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requirement for the degree of doctor of philosophy.

Abstract

This thesis continues the investigation of formal languages
initiated by Chomsky. Some representative results are indicated
below. .

As a by-product of a new proof of the Chomsky-Schutzenberger
theorem that CF (the class of context-free languages) = PDS (the
class of languages accepted by nondeterministic, push-down store
automata), we show that unambiguous CF = unambiguous PDS, and that
PDS = real time PDS. A normmal form theorem, somewhat stronger than
Greibach standard form, also follows. (Call a PDS unambiguous if
it accepts each input with a unique computation; call it real time
if each instruction reads a non-null input character and if the
storage tape is empty on acceptance.)

There are minimal linear languages with noncontext-free comple-
ment which are also inherently ambiguous over the CF grammars. This
result gave rise to the (false) conjecture that the unambiguous CF
languages are just those with CF complement. The conjecture does
hold for the family of languages accepted by deterministic PDS which
we prove closed under complementation; the analogous conjecture holds
for deterministic linear bounded automata and unambiguous CS (context-
sensitive) languages.

Left context-sensitive grammars are defined (in the obvious way )
and shown to be no more powerful than context-free grammars.

Thesis Supervisor: Noam Chomsky
Title: Professor of Linguistics
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INTRODUCTION

A language is any set of finite strings on a finite alphabet.
As origigally defined, a grammar is any device which generates
(enumerates) or recognizes (accepts)a language. The formal lan-
guages (i.e., those having gyammars) are just the recursively
enumerable sets. Chomsky (1959) initiated a classification of
these formal languages into families. Each family consists of all
languages having grammars meeting certain criteria. Notions of un-
ambiguity of a grammar and ambiguity of a language (over a family
of grammars) have been introduced and intensively investigated for
certain grammars. Boolean properties of languages, equivalence
theorems for grammars and devices which map languages have been use-
ful in other parts of the theory in addition to being of some in-
trinsic interest. This thesis continues the investigation ol formal
languages in much the same spirit.

The regular languages (i.e., those accepted by finite automata)
are closed under all Boolean operctions and have simple unambiguous
CF (context-free) grammars. The minimal linear languages consist
of regular languages and the simplest instances of nonregular lan-
guages. In Section I we prove that therc is a minimal linear lan-
guage L with noncontext-free complement. This settles a problem

posed by Chomsky. We also show that L is inherently ambiguous over
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the CF grammars. All other sections of the thesis are motivated,
in part, by these results,

In Section II PDS (nondeterministic push down storage autometa)
are defined and used to prove that the nondoubling language is CF;
this solves another problem pbsed by Chomsky. An immediate generali-
zation leads to an interesting necessary condition that a language
be regular; we conjecture thai the condition is also sufficient.

The main result or Section IIX is Theorem 5--a real time result
for PIS which also serves as an important lemma for Section IV.

The languages exhibited in Section I, numerous other examples
and a suggestive result of Chomsky and Schiitzenberger (1962) about
minimal linear languages all support the conjecture that the unam-
biguous CF languages are just those with CF complement. In general,
this conjecture fails in both directions (personal communication,

T. Hibbard, and J. Ullian). The conjecture does hold for the family

of languages accepted by deterministic PDS which we prove closed

under complementation in Section I1I, 1In Section V we show that
the analogous conjecture holds for deterministic linear bounded
automata and unambiguous CS (context-Sensitive) languages.
Sections II and IV lead to a new proof of the Chomsky-Schiitzenberger
theorem that CF (the class of context-free languages) = PDS (the class

of languages accepted by nondeterministic push down storage automata).
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As a by-product of the new proof we show that PDS = real time PDS
and unambiguous CF = unambiguous PDS. A nommal form theorem,
somewhat stronger than Greibach standard form, also follows.,
(Call a PDS unambiguous if it accepts each input with a unique
computation; call it real zggg if each instruction reads a non-

nvll input character and the storage tape is empty on acceptance.)

Section IV concludes by pointing out an essential difference
between CF and CS languages. Left context-sensitive grammars are
defined (in the obvious way) and shown to be no more powerful

than CF grammars.
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PRELIMINARIES

Let W be a finite set of symbols. If a; € W, 1 <i<n, then
*
g = ®a, --- @ is called a string on W of length Mg} =n. W de-
notes the set of all strings on W, including the null string e of

length zero. HV=Bf2“‘%:J€w’lSJSth"
gy = aiqb RN 5132 - Bm’
2 k k
=948 81 =64¢.

If Wi,

»*
tion of string concatenation, W is a semi-group, the free semi-group

*
W, C W, then W.W, = (dv : ¢4 € W, Ve Wé}. Under the opera-

generated by W.

A formal grammar G is a quadruple (V., Vg S R) where

(1) Vp and V are disjoint non-empty finite sets of symbols
called, respectively, the terminal and ncn-terminal vocabuleries of

G. V= VT U VN is the vocabulary of G.

(2) S is a distinguished symbol of Vy» called the initial sym-

bol of G,

(3) R is a finite set of substitution rules of the form ¢ — ¥

» * *
where ¢ € V VyV and vy e V.

Warning: Throughout the sequel we observe the following nota-

ticnal conventions when naming strings, except for S € VN.

ppe v
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*
Small Greek letters denote members of V.
*
Small Latin letters denote members of V‘I"

»*
Capital Latin letters denote members of VN'

Early letters of all alphabets denote single symbols.
Late letters of all alphabets denote strings of arbitrary
'

length.

» * *
R induces a binary relation - on V : 0 = T iffthere are
strings @, o, ¢ and ¥ such that ¢ = @ ¢ @y, T =@ ¥, and
$ >V is a rule of R. We say that ¢ dominates T and write o => 1

iff there are strings T Tys o T such that ¢ = Tor T = T and

0)
*

T4 Tia

called a o-derivation for T. Each 71 is called a line of the

for i =0, 1, +.., n-1, (102,11 ... Lt o %t is

derivation. )

The formal language L(G) generated by G is the set of all

» — *
x € Vp such that S=> x, The complement of L(G) is L(G) = Vp - L(G).

G is type 1 if for each rule ¢ — ¥ we have M) < aw).

G is context -sensitive (CS) if each rule of G has the form

®

AYETETIYN

G is context-free (CF) if each rule of G has the form A > w,
ofe.

A language L is any set of strings on a finite set of symbols.

L is a formal language if L = L(G) for some formal grammar G. In

this case we simply say that L has the grammar G or G is a grammar
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for L. A language is context-sensitive or context-free if it has,
respectively, a CS or CF giammar.

L(G) is sometimes called the weak generative capacity of the
grammar G. If G is CF, we will define the strong generative capa-
city, Z(G), as follows:

£(G) =L{G') where G' = (V!

™ V)

N’ S, R');

Vi =Vp U ([A : Ae Vﬁ] ui(l,

and A.—»Lgﬂ is a rule of G' iff A 5w is a rule of G.
Define d to be the unique homomorphism which maps the free

* *
semi-group (V%) onto the free semi-group Vp 50 that

k4

a if a € V,
d(a) =
e if a € V& - VT .

If 4 is 1-1 on E£(G) we say that G is an unambiguous CF grammar.
Unambiguous CS grammars may be similarly (but less elegantly) defined
as in Parikh (1961). The details are omitted.

A language is unambiguous CS(CF) if it has an unambiguous
CS(CF) grammar. A CS or CF language which has no unambiguous CS
or CF grammar is termed inherently ambiguous over the CS or CF

grammars, respectively.
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A left to right derivation in a CS grammar is a derivation in
which eack line is derived from its predecessor by a rule which re-
places the leftmost non-terminal. Right to left derivations are
similarly defined.

On occasion we will identify G with R. While not strictly
correct, no confusion can aﬁise from this practice.

Formal grammars are generators of languages. We are also in-
terested in devices which recognize languages. One of the simplest
such devices is a finite automaton. We recall the definition.

A finite automaton M is a quintuple (AI, Z, 8, Zp %) where
AI is a finite input alphabet, £ is a finite set of states, So €X
is a distinguished initial state and & C AL xZxZ isa (possivly
multi-valued).transition function which maps A; x £ into I.

*

M accepts (recognizes) a string a8, --- a €A iff 3

a sequence {Til of states of M 3:

(1) (ai, T,, T1+1) € B, 1<i<n

(2) T, =5, and T4l € L, .

L(M) will denote the language accepted by M; i.e., the set of
all strings on AI accepted by M, A language is regular if it is
accepted by some finite automaton.

