe and let tk be a mapping from I into R.

Let y(t) = Gx(t) be defined by

+oo +oo,+co

y(t) = 1 gkX(t-tk),+ fg(t-) X(T) dT
k=-oo -00

It follows froln Lcmma 2. 1 that G maps L2 into itself, that GcG and

that the function G(jc) associated with it is given by

+co +cO
+Oj ) -J(Otk +c -jct

G (j) = gke + g(t) e dt
k --- oo -00



-85-

It is clear that if g(t) 0 O for t < 0 and if tk> 0 for all kcI, then

G as defined above is causal and maps L 2 into itself. Indeed, let

xcLze then P Gx = PGP x which since P c L 2 for all T yields

GP xc L and thus that P GP xcL for all T. Thus GxcL2e.
T 2 T T 2 e

Lemma 3.5: Let g(t) = 0 for t< 0 and let tk >0 for all

kcl. Then (I + kG) exists and is a bounded causal operator on

L2e if and only if the Nyquist locus of G (i. e., the locus of the

points in the complex plane defined by G(jw), for ocR) does not

encircle and is bounded away from -1/k + o.j. Moreover,

(I -+ kG) e G if it exists.

Proof: This is a basic result originally due to Nyquist and

in its present form and generality to Desoer (18).

Let f be a mapping from R x S into R such that there exists

a number K such that I f(u,t)[f<K [jo-jI and define the operator F

'-n Y (as defined in the beginning of this chapter with V = R) by:

Fx = f(x(t),t) for all tcS and xcY . It is easy to verify that under

these assumptions F is a bounded causal operator on X 
e

Lemma 3.6: (I+kF) exists and is a bounded causal operator

on X if and only if o+kf(c-,t) - co is a monotone nondecreasinge

function of (r for all tcS and some c > 0. Moreover (I+kF) - 1 ,

if it exists, is of the same type as F and the corresponding mapping

from R x S into R is given by the inverse of the function

+ kf (ca, t).

Proof: The lemma is immediate
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3.3 A Stability Criterion for Feedback SystIcms with a-
Linear Periodic Gain in the Feedback Loop

The first example of a concrete stability criterion deals with a

feedbac' system with a linear time-invariant convolution operator in

the forward loop and a linear periodically time-varying gain in the

feedback loop. This feedback system is shown in Fig. 3. 7.

Y2(t) ne2(t) + r(t)
--- ....-

Fig. 3.7 The Feedback System Under
Consideration in Section 3.3

Definitions: The operators G and K are formally defined by

-0o +co

Gx(t) = gkx(t-tk) + f g(T) x(t-T)dT

k= -co -00

and Kx(t) = k(t)x(t)

As sumptions: It is assumed that:

(i) tk is a map from I into R

(ii) k(t) c L and (g(t),{gk}) L 1x L 1

(iii) tk> O for all k E 1 and.g(t) = 0 for t < O

It has been pointed out previously that under these conditions the oper-

ators CT and K map L 2 e into itself and that they are causal and

bounded. Furthermlore, since they are also linear, they satisfy

Lipshitz conditions on L 2e.

Ze
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Definition: The feedback systenz under considcration is said to

be L 2 -stable if all u, r c L 2 , and e 1', l e 2 ,y 2 E L2 which satisfy the

equations el (t) = u(t) - y2 (t); e2 (t) = r (t) + y(t) ; Yl(t) =Gel(t);

yZ(t) = Ke (t) for all tcR yield e lYl,e 2 ,y 2 cL 2 and if there exist

constants K1 and K2 such that

Ielll L +11 Ylll L +11e211 L + llfg l L < K lull K L2+ L
2 2 2 2 2

Example: Consider the linear time-invariant differential

equation
i di

p(D)>x(t) + k' (t)q(D)x(t) = 0 D
dt

The following assumptions are made:

A. 1 p(s) and q(s) are real polynomials in s, i. e.,

p(s) =s n + Pnl sn- + + P

n n-1
q(s) =q s + q ls + + q

with Pi and qi real nunnlbers

A. Z k' (t) is a real-valued piecewise continuous function of t

which belongs to L

A. 3 Either of the following conditions is satisfied:

(i) qn = 0 ,

(ii) qn 0 and -l/q n j [a,P] where a and P are

suchthat a<k'(t)< _ for all tcR.

A real valued continuous function .::(t) is said to be a solution of

this differential equation if it possesses (n -1) continuous derivatives and

if it s atis fie s the above differential equation for all t for which k'(t)

is continuous. Clearly x(t) - 0 is a solution. This solultion is called

the nt3ll-solution? and is said to be asym-ptoica:.lly stable if all] solutions



.approach the null-solution for t -co.

It will now be shown that in maniy cases asymptotic stability of

the null-solution of the above time-varying differential equation can be

deduced from LZ-stability of a feedback system of the type which is

being considered in this section.

Assumption: It is assumed that there exists a real number a

such that the zeros,of the polynomial p(s) +aq(s) have a negative real

part.

It can be shown without much difficulty (see e. g., (60) ) that

the differential equation can then be rewritten as

PI(D)x(t) + kl(t) ql(D)x(t) = 0

with p l (s) a monic Hurwitz polynomial of degree n (i.e., allits zeros

n.
have a negative real part, and the coefficient of s is one) with the

degree of pl(s) larger than the degree of ql(s). This n-th order

"staLfar differential equation can then be written as a first order vector

differential equation

dzt) = Az(t) + bu(t)
dt

y(t) = c' z(t)

u(t) = k l (t)y(t)

where z(t) = col (x(t), dt ' d X(t)
dtn-1

'0 1 * O ... O

0 0 1 ... 0

0 0 0 ... 1

-Pl 0 -p 1 . .....-.- 0 1, o -P, ] - * * P -
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b = col(O,O, ... , 1)

= col (ql,0' qI, 1' '' ql,n-l )

-1 ql(s)
c' (Is -A) b -

Pl (s )

The null-solution of the differential equation under consideration

will then be asymptotically stable if and only if given any z(O),]im I z(t)f
t-*oo

exists and is zero. It is well-known (see e. g., (16)) that the smooth-

ness conditions on kc'(t) are sufficient to ensure the existence of a unique

solution which assumes the value z(0) for t = 0. Furthermore, the

solutions satisfy the integral equation

At f A(t-T)
z(t)= e z(O) - e' bk(T)y(T)dT for t> 0

0

which implies that

uy(t) = c'e Az(0) -J c' eA(t -)bk(T)y(T)d for t> 0

0

At this point it is clear that this equation is of the form bf the

feedbactk system under consideration with

u(t) = 0 r(t) = ceAtz(0) for t> O

0 otherwise 

y(t) = y(t) yz(t) = kl(t) (y(t)+r(t)

el(t) - Yt) e2(t) y(t) 4 r(t)

g(t) = c'Atb for t> O k(t) = kl(t)

= 0 otherwise

gk = 0 for all k I
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It follows from the assumlption on the zeros of pl(s) that all

eigenvalues. of A have a negatiye real part and thus that

c'eAt bLp(0, oo) for all p> l.

Thus if L2-stability for this feedback system is proven it

follows that all solutions z(t) to this vector differential equation

which are such that y(t)c Le(0, co) also belong to L 2 (0, co). Since

all solutions are continuous, all solutions y(t) do belong to L 2e(0,oo)

and: henc-e all solutions yield y(t) c L 2 (0, o0). Since however

z(t) eAt () f eA(tT)bk () y(T) dT

0

Since eAtbE L (0,co), k (T)e LO(O,co), y(t)c L 2 (0,oo) and the con-

volution of an Il-function with an LZ-function trields an L2-function,

it follows thus that z(t) c L 2 (0,co). Furthermore

d(t) = Az(t) - k ( t ) bc' z(t)

'hencedkz(t) .. .t
hence d(t) L(0,o). Since z(t) and dz( belong to L2(0 o)

dt 2 dt 2 · b )

liim z(t) exists and is zero. Hence L 2 -stability of the above feed-
t--co

back system implies asymptotic stability of the null-solution of the

differential equation.

These simple manipulations show that although it might at

first glance seem that the type of stability which is obtained in the

theorem in the previous section is not as strong as Lyapunov sta-

bility, in many circumstances it actually implies it.

Additional Assumption: In addition to the assumptions alade in

the beginning of this section it will be assumed that k(t) is period-

ically time-varying, i.e., that



k(t) - k(t -+ T) for almost all t and a given T > 0.

Feedback systems of the resulting type occur frequently in the

design of systems containing parainetric devices. The stability

properties of such systems are of course of primary importance and

criteria using frequency-domain conditions similar to the Nyquist

criterion have proven to be a particularly feasible tool for the de-

signer. Moreover, the local stability of a periodic solution of a non-

linear differential equation is often equivalent to the stability of the

null-solution of. a linear time-varying differential equation of the form

of the differential equation in the above example.

