
MIT Open Access Articles

Searching without communicating: tradeoffs
between performance and selection complexity

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lenzen, C., et al. "Searching without Communicating: Tradeoffs between Performance
and Selection Complexity." Distributed Computing (2016): 1-23.

As Published: 10.1007/S00446-016-0283-X

Publisher: Springer Nature

Persistent URL: https://hdl.handle.net/1721.1/133426

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/133426
http://creativecommons.org/licenses/by-nc-sa/4.0/

Distributed Computing manuscript No.
(will be inserted by the editor)

Searching without Communicating: Tradeoffs Between Performance
and Selection Complexity

Christoph Lenzen · Nancy Lynch · Calvin Newport · Tsvetomira Radeva

Abstract We consider the ANTS problem [Feinerman et
al.] in which a group of agents collaboratively search for
a target in a two-dimensional plane. Because this problem
is inspired by the behavior of biological species, we argue
that in addition to studying the time complexity of solutions
it is also important to study the selection complexity, a mea-
sure of how likely a given algorithmic strategy is to arise in
nature due to selective pressures. Intuitively, the larger the χ

value, the more complicated the algorithm, and therefore the
less likely it is to arise in nature. In more detail, we propose
a new selection complexity metric χ , defined for algorithm
A such that χ(A) = b+ log`, where b is the number of
memory bits used by each agent and ` bounds the fineness
of available probabilities (agents use probabilities of at least
1/2`). In this paper, we study the trade-off between the stan-
dard performance metric of speed-up, which measures how
the expected time to find the target improves with n, and our
new selection metric. Our goal is to determine the thresholds
of algorithmic complexity needed to enable efficient search.

In particular, consider n agents searching for a treasure
located within some distance D from the origin (where n
is sub-exponential in D). For this problem, we identify the
threshold loglogD to be crucial for our selection complex-
ity metric. We first prove a new upper bound that achieves a
near-optimal speed-up for χ(A)≈ log logD+O(1). In par-

Christoph Lenzen
Max Planck Institute for Informatics
E-mail: clenzen@mpi-inf.mpg.de

Nancy Lynch
Massachusetts Institute of Technology
E-mail: lynch@csail.mit.edu

Calvin Newport
Georgetown University
E-mail: cnewport@cs.georgetown.edu

Tsvetomira Radeva (corresponding author)
Massachusetts Institute of Technology
E-mail: radeva@csail.mit.edu

ticular, for `∈O(1), the speed-up is asymptotically optimal.
By comparison, the existing results for this problem [Fein-
erman et al.] that achieve similar speed-up require χ(A) =

Ω(logD). We then show that this threshold is tight by de-
scribing a lower bound showing that if χ(A)< log logD−
ω(1), then with high probability the target is not found in
D2−o(1) moves per agent. Hence, there is a sizable gap with
respect to the straightforward Ω(D2/n+D) lower bound in
this setting.

Keywords distributed algorithms · biology-inspired
algorithms · search algorithms ·Markov chains

1 Introduction

It is increasingly accepted by biologists and computer sci-
entists that tools of distributed computation can improve our
understanding of distributed biological processes [12], [13],
[14]. A standard approach is to translate a biological process
of interest (ant foraging [12], [14], sensory organ pre-cursor
selection [1]) into a formal problem in a distributed comput-
ing model, and prove upper and lower bounds on the prob-
lem. The aim is to use these bounds to gain insight into the
behavior of the motivating biological process.

A recognized pitfall of such an approach is incongruous
analysis, in which the theoretician focuses on metrics rele-
vant to computation but not biology, or ignores metrics rel-
evant to biology but not to computation. Motivated by this
pitfall, this paper promotes the use of selection complexity
metrics for studying biologically-inspired distributed prob-
lems. Unlike standard metrics from computation, which tend
to focus only on performance, selection complexity metrics
instead attempt to measure the difficulty of a given algo-
rithmic strategy arising in nature as the result of selective
pressures. Roughly speaking, a solution with low selection
complexity should be more likely to arise in nature than a
solution with high selection complexity.

2 Christoph Lenzen et al.

We argue that theoreticians studying problems inspired
from biology should evaluate solutions in terms of selection
complexity in addition to focusing on standard performance
metrics; perhaps even measuring the trade-off between the
two classes of metrics. This paper provides a case study of
this approach by fixing a standard biology-inspired problem
and a new selection complexity metric, and then bounding
the trade-off between performance and selection complexity
with respect to this metric. In doing so, we also obtain results
regarding concurrent non-uniform random walks that are of
independent mathematical interest.

We recognize that most papers on biology-inspired dis-
tributed problems implicitly address selection complexity in
their fixed model constraints. Restricting agents to not have
access to communication in the search problem, for exam-
ple, is a constraint that likely lowers the selection complex-
ity of solutions in the model. What is new about our ap-
proach is that we are capturing such complexity in a vari-
able metric, allowing us to study the trade-offs between al-
gorithmic power and performance more generally. This can
provide insights beyond those gained by characterizing the
capabilities of a given static set of constraints.

In this paper, we focus on the problem of n probabilis-
tic non-communicating agents collaboratively searching for
a target in a two-dimensional grid placed within some (un-
known) distance D (measured in number of hops in the grid)
from the origin. We assume that n is sub-exponential in D.1

This problem is described and analyzed in recent work by
Feinerman et al. [14], where it is called the Ants Nearby
Treasure Search (ANTS) problem. The authors in [14] argue
that it provides a good approximation of insect foraging, and
represents a useful intersection between biological behavior
and distributed computation. The analysis in [14] focuses
on the speed-up performance metric, which measures how
the expected time to find the target improves with n. The
authors describe and analyze search algorithms that closely
approximate the straightforward Ω(D+D2/n) lower bound
for finding a target placed within distance D from the origin.

Selection Metric Motivation. In studying solutions to the
ANTS problem, we consider the selection complexity met-
ric χ , which captures the bits of memory and probabilis-
tic range used by a given algorithm. This combined metric
is motivated by the fact that memory can be used to simu-
late small probability values, and small probability values
can be used to approximate operations that would other-
wise require more memory; for example, given a coin that
comes up heads with some small probability 1/2` might al-
low an agent to measure a distance of approximately 2` with-
out using much memory (e.g., keep moving until the coin
comes up heads). In more detail, for algorithm A , we define

1 Note that an exponential number of agents finds the target quickly
even if they employ simple random walks.

χ(A) = b+ log`, where b is the number of bits of memory
required by the algorithm (note, b = log |S|, where S is the
state set of the state machine representation of A), and ` is
the smallest value such that all probabilities used in A are
bounded from below by 1/2`. In Sections 3, 4 and 5, we
show that the choice of the selection metric arises naturally
from the analysis of our algorithms and the lower bound.

We conjecture that, from a biological point of view, it
is reasonable to assume that large values of ` are associ-
ated with higher selection complexity. Algorithms relying
on small probabilities are more sensitive to additive distur-
bances of the probability values. Hence, creating a small
probability based on a single event is harder to accomplish,
since the event must not only have a strong bias towards
one outcome, but also be well protected against influencing
factors (like temperature, noise). On the other hand, using
multiple independent events to simulate one with larger bias
(probability boosting) constitutes a hidden cost. Our model
and algorithms make this cost explicit, by accounting for it
in terms of the memory needed for counting such events.

Results. In this paper, we generalize the problem of [14]
by now also considering the selection complexity metric χ .
We begin by studying lower bounds. We identify log logD,
for a target at distance within D from the origin, as a cru-
cial threshold for the χ metric when studying the achievable
speed-up 2 in the foraging problem.

In more detail, our lower bound shows that for any al-
gorithm A such that χ(A) ≤ log logD−ω(1), there is a
placement of the target within distance D such that the prob-
ability that A finds the target in less than D2−o(1) moves per
agent is polynomially small in D, and the probability of find-
ing a target placed randomly within this distance and within
D2−o(1) moves is o(1). Since Ω(D2) rounds are necessary
for a single agent to explore the grid, our lower bound im-
plies that the speed-up of any algorithm for exploring the
grid with χ ≤ log logD−ω(1) is bounded from above by
min{n,Do(1)}. For comparison, recall that because of the
trivial Ω(D2/n+D) lower bound, the optimal speed-up is
min{n,D}. At the core of our lower bound is a novel analysis
of recurrence behavior of small Markov chains with proba-
bilities of at least 1/2`.

Concerning upper bounds, we note that the foraging al-
gorithms in [14] achieve near-optimal speed-up in n, but
their selection complexity, as measured by χ(A), is higher
than the loglogD threshold identified by our lower bound:
these algorithms require sufficiently fine-grained probabil-
ities and enough memory to randomly generate and store,
respectively, coordinates up to distance at least D from the
origin; this requires χ(A) ≥ logD. In this paper, we seek
upper bounds that guarantee χ(A)≈ log logD, which is the

2 The speed-up of an algorithm is the ratio of the times required for
a single agent and for n agents to explore the grid.

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 3

minimum value for which good speed-up is possible. We
consider two types of algorithms: non-uniform algorithms in
D, which are allowed to use knowledge of D, and uniform
algorithms in D, which have no information about D. All
our algorithms are non-uniform in n; that is, the algorithms
have knowledge of n. We begin by describing and analyzing
a simple algorithm that is non-uniform in D and has asymp-
totically optimal expected running time. The main idea of
this algorithm is to walk up to certain points in the plane
while counting approximately, and thus using little memory.
We can show that this approximate counting is sufficient for
searching the plane efficiently. This algorithm uses a value
of χ = log logD+O(1), which matches our lower bound
result for χ up to factor 1+o(1).

The main idea of our uniform algorithm is to start with
some estimate of D and keep increasing it while executing
a corresponding version of our simple search algorithm de-
scribed above for each such estimate. Similarly to the non-
uniform algorithm, the uniform algorithm uses value of χ

that is at most log logD+O(1). Additionally, we introduce a
mechanism to control the trade-off between the algorithm’s
running time and number of bits it uses. With that goal, we
let the algorithm take as a parameter a non-decreasing func-
tion f (D) that represents the running-time overhead we are
willing to accept; for a given function f (D), the algorithm
guarantees to run in O((D2/n+D) · f (D)) moves per agent
in expectation. We show that the resulting value of the se-
lection metric χ = b+ log` is log logD+O(1), regardless
of the choice of f , including f =Θ(1), in which case the al-
gorithm matches the Ω(D2/n+D) lower bound. In Section
4.4, we analyze in detail the resulting χ values for different
choices of f (D) and discuss what trade-offs can be achieved
between the b and ` components of the selection metric. For
example, we show that for f (D) =Θ(Dε), where 0 < ε < 1,
if ` is sufficiently large, then b = log loglogD+O(1) bits
are sufficient for the algorithm.

Discussion. From a biological perspective, we do not claim
that χ is necessarily the right metric to use in studying such
problems. We chose it because b and ` seem to be important
factors in search, and they are potentially difficult to increase
in nature. However, we recognize that the refinement and
validation of such metrics require close collaboration with
evolutionary biologists. In this paper, our main goal is to
advertise the selection complexity approach as a promising
tool for studying biology-inspired problems.

From a mathematical perspective, we emphasize that our
lower bound result, in particular, is of independent interest.
It is known that uniform random walks do not provide sub-
stantial speed-up in the plane searching problem [3]; the
speed-up is bounded by min{logn,D}. Our lower bound
generalizes this observation from uniform random walks to

probabilistic processes with bounded probabilities and small
state complexities.

Related Work. This work was initially inspired by the re-
sults in [12] and [14], which originally introduced the prob-
lem studied here. More precisely, in [14] the authors present
an algorithm to find the target in optimal time O(D2/n+D)

in expectation, assuming that each agent in the algorithm
knows the number n of agents (but not D). For unknown
n, they show that for every constant ε > 0, there exists a
uniform search algorithm that is O(log1+ε n)-competitive,
but there is no uniform search algorithm that is O(logn)-
competitive. In [12], Feinerman et al. provide multiple lower
bounds on the advice size (number of bits of information
the ants are given prior to the search), which can be used
to store the value n, some approximation of it, or any other
information. In particular, they show that in order for an al-
gorithm to be O(log1−ε n)-competitive, the ants need advice
size of Ω(log logn) bits. Note that this result also implies
a lower bound of Ω(log logn) bits on the total size of the
memory of the ants, but only under the condition that close-
to-optimal speed-up is required. Our lower bound is stronger
in that we show that there is an exponential gap of D1−o(1)

for the maximum speed-up (with a sub-exponential num-
ber of agents in D). Similarly, the algorithms in [14] need
Ω(logD) bits of memory, resulting in selection metric value
χ = Ω(logD), as contrasted with our algorithm that ensures
χ = O(log logD).

In our previous work in [20], we generalized the ideas of
the non-uniform algorithm to show that a uniform algorithm
in D can find a target within distance D from the origin in
(D2/n+D) · 2O(`) rounds for χ(A) ≤ 3loglogD+O(1).
The running time is asymptotically optimal for ` = O(1),
but we choose to keep ` as a parameter in order to study
the trade-off between ` and b. While the value of χ needed
by the algorithm is asymptotically optimal, it is dominated
by the memory component b. In other words, even if the al-
gorithm is given large values of ` (corresponding to small
probabilities), the algorithm still requires Θ(log logD) bits.
One goal for our uniform algorithm in this paper is to allow
for a trade-off between the b and ` components of the se-
lection metric, potentially at the cost of being some approx-
imation factor over the optimal running time; moreover, our
goal is for the algorithm to be also flexible in choosing such
an approximation factor.

