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Abstract
We initiate a line of investigation into biological neural networks from an algorithmic perspective.
We develop a simplified but biologically plausible model for distributed computation in stochastic
spiking neural networks and study tradeoffs between computation time and network complexity
in this model. Our aim is to abstract real neural networks in a way that, while not capturing
all interesting features, preserves high-level behavior and allows us to make biologically relevant
conclusions.

In this paper, we focus on the important ‘winner-take-all’ (WTA) problem, which is analogous
to a neural leader election unit: a network consisting of n input neurons and n corresponding
output neurons must converge to a state in which a single output corresponding to a firing
input (the ‘winner’) fires, while all other outputs remain silent. Neural circuits for WTA rely
on inhibitory neurons, which suppress the activity of competing outputs and drive the network
towards a converged state with a single firing winner. We attempt to understand how the number
of inhibitors used affects network convergence time.

We show that it is possible to significantly outperform naive WTA constructions through
a more refined use of inhibition, solving the problem in O(θ) rounds in expectation with just
O(log1/θ n) inhibitors for any θ. An alternative construction gives convergence in O(log1/θ n)
rounds with O(θ) inhibitors. We complement these upper bounds with our main technical con-
tribution, a nearly matching lower bound for networks using ≥ log logn inhibitors. Our lower
bound uses familiar indistinguishability and locality arguments from distributed computing the-
ory applied to the neural setting. It lets us derive a number of interesting conclusions about the
structure of any network solving WTA with good probability, and the use of randomness and
inhibition within such a network.

1998 ACM Subject Classification F.1.1 Models of Computation – Unbounded-action devices,
C.1.3 Other Architecture Styles – Neural nets

Keywords and phrases biological distributed algorithms, neural networks, distributed lower
bounds, winner-take-all networks

Digital Object Identifier 10.4230/LIPIcs.ITCS.2017.15

∗ This work was partially supported by NSF Graduate Research Fellowship No. 1122374, AFOSR grant
FA9550-13-1-0042 and the NSF Center for Science of Information.

© Nancy Lynch, Cameron Musco, and Merav Parter;
licensed under Creative Commons License CC-BY

8th Innovations in Theoretical Computer Science Conference (ITCS 2017).
Editor: Christos H. Papadimitrou; Article No. 15; pp. 15:1–15:44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Computational Tradeoffs in Winner-Take-All Networks

1 Introduction

In this paper, we study biological neural networks from an algorithmic perspective, focusing
on understanding tradeoffs between computation time and network complexity. We use a
biologically plausible yet simplified neural computational model. Our goal is to abstract
real neural networks in a way that, while not capturing all interesting features, preserves
high-level behavior and allows us to make biologically relevant conclusions.

1.1 Model and Problem Statement

Model

We work with spiking neural networks (SNNs) [26, 27, 12, 18, 15], in which neurons fire
in discrete pulses, in response to a sufficiently high membrane potential. This potential
is induced by spikes from neighboring neurons, which can have either an excitatory or
inhibitory effect (increasing or decreasing the potential). Our model is stochastic – each
neuron functions as a probabilistic threshold unit, spiking with probability given by applying
a sigmoid function to its membrane potential. In this respect, our networks are similar to the
popular Boltzmann machine [1], with the important distinction that synaptic weights are not
required to be symmetric and, as observed in nature, neurons are either strictly inhibitory
(all outgoing edge weights are negative) or excitatory. While a rich literature focuses on
deterministic threshold circuits [31, 16] we employ a stochastic model as it is widely accepted
that neural computation is inherently stochastic [3, 42, 10], and that while this can lead to a
number of challenges, it also affords significant computational advantages [30].

The WTA Problem

We focus on the Winner-Take-All (WTA) problem, which is one of the most studied problems
in computational neuroscience. A WTA network has n input neurons, n corresponding
outputs, and a set of auxiliary neurons that facilitate computation. The goal is to pick a
‘winning’ input – that is, the network should produce a single firing output which corresponds
to a firing input. Often the winning input is the one with the highest firing rate, in which
case WTA serves as a neural max function. We focus on the case when all inputs have the
same or similar firing rates, in which case WTA serves as a leader election unit.

WTA is widely applicable, including in circuits that implement visual attention via WTA
competition between groups of neurons that process different input classes [21, 23, 17]. It is
also the foundation of competitive learning [32, 20, 14], in which classifiers compete to respond
to specific input types. More broadly, WTA is known to be a powerful computational primitive
[28, 29] – a network equipped with WTA units can perform some tasks significantly more
efficiently than with just linear threshold neurons (McCulloch-Pitts neurons or perceptrons).

