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.by
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ABSTRACT
Some properties of the mapping of the spectrum of the input to a non-
linearity into the spectrum of the output are given. The results are
presented mainly in terms of positive operators., Special attention is
given to nonlincar time “invariant nonlincaritics, to convolution oper -
ators, to periodic gains and to monotone or odd-monotone nonlinecar -
ities, A general theorem is proven which allows to factor a large
class of operators in a causal operator and an operator whose adjoint
is causal. This then allows to obtain a causal positive operator from
a noncausal positive operator, The results are applied to the oper-
ator equations governing a feedback loop and some general stability
theorems are obtained. Two important examples are included and
frequency-domain stability criteria are given, The merit of using
linearization techniques to conclude stability for feedback systems is
discussed and a class of counterexamples to the Aizerman Conjecture
is presented. Some techniques pertaining to the design of optimal
... nonlinearities are included. ‘
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CHAPTER 1

INTRODUCTION

1.1 Generalitics

The material presented here under.the general heading of

some of the propertics of the mapping of the spectrum of the input
té a nonlinearity into its output.

The results are applied mainly to the problem of finding suf-
ficient conditions fgr the stability or instability of feedback systems,

It is safg to state that t]1¢re is probably no single notion more
familiar to systems engineers than the notion of a transfer function and
that no mathematical tool has found wider application than the trans -
form techniqﬁes, It is also reali-zed that thesé ideas are useful
-~ mainly if one is dealing with time-invariant systems. The research
given here presents some relations between the spectrum of the input
to a nonlinearity and its output.

In linear time -invariant systems defined by convolution oper -
ators the spectrum of the output isrsimp},y equal to the spectrum of
the input multiplied by the transfer function and the mapping of the
input épectrurn into the output spectrum is hence very simple. Itis
thus in general édvantageous to specify all quantitiés in terms of their
spectra rather th:-;n as functions of time. In other words, onec pre-
fers to do the analysis in the frequency-domain rather than in the time -
-domain. If the system contains time -variant and/or nonlinear ele-
ments, the simp].icity of this mapping disappears and vecry often the

-1-
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analysis will then be done in the time -domain. In particular con-
sider the system where the input, x(t), and the outiyut, y(t), are
simply related by y(t) = {(x(t),t). This characterization is very
simple in the time -domain, but unknown in the frequency-domain. To
obtain _q_ualitative features of the behavior of nonlinear systems one
thus(gé_rlerally uses tirne~do_nqain me.thods as, for example, ifthe de-
sired feature is stability, the direct method of Liyapunov,

‘In at least two situations it would be advantageou.s to characterize
nonl%_n‘,e_\a:t" systems in the frequency domain; first if the input or
ihpui“is are given'in terms of thebilf‘ spectra and properties of the 6utput
or outputs are sought in terms of their spectra and, second, if the
systgm cqntains "'much more' linear thne~invariant.-e1ements than
nonlineay or time ~véryiﬁgelem.én_ts . In the former.case iit might be
true that if some simple properties of the frequenc.y—domain character-
‘ izati:o,n_ of the nonlinear system were known the desired features of
the qutput would follow immediately. As an example, suppose that
one wanted to decidve some features of the behavior of the output of a
partjcular nonlinear system with respect to all bandlimited siénals
with a certain cut -off frequency. Clearly this is a very poor charac-
terization of the inputé in the time -domain and some simple
prbp}(ﬁr"c\ies of the mapping into the spectrum of the output could be
sufficient to derive the desired fea'tdres about the outputé. In the‘
latlte‘l_;' case the simplic'ity of the frequency-domain description of the
line_ar time -invariant part oé the system in cqnjunc"cion with a general
-idea‘a‘tl-)out’ the frequency-domain characteristics of the nonlinear or
time -varying elements might more likely yield the desired infor-

mation than a time -domain analysis.
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As anexample, the first situation arises in the design of
frequency converters where one tries to choose a nonlincar. system in
a certain class and which will transform a given input spectrum in
some desired fashion. The second situation arises for instance
when a sirnpic nonlinear system is followed by a linear time-invariant
system or in a feedback control system with a linear time -invariant
element in the forward loop and a simple nonlinear element in the
feedback loop.

The results obtained in the second,' third, aﬁd fourth chapters
which are concerned with positive operators and the s.tability and instability
of feedbﬁck sy;;te»rns follow the lines of previously studied research
topics. The fifth chapter however touches a problem which is new
and quite pl:oxnising. Indeed an attempt is made there tc; design non-
linearities using optirﬁal control. The techniques presented in this
chapter are felt to be important although not many specific results

- _

have been obtained. Indeced at all stages of the design of control

N

systems a great deal of electronic devices are used and this brings

—~

with it the need for design procedures of filters, of frequency up- and

down-converters, of a-c to d-c and d-c to a-c converters, etc, This

L

chapter outlines some ideas regarding des';i.gn procedures for systems

containing nonlinear elements and the results can be viewed as use-

" ful at the level of designing individual parts, similar to the Bode -

-

Nyquist and sort like criteria which have proven their usefulness at

this level of the design as well as for the design of the overall system.

~

1.2 Contents
In the second chapter a number of positive operators are de-

rived. A precise definition of a positive opcerator will be given later,
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Roughly spcaking an operator will be called positive if the inner
product of any element and its irhage L.mdcr the operation is positive,
Thus for example a linear transformation from a finite dimensional
linear vector spac‘e into itself will define a positive operator if and
only if the matrix associated with this linear transformation plus the
transpose of this matrix is positive fle:finite. The Sylvester test

. thus yields a simbl_c* neces‘sary and sufficient condition for a finite
dimensional _lineér transfél‘nlativon to define a positive operator. For
;1onlir;par transformations or operato-rs defined on infinite dimensional
spaces the situation is quité different and ti'xis is where the techniques

and results developed in Chapter 1I are useful.

Why are positive operators important ? There are several areas

both in engineering andAin applied mathematics where positive oper-
" ators play a central role, Here are some examples:
() Many techniques, e.g., in the theory of-optimal control,
in prediction theory and in stability theory require at a certain point

~ establishing that a certain function or functional is positive definite,

.8, second variations in optimization theory and L.yapunov functions
and their derivatives in stability theory. This verification can often
be reduced to the verification that a cértain appropriately chosen
opere_l‘tor is positive. In this context, it su%ﬁces to recall how often
the positive definiteness of certain matrices is invoked,

i

(ii) Another area of research whete positive operators have

played an essential role is in network synthesis.,” Recall that a ratio
~of polynomials in s is the driving point impedance of a two-terminal
network that can be realized using a finite number of positive re-

sistors, inductors, capacitors and ideal transformers if and only if
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this ratio of po_lynoinia].s is a positive rcal function of s (scc e. g,
(27)). This rcsult thus idéntifics with the input-output relation of
these passive networks a class of positive operators. There is no
doubt that positive operators will also play an essential role in the
synthesis of> nonlinear and tirne -varying nctworks using certain
passive devices.

(ii3) An' importént application of positive operat&rs is in es-

tablishing the stabilily of feedback systems. Roughly speaking sta-

bility is the property of syslems in which small inpuls or initial conditions pro-
_duce small responses. The technique for generating 'stability criteria

for feedback. systems from knowledge of positive operators will be
examined in detail in Chapter III but the basic idea is simple and '

states that %he interg:onnection of passive systems (positive operators)
yields a stable system,

(iv) The so-called frequency-power formulas have found wide

) aﬁplication in the design of parametric amplifiers., They are formulas
which constrain wéighted surns of real and reactive powers entering a
device at various frequencies to be either zero, positive or negative,
This device cou'ld'for instance be a nonlinear resistor, inductor or
capa,cit(;r. This work was initiated by Marﬂey and Rowe who analyzed

. /
the power flow at various frequencies in a nonlinear capacitor, Their
conclusions were the now famous Manley-Rowe frequency-power -fOK‘lTll;l-*
las, Their work has been e_xte;ded in scveral directions and the re-
sulfing formulas have found wide a>pplication in the design of {re-
quency converters, Frequency-power formulas establish fundamental

limits on the efficiency of such devices. Other fields of interest

where these formulas have been applied are in energy conversion
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using parametric devices, in hydrodynamic and magnetohydrody -
namic stability,' and in many other arcas. In trying to bring certain
methods and results in these areas into harrabny, it became ap-
parcnt that these frequency-power formulas are cssentially particular
classes of positive operators and can be most easily understood as
(v) Another important area of application where positive operatczrs

play an important rolc is to determine bounds on the optimal per -

formanée of nonlincar tinﬁe~varying systems. One of the most im-
portant problems in optimél control theory appears to be, paradoxi-
cally, to design sub'opti'zn.al systems. Indeed either because of
computational feasibility or becausc of simpler or more convenient
in1p1eméntation it is in many cases necessary to resort to subop%;imal
systems, Little or no attention has been paid to the problem of a
priori predicting how far a suboptimal system is from bcing optimal.
" In his forthcoming dis.sertation, R. Canales (15) shows that the re-
quiremAent that a gi_ven system haé a better performance than another
system witb respect to some pérformance ériterion can in }nany im -
portant cases be reduced to requiring that a certain suitably chosen
operator be positive. This then allows to estimate a priori bounds
for the perférmance of certain systems and to design feasible sub-
optimal controls., The basic idea to introduce a positive operator is
thi's: if the inner pi‘oduct of the optintal control and the difference in
the derivative of the state of the first and seconc(systenq is positive
(i.e., the state of t‘he' second system changes in the i'ight (optimal)
aircction when no control is applicd), then the performance of the
second system will be better. In this respect it is also worthwhile £0

mention that optimal control provides a way of verifying the positivity
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of an'opcrator 0. indccd if inf <=x, Ox>> 0 then the operator is

x
clearly positive, I—Iéwcver, it ought to be mentioned that in general
optimal control techniques are not too useful in solving the problem
this way. "The design of suboptimal controls thus appears to be a
promising area of positive operators., It also links these techniques
" further with optimal control theory,

The second chapter thus starts.with somec mathematical pre-
liminaries and definitions and then establishes some siAmple positive
operators inx;o].ving convolution operators and mermoryless linear or
nonlinear gains, These results lead to the Manley~Rowe frequency-
power formulas and the positive o'perators vtzhich yield the Popov
" Criterion and the Circle Criterion for the stability of feedback sys-
tems; 'Then. a positive operator formed by the interconnection éf a
periodicall& time-varying gain and a linear time-invariant convolution
operator is presented. This positive opérator leads to a rather ele-
,gant fl'equcncy«donuaixl stability criterion which is discussed in the
third chapter.

In the next section of the second chapter the following problem
is con.lpletely i‘es.c,)l\;ed; What is the most general linear systém which
when composed with a monotone or an odd-monotone nonlinearity
yields a positive operator? The solution to this problem presents in
a sensc the answer to a question‘ which has been studied by many
pre‘;liox.ls rescarchers both in connection with frequency-power formulas
and with the stability of feedback systems with a monotone or an odd-
monotone nonlincarity in the feedback loop. The results require a
considerable generalization of a classical rearrangement inequality
due to the Hardy, Littlewood, and Polya. The rearrangment in-

equality thus obtained is felt to be of great interest in its own right,
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The last scction of ‘the second i:ha‘pter is devoted to the problem

of adjoinipg to a positive operator a causal positive operator,

Roughly speaking, an operator is causal if the output at some time

depends only on:the values of the input before that time. It is ap-

parent that céausality will be a basic property of physical systems., Thus

in many problems in system theory e. g., -in stability theory, in opti-

‘mal control theory, in prediction theory or in network synthesis,

causal operators are of particular interest. For instance in network
synthesis it is clear that causality will be, together with passivity,
one of the basic properties of systems which could be realized using

passive devices, The question thus arises whether or not the positive

" operators discovered in the previous sections have an analogue which

is in addition causal. The answer to this question is in the affirm-
ative provided the operator admits a suitable factorization. Whether

a particular operator satisfies this condition appears to have no

gencral answer and the problem is one of considerable interest and

importance. Similar factorizations have‘x_'e-ceive'd a great deai of
atféntion in the past particularlyv in the classical prediction theory.

In this section a general fac:tolrization ?:_heprem is presented which is
félt té iae quite general and of intrinsic im;iortance. Unfortunately the
result which is based on contraction arguments does not offer a
necessary condition and is rather conservative in some particular

-

cases,
t
Most of these positive operators give essentially properties of
the output spectrum of a nonlinearity in terms of the spectrum of the

input. In fact, since most of the positive operators derived here are

the composition of a nonlinear possible time-varying memoryless
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element and a convolution operator w‘hic'h merely represents, if its |
kernel is time -invariant, a multiplication in the frequency-domain, the ;
resulting formulas simply express the positivit? d certain bilinear
fL_lnctionals involving the input and the output spectrum, of the types
as in the frcﬁuency—power formulas and the -Manley—Rowe equations.,
The third chapter is devoted to the stability of feedback loo;.)s.
The t.ype of stability which is considered here is not very common
but rather strong and essentially requires that small inputs to the
feedback loop produce small responses, The definition of small
éignals is very simple if the notion of extended spac-e'and truncated
signals is introduced. A truncated signal is the original signal but
replaced by zero from some time on and a signal is said to belong to
the extended space if all its truncations belong to the space., The
stability theorems céscntially put conditions on the forward loop and
the feedback loop Whiﬁh result in the fact tﬁat 5;11 solutions which
:'/l;elong to the extended space actually belong to the space itself, -This
type of stability together with a basic thcorem is used to obtain some
.general stability conditions. In particular the intuitive ideas that
stabili-ty follows if the open loop gain is less than unity or if the feed-
back loop is the interconnection of passive systems (positive operators) :
are proven.. As a refinement to the‘s_e results the method of using |
multiijl.iers or factoring the forward loop in two factors one of which
is then lumped with the feedbaci( loop is presented, | The resulting
thecorem is then used in two interesting examples. These stability
resﬁlts also require a factorization as the one discussed in the
- previous chapter,
The first practical stability theorem applies to a feedback loop |

with a linear time-invariant convolution operator in the forward loop

L3
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and a lincar periodically time-varying gain in the fecdback loop. As

most recent stability criteria, the criferion requires the existence of
é multiplier having certain properties, However, a necessary and
sﬁfficient condilion for this rnultipliel" to exist‘ is given and puts con-
ditions on the variétion of the. Nyquist locus of the forward loop, Es-
sentially it requires that the phase of the transfer function of the
' forwéxrd loop should not change too drastically whe;n the frequency is
innicreased by an amount equal to the frequency of the pe fiodic gain in
the feedﬁack loop, thus,reqﬁiriné a certain filtering effect,

The second practical stability theorem 'treats feedback systems
- which have a linear convolution operator in the forward loop whose
kernel may be time —Yariant a.l;d a monotone or an odd-monotone non-
linearity in the feedback loop. The resulting stability theorem requires
the existence of a multiplier having cértain propefties. This multi-
plier is less restrictive than the multipliers required in existing
‘criteria but more research is required to obtain conditions which can
be stated.in terms of the forward loop.

The fourth chapter in a sense motivates the third chapter and

. _

takes a criticalllook at some linearization methods which are'conlnlonly
used to obtain stability conditions for t:eedgack loops with one non-
‘ linhear element, A particular system is presented in which these

linearization teéhniques all predict stability but which nonetheless

allows periodic solutions. These conclusions are derived using the
. :

. *
i

' Averaging Theory of Cesari and Hale and the example provides a class
of simple counterexamples to the well -known Aizerman conjebcture .

| These examples provide a case where the mapping of the input
spectrumbinto the output spectrum can be qﬁite different for a linear
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and a strictly nonlinear characteristic and this then accounts for the
exislence of oscillations which are not expected {rom consideration of a
linearized behavior.,

The fifth chapter discusses the optimal design of nonlinearities.

An algorithm for choosing the nonlinearity in a certain class which

- maximizes a linear functional is given and the problem of generating

a nonlinearity which, yields a given set of Fourier coefficients at the

output is discussed in some detail,

1.3 PIistorical Note

The study of positive operators has found a great deal of interest
and application in the study of network synthesis and related areas.
These inve stigétidns however generailly limit themselves to the study
of perrticxtla;' classes of positive operators, namely the input-output

relations of finite dimensional constant lumped networks (27). Some

exfen.sion to nonlumped networks have been made (61).

-

The application of positive operators to the stability of feed-
back loops was introduced by Sandberg (54) and Zames (62), and was
e‘xposed.in its full generality by the latter author in (63); The ex-
plositi.on and the analysié presented in the ﬂ1ird chapte; are g;'eatly

influenced by this reference which can, in the present author's

opinién, be considered a basic paper in stability theory. It is howe\fer"

apparent that t}\1e ideas of pos?tive operators are present, althoxriigh
not very explicitly, in th.e construction of Lyapunov functions and the
resulting frequency-domain stability criteria due to Broékett and

Willems (10). The 1"esear‘ch and the succe;s of freqﬁency domain

stability criteria for nonlincar time-varying systems was initiated by

Popov (47) and the most impressive results are surveyed in (11,
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The most widely known results are the Popov Criterion and the Circle
‘ Criterion which is due to Sandberg (52).

The search for frequency-power formulas was initiated by the
disczox;ery in 1956 of the now famous Manlcy—ﬁowe frequency-power
formulas (36f which are compiled in the boqk by Penfield (45). The
frequency-power formulas which are closely related to those ob-
tained here and which apply to nonlinear resistors are due to Pantell
(44), Page (43) and Black (7). The latter author uses.the rearrange -

ment inequalities of Hardy-Littlewood and Polya (29) to obtain the

-»
-

fact that the cross-correlation of the input and the output to a mono-
tone nondecreasing nonlinearity attains its maximum at the origin, )
This result was originally due to Prosser (48) in'a slightly,diff'er(;z'nt
setting. ‘

The factorization theorem obtained at the end of the second *

chapter is original, Its setting using projections in a Banach Alge -

<L

bra follo@s Zames and Falb (64) and its proof is‘inSpired by a painer
by Baxter (4 ). For additional results pertaining to similar factor-
izations see for instance the book by Wiener (58), and particularrly
the paper by Krein (34).

The two examples of practical stabili_;cy theorems given in
.Chapte'r IIT have been studied before in several places., The feedback
system with a linear i’ime -invariant cc:nvolution operator in the forward
~loop and a linear periodically time-varying gain in the feedback loop
is of the same type as the one studied by Bongiorno (9 ) and Sandberg
(51), but the result given here makes use of the féct that the fcedback
gain is periodic to obtain an improved stability criterion, The sta-
bilit"y theorem pertaining to the stability of fecdback systems with a

monotone or an odd-monotone nondecreasing nonlinearity in the feed-

3




-13-

back loop as studicd in the second ex:axnple is a generalization of
similar results obtaincd by several authors. In particular the papers
by Brockett and Willems (10), by Zames (63) and Zames and Falb (64),
by O'Shea (41), by Narendra and Neuman (39),by Thathachar, Sriﬁath
and Ramapryan (55) and by Baker and Desoer (3 ) treat problehus
~, along the samec lines.

For the counte rexamples to Aizerman's conjecture and their
history, see the thesis by Pliss (46) and the thesis by‘Fitts (21).
Particularly the experimental results described in this last reference

were instrumental in obtaining the example given in Chapter IV,




CHAPTER II

- POSITIVE OPERATORS

2.1 Introduction

" This chapter is devoted to positive operato'rs and starts with
a number of well-known definitions from functional analysis, | These
notions will then be .uscd frcely in the sequel., The definition of
limit-in-the -mean transforms and of almost periodic functions and
some of their propertics are given for easy reference, For a mofe
extended trcatment on these subjccts sec e.g., (49, 56, and 8).

The first class of operators which are examined for positivity
are (3011\rolution op‘erators, and opera.tors in which the output is an
instantaneous function of the input. The positive operators thus dis-
.covered le ad to the well-known Manley-Rowe equations and play an
'important role in stability theory since they are closely connecta;d with
the Popoy, Criterion and the Circle Crite-rion_for the stability of non-
linear and time-varying feedback systems, )

-Ne;xt., attenéion is focused on the question what class of convo-
lution operators can be composed with a positive periodically time -
varying linear gain ax}d still yield a po‘sitivc operator. The answer to
this question is that this convolution operator should itsclf be po.sitive
and that the kernel of the convolution should be a stl"ing of impulses
occurring at multiples of the period of t];e time -varying gain., It is

shown that this result is both necessary and sufficient and the proof

relies on the fact that two operators of this type commute,

-14-
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. In the next section of this chapter, an answer to the following
question is sought: What is the most general linear operator which
‘when composed with é monotone noxj.dcc'reasing (or an odd-monotone
nondecreasing) nonlinearity Y.ields a positive operator ? This problemA
has received a great decal of attention in the past, both in connection

- with f?equency~power formulas and with the stability of feedback loops
with a monotone non}inearify in the f.eedback loop. The resulting
class of positive operators is closely related to certain classes of
matrices, i.é. , the dominant matrices, whiéh plasr an important role
in network synthesis, The reason for this connection however re-

» main§ vague and deserves further investigation. As an intermediate
step in derivin‘é this class of positive operatérs a considerable
generalizatibn of a classical inequality due to Hardy, Littlewood and
Polya on the rearrangemeﬁt of sequences is derived, It is felt that
the extension of this rearré.ngement inequality is of intrinsic im-
’;ortance in itself and is potentially épplicable in other areas of
system theory.

The last section of this chapter conéiders the problem _of.the
factoz.'ization of linear operators in a part which is causal (a iower—
triangular inatrix) and a part whose transpose is causal (an uf)per—
trian.gular matrix), This problem has received a great deél of at-
tention in conn.ection with stability theory, optimal g:ohtrol the ory
and predictidn theory. The factorization theorem‘obtained here is
q-uite interesting since it applies to time-variant convolution operators

as well as to time -invariant convolution operators., It is pointed out

however that in the latter case the results are rather conservative.
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2.2 Mathematical Preliminarics:
Definitions: Let X and Y be two spaces. The product space,
denoted XXY, is the collection of all ordered pairs (x,y) with xe X

and ye Y. A sl;ace X and a map, d, froomn XXX into the reals,

R, is called a metric spaceif (i) ci(xl,xzj >0 for all .Xl’XZ € X and

d(x),%,) = 0 if and only if x = x,, if (ii) d(xl,x'z) = d(x,,x)) for all
X 2%, € X and if (iii), d(xl,xz) + d(xz,x3)'§‘ d(xl,x3) for a.11 X)0%,,

%, € X (the triangle inequality). A sequence {xn} of elements of a

metric space X is said to converge to a point x € X if lim d(xn, x)=0,
n-— o
it is called'a Cauchy sequenceif for any € > 0 there exists an N such

that d(xn, XI’I’I) <e¢ for all n,m > N. A metric space is called com -~
plete if every Caxichgf sequence converges, A subset X1 of a metric
space X is said to be densc if for every xe€X and every € >0
there exists a x,eX ‘

) 1 1)56. A set X 1is said to be

countable if there exists a map from X into the integers, I. A

such that d(k, X

metric space is said to be separable if it has a countable dense sub-
set. )

_Iggfinitions:' Let K denote the real or complex number system,

R or C, andlet X be a vector space over K. A mapping, ” ”,

from X into R is called a norm on .X if (i) ”x” >0 for all xeX
and ”x ” = 0 if and iny if x = 0, if (ii) ”cx ”: lc[ ”x ” for all
l,xzcx

(the triangle inequality).. A normed vectpr space has a natural metric,

x€X and ce K, and if(iii)!lxl4-xéfl < ”xl ” + ”XZ ” for all x

1,XZGX. This metric is called

the metric induced by its norm. An inner product space over K is

i.e., d(Xl’XZ) = ”xl-xzu for all x

a vector sp-ace over K anda mapping from XXX into K, called the

inner product and denoted by <. , > such that (i) <x1,x2> = <x >

2° %1
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(™ denotes complex conjugate) for all X)X, c X, (ii) <c1>,1-¥ X, 3>
:cl<xlx2>4 c Xy, X > for -all Xy, Xy, Xy ¢ X and C1sC;y € K,

and (iii) <x,x >>0 for all x ¢ X and <x,x > = 0 if and only if x=0,

1/2

It follows from these definitigns that <x,x > is a norm on X.
This norm is called the norm induced by the inner product or the

natural norm. The metric induced by this norm will be called the

metric induced by tke inner product., An important relation is the

Schwartz inequali'ty“ which states that | <Xl’ x2> [5_ ”x1 ” . “XZ ” for

all X)X, € X. (As always, unless explicitly mentioned, the norm

on an inner product space will always be taken to be the natural norm.)