The stability properties of the feedback system under con-

sideration have received a great deal of attention in the past (see

(11) for a survey), and the result that is best known is the Circle

Criterion which has evolved out of the work of Sandberg (52) and

_others. Although the Circle Criterion is applicable under much weaker

conditions (the feedback gain need not be linear or periodic) than the

ones stated above, it was originally proven making essentially the

same as sunmptions.

In this section a new frequency-dolmain stability criterion is

developed which assumes explicitly that the feedback gain is linear

and periodic with a certain given period. This assumption makes it

then possible to obtain an improved stability criterion. The result

gives, for a particIlar transfer function of the forward loop, combi-

nations of the lower bound a, the upper bound P, and the period T

of k(t) which yield stability. This dependence on the period is of

course as expected and has been investigated exhaustively for certain
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classical types of second order differential equations. The result

obtained by Sandbcerg in (51) is essentially also of this type.

The criterion, which is stated in Theorem 3.3 and 3.4, re -

quires, as most recent frequcncy-doniain stability criteria, the ex-

istence of a mul.tiplier having certain properties. With the exception

of the Popov criterion however, there is generally no procedure of-

fered to determine whether or not such a mrultiplier exists for a given

transfer function of the forward loop. This is not the case for the

criterion presented here since Theorenms 3.3 and 3.4 can be com-

pletely rephrased in ternms of this transfer function. In fact, a

simple graphical procedure is given to determine whether or not the

multiplier exists.

Stability Criteria: Let

+co o +co

G(jw) = = g i (t) e f-jttdt
k= -oo -oo

Theorem 3.3: The feedback system under consideration, is

L 2 -stab.c if

(i) 0 <k(t) = k(t+T) <k - E for some E > 0 and almost all tmax

(ii) there exists a real function of s, F(s), such that for

almost all w > 0

F. 1 ReF(jw) > E for some c > 0.

F.Z F(jw) - F(j(w 4 2T 1).) c L

F.3 Re F(jco)(G(j) + /kmax) > 0
max

Theorenl 3.4: The feedback system under con.sideration is

L 2 -stable if

(i) ta+c < k(t) k(t +T) < c-c for SOmne c > 0, alnost all t

and a /O
, _ .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V
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(ii) the Nyquist locus of G, i.e., the points in the complex

plane deterlnined by G(j(,), otcR, is bounded away from

+ 0.j and does not encircle it

(iii) there exists a real function of s,F(s), such that for al-

most all w > 0 conditions F. 1 and F.2 are satisfied

and such that

F.3' Re F(jw) )P•co) > 0
CtG(jw +l

Before interpreting these results and reducing the requirement

that the multiplier F(jo) exists to a condition on the transfer

function G(jw) the theorems will be proven using the methods out-

lined in Section- 1 of this chapter and the reduction outlined in

Section 2. In a forthcoming paper (60) the author has proven this

criterion for feedback systems which can be described by ordinary

differential equations. The proof presented there is much more

elementary and uses Floquet theory for ordinary differential equations

with periodic coefficients and the classical theory of Toeplitz forms.

The results however are less general.

Proof of Theorem 3.3: (i) A reduction of the feedback system

under consideration with the methods outlined in Section 2 of this

chapter shows that it suffices to prove L -stability for the feedback

system with G' = G + 1/k I in the forward loop andmax

G = K(I - l/knx K) in the feedback loop. Observe that it follows

from Lennmmas 3.4 and 3.5 that G1 C G and that it has the function

G(jco) + 1/knax associated with it, and that' Gc KT and has the

function k(t)(l-k(t)/k ax ) associated with it.max

(ii) Let F be the element of G T which has the function F(jco)

associated with it. By Theorem 2.3, and the assumptions of the



-94-

theorem, Glt;'isanonnegative operator on LZ and F1 K is a positive

operator on L 2. (Note that F exists on L2 since Re F(jc) >c > 0.)

Write K as K - F FK. Then by Corollary 3. 5, it suffices to prove

that Z can be'factored as Z = MN with M a bounded linear oper-

ator from L 2 into itself with a bounded linear- inverse and N a

bounded operator fronm L into itself, and with M*, (M") 1 and

N causal.

(iii) Since tk > 0, g(t) = for t < 0 and since (g(t),{gk})eLlxil,

G(jw) is an analytic function of w and therefore the multiplier F(js)

if it exists can be chosen such that its Fourier series belongs to !

(i.e., if there exists a function F(jco) satisfying conditions F1-3,

then there exists one whose Fourier series belongs to 1). F(jo) thus

can be written as the uniformly convergent Fourier series

+o03

- .... >~ F (jw) Z E fk e -Fjk e

k=-oo

with {fk}cE 1 Hence
+0c

Fx - fkx' (t-kT)

k- -oo

Let Fl(z) denote the z-transform.of {fk}. It is simple to ver-

ify that Fl(e ) F(jc). Since ReF(jw)> > 0, it follows thus

that Fl(z) / 0 for lz[ = 1 and that the increase in its argument as

z moves aroundthe circle lzj = 1 is zero. Hlence Theorem 2.21

is applicable. This theorem then yields the factorization required to

complete the proof of Theoremn 3.3.

Proof of Theorem 3.4: The only matter which is diffcerent iln

this proof is tlle prelimlinary mnodification of tlhe feedback loop. It
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thus suffices to prove L 2 -stability for the feedback system with

G G1(I + ac G 1) in the forward loop and G2K - a I inthe

feedback loop. A similar transformnation shows in turn that it suf-

fices to prove LZ - stability for the feedback system with
I( 1-- G i h

G 1= G 1 + -I ill the forward loop and G = G(I- G2) in the

feedback loop. However, - G 1 (I-ta G l + I - (G 1 +I)

(aGLG 1 I)-i and G 2 = (P-a)(K-acI)(3I-KI) . Notice that the above in-

verses exist on L 2 e and are causal and bounded by Lemmas 3.4 and

3.5. It is now a simple matter to verify that the conditions of the

theorem imply the positivity of G1iF and FG 2 and that the same

proof as in Theorem 3.3 yields L 2 -stability.

Theorems 3.3 and 3.4 are not very useful as they stand since

they leave the question unanswered whether'or not the multiplier

F(s) exists. This question can be resolved however, and this leads to

an equivalent formulation of the above theorems.

Let

4 max ( ) = sup 4(cAk 2rrTil)~max kcI

4min.(.) = inf %(cw+k 21rT- 1 )
kcI

where

(co) - arg(G(jo) + 1/km ) in Theorem 3.3'max

and 4(a) = arg c2G.j+l in Theorem 3.4'

Theorem 3.3': The feedback system under consideration is

L -stable if

(i) E <k(t) k(t+T) <k -c for some c > 0 and almost all t

(ii) ~.Imax(W) -)Qmin(l) j< 1T for all [1<,LrT' 1
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Theoremn 3.4': The feedback system under consideration is

L -stable if

(i) a +- c <k(t) = k(t+T)< P -e for some c> 0, almost all

t and a / 0

(ii) The Nyquist locus of G, i. e., the points in the complex

plane determined by G(jw), (:cR, is bounded away from

+ 0.j and does not encircle it
a

(iii) kmax(&)'- min(w)I< wr for all ~< Tr T 1

Proof: Since G(jw) is uniformly continuous and bounded, the

sequence of functions G(jf+k2wT ), ke I, is equicontinuous and thus

mnax (X) and in (w) as defined above are continuous functions of 0.

Hence, |max(6) -~ min(w)l is a continuous function of ci. Because

of symmetry kmax and 4 min are periodic and thus cmax(a) - min((c)

4max(w+2grT ) min(c+2rl ). Since I ma(:) - 4in( ) < r, there

"exists an c> 0 such that m x()- - c. Let F(jw)

- [ max ( ) + *in ()]j
e . It is easily verified that this choice

for F(jw) yields the.conclusion by Theorem 3.3 and 3. 4. For the con-

verse part of the equivalence, assume that ax(' ) - min( ) = r

for some J c R. Then since Re G(j w) F(j w) has to be nonnegative

for all w, this implies that IArg F(jc')J> r/2 which contradicts the 

condition that Re F(jw)> c> 0.

The followving two corollaries show that the criterion is a trade-off

between thec Circle Criterion (T arbitrary) and the "local" application of

the Nyquist criterion (T small).
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Corollary 3.6: The feedback under consideration is L -stable

if k(t) is periodic and if either

(i) c< k(t)< kmax-e for some c > 0 and almost all t,

and Re G(jco) + > 0 or
max

(ii) a + c< k(t)< f[ - c for soine e> 0, almost all t, a / 0,

and, Re aG(j)+ 1 > 0
PG(jw)+ I

and the Nyquist locus of G, i. e., the points in the complex plane

1
determined by G(jw), wc R, is bounded away from - + 0. j and

does not encircle it.

Proof: Take F(s) = 1 and apply Theorems 3.3 or 3.4.-

This corollary is essentially a particular case (since it assumes

the feedback gain linear and periodic) of the Circle Criterion.