M can be realized by a computing machine having a set of in-
ternal states L and a read head which scans squares of a one-chanrel

input tape. A finite trensducer T is a mechanized finite automaton



equipped with an output tape on which symbols may be written. Both
tapes move in only one direction. T maps an input string into an

output string when the read head runs off the input tape with T in
a final state. T(L) is the set of all output strings arising from

a language L of input strings. We omit the formal details.
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(I) MINIMAL LINEAR LANGUAGES

In this section we exhibit a pathological minimal linear
language and prove that its complement is not context-free. This
settles & problem posed by Chomsky. The language is also inher-
ently ambiguous over the CF grammars.

Definition: A rule is terminal iff it is of the form A - z.

Definition: A linear grammar is a CF grammar with all non-
terminal rules of form A — xBy.

Definition: A minimal linear grammar G is a linear grammar
with a single non-terminal symbol (namely S) and a single terminal
rule S - ¢ where ¢ does not appear in any other rule. c is called
the designated center of the strings of L(G).

Definition: A language L is linear or minimal linear if
there is, respectively, & linear or minimal linear grammar which
generates L.

There are several reasons for investigating properties of
minimal linear languages. TFirst of all, Chomsky proved that the
regular languages are precisely those linear languages which have
grammars whose non-terminal rules are either all of the form A — Bx
or all of the form A - xB. Structurally, then, the minimal linear
languages are almost regular (i.e., they consist of regular lan-

guages and the simplest instances of non-regular languages).
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Secondly, most of the unsolvability results in the theory fol-
low by reduct.on to the Post Correspondence probler.. Towards this
end the minimal linear languages are a natural object for study
since thg correspondence problun can be reformulated as a simple
set-theoretic problem involving such languages; Schutzenberger (1961).

By making reductions to'this simple form of the correspondence
probiem Chomsky (1963) simplified the proofs of several unsolva-
bility results. However, a proposed simple proof of one result
hinged upon proving that the complement of any minimal linear
language is context-free.

The lineﬁr languages are not closed under complementation.
Moreover, there are linear languages whose intersection is not
context free. These results, contained (implicitly) in Scheinberg
(1960) suggested the existénce of linear languages with non-
context free complement. It is not hard to find such languages.

For example, let L = (aPb%c”: Pp#qoraq#r, por > 0}.

Then L = LlU LQU L3U Lh where

[apchr: P > q, pqr > 0)

.

Lé = [apchr: r < q, pqr > 0)
L3 = [anqcr: q > r, par > 0)

= (aPp%e’; q<r, pqr > 0}

<':_l."
|
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The following set of rules is a linear grammar for Ll:

S - Ac

A - Ac

A - aBb

B — abb .

B-D

D> aD -

Doa

Similar linear grammars generate L2, L3, and Lh and therefore,
since linear languages are closed under union, L is linear.

To prove L non-context-free, we intersect L with the regular

language

R = {aPb%cT: par > 0)

which yields
LOR-=(af%": p=gq-=rl

which Scheinberg (1960) proved non-context-free.
Since the intersection of a context-free and regular language
is context free (Corollary 16a), I cannot be context-free.
Schiitzenberger and Chomsky (1962) proved that for a certain

subfamily of the minimal linear languages the complement is not
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only context-free but is itself linear. This subfamily consists
of those minimal linear languages for which the substring left of
the designated center uniquely determines the substring on the
right. -
Since the regular languages are closed under all Boolean opera-
tions and since the minimal iinear languages are almost regular,
it was hoped that at least the weak form of the result (i.e., that
the complement is context-free) would extend to the full family of
minimal linear languages. However, we have the following thecrem,
Notation: If ¢ = o, e, 'd! = AM(¢) = n and
g - %% T %%
Theorem 1: There are minimal linear languages with non-context-

free complement.

Proof: Let G be the following minimal linear grammar :

S - aSa VN = (8]}, V& = (a,b,c,d}
S = bSh W = (a,b).

S - dSa

S - 3dSp

S »ads

S ¢



-17-

Then
L =L(G) = (2: z = dnk+lxkd ---dnaxldnlcylﬁlye---yk;?kyk,rl\
' for some k. xi, yJ € w’ and >
n33|yj'|, 1<1<k, 1<j§<ki )
Let

R = [dpbdqcbarb: Pqr > 0},
a regular language.

’

QT *
LNR-= {dpbd cba'b: pqr > 0 and for some Y0¥, € W,

ba'd = % > >
-yl yz) p__ lyel) Q_ 'yll

= (aPba%cba™; par > 0 and (p > r+l or q > r+l))

A
since b = b,
Hence
LOR = (aPod%cba’™;

par > 0 and r+l > max (p,q))

which transduces into
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L' = (aP%": r > max (p,q), pq > 0J.

By %he following lemma, L' is not context-free. Therefore,
since the property of being context-free is invariant under both
'
intersections by regular language (Corollary 16a) and transduc-
tion (Theorem 16),L is not context-free.

Lemma la:

L= {apchr: r > max (p,q); pg > 0]}

is not context-free.
Proof: Suppose that G is a CF grammar for L. Without

loss of generality we may assume that for each A ¢ V., A => z

N

»*
for infinitely many z ¢ VT .
For if not, we can construct G' from G by discarding all
rules of the form A - w and replacing each rule B —» ¢ A v,

B # A, by the finite set of rules

(Bod zy: A=>1z).
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Clearly L(u') = L(G).
Choose m = n - n, + n + 2 where n, = mrax {lol]: A—>wis a

rule of G} n, = the number of symbols of VN. Let

* *

* %
S - xlA1¢l - xlx2A?¢2¢l A

* * *

xlx2 AN WM cee ¢2¢l —’xlx.? ces XMZ¢M e ¢2¢1_, o 0oy

ambm.am+l

be a fixed left-to-right S-derivation for ambmam+l. The nonterminal

rules

Sox b, A oxAdy, e, Ay o XA

are applied in succession until the first instance of a terminal
rule, AM-a z.

Let
gy =y A<Igm)

in the fixed derivation so that
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MYttt Xty g > % o

M By vy = T

Suppose that

m+l
yM cee yeyl _.yba

for some y. Then

m+1
TR Tt M Wy vt V¥ = xxy e xwbe™ g

for all w such that AM =>w. But there are infinitely many such

w and therefore arbitrarily large such W. Since m is fixed, for

sufficiently large w we would have

m+1 ¢

xlxe e Xy wyba L,

a contradiction,

Hence
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Hence yy - ¥,¥; # ybam+l for any y or equivalently,

|
XX, cre Xz = a™b"a" for some m' > 0, so that |x1x2 <re XyZ|
2m + m' > 2m.

The following inequalities are now immediate because of the

choice of n1 .

[ %1% °** xM'_>_2m-n131nce lz1<ny
2m > %)X, --»lezem-nlfor some N < M

since %4 <£ny, 1 <1 <M Therefore X)Xy 00 Xy o= a™" where

m-n <n<m (1)

To facilitate the discussion, the following definitions

are introduced:

Definition: A pair of integers (k,£) is a cycle if

(1) 1<k<e<N

(2) Ak-l = Az (where AO = 8).
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Definition: An integer i belongs to a cycle (k,£) if

k<ic<eg.

Definition: An integer is cyclic if it belongs to at least

one cycle.

Definition: i = j§ if there exists a cycle (k,£) such that
- ]

both i and j belong to (k,£).
Obviously "=" is an equivalence relation which decomposes

the set of all cyclic integers into disjoint subsets of integers

which belong to maximal cycles

(kl’ 21)’ (ka.v ‘22); ‘o (ks: ‘es)-
Hence
z 2
EN -Z et *Z STRERE Z Ty @
2

i eyeclic

while
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Jl £2 Es

Z [Y1] =‘/:I”il * Z Vi * o0 ? Z Fip 3

i cyeclic i=kl i=k2 1=ks

Because of the choice of n,, among any set of n2+1 distinct
<i,  <... <i < N, there must be at least two,

(o) 1 n2 -

say 1 < J, such that A1 = Aj' Therefore j is cyclic so that no

more than n, of the integers are not cyclic.

