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Abstract

Several new techniques have been developed to fabricate periodic structures
with linewidths less than 0.1um. The first technique uses an achromatic
holographic configuration in which both spatially and temporally incoher-
ent sources of light, readily available in the deep-uv, can be used to produce
very fine period gratings. This configuration has been feedback stabilized
allowing long exposure times so that both weak sources of deep-uv and
high resolution, low sensitivity resists such as PMMA can be used. A
high-contrast grating with a period of 120nm has been fabricated. The
achromatic configuration is extendable to even shorter wavelengths in the
VUV and soft x-ray region. The second technique is the feedback stabiliza-
tion of a conventional holographic lithography system. This system is in
a cleanroom where unavoidable environmental disturbances create signifi-
cant fringe noise, greatly reducing the contrast. An active feedback system
modulates the phase of one arm of the interferometer canceling the effects
of vibration and drift. The feedback system greatly increases the process
latitude and useful area of the ~ 200nm period gratings. A high resolution
method for aligning gratings using a photoelastic modulator is described.
This technique uses the the partial polarization property of fine period
gratings and has a measured resolution of less than 1 arc-second. Third, a
procedure for making “x-ray nanolithography” masks with electron beam
generated patterns has been demonstrated. This process has been used to
make and replicate x-ray masks with small area 100nm period (~ 50nm
linewidth) gratings as well as arbitrary-shaped “device” patterns allowing
researchers to combine the arbitrary-pattern, fine linewidth capability of
electron beam lithography with the high contrast, large process latitude
of x-ray lithography. Finally, a program for the rigorous eigenmode so-
lution of Maxwell’s equations in square wave grating structures has been
implemented.

Thesis Supervisor: Henry 1. Smith, Professor of Electrical Engineering.
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Chapter 1

Introduction

Periodic and quasi-periodic microstructures have a long and rich history [1].
In 1821, Joseph von Fraunhofer invented the diffraction grating as we know
it today. He produced ruled grooves on a metal surface and his finest grating
was 12mm wide with 9600 grooves (A = 1.25um). These gratings allowed
him to measure the wavelength of light for the first time, explain the phe-
nomenon of diffracted orders, derive and test the grating equation, and
even discuss the effects of errors in the grating line positions. In 1874, Lord
Rayleigh showed theoretically that a grating could have a higher resolution
than a prism. It was not until much later, in 1880, that Henry A. Rowland,
at John Hopkins University, built a ruling engine producing sufficiently high
quality gratings that this theoretical advantage became a reality. Another
grating researcher, Albert A. Michelson, made several important contribu-
tions to the art of grating fabrication, along with many other well known
scientific achievements. He apparently demanded perfection in his gratings
and as a result produced very few. One of the select few that he was satis-
fied with was dropped and ruined while being demonstrated to his guests at
a dinner party. He suggested using an interferometer to control the motion
of the ruling engine stage. This was implemented almost half a century
latter at MIT by Harrison and Stroke (in 1955) and resulted in a major
improvement in the quality of gratings that could be produced. An impres-
sive fraction of all atomic, molecular, and astrophysical science is based on
spectroscopic data derived from grating-based spectrometers.

The invention of the laser started a revolution in optics and a whole
new field of research known as modern optics was born. The laser gave



researchers a highly coherent source of light. With this coherent source,
large interference patterns could be generated and “holographic” methods
for producing diffraction gratings were developed. It is difficult to trace the
origin of the idea of using an interference pattern to produce gratings, but
Michelson considered it as far back as 1915. With the development of high-
power lasers in the late 1960’s both Rudolph and Schmahl [2] in Germany
and Labeyrie and Flamand [3] in France developed holographic techniques
for grating fabrication. Since that time, considerable effort has gone into
making gratings with high efficiency, low distortion, and in some cases
smaller periods to measure shorter wavelength interactions. The emphasis
of the work described here is on the development of technology to make
very fine period gratings and other small structures in order to probe the
short wavelength interactions of x-rays, electrons in solids, and other (not
necessarily electromagnetic) diffraction phenomenon. Further, many of the
techniques developed for periodic nanostructure fabrication can also be
applied to arbitrary shaped patterns and are of general interest to the
microstructure engineering community.

The generation of holographic gratings has depended on the develop-
ment of lasers (with appropriate wavelengths) to expose photosensitive ma-
terial. In order to expose finer and finer period gratings, shorter wavelength
lasers are needed. However, in the deep-uv region of the electromagnetic
spectrum (180nm-250nm) there are very few options available for the gen-
eration of coherent light. Rapid advances in excimer laser technology, have
resulted in “line-narrowed” lasers that have quite good coherence proper-
ties. However, these lasers are still very expensive (~ $100,000). Because
deep-uv sources such as ordinary excimer lasers and arc-lamps have rather
poor temporal and spatial coherence properties, compared to near-uv and
visible lasers, an achromatic interferometer configuration that requires nei-
ther good spatial nor temporal coherence properties has been demonstrated.
This achromatic configuration uses the dispersive properties of transmission
gratings to produce an standing intensity pattern in space with half the pe-
riod of the “parent” gratings. This intensity pattern is independent of both
the source wavelength and angle of incidence. The spatial coherence of the
source does determine the acceptable “depth of focus” so that extended
sources require precise alignment. The temporal “coherence length” sets
an upper bound on the allowed optical path length difference between the
two arms. When using quartz disks for the parent gratings this constraint
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determines how flat and parallel the substrates must be. Gratings were ex-
posed using both a mercury arc-lamp, filtered for the “I” line A = 365nm,
and an ArF excimer laser, A = 193nm. The contrast of these gratings was
sufficient so that further processing steps such as shadowing, and reactive
ion etching (RIE) were carried out. The finest period grating produced with
this achromatic system was 120nm; the limit imposed by the wavelength of
the ArF excimer laser is about 100nm. Because the power of many deep-uv
sources is rather low, and the sensitivity of the high resolution resist mate-
rial, PMMA, is also low, the exposure time is very long. To counteract the
inevitable mechanical drift, a feedback compensator was incorporated into
the system allowing arbitrarily long exposure times.

The combination of an achromatic holographic configuration and a drift
compensating feedback loop allows for the use of modest deep-uv sources
to produce very fine period gratings. These gratings are of great inter-
est in several areas, such as x-ray spectroscopy, microstructure fabrica-
tion research, quantum-effect electronic device research, cryogenic com-
patible polarizers, sofi x-ray interferometers, thin film materials research,
and possibly atomic or molecular interferometers. The development of a
feedback-compensated achromatic interferometer system represents a sig-
nificant practical advance in the art of grating fabrication because a highly
coherent or powerful source is no longer needed.

In order to fabricate high quality, large area gratings, with a conven-
tional holographic lithography system placed in a clean room environment,
an active feedback system has been developed. The vibration and noise
levels encountered in the clean room environment are large enough so that
passive mechanical vibration isolation alone is insufficient to produce high
contrast fringes. By placing a beamsplitter above the substrate, forming
a Mach-Zehnder interferometer, and measuring the fringe intensity as a
function of time, a feedback signal can be generated. The feedback signal
is proportional to the sine of the phase difference between the two arms.
The feedback element, an ADP Pockels’s cell, not only compensates for
the slow fringe drift but also for the audio frequency vibrations, resulting
in high contrast fringes. The feedback locking of the fringes allows one to
make arbitrarily long exposures even in very “noisy” environments.

Electron beam lithography is a non-optical system for making fine pe-
riod gratings and as well as other patterns. Electron beam lithography
systems are able to “write” patterns of arbitrary geometry with extremely
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small linewidths and are an important tool in microstructure research.
Many e-beam systems have a laser interferometer controlled stage und can
be thought of as a modern general-purpose “ruling” engine for producing
arbitrary patterns. It is a sad fact of life that high resclution electron-
beam systems are very expensive both to obtain and operate. Therefore a
technique had been developed to produce high-contrast x-ray nanolithogra-
phy masks using e-beam lithography, done off campus, and then replicate
the masks at MIT using x-ray nanolithography. A collaborative arrange-
ment was set up with the e-beam lithography experts at IBM’s Yorktown
Heights research lab to expose fine linewidth patterns using a high reso-
lution system at IBM and then process the masks and replicate them at
MIT. This arrangement has worked very well: 100nm period gratings, and
~100nm linewidth “device” structures have been written and replicated.
Although initially developed to study periodic structures, this technique
is of general interest to the submicron structures and electronic “quantum
device” researchers because arbitrary patterns can be generated and repli-
cated. The combination of fine linewidth pattern generation using electron
beam lithography and the high contrast, parallel replication process of x-ray
nanolithography gives researchers the best of both technologies.

No matter how the fine-period gratings are made, in most practical
applications precise alignment to other elements of the system is needed.
For example, diffraction gratings with periods of 200nm must be properly
oriented in an x-ray snectrometer with respect to the detector. A high reso-
lution technique has been developed using the partial polarization property
of these gratings and a photoelastic modulator (PEM). This technique uses
a lock-in amplifier to measure a signal that is proportional to the sine of
twice the angle between the crystal axis of the PEM and the grating lines.
A resolution of better than 1 arc-second has been measured. This system
will be used in the alignment of several hundred gratings on the AXAF
x-ray telescope satellite and may also be used on other x-ray spectroscopy
instruments giving a simple and easy-to-implement solution to what other-
wise can be a very difficult alignment problem.

Another difficult problem to solve is the accurate prediction of grating
performance for a wide range of wavelengths and different materials. For
example, when making the gratings for the achromatic interferometer it
is important to know what the optimum depth and linewidth parameters
are. These gratings are used with a wavelength that is comparable to the
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grating period, the scalar diffraction theory is no longer valid. Another ex-
ample where electromagnetic calculations are needed is the performance of
“wire grid” polarizers. A wire grid polarizer consists of conducting grating
lines (i.e. Au or Al) with a period much smaller than the wavelength on
a transparent substrate. Light polarized with the electric field polarized
parallel to the grating lines is reflected much more and transmitted much
less than light polarized perpendicular to the grating lines. Complete elec-
tromagnetic vector theory is needed for these gratings. To analyze these
different situations a computer program has been written and tested to
solve the electromagnetic problem of a rectangular wave (lamellar) grating
structure. Most of the gratings produced by our lab are essentially rectan-
gular wave structures so the lack of generality is not a serious shortcoming.
Further, more general shapes can be approximated by many layers of rect-
angular wave gratings. The program rigorously solves Maxwell’s equations
using the eigenmode approach where the wave equation is translated into an
infinite matrix equation. The grating eigenmodes correspond to the eigen-
values of this infinite matrix and the eigenvalues of a truncated matrix are
good approximations of the true grating eigenmodes. These eigenvalues are
then “polished” to be exact roots of a transcendental equation. After the
eigenmodes are found, the boundary conditions of continuous tangential
electric and magnetic fields at the front and back of the grating are used to
solve for the undetermined constants giving the exact field. This program
has been very useful in understanding and predicting various diffraction
grating phenomena.
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Chapter 2

Achromatic Holography

2.1 Introduction

This chapter closely follows the author’s paper “Achromatic Holography in
the Deep UV™ [4]. For many applications of gratings in optoelectronics 5],
quantum effect devices [6], and diffractive x-ray optics and spectroscopy (7],
very small periods are needed. For some applications the smaller the grating
period the better the performance. For example, the dispersion of an x-ray
diffraction grating is proportional to the line density (spatial frequency),
and in most x-ray spectrometer configurations the energy resolution is pro-
portional to the dispersion.

Currently, nearly all fine-period gratings are made with conventional
holographic lithography where a periodic intensity pattern in space is pro-
duced by the interference of two coherent beams, as shown in Fig. 2.1 The
period of this intensity pattern, A, is directly proportional to the wave-
length of the source and inversely proportional to the sine of half the angle
between the incoming beams:

A
"~ 2sin(0)”

This intensity pattern is usually recorded in photoresist as part of a multi-
step process to produce a desired structure (8},[9]. To generate 2 standing
intensity pattern with a period of 100nm (in free space) requires a source
wavelength less than 200nm. Unfortunately, such deep UV sources gener-
ally lack either the temporal or spatial coherence, or both, to yield gratings

A (2.1)
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Laser Beam

/ Resist
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/N | Substrate

Beamsplitter

Mirror

Figure 2.1: Conventional holographic lithography consists of generating an
intensity pattern in space from the interference of two coherent beams. In
the usual set up, a beamsplitter splits the beam of a coherent laser source
into two parts. These two beams are directed by mirrors through a spatial
filter to clean up spatial “noise” caused by scattering from imperfections
and dust. Sometimes a collimating lens is used to reduce the curvature
of the wavefront after the spatial filter. The spatially filtered and perhaps
collimated, beams overlap at the substrate plane resulting in an intensity

pattern with period A = A/(2sin6).
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with a large number of lines. The number of high contrast fringes in a con-
ventional configuration is limited by the temporal coherence and is given
by ”

N~ Z;, (2.2)
where v and Av are the source frequency and bandwidth respectively.

