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Abstract This paper introduces a new Runge-Kutta
(RK) Integration based adaptive controller by consid-
ering control law as an ODE for nonlinear MIMO sys-
tems. It is aimed to derive a novel adaptive controller by
regarding the control law as an ODE with limited infor-
mation about control law structure. Adaptive param-
eters are adjusted via an RK predictive system model
where Levenberg-Marquardt (LM) technique is deployed.
The adjustment mechanism enables to utilize RK both
in adaptive controller and system model. The perfor-
mance evaluation has been delved into on Van de Vusse(VdV)
system for diverse situations, and reasonable results
have been acquired for introduced adaptation mecha-
nism.

Keywords Adaptive Runge-Kutta controller · Model
predictive control · Model predictive Runge-Kutta
controller · Runge-Kutta integration

1 Introduction

The quote that “Mathematics is the language in which
God has written the universe” atributted to Galileo
Galilei is possibly the best apothegm that describes the
importance of Mathematics in our life to date. Dynam-
ics expressing events can be defined by differentiation
and integration in calculus. While differentiation is uti-
lized to examine how one dynamic alters with respect
to another dynamic, integration is appealed to evalu-
ate the cumulative impact of small parts/elements on
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Turkey
1E-mail: ucak@mu.edu.tr
2E-mail: ucakk@mit.edu

the whole. Therefore, integration is one of the main
branches of calculus ( Bittinger et al. 2001). Integra-
tion has many real life applications from calculation of
Greek quadrature of the circle to analysis of complex
nonlinear control systems. In most cases, it is difficult
to integrate complicated nonlinear functions analyti-
cally. Therefore, over the centuries, in order to approxi-
mate and find the numerical value of an integral, many
numerical integration techniques have been contrived,
dating back to antiquity particularly since the sixteenth
century ( Davis and Rabinowitz 1984).

Among numerical integration methods, Runge-Kutta(RK)
techniques, the name of which comes from Carl David
Tolmé Runge (1856-1927) and Martin Wilhelm Kutta
(1867-1944) who first studied the technique around 1900( Fasshauer
2020; Roberts 2010), are the most prominent ordinary
differential equation(ODE) solver. In spite of being a
century old method, it is still frequently deployed to
estimate the future behaviour of the complex nonlinear
systems numerically.

In a control system, especially in a nonlinear multi
input multi output (MIMO) control system, the nonlin-
ear behaviour characteristic and also interaction among
dynamics obstruct the approximation and control of the
system. Therefore, it is required to employ a controller
which can attune the excited unpredictable dynamics
with adaptation ability. This circumstance necessitates
to deploy adaptive nonlinear MIMO controller archite-
cures in order to ingender the nonlinear dynamics as
desired despite nonlinearity and interactions.

There exist a great variety of intelligent adapta-
tion methodologies such as ANN( Saerens and Soquet
1991; Zhang et al. 1995; Tanomaru and Omatu 1992;
Psaltis et al. 1988; Efe 2011; Hagan et al. 2002),

Fuzzy Logic ( Pham and Karaboga 1999; Sharkawy
2010; Bouallègue et al. 2012), ANFIS( Bishr et al.
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2000; Denai et al. 2004) and SVR ( Uçak and Günel
2016; Uçak and Günel 2017; Iplikci 2010a; Iplikci
2006). Occasionally, the heavy computational load of
the mentioned methods may restrict their ability to be
deployed in real-time control architectures. Since pre-
cision and computational complexity of modeling tech-
niques are two crucial quiddity in execution of the intro-
duced adaptive architecture, adjustment mechanisms
that possess lower computational complexity and ad-
vanced precision are more feasible and preferable to re-
alise. Therefore, the RK based identification with low
computational load in comparison with soft computing
methods, given in ( Iplikci 2013; Uçak 2019) is em-
ployed to identify nonlinear system dynamics.

A variety of controller architectures based on RK-
system model have been introduced. Iplikci ( Iplikci
2013) has introduced a model predictive controller(MPC)
based on RK model to identify the dynamics of con-
trolled nonlinear MIMO systems. In MPC problem, in
order to adjust the control signal vector that compels
the system dynamics to follow the reference, it is essen-
tial to forecast the possible emerging system behaviour
against adjustment to be realized in control vector. The
learning rules to update control signal vector are ac-
quired by means of the Taylor series expansion of the
objective function. Thus, in order to utilize the derived
adjustment laws effectively, it is required to estimate
the system Jacobians using system model. Çetin et al
( Cetin and Iplikci 2015) deployed the predictive RK
system model to derive adjustment rules for an adaptive
MIMO PID controller. The proposed auto-tuning mech-
anism for MIMO PID combines the robustness and fast
convergence features of PID and MPC( Cetin and Ip-
likci 2015). Beyhan ( Beyhan 2013) introduced a non-
linear observer which aims to update the system states
by using predictive RK model introduced in ( Iplikci
2013).

This study introduces a novel adaptive controller
where RK integration is directly utilized to construct an
adaptive control law. To the best of the author’s knowl-
edge such direct implementation of RK integration as a
direct control method is not presented in technical lit-
erature. By regarding the control signal as an ODE set,
firstly, the Runge-Kutta control law is derived, and then
the essential information so as to annex adaptability to
control law is examined via Levenberg-Marquardt op-
timization law. As a result of examination, it has been
observed that only knowing the correlation degree of
u
(
t
)

with itself is enough to evolve adaptive control
law. Thus, a novel adaptive RK controller that can be
adapted even with such limited information has been
proposed.