Searching and exploration of various types of graphs by
single and multiple agents are widely studied in the litera-
ture. Several works study the case of a single agent exploring
directed graphs [2] [6] [8], undirected graphs [23] [24], or
trees [4] [9]. Out of these, the following papers have restric-
tions on the memory used in the search: [4] uses O(logn)
bits to explore an n-node tree, [6] studies the power of a
pebble placed on a vertex so that the vertex can later be

4 Christoph Lenzen et al.

identified, [9] shows that Ω(log logn) bits of memory are
needed to explore some n-node trees, and [24] presents a
log-space algorithm for s-t-connectivity. There have been
works on graph exploration with multiple agents [3] [10]
[16]; while [3] and [16] do not include any memory bounds,
[10] presents an optimal algorithm for searching with con-
stant memory and constant-sized messages (in the model in-
troduced in [11]) by agents with very limited computation
and communication capabilities. It should be noted that even
though these models restrict the agents’ memory to very few
bits, the fact that the models allow communication makes it
possible to simulate larger memory.

So far, in the above papers, we have seen that the metrics
typically considered by computer scientists in graph search
algorithms are mostly the amount of memory used and the
running time. In contrast, biologists look at a much wider
range of models and metrics, more closely related to the
physical capabilities of the agents. For example, in [5] the
focus is on the capabilities of foragers to learn about differ-
ent new environments, [17] considers the physical fitness of
agents and the abundance and quality of the food sources,
[18] considers interesting navigational capabilities of ants
and assumes no communication between them, [19] mea-
sures the efficiency of foraging in terms of the energy over
time spent per agent, and [25] explores the use of different
chemicals used by ants to communicate with one another.

Organization. In Section 2, we present our system model
assumptions and formally define the search problem and
both the performance and selection metrics that we use to
evaluate our algorithms. In Sections 3 and 4, we present our
algorithms, starting with a very simple non-uniform algo-
rithm in Section 3 illustrating our main approach. In Sec-
tion 4, we generalize this approach to algorithms that are
uniform in D. In Section 5, we present a lower bound that
matches our upper bounds in terms of the selection metric χ .
We conclude by discussing some assumptions and possible
extensions of our work in Section 6. The appendix contains
some definitions and math preliminaries used throughout the
technical sections of the paper.

2 Model

Our model is similar to the models in [12] [14]. We con-
sider an infinite two-dimensional square grid with coordi-
nates in Z2. The grid is to be explored by n ∈ N identical,
non-communicating, probabilistic agents. Each agent is al-
ways located at a point on the grid. Agents can move in one
of four directions, to one of the four adjacent grid points,
but they have no information about their current location in
the grid. Initially all agents are positioned at the origin. We
also assume that an agent can return to the origin, and for the

purposes of this paper, we assume this action is based on in-
formation provided by an oracle3. Without this assumption,
any algorithm automatically needs at least Ω(logD) bits just
to implement the capability to return home. Therefore, while
it is a strong assumption, it lets us study the behavior of
algorithms with selection complexity χ = o(logD). In our
setting, the agent returns on a shortest path in the grid that
keeps closest to the straight line connecting the origin to
its current position. Note that the return path is at most as
long as the path of the agent away from the origin; there-
fore, since return paths increase the running time by at most
a factor of two, and we are interested in asymptotic com-
plexity, we ignore the lengths of these paths in our analysis.
Next, we give a formal description of our model.

Agents. Each agent is modeled as a probabilistic finite state
automaton; since agents are identical, so are their automata.
Each automaton is a tuple (S,s0,δ), where S is a set of states,
state s0 ∈ S is the unique starting state, and δ is a transition
function δ : S→Π , where Π is a set of discrete probability
distributions. Thus, δ maps each state s ∈ S to a discrete
probability distribution δ (s) = πs on S, which denotes the
probability of moving from state s to any other state in S.

For our lower bound in Section 5, it is convenient to use
a Markov chain representation of each agent. Therefore, we
can express each agent as a Markov chain with transition
matrix P, such that for each s1,s2 ∈ S, P[s1][s2] = πs1(s2),
and start state s0 ∈ S.

In addition to the Markov chain that describes the evo-
lution of an agent’s state, we also need to characterize its
movement on the grid. Let M : S→ {up,down,right, le f t,
origin,none} be a labeling function that maps each state
s∈ S to an action the agent performs on the grid. For simplic-
ity, we require M(s0) = origin. Using this labeling function,
any sequence of states (si ∈ S)i∈N is mapped to a sequence
of moves in the grid (M(si))i∈N where M(si) =none denotes
no move in the grid (i.e., si does not contribute to the derived
sequence of moves) and M(si) =origin means that the agent
returns to the origin, as described above.

Executions. An execution of an algorithm for some agent is
given by a sequence of states from S, starting with state s0,
and coordinates of the associated movements on the grid de-
rived from these states. Formally, an execution is defined as
(s0,(x0,y0),s1,(x1,y1),s2,(x2,y2), · · ·), where s0 ∈ S is the
start state, (x0,y0) = (0,0), and for each i≥ 0, applying the
move M(si+1) to point (xi,yi) results in point (xi+1,yi+1).
For example, if M(si+1) = up, then xi+1 = xi and yi+1 =

yi+1, if M(si+1) = none, then xi = xi+1 and yi = yi+1, and if
M(si+1) = origin, then (xi+1,yi+1) = (0,0). In other words,

3 From a biological perspective, there is evidence that social insects
use such a capability by navigating back to the nest based on landmarks
in their environment [21].

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 5

we ignore the movement of the agent on the way back to the
origin, as mentioned earlier in this section.

An execution of an algorithm with n agents is just an n-
tuple of executions of single agents. For our analysis of the
lower bound, it is useful to assume a synchronous model.
So, we define a round of an execution to consist of one tran-
sition of each agent in its Markov chain. Note that we do not
assume such synchrony for our algorithms.

So far, we have described a single execution of an algo-
rithm with n agents. In order to consider probabilistic execu-
tions, note that the Markov chain (S,P) induces a probability
distribution of executions in a natural way, by performing an
independent random walk on S with transition probabilities
given by P for each of the n agents.

Problem Statement. The goal is to find a target located at
some vertex at distance (measured in terms of the infinity
norm) at most D from the origin in as few expected moves
as possible. Note that measuring paths in terms of the max-
norm gives us a constant-factor approximation of the actual
hop distance. We will consider both non-uniform and uni-
form algorithms with respect to D; that is, the agents may
or may not know the value of D. Technically, in the case
of non-uniform algorithms, each different value of D corre-
sponds to a different algorithm. So, we define a family of
non-uniform algorithms {AD}D∈N where each AD is an al-
gorithm with parameter D.

It is easy to see (also shown in [14]) that the expected
running time of any algorithm is Ω(D+D2/n) even if agents
know n and D and they can communicate with each other.
This bound can be matched if the agents know a constant-
factor approximation of n [14], but as mentioned in Sec-
tion 1, the value of the selection metric χ (introduced be-
low) in that specific algorithm is Ω(logD). For simplicity,
throughout this paper we will consider algorithms that are
non-uniform in n, i.e., the agents’ state machine is allowed
to depend on n. One can apply a technique from [14] that the
authors use to make their algorithms uniform in n, in order
to generalize our results and obtain an algorithm that is uni-
form in both D and n, at the cost of an O(log1+ε n)-factor
running time overhead.

Metrics. For the problem defined above, we consider both
a performance and a selection metric and study the trade-
offs between the two. We will use the term step of an agent
interchangeably with a transition of the agent in the Markov
chain. We define a move of the agent to be a step that the
agent performs in its Markov chain resulting in a state la-
beled up, down, le f t, or right.

For our performance metric, we focus on the asymptotic
running time in terms of D and n; more precisely, we are in-
terested in the metric Mmoves: the minimum over all agents

of the number of moves of the agent until it finds the tar-
get. Note that for this performance metric we exclude states
labeled none and origin in an execution of an agent. We al-
ready argued that the origin states increase the running time
by at most a factor of two. We consider the transitions to
none states to be part of an agent’s local computation. In-
tuitively, we can think of consecutive transitions to none
states to be grouped together with the first transition to a
non-none state and considered a single move. Both our algo-
rithm bounds and our lower bound are expressed in terms of
Mmoves. For the proof of our lower bound, it is also useful to
define a similar metric in terms of the steps of an agent. We
define the metric Msteps to be the minimum over all agents
of the number of steps of the agent until it finds the target.
This metric is used only as a helper tool in our lower bound
analysis.

The selection metric of a state automaton (and thus of
the corresponding algorithm) is χ(A) = b + log`, where
b = dlog |S|e is the number of bits required to encode the
states in S and 1/2` is a lower bound on min{P[s,s′] |s,s′ ∈
S∧P[s,s′] 6= 0}, that is, on the smallest non-zero probabil-
ity value used by the algorithm. We further motivate this
choice in Section 3 and Section 4, where we describe differ-
ent trade-offs between the performance metric and the val-
ues of b and `.

3 Non-uniform Algorithm

In this section we present an algorithm in which the value of
D is available to the algorithm.

Fix D ∈ N and define algorithm AD ∈ {AD}D∈N based
on the following general approach: each agent chooses a ver-
tical direction (up or down) with probability 1/2, walks in
that direction for a random number of steps that depends
on D, then does the same for the horizontal direction, and
finally returns to the origin and repeats this process. In The-
orem 1, we show that the expected minimum over all agents
of the number of moves of the agent to find a target at dis-
tance up to D from the origin is at most O(D2/n+D).

Let coin Cp denote a coin that shows tails with probabil-
ity p. Assuming coin C1/D is available to the algorithm, we
present Algorithm 1, accompanied by a state machine rep-
resentation (for simplicity of presentation the state machine
does not depict the states labeled none). Note that the state
machine is not an exact representation of the code in Al-
gorithm 1 because the algorithm uses only coin flips while
the state machine has more than two outgoing transitions
per state. However, by checking the probabilities associated
with each action, it is easy to verify that the behaviors of
the state machine and the algorithm are identical. If we were
to construct a state machine that matches the algorithm pre-
cisely, it would require four bits to represent, as opposed to
three bits in the current state machine.

6 Christoph Lenzen et al.

origin

up

down

rightleft

1
D2

1
2

(
1− 1

D

)

1
2

(
1− 1

D

)

1
2D

(
1− 1

D

)

1
2D

(
1− 1

D

)

1− 1
D

1
D2

1
2D

(
1− 1

D

)1
2D

(
1− 1

D

)

1− 1
D

1
D

1− 1
D

1
D2

1
2D

(
1− 1

D

)1
2D

(
1− 1

D

)

1− 1
D

1
D

Fig. 1 State machine representation of Algorithm 1. The state names
correspond to the values of the labeling function.

Later in this section we present Algorithm AD, which is
a slightly modified version of Algorithm 1 that removes the
need for coin C1/D. In Theorem 2 we show that Algorithm
AD guarantees that χ = log logD+O(1).

Algorithm 1: Non-uniform Search Algorithm.
while true do

if coin C1/2 shows heads then
while coin C1/D shows heads do

move up
else

while coin C1/D shows heads do
move down

if coin C1/2 shows heads then
while coin C1/D shows heads do

move left
else

while coin C1/D shows heads do
move right

return to the origin

Fix an arbitrary point (x,y) in the grid, where x,y ∈ Z
and |x|, |y| ≤ D; this point represents the location of the tar-
get. The algorithms presented in this section are analyzed
with respect to the number of moves until some agent ex-
plores grid point (x,y) and, thus, finds the target. For Lem-
mas 1, 2, 3, and 4 consider an arbitrary fixed agent.

Let T denote the number of moves for the agent to com-
plete an iteration of the outer loop of the algorithm. Also,
let event S (for successful) be the event that the agent finds
the target in the given iteration. Similarly, let event U (for
unsuccessful) denote the event that the agent does not find
the target in the given iteration. Since the length and success
probability of each iteration is the same, we do not index the

length T of the iteration and the events S and U by the index
of the iteration. Next, we bound E[T], E[T |U], and E[T | S].

Lemma 1 E[T]≤ 2D.

Proof In each iteration, the agent performs one move up or
down for each consecutive toss of coin C1/D showing heads,
and then one move right or left for each consecutive toss of
coin C1/D showing heads. Each of these walks is D steps
long in expectation, so it follows that E[T]≤ 2D.

Lemma 2 E[T | S]≤ 2D.

Proof This holds because in a successful iteration the agent
makes at most D horizontal moves followed by at most D
vertical moves.

Lemma 3 E[T |U]≤ 2E[T].

Proof First, we bound the probability that the agent does not
find the target in a given iteration. If y > 1, with probability
1/2 coin C1/2 shows tails, so the agent does not move up,
and consequently, it does not find the target in this iteration.
Symmetrically, if y < 1, with probability 1/2 the agent does
not find the target. Overall, in a given iteration, with proba-
bility at least 1/2, the target is not found. By the law of total
expectation it follows that:

E[T]≥ Pr[U] ·E[T |U]≥
(

1
2

)
E[T |U].

Since all iterations by all agents are identical and inde-
pendent, instead of analyzing iterations performed by the n
agents in parallel, we can consider an infinite sequence of
consecutive iterations performed by a single agent. In the
next theorem, we will assign these iterations to the n agents
in a round-robin way and analyze the resulting parallel run-
ning time.