Now we assert that

integers, 1 <i

Z [*1]| > Z B (4)

i eyeclic i cyclic

Clearly

| N N
Z |*i| = leil - Z |*1] 2 Zl"il" Z ny
i=1 1=

1 cyeclic i not i not
cyclic cyclic

N
z Xlﬁl MMy Sm4n-myen, >mkmen)) - on)en,
1=)

2

N
\ =2m-n1-nl.n =m+2>m+lZZ|yil> Z |yi'

and therefore (4) is true.
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In terms of the identities (2) and (3) this means

‘l 32 ls ll

Z |*i|+Z 1 %1] +""'Zl"il >Z [Yi| +
i=k, 1=k, =k, 1=K

12 zs

Z wix*“'*Z [ V1]

i=k2 i=ks

and implies that for at least one maximal cycle, say (k', £'),

we must have

" l'
E: |*s] > E: REATIR
ok ik’

m m+l
We know that X)Xt Xy Z Yy ot Yo¥q = a™b a e L. Tc-

gether with (1) this implies
x1x2 e be z‘zyM CRCERY y2311= l%mam.’-leL

»
for some z' € V& .
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But then

%M T Xp P P 23V, Y Y02y, €L

where

2L TXTo t Xealy Zp T Xpa X 0t Xy,

N
n

3522y Y

and

2y T Vg T Yy

Since (k',£') is a cycle, Aoy = A, and since

Aoy = xaxa, X g B g ¥ i Vv 1Y

it follows (manifestly) that

Ape => XXy o Xgo Age Yoo " Yo g ¥y

Therefore
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= T L U ¢ SRR K
Aer g "Ll LI ] 2 2\ g k' k!

for arbitrarily large K.
Hence by altering the original fixed S-derivation for ambmam+l

aiong the above lines we can generate

K K
2 (X X )T 2 0 23 Vg M) 7 € L

for all K.

But for sufficiently large K we must have
K K
ka'i{k"l-l e xl" > ( |23| + |y£v'°' yk"l'lyk" + Iz)*l) :

since z., and zl+ are fixed strings and

3

A 2'
Z | %] 2 Z i -
i=k!' i=k!'

Or equivalently aPv%a’ € L and P + @ > 2r, a contradiction
which suffices to prove the lemma.
Theorem 2: There exists a minimal linear language inherently

ambiguous over the CF grammars.



-27-

Proof: Let L be the minimal linear language and R the regu-

lar language of Theorem 1 so that

LN R = (aPoa%ba’d: Par > 0 and (p > r+l or q > r+l))

Suppose that L is unambliguous CF, Then Corollary 16a implies
that LR hes an unambiguous CF grammar,

Let T be the transducer such that
T: dpbdqcbarb -oapbq r.
T(LOR) = (aPb%%; 1 < P or r<gl.

Since T maps distinct strings of L) R into distinct strings,
T(LO R) 1s unambiguous CF by Theorem 16.

However, T(L () R) has no unambiguous CF grammar. To prove this

result the reader is referred to Ginsburg and Ullian (1964).
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(II) REAL TIME PUSH DOWN STORAGE AUTOMATA

In this section we prove that any language accepted by a
Push Duwn Storage Automatun is also accepted by a real time Push
Down Storage Auicmaton (Theorem 5).

Chomsky and Schiitzenberger (1962) defined a family of recog-
nizers called Push Down Stordge Automata (PDS) and proved that a
language is CF iff it is accepted by a PDS (we will usually write
CF = PDS for this result).

PDS are quite useful for proving complicated languages context
free. On the other hand, they are of little help in proving a
language non-context-free. For example, although it is fairly
obvious that no PDS can accept the language, (aFb%’: r > max (p.q),
pqa > O}, treaféd in Lemma la, a formal proof within the framework
of PDS seems ouv of reach. This situation obtains, in part, be-
cause PDS are not constrained to operate in real time. We hope
tnat real time PDS can serve as a vehicle for formal proof.

Chomsky (personal communication) has pointed out that Theorem 5
follows from the CF = PDS result and a normal form theorem due to
Greibach (1963). However, we independently prove Theorem 5 since
we will subsequently use it to prove stronger forms of both the
CF = PDS and Greibach results.

In order to establish notation we will recall the definition

of PDS, Our definition is mechanistic.



A Push Down Storage Automaton (PDS) is a machine M uniquely
determined by a quintuple (AI, A, I, S , @) where A; is a
finite input alphabet, Ao is a finite output alphabet, I is a
finite set of states, So € £ is a distinguished initial and
final state and @ is a finite set of instructions.

M has a read head which scans symbols written on squares of
two infinite tapes connected to M, an input tape and a storage
tape. A situation of M is a triple (a,S,b) where S is the cur-
rent state of M and a end b are the scanned symbols on the in-
put and storage tapes, respectively.

All instructions have the form (a,S,B) — (S',7) where S,

S' e, ae AI Ufe, #)}, B ¢ A.o U (#) and 7 ¢ A.o U (e, o}.
In the situation (a,S,b) M may only execute an instruction of

the form
I=(a,s,b) »(8",c)ord = (e,S,b) - (s',e).

I has the following effect on the machine tape configuration
of M; J has the same effe:t as I except that (1) does not occur.

(1) M reads the input tape; i.e., the input tape moves one
square left,

(2) M enters state S'.

(3) (1) If c = e, the storage tape is neither altered nor

moved.
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(1i) If c ¢ Ao’ the storage tape is moved one square
left and ¢ is written on the new scanned square
of the storage tape.

(111) If c = 0, b is erased and the storage tape moves

one square right.
'

Depending on whether ¢ = e, c € Ao orc =90, I is called a
read-only, read-write or read-erase instruction, respectively:

J is called a dormant, write-only or erase-only instruction,
respectively.

An input x = ala2 cee 8, 8, € AI, is written on n consecu-
tive squares of the input tape, # is written on the n+l st square
and on the stoiage tape and all other squares on both tapes con-
tain boundary symbols A ¢ AUA U (#}. M is started in situation
(al,So,#) and accepts x if the situation (4, 8o #) subsequently
occurs., M halts if no instruction applies in a given situation.

L(M) = (x € A;: M accepts x}. M is non-determminist? - in
the sense that more than one instruction may apply in a given
situation. x e L(M) iff some computation with input x leads to
situation (A, Sy, #).

At any step in a computation the contents of the (input)

storage tape is the string to the (left) right of # up to and



including the scanned symbol. (The contents of either tape may
be e). The (machine-tape) configuration of M is the triple
(u, S, v) where S is the state of M and u and v are the contents

of the storage and input tapes, respectively.

The following identity simplifies notation in the sequel.
]

I= (a)S)e) - (S':c) = {(a9s:b) — (S',C): b € AOU[#] }.

I is usually considered a single instruction which acts independ-
ently of the scanned symbol of the storage tape.

We will occasionally identify M with its instructions &,
When more than one PDS is under consideration, the notation
A.I(M), AO(M), (M), ... will sometimes be used.

There are many other equivalent formalisms for PDS. We
will illustrate our definition with an example which solves

another problem posed by Chomsky.

Let W = (a,b). One of the first CS languages proved non-
*
context- free was Lo = (z: 2z =xcx, x e WJ.

Consider
*
L=(z: z=xcy; x,yeW, x#y).

L 1s essentially the complement of L, i.e., L = iof\ R

*
where R = (x cy: x, y € W) is regular.
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One might conjecture that any PDS which accepts L could
readily be converted into a PDS which accepts Lo. Because of
this, several attempts were made to prove L non-context-free.
However, L is in fact context-free.

The technique employed in the following proof can be used

'

to construct PDS for other seemingly non-context-free languages.

Theorem 3:
»
L=(xcy: x,y €W and x # y} is CF.

Proof: L splits into three disjoint languages,

(xcy: x, 3y €W, Mx) < Ay))

Ll

L2 (xcy: x,yce¢€ W*) l(x) > X(y)]

My), x £y)

*
L3 ={xcy: x,yeW, nMx)

It is a simple exercise to construct a PDS which accepts Ll

or L2 and therefore they are both CF. By intersecting L3 with a

suitable regular language, e.g., {apcharbs: pars > 0}, it is

not hard to see, at least informally, that L_ is not context-

3

free.
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However, note that for any Lé such that L3(: LéC: L, we

have L = L, L2() Lé. Since CF languages are closed under

union, it is enough to prove that some L!

3 is CF.

In particular choose

( '

* LY
Lé =] Xxcy: x,yeW and Ju, u', v,v'

< Xx-uau,y=vpv', rAMu)=2r(v) P

\ and a £ B )

We can construct a PDS M for L' as follows:

3

Take I = (S, 8, S, 5. s?, s

& consists of the following instructions for all a, B, v € W.
(l) (e) SO’ e) ""(Sla e)

(a, S5 e) _’(Sl’ a)

(a: Sl’ e) » (82: a)
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(2) (a, 82) e) - (S ’ e)
(C, 82) a) - (Sa, U)
(3) (B, 8% 7) > (% o) (3.1)

(8, 8%, #) »ls,, e), afp  (3.2)

(h) (3, 83: e) ""(SB, e)

(#: SB’ e) "’(S ’ e)

Given an input string x ¢ y, by means of the instructions
(l), M copies the symbols of x onto its storage tape until it
exercises a non-deterministic option and enters state Se. At
this point M has stored a candidate string ua.