The most important feature that radically distin-
guishes this study from previous ( Uçak 2019; Uçak
2020) and all other Runge-Kutta based studies given
in ( Iplikci 2013; Cetin and Iplikci 2015; Beyhan
2013; Efe and Kaynak 2000; Efe and Kaynak 1999;
Wang and Lin 1998) is that the Runge-Kutta inte-

gration is presented as a Runge-Kutta controller in the
controller block for the first time without using any ma-
chine learning architecture such as neural network etc
so as to store statistical information of control signal or
controller parameters.

The adjustment mechanism contains an architec-
ture in which RK integration is deployed as control law
and system model. Therefore, the adjustment mecha-
nism is composed of a 4th order RK model in order
to observe and estimate the future emerging impact of
the obtained control signal on system behaviour, RK
controller to form the closed-loop system dynamics as
desired and adjustment law utilized to tune controller
parameters. The high accuracy and low computational
load of RK integration techniques evoked the idea that
RK integration technique could be used not only to esti-
mate the system model but also derive adaptive control
law. The nonlinear system dynamics are approximated
via the RK based modeling technique introduced by
Iplikci ( Iplikci 2013) due to its precision and low ex-
ecution time. In this study, the main contribution is
to introduce a nonlinear RK MIMO controller which
indicates the utility of the ordinary differential equa-
tion(ODE) solvers as adaptation mechanism for adap-
tive control theory. The performance evaluation has
been performed on nonlinear VdV systems for diverse
situations. The results verify that prosperous closed-
loop control and identification performances have been
attained for the introduced adjustment mechanism and
RK model introduced by Iplikci ( Iplikci 2013), respec-
tively.

In section 2, adaptive mechanism for RK controller
is presented. The adjustment rules and control algo-
rithm for proposed RK controller are detailed in Sec-
tion 3. The evaluation of the introduced adaptive RK
controller is scrutinised on a nonlinear VdV system in
Section 4. The controller performance has been com-
pared with Runge-Kutta model based adaptive MIMO
PID controller presented in ( Cetin and Iplikci 2015)
with respect to tracking performances and computa-
tional loads of control algorithms for nominal case and
when measurement noise and parametric uncertainty
are added. A brief conclusion and future works are given
in section 5.
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2 Adaptive Runge-Kutta controller

In control systems, approximating the dynamic behav-
ior of the system to be controlled is of great significance
for adaptive controller architectures. So as to reform the
closed-loop system dynamics as desired, it is essential
to inset predictive structure based adaptation ability to
the controller parameters so as to attune emerging new
circumstances. An effective adaptive control mechanism
incorporates an accurate system model and convenient
controller parameter adjustment laws derived via opti-
mization theory.

The basic model based(MB) adaptive architecture
subsumes control law, system model and adjustment
law blocks. The possible system behaviours against ad-
justment in control parameters are approximated via
system model block by applying the control signal firstly
to the model. Then the required adaptation rules forc-
ing the system output to the desired reference point are
acquired and optimal control law is computed. Accu-
rate representation of system dynamics in system model
is crucial for good performance of the adaptive con-
troller in MB adaptive architectures. A great number
of adaptive controller architectures can be suggested by
incorporating different system models, controller struc-
tures and adaptation laws for nonlinear MIMO sys-
tems( Aström et al. 1977). Any controller including ad-
justable parameters can be deployed in the MB adap-
tive mechanism ( Uçak and Günel 2017). RK integra-
tion method is directly employed as a controller in this
paper. As nonlinear system model, several system iden-
tification methods based on artificial intelligence like
ANN ( Efe 2011; Hagan et al. 2002; Efe and Kay-
nak 2000; Efe and Kaynak 1999), ANFIS ( Denai
et al. 2004; Jang 1993), SVR ( Iplikci 2010a; Ip-
likci 2006; Iplikci 2010b) etc have been introduced to
learn system dynamics. In the introduced mechanism,
the nonlinear system dynamics are identified via RK
system model given in ( Iplikci 2013) so as to amelio-
rate model/approximation precision and decrease con-
trol signal execution time.

The proposed adaptive RK controller architecture is
shown in Figure 1 where R expreses the system input
dimension and Q stands for the number of the system
outputs to be controlled. The model based architec-
ture incorporates two crucial structures to be scrupu-
lously scrutinised: RK controller to express the con-
troller dynamics and RK model so as to forecast PH–
step ahead system outputs. By considering that the ab-
breviations of these two main blocks simplify the intel-
ligibility of adjustment mechanism, Runge-Kutta con-
troller is abridged as RKcontroller and system model is
RKmodel throughout the article. The proposed adaptive

control mechanism is composed of three main phases
consecutively performed in an online manner: predic-
tion, training and control phases.