Let random variable N denote the number of unsuccess-
ful iterations before the first successful iteration, and let the
sequence T1,T2, · · · denote the lengths of the iterations per-
formed by the algorithm. Since the lengths of iterations are
identical, we know that for all i≥ 1, E[Ti] = E[T].

Lemma 4 E[N]≤ 16D.

Proof First, we bound the probability for the agent to find
the target in a single iteration.

Suppose the target is located in the first quadrant. With
probability 1/4, an agent moves up and right during an iter-
ation of the algorithm. The probability that the walk up halts
after exactly x steps is:(

1− 1
D

)x(1
D

)
≥
(

1− 1
D

)D(1
D

)
≥ 1

4D
.

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 7

The probability that the walk right halts after y≤D steps
is at least (1−1/D)D ≥ 1/4. In each iteration, the probabil-
ity to find the target is at least 1/(16D). The same holds for
a target located in any of the other quadrants.

Therefore, E[N]≤ 16D.

Theorem 1 Let each of n agents execute Algorithm 1. For a
target located within distance D from the origin:

E[Mmoves]≤
64D2

n
+6D = O

(
D2

n
+D

)
.

Proof First, we assign the N unsuccessful iterations to the
n agents round robin. Each agent executes a total of at most
dN/ne unsuccessful iterations. Fix the agent that executes
the following iterations: 1,1+ n,1+ 2n, · · · ,1+ (dN/ne−
1)n and note that no other agent executes more iterations.

Next, we bound the value of E[Mmoves] by the expected
duration of the unsuccessful iterations E[∑dN/ne−1

i=0 Ti·n+1] of
the fixed agent plus the expected duration of a successful it-
eration by the agent that actually finds the target. Note that
this is an upper bound because it is possible that the success-
ful agent finds the target before the fixed agent completes its
unsuccessful iterations.

E[Mmoves]≤ E

[
dN/ne−1

∑
i=0

Ti·n+1

]
+E[TN+1]

=
∞

∑
j=0

(
E

[
d j/ne−1

∑
i=0

Ti·n+1 | N = j

]
+E[Tj+1 | N = j]

)
·Pr[N = j]

=
∞

∑
j=0

(
d j/ne−1

∑
i=0

E[Ti·n+1 | N = j]+E[Tj+1 | N = j]

)
·Pr[N = j].

Since N = j and i · n+ 1 ≤ j, we know that Ti·n+1 is an
unsuccessful iteration. Therefore, E[Ti·n+1 | N = j] = E[T |
U]. For the same reason, E[Tj+1 | N = j] = E[T | S].

E[Mmoves]≤
∞

∑
j=0

(
d j/ne−1

∑
i=0

E[T |U]+E[T | S]

)
·Pr[N = j]

≤
∞

∑
j=0

((
j
n
+1
)
E[T |U]+E[T | S]

)
·Pr[N = j]

= E[T |U]
∞

∑
j=0

(
j
n
+1
)
·Pr[N = j]+E[T | S]

= E[T |U] ·
(
E[N]

n
+1
)
+E[T | S]

≤ 4D ·
(

16D
n

+1
)
+2D

=
64D2

n
+6D,

where the second the last step follows by by Lemmas 2, 3,
and 4.

Note that it is technically possible that Pr[N = ∞] 6= 0
implying that the number of iterations to find the target is
unbounded. However, this is not the case because it is easy
to see that each iteration terminates in a finite and bounded
number of rounds with probability 1, so Pr[N = ∞] = 0.

We now generalize this algorithm to one that uses prob-
abilities lower bounded by 1/2` for some given ` ≥ 1. This
is achieved by the following subroutine, which implements
a coin that shows tails with probability 1/2k` using a biased
coin that shows tails with probability 1/2`, for `≥ 1.

Algorithm 2: coin(k, `): Biased coin flip showing tails
with probability 1/2k`.

for i = 0 · · ·k do
if C1/2` shows heads then

return heads
return tails

Lemma 5 Algorithm 2 returns tails with probability 1/2k`

and uses dlogke bits of memory.

Proof From the code it follows that the action on the second
line is performed only if none of the outcomes of the coin
flips are tails. Since each coin shows tails with probability
1/2` and there is a total if k coin flips, the probability of
all of them being tails is 1/2k`. Since the entire state of the
algorithm is the loop counter, it can be implemented using
dlogke bits of memory.

Next, we show how to combine Algorithm 1 and Algo-
rithm 2, and we analyze the performance and selection com-
plexity of the resulting algorithm. Given a biased coin C1/2` ,
we construct algorithm AD by replacing the lines where coin
C1/D is tossed in Algorithm 1 with a copy of Algorithm 2,
with parameters k = dlogD/`e and `.

Theorem 2 χ(AD) = log logD+O(1).

Proof By Lemma 5, Algorithm 2 run with parameters k =

d(logD)/`e and `′ = (logD)/k≤ `, generates coin flips with
probability 1/D of showing tails. Therefore, the correctness
of algorithm AD follows from Theorem 1. Since Algorithm
2 does not generate any moves of the agents on the grid, the
time complexity of algorithm also follows from Theorem 1.
Finally, by Lemma 5 and the fact that Algorithm 1 uses only
3 bits, it follows that

χ(AD) = b+ log`= logdlogD/`e+ log`+3

≤ log logD− log`+1+ log`+3

= log logD+O(1).

8 Christoph Lenzen et al.

4 Uniform Algorithm

In this section, we generalize the results from Section 3 to
derive an algorithm that is uniform in D. The main differ-
ence is that now each agent maintains an estimate of D that
it increases until it finds the target. For each estimate, an
agent simply executes a subroutine similar to algorithm AD.
Moreover, the algorithm in this section takes as a parame-
ter a non-decreasing function f : Z+ → [1,∞) and ensures
that the resulting running time E[Mmoves]

4 is O((D2/n+D) ·
f (D)). In other words, given a desired (asymptotic) approx-
imation ratio to the optimal value of Θ(D2/n+D), we pro-
vide an algorithm that solves the problem in the required
expected time and we calculate the necessary value of χ for
such a solution. The analysis of the value of E[Mmoves] is
presented in a general way and works for any function f
such that f (2) ≥ 128ln8. For the analysis of the resulting
value of the selection metric χ and the trade-off between its
components, we plug in different values of f .

In particular, we show that for a sufficiently large func-
tion f , the selection metric value of the algorithm is χ =

O(log logD). We also consider specific functions f . For ex-
ample, we consider f (x) = Θ(1) and we conclude that in
this case the algorithm uses b = O(log logD) bits, regard-
less of the value of `. In the case of f (x) = Θ(xε), where
0 < ε < 1, however, we show that if ` = logD− log logD,
then b = O(log loglogD) bits are sufficient for the algo-
rithm. At the end of the section we also discuss some other
options for the function f and some additional considera-
tions for the approximation factor.

The rest of this section is organized as follows: Section
4.1 defines a useful sequence of estimates of D using the
function f , Sections 4.2 and 4.3 present the algorithm and
running time analysis, respectively, and Section 4.4 includes
the selection metric analysis for the algorithm.

4.1 Definition and Properties of Ti and Di

We construct two infinite sequences; T = (T1,T2, · · ·) is a
sequence of non-negative reals, and D = (D1,D2, · · ·) is a
sequence of non-negative integers. Here, Di represents the
i’th estimate of D and Ti represents a bound on the expected
time an agent spends searching for the target within distance
Di (including the overhead in the running time defined by
f) in order to find a target within this distance with suffi-
ciently large probability. Such a table of values can be pre-
calculated for a given choice of f and then utilized by the al-
gorithm. For a given function f , the sequences D and T will

4 Note that fixing a uniform algorithm, a distance D ∈ N and a tar-
get location within distance D from the origin is sufficient to define
a probability distribution over all executions of the algorithm with re-
spect to the given target location. The metric Mmoves and its expectation
are defined over that distribution.

be hardwired into the agents’ automaton, so that the only
values the agent has to store in its main memory are the cur-
rent index i and the specific values of Di and Ti correspond-
ing to that index; however, the agent never needs to store the
entire sequences of values. Recall that our definition of b de-
pends only on the number of states of the agents’ automata.
Thus, it represents the number of “read-write” memory bits
required to record an agent’s state. The sequences Ti and Di
are fixed and thus can be stored in “read-only” memory. For
simplicity, we assume an agent can compute these values
online for simple enough choices of f (without violating the
memory and probability restrictions).

We define the following set of constraints on the values
of the D and T sequences. Let D0 = 2.

For each i ∈ N, Di > 0 (1)

For each i ∈ N, i≥ 1, Ti =
D2

i−1

n
· f (Di−1) (2)

For each i ∈ N, i≥ 1, Ti+1 =
Ti

4
· e

f (Di−1)
32 ·

D2
i−1
D2

i (3)

Before we proceed to the algorithm, we show that these
constraints uniquely define the sequences T and D , and
then we prove that these sequences are strictly increasing.
For the results below, recall that we assume that f is non-
decreasing and that f (2)≥ 128ln8.

Lemma 6 Fix n, Di−1 and Ti, for any i∈N. Then, Equations
(2) and (3) have a unique solution for Di and Ti+1.

Proof We need to show that given Di−1 and Ti we can cal-
culate Di and Ti+1. Based on the two defining equations for
Ti+1, it suffices to show that the equation below always has
a unique solution:

e
f (Di−1)

32 ·
D2

i−1
D2

i ·
D2

i−1

4n
· f (Di−1)−

D2
i

n
· f (Di) = 0.

Note that the left hand side is a continuous function (as-
suming we extend the domain to the reals) and Di−1 > 0 is
already fixed. Moreover, the left hand side is of the form
aeb/D2

i − cD2
i f (Di) for positive a, b, and c that are inde-

pendent of Di. Since f is non-decreasing, f (Di) can be uni-
formly bounded from above when considering Di→ 0 (e.g.
by f (Di−1)). The left hand side remains positive, so it is
bounded from below by aeb/D2

i − c′D2
i for positive a,b,c′ if

Di <= Di−1.
For Di → 0, the left hand side tends to ∞, whereas for

Di → ∞, it tends to −∞. Hence, by the mean value theo-
rem, there is always a solution Di to the above equation.
Moreover, the left hand side is strictly decreasing in Di (for
Di > 0), implying that this solution is unique. From the so-
lution for Di we can then easily compute the value of Ti+1.

Lemma 7 For each i ∈ N, i≥ 1, Ti+1 ≥ 2Ti.

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 9

Proof Fix some i ∈ N and consider two cases based on the
values of Di and Di−1. Also, recall that D0 ≥ 2.

Case 1: Di ≥ 2Di−1. By Equation (2) and the fact that f
is non-decreasing, we have:

Ti+1

Ti
=

D2
i · f (Di)

D2
i−1 · f (Di−1)

≥ (2Di−1)
2

D2
i−1

> 2.

Case 2: Di < 2Di−1. By Equation (3) and the fact that
f (2)≥ 128ln8, we have:

Ti+1 = e
f (Di−1)

32 ·
D2

i−1
D2

i · Ti

4
≥ e

f (2)
32 ·

1
4 · Ti

4
≥ 2Ti.

Note that, based on Lemma 7 and the assumption that
f is a non-decreasing function, it follows from Equation (2)
that D is a strictly increasing sequence.

Before we proceed to use the sequences D and T in
the uniform search algorithm, we give an example of what
these sequences looks like for the very simple case when f =
Θ(1) (in particular, we consider f = 80 and n = 100). Each
Di in the sequence below represents a (rounded-up) guess
of D, and the corresponding Ti represents the (rounded-up)
expected number of rounds the algorithm spends searching
at distance Di.

D : (2,2.4,2.9,3.4,4.1,4.9,5.9,7.1,8.4, · · ·)
T : (⊥,3.2,4.6,6.6,9.4,13.5,19.3,27.6,39.6, · · ·)

4.2 Subroutines and Algorithm

To simplify the presentation, we break up the main algo-
rithm into two subroutines. The first subroutine is similar to
Algorithm 1; however, instead of using the actual distance
D as a parameter, the following algorithm uses an estimate
Di of D.

Algorithm 3: search(i): Visit each grid point of a
square of side length Di centered at the origin with
probability at least 1/(16Di).

if if C1/2 shows heads then
while C1/Di = heads do

move up
else

while C1/Di = heads do
move down

if C1/2 shows heads then
while C1/Di = heads do

move right
else

while C1/Di = heads do
move left

Lemma 8 For a fixed i ∈ N and each point (x,y), x,y ∈ Z
and |x|, |y| ≤ Di, if Algorithm 3 is called at the origin, then
it visits point (x,y) with probability at least 1/(16Di).

Proof The proof is identical to the proof of Lemma 4 (D is
replaced by Di).

Next, in Algorithm 4, we use Algorithm 3 to efficiently
search an infinite grid using n agents. Intuitively, the al-
gorithm iterates through different values of the outer-loop
parameter i, which correspond to the different estimates of
D, increasing according to the sequence D . For each such
estimate, the algorithm executes a number of calls to the
search subroutine with parameter i. However, since agents
have limited memory and limited probability values, we can
only count the number of such calls to the search routine ap-
proximately. We do so by repeatedly tossing a biased coin
and calling the search algorithm as long as the coin shows
heads.