Related Work

Due to its importance, there has been significant work on WTA, including in biologically
plausible spiking networks [22, 48, 43, 7, 47, 34, 33, 2]. This work is extremely diverse – while
mathematical analysis is typically given, different papers show different guarantees and apply
varying levels of rigor. To the best of our knowledge, no asymptotic time bounds (e.g., as a
function of the number of inputs n) for solving WTA in spiking neural networks have been
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established.1 Additionally, previous analysis often requires a specific initial network state to
show convergence and does not show that the network is self-stabilizing and converges from
an arbitrary starting state, as is necessary in a biological system.

Within theoretical computer science, our work is most inspired by: (1) work on the
computational power of spiking neural networks, including the power of WTA as a black-box
primitive, most notably by Maass et al. [27, 28, 29] (2) the pioneering work of Les Valiant on
the neuroidal model [44, 45, 46] and (3) self-stabilization algorithms in distributed networks
[8, 25]. We survey this literature in more depth in Appendix A.1.

Basic WTA Networks

We restrict our attention to a simple network structure that can implement WTA efficiently
using a small number of auxiliary neurons. A network consists of three layers: n input
neurons X, n output neurons Y, and α auxiliary neurons Z. We usually assume all auxiliary
neurons are inhibitory, however in Appendix C give extensions to the more general case where
we allow auxiliary neurons to also be excitatory. Similar to well-known feedforward networks,
all synaptic connections are between layers2 with the exception of an excitatory self-loop
from each output yi to itself. This basic structure is biologically plausible; in particular
self-loops and reciprocal excitatory-inhibitory connections (as implemented in our networks)
are used in many biological models of WTA computation [48, 7, 38].

It is well known that inhibition is crucial for solving WTA – outputs compete for activation
via lateral inhibition or recurrent inhibition [7, 38]. In our network, outputs fire in response
to stimulation by their corresponding inputs, thereby stimulating inhibitors which suppress
the activity of other outputs. Once a single winner is selected, it must remain distinguished
from the remainder of the outputs. This is achieved via positive feedback – a consistently
firing output will tend to continue firing due to its excitatory self-loop.

1.2 Our Contribution
Computational Tradeoffs

We explore the tradeoff between the number of inhibitors α used in a WTA network (i.e., the
complexity of the network) and the time required to select a winning output (to converge to
a WTA state). In artificial neural networks, inhibitory and excitatory connections are often
treated equally, as connections with either positive or negative weights. However, in reality,
neurons themselves are either inhibitory or excitatory and do not have outgoing connections
of both types. There are many fewer inhibitors (around 15% of the neural population [39, 13]),
and they typically have restricted connectivity structures, often inhibiting just neurons in
their local vicinity [29]. This gives natural motivation to understanding how the number of
inhibitors used in a network affects its computational power. We give two main results:

I Theorem 1 (Upper bound). (1) For any α ≥ 2 there exists a basic WTA network with α
inhibitors that, from any arbitrary starting configuration, converges to a valid WTA state
in O(α log1/α n) expected time. (2) For any θ ≥ 1 there exists a basic WTA network with
α = O(θ log1/θ n) inhibitors that converges in O(θ) expected time.

1 Aside from immediate bounds for deterministic circuits using many (Ω(n)) auxiliary neurons [22, 29].
2 Although, due to recurrent connections the network convergence time is not synonymous with the

number of layers.
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15:4 Computational Tradeoffs in Winner-Take-All Networks

For α ≥ log logn the above gives runtime Õ
(

log logn
logα

)
. We give a near matching lower bound

in this case, which holds even if we allow both excitatory and inhibitory auxiliary neurons.

I Theorem 2 (Lower bound). Any basic WTA network with α inhibitors requires
Ω(log logn/ logα) rounds to solve WTA in expectation.

Upper Bound Techniques

Our upper bounds are based on random competition between outputs that fire in response to
stimulation from their firing inputs. One “stability” inhibitor is responsible for maintaining
a WTA steady-state: as soon as just a single output fires in a round it becomes the winner
of the network. Its positive feedback self-loop allows it to keep firing in subsequent rounds,
while all other outputs do not fire due to inhibition from the stability inhibitor.