2.1 Prediction Phase

The RKcontroller produces a candidate (u?[n]) signal as

u?[n] =u
[
n− 1

]
+

1
6
[
K1u

[
n− 1

]
+ 2K2u

[
n− 1

]

+ 2K3u
[
n− 1

]
+ K4u

[
n− 1

]] (1)

in which K1u
[
n−1

]
, K2u

[
n−1

]
, K3u

[
n−1

]
, K4u

[
n−1

]

denote the slopes of control signal and all slopes are
adjustable parameters of the RKcontroller. The parame-
ter vector to be optimized in adjustment mechanism is
given as

K =
[
K1u K2u K3u K4u

]
(2)

Then, by sequentially applying the obtained u?[n] to
RKmodel, the system behaviour and system Jacobian
required to adjust controller parameters(K) can be ac-
quired. RKmodel block contains three main subblocks to
predict the nonlinear system dynamics: raw RK system
model, RK model based EKF(RKEKF) and RK based
model parameter estimator (RKestimator) subblocks. In
order to deploy raw RK system model effectively and
predict system dynamics, the current states of the con-
trolled system and actual values of the deviated sys-
tem parameters(θ) are required. Using the available
input–output samples obtained from controlled system,
the system states can be attained via RKEKF. Because
of the lack of conventional modeling techniques or de-
viation in system parameters (θ), system parameters
(θ) may not be determined accurately and the system
identification performance and accuracy of the system
model may aggravate. Therefore, RKestimator is utilized
to predict the actual values of the unmeasured, un-
computed or deviated system parameters (θ). By using
raw RK model, RKEKF, and RKestimator, RKmodel can
be constituted to forecast PH–step future system ac-
tion with high accuracy. The detailed information about
subblock of RKmodel are given in ( Iplikci 2013; Uçak
2019; Uçak 2020).

2.2 Training Phase

The adjustment laws to attain the feasible RKcontroller

parameters can be derived via objective function in (3)
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Fig. 1 MP RKcontroller mechanism.

F
(
u
[
n
]
, êq
)

=
Q∑

q=1

PH∑

p=1

βq

[
êq
[
n+ p

]]2

+
R∑

r=1

λr

[
ur
[
n
]
− ur

[
n− 1

]]2
(3)

where êq
[
n+ p

]
= rq

[
n+ p

]
− ŷq

[
n+ p

]
, PH indicates

the prediction horizon, βq and λ’s denote penalty coefi-
cients to hamper chattering in control signals. LM opti-
mization rule can be deployed to optimize the RKcontroller

parameters(K) as follows:

Knew = Kold +∆K , ∆K = −
[
JTJ + µI

]−1
JT ê (4)

where J is given as

J =




∂ê1

[
n+1
]

∂K1u

[
n−1
] · · · ∂ê1

[
n+1
]

∂K4u

[
n−1
]

...
. . .

...
∂êQ

[
n+K

]

∂K1u

[
n−1
] · · · ∂êQ

[
n+K

]

∂K4u

[
n−1
]

√
λ1

∂∆u1

[
n
]

∂K1u

[
n−1
] · · ·

√
λ1

∂∆u1

[
n
]

∂K4u

[
n−1
]

...
. . .

...
√
λR

∂∆uR

[
n
]

∂K1u

[
n−1
] · · ·

√
λR

∂∆uR

[
n
]

∂K4u

[
n−1
]




(5)

and ê is error vector

ê =




β1ê1
[
n+ 1

]
...

βQêQ
[
n+ PH

]
√
λ1∆u1

[
n
]

...√
λR∆uR

[
n
]




=




β1
[
r1
[
n+ 1

]
− ŷ1

[
n+ 1

]]
...

βQ
[
rQ
[
n+ PH

]
− ŷQ

[
n+ PH

]]
√
λ1

[
u1
[
n
]
− u1

[
n− 1

]]

...
√
λR

[
uR
[
n
]
− uR

[
n− 1

]]




(6)
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The Jacobian matrix (J) can be decomposed into two
parts representing the sensitivty of the system(Jm) and
controller (Jc) depending on their adjustable inputs as
in (7).

Jm =




−∂ŷ1
[
n+1
]

∂u
[
n
]

...

−∂ŷQ

[
n+PH

]

∂u
[
n
]

√
λ1

∂
[
u1

[
n
]
−u1

[
n−1
]]

∂u
[
n
]

...
√
λR

∂
[
uR

[
n
]
−uR

[
n−1
]]

∂u
[
n
]




Jc =
[

∂u
[
n
]

∂K1u

[
n−1
] · · · ∂u

[
n
]

∂K4u

[
n−1
]
]

(7)

As can be seen from (7), the Jm part of the system Ja-
cobian matrix depends on system dynamics estimated
via RKmodel. RKmodel can be successfully deployed to

accomplish PH -step ahead unknown
∂yQ

[
n+PH

]

∂ur

[
n
] term.

A suboptimal correction term(δu
[
n
]
), utilized to elim-

inate the non-optimality effects of controller parame-
ters added to control signal, can be obtained via Taylor
approximation of the F

(
u
[
n
]
, eq
)

given in (3)( Iplikci
2010a; Iplikci 2013):

F
(
u
[
n
]

+ δu
[
n
]) ∼=F

(
u
[
n
])

+
∂F
(
u
[
n
])

∂u
[
n
] δu

[
n
]

+
1
2
∂2F

(
u
[
n
])

∂2u
[
n
] (

δu
[
n
])2

(8)

For optimality of δu
[
n
]

(3)( Iplikci 2010a; Iplikci
2013)

∂F
(
u
[
n
]
+δu
[
n
])

∂δu
[
n
] ∼= ∂F

(
u
[
n
])

∂u
[
n
] +

∂2F
(
u
[
n
])

∂2u
[
n
] δu

[
n
]

= 0

(9)

Thus, δu
[
n
]

term is concluded as (3)( Iplikci 2010a;
Iplikci 2013)

δu
[
n
]

= −

∂F
(
u
[
n
])

∂u
[
n
]

∂2F
(
u
[
n
])

∂2u
[
n
]

(10)