Several attempts have been made to fabricate very fine period gratings
while circumventing the requirement of a coherent deep-UV source. One
technique is to use a high refraction index medium to lower the effective
wavelength of a mid-UV laser source {10]. A high-index prism was placed
on a photoresist-coated substrate, with a xylene index-matching fluid in
between. Grating periods of 110nm were obtained. However, it is difficult
to get highly uniform exposure with such evanescent coupling. Also, con-
ventional photoresist has a ratural granularity which leads to ragged line
edges at ~ 100nm periods. Another approach is to generate the required
deep-UV wavelength by non-linear optical techniques [11]. However, this
requires a sophisticated optical set up in order to properly phase match the
harmonic generating non-linear crystals or gas cells. Further, most popular
nonlinear crystals become opaque in the deep-uv region.

A state-of-the-art “linewidth-narrowed” ArF excimer laser, A = 193nm,
with a coherence length of about 2mm (v/Av = 10*) was tested to produce
gratings in a conventional holographic configuration. High contrast fringe
patterns could be produced during each pulse. But the pattern would shift
significantly from pulse to pulse because of small changes in the angle of the
beam as well as low level vibration in the interferometer. The maximum
allowable change in angle, Aa, from pulse to pulse is given by

Aak % (2.3)

where ! is the length of the interferometer arm. If only one pulse is needed
to expose the resist, excellent gratings were produced, but not otherwise.
Further, the cost of a line-narrowed excimer laser is on the order of $100,000,
which makes the purchase of such 2 laser an expensive obstacle to producing
very fine period gratings.

Earlier, a simple achromatic technique, called “near field spatial fre-
quency doubling” [12] which is compatible with deep-UV sources having
poor coherence, was investigated. This technique uses the achromatic char-
acteristics of the intensity pattern in the near field of a parent grating with
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the zero order suppressed. However, gratings made with this technique still
have a Fourier component at the fundamental spatial frequency, which is
a problem in some applications, such as spectroscopy. The complete sup-
pression of the zero order is difficult if not impossible and the degree to
which the zero order must be suppressed is a quadratic function of the
allowed tolerance of the fundamental Fourier coefficicnt. For example, if
the application for the grating can tolerate no more that 0.1% fundamental
component then the zero order must be suppressed by a factor of 108.

A far-field holographic configuration that allows the source to have both
large bandwidth, Av, and angular spread has been demonstrated [4]. This
achromatic configuration can be used with a wide variety of sources in the
deep-UV, such as arc-lamps and short-coherence-length excimer lasers. In
order to stabilize this system over long exposure times, a feedback network
has been included in the achromatic design. The exposure time using our
“museum vintage” excimer laser is 15 to 20 minutes, and the allowable
drift over this time period must be less that a small fraction of the final
grating period. A HeCd laser (A = 335nm) is used to monitor the drift and
a piezoelectric translator makes corrections in the position of the optical
elements to lock the fringes in place so that the inevitable mechanical drift
is no longer an exposure-time limiting constraint.

2.2 Achromatic Holography Configuration

The basic idea of using gratings to make a halanced configuration was
presented by Weinberg and Wood [13] in 1959, and a detailed study of
making holograms with partially coherent light was published by E.N. Leith
and B.J. Chang in 1973 [14] as well as Y.S. Cheng [15]. The achromatic
holographic scheme is shown in Fig. 2.2. The first grating, with period
A, acts as a beamsplitter and difiracts the incoming light into plus and
minus first-order beams. The zero-order beam is subsequently blocked by
a stop. The second grating recombines the two beams by diffracting them
back towards the substrate. If the recombiner grating has the same period
as the beamsplitter, this diffraction is second order. When the optical
distance from the first to the second grating is the same as the optical
distance from the second grating to the substrate the intensity pattern at
the substrate has a period half that of the beamsplitter grating, independent

17
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Figure 2.2: Configuration for achromatic holographic lithography consisting
of a set of identical-period gratings. The beamsplitter grating diffracts
the incoming light into plus and minus first-order beams. The recombiner
grating diffracts these two beams back to the substrate. A beam stop blocks
the beamsplitter’s zero order.
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of the source wavelength and the angle of the input beam. It is easy to show
that this intensity pattern period at the substrate, P/2, is independent of
the wavelength. Consider a source with wavelength A. The diffraction
condition requires that the angle 6 in Fig. 2.2 is

) A
sin(f) = 1 (2.4)
From the equation 2.1 the final grating period is then given by
A
Afna = 2sin(0) (2.5)
A
= —= (2.6)
2(3)
A
= 3 (2.7)

It is more difficult, although straightforward, to show that the registration
of different wavelengths is correct and that the result is independent of the
input angle. Suppose that a monochromatic plane wave is incident on the
interferometer at a small angle a. See Fig. 2.3. The incident wavefunction
will be

¥(z,2) = Attt (2.8)
where
A = amplitude
k: = -2% sin(a)
k., = 2% cos(a).
In region I of Fig. 2.3 9 is given by
Yl(z,2) = AtettT)zekns
Uh(z,2) = Atyeilbs—T)zeitns
where

b = ) (o)
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Grating

Figure 2.3: This figure shows the Wood’s interferometer with a plane wave
incident at an angle of . For simplicity the zero order beam is not shown
since it would normally be blocked by a beam stop.
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b = ) (& o)

t; = first-order transmission amplitude

Now in region II, 9 is given by

¢‘1‘1( z, z) = Atit, ci(k,—g‘l)z eik,,z; eik,g(z—zf‘)
¢g(x’ z) = Atyt, ei(k,+2‘1)z e;k,,z{, eik,,(z-:{,)
t, = second-order transmission amplitude
Thus
Yl (z,2) + ¥ (z,2) = Atitse™" (e""""(‘)ez”"zt’Lz + €8 (')c""'zf’) (2.9)
where

da(z) = knzh+ k.zy
¢8(2) = kiozh +kazy

When the system is in perfect alignment, i.e. z4 = 2 and 2] = 2z}, then

2
¥4 + ¥5[* = 4Iotst; cos® (—Azz) (2.10)

where the parameters A and o do not appear. The spatial period and
position of this intensity pattern are determined by the parent grating,
independent of source wavelength and incident angle. If the system is not
in perfect alignment, but is “defocused” by a small amount, Az, then

da = oa(20) +knAz
¢ = ¢B(20) +knlz

Taylor expanding (k,; — k,2) to find that

2 2
A Y

2 ouip) = ()" - (25) (212
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From this equation it is clear that Az must be small enough so that

2m sin(a)
A cos(B)

When the interferometer is well aligned there is an intensity pattern in
space that is independent of the wavelength and spatial frequency of the
input wavefront. Thus, the phase and period of the intensity pattern are
determined by the parent gratings and do not depend on the source charac-
teristics. From equation 2.13 the allowable Az is small when a conventional
source is used. For example, if A« is about 1/2 degree then Az must be
less than about 4um. This makes sense because “white light” interferom-
eters need to have small path length differences. In a real interferometer,
there will be a difference in the optical path lengths between one arm and
the other due to thickness variations in the parent gratings. These path
length differences cannot be eliminated by any adjustments of the align-
ment since they are characteristic of the parent gratings. The difference
in optical path length must be kept less than the coherence length of the
source to get high contrast fringes. Therefore, when selecting materials for
the parent gratings the optical parallelism and flatness of the substrates
are important parameters.

One drawback to the configuration shown in Fig. 2.2 is that the second
order diffraction efficiency of the second set of transmission gratings is gen-
erally small. For a phase grating etched in quartz, 10 percent efficiency has
been measured, although numerical calculation show that much higher ef-
ficiencies are possible with optimum linewidth and depth parameters. This
is illustrated in Fig. 2.4 and 2.5. If a third grating is placed in the sub-
strate location, an achromatic interferometer configuration results which is
very useful for alignment purposes and feedback control. The low overall
efficiency of this configuration, coupled with the low brightness of deep-uv
sources available in our lab and the low sensitivity of high-resolution re-
sists, such as PMMA, conspire to require very long exposure times. The
exposure time can be on the order of 20 minutes. In even the most solid
mechanical systems there will be some mechanical drift due to temperature
variations, air currents and other sources of disturbance. The amount of
allowable drift must be a small fraction of the final grating period for high
contrast fringes. A feedback system is used to correct for this mechanical
drift. A monitor grating is kept in place during the exposure and a laser

Az << %. (2.13)
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Figure 2.4: This plot shows the first order efficiency for a quartz phase
grating (n = 1.6) with a period of A = 240nm and a source wavelength of
A = 193nm as a function of linewidth and etch depth, for both the TE (top)
and TM (bottom) polarizations. Each contour represents a 10% intensity
level. Plots are based on rigorous electromagnetic calculations.
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Figure 2.5: This plot shows the minus second order efficiency of a pure
phase grating (n = 1.6) with a period of A = 240nm at a source wavelength
of A = 193nm and with the incident wavefront at an angle ¢ = 53 degrees,
as a function of linewidth and etch depth for both the TE (top) and TM
(bottom) polarizations. Each contour represents a 10% intensity level.
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beam probes the interferometer for changes in position of the fringe pat-
tern. The probe beam will have well spaced moiré fringes due to the slight
misalignment or distortion of the gratings. This moiré pattern is sensed by
two photodiodes connected to a differential amplifier. If the moiré fringe
pattern moves in one direction, one diode signal will become larger and the
other will become smaller. A feedback network amplifies this error signal,
filters it, and drives a piezoelectric translator that pushes on the recombirner
grating, reducing the error signal and therefore closing the loop. With this
feedback loop, the interferometer has negligible mechanical drift for very
long periods of time.

Since the number of high-contrast fringes produced with this configura-
tion is independent of the source characteristics, the size of the final grating
is limited only by the sizes of the parent gratings or any obstructions in
the light paths. If a single recombiner grating is used, then the maximum
final grating size is limited to about one third the width of the recombiner
grating. However, if two separate recombiner gratings are used then the
final grating size is limited to the width of the smallest of the three parent
gratings.

2.3 Experimental Results

Two sets of gratings were fabricated using conventional holographic lithog-
raphy to test the achromatic configuration. The first set, having a period of
540nm, was used with the 365nm line of a mercury arc lamp. A second set
of gratings had a period of 240nm and was used with both an ArF excimer
laser, A = 193nm, and the 210 — 220nm radiation from a cadmium-xenon
arc lamp. Both sets were pure phase gratings etched in UV-grade fused sil-
ica (Supersil 2) to a depth designed to optimize the appropriate diffracted
orders: plus and minus first order for the beamsplitter and second order
for the recombiner grating. A third grating was placed in the substrate
plane for alignment and feedback control. When strong fringes were visible
behind this third grating the system was in alignment. A HeCd laser was
used for feedback control.

The achromatic features of this system are apparent as the source is
moved to simulate large changes in the incident angle and the fringe pattern
behind the third grating stayes constant.
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Figure 2.6: 270nm-period grating exposed in photoresist using a Hg
arc-lamp source, filtered for A =~ 365nm.



270nm Period Grating in
Photoresist made using
Achromatic Holographic Lithography
Hg Arc-Lamp Source A = 365nm
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Figure 2.6 shows the photoresist profile resulting from exposure with
a Hg arc-lamp source filtered for the 365nm line in conjunction with the
540nm-pcriod grating set. This profile is about the same as we obtain using
an Ar-ion laser in a conventional holographic configuration (8]. Figure 2.7
shows the pattern produced in PMMA with an ArF excimer laser in con-
junction with the 240nm-period set of gratings. The depth of modulation
in the resist is sufficient so that subsequent processing by metal deposition,
reactive-ion-etching, liftoff, electroplating, or other processes can yield use-
ful structures for optical, electronic or other devices. For example, Fig. 2.8
shows a 120nm-period grating that has been shadowed with aluminum and
reactive-ion-etched, resulting in 40nm wide lines. A grating with this as-
pect ratio can be used in further processing steps such as liftoff, etching,
and electroplating.