In order to reach a round in which just a single output fires, we employ a number of
“convergence inhibitors”. Ideally, if k competing outputs fire in a round, each would fire in the
next round with probability 1/k and we would have just a single firing output with constant
probability. We can approximate this behavior using blognc convergence inhibitors, each of
which acts as a threshold circuit and fires whenever ≥ 2i outputs fire for i ∈ 1, ..., blognc.
Thus when k outputs fire, approximately log(k) inhibitors fire, the inhibition causes outputs
to continue firing with probability Θ(1/k), and convergence is achieved in constant rounds in
expectation. This technique implicitly splits the possible number of firing outputs into logn
density classes and uses one inhibitor to ensure fast convergence from each class. To obtain
more general runtime tradeoffs, we will use density classes of increasing coarseness, with
the inhibitors assigned to each density classes ensuring that the number of firing outputs
decreases in few rounds until it falls into a finer density class, and eventually until just a
single output fires.

Lower Bound Techniques

Our lower bound shows that any network which solves WTA must have a similar structure to
the network described above. The inhibitory neurons can always be roughly be divided into
two classes: stability and convergence inhibitors. Further, while randomness is important in
breaking symmetry between competing inputs, we show that in any efficient network, the
inhibitors behave in a nearly deterministic manner, matching behavior seen in our upper
bounds. After significantly constraining inhibitor behavior, we are able to analyze how
any network which solves WTA behaves on inputs with varying numbers of firing neurons.
Specifically, we consider Θ(logn) different inputs configurations, with geometrically increasing
numbers of firing input neurons, ranging from O(1) to O(n). We show that, after t rounds,
with good probability, the network does not distinguish between (i.e. behaves identically for)
Θ(logn/αt) inputs.

As long as logn/αt > 2, after t rounds, there are at least two inputs not distinguished
by the network, and so on which the network cannot achieve WTA with good probability.
This yields our lower bound of t = Ω(log logn/ logα) rounds in expectation. Our argument
uses techniques familiar in distributed computing theory [24], showing that limited local
information prevents outputs from behaving in distinct manners for a large number of density
classes in each round.

We obtain a corresponding lower bound for the number of rounds required to solve
WTA with high probability by showing that in general, the high probability runtime is
Ω(logn/ log log logn) times the expected runtime. This nearly matches the O(logn) gap
which can be achieved by noting that in O(logn) runs, any network will converge within its
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Table 1 Expected Time vs. Number of Inhibitors Tradeoff in Basic WTA Networks.

Inhibitors Lower Bound (Expected Time) Upper Bound (Expected Time)
Unbounded Ω(1) (Ω(logn) high probability time) O(1) with α = Θ(log1/c n)

1 Ω(nc) O(nc)
2 Ω(logn/ log logn) O(logn)

α Ω(log logn/ logα) O(α · log1/α n), for α = O(log logn)
Õ
( log logn

logα

)
, for α = Ω(log logn)

expected runtime at least once with high probability. Our conversion result shows that, in
our setting, expected runtime is a more natural metric – it is controlled by the number of
inhibitors used, whereas the high probability runtime is just a function of expected runtime,
independent of the number of inhibitors

1.3 Biological Insights in Our Results
Previous work has conjectured that widespread use of simple WTA implementations in the
brain may explain how complex computation is possible even when inhibition is relatively
limited and localized [29]. Our work shows that WTA can be achieved and maintained
efficiently using very few inhibitors and with a very simple connectivity structure.

Our upper and lower bound constructions have a common take home message that
may shed some light into the biological implementations of WTA networks. For instance,
the division of inhibitors into “task preservers” (stability inhibitors) and “task solvers”
(convergence inhibitors) seems fundamental. Further, while randomness is crucial as it allows
for symmetry breaking amongst competing outputs, it appears (both in the upper bounds
and the corresponding lower bound) that in optimal networks the inhibitors behave almost
as deterministic threshold circuits, firing with high probability whenever the number of firing
outputs is above a certain level. This presents an interesting dichotomy – while randomness
is necessary computationally, it also has a cost in leading to unpredictable behavior amongst
the inhibitors which ‘control’ the network.