As given in (10), computation of δu
[
n
]

is subject to
∂F
(
u
[
n
])

∂u
[
n
] and

∂2F
(
u
[
n
])

∂2u
[
n
] terms. The

∂2F
(
u
[
n
])

∂2u
[
n
] term

can be formed via (3) as

∂F
(
u
[
n
])

∂u
[
n
] = 2JTmê (11)

The complexity of Hessian term (
∂2F
(
u
[
n
])

∂2u
[
n
] ) resulting

from 2nd order derivatives can be diminished using ap-
proximation of Hessian term as follows:

∂2F
(
u
[
n
])

∂2u
[
n
] = 2JTmJm (12)

Thus, (10) can be rexpressed as

δu
[
n
]

= −
[
JTmJm

]−1
JTmê (13)

2.3 Control Phase

Then, employing the trained RKcontroller parameters
(Knew) obtained in (4) and suboptimal correction term
(δu
[
n
]
), the updated new control action (u?

[
n
]

= u
[
n
]
+

δu
[
n
]
) can be acquired via (1,13) so as to adaptively

form closed-loop dynamics as desired. To this point,
the essentials of proposed adjustment mechanism have
been outlined. The derivation of the update rules for
RKcontroller are detailed in next section.

3 Adaptive RKcontroller

3.1 An overview of RKcontroller

Assume that the dynamics of the controller are ex-
pressed via the ODE in (14)

u̇
(
t
)

= f
(
u
(
t
)
,Ω
(
t
))

(14)

with the initial condition u
(
0
)

= u0 ( Uçak 2019). If
it is assumed that assume that fc is known, one-step
ahead control signal vector can be computed via 4th
order RK ODE solver given in (15):

u
[
n
]

=u
[
n− 1

]
+

1
6
[
K1u

[
n− 1

]
+ 2K2u

[
n− 1

]

+ 2K3u
[
n− 1

]
+ K4u

[
n− 1

]] (15)

in which K1u
[
n − 1

]
, K2u

[
n − 1

]
, K3u

[
n − 1

]
and

K4u
[
n−1

]
express the changing rates of the MIMO con-

troller states ( Efe and Kaynak 1999). These changing
rates can be attained as ( Iplikci 2013; Efe and Kaynak
1999; Wang and Lin 1998):



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature.

6 Kemal UÇAK

K1u
[
n− 1

]
= Tcfc

(
x1
[
n− 1

]
,Ω
[
n
])∣∣∣∣

x1

[
n−1
]
=u
[
n−1
]

K2u
[
n− 1

]
= Tcfc

(
x2
[
n− 1

]
,Ω
[
n
])∣∣∣∣

x2

[
n−1
]
=u
[
n−1
]
+ 1

2K1u

[
n−1
]

K3u
[
n− 1

]
= Tcfc

(
x3
[
n− 1

]
,Ω
[
n
])∣∣∣∣

x3

[
n−1
]
=u
[
n−1
]
+ 1

2K2u

[
n−1
]

K4u
[
n− 1

]
= Tcfc

(
x4
[
n− 1

]
,Ω
[
n
])∣∣∣∣

x4

[
n−1
]
=u
[
n−1
]
+K3u

[
n−1
]

(16)

where “Tc” stands for the Runge-Kutta integration
stepsize ( Efe and Kaynak 1999), fc indicates the con-
trol signal functions and Ω

[
n
]

vector covers all signals
such as the reference, system outputs etc except for
control signal. However, the dynamics of control signal

functions(fc) are unavailable for the controller. There-
fore, the optimization aim in (15) is to acquire the opti-
mal values of slopes (K1u K2u K3u K4u) without know-
ing fc functions. Thus, the computed control signal via
RKcontroller is rexpressed in (17) where

u
[
n
]

= fRK
(
u,K

)
= u

[
n− 1

]
+

1
6
K1u

[
n− 1

]
+

2
6
K2u

[
n− 1

]
+

2
6
K3u

[
n− 1

]
+

1
6
K4u

[
n− 1

]
(17)

in which K1u K2u K3u K4u are unknown and ad-
justable parameters of the RKcontroller. The structure
of the RKcontroller is illustrated in Figure 2.

3.2 Adjustment laws for RKcontroller

In this subsection, the adjustment laws for RKcontroller(
K =

[
K1u K2u K3u K4u

]T ) exploited to attain feasible
control vector in (15) are derived. RKcontroller parame-
ters to be optimized are given as follows:

K =
[
K1u K2u K3u K4u

]T (18)

Thus, using LM optimization rule in (3), RKcontroller

parameters can be optimized as given in (4–7). As given

in (7), the Jacobian matrix can be partitioned into two
part as (J = JmJc) where Jm is system sensitivity
and Jc denotes RKcontroller sensitivity. The construc-
tion of Jm matrix is detailed in ( Iplikci 2013; Uçak
2019; Uçak 2020). In order to form Jc matrix in (7), it is

essential to derive the
∂u
[
n
]

∂K1u

[
n−1
] , ∂u

[
n
]

∂K2u

[
n−1
] , ∂u

[
n
]

∂K3u

[
n−1
]

and
∂u
[
n
]

∂K4u

[
n−1
] terms. Employing chain rule, the men-

tioned terms are expressed in (19–23):

∂u
[
n
]

∂K4u

[
n− 1

] =
1
6

(19)

∂u
[
n
]
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[
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[
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]
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[
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[
n
]

∂K4u

[
n− 1
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[
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]
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[
n− 1

]