The instructions (2) feed the remainder of x past the read
head until ¢ is scanned--whereupon M e?ases a and enters state §3.

" The instructions (3.1) merely count off the first A(u) sym-
bols of y; i.e., A(u) symbols of y have been read when u is com-
pletely erased and M is scanning #. Note that (3.1) is executed
\\\\‘\\even when B f 7.
The decisive instruction is (3.2); if a # B, M accepts x c ¥

via (4), otherwise M blocks.
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We can immediately generalize Theorem 3. For any language

L define V(L) = (a: xa y ¢ L, some x, y) and

N(L,e) ={xcy: x,yelL, cfV(L), x#yl.

Theorem L4: L regular => N(L,c) context free.
Proof: If c € V(L), N(L,c) = ¢ and the theorem is trivial.

If ¢ ¢ V(L) define

L' =(xcy: x,¥y¢€ (V(L))*, x #£y).

By Theorem 3, L' is CF since the proof of that theorem did not de-
pend on the cardinality of W. Since L regular implies L ¢ L regu-
lar, N(L,c) = L' (L ¢ L) is context-free.

We conjecture that this result also holds in the reverse

direction, i.e.:
Conjecture: L regular <=> N(L,c) context-free.

At this time we have no formal proof.

Definition: A PDS is a real time PDS if each of its instruc-
tions is a read-only, read-write or read-erase instruction.

A real time PDS terminates each computation with input x
within A(x)+1 steps; acceptable computations require precisely

Mx)+1 steps.
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The proof of Theorem 5 revolves about the following definitions.

Definition: A string x = blb2 co bn is eliminable by a PDS

M iff there is a sequence of states (T,) such that (e, T, bk)‘q

k
is called an elimination pair for x. M eliminates x from state

(T_y» 0) = I is an instruction of M for 1 < k < n, [T,T,]

1
Tn if M executes In’ In-l’ ces Il'
Definition: A string x = blb2 ‘o bn is generable by a

PDS M iff there is a sequence [Tk] of states such that

L = (e, Ty1’ e) » (T, bk) is an instruction of M for 1 < k < n.
[Tn’ To] is called a generation pair for x. M generates x from
19 12’ e In'
The equivalent real time PDS computes and stores an elimina-

state Tb if M executes 1

tion pair fbr’a string x instead of writing x--guessing that x
will subsequentily be eliminated. Instead of generating a string
Y, a generation pair for y is stored.

By using a large enough output alphabet, elimination pairs
can be stored in symbols ultimately erased by read-erase instruc-
tions, generation pairs can be stored in symbols written by read-
write instructions. Therefore, erase-only and write-only in-
structions are unnecessary. This is the main idea behind the
proof.

The proof follows by successive application of a sequence

of lemmas. Each lemma brings the PDS closer to the real time
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machine while preserving generative capacity. The proof of
each lemma is only concerned with weak generative capacity;
for PDS no notions of strong generative capacity have been

defined. We now introduce the following definition.

Definition: A PDS M is unambiguous if it accepts each
string of L(M) with a unique ;omputation.

(Note that an unambiguous PDS can reject a string in more
than one way.) Almost all constructions preserve unambiguity,
but we do not choose to spell this out at each point. Alterna-
tive constructions are sketched whenever ambiguity is
introduced.

Theorem 5: Given a PDS M one can construct an equivalert
real time PDS M'. Moreover if M is unambiguous, so is M'.

Proof: The following definition simplifies the proof of
the theorem.

Definition: A PDS M is normal if each instruction of M

takes one of the following forms:
(1) (a, S, b)) >»(8', 0) Db#e
(2) (a, S, e) = (8', c) c # cand not a = ¢ = e,

A normal PDS references the output tape iff an erase in-

struction is executed; it has nc dormant instructions.
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Lerma Sa: Given a PDS, one can construct an equivalent
normal PDS,

Proof: Let Mo be a PDS., By a series of instruction re-
placements which do not affect gererative capacity, we construct

a new PDS Mi+l from Mi’ 0< 1< 3, until Mh is normal.

N
(1) M, from M : Choose a new initial and final state 5,

"
and a new output symbol #.

\ A
Add the rules | (e, S, e ) - (S, #)

(e, S, #) = (8, o)

and replace (a, S, #) - (S8', c) by (a, S, #) - (S', ¢).
A
# serves as a pseudo boundary symbol. All computation rela-
A )
tive to # in M, is relative to # in M, but note that # may be

erased without terminating a computation.

(2) M2 from Mlz replace (a, S, b) »(S',c) c # 0, b #e

{ s
by (a) 5, b) "’(bc; 0)

S S
4 (e) be, e) - (c; b)

S'
(e, c, e) » (8", c)

\



St S
where bc and ¢ are new states.

(M2 1s a PDS with restricted control as defined by Chomsky
(1963)).

(3) M3 from M,: replace (a, s, e) = (s',0) by

((a, s, b) - (S', a): b e Aol.

(4) Mh from M3: replace I vy I 41 Whenever L, L, ---,In+l

is an executable Sequence of instructions of M, 11’12’ . °,In

are dormant and In+l is nomal,
Definition: x € L(M,k) iff on some computation M accepts
x and executes at most k consecutive erase-only instructions.

Lemma 5b: Given a normal PDS M one can construct an equi-
valent normal PDS M' such that L(M') = L(M', 2),

Proof: Let M = (AI, Ay Z, S,, @)

\ M'= (AI, Ay 2, S,, @)
here A'

- ' oL 3
O-AOU(ZxZ)andZ Uz,

In (1) through (6), below, we construct @' from . To im-

Prove readability we write column vectors read from top to bottom

for row vectors read from left to right. Any state occurring on




the right, but not on the left of an implication sign, =>, ranges

over all of Z. For example, (2.3) is in &' for all u € L.

[

(1) &' contains all of i, except for erase-only instructions.

4 T
(2) (a,5,e) » (s',T) (2.1)
Sl
i)
(a,8,e) » (s',a') (a,5,e) »'T, e (2.2)
(e,T',a') - (T,0) > = { S s'
- 1 , T )
a,u,e/ alu,e (2.3)
in @ /
S St
u' Tyt
a,u,el -\ T,u (2.4)
S
1 ) I
a,u,e! - 1S',u ) (2.5)
in &',
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(3) ([ s ) s'
T T
(a,S,e) » (8',e) a,u,e) - \u,e (3.1)
=> <
in 3 ' in '
‘.
(%)
T
" ( !
e,T,u - \u,o in & for all u, u', Te X

(5)

u' w
a'ye v
e,V,V| -\ V,o in &' for all u', V, V', We Z



(6)

u'

u' )

a,s,bl - (8',c) (6.1)

(2,5,0) - (5',¢)

in & and not erase-only in &'

M may have infinitely many eliminable strings, but only
finitely many elimination pairs. Instead of writing an eliminable
string x, M' has the option of computing (via 2.2, 2.3, 3.1) and
writing (via 2.1, 2.4, 2.5) an elimination pair, say [u',u], for
X.

In other words, M' may make a non-deterministic guess that
M will subsequently enter‘state u' and eliminate x. To simulate
M, M' need only erase one symbol, namely [u',u] (as in 4). 1r
T =u', M' may follow (4) by (6.1). This corresponds to M elimi-
nating x.

The preceding paragraph is an oversimplification. Let (ve,vm
and [ V'',V] be elimination pairs for y and y y', respectively.
Note that M may first write y x, subsequently eliminate x, and
then write y'--extending y to an eliminable string y y'. To
simulate this situation, M' must execute two consecutive erase-
only instructions. M' must follow (4) with (5) and then, via
(2.3) or (3.1), update [V',V] (the analogue of extending y),

eventually writing [V'',V], via (2.4) or (2.5).



On the other hand, if M' correctly guesses the extent of
all eliminable strings subsequently eliminated by M, it will
never execute more than two consecutive erase-only instructions.

M' as constructed here will not, in general, be normal
since (2.2) or (2.3) with a = e would introduce instructions
of the form (e,V,e) — (V',e). However, these dormant instruc-
tions may be replaced as in Step (L4) of Lemma 5a without affect-
ing L(M',2).

To preserve unambiguity, certain combinations of instruc-
tions must be avoided. For example, any three instruction sub-
computation of types (4), (5) and (6.1),in order, may be replaced
by a two instruction subcomputation of types (4) and (6.1). Ve
may suppose that M'immediately blocks on executing such combina-
tions since there are only finitely many. This remark also ap-
plies to Lemma 5e.