1.4 Road Map
In Sec. 2 we describe our spiking neural network model and specify the WTA problem. In
Sec. 3 we give two warm up examples of WTA networks to illustrate the tradeoff between
convergence time and network size. The first has two inhibitors and converges to the WTA
state within O(logn) rounds in expectation. The second has O(logn) inhibitors and O(1)
expected runtime. In Sec. 4.1, we provide more delicate constructions for any number of
inhibitors α. Our key technical result appears in Sec. 4.2 where we provide a runtime lower
bound (both for expected and high probability time) for circuits using α inhibitors, for any
α. Our lower bound nearly matches our upper bounds for α = Ω(log logn). Missing proofs
are deferred to the Appendix.

2 Neural Network Model

A Spiking Neural Network (SNN) N = 〈X,Y,Z, w, b〉 consists of n input neurons X =
{x1, . . . , xn}, n output neurons Y = {y1, . . . , yn}, and α auxiliary neurons Z = {z1, ..., zα}.
The directed, weighted synaptic connections between X, Y, and Z are described by the weight
function w : [X∪Y∪Z]× [X∪Y∪Z]→ R. The in-degree of every input neuron xi is zero.

ITCS 2017
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Figure 1 Basic WTA Network structure.

Each neuron is either inhibitory or excitatory: if v is inhibitory, then w(v, u) ≤ 0 for every u,
and if v is excitatory, then w(v, u) ≥ 0 for every u. Finally, for any neuron v, b(v) ∈ R≥0 is
the activation bias – as we will see, roughly, v’s membrane potential must reach b(v) for a
spike to occur with good probability.

The Basic WTA Network and its Dynamics:

We focus on a restricted class of basic SNNs, in which all auxiliary neurons are inhibitory,
inputs connect only to their corresponding outputs, and there are no connections within the
inhibitory or output layers, aside from an excitatory self-loop from each output to itself. All
outputs have identical parameters, i.e., bias values and edge weights.

We introduce some more concise notation to describe basic SNNs. Let winput > 0 be the
synaptic weight from each input xj to its corresponding output yj . Let wself > 0 be the
weight of the excitatory self-loop from output yj to itself. Let winh

j ≤ 0 be the weight of
each inhibitory synapse from inhibitor zj to an output neuron. Conversely, let wout

j ≥ 0 be
the weight of each excitatory synapse from an output in Y to inhibitor zj . Finally, let bout be
the bias value for each output neuron. For an diagram of the basic architecture, see Fig. 1.

The network evolves in discrete, synchronous rounds as a Markov chain, with an alternating
dynamic between the neurons in X, Y and Z. We give in-depth biological motivation in
Appendix A.2. Each round t consists of three sub-rounds denoted by (t, 1), (t, 2) and (t, 3)
where the three layers inputs, outputs and inhibitors are scheduled to fire: In the first
sub-round (t, 1) of each round t, the input layer fires. We consider static inputs so each
xi either fires in every round or does not fire in any round. After that, in sub-round (t, 2)
the output neurons in Y spike with probabilities dependent on their membrane potentials.
Finally, in sub-round (t, 3) the inhibitors in Z spike in response to their potentials. The firing
probability of every neuron depends on the firing status of its neighboring neurons in the
preceding three sub-rounds (i.e., a length of one round). This probabilistic firing is modeled
using a standard sigmoid function. For each neuron u, and each round t ≥ 1, let u(t,k) = 1 if
u fires (i.e., generates a spike) in sub-round (t, k) for k ∈ {1, 2, 3}. Let u0,k denote the initial
firing state of the neuron – we will discuss how this is determined below.

Since each neuron is always scheduled to fire in one of (t, 1), (t, 2) or (t, 3) depending on
whether it is in layer X, Y, or Z, for convenience we will often omit the sub-round notation,
writing ut = 1 if u fires in one of the sub-rounds (t, k). We call ut, the firing state of u
in round t. Informally, we say that u fires in round t if ut = 1. For each output yj ∈ Y
and every t ≥ 1, let pot(yj , t) denote the membrane potential at sub-round (t, 2) and p(yj , t)
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denote the corresponding firing probability. These values are calculated as:

pot(yj , t) = (x(t,1)
j winput) + (y(t−1,2)

j · wself) +
[∑
zi∈Z

z
(t−1,3)
i · winh

i

]
− bout

and p(yj , t) = 1
1 + e−pot(yj ,t)/λ

(1)