2.4 Conclusion

A far-field achromatic holographic system has been built and tested us-
ing mid-UV and deep-UV sources to expose grating patterns. A Hg arc
lamp source, A = 365nm, was used with 540nm-period parent gratings to
expose 270nm-period gratings in photoresist, and an ArF excimer laser,
A = 193nm, was used to expose 120nm-period gratings in PMMA. The
system works well with spatially incoherent sources that have a large band-
‘width, making it especially useful in the deep-UV region. A feedback sys-
tem has been incorporated to control the mechanical drift, reducing the
net drift to a negligible value over long iime periods. Exposure times as
long as 20 minutes have been needed to expose the high-resolution but low
sensitivity PMMA resist. This configuration can be extended into the vac-
uum UV and soft x-ray regions, and is a potential candidate for molecular
interferometry with low energy atoms :sing free standirg g-atings [16].
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Figure 2.7: A 120nm-period grating pattern in PMMA exposed with an
ArF excimer laser, A = 193nm.
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Figure 2.8: A 120nm-period grating produced by achromatic holography,
shadowed with aluminum and reactive ion etched in oxygen. The linewidth
is about 40nm and this structure can be used for further processing such
as liftoff, etching, and electroplating.
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Chapter 3

Feedback Stabilization of
Holographic Lithography

3.1 Introduction

In a conventional holographic lithography system, the interference of two
coherent beams produces an intensity pattern in space that can be used
to expose photosensitive material. As the period of this intensity pattern
becomes finer, even small vibrations that could be ignored for larger period
gratings can seriously degrade the fringe contrast. This problem becomes
even worse when the holographic system must be in an environment, such as
a clean room, where large amounts of acoustic noise, mechunical vibrations,
and air currents excite the mechanical modes of the optical configuration,
degrading the stability of the fringes. Passive measures such as using a
high quality optical table with pneumatic vibration isolation mounts are
insufficient in this high noise environment. Previous workers have used
feedback to compensate for slow drift using a mechanical servo system [17],
but the audio-frequency mechanical vibrations encountered in the current
system need to be attenuated as well.

In order to produce high contrast fringes, an active feedback system has
been developed, as shown in Fig. 3.1. In this system a beamsplitter is placed
above and behind the substrate (to be out of the way but still within the
overlap of the two beams) forming a Mach-Zehnder interferometer. A pair
of photodiodes is used to measure the intensity signal of both interference
patterns. By power conservation, the sum of the signals measured in each
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arm is proportional to the laser output power, which is approximately con-
stant. The diodes are connected to a differential amplifier which subtracts
one diode signal from the other. With this configuration, a signal propor-
tional to the sine of the phase difference between the two interferometer
arms is produced and the common mode signals such as the room lights
are effectively canceled. The output of this differential amplifier modulates
a high-voltage power supply which in turn drives an ADP-crystal Pockels
cell. The Pockels cell modulates the phase of one of the interferometer arms
thereby closing the feedback loop. The high gain of the feedback loop keeps
the difference between the two photodiode signals very small resulting in a
stable fringe pattern. An advantage of using two diodes and taking the dif-
ference is that the fringe pattern is largely independent of the ambient light
level and the laser output power. A change in the laser output power will
only produce a change in the loop gain and the fringe position is insensitive
to the loop gain if it is large enough.

The active feedback system holds the fringe pattern constant during the
exposure even when large external sources of mechanical disturbances are
present. This greatly increases the contrast of the intensity pattern allowing
a much larger process latitude in terms of exposure and development times
as well as better grating profiles after development.

3.2 Details of Feedback Theory

The difference of the signals from the two photodiodes is proportional to
the sine of the phase difference in the path lengths of the two interferometer
arms. This phase difference as a function of time consists of two terms: a
term representing the phase of the Pockels cell and a phase term due to the
noise (vibration, air currents, etc) of the system.

¢Total = ¢Noise + ¢Pockels (3'1)

Let V, be the gain of the amplifier electronics, in order to reduce the effect
of the noise our feedback equation becomes:

¢Pockels = —“"‘;"" 5in(¢Pockelu + ¢Noise) (3-2)

~

where V, is the 7 phase shifting voltage for the Pockels cell. If the feed-
back system is working properly then the Pockels cell phase, @pockels, Will
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be almost equal and opposite to the noise phase disturbance, ¢noize- Un-
der these conditions the sine function can be expanded in a Taylor series,
keeping only the first order terms:

PPockels = —7 ?(‘ﬁ?o&kds + PNoise) - (3.3)

Solving this equation for the total phase difference gives

1

PPockels + PNoise = —7~ PNosise- (3.4)
1+ 2

For a moderate amount of loop gain, 7V, /V,, the noise term can be sub-
stantially reduced.

3.3 Experimental Configuration

Figure 3.1 shows the experimental configuration. A conventional holo-
graphic lithography configuration is modified by placing an ADP Pockels
cell phase modulator in one arm. A beamsplitter is placed above and be-
hind the substrate to be out of the way and thus not scatter light onto the
substrate but still be in the overlap of the two beams. The beamsplitter
forms a Mach-Zehnder interferometer whose output intensity is monitored
by two photodiodes. The photodiodes are connected to a differential cur-
rent amplifier to produce a signal proportional to the sine of the phase
difference between the two arms. This signal is fed into a high-voltage
audio-frequency-bandwidth amplifier which drives the Pockels cell, closing
the feedback loop. Figure 3.2 shows the oscilloscope traces when the fringes
are locked and not locked for an interferometer configuration that uses the
entire 8 foot length of the optical table. The noise in the fringes without
feedback is effectively larger than the grating period resulting in contrast
much too small for useful grating exposure. With the fringes locked, good
gratings can be generated. Figures 3.3 and 3.4 show the difference between
exposed grating profiles with and without feedback respectively.
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Figure 3.1: This shows the holographic configuration with feedback stabi-
lization. A beamsplitter is placed in the overlap of the two coherent beams
but out of the way of the substrate so that no spurious scattering onto the
substrate will occur. Two photodiodes measure the intensity of the fringes
on both sides of the beamsplitter. The difference of these two intensities
is proportional to the sine of the phase difference between the two arms.
This signal is amplified and used to drive the Pockels cell in one arm. The
pockels cell introduces phase shift that almost completely cancels the noise
introduced by mechanical vibration and other disturbances.
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Figure 3.2: The top oscilloscope trace, showes a signal proportional to
the sine of the phase noise, without the feedback loop for a interferometer
configuration that uses the entire 4 by 8 foot area of an optics table in
a clean room environment. The noise is much larger than the period of
the grating to be exposed and therefore the contrast is well below a usable
level. The bottom trace shows the signal with a loop gain of about 15. The
residual noise is essentially zero, resulting in high contrast fringes that can
be used to expose a large area grating and allow a large process latitude.
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Figure 3.3: An SEM micrograph of exposed photoresist profiles using feed-
back. The feedback greatly increases the fringe contrast.
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Figure 3.4: An SEM micrograph of exposed photoresist without using feed-
back. The contrast is so poor that there is no hope of producing a good
grating from this exposure.
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3.4 Conclusion

When holographically fabricating gratings with submicron periods, small
levels of vibration that are present with even the best optics tables and
pneumatic vibration isolation mounts can seriously degrade the fringe con-
trast. This problem is much worse when the holographic system is in an
unfavorable environment such as a clean room. In order to overcome this
problem, an active feedback system has been developed to “lock” the fringes
by modulating the phase in one arm of the interferometer with an ADP
Pockels cell. The feedback signal is derived from a beamsplitter placed
above and behind the substrate which forms a Mach-Zehnder interferome-
ter. In the extreme case of very long interferometer arms and long exposure
times this system makes possible large area gratings with excellent photore-
sist profiles. In the same configuration, with the feedback system turned
off, no usable resist structures could be made.

The technique of active feedback holographic fringe locking should be
extendable beyond grating fabrication to more general holograms. In this
case, a simple beamsplitter cannot be used to generate the feedback signal.
However, a poor quality transmission hologram of the desired object can
be used in place of the beamsplitter and a bootstrap procedure employed
to generate very high-contrast fringes over arbitrarily long exposure times.
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Chapter 4

X-ray Nanolithography M asks
from Electron Beam
Lithography

4.1 Introduction

This chapter follows the publication “Fabrication by Tri-Level Electron
Beam Lithography of X-Ray Masks with 50nm Linewidths, and Replication
by X-Ray Nanolithography,” given at the 1987 Microcircuit Engineering
conference in Paris [18] with additional details. A process has been de-
veloped to produce x-ray nanolithography masks containing fine linewidth
patterns generated by scanning-electron-beam lithography. This technol-
ogy allows researchers to combine the high resolution, arbitrary-pattern-
generation capability of electron-beam lithography with the parallel repli-
cation, high contrast, and large process-latitude of x-ray nanolithography.
A tri-level structure was used that consisted of PMMA as the electron-
sensitive material, titanium as the middle, masking layer, and polyimide as
the buffer layer on top of a gold plating base. After electron-beam expo-
sure and development, the pattern is transferred to the Ti layer by CCL,F,
reactive-ion etching (RIE), and then a polyimide mold is produced by O,
RIE. Gold is then electroplated into this mold to form the x-ray absorber.
X-ray masks with 100nm-period gratings and electronic device patterns of
~ 100nm linewidths were fabricated by this process and replicated.
Scanning-electron-beam lithography is an essential tool for producing
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patterns of arbitrary geometry with linewidths of 100nm or less. In those
applications where large areas (=mm?) of fine-linewidth features are needed,
the e-beam writing time can become extremely long. There are several rea-
sons for this. First, the beam diameter is usually kept substantially smaller
than the linewidth for improved process control. For approximately con-
stant beam current density, the beam current falls off proportional to the
square of the linewidth. Second, for a given linewidth there is an upper
limit of resist sensitivity set by “shot noise” considerations [19]. This is
observed in practice where high resolution e-beam resists such as PMMA
are much less sensitive than other lower-resolution resists. Based on the
theory described in [19], the exposure time per unit area should increase at
least as rapidly as the inverse fourth power of the linewidth for fully dense
patterns, and more rapidly than this for minimal line edge raggedness.

A high-resolution replication technique, in which the information is
transferred in parallel, is an ideal complement to electron-beam lithog-
raphy since large areas of fine linewidth patterns can be copied over and
over again in a small fraction of th: time needed to produce them with
an e-beam system. Contact x-ray nar.olichography has demonstrated mini-
mum lines and spaces of 17.5nm [20], and with the proper resist is probably
capable of &~ 10nm linewidth. It has excellent contrast and minimal prox-
imity effects, allowing high-aspect-ratio structures to be produced with a
large process latitude. Although our x-ray nanolithography system has only
a very crude alignment capability many interesting research projects have
been carried out [21,22,23]. Microgap x-ray nanolithography, in which the
mask and substrate are separated by a small controlled gap of a few mi-
crometers [24], promises to be a low-distortion, high-resolution process with
improved alignment capability. In order to combine the advantages of par-
allel replication by x-ray nanolithography and the fine linewidth, arbitrary-
pattern-generation capability of electron-beam lithography a new process
has been developed for making high-contrast x-ray masks. Using these
masks, features as small as 50nm have been replicated.

4.2 Mask Fabrication Process

This project was a collaborative effort between MIT and Dieter Kern’s
electron beam lithography group at IBM’s Yorktown Heights Research lab
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where the electron beam patterns were written. The first step in any mask
fabrication process is to design the pattern. It would be impractical for
researchers at MIT to travel to IBM each time a design needed changing, a
method of transferring data generated at MIT to IBM was developed. The
method of sending data turned ocut to be rather simple since the output
of the CAD tools at MIT is in the form of a CIF file [25]. The computer-
aided-design program, KIC, can be instructed to use a very small subset of
the CIF commands, consisting only of boxes and their coordinates. A short
program then translates this output into the format used by the IBM pat-
tern generator pre-processor programs. A data file, in the correct format,
is sent by electronic mail to IBM Yorktown Heights Research lab via the
ARPA and BIT net, allowing designers at MIT to easily and quickly send
their designs to IBM. This ability to generate patterns at MIT and then
send them automatically to IBM is a significant asset in utilizing electron
beam generated x-ray nanolithography masks for research projects. The
process described below shows how to make a useful x-ray nanolithography
mask with features as small as 50nm from data sets generated by the CAD
tools at MIT.