Consider the stability properties of the linear time-invariant

.- system obtained by replacing k(t) in the feedback loop by kt = k(t)

for some t. If the time-invariant system thus obtained is L2-stable

for all constants kt, it does not follow in general that the original

feedback systeIn is L2-stable (see e.g. (12)). This fact is closely

related to the Aizerman conjecture for time-invariant systems which

will be discussed in the next chapter. However, the following corollary

states that this procedure is legitimate if the period T is sufficiently

small. The corollary essentially statesthat if the frequency of the

feedback gain is sufficiently high compared to the natural frequencies

of the forward loop then no instability due to "pumlping' can occur.

Corollary 3.7: Assume that in the definition of , gk =O for

all tk / 0, kE 1, and that the feedback systemn is L -stable for any

k(t) =k - constant in the feedbacl loop with a < k<p. Then there
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exists a T such that for all T < T the feedback system with any

ain a < k(t) = k(t+T) < P in the feedback loop is also L 2 - stable.

Proof: Since limn G(jc) = c exists by the Riemann-Lebesgue

lenlma, and is real, lim (cc) exists and is zero. Since the feedback

system is L 2 -stable for constant gains k in the feedback loop with

a < k < A, there exists a real function of s, Z(s), such that for all o,

Re Z(jw) > e > 0 and Re Z(jc) UG(j) + 1 > 0. (This follows from the

Nyquist diagram and a. simple graphical construction, see e.g.

Ref. (10) ). It thus follows that for w sufficiently large the function

F(jw) = Z(jc) for k4|< Žo_/2 and F(j(w+o)) = F(jw) otherwise,will

yield the conclusion by Theorems 3.3 and 3.4.

Application of the Criterion:

Theorems 3.3' and 3.4' suggest an obvious graphical procedure

j .-- foxr,determining whether or not Theorems 3.3 and 3.4 predict L 2-stabil-

ity of the feedback loop. Let o = 2ZT . This is illustrated in Fig. 3.8

and requires plotting the curves 4 N(Q) = 4(O+N o) versus n- for

|fl< a _/2 and N = 0, ± 1, ± 2, .... The upper and lower envelope

of these curves give max() and ()'. Theorems 3.3 and 3.4

predict L2-stability if and only if condition (i) of Theorem 3.4 is satis-

fied and max(Q) - .min(Q)< Tr for all kDf< wo/2. It is apparent that

this procedure, although straightforward, is rather tedious.

In order to facilitate the application of the criterion some simple

necessary conditions for the multiplier F(s) to exist are given below

for the case 0< a < ,:

(i) The Nyquist locus of G(s) should not encircle or inter-

sect the straight line segment [-l/a, -1/P] of the neg-

ative real axis of the Nyquist plane,



-9.9-

2/ l

/ min

Fig. 3.8 Graphic Procedure for Determnining F(s)

(ii) the points G(jnwo/2) n = 0,1,2, .. , should

satisfy the conditions of the Circle Criterion,

i. e., for O< a < p, they should not lie inside

the closed disc centered on the negative real

axis at - (1/t l/p) with radius (l1/a-l/p).

Analogous conditions hold for other ranges of a and .

The second necessary condition follows from the fact that, since

F(s) is a real function of s, and since F(j(W+Wo) = F(jw), F(jnnwo/ -
0

Re F(jnco /2) for n = 0, ±1, ,... Thus conditions F. 1 and F. 3 of
PG(jno/2) + 1

Theorems 3.3 and 3.4 imply that Re > 0 for
, which leads to the second G(nc essary2) 1 condition.

n = 0, ±1, ±2, .. , which leads to the second necessary condition.
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By choosing particular funlctions for F(s) it is of course pos-

sible to obtain other sufficient conditions for LZ-stability. The next

corollary is based upon this idea and gives a quite simple sufficient

condition for the multiplier F(s) to exist. It is expressed entirely

in terms of the Nyquist locus of G(s), and is stated here for the case

0 a< f.

Corollary 3.8: The null-solution of (1) is asymptotically

stable if

(i) the Nyquist locus of G(s) does not encircle the

point -1/a on the negative real axis of the

Nyquist plane,

(ii) there exists a circle, C, which passes through

the points - 1/a and - 1/p, such that the Nyquist

locus of G(s) for ,> 0 does not intersect it.

Let C' be the mirror image of C with respect to the real axis,

and consider the following two parts of the Nyquist locus of G(s):

S 1 : {G(jw) for nw < < (n +1/2) o}

S: {G(jc) for (n+ 1/2)o < o < (n+ l) o }

where n =0,1,2,...

(iii) C' does not intersect both S and S.1 2.

This corollary is illustrated in Fig. 3. 9.

Proof: Condition (i) assures'that the second condition of

Theorem 3.4 is satisfied. Let !0 |< <r/2 be the angle between the posi-

tive real axis and the straight line through the origin of the complex

plane defined by the points

cT ' 1; TEC}

QT~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Im G(jw)

C ----- ' S.

Ch Re G(jco)

C

(n-' 2 ) wo'/2
! W/

/' II ! Iw 2

Fig. 3.9 Illusftration of Corollary 3.8

Assumw e that 0> 0 and that C' dbes not intersect S 2. (A similar

argument establishes the corollary for the other cases.) Let F(s)

f ,0be a real function of s SUC} that-. ~ssume that 0 > _ 0 athat for nwde< no (ntl/ 2 Asi

arg F(jwo) = -(Tr/2-0) for (n-1/2) w <to< nwo

0 for w =nw, (n+l/2)ton o

n = 0,±1,±2, ...

Clearly, F(s) satisfies conditions F. 1 and F. 2 of Theorems 3.3 and

3.4. From condition (ii) of the corollary it follows that for o> 0

-r + 0 < +(c)< 0

and from the fact that C' does not intersect S 2 it follows that

-0 < 4(t) < r- 0

for w> 0 and (n-1/2)wc <w < no.0 0- 



Thus it follows thlat for w > 0

-Wr/2 < arg F(j o) + (o) < r/2

which establishes condition F. 3 of Theorems 3. 3 and 3.4 since

arg F(-jc) + +(-c) = - arg F(jo) - +(o).

Examples

1. Let

C(s) s
(s+10)(s +0.4s+1)

k(t) - k(t+ T) and 0<k(t) < 2. Determine for which range of o = 2o rr/T

this feedback system is stable. The Nyquist locus of G(s) is shown in

Fig. 3. 10.

Im G(jw)

p -2 >W3 -Re G(jc.)

C 1.2

B \g?-1,2

Fig. 3.10 Nyquist Locus of s/(s+10)(s2+0.4s41)

It is apparent from the Nyqtuist locus that the Circle Criterion

cannot be used to predict 1,2-stability. Using the procedure suggested
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above, Theorem 3.3 shows that-this feedback system is L2-stable

for all k(t) in the determined range provided X > 1.55. Using

Corollary 3.8 on the other hand this feedback system is found to be

L2-stable for all k(t) in the given range provided o > wo =-3.3.

(This number cu. was obtained as follows: Let AB be the tangent to

the Nyquist locus through the point (-1/20Oj} let AC be the line sym-

metric'to AB with respect to the real axis. The intersection of the

Nyquist locus and AC then gives o /2. )

This example shows that although Corollary 3. 8 did not give

an excellent estimate, it is quite sinmple to apply.

2. Let G(s) = I/s(s + 2). Determine K(oo) such that the feedback

system is L 2 -stable for all k(t) = k(t+T), co = 2r/T and

0 <e < k(t) < K(wo). The Nyquist locus of G(s) is shown in Fig. 3.11.

Im G(jWo)

-. 25 o Re G(jw)

2.2

1w0=1 - .4

Fig. 3.11 Nyquist Locus of 1/s(s+2)
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Using the Circle Criterion one obtains K(wo) = 4. Brockcett (12)

has shown by examining the worst possible variation in k(t) that

K(wo ) = 11. 6. Applying Theorem 3. 3 and the graphical procedure out-

lined above results in K(wo) as shown in Fig. 3. 12. The same figure

also shows the result obtained using Corollary 3.8 and a graphical

construction analogous to the one used in Example 1. Thus by re-

stricting the feedba.ck gain to be periodic it was possible by means of

Theorem 3.3 to obtain higher values of K as the frequency was in-

creased.

THEOREM 3.3
15

COROLLARY 3.8

- REF[12]

5 CIRCLE CRITERION

0 2 4 *6 0

Fig. 3.12. Regions of Stability for Example 2

Remark: It follows f.romn Example 2 that the converse of

Theorems 3.3 and 3.4 is false, i. e., if F(s) does not exist then there

will in general not necessarily be a k(t) in the required range such

that the feedback system is not L2-stable.
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3.4 A Stability Criterion for Feedback Systems with a Monotone

or an O'dd-Monotone Nonlinearity in the Feedback Loop

As a second example of a stability criterion for feedback systems

consider the system with a time-variant convolution operator, G, in

the forward loop and a monotone or an odd-monotone nonlinearity in

the feedback loop. For convenience and simplicity the analysis will

be given for systems described by difference equations. With some

modifications similar results can be obtained for the continuous case.