Algorithm 4: Search Algorithm for n agents.
for i = 1, · · · do

Let x = Ti/Di
while C1/x = heads do

search(i)
return to the origin

4.3 Running Time Analysis of Algorithm 4

For the rest of this section, fix some D ∈N and a point (x,y)
in the grid, where x,y ∈ Z and |x|, |y| ≤ D, that represents
the location of the target. Having fixed Algorithm 4, dis-
tance D, and a location for the target within distance D from
the origin, the metric Mmoves (and its expectation) can now
be defined with respect to the distribution of executions of
Algorithm 4.

Throughout the following proofs, we refer to an itera-
tion of the outermost loop as a phase and we refer to a call
to search(i) as an iteration. In Lemma 9, we calculate the
expected number of moves for an agent to complete phase i.
In Lemma 13, we calculate the probability that some agent
finds the target in some phase i. Finally, we use these inter-
mediate results to prove the main result of this section, The-
orem 3, which shows that the expected number of moves for
the first agent to find a target within distance D from the ori-
gin is O((D+D2/n) · f (D)). The structure of the proof is
very similar to that of the non-uniform algorithm in Section
3; however, here we consider phases instead of iterations.

For Lemmas 9, 10, 11, 12, and 13 fix some agent and let
Ri be the number until the agent completes phase i.

Lemma 9 E[Ri]≤ 2Ti.

10 Christoph Lenzen et al.

Proof We can bound Ri by summing over all possible num-
bers of iterations in phase i (the sum indexed by j) and, in-
side that sum, summing over the possible lengths of each
such iteration (the sum indexed by k). For this analysis, we
can assume that an iteration is always finished by the agent
executing it, even if the agent happens to find the target in
the middle of the iteration. The factor of 2 before the second
sum is due to the fact that each iteration consists of a vertical
and a horizontal set of moves.

E[Ri] =
∞

∑
j=0

Di

Ti
·
(

1− Di

Ti

) j

· j ·2
∞

∑
k=0

1
Di

(
1− 1

Di

)k

· k

=
∞

∑
j=0

Di

Ti
·
(

1− Di

Ti

) j

· j ·2(Di−1)

=

(
Ti

Di
−1
)

2(Di−1)

≤ Ti

Di
·2Di

= 2Ti.

Let Ni denote the number of iterations in phase i (until
the target is found or until the end of the phase).

Lemma 10 E[Ni]≤ Ti/Di.

Proof By the pseudocode:

E[Ni] =
∞

∑
j=0

Di

Ti
·
(

1− Di

Ti

) j

· j =
Ti

Di

(
1− Di

Ti

)
≤ Ti

Di
.

Let event Si (for successful) be the event that the agent
finds the target in phase i. Similarly, let event Ui (for un-
successful) denote the event that the agent does not find the
target in phase i. Next, we bound E[Ri |Ui] and E[Ri | Si].

Lemma 11 E[Ri |Ui]≤ 4Ti.

Proof For each k ≥ 1, let Xk denote the length of the k’th
iteration of phase i. Since the lengths of all iterations in
a given phase identically distributed, let E[X] denote their
common expected length. Finally, let U denote the event
that a given iteration is unsuccessful. Reasoning identically
to Lemma 3, E[X |U]≤ 4Di.

E[Ri |Ui] = E

[
Ni−1

∑
k=0

Xk+1 |Ui

]

=
∞

∑
j=0

j−1

∑
k=0

E[Xk+1 |U] ·Pr[Ni = j |Ui]

=
∞

∑
j=0

j−1

∑
k=0

E[X |U] ·Pr[Ni = j |Ui]

=
∞

∑
j=0

j ·E[X |U] ·Pr[Ni = j |Ui]

= E[X |U] ·E[Ni |Ui].

It remains to show that E[Ni |Ui] ≤ E[Ni]. Consider the
two probabilities: Pr[Ni = j] and Pr[Ni = j |Ui]. There are
two possible ways that Ni = j: either the phase ends because
the agent finds the target, or the phase ends because the coin
C1/x shows tails. On the other hand, conditioning on Ui, the
only way Ni = j is if the coin C1/x shows tails. Therefore,
Pr[Ni = j]≥ Pr[Ni = j |Ui], and so E[Ni |Ui]≤ E[Ni].

By Lemma 10, we have E[Ri | Ui] = E[X | U] ·E[Ni |
Ui]≤ E[X |U] ·E[Ni]≤ 4Ti.

Lemma 12 E[Ri | Si]≤ 4Ti +2D.

Proof For each k ≥ 1, let Xk denote the length of the k’th
iteration of phase i. Since all iterations in a given phase are
identical in length, let E[X] denote their common expected
length. Finally, let U denote the event that a given iteration
is unsuccessful. Reasoning identically to Lemma 3, E[X |
U]≤ 4Di. Note that each successful iteration is of length at
most 2D.

We can bound E[Ri | Si] by summing over all Ni−1 un-
successful iterations in phase i and then adding a successful
iteration of length at most 2D.

E[Ri | Si]≤ E

[
Ni−2

∑
k=0

Xk+1 | Si

]
+2D.

Reasoning similarly to Lemma 11, we get E[Ri | Si] ≤
E[X |U] ·E[Ni− 1 | Si] + 2D. Again, we just need to show
that E[Ni | Si]≤ E[Ni], and the same reasoning as in Lemma
11 holds.

By Lemma 10, we have E[Ri | Si]≤E[X |U] ·E[Ni | Si]+

2D≤ E[X |U] ·E[Ni]+2D≤ 4Ti +2D.

Let i0 be the minimum phase such that D≤ Di0 .

Lemma 13 For each phase i ≥ i0, the probability that an
agent finds the target in phase i is at least 1−2e−Ti/(32D2

i).

Proof By Lemma 10, the expected number of iterations in
phase i is at least Ti/Di.

Fix the number of coin flips performed by the agent in
phase i. Since the coin flips are independent, we can apply
Chernoff’s bound (Inequality (8) in the Appendix), showing
that the probability that fewer than Ti/(2Di) searches are ex-
ecuted in total is at most e−Ti/(12Di).

Condition on the event that there are at least Ti/(2Di)

iterations in phase i. We can apply Lemma 8 to bound the
probability of finding the target in phase i because Di ≥
Di0 ≥D, so the probability to miss the target in all iterations
of phase i is at most:(

1− 1
16Di

)Ti/(2Di)

≤ e−Ti/(32D2
i).

Therefore, the probability that the agent finds the target
in phase i is at least:(

1− e−Ti/(12Di)
)(

1− e−Ti/(32D2
i)
)
≥ 1−2e−Ti/(32D2

i).

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 11

Let random variable N denote the number of unsuccess-
ful phases i≥ i0 before the first successful phase.

Theorem 3 Let each of n agents run Algorithm 4. For a tar-
get located within distance D from the origin, E[Mmoves] =

20(D2/n+2D) · f (D) = O(D2/n+D) · f (D).

Proof Before we proceed to bound E[Mmoves], we calculate
a few terms that will appear in the bound of E[Mmoves]. Let
pi = 2e−(f (Di−1)/32)(D2

i−1/D2
i).

By Lemma 13, the probability that none of the agents
find the target in phase i is at most

2e−nTi/(32D2
i) ≤ 2e−(f (Di−1)/32)(D2

i−1/D2
i) = pi. (4)

For j ≥ 0, Pr[N = j] is at most the probability that none
of the n agents finds the target in the j phases following
phase i0. So:

Pr[N = j]≤
i0+ j−1

∏
i=i0

pi. (5)

Next, note that the value of pi appears in the definition
of Ti in Equation (3). So, we can write Ti+1 = Ti/(2pi). Also,
for any j ≥ 0:

Ti0+ j = Ti0

i0+ j−1

∏
i=i0

1
2pi

.

Finally, note that for any j,k ≥ 1:

k

∑
i= j

Ti ≤ Tk

k

∑
i= j

2 j−k ≤ 2Tk. (6)

We bound Mmoves by summing over the first i0 phases,
the following N unsuccessful phases, and the last successful
phase. We assume an arbitrary fixed agent executes each one
of these phases. Note that although this fixed agent is not
guaranteed to be the one that finds the target, the expected
number of moves of the agent that finds the target is bounded
by the expected number of moves of the fixed agent.

E[Mmoves]≤
i0−1

∑
i=1

E[Ri]+E

[
i0+N−1

∑
i=i0

Ri

]
+E[Ri0+N]

≤
i0−1

∑
i=1

E[Ri]+
∞

∑
j=0

i0+ j−1

∑
i=i0

E[Ri | N = j] ·Pr[N = j]

+
∞

∑
j=0

E[Ri0+ j | N = j] ·Pr[N = j]

≤
i0−1

∑
i=1

E[Ri]+
∞

∑
j=0

i0+ j−1

∑
i=i0

E[Ri |Ui] ·Pr[N = j]

+
∞

∑
j=0

E[Ri0+ j | Si] ·Pr[N = j].

Recall that by Lemmas 9, 11, and 12, we have E[Ri] ≤
2Ti, E[Ri |Ui]≤ 4Ti, and E[Ri | Si]≤ 4Ti +2D, respectively.

E[Mmoves]≤
i0−1

∑
i=1

2Ti +
∞

∑
j=0

i0+ j−1

∑
i=i0

4Ti ·Pr[N = j]

+
∞

∑
j=0

(4Ti0+ j +2D) ·Pr[N = j]

≤
i0−1

∑
i=1

2Ti +
∞

∑
j=0

i0+ j

∑
i=i0

4Ti ·Pr[N = j]+2D.

Then, by Equations (4), (5), and (6), it follows that:

E[Mmoves]≤ 4Ti0 +
∞

∑
j=0

8Ti0+ j ·Pr[N = j]+2D

≤ 4Ti0 +8Ti0

∞

∑
j=0

i0+ j−1

∏
i=i0

(
1

2pi

) i0+ j−1

∏
i=i0

pi +2D

≤ 4Ti0 +8Ti0

∞

∑
j=0

2− j +2D

≤ 4Ti0 +16Ti0 +2D.

Finally, by Equation (2) and Di0−1 ≤ D≤ Di0 :

E[Mmoves]≤ 20

(
D2

i0−1

n

)
f (Di0−1)+2D

≤ 20
(

D2

n
+2D

)
f (D).

As a technical note, if the right hand side of Equation (5)
does not go to 0 as j goes to infinity, then we cannot use the
method above to bound E[Mmoves] because Pr[N = ∞] 6= 0
implying that we may need an unbounded number of phases
to find the target. However, this is not the case because it is
easy to see that each phase terminates in a finite and bounded
number of rounds with probability 1, so Pr[N = ∞] = 0.

4.4 Selection Metric Analysis

In this section, we analyze Algorithm 4 with respect to the
selection metric. In Section 4.4.1, we prove some bounds on
the χ selection metric for an arbitrary function f (subject
to the constraints listed at the beginning of Section 4) used
to define the sequences D and T . Next, in Sections 4.4.2
and 4.4.3, we substitute some specific functions for f in or-
der to get closed-form results for some different values of χ .
For the memory component, b, of the selection metric, we
consider only dynamically-changing memory (variables that
take on different values throughout the execution of the algo-
rithm); for example, the loop counter i and the correspond-
ing value Ti/Di in Algorithm 4 are dynamically changing,
while the entire pre-computed sequences of Ti’s and Di’s are
not dynamically changing because the algorithm uses them
only as a look-up table and does not modify these sequences.

12 Christoph Lenzen et al.

4.4.1 General Analysis

The memory requirements of the algorithm can be split into
three parts: (1) bits to represent the counter value i, (2) bits
to implement the search routine with argument i, and (3) bits
to implement coin C1/x for x = Ti/Di. Similarly to Section
4.3, let i0 be the minimum phase such that D≤ Di0 .

Note that, technically, these memory requirements are
random variables because the algorithm does not guarantee
that once it reaches phase i0 it finds the target with proba-
bility 1. In other words, it is possible for the algorithm to
reach phases greater than i0 before actually finding the tar-
get. Therefore, for the purposes of this analysis, we will as-
sume that after the algorithm reaches phase i0 it may run
out of memory, and if it does so, it just stops incrementing
the phases. Since it has already reached the right distance
to search, by the analysis in Section 4.3, we know that this
restriction does not prevent the algorithm from finding the
target.

Part (1) above depends on how fast the sequence of Di’s
grow, which depends on our choice of function f . Since i0
is the maximum phase index that the algorithm can reach
before it finds the target, we just need to account for the bits
used to represent i0.

For part (2), we can use the subroutine in Algorithm 2 in
order to implement the specific coin values we need using
only the coin we have, C1/2` (recall that ` is a parameter that
determines the smallest probability the algorithm may use).
By Lemma 5, it follows that we need at most log logDi0 −
log` bits to implement coin C1/Di0

. The remaining part of
the search subroutine uses only a constant number of bits.

Similarly, for part (3), we can calculate the number of
bits used to implement coin C1/x for x = Ti/Di:

Ti

Di
=

D2
i−1 · f (Di−1)

n ·Di
≤ Di−1 · f (Di−1)≤ Di0−1 · f (Di0−1).

The exact number of bits used to implement the coin
C1/(Di0−1· f (Di0−1)) depends on the choice of f .

In the following subsections, we analyze two choices
for the function f that will let us calculate specific values
for the selection metric χ and the relationship between the
b and ` components. Namely, we consider f : f (Di) = c,
for some constant c ≥ 128 and f (Di) = Θ(Dε

i) for some
0 < ε < 1. Our analysis shows that in the first case, the al-
gorithm uses χ = 2loglogD+O(1), which we also show
to be the case in general, for any (larger than some con-
stant) function f . In the second case, the same value of χ

is sufficient; however, we show the additional property that
if ` is large enough, then b = log loglogD +O(1), while
χ = b+ log`= O(log logD) is still satisfied.