An x-ray nanolithography mask consists of a frame and an x-ray trans-
parent membrane patterned with an absorber material such as gold or
tungsten. An outline of the tri-level process used to make such masks
with e-beam lithography is shown in Fig. 4.1. For the membrane material,
1.25um of polyimide [26] was used. This material is quite strong and trans-
mits 65% of the carbon-K (A = 4.5nm) x-rays. The first step is to spin the
polyimide onto a silicon wafer and cure it. Experience has shown that a
high temperature bake of 400C in flowing nitrogen (to prevent carboniza-
tion) for 45 minutes produces membranes that are much stronger and less
permeable to water than those baked at lower temperatures [27]. After
the membranes are cured, the plating base of 10nm of Cr (for adhesion)
and 15nm of Au is evaporated onto the polyimide. Next, a second layer
of polyimide is spun on to give a thickness of 160nm, and cured at 250C.
(Since this layer does not require mechanical strength it is not baked at
400C). After the second polyimide layer is cured, a thin 7.5nm layer of Ti
is evaporated. Finally, the resist material, 80nm of PMMA, is spun onto
the substrate and baked at 175C for several hours. After spinning on the
PMMA, the substrates are at the state shown in Fig. 4.1 (a) and are ready
to be exposed by scanning-electron-beam lithography.
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Figure 4.1: X-ray ffanolithography mask fabrication process. The substrate
before exposure is shown in (a). Starting from the top there is an 80nm
PMMA layer followed by 7.5nm of Ti and 160nm of polyimide on top of a
gold plating base (10nm Cr, 15nm Au). Another polyimide layer of 1.25um
serves as the membrane material after the silicon wafer, not shown, is etched
away. After electron beam exposure and development (b), the pattern is
transferred to the Ti by CCIL,F; RIE which then forms a tough etch mask
for the O, RIE of the polyimide layer (c). Gold is electroplated into the
polyimide mold forming the x-ray absorber (d).
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Several patterns were exposed using the vector scan VS-6 electron-beam
lithography system [28] at IBM’s Yorktown Heights research lab: a grating
with a period of 100nm and several 100nm-linewidth device patterns. The
beam diameter, FWHM, was estimated from “knife edge” measurements
to be about 20nm (i,=40pA) for the device patterns having linewidths
of about 100nm, and about 10nm (i;=10pA) for the 100nm-period grat-
ing. The dose was about 100uC/cm? for the device patterns, and about
1nC/cm (100uC/cm?) for the 100nm-period grating. After exposure, the
samples were developed in solution of 2:1 IPA:MIBK at 21.0C (development
temperature control is very important) for 45 seconds.

Next, the titanium layer must be reactive-ion etched (RIE) using the
PMMA as a mask. As was reported by Unger et al., [29] the etch selectivity
between PMMA and Ti is generally very poor. Because the PMMA is
much thicker than the Ti this poor selectivity can be tolerated. Good
results were obtained using CCl,F; with a chamber pressure of 10mTorr,
DC bias voltage of 600 volts and power density of about 0.23 watts/cm?
with a quartz target. The etch rate for Ti under these conditions is about
30nm/minute. The PMMA etches at a much faster rate than the Ti, but,
since the total time is so short (16 seconds), the pattern is transferred to
the Ti layer without significant linewidth change. Next, the Ti is used
as a mask for reactive-ion-etching the polyimide buffer layer in O;. Since
the Ti layer forms a tough oxide that is highly resistant to etching under
oxygen ion bombardment, 7.5nm of Ti is a sufficient RIE mask. The RIE
parameters for oxygen were similar to those for CCl;F,: 600 volt DC bias,
10mTorr pressure, and power density of 0.25 watts/cm?. The etch rate of
the polyimide is about 148nm/minute. One must exercise care to etch the
polyimide completely down to the plating base, but at the same time avoid
over etching since the 15nm gold layer will quickly sputter away. An SEM
micrograph of the x-ray mask at this step of the process is shown in Fig. 4.2.
After the polyimide is etched down to the plating base, gold is electroplated
into the polyimide mold to form the absorber pattern. The electroplating
bath, a commercially available solution [30], is maintained at 45C during
the plating process. The stress of the gold fiha is a function of the plating
bath temperature. Low stress films are obtained with bath temperatures
of between 35C and 45C. The sample is periodically removed from the
bath and the height difference between the polyimide mold and a monitor
region is measured with a surface profilometer (Tencor) to determine the
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Figure 4.2: SEM micrograph of x-ray mask after CCl,F, and O, RIE and
just before gold electroplating.
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amount of plated gold. The plating is stopped after the thickness of the gold
has reached between 100 and 120nm, a thickness which provides sufficient
contrast for x-ray nanolithography.

Next, the central part of the silicon substrate is etched from the back
using a mixture of 97% HF and 3% HNOs;, producing a polyimide mem-
brane. A plastic (vespel) mounting ring is bonded to the membrane with a
low viscosity, 24-hour epoxy and allowed to cure for two days. The plastic
ring is cut free from the Si substrate and 30nm of aluminum evaporated on
the back side. The Al is used for electrostatic clamping of the mask to the
substrate.

4.3 Experimental Results

Several different patterns have heen written using e-beam lithography and
made into high contrast x-ray masks. For electron device research appli-
cations two patterns were written: one consisting of interdigitated fingers
connected to pads, the other a narrow line with a small gap is connected
to two pads. Figure 4.3 and Fig. 4.4 show SEM micrographs of the inter-
digitated finger pattern while Fig. 4.5 and Fig. 4.6 show the line-with-gap
pattern, both replicated in 300nm of PMMA by x-ray nanolithography.

A right angle chevron pattern was written to help evaluate
lithographic performance. SEM micrographs of this sub-100nm-linewidth
pattern are shown in Fig. 4.7 and Fig. 4.8.

A 100nm-period grating with a nominal 50nm linewidth, is shown in
Fig. 4.9. These 100nm-period gratings are of great interest for x-ray spec-
troscopy and quantum-effect device applications. For x-ray spectroscopy,
the fine linewidth pattern must be exposed over large areas (10’s of mm?)
to be useful which is not feasible by electron beam lithography.

4.4 Conclusion

A process for fabricating high-contrast x-ray-nanolithography masks has
been developed to combine the high resolution, arbitrary-pattern-generation
capability of scanning-electron-beam lithography with the parallel replica-
tion technique of x-ray nanolithography. A procedure for designing the
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Figure 4.3: SEM micrograph of interdigitated fingers connected to pads
replicated in 300nm of PMMA by x-ray nanolithography.
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Figure 4.4: Another SEM micrograph of interdigitated fingers connected
to pads replicated in 300nm of PMMA by x-ray nanolithography.
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Figure 4.5: SEM micrograph of a narrow line with gap pattern replicated
in 300nm of PMMA by x-ray nanolithography.
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Figure 4.6: Another SEM micrograph of a narrow line with gap pattern
replicated in 300nm of PMMA by x-ray nanolithography.
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Figure 4.7: SEM micrograph of 85nm linewidth chevron structure with a
pitch of 200nm replicated in 300nm of PMMA using x-ray nanolithography.

60



]..Oym

X-Ray Lithography using
E-Beam Generated Mizsk

-~ K

Ol



Figure 4.8: Another SEM micrograph of 85nm linewidth chevron struc-
ture with a pitch of 200nm replicated in 300nm thick PMMA using x-ray
nanolithography.
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Figure 4.9: SEM micrograph of 100nm-period grating (50nm nominal
linewidth) replicated by x-ray nanolithography in 80nm of PMMA.
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patterns at MIT and transferring these data sets to IBM, where the elec-
tron beam patterns are written, has been worked out. A working process
for transferring the pattern from a thin layer of PMMA into a thick electro-
plated gold structure for suitable for x-ray nanolithography masks has been
developed. This process uses a tri-level resist structure and gold electro-
plating to produce sufficient absorber thickness at fine linewidths to make
a high contrast mask. Patterns for electron device research with linewidths
~ 100nm, and a grating pattern with a nominal 50nm linewidth (100nm
period) have been replicated by x-ray nanolithography. The combination of
electron-beam lithography and x-ray nanolithography gives researchers the
best of both technologies, providing additional flexibility to nanostructure
research.
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Chapter 5

Alignment of X-ray Gratings

A high resolution alignment technique that utilizes the partial polariza-
tion property of fine period transmission gratings has been developed. It
is especially useful when the grating period is sufficiently small such that
there are no visible diffracted orders. This technique uses a photoelastic
modulator (PEM) to produce an intensity signal that is proportional to the
sine of twice the angle between the grating lines and the PEM crystal axis.
The experimentally demonstrated resolution of this technique on 200nm
period gold transmission gratings is better than 1 arc-second. This tech-
nique was developed to align x-ray transmission gratings for spectroscopy
and interferometry applications.

5.1 Introduction

This chapter follows the paper “Transmission X-Ray Diffraction Grating
Alignment Using a Photoelastic Modulator” recently accepted for publi-
cation in Applied Optics with my coauthors Alan M. Levine and Mark
Schattenburg [31]. For applications such as x-ray spectroscopy and inter-
ferometry, the grating period is made much smaller than the wavelength of
visible light. For example, 200nm period transmission gratings are currently
being used in x-ray spectrometers [32], will be used as dispersion elements
on the Advanced X-ray Astrophysics Facility (AXAF) satellite for x-ray
astronomy to be launched in the 1990’s [33], and will be incorporated into
a soft x-ray interferometer now under construction {34]. For each of these
applications the grating lines must be oriented to other components of the
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system within a very small angular tolerance. However, because of the fine
period, the grating does not diffract visible light and therefore standard
optical techniques such as using an autocollimator to measure a diffracted
beam are more difficult or impossible to use.

A sensitive technique to orient a fine period grating using its partial
polarization property has been demonstrated. The technique uses a pho-
toelastic modulator (PEM) to modulate the polarization state of a visible
light beam and produces a signal proportional to the sine of twice the an-
gle between the grating lines and the axis of the PEM. By using a lock-in
amplifier to measure this signal, a very high resolution alignment system
can be built. The experimentally determined resolution for 200nm period
gold transmission gratings has been found to be less than 1 arc-second, and
straightforward modifications should result in even better resolution.

This technique incorporates a modification of the alignment polarime-
ter [35]. The present work differs in the use of the photoelastic modulator
in place of other types of polarization modulators and describes the ap-
plication of high resolution polarimetry to transmission diffraction grating
alignment.

5.2 Alignment Using the Partial Polariza-
tion of a Grating.

Fine period gratings, where the period is comparable to or smaller than
the wavelength of the incident radiation, act as partial polarizers. For
transmission gratings the linear polarization component of the radiation
with the electric field vector perpendicular to the grating lines is usually
transmitted with less attenuation or reflection than the component with
the electric field parallel to the grating lines. This property of a grating
can be characterized by |arm| > |arg|, where the two complex numbers
arg and aras are the transmission amplitudes for an electric field vector
parallel and perpendicular to the grating lines, respectively.

This property can be used directly to align a fine period grating to an
axis of a reference linear polarizer. If the light incident on the grating has
an intensity, I;,, polarized in the y direction, and the grating is oriented
with the lines at an angle § with respect to the y axis, then the intensity
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of the transmitted light is given by
Iy =1L, (|aTE|2 cos? 0 + I(XTI;.{I2 sin? 0) . (5.1)

To align the grating it is rotated until the transmitted intensity is either
minimized or maximized. Near an extremum the transmitted intensity
varies as 682, Thus to align the grating to 1 uradian the transmitted inten-
sity must be measured with an accuracy of about one part in 10'? of the
maximum possible transmitted intensity. Since there will always be noise
from the photodetector and amplifier this technique is impractical for high
resolution alignment.

To overcome these limitations, the following technique produces a signal
that is first order in 8. In this technique the polarization of the light source
is modulated using a PEM [36]. A PEM is basically a vibrating optical
element whose strain-induced birefringence enables it to act as a time-
varving “retardation plate.”

Cousider a monochromatic plane wave of light linearly polarized at 45
degrees to the axes of the strain field of the PEM’s optical element (see
Figure 5.1). The electric field of this wave has the form

E=20 iy, (5.2)

V2
—‘kol

where the usual time dependence, e¢’“*f, and spatial dependence, e ,
have been suppressed, and where x and y are unit vectors representing the
orthogonal strain-field axes. The electric field of the wave transmitted by
the PEM and incident on the grating has the form
_ Eo 0
E——J—i(x+ye ), (5.3)

where ¢(t) is the periodically varying retardation phase. The electric field
of the wave, after passing through a grating with its lines oriented at an
angle 0 with respect to the y axis, is given by

Eou = aTE(E . I.l)ll + aTM(E . V)V, (5.4)

where u and v are the orthogonal unit vectors parallel and perpendicular
to the grating lines given by

v = xcosf+ysind (5.5)
u = -xsinf +ycosé. (5.6)
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Figure 5.1: Unpolarized light from a lamp is polarized at 45 degrees to the
axis of the PEM. In the PEM a bar of fused silica is periodically stressed
which produces a time variable “retardation plate”. The grating acts as a
partial polarizer and the modulated signal is measured with a photodiode
detector.
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The time averaged intensity of the wave incident on the photodetector is
given by

I lazm|® + loze]? (laerl2 = Iawlz) .
= + sin20 cos ¢(t). (5.7)
WEelE? 2 2

The retardation phase, ¢(t), is approximately given by
#(t) = Do sin(wmt), (5.8)

where ®, is an adjustable retardation amplitude and w,, /27 is the vibration
frequency of the optical element of the PEM. The time dependent term in
equation 5.7 can be expanded in a Fourier series in which the coefficients
are Bessel functions [37]:

cos[®g sin(wmt)] = Jo(Po) + 2J2(Po) cos(2wmt) + 2J4(Po) cos(dwmt) + -+ .