The feedback system which will be considered is shown in Fig. 3. 13.

|rk}

{Vk} {}{ I+jG.

L{f(Yk } {Yk}

Fig. 3.13 The Feedback Loop Under
Consideralion i1n Section 3.4

Definitions: The operators G' and K are formally defined

+oo
+ 'o

G({xk})k i gk ke
. =-o:

and F({xk})k f(xk) kc
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Assumptions: It is assumed that

(i) Gc+ (.2 ,I 2 ), i. e. ,that G maps 12 into itself and

that gk 0, whenevcr k< l

(ii) f is a mapping from R into itself for which there

exists a k such that ff(o-)< K[ o-l for all wce R

It is simple to verify that under these conditions G and F map Ie

into itself and that they are bounded and causal.

The equation describing the forward loop of the feedback system

is thus

+co

Yk = gkz u +A r k

I=-Co

The array {gkf} is often referred to as the weighting pattern of the

system. This system is slightly more general than the input-output

relation governed by the n-dimensional difference equation

k+l = AkXk + bkuk

Yk = Ck Xk + d*uk k = 0, 1,2, ...
Yk = c~xkk dkk

XO = given

where bk and ck are n-vectors, dk is a scalar, Ak is an (nxn)

matrix and xk is an n-vector called the state of the system. This

input-output relation is a particular case of the input-output relation

defined above with

kkA k-1 ... A+,b b for k> I + 2

kgk = C k b for k =I +

k d k - for k =fgkf = d k for k= 

gk = °0 otherwise

and rk k . A x for k< 1k k-1 o0o
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0 c0

rk = Uk = 0 for k< 0

The case in which the system is time-invariant is of particular

interest. The system is then defined by the equation

+coo

Yk = Egk- u + rk kZ 0,-1,±2,... 
f =-oo

where gk is assumed to be zero for k < 0. This system is slightly

more general than the input-output relation governed by the n-

dimensional difference equation

Xk+1l = AXk + bUk

= CX +d k =0, 1,2,...Yk = C'Xk

where b and c are constant n-vectors, d is a scalar constant, A

is a constant (nxn) matrix and xk is an n-vector called the state

of the system. This input-output relation is a particular case of the

input-output relation defined above with

k-i
gk = c'AA b for k> 0

gO =d

=0 for k< 0

rk = c'Akxo for 1> 0

rk = Uk = 0 for k< 0

The equation describing the feedback loop is

k = f(yk) + vk kI

and the closed loop equation of motion bccomnes

+o +coo

Yk+ * gkff(YP) = gkvf+ r
k keI

I =-cO -o =-co
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Definition: The feedback systerm under consideration is said to

be I -stable if for all I -sequences r = {rk} and v = {vk}, all2 -- 2 
n 2 1/2

solutions {yk} which are such that ! Yk) exists for all
k =-oo

nE I, belong to I2 and satisfy the inequality

C(x Yk) K( Z I'V) + K E rk

for some constants K 1 and K2.

Remark: Notice that I 2-stability implies that limr Yk 
k -- co

lim f(yk) = 0, 'and that for the n-dimriensional difference equation
k - oo
described above it implies that if vk = 0 for all k then

lim sup 1 Yk = 0, which in turn implies asymptotic
xO-0 k=0 1,2,...

stability in the sense of Lyapunov provided the system is uniformly

completely observable.

Notation and Definitions: F is said to be monotone (or odd-

monotone) if f(o-) is a monotone (or an odd-monotone) function of (Y.

F is said to be strictly monotone (or strictly odd-monotone) if

f(o-) - car is a monotone (or an odd-monotone) function of a- for

some > 0.

Application of the principles exposed earlier and the positive

operators discovered in Section 2.6,' lead to the following stability

theorem which is an extension of similar results obtained by

O'Shea (42) and Zanmes and Falb (64).
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Theorenm 3.5: A sufficient conditidn for the feedback system

under consideration to be I ,stable is that

2(i) G belongsto/ (- 2 ,iZ) and F is strictly monotone
(strictly odd-monotone), and bounded

(ii) there exists an element, Z, of/ (y2,2) , such that

Z- c I is doubly hyperdominant (doubly dominant)

for some E> 0 and such that ZG is nonnegative.

Proof: This theorem is a straightforward application of

Corollary 3. 5 if it can be shown that Z can be factored as required

there. This. is, however, precisely what is stated in Corollary 2. 1.

The case in which the system is time--invariant and the multi-

plier is.of the Toepl'tz type is, of course, of particular interest and

yields the stability theorem obtained by O'Shea (42). The positivity

condition and the doubly hyperdomninance (doubly dominance) condition

_>,can then be stated in terms of z-transforms. This is done in the next

corollary.

Lemma 3.7: Let R {- rki_} k,! cI define an elermient of

2 (f2'f2) which is of the Toeplitz type. Then a necessary and suf-

ficient condition for the inner product <x,Rx> to be nonnegative for

all Y2 -surnmable sequences x is that the z-transform of {rk}, R(z),

satisfies Re R(z) > 0 for almost all z with zl = 1.

Proof: It is well klnlown that

<x, Rx> = - R(z) IX(7){2 z-1 dz

1zj I

= f R(ejc ) IX(ej) dw



7r

-2[ j Re R(jjW) jX(ej)j 2 dw

-lT

and the conclusion follows.

Corollary 3. 9: A sufficient condition for the feedback system

under consideration to be I -stable is that
2

(i) G is an element of (f2, Z) which is of the Toeplitz

type and F is strictly monotone (strictly odd-

nmonotone) and bounded

(ii) there exists a Z(z) such that Z(z)-c is the

z-transforml of a hyperdominant (dominant)

. sequence for some c> 0 and such that

Re G(z)Z(z) > O for almnost al . with l = .

Proof: The theorenm follows fronm Theorem 3.5 and Lemrra 3.7.

Remark: For the n-dimensional time-invariant difference equa-

tion introduced above it is quite simple to show that G will belong to

> (12{2,) if all eigenvalues of A have magnitude less than unity.

q S 6~~~~~~~~~~~~~~~~~~~~~~~~~~~



CHAPT}E'R IV

LINEARI ZATION AND STAB3ILIT'Y O1' FEEDI3ACK SYSTEMS

4. 1 Introduction

In the previous chapter, a nunmber of stability criteria for non-

linear feedback systems have been derived. The question of whether

or not these criteria are conservative cannot be given a general

answer, but bo2hi fronm the analysis and from examples one suspects

that these criteria are by no mneans necessary and sufficient (see

e.g., (12)). Thus the question arises whether these criteria are in-

deed or if they are too conservative and if instability and stability

can be derived using. sore approximate mnethods. There is one case

for which necessary and sufficient conditions for the stability of

feedback systems is known: namely the Nyquist'criterion for feed-

back systems where the forward loop is linear and tinge -invariant

and where the feedback gain is a constant. Thus by associating with

a nonlinear feedback system a class of feedback systems of this type

one tries to conclude stability or instability. This chapter takes a

critical look at somne of these linearization procedures and exposes,

by means of an example, unexpected periodic solutions in a non-

linear feedback system. Although the system chosen to obtain this

conclusion nmight seern quite pariticular, the method of analysis re-

mains applicable to other systelns and vwTill expose essentially a

similar behavior. The examnples also sugoest to what extent and for

which systems the existing frequency-domlain stability criteria can

be improved. They also show\o' the need for caution in applying linear-

ization techniques in stability- analysis.
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4. Z About Lincarization

Consider the feedback systemn shown in Fig. 4. 1.

o + BoG -- G q(s)y
p(s)

Fig. 4.1 the Feedback System

The relation between the input u(t) and the output y(t) of the ele -

ment in the forward loop is determined by the ordinary time-invariant

differential equation

x (t) = Ax(t) + b u(t)

y(t) = c'x(t)

where A is a constant (nXn) matrix, and b and c are constant

n-vectors. The transfer function of this element is thus given by

G(s) = c'(Is-A) b and is the ratio of two polynomials in s with the

degree of the numerator less than the degree of the denominator. The

element f(.) in the feedback loop generates an output f(c-) when its

input is o-, where f is a mapping from the real line into itself. The

differential equation describing the closed loop system is thus

i(t) = Ax(t) - bf(c'x(t))

It is assumed that f(O) = 0. The solution x(t)-- 0 is called the null-

solution of this system and is said to be asymptotically stable in the

largceif it is stable (in the sense of Lyapunov) and if all solutions con-

verge to the null-solution for t---oo. For convenience the feedback

system under consideration is said to be asymptotically stable in the

large if this null-solutioin is.
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For the case for which f(o-) = KoF, this stability problem can be

completely resolved using root-locus techniques, the Nyquist sta-

bility criterion or a Routh-I-Iurwitz test and thus presents no dif-

ficulties. If f(o-) is nonlinear however, this is not so, and often in

engineering practice the question whether a particular feedback

system of the above type is asymptotically stable in the large is

answered by considering a linearized model. Three common types of

linearization are the d-c type of linearization, the a-c type of

linearization and the describing function type of linearization. These

are formally defined below:

Definitions: Let f be a mapping from the real line into itself

with f(O) = 0. The d.-c gain or the total gain of the nonlinearity f(a-)

at (or- /0) is defined by KIt () = f(.) If f is differentiable then the

a-c gain or the incremental gain of the nonlinearity f(r-) at a- is

defined by Ki(c-) If f satisfies the inequality f (o) 1<M 0- I

for some M and all o- then the describing function gain of the non-

linearity f(or) at amplitude A(A/0) is the complex number Kd(A)

defined by

21
1 jtKd(A) = 1 f(Acost)e tdt

0

The procedure by which linearization is used to conclude sta-

bility for the d-c and the a-c types of linearization goes as follows:

If-the linear system with f(cr) - Ko- is asymptotically stable for all

K in the range of the d-c or the a-c gain (i.e., foI all K=Kt(o-) or

K = Ki(o-) and all a) then the nonlinear system is asymptotically

stable in the large. For the describing function mnethod of lineari-

zation the procedure is analogous but cannot be stated as simnply'
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s.i.nce the equivalent gain needs not be a real number. One way of

stating the method in that case is as follows (24): If the Nyquist

locus of G(s) for s =jw does not intersect the locus of the points

-(Kd(A))1 for all A, but encircles it p times where p is the

number of open-loop poles of G(s) in Res > 0 (with the usual as-

sumption for imaginary axis poles of G(s)), then the nonlinear feed-

back system is asymptotically stable in the large.

Both the d-c type and the a-c type of linearization and the re-

sulting conclusions about stability have been the subject of rather

well-known conjectures, due to respectively Aizerman ( 1), and

Kalman (30). Particularly the Aizerman conjecture has received a

lot of attention. Originally published in 1949, it took till 1958 before

Pliss (46) gave a satisfactory counterexample. It is possible to show

that for second order systems the conjecture is true with the ex-

,ception however of some cases where the d-c gain approaches for,

large values of its argument a gain for which the resulting linear

system is not asymptotically stable. The counterexample given by

Krasovskii (33) is in fact of this kind. The counterexamples 6btained

by Pliss however are more satisfactory. The very stringent con-

ditions on the nonlinearity and the involved mathematics kept the work

of Pliss from being well known. More recently, Dewey and Jury (19),

and Fitts (22) gave numerical counterexamples derived from a com-

puter simulation. The conjecture due to Kalman in which the a-c

gain is used predicts stability in the large only for a subclass of the

nonlinearities for which Aizerman's conjecture does. Fitts (22) gives

counterexamples to this conjecture derived from a computer analysis.
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In what is to follow, a simnple, rigorous proof of the existence

of periodic solutions in a fourth order' system will be given. It will

be shown that all of the above mentioned linearization techniques

however predict asymptotic stability in the large. These oscillations

thus constitute a class of counterexamples to both Aizerman's con-

jecture and Kalnian's suggestion. The results are obtained using the

perturbation theory.of Cesari and Hale (28). Since the ideas behind

this technique are basically simple the theorem from which the re-

sults follow will be proven. This method of proof is s ugg e s te d

by a paper by Urabe (57).

4.3 Aver aging Theory

Consider the differential equation

i (t) = Ax(t) + C f(x(t),z,E)

where x(t) is an element of Rn, A a constant (nXn) latrix, z a

parameter (an element of Rm ), E a scalar parameter and f a

mapping from R X R X R into R such that for all R, e and Mn m n ' .

there exists a constant K(R, co , M) (the Lipshitz constant) such that

!if(x1; Z,) - f(x2., Z,) 11 < Kllxl -xZ II for all 11xl I, ix 211I<R, Jc I < e_

and Iz II < M

Since the function f does not satisfy a global Lipshitz condition-,

it is not clear at this point whether a solution x(t) to the above

equation exists for all t. This problem is resolved in the next lemma.

But first a few definitions:

Definition: Let x(t) be a continuous 'map from [0, T] into a

normed linear space. Then sup lIx(t) |I exists and is called the
tE[ 0, T]

norm induced by the uniform topology. Recall that the Contraction

. _ o ._~~~~~~~~~~~~~~~~P~~



-116-

MaL)pillf Plincitple states that if -F is a map from a comnplete metric

space, X, into itself with d(F(x), F(y)) < a d(x, y) for all x, y cX and

some a - 1 then the cquation x = Fx has a unique solution (called a

fixed point of the mapping F). Moreover, picking any xo and de-

fining Xk = Fx k, kc I, k >0 yields a sequence {x} which con-

verges in the metric on X to the fixed point.

Lemlma 4. 1: Given any T > 0, p, and M, then the above dif-

ferential equation has a unique solution x(t) for any x(O), y and t

which satisfy Hx (0) ff< p, O< t < T and |Jz II< M provided c is suf-

ficiently small (i.e., for all e with I!c< cl and some 1 > 0). More-

over, this solution can be obtained using the successive approxi-

n at:io ns

x (t) e Atx (0)

t

Xk+l(t) feAtx(O)+ feeA(t )f(xk0(o) zc)d

for ke I, k> 0

Proof: Let S be the normed linear space of all continuous

mappings from [ 0, T] into R n with the norm induced by the uniform

topology and with fjx(t) I< Zp N where N sup 11eAt I. S is a.
O< t< T

complete metric space (see e.g., (31)) and the mapping F defined on

S by

t

Fx(t) = eAt x(0) + f A(-)f(x(), Z, ) d

0

maps S into itself for all jC 1< ¢1 with c1 < min{Eo (KN )

-T (4pN(K I|f(o, 0,0) j1}) where K is the Lipshitz constant as-

sociated with R 2- ZpN, co > 0, and M. Moreover F is a contractionsocitedwithI% 2pNc °
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on S. The verification of these facts is sinmple and will not be given

explicitly. Thus the equation x(t) = Fx(t) has a unique fixed point,

which can be obtained using the above successive approximations.

This yields the lemnmna.

The next lemma exposes the dependence of x(t) on e more

explicitly:

Lemma 4.2: Given any T > 0, p and M, then the solution x(t)

to the above differential equation for any x(O), z, t which satisfy

Ilx(O) < p, ' < t < T and l zll <M can be expressed as

t

x (t) etx(0) (+ c eA( e (0),) z,)d- + - L(t,x(0),z,e)

for all e sufficiently small (i.e., for all e with e < c 2 and some

E2 > 0).Moreover, L(t,x(O), z, c) is bounded for 0 < t < , jIx(O) i <p,

Iz! < M and IE f < 2

Proof: It will be shown that the (k+l)th element in the successive

approximations introduced above is of this formn provided the kth one

is, and that the bound on Lk can be taken to be independent df k.

Since. x (t) is clearly of that form the result follows then by in-

duction since the limit for k--o which exists, must then also be of

this form. Let K be the Lipshitz constant associated with ZpN,

¢1' and M, and let Z < min {cl, (ZNT)- A simple calculation

then shows that lILk 1II<T N (Hf(0,0,0) |I + KNp), if fILk!! <

TN (If f(0, 0, 0) | + KNp), wh'ich then, in view of the above remarks,

yields the lemma.

Lenama 4.2 yields the following theorem on the existence of

periodic solutions to the differential equation under consideration:



Theorern 4.1: If 'for c sufficiently sinall (i.e., for all c

with Ic I < C and'some C > 0) there exist bounded functions

x(O)(c), T(c) and z(c) such that

T(c)

x (0)()) CT(C)X(O(C)CfJ eA(T(c)(-r))f(eAT(c)x(O)(e), z(c), c)du

0

+ Z L(T(e) x(0)(c), z(), c)

then the differential equation under consideration has a periodic so-

lution for sufficiently small (ie. for e with IE I < and

some e >

Proof: Lenmma 4. 1 shows that for E sufficiently small

x(T(E)) = x(O)(e) which, since the differential equation under con-

sideration is time-invariant, yields a periodic solution of period

T(E).

The above theorem is not very useful as it stands since it re-

quires computing the function L and solving for the functions

x(O)(c), T(E) and z(c). However by using the implicit function

theorem it is possible to obtain. sufficient conditions for the con-

ditions of Theorem 4. 1 to be satisfied. These conditions are very

simple to verify and are stated here so as to suit the particular case

which will lead to the counterexamples to Aizerman's conjecture.

In the theorem which follows, use will be made of the Implicit

Function Theoremn (35) which states that if f maps R X R into
n m

R and if
n.

(i) f(xo,yo)= O for some xo0 Rn, Yo c R

af
(ii) (x, y) exists and is continuous in a neighborhood of the

point xOY



(iii) y (x o , yo) is of rank .n

then there exists a nlap, ~, from R into Rm, which is

continuous in a neighborhood of xo and such that y=z(x)

yields F(4(x),x)=O for all x in some neighborhood of xo.