Definitions: A Banach space is a normed vector space which is

complete in the rn'etric induced by its norm. A I:Iﬁiilmr‘c space is an
inner product space which is complete in the metric induced by if,s
inner product. . |
AR Examples: A mapping x from the interval {(a,b)CR into K
(a = -0 and b = +w are a],lowzd) is said to belong to Lp(a,b),pz 1
if x(t) is measura{ble and if f lx(t) |Pdt <. Itis said to belong to
Loo(a,'b) +if it is measurable a:d if |x@®)] <M for séme M and
almost all te{a,b)., Two e_lementé of Lp(a, b) or L<>o (2, b) will be
considered equal if they are equal for ‘almost all te (a,b), i.e., if
XysX CL (a b) or Loo(a,b) then Xy =%, if xl(t) = xz(t) for almost
all te(a,b). With this equivalénce rolation L (a,.b) and L (a b)

are Banach spﬁces with ”xllL (flx mdt /p 1f xCLp and the
| P a
infimam of all numbers M satisfying [x () ’ 5_ M for almost all

te (a,b) for xc¢ Loo(a,b). Lz(a,b) is a Hilbert space with <\l,x >

1(t)xz(t) dt for X1,

(Hdlder's -Inequality) on Lp—spaces states that if {c¢ Lp(a, b) and

X, € Lz(a b). An important inequality

Xx
e e e
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1.
q
”g"L , and if £ GL](E).,b) and gGLOO(a,b) then ngLl(a,b) and

gGLq(a,b) with }l)—+ '1, then fgc Ll(a,b) and ”ngLIS ”f“Lp.

q
”ngLl < ”f”Ll ”guLoo. Anotber useful fact is that if a and
b are finite or if x(t) = 0 off a bounded set, then x €Lp1(a,b) if

X € Lpz(a,b) for Py f_pz, and that if xcLoo(a,b) then xeLp(a,b) for
all p. LP(-oo, + o) or Loo(—oo, + o) will be denoted by L1 gnd Loo..

A mapping x from I into K is said to belong to fp(p >1) if
+o0 : ‘ : ’
= |xk |p <. Itis said to belong to 100 if ]xk|§M for some M
k=-o0 +o0 '
and all k. {_ forms a Banach space with IIx N, =(= |x lp)l/p

p ’ £P k=-c0 k
if xe€ IP and the infirmum of all numbers M satisfying ,Xkl < M for
+c0

all k if xe¢ loo. 12 is a Hilbert space with <x,y> = z 1Yk

. - k=-00
.. Hoélder's inequality becomes ”xy ”g < ”X”,ﬂ ”y“l with

for

. 1 p
=1, Xelp and-yafq and ”xy”lli lellllﬂy|uw if xell and

VA3 loo' Another useful fact is that Ilplc Ipz if plf_ P, and that

C 1 for all p.
P
Remark: For p=q=2, H8lder's inequality becomes the Schwartz
inequality. The triangle inequality for Lp’Loo’ 4 or loo’ is often

p
referred to as Minkowski's inequality.

Definitions: A mapping from a space X into a space Y will be
called an operator from X into Y. Thus an operator associates with
each element x€X aunique element yc¢Y. X is called the domain
of O, and is denoted by Do{O). Let ‘O be an operator fr-orn X into
Y. The image of x €X '(under O will be denoted by Ox. Thus Ox ¢ Y
by assumption. Let X and Y be suBsets of a real i‘nner.product

space (i.e., an inner product space over R). An operator O from

X inte Y will be called a nonnegative operator on X (denoted




. spaces, if O, is a bounded operator from X into Y and if O
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O>0) if <x,0x>>0 for all x ¢ X, Itis said to be a positive
operator on X if O -~c¢I>0 (I denotes the identity operator on X,
i.e., Ix:=x for all x ¢ X) for some .G >0. An operét.or from a
normed linear space X into a normed linear space Y is said to be
all x ¢ X. The infimum of all numbers M satisfying the above in-
equality is éalled the bound of O, denoted NO” . The range of an
opérator O, from X into Y, denoted Ra{O) are all members of Y
which can be expressed as Ox for some xeX., An operator O
from X into Y. is said to be invertible if there exists an operator
O-1 from Ra(O) into X such that the operator from X into itself
defined by .O‘li(.) equals the identity operator. This-implies that the
operator from Ra(O) into itself defined by O‘IQ also eéuals the

identity operator. An operator from a metric space X into a metric

_space Y is said to be continuous at x if {Oxn} converges to Ox

whenever {xn} converges to x. If X,Y and Z are normed linear

1 2 I8
a bounded operator from Y into Z, then O,0O, is a bounded oper-

271

ator from X, into Z, and [0,0,[l < [0, Il [0, .

Definitions: Let X and Y be \;ector spaces over K. An
operator T from X into Y is said to be lincar if. T(ax+px,)
= uTx1 + B’l‘x2 for all xl,kze %X and q,P € K, Let T be alinear
operator from a normed vector space X. into a normed vector space
Y. Then T is continuous everywhere (i) if and only if it is bounded
or (ii) if and only if it is continuous at one point, Also if T is’
bounded,then ”T” = su . ”Tx ” Let X be real inner product

X€X, X =
space, and let T be a bounded lincar transformation froom X into

e
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itsclf, Then there exists a bounded lincar operator 17 from X

into itself sucﬁ that < X5 Tx., > =< :fs',"x > for all x,,x.e¢ X.

2 1° %2 1' 72
Moreover ” T ” = ”T* ”, (T¥)* = T, and T is invertible if and only
if T* is, and (T*)“1 = (T"})*.

Theorem 2.1: Let X

and X, be subsets of a rcal inner

1 2

product space and let Ol and OZ be nonnecgative operators on X1

and X2 respectively, Then
(i) azol >0 on Xl for all a ¢ R
(ii) O1 + Q2_>_O on XlnXZ
(i) If O isinvertible then O >0 on Ra(O)
Proof: Since (i) <=, d201x> = 02 < x, le > for all xeX,
~since (ii) < x, le'+ Ozx > =<x, le >+ < x, Ozx > forall x e X1 n XZ
. S | -1
3 $ > = 7
and gince (iii) < x, O1 X < Oly, Ol Ol) >
= <~01Y; y > ¥
= <y, Ol y >

for all xe Ra‘(Ol), the theorem follows.

Theorem 2,.2: Let O be a nonnegative operator from a real

inner product space X into itself andlet T be a bopnded linear

operalor fromn X into itself. Then

(i) T*¥OT >0 on X

(ii) T >0 on X if and only if T¥ >0 on X

Proof: Since (i) <x, T¥OTx > = < Tx, OTx >

’
and since (ii) <x,Tx > = < T%x,x >
=< X, T*X >

’,

and (T*)* = T, the theorem follows.




2.3 Transform Thcory

Definitions: Let x ¢ L, then the function X defined by

s e et et e e i 1’
. +o
X (j w) »_-f x(t)e @ty
-0

“is called the Fouricer transform of x, Cléarly Xe Loo’ ”X ”L <

. . : o0
”x ”I and if x(t) is real, then X(jw) = X(-jw). Since this transform
All

need not belong to L., it is in gencral impossible to define the in-

1’
verse Fourier transform. However if X turns out to belong to Ll
then
400
x(1) = 5 f X(jw) Iy
- 00

(As always, this Aequality is to be taken in the L1 sense). Thus the
necd of a slighﬂy more gencral transform in which the inverse trans-
.. form can always be definced is apparent. This is done by the limit-
in—the-‘lﬁcan transform. It is well-known that if x, y € Lzﬂ L1 then

<x,y> = —2~1—“— <X,Y > (Parseval's Fiquality) .‘ Let x¢ Lz, Since

Ll N L, is dense in Ly, i.e., any L, -function can arbitrarily closely

be approximated (in the L, sense) by a function in L1 NL,, there

2
exists a sequence of functions {xn} in L,N L, which is Cauchy

(with respect to LZ) and which converges to x (in the LZ sense).
Let Xn be the FAourier transform of x o It follows from the Parsevad
relation that ”Xnixln ” = "(;—-Fﬁ ”Xn—Xn’l ” and that Xne LZ' Thusi
since. in is complete, thes:transforlns, Xn’ converge to an
element X of L,. This element X is called the limit-in-the -mecan

transform of x. It follows that the limit-in-the-mecan-transforim maps

L2 into itself and that <x,y > = 2]%< X, Y > forall x,ye¢ LZ’ and
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their limit-in-the -incan transforrms X, Y. This equalily will be re-

ferrced to as Parscval's equality, Onc.way of defining a limit in the
5. c¢ by g

mean transform is by

X(jw) = lim x(t)ye 9t

where the limit is to be taken in the .1, -sense (It is casily verified that

2
this constitutes esscntially a particular choice for the Cauchy se-

quence {xn}.) The notation that will be used for limit-in-the mean is

+oo
X{jw) = 1.i.m.f x{tye 99 gt

-00
With this definition of transforms, the inversion is always possible and

the inverse transform formula states that

+ 00
x(t) = 1l.i.m. 'Zl}f X(jw) e‘]wtdw
-00

Definitions: Let xe L,(0,T), T > 0. Then the sequence

X = {xk}, ke 1, defined by .
a Sak ol
X = TI—‘f x(t) e . .dt
0

:§—k whenever x(1) is

«

series of x(t). Clearly[ Xec loo and ék

real, The Parseval relation states that if X 1%, € LZ(O’ T) and if
XI’XZ are their Tourier series, then <Xl’ x2> = 2w < Xl’ X2 >..
(Thesc inner products are of course with respect to L2 and fz re -

spectively.) In trying to obtain the inverse Fouricr series formula,
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the same difficultics as in the inverse Fourier {ransform arc en-

countcred, and the same type of solution is presented, This leads to

+cw0 ](;J,I't
x(t) = l.i.m Z X, € 1
.1, x
k=-c0

N jk ‘;i;" t
x(t) = lim Z x, e
N0 k=-N

"where the limit is to be taken in the LZ(O, T) sense.

Definitions: Let xe€ 11, then the function X defined by

: 400
x(2) = Z *k « "
. k=-0m
exists for all ]z] = 1 and is called the z-transform of x, In trying

to extend this notion to sequences in ﬂz the same difficulties and

the same solution as in the previous cases present themselves, This

leads to the limit-in-the mean z-transform

: +oo

. -k

X(z) = 1l.i.m, Z x) 2
k=~

and the inverse z-transform

: 1 (/{;’ I |
X T 5 ) X{z)z dz
, |=]=1
Decfinitions: A continuous function, x, from R into K is
said to be almost-periodic if for every € > 0 there exists a real
number £ “such that every interval of the rcal line of length £ con-

tains at least one number T such that
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Ix(it1) - x(0)] < ¢ for all t

Some properties of almost-periodic functions are:

(1)

(i)

(iii) -

(iv)

(vi)

(vii)

Mozreover, XXy = Xpudy and xl*(x2=;<x3) = (xl,;x

for all alimost periodic functions x

Every almost periodic function is bounded and uniforimly
continuous

Continuous periodic func:tioné are almost-periodic

The sums, products and limits of uniformly convergent
almost periodic functions are almost po riodic

The limit of the mean value

as T-—+w exists, andis independent of v for all almost
periodic furctions x, and the convergence is uniform in 7.

I Xy and x, are almost periodic functions then so is

T
‘ . 1 [ '
XK, = lim 'éi‘f xl(t—'r)xz(T)dT
T-+c0 -T

KA Z) %X

3
10 %20 %3
T

lim "-1;: f x (1) e.‘j wtdt |
21
T— 0 -T

-

vanishes for all but a countable number of values of .

t

The space of almostl periodic functions forms an inner

T

2T

, i . . 1 N
product space with < X1,%, > = lim 4 xl(t)xz({.) dt

T — -T

],x‘? almost periodic functions. (This inner product
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space is however not complcte and not separable.) Let
x be an almost periodic function and let {wk} ‘be the set‘
of values for which the lirmit in (vii} does not vanish and
let Xy be the value of that limit for Ty The sequence

{xk} is called the generalized Fourier series of x(t}. If

x(t) is real then w belongs to the sct {wk} if and only if

-w does and the values xk associated with w and -& are

complex conjugates. The inverse Fourier series is de-

fined as
N .

x(t) = lim x, €
N— o0 k::,N

This limit, which exists, is to be taken in the metric in-
duced by the inner product on the space of almost periodic

functions.

{.2.4 ~Somc Simple Positive Operators

In this section a number of well -known positive operators will
be discussed and gexleralized. The results yield the Manley-Rowe
équations and the positive operators which led to the Popov Criterion
and the Circle Criterion for the stability of feedback systems. - The
discussion is mainly concerned with positive pperators on L2 but the _

Manley—Rowe equations will also be stated (\\}'ithout proof) for al-

most periodic functions, .

[}
In this scction L2 is assumed to be taken over the real numbers.,

Z

into itself each clement, G, of which has associated with it an ele-

Definitions: Let G denote the class of operators from I,

L -

ment G(jw) of Loo’ with G(jo) = G(-jQ) and which maps an element,

W
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x(t), of L, as follows: let 2X(jw) be the limit-in-the-mcean trans-
form of x(1) then the funciion y(l) = Gx(1) is the inversc limit-in-
the-mean transform of G(jw) X (jo) .

Let K (}'g‘z_g_gt‘:c_: the class of operators from L, into itself
each elecment, K, of which has associated with it a real clement of
Loo’ k(t), and which maps an element, x(t), of LZ’ into y{t) with
y(t) = Kx(t) = k(t)x(t).

Let 'Et denote the class of operators from LZ ‘into itsclf
each element, Ft’ of which has associated with it a measurable
function, f(o,t) from R XR into R, satisf&ring the incquality
|f(0,t) f ﬁM lUl for some M, ail o é.nd .alm‘ost all t, and which
maps an element, x(f), of L2 into y{t) with: y(t)i: th(t) =
f(x(t),t) for all t |

Let ¥ denote the class of operators {rom L2 into itself ecach
. e‘lerne‘nt, F, of which has associated with it a measurable function,
‘f(cr), fl‘érn R into itself, satisfying the inequality [£(o) | <M lo—l
for some M and all ¢, and which maps an element, x(t), of L2
into y(t) with y(t) = Fx(t) = f(x(t)).

It is a simple nlgitter to verify that the above oiaerators are indeed
well ~defined, i,e., that they map L2 into itself. A subclass of oper -
ators of the class ¢ which is particularly important will now be ex-

amined more closely. Let (g{t), {gk}) be an clement ofVLIXE1 and

let ty be a mapping from I into R. Let y(t) 5 Gx(t) be formally

defined as

+o0 +00
y{t) = EJ 8k x(t—tk) -i-f glt-T)x(7)dr

k:'-cl:i -0
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Lemma 2.): The operator G defined formally by the above

equation maps ‘L., into itsclf, Morcover GeG and the function

2
G(jw) associated with G is given by

+o0 +o
G(jw) = E geo 0+ f a(tye I9tat
w4
k= - -0 .

Proof: This is a standard result from Fourier transform
theory (sec ec.g., (56, p 90).

Remark: Ac‘tual]y if g(tjec L, and if its limnit-in-the -mean
transform of G(jw)eLoo then the above lemma remains valid,

The fdllowing theorems on positivé operators will now be
established,

.

Theorem 2.3: Every element Ge G defines a bounded linear

{

transformation from L, into itself, 1G] = lGGuill, and G isa
0
nd only if Re G(jw) >0

nonncgative (positive) operator on L2 if a

G*e¢ G and has_the function G(jw) associated with it,

Proof: The theorem is obvious with the possible exception of
-

the positivity condition. This however follows from PParseval's equality,

Indeed, . v /
+oo
<x(t), Gx(t) > = _Zl—;r—f G(j ) lX(jw) !zdw
. 5 Y '
i 00
= ~21~~ [ 2Re G(jw) lX(jco) ‘Zdw
e
0

Theoremn 2.4: Iivery clement Ke K defines a bounded lincar

!
i

_transformation.from L, intoitsclf, | K

= @l and K is.

o0
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a nonncgative (positive) operator on LZ if and only if k(t) > 0

(k(t) > ¢ for some ¢ > 0) for almost all t. Moreover K™ = K,

i,e., K is sclf adjoint,

Theorem 2.5: Every element Rk, defines a bounded

operator from L, intoitsclf. [[F || = K' where K'=inf K over all

K such that |f(o,t) ] < K || for all o and almost all t. F, is a

nomne gative (positive)operator on L2 if and only if of{o,t) > 0

(of(o, t) > Gcrz for some ¢ > 0) for all o and almost all t.

Proof: This theorem is immediate. |
Thg théorerﬂsimilar to Theorems 2.3, 2.4, and 2,5 for the
class F is exactly ae Theorem 2.5, with f(o,t) replaced by f(o).
This follows fromn the fact that f]S\‘,C’li"t. There is however onc re-
finement possible which is due to the fact that the function f(¢) does
_not depend on the variable t explicitly., This refinement leads to
the I\’Ianley»RO\ve frequency-power formulas 'and the Popov stability
“criterion, !
Definitions: A function x from R into itself is said to be

T N-1
absolutely continuous if % Ix(tk) '—x(tk_H) I_—*O whenever

k=1
N-1 : :
151 ltk-tk-%l’ —0, for any sequence {tk}, k=1,2,...,N, and any N,
A classic result in aLna,lysis states that a function is absolutely con-

t . :
tinuous if and only if x(t) = x(a) +f r(t)dt for some function r{t)e
. i a

Ll(a,b). Naturally r(l) = %(t) for almost all t. Let Sé

the subspaée of Lz(a, b) formed by the functions on{ a, b] which are

{a,b) be

absolutely continuous and which, together with their derivatives be-
e . 1 : 1 % v
long to ]_,2((1,b). SZ‘ denotes S2 (-0, + o). SZ is an inner product

space with the inner product as in LZ. It is however nol completc.,
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) Lemma 2.2: If x ¢ S} then lim x{t) = 0 :
fosiabliataiedtiabbds 2 ) )
t— Lo

T

2
Proof: Since ‘[ x(t)x(t)dt =
-T
1

that these limits exist since the limit

by the Schwartz inequality. Since the

they must be zero.

Definition: A function f {rom

| S A y
'Z“’[X(lz) —x(--fl)] it follows

on the left for T] or T2—~03 exists

limits exist and since x(t) ¢ L2

R inte R is said to satisfy a

Lipshitzs condition on R if lf(trl) ~f(0'2),!£ Klo'l —-0'2! for all Tys0, €R

and some K. K is called a Lipshitz constant for f. Clearly, if £

satisfics a Lipshitz condition and if x(t) is absolutely continuous, then

y(t) =f(x(t) ) is also absolutely continuous.

Theorem 2.6: Assume that F ck and that the f which defines

F satisfies 2 Lipschitz condition on R. Then <x, 4 Fx>=0

for all ¢S ;,
-+ Proof: Let y(t) = Fx(t) and let

It is simple to show that
almost everywhere). Thus the above
yeS; . Integration by parts yields

+oo ‘
f x(t) —-(% y(t)dt

-00

1

1

The last equality follows from Lenuma 2. 2. . -

dt

K be a Lipshitz constant for f.

i’(t)[g_ K|x(t)] whenever both exist (and thus

inner product is well defined since

+00
[ s & sty ae

- Q0 ;
x(T) B
- lim f(o)do
T**ODX(NT)
0
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l D ]
exists and cquals  jeX(jo) where X(ju) is the limit-in-the-mean trans-

form of x. Thus Theorem 2.6 merely states that
Y

+00
f JuX(-jw)Y(Gu)dw =0

=00

which is precisely the Manley~-Rowe power-frequency formula for

clements of Lz;

5 and 2.6 combine to:

Theorems 2.

Thecorem 2.7: Let F C’FV and assume that the { which deter-

' . . s d ...
mines I" satisfies a Lipshitz condition. Then (l+a at )I is a non-

. . 1
negative (positive) operator on S?

for some. ¢ >0) for all ¢ € R.

if and only if of(c)> 0 (of(c)> 60'2

Theorern 2.8:

Then ¥G is a nonunegative operator on L

mined by G(jw) = 332 TRt 2L

and only if of(0)> 0, for all ccR.
The thcorem is a particular case of Theorem 2.5 if

Proof:

a =

convolution, Gx is absolutely continuous for all x € LZ . Moreover,

since jo/l+ ajwe L., for a 0, Gx € S; for all xe¢ LZ' Thus

- Kx, FGx> = <(l+4+a -z?—t- ) Gx, FGx>

> a < -—(L Gx, FGx>
dt

Let Fcek, and assume that the function f which

2

0. Let therefore a 7 0. Since the operator G corresponds to a

<Gx, FGx> .+ a < -2% Gx, FGx>
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This last integral cq.uals-; zero by Theorem 2.6, which proves the
theorcm.

Because of their importance, it is worthwhile to state analoguces

to Theorems 2.5 and 2.6 when x(i) is an almost periodic function.

Theorem 2.5': Let f satis{y a Lipshitz condition on R and

}EL x be almost periodic. I.et {xk} and {yk} be the gencralized

Fouricr scrics of x and y. I of(0)> 0 for all o, then

PRI

k

Theorem 2.6' ;@ Let { satisfy a Lipshitz condition and let x

and %X be almost perfodic. Then y(t) = f(x(t) ) is almost periodic.

Let {xk} and {y}_} ‘be the gencralized Fourjer series of x and vy.

Then

LT w——— . -
Z o Xy vy = 0
K

Proof: The proofs are completely analogous to the proof of

Theorems 2.5 and 2.6.

are essentially conservation laws and hold for a very wide class of

systems,
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2.5  Yeriodic Gain

The result in this scction is novel, It represents a positive
opcrator formoed by the interconncction of a periodically time-varying
gain and a 1in.ea‘1' time~invariant convolution-type operator., The
proof is very simple and the positive operator will lead to a rather
elegant frequency-domain stability criterion wh‘ich will be discussed
in the next chapter.

Definili_@_x_sg J.et T  be a positive number, and l.et. ;ST denote the
subclass of KX determincd by the {functions k(t) which in addition satis-
fy k(t+ 7T) = k(1) for almost all t. Let QT denote the subclass of ele-
ments of G del.ermihcd by the functions G(jw) which in addition satisfy

1

G(ilw+ 27T ")) = G(jw) for almost all w.

Lemma 2,3: Let K¢ I,ST and G ¢ (g,l Then K and G commute

on L‘Z’ i.e., KGx = GKx for all x ¢ LZ'

Proof: Since both K and G are bounded linear operators from

L? into itsclf, KG and GK are. Thus by continuity of bounded linear

#

operators, it suffices to prove the lemmma for a dense set in LZ’

Define the scquence {gk} , kelhby

21T/T .
T . -jkaT
g 7 s G(jw) e L dw
0
It follows from the theory of Fourier series that {gk} € IZ and that
_ +eo +N
. _ . Y jkeT . lim : jkwT
G(jw) = 1li.m. 8y © ® Neveo Z £y e’

k=¢; =N
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Let v be any clemeat of L, N Loy Then

N

WN(t) = }_, 81 v(t-kT) ¢ LZ n Ll
k=-N

L.et V and WN be the limit-in~the-mean transforms of v and W Then

N *
Sy jka T ;.
wlio) = > g @7 V(o)
k=-N
N
Thus || Wyglio) - GGoVG) = 11(GG) - ) gy e vl
N! L. . k L
2 2
k=-N
Since V{jw) ¢ L and |{V(j0)]] < |{vll, .1t follows from Hélder's
. ® : Lo — Ly :
inequality that
N
. /s . ey jkoT
” WN(J"‘)) - G{jw)V (jw) H 1, < H v H 1 ” G(jw) - gk € “L
T 2 1 2
k=-N
' ' N jkewT .
“which since = 8k e approaches G(jw) in the LGsense shows
k:"N ) .

that W approaches in the Lz——senso the function whose limit-in-the-

mean transform is G(jw)V(jmi. Thus

4o’

w(t) = 1.1, m, ; £y v(t - kT) .
-
. . k== .

. ! ¢
exists, beclongs to LZ’ and hds G(jw)V(jw) as limit-in-the-mean trans-

form, This holds for all v ¢ LZ n Ll' The lemrna will now be proven

for all x ¢ L2 N Ll' Since then Kx ¢ L? n Ll’ the above ana].yéis:
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- applics for both x and Kx., However
k(1) 8 x(t-kT) = 8y k(t-kT) x(t-kT) for all keI,

It follows thus that

N N
k(t) g, *(t-kT) = § g, K(t - KT) x(t - kT)
k=-N | <IN

which after taking the limit-in-the-mecans of both sides and observing
that k ¢ I yields the lemma for all x ¢ L, n L. Since L, N L, is
dense in LZ, the lemma follows,

Remark: T};c conclusion of Lemma 2.3 1<3 immediate if one is

satisfied with the following formal argumecnt:

+oo

Since Fx(t) = ? £ x(t-nT) and K(t) = k(t-nT)
n::—-log .
, oo +too
KFx(t) = k(1) Z £ x(t-nT) = X £ K(t-nT)x(t-nT) = FRx(t)
) n=-oco n=-co

Definition: An opcrafor 0 from X into itself i said to possess

a squarc root, denoted by 01/2, if therc exists an opcrétor, 01/2,
0= 0}/20Y/2,

from X into itself such that

Lemma 2.4: Let K¢ 5 be determined by k(t), and assuz;ne that

k(t) > 0, The Kl/2 eiists:. Morcover Kl/z e K and KI/Z I3 ItST if

K€I£T’ . .

the required properties,

Theorem 2. 9: Let K ¢ }rST and let G ¢ 91 'lb_gj} KG and GK

are nonnegative (positive) operators on L2 if k(t) > 0 and if
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Re G(jw) > 0 (k{t) > ¢ and Re G(jw) > ¢ for some ¢ > 0) fer almost all

t and w > 0. Moreover, ~t_.h“(_;_g;:l_r;:rncnts of err which satisfy the above

inequality arc the most general elements of G which yield nonnegative
~

(positive) operators KG and GK for all K ¢ IéT which are determined

by a k(t) satisfying k(t) > 0 (k(t) > ¢ for some ¢ > 0) for almost all t,

Proof: The first part of the thcorem follows from Lemma 2.3 if

it is proven for KG. But by Lemmas 2.3 and 2.4

< x, KGx > = < x, KI/ZGK1/2x>

since K2 ¢ K, it is self-adjoint, and thus

< xKGx > = < kY2 cx!/2, >

which is nonnegative by Theorem 2.3. To prove the positivity condi-
tion, write KG as KG = (K- ¢I)G+¢G and apply the previous part of
this theorcm and Theorem 2. 3.