Definition: A PDS M is of erase order k if M executes at
most k consecutive erase-only instructions.

Lemma Sc: Given a normal PDS M and an integer k > O, one
can construct a normal PDS M' of erase order k such that
L(M') = L(M,k).

Proof: The proof is informal. M' is the same as M except
that M' has a counter 6, initially zero. © is reset to zero when-

ever M' executes an instruction other than an erase-only instruction.
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If M' executes an erase-oniy instruction and 6 = k, M' blocks;
otherwise © is increased by one. Since k is fixed, the
counter can be stored within the state descriptionsof M'.

Lemma 5d: Given a normal PDS M of erase order k < 2,

one can construct an equivalent normal PDS M' of erase order

k-1.
Proof: Let

M = (AI’ AO’Z’ SOJ ﬁ)

M'f (AI’ AC')’Z" SO’ ﬁ')
where

2
| -

Ao = AO U Ao

and



g': (1)

(2)

(3)

(4)

(5)
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@' contains all of & except for erase-only

instructions.
(a,s5,e) - (s',a') (a,S,e) - ([S',a'),e)
(e,T',a")> (T,0) => in &'
in @&
(b,8,e) = (S',b") (v,[S,a'],e) »(5',[a',b'])
=>
in @, b' #e in @' for all a' € A,
\
(c,8,b') = (8',0) W (c,s,[a',b'])) = ([S',a'],0)
in & in &' for all a' € Ao
/ \
\ (
(e,S,‘a') 4 (S';G) (e,[S,a'],e) - (S';e)
) =
in & in &'
/ \

The construction is fairly straightforward. Instead of writ-

ing two consecutive symbols a' and b', M' has the option (as in

(2) and (3)) of incorporating both in a single symbol [a',b')--provid-

ing a' is eliminable by M. The elimination of a' is simulated by



an identity transition (as in (5)).

The'proof of the following lemma is similar to the proof
of Lemma 5b, except that generation pairs play the role of
elimination pairs. The proof is easier since M has no erase-
only instructions.

Lemmg Se: If M is a non&al PDS with no erase-only instiruc-
tions, one may construct an equivalent real time normal PDS M',
(A7, Ay Z, s, &)

(A, A3, 2%, 5, ')

Proof: Let M

[}

M'

2 2
| I
vhere Al= A, U £° U (AO x £°)

I'=Z U 83

Once again to improve readability column vectors, read
from top to bottom, replace the row vectors, read from left to
right in (1) through (6) below.

Instead of generating strings, M' stores generation pairs.
If M executes a read-write or read-only instruction after generat-
ing a string xb from state S, M' stores a generation pair [T,
for xb by executing an instruction of form 2.1 or 3.1, respectively.
If M executes a read-erase instruction after generating xb, M'
stores a generation pair [u,S] for x via (4,1). Because of the

conditions on M, these are the only possibilities.



A stored generation pair for a string y induces a
non-deterministic computation when erased via (5.1) or
(6.1). M' essentially simulates the simultaneous gen-
eration and erasure of y via (6.2) or (6.3). At any point
M' may terminate the simulation by writing a generation

pair, via (6.4), for that part of y not yet "erased".

(1) &' contains all of &, except for write-only

instructions.
a'
( T
(2) (a,T,e) »(T',a") / (a,S,e) » 11,8

a' #e,0in @ [T,S] generation pair (2.1)

N
|
L

/ \ in @'



(3) (a,T,e) - (7',e) \

in & f

(&) (a,T,b) - (T',0) \

(e,u,e) - (T)b)

in @ )

(5) (a,8,b) —»(s',0)

in &

T
(a,S,e) - (T',S)

= < [T,S] generation pair (3.1)

\ in &'

u
(a,8,e) = (-',8)

= < [u,S] generation pair (L.1)

\ in @'

b S
( v| o
a,S,ul/ -\Vu,o

= (5.1)

in @'



(6)

' ) !
(a,S,b) - (8',0

',b)
(e,T,e) - (T',b

-49-

.|
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(I1I) DETERMINISTIC PUSH DOWN STORAGE AUTOMATA

In Section II we indicated that there were several ways to
deit‘f‘me PDS For non-deterministic PDS most formalisms are equi-
valc'-:nt, i.e., each formalism gives rise to the same family of ac-
ceptable languages--the context-free languages. However, consi-
der the following definition:

Definition: A PDS M is deterministic if each situation of
M determines &t most one executable instruction.

Because of Theorem 5 we may consider rt PDS a new formalism
for PDS. But although rt PDS = PDS, we will show below that de-
teministic rt PDS g determistic PDS. Therefore, the generative
capacity of thg automata defined by the above definition is not
independent of the original formalism chosen for PDS. Several
families of automata have been studied intermediate in power be-
tween deteministic rt PDS and the family of deterministic PDS
considered here.

By definition, a deterministic PDS M accepts each string of
L(M) with a unique computation and rejects each string of LMy
with a unique computation. The converse is not strictly true,
but the following theorem is almost a tautology.

Theorem 6: If a PDS M accepts each string of L(M) uniquely

and rejects each string of L{MJ uniquely, there is an equivalent

deterministic PDS M',

1Several results similar to those proved here have been independently
discovered by Dr. Seymour Ginsberg and Dr. Sheila Greibach.



Proof: Suppose two (call them ambiguous) instructions L
and I, of M are both executable in the situation (a,S,b). If
situation (a,S,b) occurs during the course of an M computation
with input x, then x € L(M) because of the conditions on M.
Therefore, without affecting generative capacity, the pair of
instructions [Il, 12] may be'replaced by a deterministic sub-
machine which transforms any machine-tape configuration (xb, S,
ay) into (e,So,e). Note that if one, but not both, of the in-
structions Il’ 12 does not read the input tape, then it is es-
sential that the first instruction executed by the submachine
also not read the input tape. By replacing all ambiguous pairs
in this way, we construct detemministic M’ equivalent to M.

There are, of course, languages acceptable by unambiguous
PDS which cannot be accepted by any deterministic PDS. For ex-
ample, it is a simple exercise to construct an unambiguous PDS
which accepts L = (z: 2z = x Q, X € {a,b]*}. Once Theorem 8 is
established, it is fairly easy to prove that no deteministic
PDS can accept L.

Theorem 7: Given a deterministic PDS M there is an equiva-
lent unambiguous real time PDS M'.

Proof: Immediate corollary of Theorem 5.



The constructions carried out in proving Theorem 5 preserve
unambaguity; they do not preserve determinacy. In general, one
cannot remove erase-only instructions without simultaneously in-
troducing non-determinacy. However, we have the following theorem.

Theorem 8: If M is a deterministic PDS, there is an equiva-
lent normal deterministic Pﬁs M' without write-only instructions.

Proof: Our first proof is non-constructive. We may assume
M normal since the proof of Lemma 5a preserves determinacy.

Suppose that the configuration K = (y b, S, z), z = az' or
z = e, occurs during the course cf an M computation. Unless M
blocks or endlessly executes write-only and erase-only instruc-

tions, finitely many steps after K one of the following configura-

tions must occur first, for some state T.

(1) (yo, T, 2")
(2) (y) T, z)
(3) (y, T, z')

() (yox, T, 2'), x-= a8, - &,

If (4) occurs first, we say that M ultimately produces x.

Since M is deterministic, the number of strings ultimately produced
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is less than the number of situations of M and is therefore finite.
Let m be the length of the longest string ultimately produced by M.

If M= (AI, Ay I, S, @) we will construct M' with

moy
A= U A
0%, o, 0

and
k
}: Zx(u Ay )
I b,b b A*dfi
fw= 1P 0t Py € 0 efine
<w > b . 1o1eAk
W > = [byyby, cee, By 0
and
Sw b.,b b1 € x Ak
—[0,1’2, vee k] >—— 0 .

Se

n
w0
m

(gl

@' consists of the following instructions.
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(I) @' contains ¥ except for write-ouliy instructions.