Moreover yo= (xo) and 4 is unique in a neighborhood of xo.
0 0 AT 

Theorem 4.2: Assume that e 0=I(i.e., that all solutions of

*(t)=Ax(t) are periodic with period To), and that f(x, z, c) is a con-

tinuous function of x, z, and e which has continuous first partial de-

rivatives with respect to x and z, for e sufficiently small (i.e.. for

all c with Ic < c and somle e > 0.)
....... O

T
O

Let F(x , zc) f -Af(e A )do

0

and assume that (i) F(x, zo , 0)= 0

OF
(ii) the matrix axaz (Xo zo 0) is of full rank.

-'Then there exists a continuous function z(e) such that for e suf-

ficiently small (i.e., for all e with It I< E1 and some E 1
> 0) the

differential equation under consideration has a periodic solution

At
x*(t,e) with lim z(E)=:zo and lim x*(t, c)= e x

0¢--0 e -4

Proof: The smoothness conditions on f together with the re -

sulting smoothness of the solutions of ordinary differential equations

(see e.g., Coddington and Levinson (16)) ensure that the Implicit

Function Theorem is applicable. This then in turn shows that the con-

ditions (i) and (ii) of the theorem ensure that Theorem 4. 1 is applicable

which leads to the conclusion of the theoremn.

This method of concluding the existence of periodic solutions for

differential equations is known as Averaging Theory since the function

F as defined above is indeed an average value.



4.4 Application of Averagting Theory

Consider the differential equatioan

x(4)(t)+ 1 0x(2)(t)+ 9x(t)- c ((t) 9 ( t P (t)+-t )(t)5q 6x( t))f (2)(t))

where f maps R into R arid is continuously differentiable with re-

spect to its argument. This equation describes the feedback system

shown on Fig. 4.2 and is equivalent to the following system of first

order differential ecduations:

0 + ( ____________ _ _____ y(t)

.It I

Fig. 4.2 The Fourth Order System to which
Averaging Theory is Applied

zl(t) 0 1 00 zltt) 0 - z (t) o

1z2 --1 0 0 0 z2 (t) 0-1 y-. z2 (t) 1
8 + f (z 1(t)+z3 t))+0()

i3 (t) 0 0 0 3 z3 (t) 0 6 -9p z (t) 
303 3

0 0 -3 0 z 4 (t) 3I - z(t) -3

where 0(E 2 ) denotes a 4-dimensional-vector which is such that

lim --- O =0. The application of Theoremll 4.2 shows that there exist

continuous functions a(E), P(E), "Y(E), and 8(c) suc3- that the dif-

ferential equation under consideration has a periodic solution,

z*(t,), With lim a(c),f3(c), Y(E), 6(¢) = aO, PO,'YO 6

E -O

Zl, 0 0 O 0 O

-At 2,0 0 .0
and lim z;7:(t,) e where AAt -1 0 0 

E-*0 z3, 03, 0 0 3

Z4,0 () O -3 0
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The second equation guarantees that the matrix in.Theorem 4.2 is of

full rank, and the first equation exposes the requirement that the

average be zero.

From these conditions the following theorem which will be

central in establishing the counterexamples to Aizernman's conjecture

follows:

Theorem 4.3: ,If f(f) is not identically equal to ko- for any

constant k, then there exists a nonzero periodic solution to the dif-

ferential equation under' consideration for e sufficiently small (i.e.,

for all e with leC < and c > 0). Moreover, the functions a(e)

and -y(c) which yield this periodic solution satisfy the inequality

.(Y(C) - (cE))((Y(e) - 9a()) < o

Proof: If z 1 0 Z 0 Z3,0 and 4 0 are such that

2 2 2 2
(Z 1 0 + z2 0 ) and (z 3 0 + z4 ,0) are positive then the equations in

(i) above can be solved for ao, o30, yo and 6 0 . They will yield the

following equality for any choice of z 1 0 z 2 , 3 0 and z
3- zl,0''z3 3,0 4,0

2

* (^yO-ao)(7, + Z O) + (Jo-qa )(Z + Z °) °
, o + 0 0

It can also be shown quite easily that if f(o-) is not linear, i.e., if

f(o-) is not identically equal to ko" for any constant k, then

Zl ,0' 2,0 ' and zq O can be picked in such a way that 'YO-aO0- O 
I,'2,z3,0 4,0

and y0 -9a 0 / 0. This then yields the conclusion of the theorem.

4.5 Counterexanples to Ai e ran's Conje cture

Let f(o-) in the above equation be tan ho-. The linearized gains

then satisfy the inequalities 0 <K(o-) < 1, 0 < Ki(o-) < 1 and Kd(A)

is real. with O<Kd(A ) < 1. The zeros of the polynomial
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s + 10s + 9 + C(cs 3 - Bs 2 + 'ys + 6) + Ks2

lie, for e sufficiently snmall and for 0 < K < i

(i) in Re s <O orif c > 0, a > 0, y> 0 and (-y-a)(-y-9a) < 0

or if c 0, ac < 0, '< 0 and (Y-a)('Y-9a) < 0

(ii) in Re s> 0 or if e < O, a > 0, y> 0 and ('y-a)(Qy-9a) < O0

or if c > 0, a < 0, y< O and (y-a)(y-9a) < 0

Thus all the linearization techniques would predict that the-feedback

system under consideration is asymptotically stable in the large pro-

vided that c > 0, a > 0, y > 0 and (y-a)('y-9a) < O0 or that c< 0,

a < 0, y < 0 *and (y-ac)(y-9a) < O0. These regions are graphically

shown in Fig. 4.3.

y=9a

0= a

:E< .

Fig. 4.3 Conditions on c,a, -y to Obtain
Counterexamples to Aizerman' s Conjecture

It is thus clear that for c sufficiently small and for values of

a and 9y such that (y-a)(y-9a) < O0 the %ign of E can be chosen in

such a way that the linearization techniques would predict the feed-

back system under consideration to be asymptoLically stable in the

large. This however is in direct contradiction with Theorem 4.3 which

shows that the feedback system. sustains a peribdic solution.
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Remarks: 1. The choice of the function f(o-) = tan he- is

rather irrelevant. Illn fact, the same conclusion holds for any non-

linearity, provided it is sufficiently smooth for Theorem 4.3 to be appli-

cable and provided If(or) < KIQ-l for some K and all a- which then

yields, for c sufficiently small, the pole locations of the linearized

system as given above.

2. The remarkable feature of the periodic solutions discovered

in Theorem 4.3 is that (for c sufficiently small), they only occur

when the linearized system has all its poles either always in the left

half plane or always in the right half plane, contrary to what is to be

expected from linearization.,

3. The Nyquist locus and the root-locus of the fourth order

system under consideration are shown in Fig. 4.4 for the case

e > 0, a > O, y > 0 and (y-a)(y-9u)>0 or <0,< , y< < O and

(.Y7-a{(7-9c') < 0

Im G(jjw) Im

K<>O

K<O 

Re G(jw)
Re-

0 0
WOD K>(O¢.

ccl=s i .K< O <

K<Oi -3

K>Oi
Fig.4.4 Nyquist-locus of G(jw) and Root-locus

of the Linearized Feedback System



4. The local stability properties of these periodic solutions is

of course of interest. Variational techniques show that for proper

choices of a, [3, y, r, e and f(.), these periodic solutions can be

locally stable.

4.6 A Physical Interpretation of these Oscillations

The existence of the periodic solutions discovered in this

chapter will now be given a physical explanation. This will of course

be a plausibility argument. Averaging theory essentially allows to

conclude that argunmentation is correct provided E is sufficiently

small.

-Assume an input to the nonlinearity' c f(.) Wvhich has a first

harmonic, a third harmonic and "small" other harmonics. The output

to the nonlinearity will thus contain all harmonics, -11 of comparable

magnitudes, and all "small" since they have been multiplied by a

--small parameter c. Let x l ,x 3 ,Y 1 and y 3 be the Fourier coef-

ficients of the first and the third harmonics of the input and the output

to the nonlinearity. It can be shown that for particular choices of

x 1 and Y1 the nonlinearity will shift the phases of the first and

third harmonics toward one another thus obtaining the situation de-

picted in Fig. 4. 5.

X~~~~2/\ ~ ~ ~ ~X3 i

4 x5 X5

Fig. 4.5 The Spectrum of the Input and the Oulput of the
Element in the Feedback Loop
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The negative feedback leads to an.input, u, to the forward loop as is

shown in Fig. 4.6 which with a Nyquist locus as in Fig. 4.4

X5

I4 T S 

Fig. 4.6 The Spectrum of the Input and the Output of the
Element in the Forward Loop

multiplies the 1st and 3rd harmonic by a factor of order e , shifts

their phases in the right direction, but less than 1800 thus obtaining

the original situation of xl and x 3 . The higher harmonics remain

of order c. The loop can thus be closed and the feedback system

sustains the oscillation.