T f‘or the converse part of the theorem, assumec first that

Re G(jw) < 0 for all w in a set of positive measure. Then picking
K =1 and applying Theorcm 2.3 yields the result by contradiction,

-

Assume next that ReG(jw) > 0 for almost all w, but that G(jw+2xT
G("jw) / 0 for all w in a set of positive measure, say §2 This pért of
the theorem is proven by choosing particular functions for k(t) and x(t)
which lead to < x, KGx > < 0, Forr simplicity assume that Re(G(jw) -
G(j(w + ?,-nT-]')) < 0 on the set Q. ~ (A similar argurneﬁt holds {for the
other cases)., Then there exists a € > 0 such that

Re(G(jo) - G(j{w +21-.T~1))) < -¢ forall we Q' with @' CQ a set of posi-
tive meésurcz. Let Q”n be a subsct of [n ZnT’l, (n+1)2wT-1] n 'Q'

which is a positive measure (such a subset exists since Q' is of
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positive mecasure), Let Q"n | an-T-] denote the sct of all points x

1

>

such that x- kaTnl'c Q"n. Pick X(jw) = 1 for we Q"'n.H:ZTYT—

kel and |k l < N, and X(jo) = 0 otherwise, and pick k(t) = l-cossz"lt.

Clearly Kk(t) > 0 and the K corresponding to k(t) belongs to KT. Let

1 1 1
) -5

G(jlw ~ ZTTT-I)) X{(j{w - quTﬁl)). A simple calculation shows that the

inner product < x, KGx > becomes I\/l-{-}{\; Re{G(jw) - G(j{w ‘i‘Z'ITT—l)))

y = KGx. ThenY(jo) = Gliw)%{je) - 3 Glilot2aT™)) X(jlw+2aT

p,(Q”n), with M a .number independent of N,.and p.(Q”n) the Lebesgue
measurc of Q”n. Thus < x, KG}: > can be made negative by choosing

N Suificient.ly large. This ends the proof of Theorem 2, 9.

be composed with a class of convolution operators without destroying thé
positivity, Siani],e;r i)ositiye opcerators are, either implicitly or ex-
plicitly, the basis of most of the recently discovered frequency-domain
stability crite ria for feedback loops containing a time -invariant con-
voluhon operator in the forwar(‘i loop and a nonlinear time-varying
element in the feedback loop. For the case in which the feedback loop is
an operator of the class K the pqsiﬁve operator obtained by Qx'xlber

and Willems (26), and in its full generality by Zames and Freedman (65)
seems particularly interesting. By restricting the derivative of k(t),
-they obtain a‘class of convolution operators which can be composed with‘
Kc}v{ such that positi;rity is not destroyed. This idea is use'd in the

latter reference to obtain a very elegant stability criterion.
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2.6 Positive Operators with Monotonce or Odd-Monotone Non-
lincaritics

In this s.cction an answer to the following question is given:

What is the most general linear operator which when composed with
a monotone nondecreasing (or an odd-monotonc nondecreasing) non-
linearity yiclds a positive operator? The answcr to this question re-
présents in some scnse the solution of a problem which has been
studied by many previous researchers, In particular it is the prob-
lem studicd by PPage (43), Pantell (44), and Black (7 ) in connection
with frequency-power fqrmuil'a.s and it plays a cen.t_ral role in the
| determination of s‘rabilit}; criteria for feedback systems with a mono-
tone or an odd-monotone nonlinearity in the feedback loop., In the

latter context it has been treated by Brockett and Willexns (10,
Narendra and Neuman (39),Zames(63), O'Shca (41,42 ), Zames and

Falb (64), Thathachar, Srinath and Ramapriyan {55, and others.

S The preliminary result obtained in this section constitutes a
considerable extension of a classical rearraﬁgcment inequality, This
inequality then forms the basis from which the positive operators of
this section are derived, It is felt that these rearrangement in-
equalities are of intrinsic ir_nportaﬁce and are potentially useful in
other areas of system theory. For various technical reasons, the

discussion is mainly concerned with sequences, With some modi-

fications, similar results can be obtained for the continuous case.
2.6.1 Generalizations of a Classical Rearrangernent In-
equality »'

Chapter X of Hardy, Littlewood and Polya's classic book on
inequalitics 29} is devoted to questions relating the inner products

of similarly ordered sequences to the inner products of rearranged
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scquences, The simplest result given there states that if

> x., > > g >y, > ... >y . andi
Xy 2 Xy Zoee 22X, and Y2y, 2 2y, and if yT[(l), w(2)’ Vi)

is any rearrangement of the y-scquence then

IR DI
k=1 k=1

The informal explanation of this fact given in @9) is that giveln a

lever arm with hooks at distances x,,x

1’ x from a pivot and

ARREE
weightls Vs Ypreea ¥y to hang on the hooks, the largest moment is
obtained by hanging the largest weight on the {arthest hook, the next
large st weight on the next most distant hook, etc,

This result has an interpretation in terms of positive operators.
Suppose that { is a function from R into itself, aﬁd denote by x and
Fx the n-vectors whose :conuponents are xl’XZ’ e Xy and
f(xl), f(xz), oo f(xr;) . Then in language of positive operators the Hardy,
" Littlewood and Polya rearrangement thcorem says that the operé.tor
on R" defined by Ox = (I-P)Fx is nonnegative if I is the identity
matrix, P is any permutation matrix and {f is monotonec nonde-
él‘ea.sirug,

It will be shown that this result fogcthcr with a result of
Birkhqff on the decomposition of doubly stochastic matrices permits
the derivation of a number of interesting positivity conditions for a
class of operators. The results thus répresent a test for checking the
positivity of a class of lnonquadratic forms parallel to the Sylvester
test for checking the positive definiteness of a syrm‘ﬂetric matrix,
This result is less important only becausc uadratic forms wlﬁch go

hand in hand with lincar transformations and linear systems are used
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more often and can'thus be considered to be more importaz-lt than non-
quadratic forim$ which go hand in hand with 11onl‘inca1‘ transformations
and nonlincar systems, |
Rcemark: It is intcresting té notice that Prosser (48) and
Black(7 ) have usecd the I-Iard'y', Littlewood and Polya rearrangelnént
- inequality as the basis to prove that the crosscorrelation of the input
and the output to a monotonc nondccteasing nonlincarity atta.i»ns its
)

maximum value at the origin,

Definitious: Two sequences of real numbers {xl,xz, .. .xn}

~and {yl, Yoree y;l} arc said to be girnilarly ordered if the inequality
Xy < X, irnpi ies that Y < Yp- Thus two sequences are similarly
ordered if and only if they can be rearranged in such a way that the
resulting se.qucnces arc both monotone nondecreasing, ire. , there
exists a permutation w(k) of the first n integers (w(k) takes on
each of the values 1,‘2, ...,n just once as k varies through the

values 1,2,...,n) such that boththe sequences {X-rr(l)’ X2y

} are monotone nondecreasing. Two

w(n)

.and {Y_"(‘I) 3 YTT(Z) 3 ¢ 0 oy Y,“_(n)

sequences arc said to be ngbiaéed if X Vi > 0. Clea..rlyvtixfo sequences

are similarly ordered and unbiased if and only if the augmented sc -

quences {XI’XZ’ - ’Xn’Xn+i} and _{YI’YZ’ R Y Yn+1} with

X415 V1 T 0 are similarly ordered. Two sequences are said to

be simiiarly ordered and symmetric if they are unbiased and if the

sequences {lxl !’A.]XZI’ ces !Xn” and f Iyl [ lyz ..., |yn‘} are
similarly ordered. »
Example: Let f(o) be a mapping from the real line into

itself, and consider the scquences {XI’XZ’ .. ,xn} and

{f(xl), f(XZ)’ ceey f(xn)}. These two scquences will be similarly
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ordered for all sequences {xl,xz, oo ,(xn} if and only if f(o) is a
monotone nondecreasing function of ¢, i.e., if for all o) and oy,
(0l ~02)(f(0‘1) --f(o‘z)) > 0., They will be unbiased if and only if {(¢) is

a first and third quadrant function, i.e., if for all o, of{o) > 0.
They will be similarly ordered and synnnetﬁc if and only if f(o) 1is
-an odd mounclone nondecreasing function of o, i.e., if f(o) is mono-
tone nondecreasing and f(o) = -f(-0) for all 0.

doubly hyperdominant with zero excess if m

£§_0 for k £ 1, and if

k
n n
Z m,,= Zm , =0 for all k,£. Itis saidto be doubly hyper-
N ¥ k?
k=1 f=] . n n
dominant if ‘nlkf <0 for k £ 12, and if szl mkfzo and 1%1 mkfgo

for all k,2. A (nXn) matrix M is said to be doubly dominant if

n ) n
> % !ll’lkfl and mkkz % |m

k=1 ’ £=1
k74 £k

classes of matrices introduced above are subclasses of the class of

It is clear that 211 of the

Moy kl"

« . all matrices whose symmetric part is nonnegative definite and that

every doubly hyperdominant matrix is doubly dominant,
Two other classes of matrices which will be used in the sequcl
‘and have received ample attention in the past are defined below,
Definitions: A (nXn) nlgtrix M is said to be doubly sto-
chastic if it is a nonnegative matrix (i.e., rnkﬁ?~ 0 for all k,{)
and if its rows and columns sum to one. A {(nXn) matrix is said to
bc a permutation matrix if every row and column contains n-1 zero

t . “ .
elements and an element which cquals one, The relation between the

ot
<

The term dominant is standard. Hyperdominant is prevalent, at
least in the electrical network literature. The term doubly is used
by analogy with doubly stochastic where a property of a matrix also
holds for its transposce., Beyond this the nomenclature originates
with the author. ' :
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class of doubly stochastic matrices and permutation matrices is
given in the following lemma due to Birkhoff.

Lemma 2.5 (Birkhoff): The set of all doubly stochastic

‘matrices-forms a convex polyhedron with the permutation matrices

as vertices, i.,e., if M 1is a doubly stochastic matlrix then

B\
M = ZG.P.
ii
i=1
N
with aiZO, Zai =1 and P a permutation matrix, This decompo-
i=1

sition need not be unique,

Proof: A short proof can be found-in (37

Theorem 2,10 states the main result of this section and consti-
tutes a considerable .generalizétion of a classical rearrangement in—‘
equality due to Hardy, Li‘tt].ewood and Polya (29). This inequality is

stated in Lemma 2.6.

Lemma 2. 6 (Hardy, Littlewood and Pelya): Let {Xl’ XZ; ... ,xn}
and {yl, Yoo oo yn} be two similarly ordered sequences, and let
w(k) be a permutation of the first n integei's; Then

n

I
Z XV 2 Z kY (k)
k=1

k=1
Proof: A simple proof can be found in (29). A convincing jf
plausibility argument is given in the introduction to this section, -

Theorem 2.10: A necessary and sufficient condition for the

n .
bilinear form P my XY, to be nonnegative for all similarly
' -k, £=1 :

ordered sequences {x;,x,,...x } and {y;,y,,...y_ } is that the

matrix M = (mkf) be doubly hyperdominant with zero excess,
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Proof: (i) Sufficiency: Let M be a doubly hypcrdominant’

matrix with zero excess and let r be any positive number such that

T zrnk! for all k,f, Clearly M = r(I - %(1‘1»1\/1)) . Since however

-i—j(rI—IvI) is a doubly stochastic matrix, it can,by Lemma 2,5,be de-
N N

composed as % aipi with a, >0, = a, = 1 and IP1 a permutation
1=1 1=0 :

matrix, Thus M can be written as

N .
M = Z ﬁi(I~Pi) with ﬁi >0
i=1

This decomposition of doubly hyperdominant matrices with zero excess
shows that it is enough to prove the sufficiency part of Theorem 2,10

for the matrices I-Pi. This however is precisely what is stated in

Lemma 2.6.
(ii) Necessity: The matrix M may fail to be doubly hyper -

dominant with zero excess because my o, >0 for some kit in which
“case the éequences with n-1 zero elements except +1 and -1 in

n
respectively the k-th and £ -th spots lead to‘ k,itlmkﬁxkyl = X
Assume next that the matrix M fails to be doubly hyperdominant
with zero excess because % mkﬂ(O fo;* some £ (a similar argu-
ment holds if 1%1mkﬂ{ 0 g:):rlsome k), and consider the similarly A
ordered sequenc:es {1,...,1,1+¢,1, ..., .l} and {0,..., 0,€~1,0, ...,0}

-m £<0'

with €70, and the elements l+e and G.-l in the £ -th spot. This leads -
n n . A
to 2 m XYy = 3 m tm,,. By taking € sufficiently small

ok, 2=1 k=1 n
and of an appropriate sign P my Xy, can thus be made
k, =1 ' :

negative,
The following two theorems are generalizations of Theorem
2,10 to similarly ordered unbiascd and {o similarly ordered ~éy1.n~

“metric scquences,
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Theorem 2,110 A necessary and sufficient condition for the
n
bilincar form - 2 m, x Yy
el iy . f - ﬁ
K, £-] ROK

unbiasced sequences {x),%,,...,x } and {y;,y,, ...,y } is that the

to be nonnegative for all similarly ordcred

matrix M = (1n1 o) be _doubly hyperdominant.
Proof: (i) Sufficiency: Let M be a doubly hyperdominant
: n , n
matrix and define m == 22 m == 2 m for k,Z <mn,

k, ntl g1 ke ™ whl, £ k=1 k1

and m

n
ntl, nil” 22 my . Then taking Xn+1:yn+1:0 it follows from

=1

n ntl
Theorem 2,1 that VS y,= & m., X,y
| kﬂlnkfkﬁklekﬂkﬁ |
mented (ntIXntl) matrix My :(mkﬂ)’ k,2=1,2,...,ntl is doubly hyper-

k,
>0 since the aug-
dominant with zero excess and since the sequences {XI’XZ’ cees X, Xn+1}
and SR with x_ .= =0 are similarly ordered.
(SSERFTRRRRR YR EY, nt1 ™ ntl 4
(ii) Necessity; The sarne sequences as in Theorern 2,10 can
be uscd if the matrix M fails to be doubly hyperdormninant because

».1nk-£> 0 for some k/f. Assume next that the matrix M fails to be

n
doubly hyperdominant because Zrnkf < 0 for some £ (a similar
k=1
n : A
argument holds if 2 my < 0 for sorne k), and consider the se-
£=1

quences used in Theorern 2,10 with the additional restriction that
€ > 0, Notice that these sequences are similarly ordered and un-

biased. It follows then that by taking ¢ > 0 sufficiently small
n N o}
Z; 1mk£ Y =€ -1 Z}l my -hnjf cﬂan be made negative.
12

: A necessary and sufficient condition for the

k,
Theoxern

bilinear form

k
2.
n
N 21; NETRNS: to be nonnegative for all similarly

ordered symretric sequences {\l,x_ e ,xn} and {yl, P IRRE ,yn}

is that the mafrix M = (m ) be doubly dominant.
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Proof: (i) Sufficiency: L.t M be a doubly dominant matrix,

Clearly .
n A ‘ S
DR SRR L PN ) S N I
k,£=1 k, £:1 Kk, £=1

k=f . k#4
The right hand side of the above incquality is nonnegative by Theorein 2,11

since the matrix M,, (m ) with m? when k=f and

k1 kf" Mye

ot
53

my e = - lrn]’f'] when' k/£ is doubly hyperdominant and since the
sequences (1), Iy l,oo, b 1) ana {y | Iy, Lo Iy, 1) ave
similarly ordered and unbiased. This implies that, 24 m kyf> .

k,f=1
(ii) Nccc cessity: Assume that the matrix M fails to be doubly

dominant because m, , - E ’rn l< 0 for some £ (an analogous argu-
o 11 k=1 k! &
k1 .
ment holds if m,, - = Im l< 0 for some k), and consider the se-
kk 1-1 k2

1{k _
-qu.c:fl/l’(’;ebs {~sgr_1 m.u, .., -Sgn m, 1,0 1+ €, -sgn m£+1, gr e TSEN :mnﬁ}

and - {0,...,0, c—l, 0,...,0} with sgna= Tg‘“" if af0, sgn 0=0,e>0 and
. (1
1+€ "and ’cvl' elements in the f£-th spots, These sequences are simarly
: n n
e L 7 . L ae3 - - J - E RN
ordered and symmetric andlead to 2 mkl X ¥, =€ (rﬂpg / !rnkf !) ! oyy
k, 1=1 k=1
| n 1344
which by taking € sufficiently small yields b 0y XYy <0,

k,!= 1
Let { be a mapping {rom Rinto R and dencote by F the mapping

from Rn into itsclf which takes the element col(x,, Xosew s Xn) into
col(f(xl), f(xz), Ces f(xn)) . Then in termes of positive operators Theorems

2.10 to 2.12 become:

Theorem 2.13: Let M bz an  (nXn) matrix and let { be any

(i) monotone nondecreasing function

(ii) monotonce nondecrcasing first and third quadrant function
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(ii))  _odd:-monotone nondecrcasing function

. —~ . n .
Then MIE is a nonncgalive operator on R7 for all mappings f

satis{ying the above conditions if and only if the matrix M is

2

(1)

doubly hyperdominant with zero excess
(ii) doubly hyperdominant

(iii) doubly dominant

2.6.2 Extension to f,-summable Scquences

In this section l’p is taken over the field of real numbers

unless otherwisce mentioned,

formations from £. into itself, Let R e£(f

2 20%5). Then R de-
termines (see e.g. (2, p.50)) an array of real numbers ‘{rkl? bk, fcl,
) +o0 o
such that y=Rx is defined by Yk:l Zoorkfxf for x= {xk} and
. = -

y= {yk},kcl. This infinite sum exists for all 'XGIZ and the resulting
sequence belongs to £2. A standard result in the theory of bounded
linecar operators in Hilbert space (see e.g., (2 , p.52)) states that the

array {r;iz}, k,f €I corresponding to the adjoint of R, R™ satisfics

)

.
R

T T Tk for all £, k ¢ I. It is not known what arrays in turn de-
termine elements of £(£2, !Z) . The following lemma however covers
a wide class. | |
Lemma 2.7: Let the array {rkf})(,fd be s;uch that the sec-

quences {rkf} belong to £, far fixed k and £, uniformlyin k and

+o0 +o '
£, i.e., there exists an M such that 2 lr Py !< M and Z [r !<M,
_ _ - o kf'— ke -0 k£ ==
Then {rkl} determines an element R of ‘J?( !.‘2, !2) and ”R ”-{ M.,

Proof: The Schwartz inequality and FFubini's Theorem for sc-

quences (17, p.245) yicld the following inequalities
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In what follows an important role will be played by some pér«
ticular elements of £(£’2, fz) and some particular sequences which

will now be introduced.

Definitions: The definitions of sirmnilaraly ordered, similarly

are completely analogous to the case of finite sequences and will not
be repeated here. It is possible to show that two sequences in 22

are sirnilarly ordered if and only if they are similarly ordered and un-

biased. Let M be an element of Jf(ﬂz,ﬂz), and let {mkf},k,'i’el be the

associatced arra.y.' M is said to be doubly hyperdominant if my , <0
7 - +too +o0
for k /! and if Z m and 2 1m, , exist and are nonnegative for
kZ ki &
. k=-on L=-m .
. +o0
all £ and k. M is said to be doubly dominant if n1£ﬂ2 2 ln‘xkf '
: : " k=-e0
+00 , ) ke
and ]mkkz b Imki l . . .
£=-00 i
I/k

It is clear from Lemma 2.7 that if an array or real numbers

{nvk[}’ k,fc¢ I satisfiecs the doubly dominance condition and if the se -

qucecnce {mkk} c P.OO, then ,{J‘nkf} determines an clement, M, of

.
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£(£?, 172) with “M ﬁ:: 2 sup m Thus it is a simple matter to

kel kk”
check whether an element of Jf(f?, fz) is doubly hyperdominant or
doubly dominant.

The following cxtension of Theorems 2,11 and 2, 12 holds:

Theorem 2.14: Let M be an clement of £{f,,£,). Then a

necessary and sufficient condition for the inner product < x,My>

to be nonnegative for all

(i) similarly ordered unbiased £, :sequences x and y

(ii) similarly ordercd symmetric £,-sequences x and y

2
 is that M be

(i) doubly hyperdominant

(ii) -doubl: dominant

_P__l‘_g_c_;f&:.v It i.s‘clcar‘tha.t all finite subsequences of x and y
are similarly ordered and unbiascd or sirnilarly ordered and sym-
metric, Hence, by Theorems 2.11 and 2,12 all {inite truncationvs of
1;he infinite sum in the inner product < #, My > vyield a nonnegative
number. Thus the 1imit, since it exists, is also nonnecgative,

Of particular interest are the arrays {rkl}’ k,{c] for which
the entries depend on the difference of the indices k and f only.

These arrays are said to be of the Toeplitz type and have been in-

tensively.st.udied in classical analysis (sce e.g., (25)). It follows

from Lemma 3.7 that if the array {rkfzrk—l}’ k, felis of the Tocplitz ;
type then it determines an c].cmc‘znt of £(£2, 12) if {rk},kcI, belongs

to .21. (In fact the elements of :ﬁ(fz, fz) for which the associated array
is of the Toceplitz type stand in onc-to-one éorrcspéndcncc to all !;‘2—

summable scquences whos? Junit-in-the-mean z-transform belongs to

Loo for lzl::l.) An elemoent of f([z, [2) ic said to be of the Tocplitz
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type if the associmicd array is of the Tocplitz type. An elerment R
of £(f2, sz) which is of the Tocplitz type deterimnines thus a sequence
{rk},kcl with {rk}cﬁfz and whose limit-in-the-mean z-transform
be]_ohgs to Lo; for l/! = 1, The importance of these lincar trans-
forniétions si’:cmsfrom'thc fact that they define convolution operators
with a time -invariant kernel and are therefore closelly associated with
time -invariant systems.

- Definitions: A scquence of real numbers {ak},kcl, is said to

+oo
be hyperdominant if {ak}cfl, if 2, <0 for all k/0 andif "% a, >0,
k=-w .
: : +o0
It is said to be dominant if {a }ef,, andif2a > = |a |.
fominant k€1 o= 2 1Kk

Theorem 2. 15: Y,et M _be an element of ’Jf(ﬂz, 12) which is

of the Toeplitz type. Then a necessary and sufficient condition for the

_ipnei' product < x,My> to be nonnegative for all

(i) similarly ordered unbiascd >£2—seguc_n_g_¢_e._s~ x and vy

(ii) similarly ordered symmetric !Z-seque11cc;_§ x and y

is that the sequence {mk} which is determined by M be

(i) hypérdorninant

E};gpif;: "This theorem is a special case of Theorem 2,14,
" Theorems 2.14 and 2.15 have an obvious interpretation in ‘,,_‘/.
terms of positive operators. Moreover Theorem 2,15 yields some
simple properties of the input anci tke output spectra to (odd) monotone .

. b, N . . . . .
nondccreasing nonlinecaritics, This is stated explicitly in Theorem 2.15!

Definitions: Let A denote the class of operators from 12
into’itsclf, cach clement, A, of which has associated with it a

function A(z) with A(z)e¢ Loo for [/] = 1, with A(z) = A(z)-and

[P



-49-

which maps an elemient x of £, as follows: lct X be the limit-in-

2
the-mean z-transform of x. Then the sequence y is the inverse
z-transform of the function A(z)X(z).

Let ¥ denote the class of operators from £, into itsclf,

2
cach element, ¥, of which has associated with it a function, {(o¢),
~from R into itsclf, satis{ying the inequality !f(cr) ' <M lcrl for

.

some M and all o, and which maps the sequence x:{xk},kel of

2, into the sequence y;:{yk} with y, =f(x, ).

It is a simplc matter to verify that these operators are in-
deed well défi.ned, i,e., that they map 172 into itself. The class

A stands in one-to-one correspondence with all £, -sequences

2

whose limit-in-the-mean z-transform belongs to Loo for ’zl:l.

Morc¢over if {ak} €f, and A(z)eL for |z|=1 are such a sequence
o0

and its limit-in-the -mecan z-transform then the element of A which

has the function A(z) corresponding with it maps £, into itself by

LT

the convolution

2

+oo

Vg = Z ap-1%y

. ==

Theorem 2.15': Let AcA and Fec¢¥. Then AF is a non-

negative operator on 12 if .

(i) the f correspondingto F is a (odd) monotone non-

decreasing first and third quadrant function

(ii) the inverse z-transform of &A(z) is hyperdominant

(dominant)

Morecover the elements of A satisfying (ii) are the most general

....... 2)
for any FecJ sztisfying (i). AF is a positive operator on f, if
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A-cl and F-cl satisfly (i) and (ii) for some ¢> 0.