(II) If a,S,b and T are as above, (e,S,e) -. (S',a') is in ;

(111)

(1v)

(v)

@ and (1), (2), (3), or (4) occurs then:

(1') (a,S,e) »(T,e) in @' if (1) occurs first

(2') (e,S,b) »(T,0) in &' if (2) occurs first

(3') (a,s,b) = (T,0) in &' if (2) occurs first

(4') (1) (a,5,e) = (T,<x>) l are in B if (1)
occurs first for w 3:

(i1) (a,Sw,e) - (Tx, <w>) [ 1< Mw)<m

(c,u,d) = (u',0) | (c,u,<wd >} o (u'w,o)
in @ => { (c,uwd,e) — (u'w,e)

in @' for w 3: 0 < A(w) <m-1

in 8, c # e, c'fe,o0 in @ forwd3: 1< AMw)<m

(c,u)e) g (u':e) (c,uw,e) g (\1',< w >)

(c,u,e) = (u',c") {(c,uw,e) - (u',< we'>)
{

in@, cfe in @', forws: 1 < Mw) <m
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The crucial irstructions above are introduced in II (4')(i).
Instead of proceeding from K with a computation that begins with
(e,S,e) - (S',a'), possibly executing other write-only and erase-
only instructions before reading a, M' immediately reads a and
writes one symbol--the vector which corresponds to the string x
ultimately produced by M. ‘

Instructions introduced by III, IV, and V merely enable M'
to refereice components of the vector. Instructions introduced
by II (4')(ii) simulate the case where M ultimately produces w: ',
subsequently erases w', and then ultimstely produces x.

Note that the instructions II are independent of y and z' and
depend only on the situation (a,S,b), or (#,S,b) if a = e.

To convert the above proof into a constructive proof, we
need a rule that guarantees that one of (1), (2), (3), or (&)
occurs within & computable number of steps after K or else never
occurc. The following definition plays a key role in determining
such a rule.

Definition: M producesub with prodvction quadruple [b,5,b',5"
if there is an M computation C such that:

(1) C takes M from configuration (yb,S,z) to (ybub',S',z).

(2) The length of the contents of the storage tape is never

less than A(yb) during C.
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Lemma 8a: Let M have p states and q output symtols. Then
if M is started in the configuration K = (yb,S,z), z = az' or
z = e, then (1), (2), (3), or (4) occurs within pqpq steps after
K or not at all.

Proof: If M produces a string u, it produces all of its
substrings. Hence for u stficiently long, e.g., Mu) > pg, M
produces a substring vd of u with production quadruple
(4,V,d,V] for some d and V. In this case, since M is determin-
istic, it produces (vd)k for all k so that none of (1), (2),
(3), or (4) occurs.

On the other hand, if within pqpq steps after K none of
(1), (2), (3), or (4) occurs and M fails to produce a string
of length pq+l, then a machine-tape configuration K' must re-
cur. This follows since for pqpq steps after K the length of
the contents of the storage tape would be bounded by A(yb) and
x(yb) + pq while the input tape remains fixed. Since M is de-
terministic, the recurrence of K' before (1), (2), (3), or (4)
occurs, implies that they never occur.

Theorem G: If M is a deterministic PDS, there is an equi-
valent normal deterministic PDS M' which terminates ee ™ com-
putation with input x within 2 . A(x) + 1 steps.

Proof: By Theorem 8 there is a normal deterministic PDS

M' equivalent to M but without write-only instructions. If
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n, n, n3 and h), are, respectively, the number of occurrences
of read-write, read-erase, read-only and erase-only instructions

in an M' computation with input x, then

n1+n2+n3+nhsx(x)+l+nh5

).(x)+l+n152 o Mx) + 1.
This is a best-possible real time result for deterministic
PDS. No matter what formalism is initially chosen for PDS, it

is clear that no deterministic PDS can accept
L={(z: z=an'bpaqbn,- n>0, p>q >0}

in real time.

Theorem 10: If M is a deterministic PDS, there is a de-
terministic PDS M' which accepts L(M).

Proof: By Theorem G we may assume that each M computation
terminates and by Step (1) of Lemma Sa we may assume that M em-
ploys a pseudo-boundary symbol on its storage tape. Tt is there-
fore a simple exercise to construct a deterministic FDS M' which

accepts x iff M rejects x. The details are omitted.
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An immediate corollary of Theorem 10 is a new formal proof that

nondeterministic PDS ?deteministic PDS; i.e., one need only ex-

hibit a CF L such that L is not CF.



(IV) STRONG EQUIVALENCE

In this section we give a new proof of the Chomsky-
Schutzenberger result that the context free languages are just
those languages accepted by PDS automata. The proof establishes
a strong equivalence in the sense that urambiguity is preserved.
Thus, the unambiguous CF l;hguages are just those accepted by un-
ambiguous PDS. A byproduct of the construction is a new normal
form for context -free grammars, stronger than the Greibach-nommal
form, and essentially a dual of the real time normal form for
PDS. Left context sensitive grammars are defined and shown
to be no more powerful than context-free grammars.

Theorem 5 plays a key role in proving Theorem 11.

Theorem 11: If a PDS M accepts L, then L is CF.

Proof: By Theorem 5 we may assume that M is a real time
normal PDS., Furthermore, we may assume that M has no instructions
o# the form (#,S,b) -»(So,o). Simply replace each such instruc-
tion by (#,S,e) —a(Sé,e) and (e,Sé,b) —»(Sogﬂ, vhere S! is a new
state, and again apply the construction of Theorem 5. Let
M= (AI, Ay Z, S, ?).

We will construct a CF grammar G = (VT, Vs S,R) for L

so that Vj = Ay and V) = (S} U (Ql x QQ) where & consists of



the read-only and read-write instructions of M, and 62 consists
of the read-only and read-erase instructions of M.

In order to motivate the direct construction of R from &
itself, we will first construct a subset R(C) of R from an ac-
ceptable M computation C = (Il’ Iy oo s In+l) for an input
string x = b,b, - b . '

The following definitions simplify the discussion.

Definition: If Ik is a read-only instruction, the occur-
rence of bk in x is called C-free.

Definition: If Ik is a read-write instruction (bk,S,e)Aq
(S',bé) then, since C is acceptable, for some j (n > J > k) a
read-erase instruction IJ must erase b& written by Ik' In this
case we say that the occurrence of bk in x is C-matched by the
occurrence of bj in x.

For simplicity we will drop "the occurrence of" and say
bk is C-free or bk is C-matched by bJ.

1, take R(C)

i

If n

(s —pbl]

2, take R(C)

If n

(S = blb2]

For n > 3, R(C) consists of the following rules, provided

they are well formed. If a non-terminal [IJ’Ik] appears in a
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rule, the rule is well formed only if I,j € ﬁl, I.k € diz and

1<J<k<n.

(1) s -»b [I,,I)] if b) is C-free
S -)blba [Ij’In] , if bl is C-matched by b2
§-b [I,,I ;1% if b, is C-matched by b
S -vb [12,1 l] b (I m+l’ Tn I3} if bl is C-matched by bm’

2 <m<n.

(2) (L, I q) b, (1,0 q] if b is C-free
[Ip,Iq]‘ "bpbp+l[1p+°’ ] if bp C-matched by b pHl
[Ip,Iq] —»bp [Ip«l-l’Iq-l]bq if bp C-matched by bq
[Ip,Iq]-. bp[I p-l-l’ SEYLME SN if b C-matched by b,

p+l<r«<aq.
(3) [Ip,Ip] -»bp ir bp is C-free

(TpIoi1 = PPpn if b is C-matched by b
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The conditions on b1 are mutually exclusive and exhaustive
so that precisely one rule from (1) belongs to R(C). Similarly,
for fixed p and q, precisely one of the rules (2) and one of the
rules (3) belong to R(C).

Clearly S => x by means of an R(C) left to right S deriva-
tion which is a generative Qnalogue of the machine computation
C. Conversely, each R(C) left to right S derivation of a string
Yy glves rise to an acceptable M computation for y. Furthermore,
if C' is another acceptable M computation, the previous sentence
holds with R(C) U R(C') in place of R(C).

At this point we could stop if we were content with a non-
constructive proof by simply taking R = R =U (R(Cz): C, is
an acceptable M computation for z}. However, we can now readily
describe the construction of R directly from M itself.

Again some definitions are useful.

Definition: a is free in I if I has the fom (a,S,e) — (S',e).

Definition: The non-terminal [I,J] matches a and b if

L]
0

(a) S, e) _’(S', a')

and

(b: T, a') - (T'; o).

'
"
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[I,J] links a and b if, in addition, T = S°'.

Definition: If I in & and I = (a,S,b) - (S',c), a successor
I* of I is an instruction of @ of the form (d4,5',e) - (§'',f)
a predecessor I  of I is an instruction of @, of the form
(a,s'',f) »(S,g). I is pye-terminal if (#,S',e) — (So,e)
is in B and I € g,. I-= (a,So,e) - (S',c) is initial.

Providing all instruction pairs are in Ql b 62, R con-
sists of the following instructions for all definable I', J°,

I, k.