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid.
Note that (1) incorporates excitatory and inhibitory effects from any spikes occurring within
the three sub-rounds before the outputs spike in sub-round (t, 2). Specifically, this includes
input spikes in sub-round (t, 1) along with output and inhibitory spikes in sub-rounds
(t− 1, 2), (t− 1, 3) respectively. Also note that when t = 1, the firing probability depends
on the initial firing states x(0,1)

j , y(0,2)
j and z(0,3)

i . We will discuss how these are determined
below. Applying the same rules, in sub-round (t, 3), each inhibitor in Z fires with probability
p(zj , t) calculated as:

pot(zj , t) =

∑
yi∈Y

y
(t,2)
i · wout

j

− b(zj) and p(zj , t) = 1
1 + e−pot(zj ,t)/λ

. (2)

Again (2) incorporates effects from relevant spikes within three sub-rounds (t− 1, 3), (t, 1)
and (t, 2). However, since inhibitors are connected only to outputs, the only sub-round that
affects them is (t, 2). After the inhibitors fire, we proceed to round t+ 1, beginning with the
firing of the inputs.

We finally specify how the initial firing states are determined. As inputs are static, x(0,1)
j

is 1 for firing inputs and 0 for non-firing inputs. y(0,2)
j is arbitrary, while z(0,3)

i is determined
as in any regular round according to (2) below with t = 0 (and so depends on each y(0,2)

j ). It
is not hard to see that is equivalent to just allowing all initial firing states to be arbitrary.
This would lead to arbitrary y(1,2)

i and z(1,3)
i determined according to equation (2), which

matches our model if we relabel the states in round 1 to be the initial states.

Temperature and Background Noise

It is clear that the temperature λ does not affect the computational power of the network as
we can simply adjust all synapse weights and neuron biases by a factor of λ/λ′ to simulate a
network with temperature λ′. Hence, we can fix λ to make exposition easier. In our proofs we
will always set λ = 1/Θ(logn). We assume that neurons in Z,Y have bias b(v) = Ω(λ logn),
so they do not fire with probability 1 − 1/(1 + e−c·logn) = 1 − 1/nc when they receive no
external stimulation. We call this the no-background noise assumption: the network is quiet
when no input is introduced. This assumption is used only for technical reasons in our
general α inhibitor lower bound. We are hopeful that it could be removed.

System Configuration

For any t ≥ 1, the configuration Ct = (Xt,Yt,Zt) in round t is defined by the firing states3
of the corresponding neurons in round t where Xt = [xt1, ..., xtn] and Yt and Zt are defined
analogously. Recall that xti = 1, yti = 1, zti = 1 if the input xi (output yi, inhibitor zi) fires in

3 The firing state of a neuron is a binary number indicating if it is firing or not.

ITCS 2017



15:8 Computational Tradeoffs in Winner-Take-All Networks

sub-round (t, 1) (resp., (t, 2), (t, 3)). We consider a static input setting where Xt = X for all
t.4 We abuse notation slightly, thinking of X as a vector of binary input values where xj = 1
indicates that xj fires in every round (xtj = 1 for all t) and xj = 0 implies that xj never fires
(xtj = 0 for all t). We denote the the initial configuration C0. As discussed we have X0 = X,
Y0 arbitrary, and Z0 determined as in any round according to equation (2).

The WTA Problem

A binary winner-take-all network given n inputs should converge to having a single firing
output corresponding to a firing input (the ‘winner’), if one exists. Formally, given X ∈ {0, 1}n,
let f(X) = {Y ∈ {0, 1}n | yi ≤ xi ∀i and ‖Y ‖1 = min(1, ‖X ‖1)} where ‖ · ‖1 is the standard
1-norm, used to denote the number of firing neurons in a set.

We say N satisfies WTA in round t if Yt ∈ f(X). We say N converges to WTA in t rounds
with probability 1− δ if for every input X ∈ {0, 1}n and every initial output configuration
Y0, with probability at least 1− δ, Yt ∈ f(x) and Yt′ = Yt for all t′ ∈ [t+ 1, t+ nc] where
c is a positive constant.5 That is, the network satisfies WTA in round t and maintains
the satisfying configuration for polynomial in n subsequent rounds. As our neurons are
inherently probabilistic, our definition of convergence is as well – we will never be able to
avoid occasional random deviations from a correct output state and so just demand that the
state is maintained a large number of rounds.

We let ET (N) denote the maximum expected time required to converge to WTA, taken
over all possible inputs X and initial output configurations Y0. In the same manner, HT (N)
denotes the maximum time required for convergence to WTA with high probability.6

3 Warm Up: Two Simple Networks for WTA

We begin by presenting two WTA networks that represent two extremes of the inhibitor-time
tradeoff. They also illustrate the rough intuition that will appear in our later network
constructions and lower bound strategies.