Proof: The theorem follows {rom Thecorem 2.15.
Theorem 2, 15" thus states that if X{(z) and Y(z) are the
limit-in-the-mecan z-transforms of the input and the output of a

(odd) monotonc nondecreasing nonlinecarity then
5’g A(2)%(2) Y (7) dz> 0
. | z l =1
where A(z) is the z-transform of any (dominant) hypcrdominant

sequence.

2.6.3 Frequency -Power Relations for Nonlinea_gﬂResisfors

In this section a class of positive operators formed by the
composition of a lAi‘ﬁeal‘ time -invariant convolution operator and a
(0dd) monotone ;101'1,de<:1‘ea.<;3.11g nonlincarity  will be derived, The
analysis isj done for operators on -L2 but the results arc also
stated for almost-periodic functions thus placing the positive oper -
atO.;'s obtained in this section in the context of the classical frequency-
j;éwer relations for noniinear resistors.

In this section LP is taken over the ficld of real hum}.).ers
unlcss otherwise mentioned,

Definitions: Let M g_lg_l}g;g the class of operators from L,

into itself each element of which belongs to ¥ and for which the as-

A ]

sociated function f is a monotone nondecreasing function, i.e
- - L - > . - ~ s
(o 1 UZ)(f(Tl) f(dz))__O for all 01,0,¢ R.
Let § denote the class of operators from L, into itself ecach
element of which belongs to M and {for which the associated function

{f is in addition an odd function, i.e., {{0)=-f(-0) for all ¢ec R.
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Let xp,%, € Ji,. Then x,(t+ 1) ¢ L, for all 7¢R, and

1772 2 2

. oo g I
HXZ(H~ ") ”LZ IP"Z((’) hL?. The crosscoryelation function of Xy
and Xy is defined as the function RXIXZ(T) = <>:1(‘L), Xz(t"i‘T)>. Note

that the Schwartz incquality yields that ‘RXIXZ(T) !5. ”Xl ”LZ ”XZ “LZ-

Moreover, since the lirnit-in-the-mean transforms of x(t) and

x(t41) are given by X(jw) and X(jm)e"wT respectively it {ollows thus

+00
. ] ST . JWOT
: arseval's relation that = 5 c .

from Parseval's relation that Rxlx?('r) 2 f Xl(j(o)XZ(J(o)L dw
~co

The thcorem which follows is a generalization of a well -known fact

aboutl autocorrelation functions: it states that the crosscorrelation

function of x and vy attains its maximum at the origin provided x

and y are related through a monotone nondecreasing nonlinearity,

Theorem 2,16: Let FeM, xel, andlet y=Fx. Then

R__(0) >R_ (1) for all tcR. If F belonps in addition to S, then
xy —ixy e = — - ~ _

TR (0)> IR, (1] for all teR.
xy ) = Sy e

Proof: Let F(o) = f(x)dx. F(o) is a convex function of o

Ok*p

since its derivative exists and is monotone nondecreasing. The con-
.vex function inequality (5 ) yiclds th;t (¢1~0‘2)f(o'1)§"F(cr 1) —F((rz) foir
all 04:05€ R. (This inequality can simply be obtained by integrating
f(o) - f((i) versus o from o) to O—Z") Taking o-lzx(t-{-'r) and
o,=x(t) it follows thus that

-

() - x{tdr)) y(t) 2 F{x(1) - Fx(tin)
which yields, after integration,that

- too 4o
ny(O) - RX)"(T)"Z .f Fix(v))adr - f 4F(X(L‘S'T))dt =0

‘TCO
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The integrals on the right hand side exist since by asswinption Fe M
and thus !f(tr) |§ K I(r! for some K and all o ¢ R, which implies that
[P 1< £ K[ |? for all ocR. Hence R (0) 2R (0 for all FeM
and tc R, '

If £ is in addition odd then the convex function inequality can
be rewritten as ((yl —(—0'2))1’:(0-1) _>_F(o-1) —F(-o‘z)‘, which using the fact
that { is an odd function yiclds that (0'1-!‘02)f(crl)2_ F(o—l) —F(crz).

Using exactly the same argument as above this then ]_cc;zds to
R, (0)+ R ()20 forall teR. Thus R > !ny(t) | for all FeS
and tcR,

Remark: Using an analogous argument as the one used in (59),.
it can be shown tl].ét the above theorem is also sufficient in the sensec
that if y=Fx for some FeF andif R _(0) 2> R;{y(t) (R, 02 lkxy(t) ly,

and tcR, then FeM(S).

for all XGHLZ

~.~- - Theorem 2,17: Let FeM(S) and let Ge G be determined by

+oo
Gljw) = 1- f e T ay(x)

el

i)

wherc V(r) is any monotone nondecreasing function (any function of

bounded variation) of total variation less than or equal to unity, Then

GF is a nonnegative operator on L,.

Proof: Assume first that Fe}. This thcorem follows then
from the previous theorem if it is noted that R\'Y(O) > 0 and that the

operator G corresponds to the convolution defined by
+ o0

y = Gx = x{t) - f x{t-T)dV (1)

-0

- 7‘



”
-53 -

I-oo
n 3 2 by 3 K
Let y = Fx, '1}.1us <x,Gy> =c¢ ny(O) - f []\xy(()) —Ixxy('r)] dv (v)
-2

where c2:1~ the total variation of V. Note that the above integrals
exist since ny is boundad and since V is of bounded total vari-
ation., Thus <x,Gy> = <x,GFx >> 0 by Theorcmn 2,16, the odd-~
monotone casc is proven in a similar way,

Remark: GF will be a positive operator on L, if F-cle M(S)
for some ¢ > 0 and if the total variation of V is (strictly) less than

unity,

Theorem 2,17, and assume that the function { which determines F satis-

i@%ﬂﬁﬁmmcmﬂﬁﬁmﬂw&_(G+a§%ﬁ‘§jumﬁﬁﬁﬂﬁum%3@x

for all a € R,
Proof: This theorem follows from Theorems 2.6 and 2,17,
Theorem 2,18 states thus that if X and Y are the limit-in-
the-mecan transforms of x and y=Fx with x and F as in Theorem
2.18, then
) +o0 -

* [ ™My 660K do > 0

' ~00
for all functions M’l (jw) given by the Fourier-Stieltjes integral

- +o00

1 Ml(jf.o) =1+ ajw - f e 9T dVl('r)

-00
where ae R and Vl('r) satisfies the conditions of Theorem 2.17.
There is however one refinement possible to this resull which

has no immediate interpretation in terms of positive operators

\/




=54~
Sunless additional smoothness assumptions arve made on x. Indeed,

consider the {funclions of the form

Feo Jot .
M, (jw) = f _l;?;:__._:_élc.e;rg.ﬁ:)« av (r)

with Vz('r) a monotone nondecreasing function of 7 (any function of

7 which is a bounded variation over.compact sels) such.that

exist for x > 0, and g(®) is any bounded real-valued function of T
which is continuous »ati the origin and with g(0)=1. (It can be

shown that under these conditions Mz(jm) is well-defined). It is

then possible to show using an argument which is completely analogous.

to the onc usecd previously that the integral

N :
2 + o0

f M(50) X Go) Y (o) deo

-0
exists and is nonnegative for any M(jw) = Ml(jw) + Mz(jw) ‘with
Ml(ju;) and M, (jo) of the form given above.

- Functions of this type have beeﬁ studied in probability

analysis in connection with characteristic {functions of (possiblf de -
fective) probability diétribution functions and infinifely divisible
distributions. (See c g‘ , (20)) .1t is an interesting and somewhat
~puzzling fact that they also occur in the present context,

The following simple functions of « belong to this class

{for the monotone case) and are of particular interest:

o S o st it B 18 A e
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. T
M(jw) = 1 - ')’O’Iw’ where v and T arc real numbers
satis{ying 0 <y <1 and 0<71<2
M) = 1 - cfw) where ef{w) is any real valued, noi-

negalive cven function of w which is

-convex for -w > 0 and with e(0) <1,

M(jw) B lw IT l 1-l-j6tan TTZT] for w > 0
- M(-jw) = ﬁ(}&) ‘ for w<0
M(jw) = lw H 1436 fn lf‘!] for w<0

o

~where 71,6 aud w, are real numbers satisfying 0 <+ <2, 7 / 1,

|6 l <1, and W, > 0. For the details in the ca.],cu].faﬁons see((20), p.541)

In the remainder of this sectioﬁ these resﬁlts will be tied in

with the classical frequency-powecr formulas, A nonlinear resistor
with an almost periodic input absorbs power at some frcquencies
and supplies power at others, Using the bounds on the cross-
correlation of the input and the output, similar té those obtained in
Theorem 2.16, a general relation betwecn the power at the different
frequencies follows and some intercsting frequency-power formulas

are thus obtained,.

Definition: A positive nonlincar resistor is a two-terminal

device for which the current output is given as an instantancous
functionrof the voltage input, i.e., the oulput y(t) is given in terl‘;;}
of the input .x(t') by the relation y(t) = {(x(t)), where f is mapping
from R into itsclf. Moreover the function { satisfies

(1) f(0) = 0 |

(ii) Q‘gifl exists and is nonnegative for all o

Let x be an almost-periodic function of t. It follows then

from the smoothness conditions on { that y is also almost-periodic,
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Definitions: Liet «, be a basic frequency cormmmon to both

k

x(t) and y(t) andlct X) and Vi

be the corrvesponding Fourier co-
cfficients, Let W > 0. 7Then the complex power, the active power
= LOINpPICx POWer QChIvVe pPowel

and the reactive powcer obsorbed by the nonlincar resistor at fre-

quency w,  are defined as respectively
AN

Y ey S5 - R -
Ro= 5y, B = Re }\k' Qk = Im R

k
ELQSR?)ZQ‘L’;PQE‘L?.?;'_ff’.jﬂf.@lﬁ arc relations between the active and re-
active powers a‘bs;orbcd by the nonlinecar resistor at the different
frequencies, |

Using e'x'a;ctly the same methods as in the previous section the
following gene'ral frequency-power relation can be obtained ina

straightforward fashion

Re wf‘é_ 0 Rk M(‘]wk) 20

where M{jw) is any function of the type given above. The particular
choices of M given above lead to the following simple {requency-

power formulas

- 'mk’T
% (1 -ve )Pk_>_0 where ¥ and T are
wkE_O
real numbers
satisfying 00<y¥<1l and 0<7<2

b (1 —e(wk)) Pk Z 0
wk?_‘O

~where c¢(w) is any rcal valued, nonnegative, even function of w

which is convex for « >0 and with ¢(0) <1

2 o ITm 40 stanT-) 20
('.)kz_ 0



Y

. : wk
z 2o+ 0 og —*) >
>0!cokl(}k10k61 gwo)__()
© 2 - )
where 7, 6 and w, are real nwnbers satis{ying 0 <7 <2, 7 £1,
f{)lf‘ 1, and wg >0,
Remark: For nonlincar capacitors with voltage versus charge

charactevistic v = f(q) where { satisfies the same assumptions as

above, analogous frequency power formulas can be obtained with R

iR 8
replaced by o . The same is true for nonlincar inductors with cur-
k '
rent versus flux characteristic i=f{®) with Rk replaced by Rk/jwk.

2.7 Factorization of Operators

Béerc motivating the analysis which follows one definition is

needed which will help to {ix the ideas,

consisting of all mappings from S into some space V. Let 0 be

‘an operator from XCY into Y, The operator 0 is said to be a

causal operator on X if for any T€S and any X1, %,€X, with

x (1) = x,(t) for all teS with t <7, then 0x(t) = Ox,(t) for all teS
with t i'r. Thus a causal operator is one in which the value of the

output at any time t does not depend on the values of the input after

that time t, A causal operator is often called nonanticipative.

In many problems in system theory, e.g., in stability theory,
. N . . ¢ ’ . .
in optimal control theory and in prediction theory there is particular
i . .
interest in causal operators., For instance, in network synthesis it is
expected that a synthesis procedure for passive nonlinear networks

will requirc two basic properties of the operator defining the input-

output rclation, namely positivity and causality., The importance to

/
\ /e
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stability theory of generating positive operators which are also causal
will become more apparent in the next chapter, In this scction some
techniques for gencrating a causal positive operator from an arbi-
trary positive operator are developed. The basic idea is simple and

is expressed in the next thcorecimm,

product space X and assume that 0 can be factored as 020707 with

0+ a causal operator on X and 0  a boundcd lincar operator on

X which is invertible and such that (O—"‘)—1 is a causal opecrator on X,

Then 0F(07H)7

is a nonnegalive causal operator on X,

Proof: Let xcX. Then <x, 107 L >=<07) (07 %, 6" (07 x>

=<0 %, 076" (07%) x>

=>07 1, 0007 x>

>0

o ] + - -]
) Furthermore, since 0 and (0 ) arc causal operators on X,

sois 0 (07, Thus of(0™)7

is a nonnegative causal operator on X,

The above theorem and the resulting possibility of generating
a causal positive opcrator from a noncausal positive operator show the
importance of obtaining sufficient conditions for a factorization as
reqﬁired in the theorern to be possible, Similar problems have re-
ceived a great deal of attention in the classical prediction theory , in -
the theory of lincar integral equatiohs and in probability' thecory, It

i
brings to mind some of the work of Wiener (58) and Krein (34) but the
R .
existing results deal alinost exclusively with lincar time-invariant convolution-

type operators in Hilbert spaces and the analysis uses the fact that

these operators arc commutative in an essential way. The operators
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.whici) will be considered here, however, necd not have thi.;.; propexty.

The results obtainced by these authors are hence ﬁot immediately ap-
plicable and a factorization theorem which applics to more gencral
operators.is required, The factorization theorem obtained in this
section is fclt to be of great intc rest in its own right., It applies to

~ lincar convolution operators whose kernel.might be time-varying and

which necd therefore not be commutative.
.

The factorization problem is one of considerable interest and
importance and the natural sctting for the study of such factorizations
appears to be a Banach Algebra (64,34). Assume thus that the oper -
ators under consideration form a Banach Algebra. As is casily veri-
fied, the causal operators will then form a subalgebra since causal
operators arc closed under addition, under composition and under
multiplication by scalars, This is the reason for the introduction of
the projection operators and for stating the theorcem in terms of

""’é:rbitrary projections and elements of a Banach Algebra.

The gencral factorization theorem thus obtained is then
Aspecia]ized to certain classcs of linear operators in Hilbert space.

.

It will also be indicated that in the case of certain convolution oper -
ators with a time-invariant kernel th.e 1‘esuli:s are rather conservative
and that less restrictive factorization theorems due to Krein (34, p. 1983
exist. The setting of the factorization problem is the same as used

by Zames and Falb (64), but the results arc more géncral. The

[ . .

method of proof is inspired by a paper by Baxicr (4 ).

Definitions: A Banach Algebra is a normed linear vector

space, o, over the recal or complex ficld which is complete in the
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from. oXo ‘into v deflined. This multiplication is associative, is
distributive }Vith respe ct to addition, is rclated to scalar multipli-
cation by a(AB)=A(ab)::(aA)B, and to the norm on o by ”AB”_\’_ ”A” HBH
for all A, B(-‘o‘v and all scalars a. A Ba.nach- Algebra is said to have
a unit clement if there exists an element Ic o such that AI=IA=A for

all Aco. An elecment A of a Banach Algebra with a unit elecment'is

1 1

AAT=ATA=I, A bouxidqd linear transformation, , from o into itself
is said to be a projection on o if 1r2-—:1r and if the range of 1 forlﬁs
a subalgebra of o. Note that the rangc of a projection is thus as-
sumed to be closed under addition and multiplication, The norm of
T, “'rrlf is defined in the usual way as the grecatest lower bound‘of all
numbers M which satisfy [«A ” <M ”A I for all Aco. 0 denotes
the identity transbrmatioxfg on q:.

The following factorization thcorem stétes the main result of

this section.

Theorem 2.20: Let o bc a Banach Algebra with a unit ele -

ment and let 7t and 7 =0 - %t be projections on ¢. Let ot and

”'n'”” <1. Let Z be an element of o,and let p be a nonzero scalar,

If “7” < lpl, then there exist elements Z+CO‘ and Z €0 ggg}}jl}_ai

(i) M=pl-z=2"2z%

-

(i) 2zt and 27 arc invertible

o
32

Not to be confused with I, the unit elcment of ¢.

b
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(5) 2" and (217 belong 0¥ ot ©1 and 77 and (277
belong to 0”@ 1.
Proof: Since the proof of the thcorem is rather lengthy, it is

subdivided into several lemmas.

.|.

“quences of elerments of o, o' and o~ respectively and assume that

for some T, >0 and all !1‘ I < Ty

0
(i) the scries A = I+ Akrk
k=1
k
P = 1+ Pkl
k=1
0
and N = I+ Z Nkr converge
- k=1
(i1) A = PN

Then A uniquely determines the scquences {Pk} and {Nk}.

Proof: Eqgualing coefficients of equal powers in r in the

n-1 .
it A - J s t - =/ = - )
equality A=PN leads to Plﬁ Nl_ '\1 and Pn+Nn An kz—1pan'k .
4 n-1 n-1 i
- = —aT (A - I - I oo - ‘R
for n=2,3,... k Thus Pn- B (An k,.lpkl\n“k) and l\n T (An k%l Pkl\n',—k)
which shows that A uniguely determines Pn and NJ{1 provided it
. uniquely determines P, ..., Pn~1 and Nl’ ceey Nn 1" Since A uniquely
deterrnines Pl and Nl by Pl = -n+A1 and N, = # A, the result fol -

1 1
lows by induction. V

o‘+ @1 donotes all clements of ¢ which are of the form R+ al
with Rcolt and a a scalar, o~ O T is defined analogously.
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Lemma 2.9: The equations
P = I+ rot (ZP)
and N = I+rw (NZ)
have a unique solution Pco and Nco for all Ir l_<__ [ p{_l, More -

over, these solutions are given by the convergent scries

00 ‘o0
: k ’ ) k
z Pkr and N = Z Nkr
k=0

k=0

with PO:N =1, P 17 _— (/lk) and N (N Z). Notice that

k4
Peot®I andthat Neo-@ 1.

k+l ~

Proof: The result follows from the inequalities

let(zea-my <oz | 1A-B]

o o . ._1 . -

lri-wa-Brz)fi<lpl” 2] la-B]
and the Contraction Mapping Principle., Morcover, itis eésily veri-
fied that the successive approximations obtained by this contracfion

e

mapping with Po::No::I yield the powcz.; series expressions of P and

.

N as claimed in the lemma.

Lemma 2.10: The solutions P and N to the equations of

Lemma 2.9 are invertible for all [r |_§ ,prl and

-1

P I-rot(N2Z)

L

N-l

L

I-rw=(ZP) .
-1..-1 . X 2 A A | -
Moreover, N P "=I - rZ fqr all lr ,Slﬁl . Notice that P coe " ® I

and that N’lcg*'@ 1.

Proof: From the equations defining P and N it follows that

1< Lol Dtz ll< —J—rlH'ﬁJ' roand leacze e —-bL 2L
=[x | 21

Since all clements of ¢ which are of the form I-B with ”B l; <1 are
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invertible, it follows thus that I-rwt(NZ), I-rw~(ZP) and I-r7 are
invertible {for -!r l_<_ ,pl—l /2. Furthermorc their inverses arc given

by the convergent scerics

o0
(T-rot Nyt = 14 Z (rt (N zZ)) KK

k=1

o0
@-rnezen™ = 1k ) (P

k=1

(I-r 7,)~1

'l
[
-+
M

N

3
-

e

k=1
From the equations ¢ P and N it follows that for [x | < Ipl“l
(1-12) P:I»1:'rr‘(ZP) and W(I-rZ) =I-r4T(NZ) and thus that for
I+ 1< 117 /2, (I—rZ)J:P(I—rw-(ZP))“lz(I-rqr"'(NZ)»)-IN. Since all

factors in the above equalities are given by the convergent series given

LT

above and in Lemma 2.9, and since ¢t and ¢~ are closed under
multiplication, Lemma 2.8 is thus applicable. This yields for
-1 T S , -1 RS |

lxl<lpl™ /2 P=(I-ra™(NZ))", N=(I-rr (ZP))" and PN=(I-rZ).
Thus foT [1' !_<_ ’p]—l/z the following equalities hold:

P(I-rwt(NZ)) = (Nrat(N2Z)) P=I

N(I-rw (Z¥)) = (N rvw (ZP)) N=I

(I-rw~(ZP))(I-rwT(NZ)) = I-v2Z

i

Since, for !1’ < lplbl, all terms in the above equalities are given
by geometrically convergent power series in r, they arc analytic
functions of r for lll < ’prl. Since equality holds for Ir lg_lp]“l/z
it is thus concluded from analyticity that equality holds for all

| ’S_Iplul. This ends the proof of Leynma 2,10,
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ELQ.QLEE:QEEEPL@?1,?:..:2103 -Let r::p.l in the above lemma. The

theorem follows with Z—:-p(l—p w (ZP)), (Z") ']*"p lN VAN & p‘ln (N7)

and (Z"')—I:P.

Under a suitable choice of the Banach Algebra and the pro-
jection operators a number of intercsting corollaries to Theorem 2,20

hold, two of which will now be given,

Definitions: Let R be an clement of £(£Z !2) and lct {rkﬁ}’

k, f€ 1 be the corresponding array. R is said to hejgpgig

+ : . . L i aal . . - sy
£ (fz,lz) if 1k£».0 for all k<., Itis saidto belongto £ (EZ,IZ) if
20 12)-

Corollary 2.1: Let Z be an element of £(£2, 2) which is

such that Z-cI is doubly dominant for some €>0. Then there exist

R* belongs to £V (¢

2 1)2) ,S_E‘.C_‘hwj_hdt

elements M and N of £(«
(i) Z = MN

(i) M and N have a bounded inverses M_l and N._]L

(iii) N and N belong to o fpty) and M and Ml belong.

- . ‘;
to £ (122,122)

Corollary 2.2: Let A(z)-c be the z-transform of a sequence

whlch is dominant for some €>0, Then there exist functions Al (z)

and A (z) c;uch that

(i) A(z) = A~(z) AM(z)

(ii) A+(z) dl}@ (A*( z)) 1 are the z-transforms of l’l—scqu_m_ygg_.@

(ff(Z)>. %fﬁ.fﬁﬁm%:ﬁ¥§§$f9€91§w95 11~§3§39ﬂ39§ {aﬁ}

and {by} with a =b =0 for k>0.
Proof: It will be shown that these corollaries follow {rom

Theorem 2,20 under a suitable choice of the Danach Algebra o and

the projections «1T and
J _
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Corollary 2,1 f{follows from Theorem 2.20 with the Banach
Algebra ¢ all members of £(£2, £5) such that if A € o and if

{akf },k, fel is the corresponding array, then the sequences {akf}'

belong to £, for fixed k and £, uniformly in k and [, i.e,, there

1.

: : +o0 +oo .
exists an M such that X fa ’< M and Z [a |<I\'I. Multi -
: ke'— ke '~
k=-o00 £=-w0
plication is defined in the usual way as composition of elements of

£(1 The norm is defined as the greatest lower bound of all

2’ 12) ’
numbers M satis{ying the above inequalitics. The nonobvious ecle-
ments in the verification of the fact that o forms a Banach Algebra
are that ¢ is ¢losed under multiplication, that ”AB nf_nA ” } ”B ”

for all A,Bco, and that ¢ is complete. Closedness under multi-

plication follows from Fubini's Theorem for sequences (17,p.245) and

the inequalities

e +o0 .
et Z IX ki 1f,< Z z 'akif Ibif’
k=~ i=-00 k=-00 i=-c0
+ o0
= z Iblf‘ — 'akl
i=-o0 k= -0
Y
+eo

also Z |§“ - < [l s

These inequalities also show that ”AB ”f_”A ” . ” B ” . Completencss
follows from the fact that fl is completle (31). The projection oper -

ator w" is defined by wTA=B with if {a and {bkf}’ k,f€l arc

)

G ‘Te C 1 C Y § = {> a ’ bt
thlc_.concs'pondmg arrays, then akf bkf for all k> £, and bk[ 0
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other.\visc w~ is definad by a-=0-w". Itis clear that ”ﬂ’*'-” =1
and that ”Tr”” = 1. The only fact that.is left to be shown is that if
for some ¢> 0,7 -¢1 is doubly dominant then 7 can be written as
Z = pl-A with lall < p. It is easily verified that an‘y p with

'Pl > sup Z) 3 y'iclds such a decomposition,
kel N

The proof of Corollary 2.2 is completely along the lines of the
proof of Corollary 2.1 but with a Banach Algebra ¢ all fl' sequences,
multiplication of ‘A = {a } and B={b )} defined by AB:C:{ck}

+oo . + o0 '
with S z ~ak—1b£ and "A ” = Z [ak]. The projection oper-
!I”OO k:"OO

ator w' is defined by wtA=B with A={a }, B={b }, b for

k- %k

=0 for k<0, w” is defined by 7= 0-ut.

k>0, and b
“ Remark: The factorization in Corollary 2.2 is valid under much

weaker conditions than stated. Indeed although dominance of the in-

volved sequence is certainly sufficient for the factorization to be pos-

+ sible, it is by no means necessary as is shown by the following

theorem due to Krein (34, p. 198).