(5.9)
Using this expression, the second harmonic component of the intensity is
I(2 2 2
T_%;’L)z = 2J,(®,) (l"”‘ £~ lars| ) sin 20 cos 2wmt. (5.10)
7V & | Eol 2

J2(®o) is maximized for &y =~ m (half-wave retardation). By measuring the
strength of the second harmonic signal the orientation of the grating can
be determined. Furthermore, to align the grating so that § = 0 the grating
is rotated so as to reduce the amplitude of the second harmonic component
to zero.

There are several points to be noted. The signal component, modu-
lated at a frequency of 2w,,, is proportional to the sine of twice the angle
between the PEM axis and the grating lines. Therefore the signal is first
order in 0 for small angles. This is essential for high-resolution alignment.
Further, the grating does not need to be a very effective polarizer since the
signal amplitude depends only on the difference |ara|? — |arg|®. Although
this analysis assumes a monochromatic light source, similar results are ob-
tained with a broadband source. The amplitude of the signal component
is somewhat reduced for a broadband light source because the retardation
amplitude, ¥, is a function of the wavelength of the light [36]. Also, the
analysis assumes that the light incident on the PEM optical element is
polarized at exactly 45 degrees to the strain field axis. A more detailed
analysis shows that the above results are not sensitive to this angle.
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5.3 System Resolution

The resolution of this system is ultimately limited by the Poisson statis-
tics of the photons collected at the detector. Although the conclusions are
essentially the same for any type of photodetector, the photon statistics
are assumed to manifest themselves in the form of shot noise, where each
photon absorbed produces a discrete current pulse. In the case of a pho-
todiode detector, in which a photon produces an electron-hole pair, the
time integral of this current pulse is just the charge of the electron. In this
case, the variance due to shot noise of the current is simply related to the
magnitude of the current [38] by

(Aims)z = 2ciDCB, (5.11)

where (Aigpps)? is the variance of the current signal, e is the charge on
an electron, ipc is the average current through the diode, and B is the
bandwidth of the detection system.

The root-mean-square uncertainty in the measured angle due to the
statistical fluctuations in current is then

_ [diwa)\ " Adpys
Aoms B ( do )0:0 \/Q ’

where di(2w,,)/df is the derivative of the amplitude of the second-harmonic
component of the current with respect to 8 evaluated at § = 0 and the factor
of 1/4/2 is included since the phase of the signal is known (see eqn. 5.10).
If I, is the power of a narrow spectral-band beam of light incident on the
grating, hv is the average photon energy, and 7 is the quantum efficiency
of the photodiode detector, equations 5.7 and 5.10 give

(5.12)

. 2+ 2
ipc = (Iaml . lorE] ’_‘i%fo (5.13)
di(2wy) _ larm|? — |arel*\ en
( 7 )ho - 4J2((I>0)( > o (5.14)

Let us define the parameter 8 as

B = — (di(zwm))o=o (5.15)

tpc dé

lorm|? = |are|?
= i . 5.
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For @&, ~ 7, Jo(®o) ~ 0.5. Therefore,

B2 (IO‘”‘P - IO‘TEP) . (5.17)

larnm|? + |arel?

Combining the above equations to obtain

1 /eB
B\ ipc’

It is quite easy to reduce Algpss to a very small value. For example, if
B =1 Hz, I, = 1073 watts, hv = 3.0 x 107*° joules, n = 0.8, |arp|* = 0.03
and |arg|? = 0.001 then Afgps = 0.1 pradian.

Abpars = (5.18)

5.4 Experimental Results

An apparatus was constructed to demonstrate this alignment technique
for alignment of x-ray interferometer gratings and future use in aligning
a large (=~ 250) array of 200nm period gratings which will form the High
Energy Transmission Grating for the Advanced X-Ray Astrophysics Facility
satellite [33]. The configuration is shown in Figure 5.1.

A steady, quiet light source is needed to produce a strong signal. An
excellent light source for this experiment was a small, (50 watt), tungsten-
halogen lamp powered by a DC supply. The spectral band was limited to
roughly +100nm around 680nm with an infrared blocking filter (3mm thick
Schott KG-3 glass [39]). The light is collimated by a 200mm focal length
50mm diameter lens and is linearly polarized at 45 degrees to the strain
axes of the PEM by dichroic plastic (Polaroid™) sheet. The photcelastic
modulator consists of a fused silica bar that is stressed by a crystalline
quartz piezoelectric driver at a frequency of 50kHz [40]. The amplitude of
the vibration of the fused silica bar is adjusted to give half-wave retardation
at a wavelength of 680nm, which is near the center of the filter passband
and is in the region in which the photodiode detector is highly sensitive.

The modulated light beam then passes through the grating under test.
This grating has a period of 200nm, is made of gold electroplated to a
thickness of ~ 1 um, and is supported on a 1 um thick polyimide film.
Figure 5.2 shows a SEM micrograph cross-section of this x-ray grating. The
light intensity is converted to an electrical signal by a silicon photodiode
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Figure 5.2: SEM micrograph of a 200nm period x-ray transmission grat-
ing with Au lines electroplated to about 1zm and supported on a 1um
polyimide membrane.
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and displayed on an oscilloscope. The amplitude of the in-phase 100kHz
component is measured with a lock-in amplifier.

To measure small changes in the grating rotation angle, #, a mirror
was mounted on the grating holder so that its normal was perpendicular
to the optical axis. A 50mm diameter, ~ 1 arc-second resolution auto-
collimator [41] was used to measure the small changes in the tilt of the
mirror and therefore the rotation angle of the grating.

A series of measurements were made to determine the repeatability of
this technique, which is an upper bound of the resolution. The orienta-
tion of the grating was first adjusted to null the amplitude of the 100kHz
signal measured using the lock-in amplifier. Then, a number of measure-
ments were made in which the grating was first rotated through a large
angle (> 90°) and then back to close to its original position. For each of
these measurements, the signal on the lock-in amplifier was again nulled by
careful adjustment of a micrometer which could rotate the grating within a
limited range, and the angular orientation of the grating was measured us-
ing the autocollimator. The standard deviation of a set of grating rotation
angles resulting from these measurements is an estimate of the repeatability
of this technique.

After removing several sources of mechanical drift, stable and repeatable
measurements were obtained. The PEM itself was found to have a long
warm-up period in which there was significant drift, perhaps due to thermal
changes in the mounting of the optical element. However, after about an
hour of warm up, the drift was well below the limits which detectable using
the autocollimator. The standard deviation of a set of ten measurements
was 0.6 arc-seconds or =~ 3 prad.

The measured peak-to-peak photodiode signal amplitude, with § = 7 /4,
with this development AXAF grating as a sample was 15 gamp and the
DC current level was about 20 pamp. (The DC current contained a dark
current contributicn of ~ 10 pamp.) Using these numbers and a lock-in
amplifier integration time of 1 second (i.e., B = 1 Hz) give

Aipys = \[2eipcB (5.19)
= 3 pamp (5.20)
and )
(‘—i’-@-‘f’l‘l) = 30 pamprad™!. (5.21)
do 4=0
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Therefore the shot noise limited resolution from equation 12 is
A6 = 0.07 prad. (5.22)

The measurement of the resolution by this experimental set up was limited
to about 1 arc-second by our ability to adjust the grating orientation, the
accuracy of the autocollimator, and possibly, other mechanical effects. The
angular resolution of the experiment was apparently not yet shot noise
limited.

5.5 Conclusion

A very sensitive technique has been developed to align fine period diffrac-
tion gratings where standard techniques, using visible light, cannot be used.
This technique takes advantage of the partial polarization property of grat-
ings and will work even when the partial polarization is weak. The signal,
measured with a lock-in amplifier, is proportional to the sine of twice the
angle between the grating lines and the PEM axis as well as the differ-
ence between the transmission of light polarized normal and perpendicular
to the grating lines. The repeatability statistics show a resolution better
than 1 arc-second for the experimental system using a development AXAF
x-ray transmission grating. The high inherent resolution of this technique
suggests that it may be useful in other new applications.
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Chapter 6

Electromagnetic Grating
Theory and Calculations

6.1 Introduction

The analysis of diffraction by gratings has a long and rich history. Since
1930 there have been over 400 technical papers on the subject of grat-
ing diffraction [42]. There are a large number of methods utilizing differ-
ent sets of assumptions to solve the diffraction problem in periodic struc-
tures. With the development of computer technology it has been possi-
ble to use sophisticated numerical methods to solve Maxwell’s equations
in periodic grating structures in a rigorous fashion. There are two basic
approaches to this problem, the coupled-wave approach (43]-[48] and the
modal approach [49]-[56]. The modal method is alsc know as the eigen-
mode, characteristic-mode, Floquet, Floquet-Bloch, and (confusingly) the
coupled-mode approach a name also given to the coupled-wave technique.
Both approaches can be used to solve Maxwell’s equations in periodic struc-
tures and the equivalence of the two techniques in a full rigorous formulation
has been demonstrated [57]. A review of these two theories is given in [58].

The technique that has been implemented in this work uses the coupled-
mode approach and makes the assumption that the grating consists of a
“square wave” (lamellar) structure. This assumption limits the shape of
gratings that can be analyzed. However, almost all the very fine-period
gratings made in our laboratory have essentially a square wave profile.
Also, more general structures can be constructed from many layers of square
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wave gratings. The assumption that the grating consists of a rectangular
profile greatly simplifies the electromagnetic equations and the technique
of separation of variables can be used. A detailed look at the theory and
computation methods are given in the next section and an overview is given
below.

There are two different techniques that can be used to find the coupled-
mode eigenvalues for a square wave structure. The first technique, used
by Burckhardt [52] for sinusoidally modulated gratings, extended by Kas-
par [54] to include nonsinusoidal and complex refractive index modulations,
and used by Knop [53] to study deep rectangular groove gratings for storing
color pictorial information, involves expressing the field quantities inside the
grating and the position dependent index of refraction in terms of a Fourier
series. When the terms are substituted into the general wave equation an
infinite set of coupled linear equations results. When this set of equations
is truncated the resulting problem is then an ordinary matrix eigenvalue
problem. The other approach has been extensively studied by Botten et
al. [59], [60], [61] as well as Tayeb and Petit [62]. This approach makes
use of the fact that inside each region of different refractive index the solu-
tions are simple, consisting of linear combinations of the functions sin pz,
cos Bz in one region and sinI'z, cosT'z in the other. The complex coeffi-
cients 8 and T are simply related to the grating parameters and the grating
eigenvalue. An algebraic equation is derived from the boundary conditions
and the pseudo-periodicity requirement. The roots of this transcenden-
tal equation are the required eigenvalues. There is an interesting analogy
between this electromagnetics eigenvalue problem and quantum mechan-
ics problems. In quantum mechanics the matrix method corresponds, of
course, to matrix mechanics where the possible solutions are represented
as vectors in a Hilbert space of ortho-normal functions. For the grating
problem, the ortho-normal functions are the complex exponentials of the
Fourier expansion. In quantum mechanics, the operators are represented as
matrices and are very often truncated to finite size for actual computation.
The eigenvalues and eigenvectors are determined from the matrix equation
vy numerical routines, although real observables have Hermitian matrices
which are easier to process than the general complex matrix that the elec-
tromagnetic grating problem has. The algebraic method is analogous to
the solution of a quantum mechanics problem by solving the Schrodinger
wave equation. The algebraic eigenvalue equation results from solving the
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grating differential equation, and then applying the boundary conditions to
derive a constraint on the eigenvalue. This is very similar to the procedure
needed to solve the Schrodinger wave equation.