. ., s ?,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



CHAPTER V

ON THE DESIGN OF NONLINEARITIES ON
THE BASIS OF HARMONIC CONTENT

The implernentation of Control Systems involves at all stages

a great deal of electronic equipment and with it the design of filters,

of frequency up- and down-converters, of a-c to d-c converters, etc.

In this chapter somne ideas and results pertaining to design procedures

for systems containing nonlinear elements are outlined and the use -

fulness of these techniques is to be viewed at the level of designing

individual parts to a system, similarly to the Nyquist-Bode design

procedures which have proven their use at this level of the design

equally well as for the design of the overall system.

The design of nonlinearities is a quite neglected area of research

. compared to their analysis for which a large amount of material is

available. In particular, the previous chapters have essentially all

been concerned with analysis problems. The relations obtained there

.are essentially relations between the spectrum of the input and the

spectrum of the output of a certain given nonlinearity. These re-

lations always hold independently of the particular input for which

they are applied, i.e., the particular form of the input is not taken

into consideration. The types of problems which will be considered

in this chapter are of a different nature and the emphasis is on

selecting a certain nonlinearity in a given class such that the spectrum

of the output nmeets certain requirements under the assumption that

the input is given.

-127 -
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Exam ple: As an example of a problem for which the tech-

niques developed in this chapter are potentially useful, and which re-

quires designing a nonlinearity, consider the feedback system of

the form shown in Fig. 5.1.

u(t) ( C I G(s)

Fig. 5.1 Feedback Configuration

The problem is to select a nonlinearity f(.) in a certain class such

that the closed-loop system is optimum in some appropriate sense.

Problems as this one cannot be treated directly using the minimum

principle of Pontryagin or some other commonly used optimization

technique since these techniques require that the controller, f(.),

has access to all the state variables, a condition which is not satisfied

in the above problem where the controller has only access to the out-

put y(t). From a practical point of view however the above scheme

is both simpler to implement and occurs often as an inherent limi-

tation of the allowed controllers. Thus optimization techniques

based on the above model can take design requirements into con-

sideration at a much earlier stage of the design.

5.1 Unconstrained Maxiimization of a Linear Functional

As a first problem related to the optimal design of nonlinearities,

the maximization of a linear functional (which could be e.g., a

Fourier coefficient) of the output of a nonlinearity will be considered.. An

explicit algorithm which yields the nonlinearity is obtained.
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Problemn Statement: Let x(t) be a real-valued function of e

which belongs to L 2 (0, T), and let: F1 denote the class of measurable

functions from R into itself with 0 < ¢f(o) < a- for all elements

feF c Let c(t) e L 2 (0, T) and denote f(x(t)) by y(t). The "cost-
T

functional" J(f) is defined by J(f) : <c(t), y(t) > =f c(t)y(t)dt,
0

and the probleml is to find an element fo e F 1 , if it exists, such that

J(f ) > J(f) for all fcF 1.

Additional Assunptions: In c e-cr to find an explicit algorithm

for fo, a number of simplifying as. .ptions are made.. The above

optinmization problem can be solve( unTlder less stringent conditions,

but the solution is somewhat mnore involved.' Since the assumptions

are however reasonable and satisfied in most practical situations,

the general case will not be pursued. It is thus assumed that x(t)

is differentiable on [ 0, T] and that vanishes for at most a

'finite number of points in [ 0, T] .

Solution of the Optimization Probienm: The following algorithm

yields the optimum nonlinearity f e F -

Let {t i ( ')}, i=1 2, .. in be the solution of the equation

x(t) = a. (It follows from the assumptions on x(t) that' n will be

at most finite for all a e R.) Let 5(ct) be formally defined by:

C(a) a = c dx (ti (c)) 1l
V(a) = c(ti(a))X(ti(a)) d1 l

i=l

t(a) is well-defined for all but a finite number of a's in the range

of x(t): namely those corresponding to the values of x(t) at the

points where d-(t)- 0. Once the function i(a) is computed, the
dt a

nonlinearity f follows with
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fo(a) = a whenever ,(a) > 0

fo(a) = 0 whenever ,(a) < 0

and fo(a) any nunmber between 0 and a whenever 5(a) 0

and whenever ,(a) is not defined (i.e., if a is

outside the range of x(t) or if the above sum-

mation for ~(a) is not defined).

Remark: It is, in fact, sufficient to find the zeros of the

function ,(a) since ,(a) is a continuous function of a where it is

defined.

Proof of the Algorithm: Let y(t) -= u(t)x(t). u(t) exists for all

f c F1, and the constraints on f require that 0 <_u(t) < 1 for all

tc [O, T] and that u(tl) u(t2 ) whenever x(tl) x(t 2 ). Let

tl< t < .< tn be the points where .d.t = O0 Hence
-- 2- -n dt

- ' tl ' t2 Tr

.c(t)y(t)> = c(t) y (t) dt + c(t)y(t) dt... c (t) y (t) dt

O t t

1 1 n

- f c(t)x(t)u(t)dd t c(t)x(t) u(dt ... + c (t)x(t)u(t)dt

t 1 tn

t

Let Tr J Id do- (T exists since the assumptions on x(t)

imply that x(t) is of bounded variation on [ 0, T]). Let T. = (ti)'

theln <c(t), y(t)> = c(t) x(t dxt I u(t)dT d-. +. ct)x(t) t) d (t)d
0 Tn

A simple computation shows that dT 1 whenever dsxto>0 and
dT dt
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that -1 whenever - < 0. Thus x(T) versus T has a
dT dt

sawtooth shape and the constraint that u(T 1 ) = U(T 2 ) whenever x(r 1 ) =

X(T2 ) can readily be taken into consideration at this moment. Let

for instance [ao, aI 1 = [x(O),x(tl) nl[x(tl), x(t 2 )n ... l[x(tn), x(T)].

The above integration restricted to the intervals which map x(t) into

[a o, a] leads to

p +o- p n+O

c x((t)dt (t) x(t)) -dt t)t... u(t)dT

A change in variables and the condition that u(tl) = u(t 2) whenever

x(tl) = x(t2 ) leads, after some manipulations, to the following ex-

pression for the above integration

n -i

' {Z 'ct)x(tc) -d t a u (t)} dT

O i=O

where t is defined above. The choice of u(t ) as in the statement

of the algorithm becomes now apparent. A similar manipulation for

the integration over other intervals in the range of x(t) establishes

the complete algorithm.

Example: As an example to illustrate the above theory, let

x(t) = sint O<t<2 r

and $(f) = 2f f(x(t)) sin 3t dt

0

The above algorithm becomes very straightforward for this ex-

ample and leads to the following optimum f
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f(or - ° for la< 1i/2 and 3J3/2 < -( < 1

f (CF) = O for I/Z <i (|<L3/Z

and f (o-) any number between 0 and o- otherwise. The resulting non-
0

linearity and the waveforms of the input and the output to the non-

linearity are shown in Fig. 5.2.

x(t) y(t)

) · l-U~ I Is' fi' 2'rr x(t) 0 .~ ._[__~. y1 t)

Fig. 5.2 Maximization of the Third Harmonic

Remark: Consider the following optimization problem: let

x(t), J(f) and F be as defined above and let c l (t), c 2 (t), .. , c(t)

e L 2 (0, T). The optimization problem is to find an element f EFl'

if it exists, such that J(fo) > J(f) for all fcF1 and such that

<c1(t), fo((t)) > = c 1 . ., <c n (t ), fo (x(t))> = cn, where 1 , .. , c n

are given real numbers. An algorithm, similar to, ,but more involved

than tihe one above can be obtained using similar calculations and in-

volving the Neyrnann-Pearson lemma fsee e. g,, (5)). It is more or

less apparent how this lemma occurs in connection with this problem:

indeed the problem solved by the Neymar-,arsomn lemma is precisely the maxi-

mization of a linear functional under magnitude constraints and under

the additional requirement that other linear functionals yield certain

preassigned values.
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5.2 Maximization under General Constraints

In this section the maximization of a certain functional of the

output of a nonlinearity under given constraints on the nonlinearity

and its output is considered. The input to the nonlinearity is again

assumed to be known. The interesting feature of the methodology

outlined below is that it shows the possibility of transforming a large

class of these optini zation problems into a form in which Pontryagin's

maximuln principle and other classical optimization techniques are

applicable.

Problem: The problem of generating a nonlinearity which

yields a given set of Fourier coefficients and minimizes the dis-

tortion is considered. The input is assumed to be given. It will be

shown that the question of.existence can be reduced to a question about the

range of alinear operator. The precise statement of the problem

follows:

Let x(t) be given by the uniformly convergent Fourier series

0o

x(t) (a cos Zrn + b sin Zn )
n__T n T

n=O

The optimization problem is to find the nonlinearity f (unconstrained)

such that

.N

Y(;) ( cos 2i1n + d sirn2n ) + r(t)(cT n T
n=O

where r(t) is orthogonal to sin2irn and cos Zr-n L for n=O, 1,...,N.T T

The first question to be answered is whether there exists such a non-

linearity. If so, the next question is to find the nonlinearity which mini-

mizes the "distortion"''
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T

r (t) dt

0

Remnark: The above optimization problem is nontrivial mainly

due to the constraint that f(.) is required to be a single valued

function and the commonly used optinmization techniques' are not im-

mediately applicable. This example' shows one very interesting

potential application for the methods outlined here: namely the de -

sign of optimal static filters for certain given inputs.