4.4.2 f (Di) = c for some constant c≥ 128

Theorem 4 For f (Di) = c, where c≥ 128, Algorithm 4 uses
χ = 2loglogD+O(1).

Proof Substituting f in Equations (2) and (3), we get the
following equations:

Ti = 128 ·
D2

i−1

n

Ti+1 = 128 · D
2
i

n

Ti+1 =
Ti

4
· e

3D2
i−1

D2
i

Substituting the value of Ti in the above equations, we
get:

128D2
i

n
=

128D2
i−1

4n
· e

3D2
i−1

D2
i

ln

(
D2

i

D2
i−1

)
=

3D2
i−1

D2
i
− ln4

Note that if Di/Di−1 ≤ 2, then ln(D2
i /D2

i−1) ≤ ln4, and
so:

Di

Di−1
≥
√

3
2ln4

> 1.

Given that D0 = 2, it is easy to see that each Di is at
least 2(

√
3/(2ln4))i−1. Therefore, i0−2 =O(logDi0−1) =

O(logD) and so log logD+O(1) bits are sufficient to rep-
resent index i0.

Additionally, as mentioned above, the algorithm uses at
most log logDi0− log`= log logD+O(1)− log` bits to im-
plement coin C1/Di0

. Similarly, the algorithm uses at most
logO(logDi0−1))− log` = log logD+O(1)− log` bits to
implement coin C1/(Di0−1· f (Di0−1)). Since we implement each
coin only after we are done with the previous one, the same
bits can be reused to toss both coins.

Therefore the resulting value of the selection metric is
χ = b+ log`= 2loglogD+O(1).

Note that, for this choice of f , the value of b used by
the algorithm is Θ(log logD) in the worst case, regardless
of the value of `. This is true because larger values of ` can
help implement the various coins used in the algorithm with
fewer bits, but it does not affect the fact that Θ(log logD)

bits are used to represent index i0. Therefore, even if large
values of ` are available to the algorithm, the memory re-
quirement remains the same.

Next, we generalize Theorem 4 to any function f that is
polynomial in D.

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 13

Corollary 1 Algorithm 4 uses χ = 2loglogD+O(1), for
any function f (Di) ≥ 128 and f (Di) ≤ T (Di) for any poly-
nomial T .

Proof First, by Theorem 4, we know that Algorithm 4 uses
χ = 2loglogD +O(1), for f (Di) = c, where c ≥ 128. A
faster growing function results in faster growing values of
the subsequent Di’s, so the value Di0 is reached faster.

Therefore, for any function growing faster than a con-
stant, i0 can be represented with fewer bits, compared to the
case of f (Di) = c. Since f (Di) is at most polynomial in Di,
the number of bits sufficient to implement coins C1/Di0

and
C1/(Di0 · f (Di0−1)) is asymptotically the same as in the case of
f (Di) = c. Therefore, for any f (Di) ≥ 128 that is at most
polynomial in Di, Algorithm 4 uses χ = 2loglogD+O(1).

4.4.3 f (Di) =Θ(Dε) for some 0 < ε < 1.

Next, we consider f (Di) = Θ(Dε) and we would like to
show that for this choice of f , unlike the case of f =Θ(1),
the algorithm uses fewer bits of memory, provided that the
value of ` is sufficiently large. In particular, we show that
if `= logD− log logD, then b = log loglogD+O(1). Note
that these values of b and ` still satisfy the selection metric
value of χ = b+ log`= O(log logD).

Theorem 5 For f (Di) =Θ(Dε
i), where 0 < ε < 1, and `=

logD− log logD, Algorithm 4 uses b = log loglogD+O(1).

Proof Substituting f in Equations (2) and (3), we get the
following equations:

Ti =
D2

i−1

n
·Θ(Dε

i−1)

Ti+1 =
D2

i
n
·Θ(Dε

i)

Ti+1 =
Ti

4
· e

Θ(Dε
i−1)

128
D2

i−1
D2

i

Substituting the value of Ti in the above equations, we
get:

D2
i

n
·Θ(Dε

i) =
D2

i−1

n
·Θ(Dε

i−1) · e
Θ(Dε

i−1)
128

D2
i−1
D2

i

Θ(D2+ε

i)

Θ(D2+ε

i−1)
= e

Θ(D2+ε
i−1)

D2
i

Θ(lnDi)−Θ(lnDi−1) =
Θ(D2+ε

i−1)

D2
i

D2+o(1)
i ≥ D2+ε

i−1

Di ≥ D1+Ω(ε)
i−1

Given that D0 = 2, it is easy to see that each Di is at least
Θ(2(1+Ω(ε))i−1

). Therefore,

i0−2 = O(log logDi0−1) = O(log logD),

so the algorithm uses at most log log logD +O(1) bits to
represent index i0.

4.4.4 Discussion

First, note that some other functions, not considered above,
lie asymptotically between Θ(1) and Θ(Dε

i). For example,
two such functions are Θ(logDi) and 2Θ(logλ Di) where λ ∈
[0,1]. We can perform similar calculations to those in Sec-
tions 4.4.2 and 4.4.3, to show that, for both of these func-
tions, the algorithm uses O(log logD) bits to encode the in-
dex i0. In other words, we get the same asymptotic bounds
for χ as in the case of f (Di) = Θ(1). In contrast, f (Di) =

Θ(Dε) is the slowest-growing function we could identify for
which (given a large enough value of `) the memory used by
the algorithm is O(log loglogD) bits, substantially smaller
that O(log logD). This implies that as the desired approxi-
mation to the running time, specified by f , grows to Θ(Dε)

or higher (e.g. polynomial in D), the memory used by the al-
gorithm decreases to O(log loglogD) bits. Functions larger
that polynomial in D are not of particular interest here be-
cause for the resulting running time there are much simpler
ways to search the plane, for example, simple random walks.

The selection metric bounds in this section can be shown
to be generalizations of the one we get in [20] where the ap-
proximation factor of the running time is 2O(`). Performing
similar calculations to those in Section 4.4.2, we can see
that in the case of f (Di) = 2O(`), the estimates of D grow
as Di/Di−1 ≥ 2O(`). Therefore, we need a selection metric
value of χ = O(log logD) for the algorithm to satisfy this
approximation factor, which is asymptotically the same as
in [20].

5 Lower bound

In this section, we present a lower bound on the number
of rounds necessary for an algorithm to find a target placed
within distance D from the origin, with non-negligible prob-
ability, if the algorithm satisfies χ(A) ≤ log logD−ω(1).
The rest of this section is structured as follows: in Section
5.1, we state the main theorem with respect to the metric
Msteps and non-uniform algorithms and give an overview of
the proof, in Section 5.2, we present the proof in detail, and,
finally, in Sections 5.3 and 5.4, we extend the lower bound to
the case of the metric Mmoves for non-uniform and uniform
algorithms, respectively.

14 Christoph Lenzen et al.

5.1 Theorem for Msteps and non-uniform algorithms

Fix a family of non-uniform algorithms {AD}D∈N and some
constant c > 1. Let f1, f2 : N → [1,∞) be arbitrary func-
tions such that f1(D) = ω(1), f2(D) = o(1), and f2(D) =

ω(1/2 f1(D)+ log logD)/ logD). Also, let T be an arbitrary
polynomial and fix a constant cn such that T (D) ≤ Dcn for
any D.

Theorem 6 For each D ∈ N, such that D > 1, and for each
n ∈N, n≤ T (D), assume algorithm AD with n agents satis-
fies χ(AD) = b+ log` ≤ log logD− f1(D). Then, there ex-
ists a placement (x,y), |x|, |y| ≤ D of the target, such that,
with probability at least 1− 1/Dc, algorithm AD satisfies
Msteps > D2− f2(D) for this placement (x,y).

Proof Overview: Here we provide a high-level overview of
our main proof argument. We fix an algorithm AD for D∈N,
D > 1, and focus on executions of this algorithm of length
D2−o(1) rounds. We prove that since agents have o(logD)

states, they “forget” about past events too fast to behave sub-
stantially differently from a biased random walk. Note that a
random walk is essentially memoryless since each new step
is independent of the previous steps, so it cannot “remem-
ber” what it has visited already.

More concretely, first we show in Corollary 2 that after
Do(1) initial rounds each agent is located in some recurrent
class C of the Markov chain. We use this corollary to prove,
in Corollary 3, that after the initial Do(1) rounds each agent
either does not return to the origin, or it keeps returning ev-
ery Do(1) rounds, so it does not explore much of the grid.
Therefore, throughout the rest of the proof we can ignore
the states labeled “origin”.

Assume (for the purposes of this overview) that there
is a unique stationary distribution of C5. Since there are
few states and non-zero transition probabilities are bounded
from below, standard results on Markov chains imply that
taking Do(1) steps from any state in the recurrent class will
result in a distribution on the states of the class that is (al-
most) indistinguishable from the stationary distribution; in
other words, any information agents try to preserve in their
state will be lost quickly with respect to D.

The next step in the proof is a coupling argument. We
split up the rounds in the execution into groups such that
within each group, rounds are sufficiently far apart from
one another for the above “forgetting” to take place. For
each group, we show that drawing states independently from
the stationary distribution introduces only a negligible error
(Lemma 16 and Corollary 5). So, we can apply a Chernoff
bound to each group, yielding that an agent will not devi-
ate substantially from the expected path it takes when, in

5 This holds only if the induced Markov chain on the recurrent class
is aperiodic, but the reasoning is essentially the same for the general
case. We handle this technicality at the beginning of Section 5.2.2.

each round, it draws a state according to the stationary dis-
tribution and executes the corresponding move on the grid
(Lemma 18 and Corollary 7). Taking a union bound over
all groups, it follows that, with high probability, each agent
will not deviate from a straight line (the expected path as-
sociated with the recurrent class it ends up in) by more than
distance o(D/|S|), where S is the number of states of the
Markov chain. It is crucial here that the corresponding re-
gion in the grid, restricted to distance D from the origin, has
size o(D2/|S|) and depends only on the component of the
Markov chain the agent ends up in. Therefore, since there
are no more than |S| components, taking a union bound over
all agents shows that with high probability together they visit
an area of o(D2).

5.2 Proof

Fix some D ∈ N, D > 1; this also fixes an algorithm AD ∈
{AD}D∈N. Assume χ(AD) = b+ log` ≤ log logD− f1(D).
Also, fix constants c′ ≥ c+ cn +5 and d > 2(c′+2).

We define the following parameters that depend on algo-
rithm AD (and its Markov chain representation) and will be
used throughout the rest of this section.

– Let p0 denote the smallest non-zero probability value in
the Markov chain describing algorithm AD. By assump-
tion, p0 ≥ 1/2`.

– Let b denote the number of bits required to represent the
Markov chain describing AD. By assumption, 2b ≥ |S|,
where S is the set of states in the Markov chain.

– Let R0 = c′|S|p−|S|0 lnD = Do(1). This parameter will be
used to denote the initial number of rounds before the
Markov chain reaches some well-behaved states.

– Let β = 2d|S|2 p−2|S|2
0 lnD = Do(1). This parameter will

be used to denote “chunks” of rounds in which we show
that the Markov chain is located in some well-behaved
states.

– Let ∆ = D2− f2(D). The values of the functions f1 and f2
are chosen to ensure that ∆ = o(D2/(β |S|2 logD)). This
parameter will be used to represent the total running time
of the algorithm of choice.

Consider the distribution of executions of AD of length
R0 +∆ rounds. We break the proof down into three main
parts. Sections 5.2.1 and 5.2.2 use standard Markov chain
techniques to derive some results for our constrained (in
terms of number of states and range of probabilities) Markov
chain, and Section 5.2.3 applies these results to the move-
ment of the agents in the grid. First, in Section 5.2.1, we
show that, with high probability, after a certain number of
initial rounds each agent is in a recurrent class of its Markov
chain. Until we resume the proof of Theorem 6, we also
condition on this recurrent class not containing any states

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 15

labeled origin. Next, in Section 5.2.2, we show that if we
break down the execution into sufficiently large blocks of
rounds, then we can assume that, with high probability, the
steps associated with rounds in different blocks do not de-
pend on each other. Finally, in Section 5.2.3, we focus on the
movement of the agents in the grid, derived from these “al-
most” independent steps, and we show that with high prob-
ability, among all points at distance O(D) from the origin,
the agents will only explore a total area of o(D2).

5.2.1 Initial steps in the Markov chain

In this subsection we prove some properties of the states of
the Markov chain of each agent after some number of ini-
tial rounds. Let random variable C(r) denote the recurrent
class of the Markov chain in which an agent is located im-
mediately after r rounds; if the agent is in a transient state
immediately after r rounds, then C(r) =⊥.

First, we show that for any state s of the Markov chain,
if state s is always reachable, then, with high probability, the
agent visits state s within Do(1) rounds.

Lemma 14 Let s be an arbitrary state. Then, with probabil-
ity at least 1− 1/Dc′ , one of the following is true: (1) the
agent visits state s within R0 rounds, or (2) the agent is lo-
cated in some state s′ immediately after r ≤ R0 rounds such
that s is not reachable from s′.

Proof We will prove by induction on i∈Z+ that, with prob-
ability at least 1−(1− p|S|0)i, one of the following is true: (1)
the agent visits state s within |S|i rounds, or (2) the agent is
located in some state s′ immediately after r ≤ |S|i rounds
such that s is not reachable from s′.