(1) If I is initial and K is pre-terminal:

Sea[fnm if a is free in I

s -;ab[J"',K] if [I,J] links a and b

S sa[I,K b if [1,K] matches a and b

s »a[I',d"1 v (d%,K if [I,J] matches a and b.
(2) [1,9) —;a[I+,J] if a is free in I

[1,K] - ab[d",K] if [I,J7 links a and b

[I,J] »a[I',d b if {I,J1 matches a and b

[I,K] »a[1%,07] b [J7,K] if [I,J) matches a and b.
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(3) [1,I1) >a if a is free in I
[(I,J] »ab if [I,J] links a and b.

Clearly BIC R and any rule in R - Rl can never be used in

a terminal derivation. Thetefore

L(G(V ’ VN" S, R)) = L(G(VT: VN’ S, Rl)) = L(M).

Theorem 12: If M is an unambiguous PDS, L(M) has an unam-
biguous CF grammar.
Proof: Corollary of the proof of Theorem 11 (and Theorem 5).

Corollar.y 12a: If M is a deteministic PDS, L(M) has an un-

ambiguous CF grammar.

Proof: By definition deterministic PDS C unambiguous PDS,

For real time normal PDS the proof of Theorem 11 is an ef-
ficient algorithm for constructing a simple strongly equivalent
CF grammar. Since a specific PDS can usually be brought into
real time normal form without applying the complicated construc-
tions of Theorem 5, the proof of Theorem 11 is a useful research
tool. The Chomsky-Schiuitzenberger construction introduces ambigu-
ity and an enormous number of non-terminals, regardless of the

initial form of the PDS.
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For example, by the method of Theorem 11 we can construct
a simple unambiguous CF grammar for the Dyck languages Dbn on
2n symbols. Let M be the following PDS:

(a) S e) - (Sl’ a)

o’
(a, Sl’ B) hnd (Sl) a); 0] * B
(a; Sl, 6) - ('1) 0), a=p

(#: Sl’ e) "’(So, 8)

Then L(M) = D, if @ and § range over an alphabet of n sym-
bols and their unique inverses. It is a simple exercise to
bring M into real time normal form without destroying its de-
terminacy. Therefore Theorem 11 yields the desired grammar.

Definition: If G is any CS grammar, the left language
LJ(G) generated by G is the set of all x € L(G) such that
S => x by means of a left to right derivation. The right
language Lr(G) is defined similarly.

Mathews (1963) has shown that Lr(G) and Lz(G) are CF for
any CS grammar G. In particular, the left language generated
by any CF grammar is CF. A relatedbut different notion is

given in the following definition.
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Definition: A left context sensitive (LCS) grammar G is
a CS grammar with all rules of the form ¢gA — da

It is not hard to exhibit LCS grammars G for which
L I(G) # L(G) and we give a simple example below. Furthermore ,
there are LCS grammars G sych that L z(G) # L(G) no matter how
the definition of left to right derivation is generalized (e.g.,
see Mathews, (1963)).

We will prove that L(G) is CF if G is a LCS grammar
(Theorem 15). For expository purposes we will first prove
Theorem 13 which is actually a corollary of Theorem 15,

Lemma 13a: Given a LCS grammar there is an equivalent
LCS with all rules of the form A - a, A — BD or AC — AD,

Proof: Let G = (V,, Vps S, R) be a LCS grammar.

(1) Take G' = (Vﬁ, Vg, S, R') where Vi = Yy U Vi

V'

= VTx (1) and

R' =RU (a—[a,1]: ace Vel -
Clearly G' is equivalent to G and each rule of G' has the fom

*
XA XY (Y #e) or A —a where X, Y € (Vy) yAe Vi, acVy.
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(2) Replace each rule of G' of the form XGBA — XGBY by

the set of rules

(XGB - XGBAY, Y o BA,, A, - Y}
g (poss: -
where and AY are [possibly) new non-terminals, until all

rules of G' have the form AC - AD, A Y (Y # e) or A > a.

(3) FReplace each rule of G' of the form A - BCDZ by the
pair of rules A - BC, and Cp,, — DZ, where C;, is a (possibly)
new non-terminal, until each rule of G' has the form A - a,

A - BD or AC - AD.

Corollary l3a: Given a CF grammar there is an equivalent

CF grammar with all rules of the form A - d or A — BD.

Proof: Follows from proof of the lemma.

Theorem 13: If G is CF, one can construct a °DS M which
accepts L(G). Moreover if G is unambiguous, so is M.

Proof: Let G = (VN, Vs S, R) be a CF grammar for L. By
Corollary l3a we may assume that all rules of G have the form

A-BDor A->a.



Take A (M) = V,, (M) = (S, S.,
N o’ 1

as follcvys, where we write 5 and S D for D ana [B,D] of (M)

to iuprove readability.

(1)

(2)

(3)

(4)

(a,Soe) - (Sl’A)'
(a,Sl,e) - (Sl,A)

in M

(e,5,,D) = (s°, o)
(e;SD’B) - (SBD)O)

in M

BD

(e,S ;e) - (Sl:A)

in M

(e,8,,8) - (8,,0)
(#,Se,e)—’ (So,e)

in M

}
}
|
|

S} UV U vﬁ and &(M)

if A -»a in R

for all B, D € Vl\'

if A-BD in R



If G is CF, then Lr(G) = L\G). Given an input string x,

M tries all possible right to left Aerivations for x. At any
step in an acceptable M computation, the concatenation of the
contents of the storage and input tapes s a line of a right to
left derivation.

The rules (2) and (3)' permit M to alter the contents of the
storage tape from XBD to XA, providing A — BD is a rule of G.
Hence M works backward from the terminal string. If, on some
computation, M can reduce x to S, then M accepts x via (L4).

1uclac 14: If G is a CF grammar, there is an equivalent

CF grammar G' with all rules of the form:

A-a
A - aB
A - aBb

A - aBbC

Proof: By applying Theorems 13 and 11 in succession, we
can construct G' with all rules as above, excep. for rules of
the form A - abB and A - ab, which are replaceable by rules cf
the form A -» a and A — aB.

This normal form, dual to real time PDS normal form, may

lead to an interescing characterization of CF languages.
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The proof of Theorem 13 rests upon an unproved but obvious
lemma, namely: Lr(G) = L(G) for CF G. For LCS G this result

does not hold. For example, let Go be the following LCS grammar:

S - GH A-a

1]
G - AB B-ob
H-C) C'sc!
BC - BC! D-od

Then Lr(Go) = Lz(Gc) = ¢, but L(Go) = {a bec'd).
Because of this, Theorem 15 cannot be proved by merely ap-
pending the instructions (5) below to the PDS M of Theorem 13.
B (]
(5) (e,8°e) = (1°,8)

n
(e,T",e) - (sl,c) if BC - BD in R

in M

M so constructed would only accept Lr(G)'
Tke LCS node tree of Figure 1 below captures the essential

structure of the derivation 2f a b ¢' 4 in Go'



Figure 2

Figure 3
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In a similar manner any derivation of any left sensitive
grammar (in the normal form of Lemma 13) may be repreSe;ted.
Evidently left sensitive node trees are context-free node trees
except that some nodes are connected by dotted lines to indicate
the use of a rule of form BC - BC',

)

Clearly only certain nodes may be connected by dotted lines.

The rules are simple.

(1) If 2 =>¢ By in the derivation, no dotted line may

join A and B,

(2) After joining all terminal symbols with a line, no
dotted line may intersect any other line--dotted or undotted.

Conversely, any node tree which satisfies (1) and (2) re-
presents a derivation in some left sensitive grammar. An im-
mediate consequence of (2) is the following rule.

Rule (*) Any closed polygon in a node tree which does
not properly contain another closed polygon has empty interior,
In other words, no left sensitive node tree can have a subtree
of the form indicated in Figure 2.

Let us write B << A if A ard B are nodes in a fixed tree

and A => ¢ B y. With respect to << any node tree is an upper
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semi-lattice. Let [A,B] = lub (A, B, <<). Liet A 4 denote the im-
mediate lower left node of a binary node A. Finally write A~ B
~df Aand B are connected by a dotted line and A << [A’B]J'

The PDS M of Theorem 13 essentially traces the nodes of a
possible CF ncde tree for‘a given input in the following order:
A before B, i.e., A< B iff (A << Bor A << [A,B]z).

One might hope to prove Theorem 14 by constructing a PDS
M' the same as M except that M' occasionally guesses A ~B and
therefore ignores A and all C > A until B is traced. However,
it is easy to see that no such simple scheme can handle a node
tree of the sort indicated in Figure 3.

Furthermore, a structure exactly like A could be attached
at node B. This rules out even extensive modifications of M.

To prove Theorem 15 we use a PDS automaton as a device which
maps one language into another.