An approach that combines these two techniques has been implemented
and found to provide accurate results in every instance where other pub-
lished calculations are available for checking. Further, the calculations have
been checked in a number of limiting cases and found to be correct. The
idea is to combire the best parts of both the matrix and transcendental
equation methods. This approach is conceptually simple and algorithmi-
cally safe, but consumes considerable CPU resources for each grating so-
lution. The first step is to set up the coupled-mode equations in matrix
form. When the index of refraction is real, the resulting matrix is both real
and symmetric. However, when the grating material is lossy (i.e. € has an
imaginary part) the matrix elements become complex while maintaining
the symmetry of the matrix. A symmetric matrix with complex coeffi-
cients is not Hermitian. Therefore, the special routines that work so well
with Hermitian matrices cannot be used and a general complex eigenvalue
routine is needed. Fortunately, the “EISPACK” public-domain software
is available to solve this problem [63]. The eigenvalues and eigenvectors
of the matrix are determined using the EISPACK routines. Because the
eigenvalue matrix is a truncation of the infinite set of equations, the ma-
trix eigenvalues will be slightly different from the true grating eigenvalues.
Because the matrix eigenvalues, derived from the EISPACK routines, are
usually within a few percent of the grating eigenvalues they are used as the
starting point for numerically finding the roots of the algebraic eigenvalue
equation. Newton’s method, is notoriously bad at searching for a root but
rapidly converges when near the root [64]. Newton’s method is used to find
the exact algebraic eigenvalues since the matrix eigenvalues are generally
very close to the real eigenvalues and the derivative of the transcendental
equation can be calculated analytically. Care must be taken to properly
normalize the eigenvalue equation and keep track of the previously found
eigenvalues so that the same eigenvalue is not found more than once. After
all the eigenvalues are determined, the boundary conditions of continuous
tangential electric and magnetic fields are imposed at the front and back
boundaries of the grating. These boundary conditions impose constraints
that result in a large set of linear equations. These equations can become
ill-conditioned for deep gratings if solved in a routine manner. The rea-
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son for this is that the boundary condition matrix contains terms, some of
which grow exponentially with depth and others that decay exponentially.
A linear equation routine (i.e. Gaussian elimination) does not know what
terms are significant and which are not. However, with proper care and
normalization the boundary condition equations ran be written in a sta-
ble and well conditioned form, independent of the grating depth. These
linear equations are solved using a modification of the public domain LIN-
PACK routines [65], essentially Gaussian elimination with partial pivoting
for “LU” factorization followed by back substitution. After the boundary
condition equations are solved the electric and magnetic fields are known
everywhere, inside the grating as well as outside. The diffracted intensities
are calculated and stored in an output file.

The matrix method is simple and reliable. The “hard” part of this tech-
nique is finding the eigenvalues of a general complex matrix, a problem that
has been soived through years of effort by others. Unfortunately, for square
wave grating profiles the dielectric constant as a function of position is dis-
continuous and the Fourier series of this function converges very slowly,
particularly near the discontinuity. Under some circumstances, when the
period is comparable to the wavelength and the modulus of the dielectric
constant is large, the error in the matrix determined eigenvalues is large
enough to effect the accuracy of the calculated diffraction intensities, espe-
cially for deep gratings. On the other hand, the roots of the transcendental
equation give the exact eigenvalues, to 12 or more significant figures, but
these roots reside in a large region of the two dimensional complex plane.
Searching for these roots can be a CPU consuming process. Both Botten
et al [61] and Tayeb and Petit [62] have found clever methods to search for
the roots that take advantage of the fact that the transcendental equation
is analytic. Both of these methods are more complicated than the matrix
technique and may in fact consume more CPU cycles. Therefore the com-
bination of the matrix method and the transcendental equation method
complement each other very well. The matrix calculation does the “search-
ing” and the transcendental equation is used to “polish” the eigenvalues.
In each instance where comparisons can be made, the results of this combi-
nation have been both reliable and accurate. The details of the eqaations
and calculations follow in the next section.
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6.2 Basic Equations

For the electromagnetic theory of gratings, as well as everything else, the
starting point is Maxwell’s equations. The sinusoidal steady state, with
time dependence e is assumed. Further, the dielectric function, ¢, is
assumed to be a smooth function. Maxwell’s equations are:

V-eE = 0 (6.1)
V-uH = ¢ (6.2)
VxH = —iweE (6.3)
VXE = itwuH (6.4)

Suppose that the grating is oriented with respect to the coordinate system
so that the lines run parallel to the z, axis and the grating plane is normal
to the z3 axis. This geometry is shown in fig. 6.1.

First, consider the TE case where the electric field is in the z; direction,
parallel to the grating lines. The electric field is given by:

E= Ez(zl, Z3)f(2. (6.5)
Taking the curl of this gives:
_OE,_, O0E,_
VXE= 97, s~ Bz X (6.6)

From Faraday’s equation, E and H are related by:

1 (0E,, @E;_
= - 6.7
H twio ( oz, s Oz3 xl) (6.7)

Taking the cur! of H gives

—-tweE = VxH
1 (0*E, O*E,
= - . 6.8
twio ( 9zt = 9z} ) (6.8)

Therefore the master equation to solve for the TE polarization case is:

9%E, O*FE,
21 T agz + W Hee(z 25 By =0. (6.9)
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Figure 6.1: This shows the orientation of the grating with respect to the
coordinate system. The grating lines run parallel to the z; axis and the
normal of the grating is parallel to the z; axis. Inside the grating the
dielectric constant is a function of z; and outside the grating it is a constant,
perhaps a different constant in front than in back of the grating.
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Once this equation is solved for E, the complete fields are given by:

E = Ez)‘(g (6.10)
1 (8E,_ OE,_
H = !'wﬂo (axl X3 axs xl) (6.11)

When the H field is parallel to the grating lines, TM case, the general
wave equation is similar but not quite the same. In this case

from which E is found to be

1 (0H,, OH,,
E= —iwe ( oz 2 By xl) (6.13)

Taking the curl of E and relating it to H gives

. |19 (10H, 0 (1 0H,
swpolz = [a:cl (iwe 81:,) * Ozs (iwe Oz )] (6.14)

For the TM polarization case the generalized wave equation is

3 1 JH, 7] 1 O0H, h
=0. 6.15
dz, (iw’uoe 8:.:1) + 0z (z’w’uoe 8:1:3) +H, =0 ( )
The compiete field solution is then given by

H = Hziz (6.16)

1 0H,, OH,,
= - . 6.17
B = (8::1 7 Bz "‘) (6-17)

6.2.1 Solving the Basic Equations with the Matrix
method

The partial differential equations for the TE and TM case must now be
solved. In each case the mathematical technique of “separation of variables”
is used to reduce the partial differential equation down to two ordinary
differential equations. Because of the assumption that € is constant in the
zg direction, one of these two differential equations will be easy to solve
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and the other will be an eigenvalue problem. First, consider the TE case.
The general wave equation for E; is

0*E, OJ*E,
- t
azl az
Assuming that E; has the form
Eg = A(z,)B(zs) (6.19)

+ w?poe(zy, z3) E; = 0. (6.18)

and is substituted this into equation 6.18 the result is

2 2
Bd 4 7 + Ad B + w?uoe(z)AB = 0. (6.20)
dz? dz?

Dividing both sides by the product A(z,)B(z3) gives

1d%A 1 d’B
—— =0. 6.21
Ade Tl T 5 (6.21)
This equation can be separated into two parts, one part that depends
only on z; and the other part that depends only on z3 therefore these two
parts must be equal to a constant which chosen to be 4%. The first equation,
a function of z3 only, is given by 6.22.
e = 6.22

Where 2 is the separation of variables constant. The second equation is
then 6.23. L&A
Xd_ + wipoe(zi) =+ (6.23)

The partial differential equation has been reduced to two ordinary dif-
ferential equations. Further, the first equation, 6.22, is easy to solve. The
solution is given by

B(zs3) = Bpe"™. (6.24)
The second equation is more difficult but at least it is only an ordinary
differential equation; the master equation for the TE case.

d’A

pr) + (wpoe(z1) —¥*)A =0 (6.25)
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The function, A(z,), will be periodic up to a phase factor which is deter-
mined by the incident plane wave angle. The function will take the form
of

A(ﬂ:l) = U(Zl) C'.Qml (626)

where ® is the z; component of the incident wavevector, with angle ¢ with
respect to the z3 axis given by
27
o= ~ sin ¢ (6.27)
and U(z,) is a periodic function with the same period, A, as the grating.
Since U(z,) is periodic it can be expanded in a Fourier series, resulting in
equations 6.28 and 6.29.

[+ ]
Alz) = 3 a,eti+d= (6.28)
n=-—0co
2 o] 2
% = ) (i-zxﬂn-kz'(l)) a et (6.29)
1 n=-o00

Likewise the periodic square wave function €(z;) is expanded in a Fourier
series,

€(z1) =€ Y, Ume 2T, (6.30)

m=—00

and the closed form expression for the coefficients is given by

I Ir
v = o (i - ‘—) + (6.31)

€o €o €o

Uy = — — — | —sin|{mn—
€o € )] MT A

Substituting the Fourier expansion equations 6.28, 6.29, and 6.30 into the
master wave equation, 6.25 gives

00 2
Y a, (i%{n + i@) glidnetes)
n=-—0o
00 2e 00 2z
(wzy.oeo Y ume'zf""—'yz) ( > a,e'(A"””)) =0. (6.32)
m=-00 =00
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Multiplying the above equation by e~i(Xk=t82) 5p4 integrating over a pe-
riod, A, gives an infinite set of linear equations in the coefficients.

00

2 2
—a (T"rk + <I>) + w?uoeo Z Uk—rly = Y (6.33)

r=--00

Upon careful inspection, this set of equations is in the form of a matrix
eigenvalue problem with the matrix elements given by 6.34.

Mo, = w?H0€0 |t — —— -(2—”n+<1>)25 (6.34)
man — W Ho€o |Um—n wzuofo A m,n .

After truncating this set of equations to a finite size, the eigenvalues and
eigenvectors can be found with published general matrix eigenvalue rou-
tines [63].

Ma = 4*a (6.35)

After finding the eigenvalues, 4?, of the matrix M the coefficients multiply-
ing the eigenvectors are found by using the boundary conditions, that both
the tangential electric and magnetic fields must be continuous, imposed
at the front and back of the grating structure. Details of the boundary
condition equations are given latter.

Now, consider the TM case where the master TM equation is given by

0 1 OH, 4 0 1 &H,
0z; \w?ype 0z, O3 \ wiuge dz3

) +H,=0 (6.36)

The same technique of separation of variables is used to reduce this partial
differential equation into two ordinary differential equations. As in the TE
case, one of the equations will be simple to integrate and the other can be
written in the form of a matrix eigenvalue problem. Assume that H is in
the form of

Hz = A(zl)B(za). (637)

Substituting equation 6.37 into equation 6.36, and dividing both sides by
A(z1)B(zs) to get

+1=0. (6.38)

1d 1 dA 1 1d'B
Adzy \w?pge dz, w?poe B dz?
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The left hand term depends only on z; while the right hand side depends
only on z4 so that this equation separates into two parts. The two equations
are as follows:

1d’B
d 1 dA
2 2 N2 =0. )
W’ poe(21) dz, (w’uoe(xl) dzl) + (@ hoe(m) =77) 4 =0 (6.40)

The first term on the left hand side of the equation can be expanded to
give

2
1 dA) d2A 1 de dA (6.41)

wlpoe(z,) d = -
0\ M dz, dz?  €(z,) dz, dz,;

wipoe(zy) dzy
In the above equation the first term or the right hand side is also found
in the TE polarization case. The second term represents a highly singular
function, the derivative of a step function, which forces the proper boundary
condition on the TM eigenvectors. The tangential electric and magnetic
fields must both be continuous as a consequence of Maxwell’s equations.
However for the TM polarization, the magnetic field is given by A(z,)B(zs),
both continuous functions but the electric field is given by

E= — (aHz‘ —aH’fcl) (6.42)

: X3
—twe \ Oz, Ozs

Since Es must be continuous and there is a step change in the € function it
follows that the derivative, dA(z,)/dz,, must be zero at the points where
¢ jumps. To formulate the TM polarization eigenvalue matrix the TE po-
larization matrix is added to another matrix which represents the singular
function. What this matrix does is to modify the eigenvalues so that the
eigenvector representing the field solutions forbidden by the TM boundary
conditions has a very large (infinitely large for the untruncated matrix)
negative (i.e. attenuated) eigenvalue. In practice the eigenvalues for the
TE matrix are much more accurate than the TM case since the conver-
gence of a Fourier series to a singular function is very slow. The Fourier
coefficients for this singular function are approximated by:

dde _ 1
e(z)dz ~  ¢(z)

(= ") [6(z+ ) ~ b(z~ ) (6.43)
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_ e_(;i(e _ e") zm: %‘:sin(ﬂ,mﬁ)e““m (6.44)
e — €l
2(5 + €l ) }: — sin( 7rm—)e Ame, (6.45)

To find the eigenvalue matrix for the TM case the dA/dz term is expanded
to get

4 v (_.m " @) 0, ¢t Emetios, (6.46)

m
After substituting ea.ch of these Fourier expansions into 6.40 the eigenvalue
matrix is found to be:

MM = MIJ + Nnn (6.47)
(e—€T)2x

(€t e mh m + sin(g) | sin(w(n — m)— )

The resulting eigenvalue problem is then

MT™g = 42q (6.48)

— 2
Nm,n = W Hlofo

and is numerically solved by the general, complex eigenvalue routine. After
solving the eigenvalue problem, the boundary conditions at the edges of the
grating, zs = 0, and z3 = d are used to find the field amplitudes in almost
the identical fashion as for the TE polarization case.