WTA with Two Inhibitors

In our two inhibitor network we have Z = {zs, zc}. The neuron zs is a stability inhibitor
that maintains the WTA state once it has been reached. It fires w.h.p. in sub-round (t, 3)
whenever at least one output fires in sub-round (t, 2). The neuron zc is a convergence inhibitor
that fires w.h.p. whenever WTA has not yet been reached – i.e. whenever ≥ 2 outputs fire
in sub-round (t, 2).

We set the weights connecting zs and zc to the outputs such that when both fire in round
t, any output that fired in round t will fire with probability 1/2 in round t+ 1. Any output
that did not fire in round t will not fire in round t+ 1 w.h.p. as it will not have an active
excitatory self-loop and so its membrane potential will be too low to overcome the inhibition.

4 Note however that our model can easily handle non-static inputs. All algorithms given will converge
from an arbitrary initial configuration and so will converge if X changes.

5 Formally, a family if networks N = {N(n)} for all integers n ≥ 1 converges to WTA in t(n) rounds with
probability 1− δ if there exists c > 0 such that for all n, for all X ∈ {0, 1}n and for all Y 0 ∈ {0, 1}n,
with probability at least 1− δ, N(n) satisfies WTA in rounds [t(n), ..., t(n) + nc].

6 Throughout, with high probability (w.h.p.) refers to events occuring with probability ≥ 1 − 1/nc for
constant c. Formally, a family of events E = {E(n)} for all integers n ≥ 1 occurs w.h.p. if there exists
c > 0 such that for all n, Pr[E(n) ≥ 1− 1/nc].
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In this way, as long as ≥ 2 outputs fire in round t, both inhibitors fire w.h.p. and the high
level of inhibition causes outputs to ‘drop out of contention’ for the winning position with
probability 1/2. After O(logn) rounds, nearly all the outputs stop firing and with constant
probability there is a round in which exactly 1 output fires. Once this round occurs, zc
ceases firing w.h.p. and just zs fires. This decreased level of inhibition allows the winner to
keep firing, as it is offset by the winner’s excitatory self-loop. However, it prevents any other
output, whose excitatory self-loop is inactive, from firing w.h.p. See Fig. 2 in Appendix B.1
for illustration of the network with its edge weights. We analyze the network in depth in B.1,
showing convergence given any input X and initial output configuration Y0, and yielding:

I Theorem 3. There exists a basic WTA network N with α = 2 inhibitors and ET (N) =
O(logn) and HT (N) = O(log2 n).

In Appendix B.1, we show that the network is optimal up to a log logn factor and in Appendix
B.2 we show that it represents a critical point in the inhibitor-time tradeoff: any network
with just one inhibitor requires Ω(nc) rounds to solve WTA. Essentially, it is not possible for
a single inhibitor to implement the two opposing tasks of stability and convergence.

WTA with O(logn) Inhibitors

Our second network represents another extreme point of the inhibitor-time tradeoff, using
α = O(logn) inhibitors to achieve O(1) expected convergence time.

The idea is to approximate the ideal behavior in which outputs fire with probability
1/kt in round t + 1 if kt outputs fired in round t. As in our two inhibitor algorithm, we
have a single stability inhibitor zs that fires w.h.p. whenever at least one output fires and
insures that as soon as a single output fires in a round, the network converges to WTA.
We then have dlogne − 1 convergence inhibitors z1, ..., zα−1. We set the bias of the zi to
b(zi) = 2i − .5 and set wout

i = 1 for all i. In this way, zi fires w.h.p. in round t whenever
≥ 2i outputs fire. We set the inhibitor to output weights to winh

i = Θ(λ) for all i. Thus,
when kt ∈ [2i, 2i+1), w.h.p. inhibitors z1, ..., zi all fire (while zi+1, ..., zα−1 do not). The
total inhibition from the inhibitors is thus Θ(iλ) and hence each of the kt outputs fire with
probability 1/(1 + eΘ(i)) ≈ 1/2i ≈ 1/kt in round t+ 1. In expectation (and with constant
probability) there will be exactly one firing output, giving an expected runtime of just O(1)
rounds to reach WTA. In Appendix B.3, we give a full analysis, yielding:

I Theorem 4. There exists a basic WTA network N with α = O(logn) inhibitors, ET (N) =
O(1) and HT (N) = O(logn).