Theorem 2.21 (Krein): Let A(z) be the z-transform of an fl—

sequencé. Then therc exist functions A+(z) and A(z) such that

() A(n) = Alz) Az

(ii) A+(z) and (A+(z))~1 are the z-transforms of £1~sequenccs
+ + N . -
{a)} and {b, } with aj =b =0 for k<0 and A(z) and

(A—(z))“1 are the z-transforms of £ -scquences {alz} and

1 ———

" it R g >*
{bk} with a;'=b, =0 for k>0

if and only if A(z) £ 0 for Izl:] and the increasc in the argument

of the function A(z) as 2z moves around the circle ’2.'::1 is zero.
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Mozreoverx, all_factorization which satisfics conditions (3) and (ii)_diffcr

only by a nonzero_multiplicative congtant.

PO a5 SR St S-S/ MLILTLL

Proofl: A proof can be found in (34, Theorem 5.1)

It is clear that if A(z) - € 1s the z-transform of a dominant
sequence {rom some ¢ > 0 then A(z) satisfies the conditions of the
above theorem since then ReA(z) > e >0 for lzf:l.

Remark: An interesting question is if it is possible to
extend Corollary 5.1 so that it would cover Theorem 2.21 and be-
come an extension of it, Unfortunately this has not been possible as
yet. Two possible avenues of genceralization are:

1. Find a class of elements of o_C(L’Z, £,), which can be

factored at MZN with M and N invertible elements of £(£Z,£2),
M,M—1€£+(12,£Z) and N,'N—lcﬁ’(fzfz) and Z-¢lI doubly dominant,

for some €> 0, Clearly to find the most general class is just as

difficult as to do the original factorization (this can be seen by

N

taking Z=1)., However it rnigilt obtain some results by adding some
additional resirictions on M and N,

2. Sece what the methods used by Krein in (34) have to say
about the factorizétion of gencralized Toeplitz-type elements of
£(4,,2,) for which the corresponding array '{rkl} , k, Lel is of

the form

—-
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where {Ak}’ k¢ Iis a sequence of (nXn) matrices, such that

{ “Ak “} a 1’1.' The conditions wouid most-likely be in terms of the
generalized z-transform of {Ak} for I./,l =1, i,e,, in terms of

the matrix

for |z] = 1.
Remark: The factorization analogous to those obtained in

Corollaries 2.1 and 2.2 but for convolution operators on [2 with time -
varying kernelé is ~strai’ghiforward and will not be explicitly given.
The analogue to Théoreln 2,21 for the operators with a time-invariant
kernel follows 51nce it gives a necessary and sufficient cozlditién.
| Another useful factor‘ization theorem which is due to Krein and

- which is less restrictive than the analogous factorization obtained in
'.V,'I.’h(‘eprc;m 2.20 regards another class of convolution operators.

Let G, be a class of operators from L2 into itself each element

1
of which is determined by an clement (g(t), {gk}) of lefl and by a

mapping {tk} from I into R. The operator GGQI maps X € L

2
into y with

+oo 4o : ' _ J

y(t) = Z N x(.t—tk) -}f g(t*:r)X(T)dT

k=- ~-c0

It is simple to verify that G is well defined, i.e., that it maps L2

into itself, Let '(\}.; denote the subclass of 'C\}fl for which the de-

ternﬁining element of L Xfl and the mapping ’ {tk} satisfy g(t)=0 for t< 0 anc

1
thO for all ke I, Let 91

determining element of LlXi’

denote the subclass of Ql for which the

1 and the mapping {tk} satisfy
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<0 for all kel. Clearly GeG' if and

g(t) =0 for t>0 and t 1

k
only if Gec Ql*.

Thesrem 2.22 (Kréinb Let Ge 'gl . Then therc exist elements

-~

G+€ QI and G ¢ 'C\;'l such that
() G=G G
(i) G' and G arc invertible

'edh, and G and (GO G

if and only if |G(jw)] > € for some €>0 and all we R and the in-

(i) G and (G7Y

creasc in the argument of the function G(jw) as w varies from -

to +ew is zero.

Proof: A slightly weaker version of this theorem is given by
Krein (34 p. 178, Theorem 2.1). However the extension to cover

Theorem 2.22 prescnts no apparent difficulties.



CHAPTER 111

STABIIITY OF FEEDBACK LOOPS

3.1 Generalitics
~ In this chapter some sufficient conditions for the stability of
feedback loops of the type shown in Fig. 3.1 will be derived. The

results obtained in this section are along the lines of those obtained

by Sandberg (54) and particularly by Zames (63 ).

| SERCPIPRT R

.

Fig.~3.1 The Feedback Sysfem Under Consideration

+-7 - Before introducing formal defini;dmm of stability it is neces-

sary to define Wi1at is meant by a solution. |
Definition: Iet S be a subset of R and let Y de'note the

linear vector space of all maps from S into a linear vector space V.

Let ul,u2 €Y and let C‘rl and GZ be dpcrators from subsets of Y

into Y. (Note that the domain of G} and -G2 need not be all of Y.)

The quadruple C1sYysey Y, is said to be a solution of the feedback
loop if €):Y285:Y5 € Y, if e, € D‘o(Gl), e, € Do(GZ) and if the

{

equations

" Other pertinent references arc the papers by Zaréntoncl]o-(()()),
Minty (38), Browder (14) and Kolocdner (32). For an account of re-
lated problems, sce the book by Saaty (50,

- .70-
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©r T MY
e, = u, -i-yl-
vy 7 Gyey
Yo T Gy
are satis.{ied for all arguments t ¢ S.
| Next, the notion of an extended spa;ce will be introduced.
Definition: ILet xeY and let 7 € S. Then the T»Mf}g@ of
x, denoted by PTx, is defined by P;rx = xrfor all arguments teS with
t< T and I)TXFZ 0 for all teS with t>7. Let X CY be a normed

“ linear space. The extended space Xe is the space of all elements

xe€Y for which P;rxe X for all t¢S. It is assumed that PT is a
bounded 01)?1'a£(>3: fromy X into itself, i.e., tha’.c. PTXG X for all
x¢ X and 7 ¢ S, and that the bo.und of p_ on X, | P’r |, is less
than or equal to unity, i.e., ” PTx |!§ ”x” for al x ¢ X and 7v¢S.

. Since PTZ =P, P is thus a projection on X for 3ll T€S. Let-
sup 5 denote the supremum of all clements of S if S is bounded
from above or 4w if S is not bounded from above, It 1s assumed
that if {'rk}, k € 1, is any nondecreasing sequence of elements in S
with liluﬁ T, = sup S5, then lim ”PTk x" = "x” for all xeX, Con-

k
k—o0 . :
versely, if x ¢ Xe and if the sequence of real numbers {”P'r X ”} is

;

boundcd then it is assumed that this implies that x¢ X and that
”x ” = lim ”P'r x” {This limit .exists since the sequence {”P'r x”}
k-0 k

is monotone nondecreasing in k.) Thus if x¢ Xe then xeX if and

only if ”P'r x ” <M for all t€S and some constant M and if xe¢ X

then ”\” = sup ”PTx”. If X is an inner product space, then P is
T€eS
cadiaint - . - — S - . . . - s
. self-adjoint and <)‘1’P'rx2 > = <1Tx1,PTx2 > for all Xy, X, € X and

T ¢ S,



12
All the preliminarics are now available to define the t:y1>e of
stability which will -bc considered in the sequel.,
Definition: The fcedback system under consideration is said to

B

be X-stable if Uy, U, € X implies that all solutions with SERAT

¢,,Y,€ X.3 yield e, Y y5€5, Y, € X vand satisfy vthc inequality

N P S P e P Y T

for some constants K, and K,.
At this point, some restrictive assmnptiéns will be made about
thé.op@rators Gl and G‘2 appearing in the feedback loop. The re-
sults obtained lneioxv hold under less restrictive conditions, Since
however thesc restrictions are reasonable and satisfi?:d in most
practical situatiﬂons no effort was made to reduce them to their
minimalily in an attempt to keep the analysis as simple as possible.
Restriction 1: It is assumed that D (Gy), D (G,) DX, and that
fo:;*;urly X C Xe’ Glx, sz € Xe' Furthermore G1 and GZ are as-
sumed to be causal operator-s on Xe’ i,e., PTX1 = p'rXZ implies that
_PTG x

11 ° PTGIXZ } and P_‘_GZX1 = PTGZXZ for all X)X,

and 7T€S. An equivalent way of stating this causality assumption is

cX
c

to assume that - P'r commutes on Xe with both PTG and

1
PTGZ .

Definition: Let 0 be an operator from X intoitsclf. 0 is

‘such that HPT Ox ” <M ”1’1 .X” for all x ¢ Xe and 17¢S. The

extended bound of a bounded operator 0 on Xe’ denoted UOHC, is

defined as theinfimum of all real numbers M which satis{y the above

inedua.liiy for 21l x¢ Xc and Tc¢ S, Recall thatif 0 is a bounded
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operator from X into itself then the bound of 0 on X, denotcd
loll, was defined as theinfimum of all real numbers M which
satis{y the inequality [Jox[|l< M[x]| for aﬁ. x€X. The lemma which
follows shows that the bound and the extended bound of a causal
operator are cqual.

Lemma 3.1: Let 0 be an operator from X_ into itself. If 0
is causal and bounded on X_, then- 0 maps X into itself, is bounded
on X and o I, = llol. Conversely if 0 is causal, maps X into
itself and is bounded on X then 0 is bounded on X_ and [lof[=]o]l_.

Proof: Let x ¢ X, then 0x cX_ and [[Box| < fof_ x|
< llolly Ixll. Hence 0x e x and fox[l< o], [lx[l. Thus o is
bounded on X and ol < loll,. Let xeX_, then [P ox|l =
e or xll < lorx[l < floll fex]l. Hence [oll, < flofl. Thus o
maps X into itself and [lof|_ = [[o]l. Conversely, let x e X, then
e oxll = e or xli< lor <[l < lofl [Rx|l. This shows that 0 is
bounded on X_ and that [lofl < [lofl. Let xeX, then e ox]
<lloll, e xli< loll, Iell. Hence foxll lloll, lxll, ana oli<fiol.

Thus [lo] = ol

Restriction 2: It is assumed that Gl and GZ are bounded

operators on Xe'
It is thus clear that under these restrictions the feedback system

u, € X

under consideration will be X-stable if and only if for up,u,

” P’I’el ” _<__ Kl ”ul ” + KZ ”uz ”

for all solutions with cl,yl, €5, ¥, € Xe’ all T € S and some constants
K1 and KZ' Liemima 3,1 and Restriction 1 make the verification of
Restriction 2 simpler. Indeed it suffices to verify that Gl and GZ

map X into itself and that they are bounded operators on X,

A/
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Restriction 3: It is assurncd that the operator GZ satisfies a

Lipshitz .condition on X, i.e,, that there exists a constant K (the

Lipshitz constant) such that

G, 6xty) - Goxll < Kllyl

for\al]. x,yc¢ X. Notice that Restriction 2 and lincarity of G2 im-
ply Restriction 3, |
Rcmark: There is of course nothing peculiar in making this
restriction on G, rather than on Gl’ and analogous }‘esults as the
ones obtained below can be obtained if G1 satisfies alipshitz con-
dition on X,
The following thcorem is the basic result from which all other

stability criteria will be derived.

Theorem 3.1: If ”P;r(l + G,Gxl> ellP x| for all xe X, all

- X-stable.,

Proof: Let u,u, € X and let S AT IS be a solution with
.el’yl’e'Z’YZ € Xe' Since S (}Z(u2 + Glel) it follows that
the equality él + GZGlel = ul~(C}2(uZ+Glel) holds for all arguments

te¢S., Hence for all 1t¢8S

PT(I + GZGI) P’rel = PTul ~PT(G2(G1e1+uZ) - GZGlel)

and thus ”PT(I+ G,G))P e, < ”ul | K”Gz I ”uz I

t

Using causality and the incquality in the statement of the theorem, it

follows that for all T¢ S

R el Y e Y [ |



Hence elc X and

e <™

-1 : - A
g I+ < xella, 1y
“which implics X -stability. |

Theorem 3,1 is graphically illustrated in Fig, 3.2

PTGzGlX

Pex
N e

0

"Forbidden" Region
for PLGoG;x

Fig.3.2 MHlustration of Theorem 3.1

“"Forbidden" Region
for P¢GoCx

Fig. 3.3 [lusiration of Corollary 3.1

Remark: It is very tempting to replace the inequality in the con-

dition of Theorem 3.1 by " (1+ GZGI)X ”2_ € ”x ” for all xe X and some

€> 0. This however lezds to fallacious conclusions. A counter-

example is provided by the Nyquist criterion when the Nyquist locus

of the forward loop encircles the -1/k point.

The first corollary to Theorem 3,1 provides a proof of the in-

tuitive idea that if the open loop aftenuates all signals, then the closed

loop is stable. Corollary 3.1 is graphically illustrated in Fig. 3.3.

Corollary 3.1: If [|G,G, Il isless than unity then the feedback

system under consideralion is X-stable,
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Proof: By Lemma 3.1

‘”PTGZGlx | < ”GZGI I ”PTX ” for all xe X
and thus e arc,cpxll > sl - IR G,6 x|l

> (1- 16,6y I Ipx|l

which yields the conclusion by Theorem 3.1 with € =1 - ”GZG1 ”

Next_, attention is focused on how the interconnegtion of passive
systems leads to a stable system. Thec outcome will be that the inter-
connection of a passive system (a nonnegative operator) and a strictly
) passiv;e system (a ISositive operator) is stable. This again provides
a proof of an intuitive idea.

Lemma 3.2: ‘Le.t X be a real inner product épace, and let
x,ye X. If for some z.c.'X with ”z” £0

(i) <x,z>>0 |

(ii)”.'<y,z>2_€ ”y” ”4” for some € with 0<e¢e< l:

Then therc exists a real number ¢ > - 1, depending upon € only,
such that
<x,y>>ec x| byl
In fact ¢ = -cos sin’l € satisfies this condition.
| Proof: TheGrammian matrix

<x,x> <x,y> <x,z>
Gx,y,2) =|<y,x > <y,y> <y,z>
‘ <z,x > <z,y> <z,z>
is nonnegative definite (see c.g., (23, p. 247)).

Thus <x,x><y,y><z, z>+2<x,y><y, 2><z,x> ><x,x><y, z> 2

+ <y, y><x, z>2 1+ <z, z><x, y>2

Since the lemma is satisfied for any ¢ if ”\ ” or ”) ” = 0, it is
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assumed that ”x” / 0 and that - ”y” £ 0. After some manibulations

the above inequality reduces to

(W7 T T H G ﬂﬂ{ (,,ﬁ:ﬁﬁ*}z}

which il‘nphes either that

<Y,y> | <x, 7> SV, 72 > in which case the lemma
TR~ T Tyl 20 which case the s

is satisfied with ¢ =0

| | | /2 /2
or that _ix_,jz__ >»<x)7,> <y, z> _ <x, z> <X'/>
Tl U = Tl T T T ( (HxH B H) ) ( (Hy” [l 2 H)> v

- Let a and B be defined by

<x />

Il =l

= cos a lalgrr/z

< ,7> s <
ﬁ' ILN = cos B lﬁl._ /2

By assumption cos § > ¢, and thus !ﬁ! ijzf- - sin—le. The above in-

equality becomes in terms of a and B
>cos (la] + [p])
llxll lIyH

'since cos(fa’ + !ﬁj) > cos (w - sin_le)

= - cos sin ‘e : -
the lemxma follows thus as claimed with ¢ = - cos sin—le. -
Lemma 3.3: Let X be a real inner product épacc and let O
be a causal opera‘tor on X. Then 0 is a nonnegative opzrator on X

if and owly if <P_x, PTOx >>0 for all xeX and all T¢8S.

Proof: (i) Only if: The proof goes by contradition. Assume

therefore that <P1_x, P_‘,Ox ><0 for some x€X and some TcC8S.



-78.-
Then <PTx, P,';O.x > = <1)1'>;’ PTOPTX> = <P’rx’ O}.‘»‘Tx> < 0. This con-
tradicts the fact that 0 is a nonnegative opcrator on X,

(ii) If: The proof goes again by contradiction, Assume therefore
that <x,0x>< O‘ for some x¢X, Since <x,0x>= —~(”x+0x ”2 ”x Ox ” )
it follows that ”\: + Ox ”2 > ”x - Ox " . Since however the norm of
any élenqevnt x€ X can be arbitra‘rily closely approximated by P_rx
for a suitable chosen Te€ S- it follow:q that “ PT(X-POX) ”2> ”.PT(x—Ox) ”2 3
for some T§S. .Thus <PTX, PT0x><0 for some x € X which yields
the contradiction.

Corollary 3,2: Let X be a real inner product space. If G

1

and G, are nonnegative operators on X one of which is positive
2 & e ?

then the fecdback syétem under_consideration is X-stable.

'_El_'ggg: Assume that 'Gl > ¢y1 and that G, > 0 (the other case

1
is proven analogously) then ”Gl “ £0. By Lemmas 3.1 and 3.3

<P, P Gpx>2> ¢ P, Px>>c G 1T e x] [P.Gx]l and

1 — 1
<PG,P, Glx, P Gx > = <P._G,G;x, P.G;x>>0. Thus by Lemma 3.2
there are two possibilities: either <P x, P (JZGIX >

-1 5| . A
> ~co.s sin ¢y ”Gl ” “PTx ” ” PTGZGIX ” or ”p'rGlx ” = 0, The latter
case yields ”PTGZGIX ” = 0 since G2 is bounded and shows that
in this case the conditions of Theofent 3.1.are satisfied for any € <1,

Assume therefore that <P X, P G2C1x> > -cos sin’ € !b ” 1”P x ”

" PTGZG'IX ” . However, A”P’rx + PTGZG‘IX ”2 = ” PTx ”2 + 2<P—rx’P'rG G.x>

271
.+ "PTGZGIXHZ‘ There are again two cases to consider: either
<PTx, PTGZG-]X> > 0 in which case the conditions.of Theorem 3.1 are

satisfied for any ¢ <1, or <Px P G2Glx > < 0 in which case

[<p x, P G,Gx> | < |cos sin” cl lc, T P x I ”PTGsz‘ . Thus

for this casec

\/



-79-
P x+® GG xl 201 - |cos sin’lel I, I e x|
Hence the incquality
. . : -1 -1
| I P _x+ PT(:ZGIAHE (1-|cos sin €, I G, ="l PTx”
is satisficd for all 7¢X and xcX, which yields the corollary by Theorem

3.1 with € =1 - | cos sinmlel”(}l” —1} .

Corollary 3.2 and Lemma 3.2 are graphically illustrated in

Fig. 3.4
PTGZGiX
..‘/ y
PTX
D
e 2sinte llG -t
“Forbidden" Region
for PrG2Gix

Fig. 3.4 lllustration of Coro”my 3.2

In aﬁ actual situation it is rather unusual that a system will
satisfy the conditions of Corollaries 3.1 or 3.2, This is the moti-
vation for the lnuitipl.i.e 1 theorems of the type used by Popov and
which have since widely been used in the litcrature. These are now
introducefi. The basic idea again is simple, and is illustrated by
the transformation of the original feedback loop to the fecdback loop

shown in Fig. 3.5.
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, N"l e e Gl e et M*l e eaesanes

+

N || G,y fommmeed M o S )] M b
2l ! U.;, ¢
Y Y €2 Y2 u

Fig. 3.5 [lusiration of the Iniroduction of Multipliers

Theorem 3.2: Let M be a bounded causal operator on Kes

MYy ||

If M has a bounded inverse on X and if '”PT(I + MC}ZG1

> ¢ ”PTX I for all xe¢ X, all 7¢S and somc € >0, then the feed-

back system under consideration is X -stable,

Proof: Let Uy, U, €X and let €1:Y1:€2: Y5 be a solution with
€1:Y)5€,: Y € X, then, using an argument as in the proof of Theorem
2(Gyet))

- GZGlel) for all arguments teS. Since M is causal, it follows

. "’} .1 it follows that for all T¢S, PT(I + GZGI)PTel:IDT(u1 -G

-1 .
that PT(H-MGZGIM )MPTGI:PTM(ul—GZ(Glel+u2) —GZGlel) which by
‘an argument as in the proof of Theorem 3.1 implies that ”MPTel I

< G'l ”M” ”ul ” + e—lK ”M” ”GZ ” ”uz ” f?r all Tg S. Hence

21 -1
RN v e (M IR TN I
Thus I\/Ic] ¢ X and since M(M—]Mel) = Mél » this implies that

e, =M 'Me ¢X and that flell< ™ M| finl] fho, ¢

e K I M 6, Il Tha, Il 5 which implies X-stability.
Since it is in general rather difficult to compute the bound of
a composition of two given elements, the following corollary is

useful.
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Corollary 3.3: Jf therc exist "clcm,cnts M, N, and R such that

(i) "M satisfics the conditions of Theorem 3.2

(ii) G, can be factored as G = NR and MG,N and rm "~}
~ arc bounded operators on X
6) MG N - R <
then the feedback system under consideration is X-stable.
Proof: Since ”MGZG 1M‘l | = ”MGZNRM“IH < MG, N JrM Yk,

the corollary follows from Theorem 3.2 and an argument as in the

proof of Corollary 3.1.

Remarks: Notice that Corollary 3.3 does EQ’E require N or R

to be causal. The corollary similar to the previous one, but using

positive operators, is more useful since verifying positivity is in gen-

eral a simpler task than computing bounds of operators.

Corollar.y 3.4: Let X be a real inner product space. If there

. exist operators M, N and R on X such that

(i) M is a bounded causal operator on Xe which has a

. -1
bounded causal inverse, M 7, on X

(ii) Gl can be factored as G1 =NR and MGZN and

RM"1 are bounded operators on X

(iii) MGZN and RM“1 are nonnegative opcrators on X,_?_l}f:__'_gg

- which is positive, 'and MG,N is a causal operator on X,

2

then the feedback system wunder consideration is X-stable.

i

Proof: Deuote RM"1 by Z, and MGZN by Z., and assume

] 2

that 2,2 ¢4l and that 2,20 (the other case is proven analogously).

/
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'I'h c;)

. : . o =1
<Ep sy PE 2 ) BB 2o 2] R Nz, E

and <Z.PZ Px,PZ Px> =<P7.7 Px,Z.Px>> 0
_ 2177177 R R ¢ 77271 7T T~

Thus Lemma 3.2 implices that )
. . | - -1
<P, P Z,7 P x> > ~cos sin” ¢l z,[7]R ] ”PTZZle"
which leads to the conclusion by Theorem 3.4 and the same argument
as uscd in proof of Corollary 3. 2.
Remark: The choice of G] in the factorization in Corollaries -

3.3 and 3.4 is not essential and a similar corollary in which GZ is

factorcd holds.

Corollary 3.5: Let X bec a real inner product space. If there

exists an operafor 7 on X such that

(i) Z can be factored as Z = MN with M a bounded

linear operator as X with a bounded linear inverse,

o Ml

, (ii) (M*)“l, M* and N are causal operators on X

(iii) GZ can be factored as G =RZ

(iv) R and ZG1 are bounded nonnegative operators as X,

one of which is positive;

.

then the fecdba,cl\ system under consideration is X-stable

Proof: Assumc that R> ¢,;I and that rACH

-

2 0 (the other case is

proven analogously). Thus R> cll whlch implies that M*RM> €, M*M.

1
- Similarly ZG ~MNG >0 wlnch nnphes that NG (\/I ) > 0. Since

2

vl > 3 Il 5t follows that Mrm > v 11721 and dhat

. o B . ,
M*=RM> 6'11 = 61”1\4 ” 1. All the elements are now available to apply

Corollary 3.4 if it can be shown that M* can be extended to a2 bounded
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causal opcl‘atof on X_ . This however is done simply by defining Mitx
for xc¢X tobethe clement of X , ¥, such that Py = P M*P x for

€ : e T T T
all T¢S. Notice that the right-hand side of this equality is well

defincd since PTxc X,

3.2 A Standard Modification for Feedback Systems

Since it is genecrally easicr to identifly positive operators the
question ariscs whether or not there exist certain transformations which
- will put the feedback system in a form in which positive operators can

be used. This is done by the standard manipulation shown in Fig. 3.6.