6.2.2 Solving the Boundary Conditions

Solving the boundary condition equations of continuous electric and mag-
netic tangential fields requires a little insight and a lot of algebra. The idea
is to write down the electric and magnetic fields in terms of the unknown
Fourier amplitude coefficients outside the grating region, both front and
back, and the electric and magnetic fields inside the grating in terms of un-
known eigenfunction amplitudes. The condition that both the tangential
magnetic and electric fields must be continuous at both interfaces provides
enough constraints to solve for the unknown amplitudes. These constraints
take the form of coupled linear equations and can be solved by standard
linear algebra techniques, although the equations must be properly normal-
ized and formulated so that they are well conditioned. The gory details of
this process follow.
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Figure 6.2 shows ihe three regions of the grating and the corresponding,
wavevectors. For the TE case the tangential H; field is given by

1 OE,
H=-—-— 6.49
! iwﬂo 3::3 ( )

and in the TM case the E, field is given by

1 8H,
E=—— 6.50
17 e dz3 ( )
The difference between these two cases is that in the TE case the function
io is constant both inside the grating and out while in the TM case an
additional 1/e factor must be included. The propagation wavevectors are
given by 6.51 for region I, and 6.52 for region III.

2w

ky(m) = —m+@ (6.51)
K (m) = —\woe — (kL (m))?
kﬁ’(m) = %m-l—@ (6.52)

E(m) = + \/wz po€! T — (kI (m))?

where
® = w\/oco sin ¢. (6.53)

In region I, the electric or magnetic field is of the form

f(z1,23) = Qe Faaze T mte)n (6.54)
m

To make the notation compact and easy to understand this function
can be written in the form of the product of a covector and a vector. At
z3 = 0 the function is given by

“~n
Il

[ ... dECD0n GO0 @Fea ]| a | (6.55)
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Figure 6.2: This figure shows the three regions of interest: region I with
the incident field, region II inside the grating, and region III where the
transmitted waves propagate. Inside the grating, in region II, is further di-
vided into a region 1 with dielectric constant ¢; and region 2 with dielectric
constant ¢,.
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The covector depends on the position z; while the vector depends only on
the unknown coefficients of the Fourier series. If the field amplitudes are
written in this form at each boundary it is easy to derive the boundary
condition linear equations. Since the boundary conditions must be met
at each point z; then the boundary conditions imply equality between the
vector components. In other words, if two functions are equa!l at each point
then their Fourier series coefficients must be equal. In order to write down
the boundary condition equations some terms and matrix e'ements must
be defined. The a term takes care of the differences between the TM and
the TE polarization cases accounting for the 1/¢ factor.

r _ ) e/’ TM case
« = { 1  TE case (6.56)
mnmr  _ 60/6111 TM case
« = { 1 TE case (6.57)

Where € is the dielectric constant in front of the grating and /! is the
constant in back of the grating. The A and B matrices multiply the un-
known Fourier coefficients to give the field values in regions I and III while
A' and B' give the derivative of the field, corrected with the factor o to
account for the TE and TM polarization cases.

Apm = €Fm=6 (6.58)
AL = olikle*nm6, (6.59)
Bpm = étm'(z-dg (6.60)
B., = oMl lz==dg (6.61)

The C matrix is only used to account for the 1/e factor in the TM polariza-
tion case and contains the Fourier coefficients necessary to multiply by this
factor inside the grating region. For TE polarization it is just the identity

matrix 5
nm 1L case
Crm = { Ch-m TM case (6.62)

where ¢; are the Fourier coefficients for the square wave function €y/¢(z;).
The Dt and D~ matrices multiply the eigenvector matrix to give the field
inside the grating region propagating in the positive and negative z3 di-
rection respectively. The D't and D'~ multiply to eigenvector matrix to
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give the derivative. Note that these matrices must be multiplied by the C
matrix to give the correct factor for the TM case.

D}, = €™%6,m (6.63)
DY, = ime ™6 m (6.64)
Dy, = €586 (6.65)
D = —ime " "™ 260m (6.66)

The R and R’ vectors give the incident plane wave and it’s derivative cor-
rected by a to account for the TM case.

R, = e kg, (6.67)
R, = -dlikle %%, (6.68)
The following are the unknown Fourier coefficient vectors:

¢ “a” is the reflected amplitude vector.
o “b” is the transmitted amplitude vector.

o “c*” is the forward propagating eigenvector amplitude array and must
be multiplied by E, the eigenvector matrix, to give the Fourier coef-
ficients of the field inside the grating.

e “c”” is the backward propagating eigenvector amplitude array.
and the known incident plane wave

e “R” is the incident plane wave amplitude.
The boundary equations are then given by

a+R = Ect+E ¢ (6.69)

b = ED*(d)ct + ED™(d)c” (6.70)

which is the constraint that the field be continuous at z3 = 0 and z3 = d

respectively. The requirement that the derivative of the field with respect
to z3, corrected for the 1/e factor, is given by

Aa+R = CED*(0)ct + CED'(0)c” (6.71)

B's = CED*(d)c™ + CED'~(d)c”. (6.72)
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From these four matrix equations the vectors a and b can be eliminated
resulting in two equations with two unknown vectors, ¢* and ¢~. The
resulting equation is

[ A'E — CED'*(0) A'E — CED'-(0) ] [ ct ] _ [ AR-R ]

B'ED*(d) — CED't(d) B'ED™(d) - CED'"(d) c” 0

(6.73)

After evaluating the following matrix elements
M = AE- CED'*(0) (6.74)
M., = AE-CED(0) (6.75)
N,tm = B'ED*(d) - CED'*(d) (6.76)
N,. = B'ED™(d) - CED'~(d). (6.77)

the task is to solve the set of equations
Mt M- ct AR-PR

(][] e

The above mairix is not well conditioned and if it is solved with a
standard linear algebra program there may be serious numerical errors in-
troduced in problems with deep gratings. The problem results from the
fact that the Nt matrix contains elements that decay exponentially with
grating depth and the N~ matrix has elements that grow exponentially
with depth. To circumvent this problem, the system of equations is solved
in two steps. Consider the equation

Ntct + N ¢™ =0. (6.79)

Finding ¢~ in terms of ¢t gives

¢~ = (-(N7)IN?)ct (6.80)
= Act (6.81)

A = (D")'E'C'B'ED'+ (D7) 'E'B"'CED" -
(D"-)'D* - (D) 'D* (6.82)

resulting in the following equation:

(MY + M~ A)ct =1 (6.83)
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This equation is well :onditioned because the matrix A is small compared
to M which does not depend on the grating depth. Other workers have
observed this probler: without solving it. For example in Knop [53] the
following quotation appears:

For large grating depths the matrices .... tend to become indef-
inite and thus cause problems in the numerical inversion.

Once the linear equation routine returns the arrays c¢* and ¢~ the output
vector, b, and the reflected vector a follow from the boundary condition
equations

a = Ect+Ec —R (6.84)
b = ED*(d)ct + ED (d)c. (6.85)

The power flow in the z3 direction is derived from the complex form of

Pointing’s theorem, where the time average power is given by

<§>= %Re(E X HY) (6.86)

where E is the electric field vector and H is the magnetic field vector. The
efficiency equations are derived from this expression. For the TE case the
equations are

I _ ama,, Re (kg'(m)) (6.87)
I ™™ Re (kga(O))
and for the TM case they are
e (47)
Im < (6.88)

T Ol (kz (0))

6.3 Seclving the Equations with the Alge-
braic Method

Consider first the TE polarization case where the master differential equa-

tion is given by
d*E,

dz}

+ (w uoe(:cl) - )E2 =0. (6.89)
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If the eigenvalue, 4* were already known then the solution to this equation
would be simple. In region 1, (see Fig. 6.2) with € = ¢;, and in region 2
where € = ¢; this is just a constant coefficient linear differential equation
whose solution is determined almost by inspection. The difficulty is to
patch the solutions in region 1 and region 2 together so that the tangential
electric and magnetic fields are continuous. Since the H vector is given by

1 (aEz, _8E2‘)

H=- x X
twyg \ 0z, Y

(6.90)

the derivative of E, with respect to z; must be continuous across the bound-
ary where € changes abruptly. Defining the constants § and I" to be

B = wiuoe — 72 (6.91)
I = w?uoes — 2 (6.92)

the solutions for the field E, are linear combinations of the following func-
tions:

0 — cos(fz,) 0<,<¢
~ | cos(Bei) cos(T(z1 — ¢1)) — Esin(Ber) sin(T(z1 — 1)) ex <z <A
v = %sin(ﬂzl) 0<z;<¢
~ | #sin(Bey) cos(T(z1 — e1)) + f cos(Ber) sin(T(z1 — 1)) €1 < 21 < A

These functions have the following properties:

8(0) =1 (0)=0

#(A) =0 v'(A)=1. (6.93)

The solutions must not only satisfy the continuity requirement at z; = ¢;
but also satisfy the pseudo-periodicity condition. If

u(z,) = ab(z1) + byp(z1) (6.94)

then
e ¥ 5inéy (0) = u(A) (6.95)

and also for the derivative

e oin4y!(0) = u'(A). (6.96)
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In terms of the functions these two equations become:

o = 2—;— sin ¢ (6.97)
e*a = af(A) + by(A) (6.98)
e®b = af'(A) + by'(A) (6.99)
so that a non-trivial solution will result when the “determinate” is zero or
(8(A) — e*M)(¥'(A) — €¥4) - 0'(A) () =0 (6.100)
Expanding this equation shows that the eigenvalues are the roots of
\
F(v) = cos(®A) —cos(Be;) cos(Te;) + -;— (g + 5—3) sin(B¢,) sin(T'¢cz) (6.101)
where
B = yJwiuge, — o2 (6.102)
I' = y/wluoes — 42 ~ (6.103)
c; = bA (6.104)
2 = (1-b)A (6.105)
b = linewidth fraction (6.108)

The equations for the TM polarization case are a'most identical ex-
cept for an extra factor called ¢ which accounts for the different boundary
conditions.

_ 1  TE polarization
7= { €2/e1 TM polarization (6.107)
P COS(ﬂ!Bl) 0 S T S c1
cos(Bey) cos(I'(zy — ¢1)) — grsin(Bey)sin(T(z1 —¢1)) ea <z <A
¢ — %Sin(ﬂzl) 0 S xy S C1
~ | gsin(Ber) cos(T(z1 — ¢1)) + g cos(Bey) sin(T'(z1 — e1)) €1 <z < A

The master eigenvalue equation is thus

4

g + %E) sin(Be¢;) sin(Tey)

f17) = cos(®A) — cos(Bey) cos(Tez) + % ( 7
(6.108)
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This is the equation that is used to find the grating eigenvalues to high
accuracy after the matrix method determines the approximate roots. New-
ton’s method quickly converges to the exact eigenvalues given good starting
points. In the actual implementation of this function care must be exercised
to insure proper normalization since large negative values of € (such as for
Aluminum or Gold gratings in the IR) cause the sine and cosine arguments
to be large imaginary numbers which will overflow the computer’s dynamic
range. Renormalization is performed at each iteration step and the func-
tion converges to the correct eigenvalue even for large negative values of
€.

Another problem that can occur in the polishing of the eigenvalue roots
is that Newton’s method converges to a root that has already been found.
For a large range of grating parameters, the roots tend to come in pairs.
The program makes sure that each root is unique by keeping track of the
last root found and polishing the roots in decreasing order. The last root
found is “divided out” of the function so that the roots of

G(z) = L (6.109)
2= 2
where 2;_; is the last root found are are determined. Special care is taken
in evaluating the function G(z) and its derivative G'(z) so that they are
correct and smooth near and even at z = 2;_;.