Definition: A PDS M = (AI’ Ay, Z, 8, &) maps x intoy if
some computation takes M from configuration (e, So, x) into
(y, S, e). For LC A;, M(L) is the set of all y such that M
maps x € L into y.

Warning: M(L) is not the language transduced by M. Push
down storage transducers employ three tapes, input, storage, and

output.
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Theorem 15: If G is a LCS grammar, 1.(G) is CF,

Proof: Let G = (vN, Vps S, R). By lemma 13a we may assume
that all rules of G have the form A — BC, BC > BD or A —» a.

Consider the CF grammar G' = (VN, v,i,, S, R') where

v‘

2 = Vp U(Vy x (1,2] )

and R' consists of the following rules.

(1) Al1 CF rules of R are in R".

(2) A—>A[A,1] in R' for all A V-

(3) AB-AD | "B o [A,2] D
S
in R i L in R’
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Let © be the homomorphism on (vN x (1} )* ) o([A,1]) = [4,2]

for all A € V’N.

Suppose that a fixed node, say A, of a G Jevivation tree is

such that A~Bl, A~B

2’.“‘,
1 <1i<n. By means of the rules (2) and

n

A~Bn. That is, A figures in n rules
of the form ABi - ADi’
(3) there is a corresponding G' derivatior. in which A => A [A,1]
and B, =>[A,2]D;, 1 <1i < n.

Hence, it follows from rule (*) above that

(%) z e L(G) iff ;’/3 w € L(G') 3 for some k
|

- 1] P onee !
S W= XYY XYoYs YY*k vhere

)]
L}

LR N ] '
xoxl Xy and yi

e(fri)lgigk.

Let M be the following PDS:
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(e,So,e) - (Sl:e)
(a,Sl,e) - (8,,a) for all a € V, U (VN x (1))

(e(a),s,,a) » (S8,,0) for all a € V, x {1)
1 1 N

(#’Sl’e) - (So,e)

Because of (6) we have L(G) = M(L(G')). Since L(G') is context
free, Theorem 17 implies that L(G) is context free.

Bar-Hillel, Perles and Shamir proved the weak form of the
following theorem, and Chomsky and Schutzenberger used it to
prove CF = PDS. We deduce the strong form as a fairly easy
corollary of our independently proved CF = PDS result.

Theorem 16: If L is CF and T is a transducer, then T(L)
is CF. Moreover, if T maps distinct strings of L into distinct
strings and L is unambiguous then T(L, is unambiguous.

Proof: Let M be a real time normal PDS which accepts L.
By using the identity T(L) = (x: T *(x)V L # } we will con-
struct a PDS M' which accepts T(L). M' dovetails the computation

1

of T™" and M so t'.at M' accepts y iff T % maps y into x on some

computation and M accepts x on some computation.
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Take

$(M') = 2(T7)x (). s (1) =[5 (r7)),5 ()]

(a,S) = (S';e) (a,[S,V],e) - ([S',V],e)

in 771 in M' for all V € £(M)

1

(A,8) = (5',0) in T° (a,[s,V],c) » ([s',V'],d)

(b,v,c) «v',d) in M in M'

Il
Vv

bfe

By Theorem 13 if L has an unambiguous grammar, we may assume
that M is unsmbiguous. Suppose that T maps distinct strings of
L into distinct strings. This simply means that T T cannct map
a string into distinct strings of L and therefore M' is unambiguous,

Therefore by Theorem 12 T(L) has an unambiguous CF grammar.

Corollary 16a: If L is CF and R is regular, then LN R is

CF. If L has an unambiguous CF grammar, so does L ()R.

Proof: We can choose T so that T(L) = L O R.
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Theorem 17: If L is CF and M is a PDS, then M(L) is CF.

Proof: The proof is a generalization of the argument used

in proving Theorem 16.



(V) LINEAR BOUNDED AUTOMATA
Kuroda defined nondeterministic linear bounded automata

(LBA) and proved the following two results.

(1) The CS languages are just those languages accepted by

LBA,

(2) If M is a deterministic LBA, then L(M) is CS.

In this section we sharpen both results and give easier
proofs. In Sections III and IV we proved that the family of lan-
guages accepted by deterministic PDS are closed under complement
and have unamgiguous CF grammars. The sharper results proved here
establish the analogous theorem for deterministic LBA and unamblgu-
ous CS languages.

A linear bounded automaton (LBA) is a nondeterministic Turing
Machine (AI,AO,E, 8,1 Lps @) which can only read and write symbols
on those squares of its tape which contain the input string. The
output alphabet AO is, in general, larger than the irput alphabet
AI. In another formalism the alphabets are the same but the LBA
is able to use a scratch tape K times the length of its input for
arbitrary fixed K (i.e., each machine is assigned one integer K

for all inputs). For details the reader is referred to Kuroda (1964).



A deterministic LBA is an LBA with a single valued transi-
tion function &.

Theorem 18: If an LBA M accepts L, then L is context sensi-
tive. Moreover, if M is deterministic, then L has an unambiguous
CS grammar.

Proof: We begin by éonstructing a Type 1 grarmar G for
L#=(x#: xel}).

Take

<
I

p=A U

<4
n

= () U (A) U (A x AD U (5 " x A x Ap)

where

2' =ZU (1), T ¢ Z

A1 is the initial symbol of G.
To improve readability and also to help motivate the con-
struction of G from M, column vectors read from top to bottom

are used instead of row vectors read from left to rignht.
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(1) The following rules are in G for all a ¢ As.

(2) 1f (s,a) - (a',S',£) is in M, then

S St
a - | a!
(1) 2£=0) =>1'v b ' in G for all b € AL,
S S
c al|] - (c a'
(11) l=-l]=>(d) b d (b) in G for all

b,deAI,cer.
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(S
a
(111) £=41) = b

c
'
HISRA
in G for 811 b, d € AI, c € AO.

S
a
b

T
al

#-a(b

'
(iv) £=+land8' e } = #

in G for all b € AI .

(3) The following rules are in G for all b, d € A[, &, ¢ € A

T T T
’ c ( a - ( c ( a
(d] b d b
T
(a) - b
b
By means of the rules (1)
S
° [
b
e ba) (:k}#
Al = 9 bg k



for all b, € A;, 1 <1 <k. Thus A, essertially dominates an
imudcmﬁ@mﬁmofMﬁ&aﬂﬁmwiw%x=bﬁ2n-%

writte:. twice.

The rules 2 (i), (ii), and (iii) are exactly the transitions
of M exc:pt that dummy symbols (representing the input string)
]

are carried alorg and never altered during any derivation employ-
ing these rules.

A rule of the form 2 (iv) can only be applied if M accepts
X, but once applied, G can generate x # by the rules (3). These
siuply strip away the upper components of each vector symbol,
leaving the original input.

It is a simple matter to construct a Type 1 grammar G' for
L from G. G' contains all rules cf G except those involving #;
these are replaced by introducing new non-terminals B# as

follows:

A - BD W ( A _»Eﬁ

Dog Y = ﬁinG'
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in G in G'

Finally, note that all rules of G' are CF except for those
of the form AB — CD, Each ;uch rule may be replaced by the
three CS rules AB - A'B, A'B — A'Dand A'D — CD where A'
is a new non-terminal.

Corollary: If L is a rudimentary event, then L has an un-
ambiguous CS grammar.

Proof: Myhill (1960) showed every rudimentary event is
accepted by a deterministic LBA,

Zpeorém 19: Given a deterministic LBA M which accepts L,
one can construct a deterministic LBA M' which accepts L.

Proof: The proof is informal. Choose an integer n so

that

MY) s |>:| Ay) |Ao‘x(y)

*
for all y € AO .

For a given input x, M has at most nk(x) distinct machine-

tape configurations. Therefore, since M is deterministic, either

M terminates its computation with nk(x) steps or else a configura-

tion recurs end M never termmirates its computation on x.
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By providing M' with enough output symbols, e.g.,
'] =
|45 | = (m+1) (IZ ' +1) Ay s

M' can be a determministic I'.BA which functions as follows.

M' simulates M with input x. Whenever M executes an instruc-
tion, M' simulates the execution of the same instruction and also
adds one to a counter, initially zero. If M accepts x, M' blocks.

)'(x), then M' accepts x.

If M blocks or if the counter exceeds n

Evidently L(M') = L.

Theorem 20: If L is in the Boolean algebra generated by the
C¥ languages; then L has an unambiguous CS grammar.

Proof: The deterministic LEA are obviously closed under union
and intersection and therefore by Theorem 19 they form a Boolean

algebra. It is easy to prove that any CF language can be accepted

by a deterministic LBA. Theorem 18 implies the result.
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