Fig. 3.6 Tronsformations of the Feedhack Loop
Let k be a scalar such that 1+kG] is invertible on Xe and such
that (1+ k(}l)—1 is a bounded causal operator on Xe . It will now be

shown that under these assumptions it is possible to define a new
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fecdback system éuch'that the stability of the resulting feedbaci;
system implics the stability of the original one.
‘Lemma 3.4: Let G) =G (1 +kG,)™ and G, =G, - k1. Then
every solutlon {c 1°Yy° €, } to the original feedback system (with

the operatozs Gl and GZ) which is such that € :Yys € eXe yields

2’72

a solution to the feedback system defined above (with the operators

G‘l and G"z) with o -

u, =u wl§11 u'z':u2 ‘ e} = e, ky e, =e

VI =Y, Y =Y, -ke,

2

Furthermore, if thel second fecdback system is X-stable, then so is the first.
Proof: The verification of the first statement is straightforward
and will not be carried out explicitly. The stability part follows from
the rclations betweenthe sclution as given in the lemma.
. The unanswered question is of course to determine for what oper-
ators G and scalars k the operator (I~l~kG)—1 exists and is a bounded
causal operator on Xe' For the operators as in the classes g and Et
.introduced in the secpnd chapter, it is possible to give at least a

partial answer. The first is the well-known Nyquist criterion.
Let (g(t), {gk}) c L1 x 11 and let tk be a mapping from I into R.
Let y(t) = Gx(t) be defined by

+oo -

y(t) = Z PG tk)+fg(t ~1)x(r) ds

It follows from Lemma 2.1 that G maps L. into itself, that GeG and

2

that the function G(jw) associated with it is given by

+00 . +00o .
-—Jwtk -Jjuwt
G(jw) = g gye +f glt)e dt
k=-00 -0
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It is clear that if g(t) =0 for t< Oandif t >0 for all kCI, then

k

G as defined above is causal and maps LZe into itsclf. Indeed, let

xeL then P Gx = P GP _x which since P x¢ L, for all 7t yields
2e T T T T 2
GPTxe L2 and thus that PTGPTX cLZ for all v. Thus Gx €L2e'
Lemma 3.5: Let g(t) =0 for t< 0 andlet t > 0 for all

k

ke_I. Then (I + kG)—l exists and is a bounded causal Operatbr on

L e if and only if the Nyquist locus of G (i.e., the locus of tﬁe

2
points in the complex plane defined by G(jw), for wcR) does not

" encircle and is bounded away from -1/k + o.j. Morcover,

1+ kG)‘l €G if it exists.

_13};_9_9}_: This is a basic result origi.nally due to Nyquist and
in its present form and generality to Desoer (18).
Let f be a rﬁapping from R xS into R such that there exists
'a number K such thét ”f(o‘,t)”_(_K”O’” and define the operator F -
l»’”‘ ““on Y (as defined in the beginning of this chapter with V =R) b;r:
Fx =f(x(t),t) for all teS and xeY. ItA is éasy to verify that under

these assumptions F is a bounded causal operator on X
e

Lemma 3.6: (I+kF)-1 exists and is a bounded causal operator
on X_ if and only if ¢+kf(o,t) - co is a monotone nondecreasing

function of o for all teS and some ¢ > 0. Moreover (I'+kF)—1,

if it exists, is of the same type as F and the corrcsponding mapping

-

from R xS into R is given by the inverse of the function

*

o + ki (o, t). ' ' '

Proof: The lemma is immediate
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3.3 A Stability Criterion for Feedback Systems with a -
Linear Periodic Gain in the Feedback Loop

The first example of a concrete stability criterion deals with a
fcedback system with a lincar time-invariant convolution operator in
the forward loop and a linear periodically time-varying gain in the

feedback loop. This fecdback system is shown in Fig. 3.7.

u(t) e (t) (1)
O | :
y,(t) e (t) y*
2 K | 2 @\:r(f)

. Fig. 3.7 The Feedback Sy.;,l“em Under
Consideration in Section 3.3

Definitions: The operators G and K are formally defined by

=00 +o0
Gx(t) = Z gkx(t—tk) +f g(t) x(t-7)dr
k=-c0 =00
and Kx(t) = k{t)x(t)
Assumptions: It is assumed that:
(i) tk is a map from I into R
(i) k() eL_  and (g(t),{gk} ).e Lyx 1,
(iii) > 0 for all kel and g(t) =0 for t< 0

It has been pointed out previously that under these conditions the oper-

ators G and K map LZe into itsclf and that they are causal and

bounded. Furthermore, since they are also linear, they satisfy

Lipshitz conditions on LZe .
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) Definition: The feedback system under consideration is said to
be Lz—stablc if allu,r ¢ L,, and. €12Yy:€:Y,€ Ly which satisfy the
equations el(t) = u(t) -yz(t); ez(t) = r(t)+y1(t) ;Ayl(t) = Gel(t) ;

' ¥,(t) = Ke,(t) for all teR yicld e,,y,e,,y,cL, and if there exist

constants Kl and KZ such that

el #ly Hleglly, eyl < s bl +xclel

Example: Consider the linear time-invariant differential

equation | :
p(D)x(t) + K (t)q(D)x(t) =0 D’ = .é.{
dt

The following assumptions are made:
A.1 p(s)and g(s) are real polynomials in s, i.e.,

n n-1
p(s) =s +pn_ls +...+p0

n n-1
q(s) =q " +tq s ...t q

.o with P; and 9 real numbers .

A.2 K (t) is a real-valued piecewise continuous function of t

which belongs to L,
: 0o

.

A.3  Either of the following conditions is satisfied:

i) q, =0 .

‘.
. /

(i) g, # 0 and "l/qn ¢ [a,p] where a and g are "

~ such that a<K(t)< p forallteR. o

-

A real valued continugus function «:(t) is said to be a solution of
this differential equation if it poséesses (n -1) continuous derivatives and
if it s atisfies the above differential e(iuation for all t for which k(i)
is continuous. Clearly x(t) = 0 is a solution. This solution is calléd

the null-solution and is said to be asymptotically stable if 211 solutions

@
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.approach the null-solution for t—oo.
It will now be shown that in marny cases asymptotic stability of
the null-solution of the above time-varying differential equation can be

deduced from L, -stability of a feedback system of the type which is

2

being considered in this section.

v Assumption: It is assumed that thcre exists a real number a
such that the zeros ,of the polynomia.l p(s) +aq(s) have a negative real
part. ' ‘

It can 'be‘ shown without much difficulty (see e.g., (60) ) that
the differential equation can then be rewritten as

2y D)) + Xy () a, (D) x(t) = 0

with pl(s) a monic Hurwitz polynomial of degree n (i.e., allits zeros

have; a negative real pért, and the coefficient of s™ is one) with the

degree of pl(s) largervtha.n the degree of ql(s). This n-th order
“scalar differential equation can then be written as a first order vector

differential equation

dgt") = Az(t) + bult)
y(t) = c'z(t)
ut) = K, (1))

. ' X n-1_,
where z(t) = col (x(t), -c-léitl s e s 4 x(t) ) _
| : ¢ at™ 1
‘0 1 o0 ... 0 |
0 0 1 ...
A=|. ) ) :

0 0 6 * o o { -

i pl 0 pl’ l LY » o 0 -pl'p__}
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U"'
ft

col(0,0,...,0,1) : -
c = COI(ql,O’ ql,l’ '.'°’q1,n¥-1)
1 q,(s)
'{Is-A) "b =
¢ {ls-4) . Py(5)

The null-solution of the differential equation under consideration

will then be asymptotically stable if and only if given any z(0),]im |z(t)|
- : ’ t— oo
exists and is zero, ) It is well-known (see e.g., (16)) that the smooth-

ness conditions on K'(t) are sufficient to ensure the existence of a unique

solution which assumes the value z(0) for t = 0. Furthermore, the

solutions satisfy the integral equation

o £
2(t) = 2t2(0) - [ e Mk (r)y(r)dr for t2 0
o o
which implies that

t -
N o) = oAt (o) _J’ C"eA(t'T)ka(T)Y(T)ldT for t> 0
0 .
At ;his point it is clear that this equation is of the form of the
feedback system under consideration with .
u(t) = 0 r(t) = c¢'e®tz(0)  fort> 0 /,
=0 otherwise !
yit) = yit) vy, = K (®) (ye)rrlt)
) = yi®) ep®) = y(1) + £t
glt) = P for £50 k() = K, (t)

= 0 otherwise

gk = 0 for all kel *
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It follows from the assumption on the zcros of pl(s) that all
eigenvalues of A have a negative real part and thus that

c' eAtbe Lp(O,oo) for all p>1.

- Thus if L,-stability for this feedback system is pr‘oven it

2
follows that all solutions =z(t) to this vector differential equation
which are such that y(t)e LZe(O’ o) also belong to LZ(O,oo). Since

all solutions are coatinuous, all solutions y(t) do belong to Lze(O,oo)

and. hence all solutions yield“y(t)c,Lz(O,oo). Since however

2t) = o)+ AETh () yryar
0
Since eAf'be Ll(O,oo), kl(T)éLOO(O,oo), y(t)e LZ(O,oo) and the con-
voh_}.t:i—on 6f an I:.l—function with an Lz—function Yields an L2 -function,

it followé thus that i(t)c LZ(O,o‘o); Furthermore

~ -

d (4 t
L d2() = Ax(t) - k,(£)be' 2(t)
‘heng_e dgi(:t) €L2(0,00). Since z(t) an icz-l%t—)— belong to LZ(O,”C-X_?)

lim =z(t) exists and is zero. Hence Lz-stability of the above feed-
t : :

back system implies asymptotic stabiliéy of the null-solution of the
differential equation. )

These simple manipulations show that although it might at
first glaﬁce seem that the ty'pc of stability which is .obtai.ned in the
theorem in the préviouis section is not as: strong as Lyapunov sta-

bility, in many circumstances it actually implies it,

Additional Assumption: In addition to the assumptions made in

the i)aeug-iﬁning of this section it will be assumed that k(t) is period-

ically time -varying, i.e., that



.

~

..9]..'
k(t) — k(t + 1) for alrglost all t and a given T > 0.
Fecdback systems of the resulting th)(-: occur {requently in the
design of systems containing parametric devices. The stability
properties of such systems are of course of primary importance and

criteria using {requency-domain conditions similar to the Nyquist

“crilerion have proven to be a particularly feasible tool for the .de -

signer. Moreover, the local stability of a periodic solution of a non-
lincar differential equation is often equivalent to the stability of the
null-solution of a linear time-varying differential equation of the form
of the differential equation in the above exéxnplc .

~The stabilityhproperties of the feedback system under con-
sideration hgvc; received a great deal of attention in the past (sec
(11) for a survey), and the result that is best known is the Circle

Criterion which has evolved out of the work of Sandberg (52) and

others. Although the Circle Criterion is applicable under much weaker

conditions (the feedback gain need notbe linear or periodic) than the
ones stated above, it was originally proven making essentially the
same assumptiox}s.

, In this section a new frequency -domain stability criterion is
developed which assumes explicitly that the fecdback gain is linear
and periodic with a certain given period. This assumption makes it
then possible to obtain an improved stability criterion, The result
gives, for a particular transfer function of the forward loop, combi-
nations of the lower bound a, the upper bo‘und B, and the period T
of k(t) which yield stability. This dependence on the period is of

course as expected and has been investigated exhaustively for certain
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classical types of éccond order diffcrential cquati.ons. The result
obtained by Sandberg in (51) is c'ssentially also of this type,

The criterion, which is stated in Theorem 3.3 and 3.4, re-
quires, as most 1'ccént frequency-domain stability criteria, the ex-
istence of a multliplier having certain properties. With the exception
of ‘t-:he Popov criterion however, thcl:e is generally no procedure of-
fered to determine V'}hethe:r or not such a multiplier e>;ists for a gi\)en
transfer func;tionAof the forward loop. This is not the case for the
criterion présented here since Theorems 3.3 and 3.4 can be- com-
pletely rephrased in terms of this transfer fu.nction-. In fact, a
simple graphical procedure is given to _-determine whéther or n£>t the
multiplier cxist'_—f.v |

" Stability Criteria: Let

o +00 -jot +
. k -jwt
e Gliw) = Z gy © + f glt)e Jw'dt
: k=-o0 -00 .

Théorem 3.3: The feedback system under consideration is

L, -stable if ‘ )

(i) 0 <k(t) = k(t+T) S—kmaxne for some € >0 and almost allt

(ii) there exists a real function of s, F(s), such that for
| almost all « >0
F.1 ReF (jw) > € for some € >0
F.2  F(ju) = F(jlo+2rT )y ¢ L

F.3 Rec F(juw) (G(jw) + l/kmax) >0

Theorem 3.4: The fecdback system under consideration is
L, -stable if

()  atc SK(t) = k(t +T) <B-¢ for some ¢ >0, alnost allt

and o /0
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(ii) the Nyquist locus of G, i.e., the points in the complex

plane determined by G(jw), wcR, is bounded away from

- 21;4- 0.j and does not encircle it

(iii) there cxists a real function of s, ¥(s), such that for al-

most all © >0 conditions F.l and F.2 are satisfied
and such that

F.3' Re F(jo) fé%%l >0

Before interpreting these results and reducing the requirement
that the multiplier F(jw) exists to a éondition on the transfer
function G(ju.i) the theorems will be proven using the methods out-
lined in Section-1 of this ch.apter and the reduction outlined in |
Section 2, In a forthcoming paper (60) the author has proven this
criterion for feedback systems which can be described by ordinary
differential equations, The proof presente‘d there is much more
"/eflieme;nta.ry and usecs Floquet thecory for drdinary differential equations
with periodic coefficients and the classical theory of Toeplitz forms.
The results however are less general,

Proof of Theorem 3.3 (i) A reduction of the feedback system

under consideration with the methods outlined in Section 2 of this .

" chapter shows that it suffices to prove L —étability for the feedback

2
system with G'1 =G+ 1/k I in the forward loop and
max . _
G'Z = K(I - l/krnaxK)'l in the feedback loop. Observe that it follows

from Lemmas 3.4 and 3,5 that G1€ g and that it has the function

Cy L L at 4§ |
G(jw) + 1/klnax associated with it, and that G2

function k(t)(1-k(t) /k

€ IN{T and has the
) © associated with it,
max

(ii) Let F be the element of QT which has the function F(jw)

associated with it. By Theorem 2.3, and the assumptions of the

]

L g
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thecorem, G{I“isa nonne gative opera.tor on L2 and F—lK is a positive
opcrator on‘ L,. (Note that F_l exists on L, since Re F(jw) >e>0.)
Write K as K = F_IFK. Then by Corollary 3.5, it sﬁfﬁces to prove
that 2z can\be'favctorcd as Z = MN with M a bounded linear opcr-
ator from LZ into itsclf with a bounded linear inverse and N a
: . bounded operator from L2 into itself, and with M*, (M*)'—1 and
| N causal. ‘

(iii) Since t ?_6, g{t) =0 for t<0 "and since (g(t),{gk})Glefl,
G(jQ) is an aﬁ.ély[:ic function of w and therefore the multiplier F(j,u)‘
if it egists can be chosen such that its Four‘i..er series belongs to !1 ,
(i.e., if there exists a function F(jw) satisfying COnditioris~-F1-3,.
thenrthere exists one whose Fourier series belongs to 11). F(jo) thus

can be written as the uniformly convergent Fourier series

| +o0
. F(jw) = Z fke'Jk(.oi
4 k=-00
with {fk}eﬁl. Hence
+oo
Fx = f x(t-kT)
~ 'k
k=-o0

Let Fl(z) denote the z-transform .of {fk} It is simple to ver-
ify that Fl(eﬁ"T) = F(ju). Since ReF(ju)> € >0, it follows thus
that Fl(z) 70 for lz! = 1 and that the increase in its argument as
-z moves around the circle lé, =1 is zero., Hence Theorem 2,21
is applicable. This theorem then yields the factorization 1‘cqﬁircd to

complete the proof of Theorem 3.3.

Proof of Theorem 3.4: The only matter which is different in

this proof is the preliminary modification of the fecdback loop. It

v
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thus suffices to prove Lz-stability for the fecdback system with

G = Gl(l +lch1)“1 in the forward loop and GL= K - a I in the

17 2

feedback loop. A similar transformation shows in turn that it suf-

fices to prove Lz—stability for the feedback system with

11 1 l . ) "o 1 ”—L— ] -1 . A
Gl = Gl+ B~a1 in the forward loop and G2 =G (I-— B- aGZ) in the
- feedback loop. However, G1 =G (IHLG 1y EL—I :6—-(—1— ([3(} +0)

(QG1+I)— “and G = (B-a){K-al)(PI-K) l. Notice that the above in-

verses exist on LZe and are causal and bounded by Lemmas 3.4 and

3.5. It is now a simple matter to verify that the conditions of the
theorem imply the positivity of (}‘I'F-1 and FG; and that the same
proof as in 'I:h‘eorem 3.3 yields Lz—stabil'}ty.

Theorems 3.3 and 3,4 are not very useful as fhey stand since.
they leave the questi‘on- unanswered whether or not the multiplier

F(s) exists. This question can be resolved however, and this leads to

an equivalent formulation of the above theorems,

\__/:

Let
¢max( w) = sup lwtk ZTI’T-I)
kel
c[>min’(w) = inf ¢(wtk 21rT )
kel
where
. . P |
$lw) = arg(Gljw) + l/kmax) in Theorem 3.3 .
- Gliw)+1 .
and ${w) = arg E—C'}”%};)l-il in Theorem 3.4
Theorem 3,3': The fecdback system under consideration is
Lz-stable if

(i) € < k(t) = k(t+T) S_knlax-E for some € > 0 and almost all t
i lo__ (o) -0

{v) l< w for all !wlf_ 'n'T_l

max min
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Thcorem 3.4': The fcedback system under consideration is

L,-stable if-
(i) ot e <k(t) =k(t+T)< B-¢ for somec ¢> 0, almost all
t and o« 0O

(ii) The Nyquist locus of G, i.e., the points in the complex

plane determined by G(jw), weR, is bounded away from

- ;11—+ 0.j and does not encircle it

| (iii) l‘bmax(w); ¢min(“)l< v  for all MgnT'l

Proof: Since G(jw) is uniformly continuous and bounded, the
sequence of functions G(jm+k2nT-1), kel, is equicontinuous and thus
¢ (w)and <]> . (w) as defined above are continuous functions of w.
max min « _.
(w)] is a continuous function of w. Because
(«) =

(w)| < w, there

Hence, | <’pmax(w‘) - ¢min

of symmetry ¢ and ¢ . are periodic and thus ¢max(u~) - ¢

min
_ -1, . 1 .
‘bm::»,x(whzTrT ) - cl)min("'ﬂ—zw-T- ). Since | cl)rna.x((‘:) "~ Pmin

~exisfs an €>0 such that H)max(w) -¢min(w)l_<_ w-€. Let F(jw) =

- —

| [ .
¢ (@)t é . (w)]]
e 2" 'max o « It is easily verified that this choice

‘for F(jw) yields the.conclusion by Theorem 3.3 and 3.4. For the con-

verse part of the equivalence, assume tﬁaﬁ ¢max(m‘) - ¢ (W) =7

min
for some w‘éR. Then since Re G(jw) F(jw) has to be nonhegative
for all w, this implies that |ArgF(ju )l?_ w/2 which contradicts the
condition that Re F(jw)> €> 0. - °

The following two corollaries show thai; the criterion is a trade-?ff

between the Circle Criferion (T arbitrary) and the "local' application of

the Nyquist criterion (T sfnall).
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Corollary 3.6: The feedback under consideration is L, -stable

2
if k(t) is periodic and if cither

(i) e< k()L kmax-c for some € > 0 and almost all t,

and Re G(jw) +% > 0 or
max

(ii) o+ e k(t)gﬁ;c for some &> 0, almost all t,a £ 0,

L aG(jw) + 1
. and, Re B+ 12 0

and the Nyquist locus of G, i.e., the points in the complex plane

" determined by G(jw), we R, is bounded away from - -cl: + 0.j and

does not encircle it.

-_P__I_'_O__le:: Take F(s) =1 and apply Theorems 3.3 or 3.4..
This corollary is esscntially a particular case (since it assumes
the .fcedback géin linear and periodic) of the Circle Criterioﬁ.
Consider the stability properties of the linear time-invariant
'~ «.-system obtained by replacing k(t) in the feedl?aclt loop by kt = k(t)
for some t. If the time-invariant system thus obtained is Lz-stable

for all constants kt’ it does not follow in general that the original

"feedback system is L -stable (sec e.g. (12) )., This fact is closely

2
related to the Aizerman conjecturer-for time-invariant systems which
‘will be discussed in the next chapter. However, the following co‘rollar);r’r,
states that this procedure is legitimate if the period T is sufficientiy :
small. The cox;ollary essentially statesthat if the 'frequbency of the

feedback gain is S{Jfficiently high compared to the natural frequencies

of the forward loop then no instability due to "pulnping' can occur.

" Corollary 3.7: As sume that in the definition of G, gk = 0 for

all ty 7 0, kel, and that the fcedback system is L_-stable for any

2
k(t) =k = constant in the feedback loop \§_1_th a< kg_ f. Then there

€ . v
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the fecedback system with any

" exists a T, such that for all T < T

1 1
ain a < k(t) =k(t+T) < B in the feedback loop is also Lz—stable.
Proof: Since lim G(je) = ¢ cxists by the Riemann-Lebesgue

- -—’m
lemma, and is real, lim ¢(«) exists and is zero. Since the feedback
system is Lz-stable for constant gains k in the feedback loop with

a<k _<_ B, there exists a recal function of s, Z(s), such that for all w,

Re Z(jw)>€ >0 and Re Z(jw) g—g—%z; ii > 0. (This follows from the

Nyquist diagram and a simple graphical construction, see e.g.

Ref. (10) ). It thus follows that for we sufficiently large the function
F(jw) = Z(jw) for lwlf_ o_»o/Z and F(j(w+wo)) = F(jw) otherwise,will

yield the conclusion by Theorems 3.3 and 3.4.

Application of the Criterion:

Theorems 3.3' and 3.4' sugge;‘,t an obvious graphical procedure
.-for_determining whether or not Theorems 3.3 and 3.4 predict L'2~stabil-
ity of the feedback loop. Let o = 20T"L. This is illustrated in Fig. 3.8
‘and requ'ires plotting the curves q)N(SZ) = ¢(Q+Nwo) versus Q- for

[Q!S_ .wo/z and N ¥0, +1, £2, ... . The upper and lo-wer e_:nvelope

of these. curves give ¢ _ (@) and ¢miﬁ(9 ). Theorems 3.3 and 3.4
predict Lz-stability if and only if condition (i) of Theorem 3.4 is satis-
«)-¢

this procedure, although straightforward, is rather tedious.

fied and ¢ ()< v for all [g|< wo/Z. It is apparent that

max min
In order to facilitate the applicatién of the criterion some simple

necessary conditions for the multiplier F(s) to exist arc given below

- for the case 0< a < B:

(i) The Nyquist locus of G(s) should not éncircle or inter-
sect the straight line segment [-1/4, -1/8] of the neg-

ative real axis of the Nyquist plane, .
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(I’mox

w/2

~w, /2 9] Q w./2

(ii)

Analogous conditions hold for other ranges of a and § .

, Qbmin
N -r/2

Fig. 3.8 Graphic Procedure for Deferminiﬁg F(s)

the points G(jnmo/Z) n=0,1,2, ..., should

satisfy the conditions of the Circle Criterion,
i.e., for 0<a < B, they should not lie inside

the closed disc centered on the negative real

axis at - 3 (1/a+1/p) with radius 3 (1/a-1/p).

The second necessary condition follows from the fact that, since

F(s) is a real function of s, and since F(ilw+ wo) = F(jw), F(jnwo/Z =

1

Re F(jnwo/Z) forn =0, %1, +2, ... . Thus conditions F.1 and F.3 of

Theorems 3.3

n =0, +1, %2, ...

BG(jnwe/2)+1
uG(jncoo/Z) + 1

and 3.4 imply that Re > 0 for

, which lcads to the second necessary condition.
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By choosing partiéular functions .for F(s) it is of course pos-
siblc to obtain other sufficicnt conditions.for L2~stability. The next
corollary is based upon this idea and gives a quite simple sufficient
condition for the multiplicr F(s) to exist. It is expressed entirely
in terms of-the Nyquist locus of G(s), and is stated here for the case

0<a<B.

Corollary 3.8: The null-solution of (1) is asymptotically
stable if '

(i) the Nyquist locus of.G(s) does not encircle the

point -1/a on the negative real axis of the

Nyquist plane,

(ii) there exists a circle, C, which passes through

-

the points -1/a and -1/B, such that the Nyquist

locus of G(s) for w> 0 does not intersect it.
Let C!' be the mirror image of C with respect to the rea;l axis,
and consider the following twd parts of the Nyquist locus of G(s):
s,: {G(jw for nw_ < w< (n+ 1/2)w} |

S {G(jw) for | (n+l/2)wo <w §_(n+1)wo}

2:

where n =0,1,2, ... .

(iii) C' does not intersect both Sl and SZ.

This corollary is illustrated in Fig. 3.9,

Proof: Condition (i) assures’ thg,t the second condition of
Theorem 3.4 is satisfied. Let [0 |< w/2 be the angle between the posi-
tive real axis and the straight line through the origin of the complex

plane defined by the points

T+ 1
{g'r 1+ 1 ; TEC}
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K Im G(jw) .

'Sl

Fig. 3.9 {llustration of C-oroHary 3.8

. Assume that 0 > 0 and that C' does not intersect SZ. (A similar

argument establishes the corollary for the other cases.) Let F(s)

/.(’

be a real function of s such that
w/2-8 for nwo< w < (n+1/2)wo
arg F(jo) = { -(n/2-6) for (n-1/2) o <0< no
0 for w_‘z nw_, (n+1/2)wo

~ —

n = O,il,‘:!:z,'. .