∂u
[
n
]

∂K3u

[
n− 1

] =
[ 2
6

1
6

]



1

Tc
∂f
(
x4

[
n−1
]
,Ω
[
n
])

∂x4

[
n−1
]




x4

[
n−1
]
=u
[
n−1
]
+K3u

[
n−1
]

(20)
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Fig. 2 (a) A continuous MIMO controller and (b) its RK counterpart.
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where
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As can be seen from derived update rules, in or-

der to acquire
∂u
[
n
]

∂K1u

[
n−1
] , ∂u

[
n
]

∂K2u

[
n−1
] , ∂u

[
n
]

∂K3u

[
n−1
] and

∂u
[
n
]

∂K4u

[
n−1
] terms, it is required to know

∂f
(
u
[
n−1
]
,Ω
[
n
])

∂u
[
n−1
]

term although f
(
u
[
n− 1

]
,Ω
[
n
])

function is unknown.
Assumption:
For convenience, it is assumed that the relation between
u
[
n− 1

]
and f is known in the following form:

f
(
u
[
n−1

]
,Ω
[
n
])

= ud
[
n−1

]
+funknown terms

(
r,y
)

(24)

where funknown terms
(
r,y
)

represents the unknown part
of the function and d indicates the degree of u

[
n− 1

]
.

Thus, the missing piece of the derivations
∂f
(
u
[
n−1
]
,Ω
[
n
])

∂u
[
n−1
]

is achieved in (25)

∂f
(
u
[
n− 1

]
,Ω
[
n
])

∂u
[
n− 1

] = dud−1[n− 1
]

(25)

The most prominent feature of the introduced architec-
ture is that under the assumption that the controller
architecture in the controller block is composed of an
unknown pure differential equation, this control sig-
nal is discretized and derived primarily by the Runge-
Kutta integration method. Then, with the Levenberg-
Marquardt optimization method, the information re-
quired to adapt these controller dynamics is analyzed.
As a result of this analysis, when the control signal is
discretized by Runge-Kutta integration, the degree of
dependency of the control signal with the control sig-
nal attained in the previous step given in (24,25) is
sufficient to transform the controller structure into an
adaptive controller and adjust controller parameters.

The outstanding feature that distinguishes this study
from previous works ( Uçak 2019; Uçak 2020) and all
other publications based on Runge-Kutta given in ( Ip-
likci 2013; Cetin and Iplikci 2015; Beyhan 2013; Efe
and Kaynak 2000; Efe and Kaynak 1999; Wang and
Lin 1998) is that the Runge-Kutta integration is di-
rectly presented as a Runge-Kutta controller in the

controller block for the first time. No machine learn-
ing method is utilized to store statistical information of
the control signal or the controller parameters, such as
a neural network etc.

4 Simulation Results

RKcontroller performance has been evaluated on a non-
linear VdV system. However, it is possible to deploy
the introduced architecture to a wide varity of con-
trol systems to overcome characteristics rarifying con-
trol task such as nonlinearity, instability, etc. In or-
der to better reveal the efficiency of RKcontroller, com-
petencies of RKcontroller such as tracking, robustness
etc. have been examined under three different situa-
tions that are essential in control systems: nominal con-
ditions, noise in measurement and parametric uncer-
tainty. VdV systems are frequently deployed for perfor-
mance examination of MIMO controller architectures
( Iplikci 2013; Cetin and Iplikci 2015; Iplikci 2010b).
Due to its non-minimum-phase behavior and harsh non-
linearity ( Iplikci 2013; Uçak 2019; Uçak 2020), it is
significant to be controlled adaptively in order to at-
tune the occuring divergent behaviours. The reaction
scheme of VdV is given as follows:

A k1−→ B k2−→ C

2A k3−→ D
(26)

where cyclopentadiene (A) is the inlet reactant, cy-
clopentenol (B) indicates the indended compound, di-
cyclopentadiene (D) is produced by Diels-Alder reac-
tion, and cyclopentanediol (C) is a resulting compound
emerging as another water molecule is added ( Uçak
2019; Engell and Klatt 1993), and ki’s stand for the
reaction rates ( Engell and Klatt 1993; Chen et al.
1995; Vojtesek and Dostál 2010; Jørgensen 2007; Ku-
likov and Kulikova 2014). In chemical reaction given in
(26), the aim is to produce B from A ( Uçak 2019; En-
gell and Klatt 1993). The reaction in (26) is detailed via
corresponding chemical compounds as follows:

C5H6
Cyclopentadiene(A)

+H2O(k1)−→ C5H7OH
Cyclopentenol(B)

+H2O(k2)−→ C5H8
(
OH

)
2

Cyclopentanediol(C)

2C5H6
Cyclopentadiene(A)

k3−→ C10H12
Dicyclopentadiene(D)

(27)

The dynamics of the reaction in (26,27) can be ex-
pressed by ODE’s in (28):
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ĊA
(
t
)

=
F

V

(
CA0 − CA

(
t
))
− k10e

−E1
T CA

(
t
)
− k30e

−E3
T C2

A

(
t
)

ĊB
(
t
)

= −F
V
CB
(
t
)

+ k10e
−E1

T CA
(
t
)
− k20e

−E2
T CB

(
t
)

Ṫ
(
t
)

=
1
ρCp

[
k10e

−E1
T CA

(
t
)(
−∆H1

)
+ k20e

−E2
T CB

(
t
)(
−∆H2

)
+ k30e

−E3
T C2

A

(
t
)(
−∆H3

)]

+
F

V

(
T0 − T

(
t
))

+
Q

ρCp

(28)
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where physico-chemical parameters of system are tab-
ulated in Table 1 ( Iplikci 2013; Uçak 2019; Chen et al.
1995; Vojtesek and Dostál 2010; Niemiec and Kravaris
2003; Kravaris et al. 1998). The RKcontroller intends to
regulate y1 = CB and y2 = T by obtaining the optimal
u1 = F/V and u2 = Q ( Iplikci 2013; Niemiec and
Kravaris 2003). The details about system are available
in ( Iplikci 2013; Uçak 2019; Chen et al. 1995; Vojtesek
and Dostál 2010; Niemiec and Kravaris 2003; Kravaris
et al. 1998).