In the base case, for i = 1, if state s is not reachable from
the initial state, then part (2) holds; otherwise, the probabil-
ity that state s is reached within |S| rounds is at least p|S|0 .
For the inductive hypothesis assume that with probability at
least 1−(1− p|S|0)i, one of the following is true: (1) the agent
visits state s within |S|i rounds, or (2) the agent is located in
some state s′ immediately after r ≤ |S|i rounds such that s
is not reachable from s′. Following the same argument as
in the base case, if state s is no longer reachable, then part
(2) holds; otherwise, with probability at least p|S|0 , state s is
reached within |S| rounds. Overall, with probability at least
1− (1− p|S|0)i+1, one of the following is true: (1) the agent
visits state s within |S|(i+ 1) rounds, or (2) the agent is lo-
cated in some state s′ immediately after r≤ |S|(i+1) rounds
such that s is not reachable from s′.

Evaluating this probability for i = R0/|S|, we get:

1−
(

1− p|S|0

)R0/|S|
= 1−

(
1− p|S|0

)p−|S|0 c′ lnD

≥ 1− e−c′ lnD = 1− 1
Dc′ .

A

B C D

EFG

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

A

B

sC

1

1

Fig. 2 On the left: simple example of Markov chain with start state
A. The recurrent classes are {G} and {C,D,E,F}. On the right: all
recurrent states merged into a single state sC .

Therefore, with probability at least 1−1/Dc′ , one of the fol-
lowing is true: (1) the agent visits state s within R0 rounds,
or (2) the agent is located in some state s′ immediately after
r ≤ R0 rounds such that s is not reachable from s′.

Next, we show that within R0 rounds, with high prob-
ability, an agent is located in some recurrent class of the
Markov chain.

Corollary 2 With probability at least 1− 1/Dc′ , it is true
that C(R0) 6=⊥.

Proof First, we derive a Markov chain from the original
Markov chain as follows. We identify all recurrent states
in the original Markov chain and we merge them all into
a single recurrent state sC of the derived Markov chain (see
Figure 2).

By definition of a recurrent class and because there is
only one such class, for each state s in the derived Markov
chain, the recurrent state sC is always reachable from s. By
Lemma 14, with probability at least 1− 1/Dc′ , the agent
visits sC within R0 rounds. This implies that in the original
Markov chain, with probability at least 1−1/Dc′ , the agent
visits some recurrent state s ∈C(R0), such that C(R0) 6= ⊥,
within R0 rounds.

In Corollary 2, we showed that, with high probability,
within R0 rounds the agent is located in some recurrent class
C(R0) 6=⊥. Since the agent does not leave that class in sub-
sequent rounds, we will refer to it by C (a random variable).
Finally, we show that, with high probability, either recurrent
class C does not contain any states labeled origin, or the
agent keeps returning to the origin often.

16 Christoph Lenzen et al.

Corollary 3 With probability at least 1− 1/Dc′−3, at least
one of the following is true: (1) for all rounds r, where R0 ≤
r ≤ ∆ +R0, the agent visits a state labeled origin at least
once between rounds r and r+R0, or (2) none of the states
in C are labeled origin.

Proof Consider a fixed execution prefix of length R0 rounds
and condition on the event that the agent is in some state s
in recurrent class C at the end of the prefix. If C contains no
states labeled origin, then (2) holds.

Otherwise, each state s′ ∈C labeled origin is reachable
from state s in each round r≥ R0. By Lemma 14, with prob-
ability at least 1− 1/Dc′ , the agent visits state s′ within R0
rounds. Since the agent does not leave C, we can repeat
this argument for each group of R0 rounds in the execution.
In an execution of length R0 + ∆ rounds, there are o(D2)

groups of R0 rounds. By a union bound, with probability at
least 1−1/Dc′−2, for all rounds r, where R0 ≤ r ≤ ∆ +R0,
the agent visits a state labeled origin at least once between
rounds r and r+R0.

By the law of total probability, since all execution pre-
fixes of R0 rounds are disjoint, the conclusion above holds
for all executions. Combining this result and Corollary 2
by a union bound shows that, with probability at least 1−
1/Dc′−3, at least one of the two statements of the corollary
holds.

Until we resume the proof of Theorem 6, we consider
executions after round R0 and condition on the event that
the agent is in some recurrent class C which does not con-
tain any states labeled origin. In the proof of Theorem 6 at
the end of this section, we refer to Corollary 3 in order to
incorporate the probability of this event into the final proba-
bility bound. For convenience, we refer to the remaining ∆

rounds of the execution as round numbers 1 to ∆ . This num-
bering is used throughout Sections 5.2.2 and 5.2.3; at the
end of Section 5, when we resume the proof of Theorem 6,
we incorporate the initial rounds to conclude the final result
about the entire execution.

5.2.2 Moves drawn from the stationary distribution

Fix an arbitrary recurrent class C of the Markov chain. Let
t denote the period of the Markov chain (an aperiodic chain
has period t = 1). We apply Theorem 9 in the Appendix to C
and denote by G1, · · · ,Gt the equivalence classes based on
the period t whose existence is guaranteed by the theorem.

Consider blocks of rounds, each of which consists of
β = 2d|S|2 p−2|S|2

0 lnD=Do(1) rounds. We assume that β is a
multiple of t. Otherwise, we can use tdβ/te= O(β) assum-

ing t ∈O(β); this is true because t ≤ |S| and p−2|S|2
0 lnD≥ 1

because of the restriction on χ . We define groups of rounds
such that each group contains one round from each block.
Formally, for 1≤ i≤ β and j ∈N0, group Bi contains round

C D

EF

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

C D

EF

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 3 On the left: a recurrent class, with transition matrix P and period
2, of the simple example of Markov chain from Figure 2. On the right:
Markov chain induced by P2. The equivalence classes here are {C,F}
and {D,E}.

numbers i+ jβ ≤ ∆ . Observe that, based on this definition,
immediately after each round from a given group, the agent
is in some state from the same class G⊆C that is recurrent
and closed under Pt , where P is the probability matrix of
the original Markov chain. By [15][Chapter XV.7], there is
a unique stationary distribution π of the Markov chain on G
induced by Pt (see Figure 3 for an illustration of Pt and the
equivalence classes G1, · · · ,Gt).

The following lemma bounds the value of π(s′) for each
state s′ ∈ G in the Markov chain on G induced by Pt .

Lemma 15 Assume |G|> 1. Then, for each s′ ∈G, and each
constant c′′ ≥ 2− f1(D):

1
Dc′′ ≤ π(s′)≤ 1− 1

Dc′′

Proof Since any state s′ ∈G⊆C is reachable from any state
s′′ ∈G⊆C by a sequence of at most |C|−1 < |S| state tran-
sitions, then it follows that, for each s′ ∈ G:

π(s′) = ∑
s′′∈G

Pt(s′′,s′)π(s′′)≥ p|S|0 ∑
s′′∈G

π(s′′) = p|S|0

Since |G|> 1, this implies that π(s′)≤ 1− p|S|0 for each
s′ ∈ G.

Finally, we use the assumption b+ log` ≤ log logD−
f1(D) in order to bound p|S|0 :

p|S|0 ≥
(

1
2`

)2b

≥ 2−`2
b ≥ 2−2log`+b ≥ 2−2log logD− f1(D)

= D−2− f1(D)
≥ 1

Dc′′ .

We say that two discrete probability distributions π1 and
π2, with the same domain, are D-approximately equivalent
iff ‖π1−π2‖ ≤ 1/Dd where ‖ ·‖ denotes the ∞-norm on the
given space.

Let πs denote the probability distribution on G of the
possible states of the agent immediately after round r +β ,

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 17

conditioned on the agent being in state s ∈ G immediately
after r rounds.

Next, we show that the distribution πs of the Markov
chain is D-approximately equivalent to the stationary dis-
tribution π of the Markov chain. We obtain the following
corollary of Lemma 2 from [26] (also stated as Lemma 19
in the Appendix) applied to the Markov chain induced by
the matrix Pt restricted to class G.

Corollary 4 For each s ∈G, πs and π are D-approximately
equivalent.

Proof We can apply Lemma 19 in order to show that the
stationary distribution π and the actual distribution πs are
very close to each other (D-approximately equivalent).

Since β is a multiple of t, we can consider the probability
matrix Pt , which by Theorem 9 induces a Markov chain on
G. Also, since the Markov chain induced by Ptk0 is aperiodic
and since C is a recurrent class, we can apply Lemma 20. It
essentially states that there exists an integer r such that there
is a walk of length exactly r between any pair of states in the
Markov chain. Moreover, we are guaranteed that r ≤ 2|S|2.

Next, we apply Lemma 19 to this chain with the follow-
ing parameters: k0 = r/t, Q(s) = 1 (i.e., Q(s′) = 0 for all
s′ ∈ G\{s}), and k = β/t. We also need that Ptk0(s′,s)≥ ε

for each s′ ∈G and a suitable ε > 0. We can choose ε = p2|S|2
0

guaranteeing that Ptk0(s′,s) = Pr(s′,s)≥ pr
0 ≥ p2|S|2

0 = ε .
By Lemma 19, it follows that:

‖πs−π‖ ≤ (1− ε)bk/k0c =
(

1− p2|S|2
0

)d p−2|S|2
0 lnD

≤ e−d lnD =
1

Dd .

Therefore, distributions πs and π are D-approximately
equivalent.

Having established that the distribution of states in the
Markov chain is very close to the stationary distribution of
the Markov chain, in the next lemma, we quantify this dif-
ference by introducing a new distribution π ′ that denotes the
“gap” between the actual distribution and the stationary dis-
tribution of the Markov chain.

Lemma 16 Let 1 ≤ i ≤ β and τ = i mod t for some inte-
ger τ . Then, for each state s ∈ G there exists a probability
distribution π ′s such that:

∀r ∈ Bi,r ≤ ∆ −β :
1

Dc′+2 π
′
s +

(
1− 1

Dc′+2

)
π = πs

Proof If G = {s}, then, trivially, π(s) = πs(s) = 1 and we
choose π ′s(s) = 1. For the rest of the proof, assume that

|G|> 1. We use the equation in the statement of the lemma
to define π ′s:

∀s′ ∈ G : π
′
s(s
′) = Dc′+2

(
πs(s′)−

(
1− 1

Dc′+2

)
π(s′)

)
.

We need to show that π ′s is indeed a probability dis-
tribution; that is, we show that the sum of π ′s(s

′) for all
states s′ ∈ G is one, and that for each π ′s(s

′), it is true that
0≤ π ′s(s

′)≤ 1.

∑
s′∈G

π
′
s(s
′) = Dc′+2

(
∑

s′∈G
πs(s′)−

(
1− 1

Dc′+2

)
∑

s′∈G
π(s′)

)
= Dc′+2−Dc′+2 +1 = 1.

Hence it remains to show that for each s′ ∈ G, it is true
that 0≤ π ′s(s

′)≤ 1. For s′ ∈ G:

π
′
s(s
′) = Dc′+2

(
πs(s′)−

(
1− 1

Dc′+2

)
π(s′)

)
≤ Dc′+2‖πs−π‖+π(s′)

≤ 1
Dd−c′−2 +1− 1

Dc′′ ≤ 1.

By Corollary 4, πs and π are D-approximately equiva-
lent, the bound on π(s′) from Lemma 15, and the assump-
tions d > 2(c′+1) and c′′ = 2− f1(D) < 1. Similarly,

π
′
s(s
′)≥ π(s′)

Dc′+2 −Dc′+2‖πs−π‖

≥ 1
Dc′′Dc′+2 −

1
Dd−c′−2 ≥ 0,

where the last step follows from the assumptions d > 2(c′+
2) and c′′ = 2− f1(D) < 1.

We now show that within each class Bi, approximating
the random walk of an agent in the Markov chain by draw-
ing its state after r ∈ Bi rounds independently from the sta-
tionary distribution π does not introduce a substantial error.
Consider the following modification to the original Markov
chain.

Consider a modified Markov chain M in which we add
two auxiliary states As and Bs for each state s of the orig-
inal Markov chain, such that the transition from s to As is
with probability 1− 1/Dc′ and the transition from s to Bs
is with probability 1/Dc′ . Additionally, all other outgoing
transitions from state s in the original Markov chain are re-
moved. From state As we add transitions to other states ac-
cording to π , and from Bs we add transitions to other states
according to π ′s (see Figure 4).

In the original Markov chain, for each round r ∈ Bi, im-
mediately after which the agent is in state s, the state imme-
diately after round r+β is determined based on the distri-
bution πs. In the modified Markov chain M, the state imme-
diately after round r+β is determined by π from state As,

18 Christoph Lenzen et al.

D

E

1
2

1
2

1
2

1
2

D

E

AD BD

AE BE

1− 1
Dc′

1
Dc′

1− 1
Dc′

1
Dc′

π(E)

π(D)

π ′D(E)

π ′D(D)

π(E)

π(D)

π ′E(E)

π ′E(D)

Fig. 4 On the left: equivalence class {E,D} induced by P2 from Figure
3. On the right: derived Markov chain M, ignoring the exact probabili-
ties on the left.

and by π ′s from state Bs. By Lemma 16, it is clear that the
distribution of states visited in rounds r ∈ Bi in the original
Markov chain is the same as the distribution in the corre-
sponding rounds of the modified Markov chain.