Clearly, F(s) satisfies condit.ion;{}?‘. 1 and F.2 of Theorems 3.3 and

3.4, From condition (ii) of the corollary it follows that for w>0

-g+0< ¢(w)<0

and from the fact that C' does not intersect S2 it follows that
-0 < d(w) <m- 6

for w> 0 and (n—l/?,)wog_w'g_ L

~
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Thus it follows that for w>0 ‘ , .
-w/2 < arg F(jo) + ¢(w) < w/2
which establishes condition ¥.3 of Theorems 3.3 and 3.4 since
arg F(-jo) + $(-w) = - arg F(jo) - (o).
Examples |
1. Let

G(s) = >
(s+10)(s +0.4s5+1)

k(t) = k(t+T) and 0<k(t) < 2. Determine for which range of W, = 2¢/T
this feedback system is stable. The Nyquist locus of G(s) is shown in
Fig. 3.10.

Fig. .10 Nyquist Locus of s/(s+10)(s240.45+1)

It is apparent from the Nyquist locus that the Circle Criterion

cannot be used to predict Lz-stability. Using the procedurec suggested



-103-

above, Theorem 3.3 shows that-this feedback system is L, -~stable.

2
for all k(t) in 'thc determined range provided wo.> 1.55. Using
Corollary 3.8 on the other hand this feedback sysfem is found to be
Lz—stablg: for all k{t} in the given range provided w > e =-3.3.
(This numBer W, was obtained as follows: Let AB be the tangent to
the Nyquist locus through thé point (—l/Zféj); let AC be the line sym-
metric'to AB with respect to the real axis. The intersection of the
Nyquist locus and AC then gives wr/Z.? |

This example shows that although Corollary 3.8 did not give

an excellent estimate, it is quite simple to appiy.
2. Let G(s) = ]./sts +2). Determine K(wo) such that the feedback
system is Lz-utable‘ for all k(t) = k(t+T), W, = Zﬁ/T and

0 <€ < k(t) < K(w,). The Nyquist locus of G(s) is shown in Fig. 3,1].

Im G(jw)
.1
-.25 o  ReGljw)
4
3
. 2
. —42.2
w=| 14 .

Fig. 3.11 Nyquist Locus of 1/s(s+2)
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Using the Circle C‘ritcrion onc obtains K(wo) = 4. Brockett (12)
has shown by cxarr‘lining the worst possible variation in k(t) that
K(“_)o) =11.6. Applying Theorem 3. 3 and the graphical procedure out-
lined above results in K(wo)- as shown in Fig. 3.12. The same figure
also shows the i‘esult obtained using Corollary 3.8 and a grapﬁical
construction analogous to the one-used in Exarr‘lple 1. Thus by re-
stricting the feedback gaih to be peI:iodic it was possible by means of

Theorem 3.3 to obtain higher values of K as the freéuency was in-

creased.
THEOREM 3.3
15}
c$aou./.\m 3.8
~ REF |12
of = rerlz]
51 CIRCLE CRITERION
L ! )
0 2 a6 0

" Fig. 3.12. Regions of Stability for Example 2 o

Remark: It follows from Example 2 that the converse of
Theorems 3.3 and 3.4 is false, i.e., if F(s) does not exist then there
will in general not necessarily be a k(t) in the required range such

that the fecdback system is not Lz-stable.
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3.4 A Stabiiity C.riterion for Fcedback Systems with a Monotone

or an Odd-Monotone Nonlinearity in the Feedback Loop

As a second example of a stability criterion for feedback systems
consider the system with a time-variant convolution operator, G, in
the forward loop 'and a monotone or an odd-monotone nonlincarity in
the feedback loop. For conx@nience and s'irnplicity the analysis will
be given for systems described by difference equations. With some
modifications similar results can be obtained for the continuous case.

- The feedback system which will be considered is shown in Fig. 3.13.

{’ ¢

ey B oy b

T {od — bl ‘

Fié. 3.13 The Feedback Loop Under

Consideration in Section 3.4

Definitions: The operators G' and K are formally defined

m\
G({Xk} )k = Z gkﬂ xf k€ I
f=-c0

and F({Xk})k = f(xk) kel
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Assumptions: It‘ is assumed that ‘
(i) G q;( +(12, 12), i.e. ',-that G maps £2 into itself and
that gy =0 whenever k< 1 |
(ii) f{ is a mapping from R into> Aitself for which there
exists a k such that [f(c)|< K] o] for all o c R
It is si»rnple to verify that under these conditiox'ls G and F map 126
into itself and that Ehcy are bounded and causal.

The equation describing the forward loop of the feedback system

is thus

. +oo o .
Y, = z g%y Ty kel
, =0

The array {gkl‘} is often referred to as the weighting pattern of the
system. This system is slightly more general than the input-output

relation governed by the n-dimensional difference equation

~ L

X4l T ApFp TPy
. yi( =C}'<Xk+dkuk k=0,1,2,...

. x, = given : .

where bk and ¢, are n-vectors, dk is a scalar, Ak is an (nxn)

 matrix and x, is an n-vector called the state of the system. This

k

input-output relation is a particular case of the input-output relation

defined above with : . !
g = L AL By byt for k> +2
Brt T Sk Py for k =4 +1
Brt = dk for k=14
By ~ 0 , otherwise
and B Ty = Cl'< Ak—l' . .ono for k< 1
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-r .= C

- o N
e T 9 s 0 for k<O
The case in which the system is time-invariant is of particular

interest. The system is then defined by the equation

+oo . .
Vi = ng-£u£+rk k=0,%1,42,..."
£ =-00

where 8y is assumed to be zero for k< 0. This system is slightly V
~more general than the input-output relation governed by the n-
dimensional difference equation
= Axk + buk

N t . ) -—
Vi cxk+d k=0,1,2,...

*k+1

"

-

where b and ¢ are constant n-vectors, d is a scalar constant, A
is a constant (nxn) matrix and Xy is an n-vector called the state
.. _of the system. This input-output relation is a particular case of the

input-output relation defined above with

g = aa® for k> 0

gy = d

8 © 0 . . ~ for k<O

re = c'ATx for f{Z_O

Ty = u o= 0 for k<0 —

The equation describing the feedback loop is

u = f(yk) +Vk ‘ kel

and the closed loop equation of motion becomes

+0o +oo
Y t ngff(yf) = ng£v£+rk kel
L=-c0 £ =-o0
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-

Definition: The fecdback system under consideration is said to

ot e S et o

be £_-stable if for all £.-sequences r = {rk} and v = {vk}, all

2 = 2
no ,1/2 .
solutions {yk} which are such that { X yp) exists for all
. k =-00 :
nel, belong to 'JZZ and satisfy the incquality
+o00 +oo ' +oo ,
2\1/2 2\1/2 2\1/2
Zyk. "Klz.vk + K Zrk~
=-00 k=-00 . k =-00 -
for somec constants Kl and KZ .
Remark: Notice that £,-stability implies that lim V=
' k — o0

1im f(yk) = 0, and that for the n-dimensional difference equation
k — o0
described above it implies that if Vi = 0 for all k then

lim sup - ‘Yk’ = 0, which in turn implies asymptotic
xO-—»'O k=0,1,2,... ° :

stability in the sense of Lyapunov provided the system is uniformly

completely observable.

Notation and Definitions: F is said to be monotone (or odd-

monotone) if f(¢) is a monotone (or an odd-monotone) function of o.

F is sid to be strictly monotone (or strictly odd-n.lonotone) if

f(c) - €6 is a monotone (or an oc_ld—monotone) function of ¢ for
_some ¢> 0. :

Application of the principles exposed earlier and the positive
operators discovered in Section 2.6, lead to the following stability

- . ! kd - 13 - -
theorem which is an extension of similat results obtained by =

O'Shéa (42) and Zames and Falb (64).
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Theorem 3.5: A sufficient condition for the fcedback system

under consideration to be 12~stab1e is that

i) G Eg@ﬂgﬂ@gz (£ 29 b4 2)~ and F is strictly monoione

(strictly odd-monotone), and bounded

(ii) there exists an element, Z, 9_{1 (ﬂz,fz), such that

Z-¢1 is doubly hyperdominant (doubly dominant)

for some €> 0 and such that ZG is nonnegative. ’

Proof: This theorem is a straightforward appﬁcation of
~ Corollary 3.5 if it can be shown that Z can be factored as required
there. This is, however, precisely what is sta.ted in Corollary 2. 1.
The cas‘c in which the system is tin}e»invar.iant and ﬁle multi- |
plier is of t‘heﬁToe;.pltitz type is, of course, of pa,rtic.:ular interest and
yields the stability .theore‘:m obtained by O éhea (42). The positivity
condition and the doubiy hyperdominance (doubly dominance) condition

" .~ . _.can then be stated in terms of z-transforms. This is done in the next

corolia:&y.
Lemnug._}_.l:‘ Let R = {rk—ﬂ} , k,L €l define an elgpient of
,Z (12,12) which is of the Toeplitz type. Then a necessary and suf-
ficient condition for the inner product <x,Rx> to be nonnegative for
all £,-summable sequences- x is that the é~transforrn of {rk} » R(z),
satisfies Re R(z)> 0 for almost all z with lzf =1.

Proof: It is well known fthat

i

. o <x,Rx>

|

- R(z) | X(2)* =" dz
!z, =1

2
-7

™
= f R(ij) lX(ejw)lzdw
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T
1 j jo. 12
= Zr—-f Re R(e‘]w) lX(c‘] )! dw
-
and the conclusion follows.

Corollary 3.9: A sufficient condition for the feedback system

under consideration to be ﬂz—stable is that 4 .

(i) G is an element of[ (JZZ,EZ) which is of the Toeplitz

. type and F is strictly monotone (strictly odd-

monotonc) and bounded

(ii) there exists a Z(z) such that Z(z)-c is the

"z-transform of a hyperdominant (dominant)

.sequence for some ¢>0 and such that

- Re G(z)Z(z)> 0 for almost all z with |z = 1.

Proof: The theorem follows from Theorem 3.5 and Lemma 3. 7.

Remark :- For the n~-dimensional time-~invariant difference equa-
’ /_/‘- i
introduced above it is quite simple to show that G will belong to

e

tion
,;Z (12,12) if all eigenvalues of A have magnitude less than unity.



CHAYTER IV

LINEARIZATION AND STABILITY OF FEEDBACK SYSTEMS

4.1 Introduction

In the previous chapter, a number of stability criteria for non-
‘line_ar fcedback systems have been derivcd.. The question of whether
or not these criteria are conscrvativé cannot be given a genecral
answer, but both from the analysis and from examples éne suspects
1.;hat these criteria are by no means necessary and sufficient (sée
eg , (12)). .Thus the question arises whether these criteria are in-
decd or if they arc too conservative and if instabi}ity and stability
can be derived ﬁsing;sonne approximate methods, There is one case
for which necessary and sufficient conditions for the stability of
feedback systems is known: namely the Nyquist'criterion for feed-

. back systems where the forward loop is linear and time -invariant
and where the fcedback gain is a constant. Thus by associating with
a nonlinear feedback system a class of feedback systems of this type
one tries to conclude stability or instability. This c.hap‘ter takes a
critical look at some of these linecarization procedures and exposes,
by means of an example, uncrxpectcd‘periodic solutions in a non-

linear feedback system. Although the system chosen to obtain this

conclusion migh{ seem quite particular, the method of a.nalysis re-
mains applicable to other systeims and will exposc‘esscntially a
‘similar behavior. The examples also suggest to what extent and for
which §ystems the existing frequency-domain stability criteria can
be improved., They also show the need for caution in applying linear-

ization techniques in stability anzlysis.

-111-
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4.2 About Lincarization

Consider the feedback system shown in Fig. 4.1,

il gl
0 t z s > G(S) = Q(u) Y( );
p(s)

f(.) .

Fig. 4.1 The Feedback Sys.{'em

The relation between the input u(t) and the output y(t) of the ele-
ment in the forward loop is determined by the ordinary time-invariant

differential equation . *

{

% (t) . = Ax{t) + bult)

v{t)

11

c'x(t)

where VA is a constant (nXn) matrix, and b and ¢ are constant
"‘ﬁ—;/é/c;tors. The transfer function of this element is thus given b.y

G(s) = ¢'(Is ~A)~1b and is the ratio of two polynomials in s with the
degree of the numerator less than the degree of the denominator. The
element f(.) in the feedback loop generates an output f(o) when its
input is o, wh.ere f is a rnapping from the real line into itself, -The

differential equation describing the closed loop system is thus
x(t) = Ax(t) - bf{c'x(t))
It is assumed that f£(0) = 0, The solution x{t}= 0 is called the null-

solution of this system and is said to be asymptotically stable in the

large if it is stable (in the sense of Lyapunov) and if all solutions con-
verge to the null-solution for t-+w. For convenicnce the feedback

system under consideration is said to be asymptotically stable in the

large if this null-solution is,

N
\\J‘
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For the case for which {{o) = K&, this stability probicm can be
completely resolved using root-locus techniques, the Nyquiét sta-
bility criterion or a Routh-Hurwitz test and thus presents no dif-
ficulties, If f(0) is nonlinear however, ;Ll1is is not so, and often in
engincering practice the que‘stion whether a particular feedback

-

system of the above type is asymptotically stable in the large is

answered by considering a lincarized model. Three common types of

linearization are the d-c type of linearization, the a"c'type of
linearization and the describing functi'on type of linearization, These
are fo'rmal‘lyldefir.led below:

Definitions: Let f be a mapping from the real line into itself
with f(0) = 0, The d-c gain or the total gain of the 'no'nlinearity f(o)

at (o £0) is defined by K, (o) = HZ 15 £ s differentiable then the

a-c gain or the incremental gain of the nonlinearity f(¢) at o is
defined by X;(0) = 8Lle) | 1t £ satisfies the inequality |f(o) [<M o]

for some M and all ¢ then the describing function gain of the non-

linearity f(¢) at amplitude A(A £0) is the complex numbe F Kd(A)A
defined by

Kql(h) = ;%\f f(Acost)e eJtar
0

The procedure by which linearization is used to conclude sta-
bility for the d-c and the a-c types of linearization gées as follows:
If the linear systen; with f(o) = Ko is asymptotically stable for all
K :m the range of the d-c or the a-c gain {i.e., for all K= K‘tr(‘O') or
K = Ki(o-) and all ¢) then the nonlinear system is asymptotically
stable in the large, For the describing function method of lineari-

zation the procedure is analogous but cannot be stated as simply ”
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since the equivalent gain .needs not be a.real number, One Way of °
_ stati\ng‘the method in that case is as follows (24): If the Nyquist
locus of G(s) for s=jw "docs not intersect the locus of the poinf;s
—(Kd(A))_l for all A, but encifcles it p times where p is the
number of oipen—loop poles of G(s) in Res >0 (with the usual as-
sumption for imaginary axis( poles of G(s)), theﬁ the nonlinear feed-
back sysfem is asympfotically stable in the large,

' Both the d-c type and the a-c type of lineariz.atio'n and the re-
sulting conclusions about stability have been the subjec.t of rather
well -known conjectures, due to respectively Aizerman (1), arid'
Kalman (30). Particularly the Aizerman cbﬁjecturé has received a
lot of attention., Originally published in 1949, i_t took till 1958 before .
Pliss (46) gave a; ‘satisfactory coﬁn’cerexampié. It is possible to show
that for second order systems the conje&:ture'is true Witi’l the ex- |
-, ception however of some cases where the d;-c gain épprﬁacheé f.or.,
{arge.’values of its argument a gain for which the resulting linear
system is not asymptotically stable., The counterexample given by
Krasovskii (33) is in fact of this kind, The counterexampies obtained
by.Pli.ss howéver are more satisfactory, The very stringeﬁt con-
ditions on the ﬁonlinearity and the involved mathenlatic; kept the work
jof Pliss from being well known, More recently, Dewey and Jury (19),'
and Fitts (22) gav.e nuineri;al counterexamples derived from a com--
~ puter simplation. The conjecture‘ due to Kalm'an in which the' a-c
gain is used predicts stability in the large only for a subclass of the
nonlinearitiés for whi_ch Aizerma;n’s conjecture does. Fitts (22) gives

counterexamples to this conjecture derived from a computer analysis.
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In what is to fc)llow, a simple, rigoroué proof of the existence
of periodic solutions in a fourth order system will be given., It will
be shown that all of the above mentioned linearization techniques
however p;‘edict asymptortic stability in the large. These oscillations
thus constitute a class of counterexamples to both Aizerman's con-
“jecture and Kalman's suggestion. The results are obtained using the
perturbation theory.,of Ce s‘ari and He.ale (28). Since the i'de.as behind
this technique are basically simple the theorem from \;&rluich the re-
sults follow will be proven. This method of proof is suggested

by a paper by Urabe (57).

4.3 Avéraging Theory

Consider the differential equation
%X (t) = Ax(t) + € {(x(t),z,€)

where x(t) is an element of Rn,‘ A a constant (nXn) matrix, z a
"};érarneter (an element of R ), € “a scalar parameter and f a
mapping from R X Rmx R into R = such that for all R, € and M

there exists a constant K(R, €t M) (the Lipshitz constant) such that

le6e s zae) - £0xy, me) | S Kl o, | for ann s Il llx,I<R, lel < e |
and ||z]| <M. o . - ",'
Since the function f does not satisfy a global Lipshitz condition, = "

it is not clear at this point whether a solution x{t) to the above

-

equation exists for all t. This problem.is resolved in the next lemma,

i .

But first a few definitions:
Definition: Let x(t) be a continuous map from [0,T] into a
normed linear space, Then sup "x(t) ” exists and is called the

te[ 0, T]
norm induced by the uniform topology. Recall that the Contraction

L3
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Mapping Principle states that if ¥ is a map from a complete metric

space, X, into itself with d(I(x), F(y)) < ad(x,y) for ail x,yeX and
somec a <1 then the equation x = Fx has a unique solution (called a
fixed point of the mapping F). Moreover, pickiﬁg any X and de-
fining Xk%-léka’ keI, k>0 yields a sequence {xk} which con-
verges in the metric on X to the fixed point, ’

Lemma 4 1: Given any T >' 0, p, and M, then the above dif-
ferential equation has a unique solution x(t) for any x(0),y and t
which satisfy }!x (0) ”_<_p, 0<t<7T and Hz”iM provided ¢ is suf-.
ficicﬁtly snﬂall (i‘.e. , for all e with [e ’ < €y and some € > 0)., More-

over, this solution can be obtained using the successive approxi-

mations

xo(t) = eAtx(O)

_ t ,
X1 {t) = eAtx(O) + €feA(t—U)f(xk(o‘) ,z,€)do
-0

for kel k>0
P'roof: IL.et S be the normed linear space of all continuous
mappings from [0,7] into R" with the norm induced by the uniform

topology and with ”x(t) "_<_ 2pN where N = sup "eAt”. S is a.
- 0<t<T

complete metric space (see e.g., (31)) and av;mapping F defined c'm'

S by ' \ R
: t
. . Alt-
£X(t) = eAtx(O) +€f e (t U)f(x((r), z,€)do
0
maps S into itself for all [e|< € with €, < min{eo, (KNT)'I,

pT~1(4pNK + ”f(O, 0, 0) H)ﬁl} where K is the Lipshitz constant as-

sociated with R = ZpN,eo >0, and M. Morcover F is a contraction
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on S.. The verification of thesc facts is simple and will not be given
explicitly, 'I‘hus the equation x(t) - E:X(t) has a unique fixed point,
which can be obtained using the above successive apprdximations.

This yields the lemma.

The next lemma exposés the dependence of x(t) on ¢ more

-

explicitly:
Lemma 4.2: (.}iven any 7 >0, p and M, then the solution x(t)
»tpﬁjt_‘hg arbglve diffe‘renﬁal’ equ?tlgnfor any x(0), z,t Wh'iclzh satisfy
|Ix(0) " <p, 0 <t<T and ”z” <M can“l_)re expressed as
t

x(t) = eAtz;c(O) + Ef eA(t —G)f(e_AGx (6), z,€)do + GZL(t, x(0), =z, €)
0 .

for all € sufficiently small (i.e., for all € with le ! <e, and some

€, > 0).Moreover, L{t,x(0), z, €. is bounded for 0 _<~t~.<_.'r, <) I < p,-

2] <M and Jel < e,
S Proof: It'will be shown that the (k+1)th element in the successive

approximations introduced above is of this form provided the kth one

- is, and that the bound on Lk ‘can be taken to be independent of k,

Since_A xi(t) is cléarly of that foi*mvthe result follows: then by .in-
duction since the limit fof k—*oo w};iéh éxis(ts, must then also be of
this form. Let K be the Lipshitz constant associated with 2 oN,
61,‘ and M, and 1ef €, ‘<rn'irv17 {cl, (ZNT)—I}. A simple calculation

then shows that || l<+2n2(H1(0,0,0) || + KNpy, if e, I <

Lalism N
TZNZ(Hf(O, 0, 0) I -I—YKNp), which then, in view of the above remarks,

[N

yields the lemma.
Lemma 4.2 yields the following theorem on the existence of

periodic solutions to the differential equation under consideration:
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Theorem 4.1: 'If for ¢ sufficiently small (i.c., for all €

with e l < €o and some <o > 0) there exist bounded functions

x(0)(c), T(¢) and z(e) such that

T (€)

X(O)(E)-¥'€f e
0

AT(c) A(T(€) o) AT(c)

x(0)(¢) = ( x(0)(c), (c), e}do

+ €2L(T(€) . x(0)(¢€), z(€), €)

then the differential equation under consideration has afperiodic SO -

lution for € sufficiently small (i.e., for € with |€ I L€ and

some €, > 0},

1
Proof: Lemma 4.1 shows that for € sufficiently small

x(T(e)) = x(0)(¢) which, since the differential equation under con-

sideration is time-invariant, yields a periodic solution of period

T(€).
The above theorem is not very useful as it stands since it re-
[ .
quires computing the function I, and solving for the functions

x(0)(c), T(e) and z{c). However by using the implicit function
theorem it is ‘possible to obtain. sufficient conditions for the cén— ‘
ditions of Theorem 4.1 to be satisfied, These conditions are very
simple to verify and are stated here so as to suit the particular case
which will lead to the counterexamples to Aizerman's conjecture.

In the theorem which follows, use will be made of the Implicit

Function Theorem (35) . which states that if f maps RnX Rm into

R and if
n A
(i) f(xo,yo)z 0 for some x, € Rn’ Y, € Rm ‘
(ii) g% (x,y) exists and is continuous in a neighborhood of the

oint x
P o' Yo
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(iii) 9L (x ,y ) is of rank .n
oy “o’’o
then there exists a map, ¢, from Rn‘ into "Rm, which is
continuous in a neighborhood of X and such that y=(x)
yields F(4(x),x)=0 for all x in some necighborhood of X -
Moreover yO:o:;(xo) and ¢ is unique in a neighborhood of on

AT .
Theorem 4.2: Assume that e O:I(i.e., that all solutions of

*(t)=Ax(t) are periodic with period To), and that f(x, z,€) is a con-

tinuous function of x,z, and € which has continuous first partial de-

V_riva’cive‘s with respect to x and z, for € sufficiently small (i.e,, for

- all € with 'Glﬁco and some eo>0,)

T
7 (o]
Let : F(x, z, €) e f e’AUf(eAcx, z, €)do
‘ 0
and assume that - (1) F(xo, z, 0)=0

(ii) the matrix —5—;% (x_, 7,0 is of full rank,

~-Then there exists a continuous function z{€) such that for € suf-

ficiently small (i.e., for all € with le ] 5_61 ‘ggld some €, > 0) the

differential equation under consideration has a periodic solution

x*(t,€) with lim z(c)=z_ and lim x*(t,€) = B

. €—0 €—0 °

Proof: The smoothness condit_ioﬁs on f together with the re-
sultiﬁg smoothness of the solutions of ordinary differential equations
(see e.g., Céddington and Levin‘son (16)) ensure that the Implicit B
Function Theorem is applicable. This then in turn shows that the con-
ditions (i) and (ii) of the theorem énsure that Theorem 4,1 is applicable
which leads to the conclusion of the theoréxn.

This method of concluding the existence of periodic solutions for

differential equations is known as Averaging Theory since the function

F as defined above is indeed an average value.’
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4.4 Application of Averaging Theory

Consider the differcnti.al ec_guatio'n

Aty +10:89 ()4 950ty + ¢ (axd Dy 4@ty +yad Dty 16 x(t) ) re Py = 0
whgre { maps R into R and is continuously differentiable with re-
spect to its argument. This equation describes the feedback system
shown on Fig. 4.2 and is e‘q\iivalent to the following system of first

order differential eduations: R -

(52'+l)(s?‘+9)i+e(a33+Bs 2+ys +98)
o ef(. ) s
Fig. 4.2 The Fourth Order System to which
’ Averaging Theory is Applied
— o~ - - AT e 5 -
Rw ] o1 o oz, olls-p | 2 (1) 0
20| 1 0o 0 o]z, -1l v-a 2, () 1| - .
Jza | |0 0 0 3z ol|s-9p 2, (9 ol -
2,0 ] [0 0 3 oflzm| | ;7_ 30r-9a)|| )] |3

where 0(62) denotes a 4-dimensional-vector which is such that

-2 ~ :
lim (] =0. The application of Theorem 4.2 shows that there exist _
€e—0 . o
continuous fgnctions a(e), Ble), vle). and §(e) such that the dif-

ferential equation under congideration has a periodic solution,

z*(t,€), with lim a(e),p(e), v(€), &(€) = @By Ygd

€ —~0
Z1,0 01 0 0]
A . .
A 2,0 -1 0 0 o
and lim _z"‘(t,E): At where A = )
€0 - 23,0 0,0 0 3
| 74, 0] |00 -3 0 '
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The sccond equation guarantees that the matﬂx in Theorem 4.2 is of
full rank, and the first cquation exposes the requirement that the
average be zero,
From these conditions the following the'oren"x which will be
central in establishing the counterexamples to Aizerman's conjecture
foltows:

Theorem 4.3: If f(¢) is not identically equal to ko for any_

constant k, then there exists a nonzero periodic solution to the dif-

ferential equation under consideration for e sufficiently small (i.e.,

for all € with IE l geo and €, > 0). Moreover, the functions a(e)

and v(¢) which yield this periodic solution satisfy the inequality

(rle) - aleN(r(e - Jale)) <O

Proof: If

(z? 0 + zg 0) and (zg 0 + zi 0) are positive then the equations in

z) 0’ ZZ, 0’ z3’ 0 and 2,4, o are such that
" . (i).above can be solved for ey Bo’ % and 60. They will yield thé
f_qllowmg equality for any choice of z) L0 ZZ, 0', z3’ 0 and z4, 0

{
.