4.1 Performance evaluation of RKcontroller

Expecting a controller that fails in nominal conditions
to succeed in difficult cases is an unrealistic anticipa-
tion. Therefore, firstly, the performance of the RKcontroller

is tested for nominal case where all the information
about the system is exacly known. When staircase sig-
nal is applied to the closed–loop adaptive system with
nominal conditions, the obtained system outputs, con-
trol signals applied to the system and corrections terms
are illustrated in Figure 3. The abrupt alternations in
reference signals induce strong coupling among y1 = CB
and y2 = T . Still, the closed-loop system dynamics are
controlled as desired. RKcontroller generates the opti-
mal control signals illustrated in Figure 3 (b,e). The
optimal control signal applied to the system is com-
posed of two terms( Iplikci 2013; Uçak 2019; Uçak
2020). These are uRK−C

[
n
]

term which is the control
signal produced by only RKcontroller and the correc-
tion term(δu

[
n
]
) used to improve the transient state

behaviour of the controlled system since the adjusted
controlled parameters may not be optimal at transient
state( Iplikci 2010a; Uçak 2019; Uçak 2020). There-
fore, the task share between RKcontroller (uRK−C

[
n
]
)

and correction terms (δu
[
n
]
) is also examined in this

paper. The correction terms that provide large contri-
bution to control signal, especially in transient state,
are also given in Figure 3 (c,f). If it is focused on the
occuring abrupt changes at [30, 40] h and [10, 20] h, the
control signals are succesfully updated to comply with
the arising strong coupling among CB and reactor tem-
perature (T ). RKcontroller succesfully tracks the desired
signals as illustrated in Figure 3 (a,d), and ui

(
t
)

and
δui
(
t
)

terms produced by RKcontroller are also demon-
strated in Figure 3 (b,c,e,f). In order to show the adap-
tation of the RKcontroller parameters, the convergence
and also adjustment of control signals are given in Fig-
ure 4. The adjustable parameters of RKcontroller con-
verge to their optimal values on short notice. It is aimed
to apperceive the duty share between RKcontroller(uRK-C

[
n
]
)

and correction term(δu
[
n
]
).The duty share percentages

of uRK-C
[
n
]

and δu
[
n
]

terms are illustrated in Fig-
ure 5. As can be seen from Figure 5 (a,b), uRK-C

[
n
]

and
δu
[
n
]

are carrying out control task together. Especially
in transient states, δu

[
n
]

term demonstrates its influ-
ence on the control mechanism. Therefore, δu

[
n
]

is a
vital part of the adjustment mechanism. As can be seen
from Figure 5 (a,b), RKcontroller performs dominant be-
haviour in comparison to δu

[
n
]

term. It is explicity
seen that δu

[
n
]

immediately hands over the control to
RKcontroller, and RKcontroller performs the control pro-
cedure. In addition to staircase reference signal, the
performance evaluation has been carried out for sinu-
soidal type reference inputs. For this purpose, the refer-
ence signal for T is chosen as sinusoidal signal and ref-
erence for CB is assigned as fixed value during control.
The closed-loop response of the RKcontroller, uRK-C

[
n
]

and δu
[
n
]

for u1
(
t
)

terms are shown in Figure 6. The
control failover of uRK-C

[
n
]

and δu
[
n
]

are indicated in
Figure 7. The percentage of the control task sharing
between RKcontroller(uRK-C

[
n
]
) and δu

[
n
]

term for si-
nusoidal inputs is shown in Figure 7. Since the noise
resulting from measurement devices contaminates the
control procedure/operation, robustness examination of
the RKcontroller interms of measurement noise is requi-
site. The robustness and also tracking performance of
the RKcontroller against measurement noise have been
perused. Therefore, y1

(
t
)

and y2
(
t
)

are exposed to mea-
surement noise with σ

CB

(
t
) = σ

T
(
t
) = 0.0003 standart

deviations for CB and for T . The tracking performance,
control and correction terms are depicted in Figure 8.
Inspite of noisy conditions, the system outputs can

be compelled to the desired set points. When the con-
trol task sharings in Figure 9 are evaluated, it is ob-
served that RKcontroller takes over the control task as
soon as possible. As given in Figure 9, it is clear that
δu
[
n
]

is only effective when uRK-C
[
n
]

is not optimal
initially; however, δu

[
n
]

instantly converges to zero and
RKcontroller has taken on virtually all control task.