Let Ei denote the event that for all rounds r ∈ Bi and
r ≤ ∆ in which the Markov chain M is in some state s, the
next state reached from s is state As (so the state immediately
after round r+β is chosen from π).

Corollary 5 For each i, 1≤ i≤ β , P[Ei]≥ 1−1/Dc′ .

Proof Consider the coin flips in all rounds r ∈ Bi in which
the Markov chain M is in some state s; these coin flips de-
termine whether the next state is As or Bs. By the definition
of the modified Markov chain M, with probability at least
1−1/Dc′ , the next state is As. By a union bound, the prob-
ability that the next state is As for all rounds r ∈ Bi (whose
number is ∆/β where β = Do(1) < D2) is:

1− ∆

Dc′+2 ≥ 1− 1
Dc′+2−2+ f2(D)

≥ 1− 1
Dc′ ,

where the last step follows from the fact that f2(D) is posi-
tive. Therefore, P[Ei]≥ 1−1/Dc′ .

In this section, we showed that the distribution that de-
termines an agent’s behavior is very close to the stationary
distribution of the recurrent class in which the agent is lo-
cated. In the next section, we will use this result to argue
that if the agent does not explore the grid well when behav-
ing according to the stationary distribution, then it does not
explore the grid considerably better when behaving accord-
ing to the actual distribution of the algorithm.

5.2.3 Movement on the grid

Next, we focus on the implications of the results in the previ-
ous sections on the agents’ movement in the grid. In order to
use Corollary 5, we will base the results of this subsection
on the behavior of the derived Markov chain M. However,
since we are only reasoning about rounds from blocks Bi for

some i, as we already mentioned, by Lemma 16, the distri-
bution of states in the derived Markov chain M is the same
as in the original Markov chain. Therefore, the results about
the movement of the agents on the grid based on Markov
chain M also apply to the movement of the agents on the
grid in the original Markov chain.

Let indicator random variable X↑r have value 1 if the state
of the agent after r rounds is labeled up, and 0 otherwise.
Note that these random variables depend only on the state
transitions the agent performs in the derived Markov chain
M. Also let X↑≤r = ∑

r
r′=1 X↑r′ denote the total number of steps

up in the grid up to round r. Similarly, we can define random
variables X→≤r, X↓≤r, and X←≤r to refer to the number of steps
right, down, and le f t in the grid up to round r.

Recall that Ei denotes the event that for all rounds r ∈ Bi,
the state in Markov chain M immediately after round r+β

is drawn from the stationary distribution. By Corollary 5, Ei
occurs with probability at least 1−1/Dc′ .

First, we show that, with high probability, for all rounds
r ∈ Bi, the number of moves up of the agent in those rounds
does not differ by more than o(D/(|S|β)) from the expected
number of such moves conditioning on event Ei. Denote by
p↑i the probability for the agent to move up when its state is
distributed according to π .

Lemma 17 For each i, where 1 ≤ i ≤ β , and each round
r ≤ ∆ , conditioning on event Ei, with probability at least
1−1/Dc′−1, it is true that:∣∣∣∣∣∣∣∣ ∑
β+1≤r′≤r

r′∈Bi

X↑r′ −E

 ∑
β+1≤r′≤r

r′∈Bi

X↑r′

∣∣∣∣∣Ei

∣∣∣∣∣∣∣∣= o

(
D
|S|β

)
.

Proof Conditioned on Ei, the considered variables X↑r′ from
Bi are independently and identically distributed: The state
after r′ rounds is drawn independently from some stationary
distribution π that does not depend on r′, and the probability
for the agent to move up in the grid equals the probability
that this state is labeled up.

By linearity of expectation,

µi = E

 ∑
β+1≤r′≤r

r′∈Bi

X↑r′

∣∣∣∣∣Ei

= ∑
β+1≤r′≤r

r′∈Bi

E
[
X↑r′
∣∣Ei

]

= ∑
β+1≤r′≤r

r′∈Bi

p↑i = p↑i

⌊
r
β
−1
⌋
.

Next, we would like to apply a Chernoff bound to the
random variable with expectation µi. Technically, we need
to consider two cases, depending on whether µi ≤ 3c′ lnD
or not. Instead, for simplicity, we will define a new random
variable Z↑r that captures both of these cases.

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 19

Let Y ↑y be a binary random variable such that for each
1≤ y≤ d3c′ lnD−µie:

P[Y ↑y = 1] =
max{0,3c′ lnD−µi}
d3c′ lnD−µie

.

Also, note that for all 1≤ y≤d3c′ lnD−µie the Y ↑y variables
are identical and independent.

Let Z↑r be a random variable such that:

Z↑r = ∑
β+1≤r′≤r

r′∈Bi

X↑r′
∣∣∣Ei +

d3c′ lnD−µie

∑
y=1

Y ↑y .

By linearity of expectation:

E[Z↑r] = µi + d3c′ lnD−µie ·
max{0,3c′ lnD−µi}
d3c′ lnD−µie

= max{µi,3c′ lnD}.

Now, we can see that by defining the random variables
Y ↑y in the specific way we did, the random variable Z↑r has the
expectation that we need: the maximum of the expectation
we care about (µi) and the threshold value 3c′ lnD.

By a Chernoff bound with δ =

√
3c′ lnD/E[Z↑r], it fol-

lows that:

P
[∣∣∣Z↑r −E[Z↑r]

∣∣∣> δE[Z↑r]
]
≤ 2e−δ 2µi/3 =

2
Dc′ ≤

1
Dc′−1 .

If E[Z↑r] = µi, since r ≤ ∆ = o(D2/(β |S|2 logD)), we
get:

δE[Z↑r] =
√

3c′ lnDµi = O

√ p↑i ∆ logD
β

= o
(

D
|S|β

)
.

Otherwise, if E[Z↑r] = 3c′ lnD, then δE[Z↑r] = 3c′ lnD =

o(D/(|S|β)). Since we are considering the number of moves
up in the grid, we know that:

P

 ∑
β+1≤r′≤r

r′∈Bi

X↑r′ ≥ 0

∣∣∣∣∣Ei

= 1.

Therefore, in either case, we conclude that, with proba-
bility at least 1−1/Dc′−1:∣∣∣∣∣∣∣∣ ∑
β+1≤r′≤r

r′∈Bi

X↑r′ −E

 ∑
β+1≤r′≤r

r′∈Bi

X↑r′

∣∣∣∣∣Ei

∣∣∣∣∣∣∣∣= o

(
D
|S|β

)
.

Next, we show that, with high probability, for all rounds
up to round r (not just the rounds r ∈ Bi), the number of
moves up performed by the agent does not differ by more
than o(D/|S|) from some fraction of r.

Lemma 18 There exists p↑ ∈ [0,1], such that for each round
r ≤ ∆ , with probability at least 1− 1/Dc′−2, it holds that∣∣∣X↑≤r− rp↑

∣∣∣= o(D/|S|).

Proof Recall that for each i, where 1≤ i≤ β , Bi is the col-
lection of step numbers i+ jβ ≤ ∆ for j ∈ N0. Therefore:

r

∑
r′=β+1

X↑r′ =
β

∑
i=1

∑
β+1≤r′≤r

r′∈Bi

X↑r′ .

By Lemma 17, we know that for each i, conditioned on
Ei, with probability at least 1−1/Dc′−1 it holds that:∣∣∣∣∣∣∣∣ ∑
β+1≤r′≤r

r′∈Bi

X↑r′ −E

 ∑
β+1≤r′≤r

r′∈Bi

X↑r′

∣∣∣∣∣Ei

∣∣∣∣∣∣∣∣= o

(
D
|S|β

)
.

To complete our line of reasoning, we need to incor-
porate the preceding β rounds as well. Note that the ex-
pected number of up moves in β rounds is at most β . Since
the modified Markov chains corresponding to each block of
rounds Bi are independent from each other, it follows that:

E

[
X↑≤r

∣∣∣ β∧
i=1

Ei

]
≤

β

∑
i=1

E

 ∑
β+1≤r′≤r

r′∈Bi

X↑r′

∣∣∣∣∣Ei

+β

= r
β

∑
i=1

p↑i
β

+β .

Setting p↑ =∑
β

i=1 p↑i /β , the above expectation is at most
rp↑+β .

By a union bound,
∧

i Ei occurs with probability at least
1− 1/Dc′−1 because there are β = o(D) such events and
each one of them holds with probability at least 1− 1/Dc′ ,
by Corollary 5. By another union bound, with probability at
least 1− 1/Dc′−2, both

∧
i Ei occurs and Lemma 17 holds

for all i. By the definition of β , it follows that β = o(D/|S|).
Also, since, the expected number of moves up in β rounds
is at most β , and the actual number of such moves differs by
at most β from the expectation, it follows that:

∣∣∣X↑≤r− rp↑
∣∣∣= ∣∣∣∣∣X↑≤r−E

[
X↑≤r

∣∣∣ β∧
i=1

Ei

]∣∣∣∣∣
+

∣∣∣∣∣E
[

X↑≤r

∣∣∣ β∧
i=1

Ei

]
− rp↑

∣∣∣∣∣
≤

β

∑
i=1

o
(

D
|S|β

)
+β +β = o

(
D
|S|

)
.

We can repeat these arguments for the other directions
(right, down, and left).

20 Christoph Lenzen et al.

Corollary 6 1. There exists p→ ∈ [0,1], such that for each
round r ≤ ∆ , with probability at least 1− 1/Dc′−2, it
holds that

∣∣X→≤r− rp→
∣∣= o(D/|S|).

2. There exists p↓ ∈ [0,1], such that for each round r ≤
∆ , with probability at least 1− 1/Dc′−2, it holds that∣∣∣X↓≤r− rp↓

∣∣∣= o(D/|S|).
3. There exists p← ∈ [0,1], such that for each round r ≤

∆ , with probability at least 1− 1/Dc′−2, it holds that∣∣X←≤r− rp←
∣∣= o(D/|S|).

Define X≤r ∈ Z2 to be the random variable describing
the sum of all moves the agent performs in the grid up to
round r, i.e., its position in the grid (in each dimension) after
r rounds. For this random variable, we show that the posi-
tion of the agent after r rounds does not differ by more than
o(D/|S|) from some fraction of r.

Corollary 7 There exists p ∈ [−1,1]2, such that for each
r ≤ ∆ , with probability at least 1− 1/Dc′−3, ‖X≤r− rp‖ =
o(D/|S|).

Proof Observe that X≤r = (X↑≤r −X↓≤r,X
→
≤r −X←≤r). Hence,

setting p = (p↑− p↓, p→− p←), by Lemma 18, Corollary 6
and a union bound, it follows that ‖X≤r− rp‖ = o(D/|S|)
with probability at least 1−1/Dc′−3.

We are now ready to resume the proof of Theorem 6.

Proof (Proof of Theorem 6) Denote by C the set of recur-
rent classes of the original Markov chain of each agent. By
Corollary 2, it holds for each agent that, with probability at
least 1−1/Dc′−3, the agent is located in some recurrent class
C(a) ∈ C within R0 rounds. By Corollary 3, with probabil-
ity at least 1−1/Dc′−3, either the agent visits a state labeled
origin every R0 rounds, or none of the states in C are la-
beled origin. In the first case, then the agent does not visit
a point in the grid at distance more than R0 = Do(1) from
the origin. In the second case, we can apply Corollary 7 to
conclude that, with probability at least 1−1/Dc′−3, the po-
sition of the agent does not deviate by more than distance
o(D/|S|) from a straight line in the grid starting at the origin
and ending at point ∆p (p depends only on C(a)). There-
fore, by a union bound with the results from Corollary 2, it
follows that with probability at least 1− 1/Dc′−4, either an
agent does not venture further away from the origin than dis-
tance o(D/|S|), or its position does not deviate by more than
distance o(D/|S|) from one of at most |C | straight lines or
the origin. By a union bound, this holds for all agents jointly
with probability at least 1−1/Dc′−4−cn = 1/Dc (recall that
by assumption n≤ T (D)≤ Dcn).

Since for any straight line only a segment of length O(D)

is in distance O(D) from the origin, the union of all grid
points that are (i) in distance at most D from the origin and
(ii) in distance at most o(D/|S|) from one of the |C | straight

lines has cardinality O(D) ·o(D/|S|) · |C | ≤ o(D2/|S|) · |S|=
o(D2). Hence, there is a set G⊂Z2 of o(D2) grid points that
only depends on the algorithm AD such that, with probabil-
ity at least 1− 1/Dc, all grid points in distance D from the
origin that are visited within the first R0 +∆ steps of an exe-
cution of AD are in G. Since there are Θ(D2) grid points in
distance D from the origin, this implies that the target can be
placed in such a way that, with probability at least 1−1/Dc,
no agent will find it.

In the above proof, note that if the target is placed uni-
formly at random in the square with side length 2D centered
at the origin, then it is no longer true that no algorithm finds
it in the specified amount of time. In fact, any algorithm that
explores at least one grid point has a Ω(1/D2) probability
of finding a uniformly-placed target. Thus, the correctness
of Theorem 6 relies on the fact that the target is placed in
the grid adversarially.

5.3 Theorem for Mmoves and non-uniform algorithms

First, we show that Theorem 6 also holds with respect to
the metric Mmoves. In the following corollary, we show that
either each move of an agent on the grid corresponds to at
most Do(1) transitions in its Markov chain, or the agent does
not move on the grid after some point on. Therefore, since
Theorem 6 guarantees that, with high probability, no agent
finds the target in D2−o(1) steps, then it must be true that,
with high probability, no agent finds the target in D2−o(1)

moves.
Fix a constant c > 0 and let f3 : Z+ → [1,∞) be an ar-

bitrary function such that f3(D) = o(1) and f3(D) ≤ f2−
2− f1(D) + 3loglogD/ logD for any D. Recall that T is an
arbitrary polynomial such that T (D)≤ Dcn for any D.