6.4 Sample Calculation Results

In order to optimize the parent gratings used in the achromatic holographic
configuration, a set of calculations were performed. The period is deter-
mined by the desired final grating period, 200nm, and the wavelength is
fixed by the source, A =193nm. When using a pure phase grating in quartz
the only parameters that can be varied are the linewidth, b, and the etched
depth, d. Figure 6.3 shows the first order efficiency as a function of depth
and linewidth for both the TE and TM polarizations. The contours are at
10% levels. Notice the large area of parameter space that has an efficiency of
over 20%. The maximum efficiency of the TE polarization, 29.9%, occures
with a linewidth of b=0.3 at a depth of 140nm and for the TM polarization
the maximum first order efficiency is 26.3% at a depth of 210nm with a
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linewidth of 0.6. A simple scalar theory calculation would suggest that the
maximum would be 50% and would occur at a linewidth of 0.5 and a depth
of 161nm. For the recombiner grating in the achromatic holography sys-
tem the minus second diffracted order is used. A calculation of the -2 order
with an incident beam angle of 75 degrees is shown in 6.4. A intriguing
result is that the minus second order efficiency can be very high. In the TE
polarization the maximum second order efficiency is an astonishing 83.7%
at a linewidth of 0.2 and depth of 350nm. The results for the TM polar-
ization are equally impressive: 90.2% into the -2 order at a linewidth of
0.15 and a depth of 475nm. Although it is not always possible to precisely
control the linewidth and etched depth, knowing the optimum parameters
to shoot for can make a tremendous improvement in the throughput of an
instrument such as the achromatic holographic system, especialiy since the
overall efficiency is a product of two or more grating efficiencies.

Conducting transmission gratings with a period that is much smaller
than the wavelength of the incident radiation transmit light polarized with
the electric field perpendicular to the grating lines with less attenuation
and reflection than light polarized parallel to the grating lines. Therefore
these gratings can act as polarizers. This effect is exploited in the alignment
system described in chapter 5. There are also several applications where
fine period gratings are the polarizer of choice. Although dichroic plastic
(polaroid) material makes an excellent polarizer in the near IR, it cannot
be used in a cryogenic environment. However, grating polarizers made
with Au or Al lines on quartz or sapphire substrates can be used. The
calculated zero order transmission for a 200nm period Au grating is plotted
for both polarizations in Fig. 6.5 and Al grating in Fig. 6.6 as a function
of depth. The wavelength is 0.95um and the optical constants for Au
(n = 0.174 + 15.691) and Al (n = 1.75 + ¢8.5) were taken from [67]. An
interesting effect is observed in Fig. 6.7 where the transmitted zero order
efficiency of Au and Al gratings are plotted together. As the depth is varied,
“thin-film” interference effects are observed.

Several sample calculations have been presented to illustrate the abili-
ties of the electromagnetic theory calculation program. In the phase grating
case, the wavelength and the grating period were almost the same making
simple scalar analysis inadequate, and in the polarizer case the vector na-
ture of light is an essential part of the calculated effect.
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Figure 6.3: This shows the calculated first order efficiency for both the TE
and TM polarization of a 200nm period pure phase grating etched in quartz
(n=1.6) with a A =193nm source as a function of depth and linewidth.
The contours are at 10% levels. The maximum TE efficiency occures for a
linewidth of 0.3 and a etched depth of 140nm and for the TM polarization
at a linewidth of 0.6 and depth of 300nm.
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Figure 6.4: This shows the minus second order efficiency for both TE and

600

TM polarizations with the incident wave at an angle of 75 degrees. For

both polarizations, the efficiency is surprisingly high with a maximum of

83.7% for TE at b=0.2 and a depth of 350nm and 90.2% at b=0.15 and a

depth of 475nm for the TM polarization.
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Figure 6.5: This plot shows the calculated zero order transmitted efficiency
for a 200nm period Au grating with & linewidth of 0.5 as a function of
depth.
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Figure 6.6: This plot shows the calculated zero order transmitted efficiency
for a 200nm period Al grating with a linewidth of 0.5 as a function of depth.
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Figure 6.7: This plot show the zero order transmitted beam for Au (top
trace) and Al wire grid polarizer gratings. The period of the gratings is
0.2um with a linewidth of 0.5 and the wavelength is A = 0.95um. Notice
the “interference” effect as the depth is varied from 0 to 0.5um.
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6.5 Conclusion

A method for rigorously solving Maxwell’s equations for a square wave
grating structure has been implemented and found to give accurate results
in each case where published calculations from other workers are available to
cross check and in various limiting cases. The technique uses the eigenvalues
from a complex general matrix routine to determine estimates of the grating
eigenmodes. The matrix method depends on the convergence of a Fourier
series to a discontinuous function for the TE case and to a singular function
in the TM case. The Fourier series convergence to a square wave gives an
error that is of order 1/N where N is the number of Fourier coefficients
included and is even slower for the singular derivative of a square wave.
However, the computational effort to find the eigenvalues and eigenvectors
increases as V3. Therefore simply increasing the number of modes is an
expensive technique for increasing the accuracy of the matrix method. But
the matrix method gives “good” estimates of the correct eigenvalues with
just a few Fourier terms. The combination of the matrix method with a
polishing technique to quickly zero in on the correct eigenvalues once they
are approximately known greatly improves the accuracy of the method
while the computation time of polishing is only linear in the number of
modes.

This program has been very useful in determining optimum parameters
for gratings fabricated in our lab. It has been useful for understanding
the behavior of very deep gold gratings in the soft x-ray region where even
though A/A is small, scalar diffraction theory is not adequate. For higher
energy x-rays it has confirmed scalar theory calculations and gives insight
into the energy range where the scalar theory breaks down and the vector
theory must be used. Further, our gratings have been used as polariz-
ing elements in cryogenic environments where ordinary polaroid material
would be inadequate. The behavior of these “wire grid” polarizers when
the wavelength is much larger than the period can be analyzed by this
program.



Chapter 7

Summary and Future Work

The motivation for much of the work reported here is the development of
grating structures with periods ~ 100nm for use in a number of scientific
applications such as solid-state quantum-effect electronics studies, x-ray
spectroscopy and interferometry, IR polarizers, thin film materials studies
and other applications where the characteristic dimensions (wavelengths,
scattering lengths, etc.) are very small. Many different approaches were
tried before converging to a feedback-controlled achromatic holographic
configuration. In this configuration, the achromatic aspect of the interfer-
ometer results from the dispersion properties of transmission gratings used
in such a way that the net effect of different wavelengths cancels out. Fur-
ther, the configuration is insensitive to the angle of the incident wave so
that sources with poor spatial as well as tempcral coherence properties can
be used. The feedback system allows for very long exposure times needed
when low sensitivity resists and low power sources are used. The feedback
system actively canceles the mechanical drift, locking the fringes for expo-
sure times of 20 minutes or longer. Previous efforts in this field (in our lab
as well as others) have produced gratings with periods smaller than 120nm
but in each case there has been a subtle reason why these gratings were
not further processed to produce a structure such as Fig. 2.8. Further,
getting good high contrast exposures is oniy half the battle, turning them
into useful grating structures is the other half. Now, at least the process
of getting high contrast exposures with periods of about 100nm has been
solved.

The first step for future work is to reduce the period of the parent grat-
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ings from 240nm to 200nm resulting in a final grating period of 100nm,
the approximate limit imposed by the wavelength of the ArF excimer laser,
A =193nm. But even with the current set of gratings there are a large
number of exciting applications to be explored. The observability of sur-
face superlattice effects in quantum-effect electronic experiments in Si and
GaAs is a strong function of the grating line density. Therefore, incor-
porating gratings or grids with periods almost a factor of 2 smaller than
the current generation should allow either stronger signals to be observed
and/or the effects to be seen at higher temperatures. In the area of x-ray
diffraction gratings for spectroscopy, the smaller period will yield higher
dispersion and in most systems with the other dimensions unchanged, this
will result in higher resolution. The basic achromatic configuration is ideal
for interferometric measurements in the soft x-ray region and beyond be-
cause of the relaxed spatial and temporal coherence requirements. A very
recent experiment has demonstrated the diffraction of Na atoms by a 200nm
period grating. If a grating interferometer could be constructed for atomic
or molecular particles, it could be an extremely sensitive instrument.

There are also a many interesting scientific applications for the 200nm
and larger period gratings that are made with conventional holographic
lithography. Before developing the feedback locking of the fringes, expos-
ing the gratings with this system was a very tedious process, resulting in
. relatively small areas of good grating. When only a small area is needed,
the interferometer arms can be made short. Since the fringe phase noise
is approximately proportional to the size of the interferometer, sufficient
contrast could be achieved to produce useful gratings. But under these
conditions, the exposure and development times had to be just right. The
process latitude was quite poor and good results required both patience
and skill. While attempting to expose larger area gratings, the magnitude
of the fringe fluctuations was measured using photodiodes and discovered
to be much worse than visual observations of fringe movement on a fluores-
cent card would indicate. The use of active feedback has worked very well.
Now, the feedback system gives much higher contrast to large area gratings
than was achieved even for small area gratings in the past. The system is
so stable that the optics table can be sharply struck without perturbing
the locking of the fringes or the exposure while previously, just “thinking”
about touching the table could ruin an exposure.

The feedback locking of fringes for grating fabrication should allow one
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to use a lower power and much less expensive laser since the fringe drift even
for very long exposure times is controlled by the feedback system and thus
will be small. An exciting possibility is to extend feedback fringe locking to
general holograms. For a general hologram, the simple beamsplitter used to
make the Mach-Zehnder interferometer cannot be used but perhaps a poor
quality hologram could be used as the feedback beamsplitter. The feedback
locking eliminates the subtle and sometimes uncontrollable environmental
disturbances that can make holographic exposures a fussy and frustrating
process.

X-ray nanolithography masks have been successfully made from pat-
terns exposed by electron beam lithography at IBM. The patterns for these
exposures were generated at MIT and sent electronically over the network
to IBM’s Yorktown Heights research lab. The high resolution vector scan
machine VS-6 exposed the patterns on specially prepared substrates. A tri-
level process then transforms the thin 80nm PMMA into a high contrast
x-ray nanolithography mask. These patterns were then replicated at MIT
using x-ray nanolithography which is a high-contrast, and large process lat-
itude technique. The combination of electron beam lithography and x-ray
nanolithography gives researchers the best of both technologies: the arbi-
trary pattern generation and high resolution of electron beam lithography
and the good contrast and large process latitude of x-ray nanolithography.

Although, the original motivation for developing this technology was to
make 100nm period gratings for x-ray spectroscopy, the arbitrary pattern
generation capabilities of electron beam lithography coupled with the high
contrast of x-ray nanolithography will probably have a greater impact in
electronic microcircuit applications rather than strictly periodic structures.
Since periodic structures can be holographically generated over large areas,
for applications such as x-ray spectroscopy, holographic methods will be
more practical. The generality, small feature sizes, and large process lat-
itude, characteristic of this combination of technologies should open wide
vistas for future microcircuit, quantum electronic, optoelectronic, and, no
doubt, other applications. However, to realize the full capabilities of this
technology, x-ray nanolithography alignment techniques must be developed.
With high resolution alignment capability, microcircuit researchers will
have another very powerful tool to explore complex circuits and devices.

A technique using the partial polarization properties of transmission
gratings and a photoelastic modulator (PEM) has been developed which
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has very high resolution. The signal, measured on a lock-in amplifier, is
proportional to twice the sine of the angle between the PEM crystal axis and
the grating lines. Since the signal is first order, for small angles, and since
lock-in amplifier electronics can measure very small signals buried in noise
the resolution of this technique is quite high. The high inherent resolution
of this technique may suggest new applications for future research.

In order to analyze gratings under conditions where the scalar theory
would be inadequate, 2 computer program that rigorously solves Maxwell’s
equations for a rectangular wave, lamellar, grating has been implemented.
The program uses the eigenmode method to solve for the fields both inside
and outside the grating. The eigenmodes are first found using a matrix
technique in which the eigenvalues of a finite size complex general matrix
approximate the eigenvalues of the infinite dimensional matrix containing
all the Fourier series expansion terms. These approximate eigenvalues are
polished so that they will be the solution to a transcendental algebraic
equation giving the exact grating eigenmodes. The combination of the
two approaches works well since the “searching” part of the problem is
accomplished by the matrix eigenvalue routine and the final convergence of
the eigenmode, to many decimal places, is done by the numerical solution,
using Newton’s method, of the transcendental algebraic equation. After
finding a set of eigenmodes the boundary condition equations are then
applied yielding a large set of coupled linear equations. These equations
are normalized and solved in such a way that minimizes errors associated
with illconditioned matrices giving the fields both inside and outside the
grating.

A number of improvements can be made to the program to make it more
efficient. However, only careful measurements of real gratings will reveal
how well the program solves Maxwell’s equations. For future work, a reli-
able data base of grating parameters and efficiencies should be generated
including IR through x-ray wavelengths an . .. ared to the theoretical
calculations. Only then can a high level of cu.:.idence be placed in a pro-
gram that has almost 3000 lines of fortran code.

In summary, a number of new techniques have been developed to fab-
ricate, align, and predict the behavior of very small period gratings and
(using the combination of electron beam lithography with x-ray nanolithog-
raphy) non-periodic structures as well. These advances provide the tools for
a variety of scientific and engineering applications of fine linewidth struc-
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tures.
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