Another significant case to assess the robustness
of the RKcontroller is evaluation of control performance
when one of the system parameter is unknown or not
determined accurately( Iplikci 2013; Uçak 2019; Uçak
2020). The control performance of the RKcontroller de-
pends concretely on the preciseness of the RKmodel since
the parameters of RKcontroller are adjusted by consid-
ering future trajectories of the system via iterative pre-
dictive system model. Therefore, to obtain unknown
RKmodel parameters, RKestimator subblock in RKmodel

is employed to approximate the system model param-
eters as given in ( Iplikci 2013; Uçak 2019; Uçak
2020). For this purpose, it is essential to appraise not
only the tracking performance of the RKcontroller but
also system model parameter approximation accuracy
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Table 1 System Parameters for VdV ( Iplikci 2013; Uçak 2019; Chen et al. 1995; Vojtesek and Dostál 2010; Niemiec and
Kravaris 2003; Kravaris et al. 1998).

Description of parameter Symbol Value of parameter
Molar concentrations of A CA −−−−
Molar concentrations of B CB −−−−
Reactor temperature T −−−−
Dilution rate F/V −−−−
Added/removed heat rate per unit volume Q −−−−
Reaction k1: Collision factor k10 1.287x1012

[
h−1

]

Reaction k2: Collision factor k20 1.287x1012
[
h−1

]

Reaction k3: Collision factor k30 9.043x109
[
h−1l/mol

]

Reaction k1: Activation energy E1 9758.3
[
K
]

Reaction k2: Activation energy E2 9758.3
[
K
]

Reaction k3: Activation energy E3 8560.0
[
K
]

Reaction k1: Enthalpy ∆H1 4.2
[
kJ/mol

]

Reaction k2: Enthalpy ∆H2 −11
[
kJ/mol

]

Reaction k3: Enthalpy ∆H3 −41.85
[
kJ/mol

]

Substance A: Concentration in the feed stream CA0 5.0
[
mol/l

]

Feed temperature T0 403.15
[
K
]

Density ρ 0.9342
[
kg/l

]

Heat capacity Cp 3.01
[
kJ/kgK

]

Reactor volume V 10.0
[
l
]
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Fig. 3 (a,d) Tracking beahviours, (b,e) control signals and (c,f) correction terms for nominal case.

of RKestimator under parametric uncertainty case. As a
scenario, a nonlinear uncertainity is introduced to sys-
tem parameter as CA0

(
t
)

= 5+0.5sin
( 2

25πt
)

and input
signals are set to as 0.95 and 407.25. The behaviour
of the closed-loop system and approximation ability of
RKestimator subblock are depicted in Figure 10. The ac-
curate value of uncertain system parameter is precisely
estimated in a timely manner and then RKestimator re-

tains approximation during control( Iplikci 2013). Fig-
ure 11 indicates the impact percentage of the control
signal produced by RKcontroller. The uRK-C

[
n
]

term
becomes dominant in a very short time in compari-
son with δu

[
n
]

term as given in Figure 11. Since the
computational load of an adaptive controler is vital in
applications, real time applicability of RKcontroller has
been appraised. For this purpose, computational time
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Fig. 4 Adaptation of RKcontroller parameters.

for every sampling period is computed and registered.
The stored execution times for each situation are illus-
trated in Figure 12. Then, using the maximum values
of computation times, Table 2 has been constituted. As
can be clearly seen from Figure 12, the computational
load of the control algorithm is rarely exposed to the
maximum computation time and this occurs only mo-
mentarily. The maximum response times for RKcontroller

are less than 7 ms and very smaller than sampling time
of VdV system for each case, which enables to deploy
RKcontroller in real time. As can be seen from Figure 12,
the momentarily valid execution times can be decreased
and enhanced by optimizing and then implementing the
control algorithm on convenient hardwares like FPGA.
The performance assessment has been performed on a
computer with core i7 CPU(2.2 GHz), 8 GB RAM and
solid state disc(SSD) features.

4.2 Comparison with Runge-Kutta model based PID
Controller

Runge-Kutta model based PID controller presented in
( Cetin and Iplikci 2015) has been deployed to as-
sess the control performance evaluation of RKcontroller

in order to obtain a meaningful comparison. The con-
trollers are examined with respect to tracking perfor-
mances for nominal, measurement noise, parametric un-
certainty cases and computational loads of control algo-
rithms. Runge-Kutta model based PID controller is an
adaptive controller that combines the robustness of the
PID and integration ability of Runge-Kutta method.
In Runge-Kutta model based PID, the MIMO PID con-
troller parameters are optimized by Levenberg-Marquardt
rule where Runge-Kutta system model is used to con-
stitute predictive model for Jacobian information. The
adjustment mechanism is composed of two components:
adaptive PID and control signal correction block. There-
fore, the task sharing among these two parts is also
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Fig. 5 (a) Percentage of task sharing of uRK-C
[
n
]

and δu
[
n
]

for u1
(
t
)

and (b) u2
(
t
)

(staircase reference input-nominal case).

Table 2 Execution times [ms] for RKcontroller.