Corollary 8 For each D ∈ N, D > 1 and n ∈ N, n ≤ T (D),
suppose algorithm AD with n agents satisfies χ(AD) = b+
log` ≤ log logD− f1(D). There exists a placement (x,y),
|x|, |y| ≤ D of the target, such that, with probability at least
1−1/Dc, algorithm AD satisfies Mmoves > D2− f3(D) for this
placement (x,y).

Proof The setup for this proof is the same as that for The-
orem 6, so we use the same constants and values defined in
Section 5.2. The results from Section 5.2.1 hold with respect
to these constants and values, so we can reuse them here.

Consider any fixed execution prefix of length R0 rounds
in which an agent is in some state s in some recurrent class
C. By Corollary 2, this is true with probability at least 1−
1/Dc′ . If C contains only states labeled none, then the agent
does not make any progress in the grid after it reaches its
recurrent class, so it does not visit more than R0 grid points.

Otherwise, if C contains a state s′, labeled up, down,
le f t, or right, we show that it is reachable from state s after

Searching without Communicating: Tradeoffs Between Performance and Selection Complexity 21

r rounds such that R0 ≤ r ≤ 2R0. By Lemma 14, with prob-
ability at least 1− 1/Dc′ , the agent visits state s′ within R0
rounds. In an execution of length R0 +∆ , there are o(D2)

groups of R0 rounds. By a union bound, with probability at
least 1−1/Dc′−2, the agent visits a state labeled up, down,
le f t, or right at least ∆/R0 times. By the law of total prob-
ability, since all execution prefixes of length R0 are disjoint,
this conclusion holds for all executions. By a union bound,
this result and Corollary 2 hold jointly with probability at
least 1−1/Dc′−3.

By Theorem 6, there is a placement of the target such
that, with probability at least 1− 1/Dc′−4, no agent finds
the target within D2− f2(D) steps. With probability at least
1− 1/Dc′−3, R0 steps correspond to at least one move. By
a union bound, it follows that with probability at least 1−
1/Dc′−4, ∆ = D2− f2(D) steps correspond to at least ∆/R0 =

D2− f2(D)/R0 ≥ D2− f3(D) moves. Therefore, no agent finds
the target in D2− f3(D) moves with probability at least 1−
1/Dc′−5 ≥ 1−1/Dc.

5.4 Theorem for Mmoves and uniform algorithms

Finally, we extend Corollary 8 to uniform algorithms.

Corollary 9 For any D ∈ N, D > 1, any n ∈ N, n ≤ T (D),
and any uniform algorithm A with n agents, assume that
χ(A) = b+ log` ≤ log logD− f1(D). Then, there exists a
placement (x,y), |x|, |y| ≤ D of the target, such that, for any
constant c > 1, with probability at least 1−1/Dc, algorithm
A satisfies Mmoves > D2− f3(D) for this placement (x,y).

Proof Note that the proofs of Theorem 6 and Corollary 8
are with respect to the Markov chain induced by the non-
uniform algorithm. This Markov chain may have informa-
tion about D encoded in it but throughout the proofs, the
only way the value of D is used is through the constraint
on the selection metric χ = b+ log` ≤ log logD− f1(D).
Therefore, even if we consider a uniform algorithm, instead
of a non-uniform algorithm, the results and the proofs still
hold because the same restriction on χ applies to the uni-
form algorithm.

Finally, note that following similar reasoning, we can
show that the lower bound holds for algorithms uniform and
non-uniform in n because the only restriction we use is on χ

which is not related to n.

6 Summary and Future Work

We have presented algorithms and a lower bound for the
problem of n agents searching in a grid for a target placed at
distance at most D from the origin. Our lower bound shows
that for n sub-exponential in D, no algorithm A can find the

target with high probability in fewer than D2−o(1) rounds
if χ(A) < log logD−ω(1). We have also presented two
algorithms: (1) a non-uniform algorithm that finds the target
in O(D2/n+D) rounds in expectation for χ = log logD+

O(1), and (2) a uniform algorithm that finds the target in
O((D+D2/n) f (D)) rounds in expectation and guarantees
a χ-value of at most 2 loglogD+O(1) for different choices
of the function f . Our second algorithm also establishes a
trade-off between the expected running time and the total
number of bits used by the algorithm.

For future work, we consider various improvements to
our algorithms. As mentioned earlier, we can make the al-
gorithms also uniform in n by following the strategy in [14];
this modification will result in a O(logn) factor overhead in
the running time. Furthermore, since our algorithms do not
rely on communication or carefully synchronized rounds, it
seems natural to analyze the fault tolerance properties the
algorithms satisfy. We believe the correctness of the algo-
rithms will not be affected by faults, as long as the faults
are not adversarially targeted at a specific area of the grid;
for example, if each agent that gets within distance of one
hop to the target is crashed, then clearly our algorithms (or
any other algorithms) cannot guarantee anything. Finally, it
would also be interesting to consider various forms of com-
munication between the agents and analyze the properties of
the resulting algorithms. A recent attempt at understanding
such behavior is [22], where the agents use only a loneli-
ness detection capability in order to explore the grid with
constant memory and constant probabilities.

Another potential extension of our work includes using
the techniques from our lower bound to prove lower bounds
with similar restrictions in other graphs. Consider multiple
non-communicating agents with limited memory and prob-
abilities trying to explore a tree or some other data structure
with some regularity properties. Such a result may be useful
in designing systems where a data structure needs to be ex-
plored by multiple threads without the need (or capability)
to support inter-thread communication.

Acknowledgements We express our gratitude to Yoav Rodeh and the
anonymous reviewers who provided us with many insights, ideas how
to strengthen our results and helped us improve the presentation of the
material.

References

1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-
Joseph, Z.: A biological solution to a fundamental distributed
computing problem. Science 331(6014), 183–185 (2011)

2. Albers, S., Henzinger, M.R.: Exploring unknown environments.
SIAM Journal on Computing 29(4), 1164–1188 (2000)

3. Alon, N., Avin, C., Kouckỳ, M., Kozma, G., Lotker, Z., Tuttle,
M.R.: Many random walks are faster than one. Combinatorics,
Probability and Computing 20(04), 481–502 (2011)

22 Christoph Lenzen et al.

4. Ambuhl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree
exploration with logarithmic memory. ACM Transactions on Al-
gorithms 7(2), 17 (2011)

5. Arbilly, M., Motro, U., Feldman, M.W., Lotem, A.: Co-evolution
of learning complexity and social foraging strategies. Journal of
Theoretical Biology 267(4), 573–581 (2010)

6. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The
power of a pebble: Exploring and mapping directed graphs. In:
Proceedings of the ACM Symposium on Theory of Computing,
pp. 269–278. ACM (1998)

7. Brauer, A.: On a problem of partitions. American Journal of Math-
ematics 64(1), 299–312 (1942)

8. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In:
Proceedings of the Symposium on Foundations of Computer Sci-
ence, pp. 355–361. IEEE (1990)

9. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration
with little memory. In: Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 588–597. Society for Industrial
and Applied Mathematics (2002)

10. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the
ANTS problem with asynchronous finite state machines. In: Pro-
ceedings of the International Colloquium, pp. 471–482 (2014)

11. Emek, Y., Wattenhofer, R.: Stone age distributed computing. In:
Proceedings of the ACM Symposium on Principles of Distributed
Computing, pp. 137–146. ACM (2013)

12. Feinerman, O., Korman, A.: Memory lower bounds for random-
ized collaborative search and implications for biology. In: Dis-
tributed Computing, pp. 61–75. Springer (2012)

13. Feinerman, O., Korman, A.: Theoretical distributed computing
meets biology: A review. In: Distributed Computing and Internet
Technology, pp. 1–18. Springer (2013)

14. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative
search on the plane without communication. In: Proceedings of
the ACM Symposium on Principles of Distributed Computing, pp.
77–86. ACM (2012)

15. Feller, W.: An introduction to probability theory and its applica-
tions, vol. 2. John Wiley & Sons (2008)

16. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective
tree exploration. Networks 48(3), 166–177 (2006)

17. Giraldeau, L.A., Caraco, T.: Social foraging theory. Princeton
University Press (2000)

18. Harkness, R., Maroudas, N.: Central place foraging by an ant
(Cataglyphis bicolor Fab.): a model of searching. Animal Be-
haviour 33(3), 916–928 (1985)

19. Holder, K., Polis, G.: Optimal and central-place foraging theory
applied to a desert harvester ant, Pogonomyrmex californicus. Oe-
cologia 72(3), 440–448 (1987)

20. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs be-
tween selection complexity and performance when searching the
plane without communication. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 252–261.
ACM (2014)

21. McLeman, M., Pratt, S., Franks, N.: Navigation using visual land-
marks by the ant leptothorax albipennis. Insectes Sociaux 49(3),
203–208 (2002)

22. O’Brien, C.: Solving ANTS with Loneliness Detection and Con-
stant Memory. MEng Thesis, MIT EECS Department (2014)

23. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Jour-
nal of Algorithms 33(2), 281–295 (1999)

24. Reingold, O.: Undirected connectivity in log-space. Journal of the
ACM (JACM) 55(4), 17 (2008)

25. Robinson, E.J., Jackson, D.E., Holcombe, M., Ratnieks, F.L.: In-
sect communication: “no entry” signal in ant foraging. Nature
438(7067), 442–442 (2005)

26. Rosenthal, J.S.: Rates of convergence for data augmentation on
finite sample spaces. The Annals of Applied Probability pp. 819–
839 (1993)

A Math Preliminaries

A.1 Basic Probability

In this section, we state a few basic concentration results.

Theorem 7 (Chernoff bound) Let X1, · · · ,Xk be independent random
variables such that for 1≤ i≤ k, Xi ∈ {0,1}. Let X =X1+X2+ · · ·+Xk
and let µ = E[X]. Then, for any 0≤ δ ≤ 1, it is true that:

P[X > (1+δ)µ]≤ e−δ 2µ/2 (7)

P[X < (1−δ)µ]≤ e−δ 2µ/3 (8)

Theorem 8 (Two-sided Chernoff bound) Let X1, · · · ,Xk be indepen-
dent random variables such that for 1 ≤ i ≤ k, Xi ∈ {0,1}. Let X =
X1 +X2 + · · ·+Xk and let µ = E[X]. Then, for any 0≤ δ ≤ 1, it is true
that:

P[|X−µ|> δ µ]≤ 2e−δ 2µ/3 (9)

A.2 Markov Chains

In this section, we state some basic results on Markov chains.

Theorem 9 (Feller [15]) In an irreducible Markov chain with period t
the states can be divided into t mutually exclusive classes G0, · · · ,Gt−1
such that it is true that (1) if s ∈G then the probability of being in state
s in some round r ≥ 1 is 0 unless r = τ + vt for some v ∈ N, and (2)
a one-step transition always leads to a state in the right neighboring
class (in particular from Gt−1 to G0). In the chain with matrix Pt each
class G corresponds to an irreducible closed set.

The next theorem establishes a bound on the difference between
the stationary distribution of a Markov chain and the distribution re-
sulting after k steps.

Lemma 19 (Rosenthal [26]) Let P(x, ·) be the transition probabili-
ties for a time-homogeneous Markov chain on a general state space
X . Suppose that for some probability distribution Q(·) on X , some
positive integers k and k0, and some ε > 0, ∀x∈X : Pk0 (x, ·)≥ εQ(·),
where Pk0 represents the k0-step transition probabilities. Then for any
initial distribution π0, the distribution πk of the Markov chain after k
steps satisfies ‖πk−π‖ ≤ (1− ε)bk/k0c, where ‖ · ‖ is the ∞-norm and
π is any stationary distribution.

Lemma 20 In any irreducible, aperiodic Markov chain with |S| states,
there exists an integer k ≤ 2|S|2 such that there is a walk of length k
between any pair of states in the Markov chain.

Proof By the definition of periodicity, for each state of the Markov
chain, it is true that the greatest common divisor of the lengths of
all the cycles that pass through that state is 1. Let the total number
of distinct cycles in the Markov chain be m and let (a1, · · · ,am) de-
note the lengths of these cycles where a1 ≤ ·· · ≤ am. The Frobenius
number F(a1, · · · ,am) of the sequence (a1, · · · ,am) is the largest inte-
ger such that it is not possible to express it as a linear combination of
(a1, · · · ,am) and non-negative integer coefficients. By a simple bound
on the Frobenius number [7], we know that F(a1, · · · ,am) ≤ (a1 −
1)(a2− 1)− 1. Since a1 and a2 refer to cycle lengths in our Markov
chain we know that a1,a2 ≤ |S|. So, it is true that F(a1, · · · ,am)≤ |S|2
and we can express every integer greater than F(a1, · · · ,am) as a non-
negative integer linear combination of (a1, · · · ,am).

Let i and j be arbitrary states in the Markov chain and let d(i, j)
be the shortest path between i and j. Let k = 2|S|2. By the argument
above, we know that there is a walk starting at state i and ending at
state i of length k−d(i, j)≥ |S|2. Appending the shortest path between
i and j to the end of that walk results in a walk from i to j of length
exactly k.