Solution of the Optimization Problem: As mentioned above, this

problem does not fall in the class of the usual optimization problems

due to the constraint that y(t) = f(x(t)) for some nonlinearity f(.).

This constraint can however in general be reduted to a set of con-

ditions of the form

y(ll(t)) = y( l 2 (t)) for tl <t <

y(o-2 1 (t)) y(o2 2 (t)) for t2 1 <t <t22

Y(nl (t)) = y(rnz(t)) for tnl < t tn2

For instance, it is quite easily verified that if x(t) = cos 2r tT

then y(t) = f(x(t)) if and only if

y(t+T) = y(t)

and y(T -t) = y(t)

In general if x(t) is assumed to satisfy the conditions given in

Section 5. 1, then this reduction can always be done, using the following

proce dure:

Let t t 2 t be the values of t for which dxaL vanishes

Assume that x(ti) is a local maximnurn of x(t) then Uihe followilg1~ ~~~~~~~)thnlh olwn
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constraint is obtained for the case that x(ti+l) > x(til 1 )

ti t.+t
1 1

·y(ti | dj4) - dt) = (tfi dx ( dt
t. -tf t.

1 1

for all 0 < t <ti+ - t.. This procedure can be pursued until the whole

interval [0, T] is thus covered.

The constraint that the N first Fourier coefficients of the out--

put are required to have certain values can be stated as the require-

ment that the dynamical system

t
XZi+l = y(t) cos Zlriy

X2i+2 ' = y(t) sin Ziri O,

should be driven from the' state '(0, 0,..., 0) to (c o, d o c 1 ,dl 1 ,...,cN, dN)

by a "control" y(t) which satisfies the above constraints. The opti-

mization problem is to find tlie control, if it exists,

which minimi ze s

T

y 2 (t) dt
0

This optimization can be further simplified by a change of the

time scale as outlined in Section 5.1 -which results in a sawtooth form

for x(t). In many circumstances this is actually an unnecessary pro-

cedure which should be avoided whenever it is possible (an example

will be given later). After this change of the time scale has been

performed it is easily verified that the problem reduces to a simple

particular case of the following optimization problem:

Given a dynamical system

xc (t) = A(t) x(t) + 1B(t) u(t)
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where x(t) c Rn, u(t) c RM and A(t) and B(t) are (nX'n) and

(n Xn) matrices respectively. Find a control u(t) which satisfies

u(t) + T) - u(t) and which drives the state x at t=O to xl at

t=kT where k is a positive integer, while mlinimizing

kT

-J (u) f- L(x(t),u(t))dt

0

This problem is not'quite in the form for which Pontryagin's maximum

principle can be used due to the periodicity constraint on u(t). There-

fore the original system is replaced by k copies as follows:

l (t) = A(t) x l (t) + B(t) u(t)

k 2 (t) = A(t+-T)x 2 (t) + B(t+T) u(t)

Xk (t) = A(t+(k-1)T) xk(t) + B(t+(k-l)T)u(t)

T

and J(u) f L(x(t), .,xk(t), u(t))dt

~. O~~0

The original transfer is thus possible if and only if there exist ele-

mentS xi(T) and a u(t) such that

x 1(O) : X

x2 (0) = xl(T)

xk(0) = Xk-l(T)

xk(T) = x 1

By a well-known result for controllability of linear systems this

transfer is possible if and only if the vector
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x 1(O) x1(T)

x2(0) - (O, T) x 2 (T)

x k(o) xk(T)

lies in the range space of the matrix

T

W(0, T) =f (0, ) B () B (o-) ( ) ado

0

where 4 is the transition matrix of the augmented system and

Bl(t) equals:

B(t)

Bft) B.(t+ T)

3 (t:+kT)

Using the relations between x.(O) and x (T) this condition requires1 i

that for some x 2 (0), x 3 (0),...,xk(0) the vector

x I 0 ... x

x (O) *-(O, T) 0 0 I ... 0 x (0)

xk(O) 0 0I Xk(O)

should belong to the range space of W(O, T). If W(O, T) is invertible,

then the transfer is always possible. This will however in general

not be the case due to the fact that the augmented matrix has a lot

of structure to it. In the other case it is necessary to compare the

col(x 2 (0), ... ,xk()) in the above expression.

Remark: The above procedure only claims to be an outline by

which a particular optiaization problem of the type considered in

this section could be solved. It is also apparent that many of the



assumptions do not ~have lnuch intrinsic importance and were

mainly introduced to fix the ideas. In particular the fact that the

Fourier coefficients are required to have certain values could be

replaced by any linear functionals. Furthermore although the pro-

cedure might seenm complicated this is not quite so in most practical

situations since the matrix A turns out to be the zero matrix and B

is quite simple.

Examrple: Using the procedure outlined above, the following

problem was solved: let x(t) be given by the waveform shown in

Fig. 5.3

x(t)

: _ _ _ \7r3 I7T t
.~ ~ ~ r._.

The optimizatioIn problem is to choose. a nonlinearity f(.) (un-

restricted) such that2 r

restr(f) f(icted)(t)) sit dt is a maximum uder te constraint2Zr

0

21T

that 1 f f(x(t)) dt = > 0

0
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The optinnum nonlinearity is given by

f o() ysin o for c! <ir/6

siino- sin Tir /2 -o- f /r/3
f ( w il f + si ( Ax for T/6 < <a T/3

fo(o) arbitrary otherwise

where y depends on a.

This nonlinearity ard the resulting output signal are shown in Fig. 5.4.

fo(C-) y(t)

I I I I '

W/0r 7r/r i I 7 7t is 3 6 I 2

Fig. 5.4 The Optimum Nonlinearity and the Output Signal

This example shows again that the methods and the problems

outlined in this chapter are very apt to freat optimization problems

related to the design of frequency converters.

5.3 Conclusion and Suggestions for Further Research

In this chapter some techniques for the desigA of optimal non-

linearities for given inputs tvere described. This theory as it stands

is far froin complete and although some interesting problems per-

taining to the design of static filters and frequency converters

can be solved, the breakthrough which is needed is to apply these

methods and solve sorme problemls which also involve dynamics and
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for which the nonlinearity appears for instance as a feedback gain and

with a linear dynamical system in the forward loop.



APPENDIX

In this appendix a general stability and instability theorem is

proven which pertains to feedback systems described by the operator

equations introduced in Chapter III.

Additional Assumption: In addition to the assumptions made in

Chapter III, it is assumed that the operator I+GZG 1 is invertible

on X i.e., there exists an operator from X into itself, (I+G 2G 1)e e

such that (I+G 2 1 ) I(I+-G 2 G1 )x=x for all xcXe, and that this inverse

is causal.; This condition is not always satisfied not even for stable

systems for which the feedback loop has a unique solution: as an

example consider the feedback loop with the identity operator in the

forward loop, and the identity minus a time delay in the feedback loop.

The assumnption is satisfied if there is an infinitesimal delay present

in the loop or if a filtering condition is satisfied. For instance if

X=L2 (0, o) it suffices that i1(Pt+T-Pt)(G2GX-GGi x)I 

a Pt+T-Pt)(X1 -X 2 ) | for some T > 0, some a < 1, all t > 0 and

all xl1 x2 E L 2 (0,oo).

Since I+G 2G 1 also defines a relation from X into itself, the

question arises what the inverse of this relation,(I+G2G1 ) , implies

ablout the stability of the feedback loop under consideration.

Theorem: A necessary and sufficient condition for the feedback

system under consideration to be X-stable is that (I+G 2 G) be

bounded and causal on X.

Outline of the Proof: (i) if (I+GzG1 )- 1 is causal and bounded then

PTe=P (I+GG1)- P (I+GZG1)Pe=P (I+G 2G 1 ) -G )
v * z T 2 I P(Ul+GZ(u2 + le)IG 2 G 1 e)

and thus IIPTe 11 < 11 (I+GG1)- i I) |ju1 I+ JII+G 2Gc1)-I 1 j K1Ju 2 which yields

the conclusion

-141 -



(ii) it is simple to show that, if (I+-G2 1)G is unbounded, then

no constants K1 and K 2 , as required in the definition of stability,

can exist

(iii) if (I+G 2 G 1 ) is bounded but not causal on X, then the proof

goes by contraction as follows: Assulne that the system is stable.

Then (I+G 2 G1 ) (the inverse on X e) restricted to X, is bounded.

Since (I+G 2 G1)-1 is thus bounded on' X and is causal, a contradiction

follows.

This theorem is being applied to prove the converse of the Circle

Criterion as obtained in (13) and in (6).
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