Operations \Cases Noiseless Noiseless(Sin) Noisy Uncertain
EKF State Estimation (RKEKF) 1.1953 1.2487 1.2275 1.1684
PH -step prediction (RKmodel) 1.5726 1.8308 1.5422 1.597
Computation Jm (RKmodel) 1.0213 0.929 1.0236 0.9724
Computation Jc (RKcontroller) 0.3514 0.3816 0.3685 0.3444
δu
[
n
]

term training(LM) 0.0113 0.0737 0.0832 0.095
RKcontroller training 0.0107 0.0572 0.0889 0.093
Control law 0.2271 0.1561 0.2074 0.1904
System response 0.4503 0.369 0.472 0.4215
RKestimator Training ——– ——– ——– 0.9715
Miscellaneous Tasks 0.5381 0.4494 0.5463 0.2295
Total loop time 5.3781 5.4955 5.5596 6.0831

examined to reveal and examine which part takes on
the control task. For a fair evaluation, the same con-
ditions applied to RKcontroller have been implemented
in Runge-Kutta model based PID controller. The con-
trol performance of Runge Kutta model based PID con-
troller are depicted in Figures 13,15,17,19. The task
sharings are illustrated in Figures 14,16,18,20. The com-
putational load of the mentioned controller is depic-
tured in Figure 21. The controlled system outputs for
staircase reference inputs are given in Figure 13. As il-
lustrated in Figure 14, at the beginning of the control,
the correction term is more dominant than PID block in
system control because of the non-optimal PID param-
eters. Then, the control task is transfused to adaptive
PID part in a very short time. Similarly, the closed-
loop system behaviour in response to sinusoidal input,
measurement noise and parametric uncertainty cases
are shown in Figures 15, 17 and 19. The percentage(%)

of tasks sharing for mentioned cases are depictured in
Figures 16, 18, 20. The total computational load of
Runge-Kutta model based PID controller is illustrated
in Figure 21 for all cases. The computational load of
each operation in Runge-Kutta model based PID con-
troller algorithm are detailed in Table 3. When compu-
tational loads of RKcontroller and Runge-Kutta model
based PID are compared, it is clear that RKcontroller

has better performance except for uncertainty case. The
bar graph in Figure 22 is constructed to compare the
tracking performances of RKcontroller and Runge-Kutta
model based PID controller using the following perfor-
mance index for each system output.

P1 =
inf∑

n=1

[
r1
[
n
]
− y1

[
n
]]2

P2 =
inf∑

n=1

[
r2
[
n
]
− y2

[
n
]]2

(29)
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Fig. 6 (a,d) Tracking behaviours, (b,e) control signals and (c,f) correction terms (sinusoidal reference input-nominal case).

Table 3 Execution times [ms] for Runge-Kutta model based PID.

Operations \Cases Noiseless Noiseless(Sin) Noisy Uncertain
EKF State Estimation (RKEKF) 1.2525 1.6257 1.8996 1.0885
PH -step prediction (RKmodel) and Computation of J (Jacobian Matrix) 3.1561 2.6708 4.1038 2.4304
RKestimator Training ——– ——– ——– 0.9288
Miscellaneous Tasks 2.104 2.3493 4.7528 1.2456
Total loop time 6.5126 6.6458 10.7562 5.6933

The comparison graph in Figure 22 is detailed in Ta-
ble 4. As given in Figure 22 and Table 4, RKcontroller

has better performance than RK model based PID for
y1(P1) while RK model based PID has low tracking er-
ror for y2(P2). The reason for this situation can be con-
sidered that RK model based PID has more controller
parameters to be adjusted.

5 Conclusion

In this study, a new predictive RKcontroller methodol-
ogy is proposed for nonlinear dynamical systems. The
main novelty of the architecture is that RK discretiza-
tion technique is utilized to form adaptive control law
by considering the control law is as ODE form. The
adjustment mechanism comprises of RKcontroller and
predictive RKmodel to forecast the future system be-
haviours. The adjustable parameters are tuned via LM
learning law.

The performance of adaptive RKcontroller is evalu-
ated on VdV system. The robustness of RKcontroller has
been assessed for various situations significant for con-
trol systems. Also, the performance of the controller
has been compared with Runge-Kutta model based PID
controller. The attained results indicate that adaptive
RKcontroller exhibits a forceful characteristic against mea-
surement noise and uncertainties in nonlinear systems.
In future studies, it is contemplated to propose new sta-
ble adaptive controller and system modeling architec-
tures based on RK integration approach for nonlinear
dynamical systems.
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Fig. 7 (a) Percentage of task sharing of uRK-C
[
n
]

and δu
[
n
]

for u1
(
t
)

and (b) u2
(
t
)
(sinusoidal reference input-nominal case).

Table 4 Tracking Performance Comparison for P1 and P2 in (29).

Performance Index P1 P2

Controller Noiseless Noiseless Noisy Uncertain Noiseless Noiseless Noisy Uncertain
(Staircase) (Sinusoidal) (Staircase) (Sinusoidal)

RKcontroller 0.5601 0.3944 0.5285 0.5235 19.1657 12.0708 14.9303 18.2081
RK model based PID 3.2736 2.6165 9.7252 2.9750 7.3507 5.2191 7.3236 10.4055
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inputs).
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Fig. 13 (a,d) Tracking behaviours, (b,e) control signals and (c,f) correction terms for measurement noise(staircase reference
inputs) ( Runge-Kutta model based PID).
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Fig. 15 (a,d) Tracking behaviours, (b,e) control signals and (c,f) correction terms (sinusoidal reference input-nominal case)
( Runge-Kutta model based PID)
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Fig. 17 (a,d) Tracking behaviours, (b,e) control signals and (c,f) correction terms for measurement noise(staircase reference
inputs) ( Runge-Kutta model based PID).
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Fig. 19 (a,c) Tracking behaviours, (b,d) control signals and (e) uncertain parameter (CA0
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) its approximation(Runge-Kutta
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Fig. 21 Computation times of adaptive (nominal case staircase(a), nominal case sinusoidal(b), measurement noise case
staircase(c), parametric uncertainty case(d))(Runge-Kutta model based PID).
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