2 2 2 2
Sy ma)z) gtz o) + (9 )(zy gt zy o) = 0

-

It can also be shown quite easily that if f(¢) is not linear, i.e., if
f(o) is not idéntically equal to ko fol any coastant k, then
Zl, 0’ ZZ, 0’ z3, 0 and 24, o can be picked in such a :fvay that 'yo—aogé (U

and 'yo—%LO Z 0. This then yields the conclusion of the theorem.

4.5 Counterexamples to Aizerman's Conjecture

Let f(6) in the above equation be tan ho. The linearized gains
then satisfy the incqualities 0 gl{t(o-) <1 0 _<_Ki(o-) <1 and Kd(A)

is real with OSKd(A)gl. The zeros of the polynomial
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s 4 1052 4+ 94 clas® + B2 + s 4 &)+ cKs®

lie, for € sufficiently small and for 0 <K<
(i) in Res<Oorif ¢ >0, a>0, v>0 and (y-a){y-92)<0
or if €<0, a< Q, vY<0 and (v-a){v-9a) <O
(i) in Res>0orife<0,a >0, y>0 and" (’y—a)(’Y;c)a) <0
or if €>0, o <.O, vY< 0 and (y-a)(v-9a) <O
Thus z.xll the linearization L:echniq\ies would predict that the-,feédback
system under con.sideration is asymptotically stable in the lar'ge pro-
vided that € >0, >0, v>0 and (v-a)(y-9a) <0 or that €<O0,

a <0, y<0 -and (y—a)(’y—c)ﬁ) < 0. These regions are graphically

B

shown in Fig, 4.3, y’ - i
S : y =9a

.......

Fig. 4.3 Conditionson ¢,a,y to Obtain
Counterexamples to Aizerman's Conjecture

It is thus clcar that for €. sufficiently small and for values of
a and v such that (y-a){y-9a) < 0 the Siign of € ¢an be chosen in
such a way that the lincarization techniques would predict the feed-
back system under consideration to be asymptotically stable in the
large. This however is in direct con'tradiction with Theorem 4.3 which

shows that the feedback system sustains a periodic solution.

L
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Remarks: 1. The‘ choice orf the func‘c‘ion f{oc) = tan ho is
rathca‘r irrelevant. In fact, the same conclusion holds for any non-
linearity, provided it is sufficiently smooth for Theorem 4.3 to be appli-
cable and proviéed [£(a) !g Kfq[ for some K and all ¢ which then
yields, for € sufficiently small, the pole locations of the linearized
sy.stenl as given above. |

2., The remaxkable feature of.the periodic solvutio.ns-discovered
in Theorem 43 ié that (for € sufficientﬂly s.rnall), they only occur
when the lincarized sys%em has all its poles either always in the left
‘half plane or always in the right half })/lane; éontrary to what is to be
expected from lineérizét101}.

3. The Nyq-ui‘.s\t locus and the root-locus of the fourth order
system under consideration are shoﬁm in Fig. 4.4 for the case

N
€>0,a0a>0,vy>0 and (y-a)(y-9u)>0or €<0,a<0, ¥<0 and

© {r-a)(v-%) <0 - |
ImG(j
mG(jw) K>Oj "
. N 3
K<'-oé
K<0O
11
Re G(jw) K>0
® Re
0 s |
’ K>0%
1-1
® . K<0‘
- K<O
1-3
K>0

Fig.4.4 Nyquisi-locus of G(jw) and Root-locus
of the Linearized Feedback System
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4, The local stability properties of these periodic solutions is
of course of interest. Variational techniques show that for proper
‘choices of a, B, v, o, € and {(.), these perio_dic solutions can be

locally stable,

4.6 A Physical Interpretation of these Oscillations

The existence of the periodic solutions discovered in this
chapter will now be g.iven a physi.ca.l explanation. This will of course
beva plausibility argument. Averaging theory essentially allows to
conclude that argumentation is correct provided € is sufficiently
small,

'Assume an input to the nonlinearity "¢ f(.) which has a first
harmonic, a third ha;‘xnonic and "'small" other harmonics. The outéut
to the nonlinearity will thus contain all harmonics, =211 of comparable
magnitudes, and all '"'small'' since they have been multiplied by a

~..small parameter €., Let X1 X3, Yy aﬁd Y3 be the Fourier coe}:'—
ficients of the first and ?:he third harmonics of the input and the outpuf;/
to the nonlinearity. it can be shown that for particular choices of
Xy and vy the nonlinearity will shift the phases of the first and

third harmonics toward one another-thué obtaining the situation de-

picted in Fig. 4.5,

1 ,X%3
X2 1 X
X - l/ '
. X4% -
*s5

TS

Flg 4.5 The Spech’um of the Input and the Ouiput of ’rhe
Element in the Feedback Loop
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The negative feedback leads to an.input, u, to the forward loop as is

shown in Fig. 4.6 which with a Nyquist locus as in Fig, 4.4

Fig. 4.6 The Specirum of the Input and the Output of the
Element in the Forward Loop

multiplies the 1st and 3rd harmonic by a factor of order eﬁl, shifts

their phascs in the right direction, but less than 180° thus obtaining

the original situation of % and X3. The higher harmonics remain

of order €. The loop can thus be closed and the feedback system

sustains the oscillation.



CHAPTER V'

ON THE DESIGN OF NONLINEARITIES ON
THE BASIS OF HARMONIC CONTENT

The ixﬁplenucntation of Control Systems involves at all stages
a great deal of clectronic equipment and with it the ciesigni of filters,
of frequency up- and down-converters, of a-c to d-c converters, .etc'.
In fhis chapter some ideas and results pertaining to de'sign procedures
for systems containing nonlincar elements are outlined a‘nd the use -
fulness of these teéhniques is to be viewed at the level of designing
individual parts to'a system, similarly to the Nyquist-Bode design
procedures whi;ch have proven their use at this level éf the design
equally well as for the design of the overall'systén.l.

The design of nonlinearities is a quite negiected area of research
'\,C'ompared to their analysis for which a large amount of material is
available. In particular, the previous chapters have essentially all
been-concerned with analysis problems., The relations obtained there
.are essentially relations bétwgen the spectrum of the input and the
spectrum of the output of a certain given nonlinearity. These re-
lations alway.s hold illdepéndéntly of the pa‘r;cicular input for which
they are applied, i.e., the particular form of the input is not taken
into consideration. The types of problems which will be considererd
in this chapter arc of a different nature and the emphasis is on
selecting a certain nonlinearity in a given class such that the spectrum
of the output meets certain requirements under the assumption that
the input is given,

-127-
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Example; As an example of a ?roblem_ for which the te;:h-
niques developed in this éluapter are potel.ltially useful, and which re-
quires designing a nonlincarity, consider the feedback system of

the form shown in Fig, 5.1.

ult) i) |

A

1 f(+)

Fig. 5.1 Feedback Configuration

The problém is to .select a nonlinearity f(-) in a certain class sucﬁ
that the closed-loop system is‘ optimum in some ap‘propriate sense,
Problems as this one cannot be t;reate‘d directly using the minimum
principle of Pontryagin or some other commonly used optimization

‘.. technique sinée these techniques require that the controller, {( 0,)’

has access to all the state variables, a condition which is not satisfied
in the above problem where the controller has only access to the out-
..put y(t). From a practical point of v‘iew however the above scheme

is both sinnpler‘t'o implement and occurs o_ftén as an inherent limi-
tation of the aHowed cor;trollers . Thus optimization techniques

based on the above model can take design requirements into con-

sideration at a much earlicr stage of the design.

5.1 Unconstrained Maximization of a ILLinear Functional

Ve
As a first problem related to the optimal design of nonlincarities,
the maximization of a linear functional (which could be e.g., a
A

Fourier coefﬁcienﬁ) of the output of a nonlinearity will be considered;, An

éxplicit algorithm which yields the nonlinearity is obtained,
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Problem Statement: Let x{t) be a real-valued function of €

which belongs to LZ(O’ T), and let }51‘ denote the class of measurable

functions from R into itself with 0 < of(0) _<_0’z for all elements

1

fer .. Let é(t) € LZ(O’ T) and denote f(x(t)) by y(t’)r. The '""cost-
\functional” J(f) is defined by J(f) = <c(t), y(t) > = f cA(t)y(t) dt,'

and the problem is to find an elemen.t fo € El’ if it gxist‘s,. such that |
J(fo) > J(f) for ail ‘fcl:“\,l.

Additional Assumptions: In ¢ ler to find an explicit algorithm

for fo, a number of sirﬁélifying as. ptions are made,. The above
optixnizatidn problem can be solved under le ss stringent conditions,
but the solution is somewhat 1_1iore involved." Since the assumptions
are however-'reasonable and satisfied in most practical situations,
the g.eneral case will not be pursued, It is thus assumed that x(t)

is differentiable on [0, T] and that %(Q— -‘vanishes for at most a

* finite number of points in [.0, T].

Solution of the Opfim.i zation Problem: The following algorithm

&'ields the optimum nonlinearity fo € }N?l:

Let {ti(a')}', i=1,2,... yng be the solution of the Vequati.on

x(t) = a. (It follows from the assumptions on x(t) that’ n will be
at most finite for all a € R.) Let §£(d) be formally defined by:

n -

= ax(t, ()|
gla) = ) el ()x(t;la) | ~—gi— C
i=1 ' .

£(a) is well-defined for all but a finite number of a's in the range
of x(t): namely those corresponding to the values of x(t) at the
points where ’%X—tjﬁ = 0. Once the function §£(a) is computed, the

nonlinearity fo follows with



fo(a) = a whenever §{a) >0
f(;(a) =0 whenever §(a) <0
and fo(a) any number between 0 and a whenever £(a) =0

- and whenever £(a) is not defined (i.e., if a is
outside the range of x(t) or if the abové sum -
mation for £(o) is not defined).

Remark: It is, in fact, sufficient to find the zeros of the
functidn £(a) since §(a) is a continuous function of a where it is
defined. : ' .

Proof of the Algorithm: Let y(t) = u(t)x(t). u{t) exists for all

fe £y and the constraints on f require that 0 <u(tf) <1 for all
te[0, T] and that u_(El) = u(tz) whenever x(tl) = x(tz) . Let

<t ... St be the points where ax(f | 0. Hence

1—- 72 dt
. H t ™
e Lelt), y(t)> :f c(t)y(t)dt +f c{tyy(t)ydt +. . .+f c(tyy(t)dt
0 £, ot
1 n
t ts T
= f c(t)x (t)u(t)dt +f c(t)x{thu(t)dt +.. .+f c{t)x (t)u(t)dt

0 - ‘tl ' | tn:

LQtT:ft\-d—x(ﬂ

d do (v exists since the assumptions on x(t) -
0 :
imply that x(t) is of bounded variation on [0, T]). Let T, = 'r(ti),
Ty +(T)
then <c(t)., y{t)> :f c{ty x(t u(t) dr 4. +f c{tyx(t) ‘SL.U{ (t)ydr
0 . T

A simple computation shows that %ﬁ~ =1 whenever %'—(tl> 0 and
t
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that é(;—;gﬂ: -1 whenever %%@-K 0. Thus x(t) versus T has a

sawtooth shape and the constraint that u(-{—l) = u('rz) whenever x('rl) =
x('rz) can readily be taken into consideration at this moment., Let

for instance [a_, al] = [x(O),x(tl)] n[x(tl), x(tz)]n ...ﬂ[x(tn),x(T)].
The above integration restricted to the intervals which map X(t) into

[o.o, al] leads to

ﬁo-hr ﬁn-l-O' ,
1 -1
f c(t) x(t) %&QT u(t)dt +. .. +f c(t) x(t) %X-E-(EL u(t)dr
B, | B, N

A change in variables and the condition that u(ti) = u(tz) whenever
x(tl) = x(tz) leads, after some manipulations, to the following ex-
pression for the above integration

-1
u(t )} dr

c X : dx(t )
| f {ZC(ta)X(ta) 5
0 i=0

Where ta is defined above., The choice of u(ta) as in the statement
of the algorithm becomes now apparent. A similar manipulation for
the integration over other intervals in the range of x(t) eétablishes
the éomplete algorithm.

Example: As an example to illustrate the above theory, let

x(t) = sin t 0<t<2w .
21 )
and I = %f £(x(t)) sin 3t dt
0

The above algorithm becomes very straightforward for this ex-

ample and leads to the following optimum f
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f, (o)

1
a

for _' lol<1/2 and NB/2 < |o] <1

f) =0 for 1/2<le]< \3/2

and fo(o-) any number between 0 and ¢ otherwise, The resulting non-
linearity and the waveforms of the input and the output to the non- -

_ linearity are shown in Fig. 5.2.

(1)
b

-

o fo(o)i’
2w x(1)

. s -

O'tr\/t

y(t)
.‘»

5, Loy (Lﬂ
i [3 o t
IKE -

b

Fig. 5.2 Maximization of the Third Harmonic

. Remark: Consider the following optimization problem: 1e£
x(t), J(f) and El be as defined above and let cl(t), cz(t), RN cn(t)
€ LZ(Q, T). Thé optimization problem is to find an element foef':l’
J"if ‘i(‘:/e.xists., such that J(fo) > J(f) for all fGEl and,such that

| .<c1(t),f0(‘x(t)) > = Ciovers fcn(t), fo(x(t))> =c, where STREE ’_Cn

are given real numbers. An algorithm, similar to, but more involved
than the one above can. be obtained using similar calculations and in-
volving the Neymann~Pearson lemma (see e.g. N 5-)) . Itis more or
less apparent how this lemma occurs in connection with this problem:
indeed the problem soivcd by the Neymam-Tvarson lemma is'p;‘eciscly the miéxi;

mization of a linear fur}ctional under magnitude constraints and under
.

the additional requirement that other linear functionals yield certain

preassigned values,
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5.2 Maximization under General Constraints

In this section the maximization of a certain functional of the
output of a nonlineari‘ty under given constraints on the nonlinearity
and its output is considercd. The input to the noﬁlinearity is again
assumed tov be known, The interesting feature of the methodology
outlined below is that it shows the possibility of trarisforming a large
class of these optimization problems into a form in which Pontryagin"s
maximum principle and other cléssical optimization techniques are
applicable,

Problem: The problem of generating a nonlinearity which
yields aigive;l 'set of Fourier coefficients and minimizes the dis-
tortion is considered, The input is assurn.ed to be. given, It wiil be _
shown that the qﬁest.ion of .existence can be reduced to a question 'about the
range of a linear operator., The precise statement of the problem

follows: - .

Let x(t) be given by the uniformly convergent Fourier series

0
x(t) = Z (an cos 2w % + bn sin 2mn %,)

n=0
The optimization problem is to find the nonlinearity f{ (unconstrained)
such that

N

A t . t
y({t) = z (cn cos 2mm T + dn sin 2wn T Yy + x(b)
n=0
where r(t) is orthogonal to sin2wn E,f. and cos 2wn % for n=0,1,...,N.
The first question to be answered is whether there exists such a non-

lineavrity. If so,the next question is to find the nonlinearity which mini-

mirzes the "distortion"
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r11

f 1‘2(;:) dt

0
Remark: The above optimization problérn is nontrivial mainly
due to the cons-traint that f(-). is required to be a single valued
function and the commonly used optimization téchniques are not im-
medialely applicable. This example'shows one very interesting

potential application for the methods outlined here: namely the de -

‘'sign of optimal static filters for certain given inputs,

Solution of the Optimization Probiem: As mentioned above, this
problem does no't fall in the class of the usual optimization problems
due to the constraint that y{t) = f{x(t)) for some noﬁlinearity f(-) .
This constraint can however in general be reduted to a set 6f con-

. ditions of the form

> Y(Gll(t)) = Y(O—lz(t)) for tll <t 5.112
Y(O'Zl(t)) = y((rzz(t)) for ty <t <ty
L Yo @) = o) for ot <<,

For instanceA, it is quite easily verified that if x(t) = cos Zn%\ s
then y(t) = f(x(t)) if and only if '

"

yET) = (o)

1

and | y(T-1) y(t)

In general if x(t) is assume;d to satisfy the conditions given in

Section 5, i, then this reduction can always be done, uéing the following
procedure:

Let tl’tZ’ e ,tn be the values of t for which %{EL vanishes,

Assume that x(t i) is a Jocal maximum of x(t) then the following
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constraint is obtained for the case that X(tiﬂ) > x(t, l)

1..
t. -ttt
1 1
y(ti f at ldt) = y(ti-l _ l at dt)
t. -t t.
1 1

1

~interval [0,T] is thus covered,

for all 0<t<t, , ,-t. This procedure can be pursued until the whole

The constralint that the N first Fourier coecfficients of the out--

put are required to have certain values can be stated as the require-

ment that the dynamical system

= y(t) cos ZTri-t—

*2i+1 T

Pl

oot 4
Xyiiop T y(t) sin 2xi T i=0,1,...,N

should be driven from the state (0,0,...,0) to (co, do’ o dl s ee s CN’_dN)

by a "control'' y(t) which satisfies the above constraints. The opti-

mization problem is to find the control, if it exists,

~ L

which minimizes
- T
f v2 () dt
.0

This optimization can be further simplified byb a change of the
time scale as outlined in Secfion 5.1 which fesults in a sawtooth form
for x(t). In many circumstances this is actually an unnecessary pro-
cedure which should be avoided whenever it is possible (an example
will be given later). After this change of the time scale has been
performed it is easily; verified that the problem reduces to a simple
};)articular case of the following optimization problem:

Given a dynamical system

X (t) = A(t) x(t) + B(t) u(t) o
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whcr‘e x(t) € Rn, u(t) e Rm and Af(t) and B{t) are (nX'n) anci
(n Xm) matrices r'e spectively. Find a control u(t) which satisfies
u(t).-k T) = u(t) and which drives the state . x, at t=0 to Xy at
t=kT where k is a positive integer, while 1‘ninixnizing

T

_ -k
J(w) = f L{x{1), u{t)) dt
0

This problem is not'quite in the form for which Pontryagin's maximum
principle can be used due to the periodicity constraint on u(t). There-

fore the .oAriginal system is replaced by k copies as follows:

kl(tj = A{t) %, (t) + B(t) u(t)
szé(t) = A(EHT)x, (1) + B(t+T) u(t)
X () = AlH(k-DT) xl'{(t) + B(t+(k-1)T)u(t) -
.o T _
and CJ() =f Lixy (£), oo, x (£, uft))dt
. 0

The original transfer is thus possible if and only if there exist ele-

ments Xi(T) and a u(t) such that

x, (0)

X
(o]

x,(T)

"

x,(0)

x,(0) = x(T)

Xk(T) = xl » \

By a well-known result for controllability of linear systems this

transfer is possible' if and only if the vector



x,(0) | x,(T)
x,,(0) L =90, T) | x,(T)
x,(0) %, (T)

lies in the range space of the matrix

T
W(0,T) :f $(0,0)B (0) B ()¢} (0, o) do

0 o
where ¢ is the transition matrix of the augmented system and
B(t) equals: |

| B(t)
Bft) = B.(H-T)
1B (t+kT) .

Using thé relations be.tween xi(O) and xi(T) this ééndition requires
that for some XZ(O), x3(0), . ,xk(O) the vector

r— o~y — g —

X 7)10...0 X
o 1

x,(0)[ -¢(0,T) [0 0 1 ... 0f ] x,(0)

xk(O) ‘ ? ... 0 1 xk(O)

should belong to the range space of W(0,T)y. If W(0,T) is invertible,
then the transfer is always possible.‘ This will however in general
not be the case due to the fact that the augmented matrix ilas alot
of structure to it. In the other ;ase it is necessary £o compare the
.range space of W and of the matrix Qperatiﬁg on t-he vector
col(O,xz(O), e ,xk(O)) in the above expression,

Remark: The above procedure only claims to be an ouj:line by
which a particular optirnizat;ion problel-n of the type considered in

this section could be solved. It is also apparent that many of the
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assumptions do not have much intrinsic importance and were
mainly introduced to fix the ideas. In'particular the fact that the
Fourier coecificients are required to haye certain values could be
replaced by any linear functionals, Furthermore although the pro-
cedure might seem complicated this is not quite so in most practicél

situations since the matrix A turns out to be the zero matrix and B

.

is quite simple.,

Example: .Using the procedure outlined above, the following
problem was solved: lét x(t) be given by the waveform shown in
Fig, 5.3

x(1)
&

wig
T
!
{

\
]
-t 1&

(o]

P ———
N
g

Fig. 5.3 The Input Function

The optimization problem is to choose a nonlinearity f(.) ({un-

restricted) such that =~ .o '

) 27 i

J(f) = —Z—I-T-rf f(x(t)) sint dt is a maximum upder the constraint

.
21

1 2

5 dt = >
that Z'n'f fx(t)) a>0

0
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The optimum nonlincarity is given by

fo(()‘) = vy sino for |o| <w/6

sin o + sin (v /2-0) < <
5 - . for 1r/6__‘(rl <w/3

£, (o)
fo(fr) arbitrary otherwise
where v depends on a. .

‘This nonlinearity and the resulting output signal are shown in Fig.5.4,

folo) , y(t)
1 , 4

?

3

o
v
Q

———— ol
t
—-==- ol
, _\

ol
e
ol =~ Nm
(SIS S
S S——

Fig. 5.4 The Optimum Nonlinearity and the Output Signal

This example shows again that the methods and the problems
outlined in this chapter are very apt to freat optimization problems

related to the design of frequency converters.,

5.3 Conclusion and Suggestions for Further Rescarch

In this chapter some techniques for the desigl‘x-of optimal non-
linearities for give‘n inputs were described, This theory as it stands
is far from complete and although some interesting problems per -
faining to the design of static f{ilters and frequency converters

can be solved, | the breakthrough which is needed is to apply these

mecthods and solve some problems which also involve dynamics and

.
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for which the nonlinearity appears for instance as a fecedback gain and

with a linecar dynamical system in the forward loop.



APPENDIX
In this appendix a g(;neral stability and-instability theorem is
proven which pertains to feedback systems described by the operator
equations introduced in Chapter ‘III.

Additional Assumption: In addition to the assumptions made in

Chapter III, it is assumed that the operator I+C}2G1 is invertible

“on Xe i,e., there exists an operator from Xe into itself, (I,+G2Gl)-1,

suéh that (I+GZG1)“1(I'!-GZG1)X:X for all X€Xe, and that this inverse
is causal. 'This condition is not always satisfied not even for stable
systems for which the feedback loop has a {mique solution: és an
example consider the feedback loop with the identity operator in the
forward loop and the identily minus a time delay in the feedback loop.
The assumption is satisfied if th.ere is an infinitesimal delay present
in the loop or if a filtering condition is satisfied, For instance if

- X=L,(0,0) it suffices that H(PHT-IDt)(G G,x,-G,G;x,) || <

27171 727172

a ”P —Pt)(xl—xz) ” for some T >0, some a <1, all t> 0 and

t+7
all x ) x,¢ 'Lz(o,oo).

271

question arises what the inverse of this relation,(l%-GzGl)“l, implies

Since H-G,G, also defines a relation from X into itself, the

about the stability of the feedback loop under consideration.,

Theorem: A necessary and sufficient condition for the feedback
-1

system under consideration to be X -stable is that (HG, G

26 " ke

bounded and causal on' X.

Outline of the Proof: (i) if (HGZGI)-I is céusal and bounded then

-1 . -1
PTe:PT(HGZGl) PT(I+GZG1)PTe:PT(I+G2Gl) PT(ul+G2(u2+Glel) ~G2Gle1)
and thus P e | < U(I+Gzcl)'1 I ”ul I+ III+G2<31)'1 ”K”uz” which yields

the conclusion
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-} is unbounde.d, then

(ii.) it is simple to show that, if (HGZGl)
no constants K1 and Ky, as required in the definition of stability,

can exist
(ii1) if (J?PGZGL)”1 is bounded but not causal on . X, then the proof
goes by contraction as follows: Assume that the system is stable,

Then ,(I+GZG )'-1 (the inverse on Xe), restricted to X, is bounded.

-1

1

Since (I+G2G is thus bounded on® X and is causal, a contradiction

1

follows.
This theorem is being applied to prove the converse of the Circle

Criterion as obtained in (13) and in (6).
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