Vacuously, no network can beat this expected runtime. We also show in Appendix B.3
that no network can do better with high probability: even with an unlimited number of
inhibitors, Θ(logn) rounds are requires to solve WTA w.h.p. Intuitively, as long as WTA
has not yet been reached in round t, there is no single distinguished output. All outputs
have identical connections to X,Z so each active output fires with the same probability p in
round t+ 1.7. Hence the probability that a single output becomes distinguished (is the only
one to fire) is kt · p(1− p)kt−1, which is bounded by a constant for all kt, p. Thus, converging
to the WTA state w.h.p. takes at least Ω(logn) rounds.

7 By the monotonicity property, it is sufficient to consider in round t only the outputs that fire in round
t− 2, all these outputs have the same firing probability p.
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4 WTA with α ≥ 2 Inhibitors

The above results give a rough outline of the tradeoff between the number of inhibitors and
the runtime for WTA. We now explore this tradeoff in more depth for general α ∈ (2, logn]

4.1 Upper Bound Networks
We first show that both our two inhibitor and dlogne inhibitor networks can be improved
significantly with modest increases in the number of inhibitors or runtime used. We can (up
to constant factors) match the runtime of the dlogne inhibitor network with just O(log1/c n)
inhibitors for any c. Additionally, for any α ≥ log logn we can achieve expected runtime
O
(

log logn log log logn
logα

)
, nearly matching our main lower bound of Section 4.2.

I Theorem 5. For any integer θ, there is a basic WTA network N with α = O(θ log1/θ n)
inhibitors, ET (N) = O (θ), and HT (N) = O (θ logn).

For α ≥ log logn, writing α = log logx n for x ≥ 1 if we set θ = c1 log logn log log logn
logα =

c1 log logn
x then the number of inhibitors required is: c1 log logn

x · ex/c1 ≤ log logx n ≤ α for
small enough c1.

Proof Sketch. To see the high level idea, consider the case of θ = 2. We will 2
√

logn
inhibitors which are divided into two classes:

√
logn coarse inhibitors and

√
logn fine

inhibitors. The edges from the fine inhibitors to outputs have weight −1 and the edges
from coarse inhibitors to outputs have weight −

√
logn. All the edges from the outputs to

the inhibitors have weight 1. We set the bias values of the inhibitors such that: (1) the ith

coarse inhibitor fires if the number of active outputs is at least 2i
√

logn and (2) the ith fine
inhibitor fires if the number of active outputs is at least 2i. Consider any output density
2d and let d′ = bd/

√
lognc. When 2d outputs fire in round t, this will excite the first d′

coarse inhibitors. As a result, the firing probability for the outputs in round t+ 1 will be
approximately 2−d

′·
√
logn (ignoring negligible effects from the fine inhibitors). In other words,

within a single round the density will be reduced from 2d to 2d−d
′
√

logn which is a new
density in the range 1, 2, 4, ..., 2

√
logn. After this initial round, since at most 2

√
logn outputs

fire, the circuit converges in constant rounds in expectation as the
√

logn fine inhibitors can
induce probabilities roughly equal to 1/kt just as is done in the O(logn) inhibitor circuit.

Generalization to larger θ is by repeating the above construction: we have θ levels
of increasing coarseness: [1, 2log1/θ n], [2log1/θ n, 2log2/θ n], ..., [2log(θ−1)/θ n, 2logn]. The log1/θ n

inhibitors at each level ensure that if the number of firing outputs is at level i in round t,
it is reduced to level i − 1 in round t + 1, yielding O(θ) expected runtime. We give a full
analysis in Appendix B.4. J

Our second construction uses similar techniques, but uses just one convergence inhibitor
per density class, balancing the time required to move through each density class and the
number of classes used. It significantly improves on our two inhibitor algorithm, achieving
runtime O(log1/c n) for any constant c with O(1) inhibitors and O(log logn) runtime with
O(log logn) inhibitors.

I Theorem 6. For any α ≥ 2, there is a basic WTA network N with α inhibitors, ET (N) =
O
(
α log1/(α−1) n

)
and HT (N) = O

(
α log1+1/(α−1) n

)
.



N. Lynch, C. Musco, and M. Parter 15:11

Proof Sketch. Consider α = 3. We have 2 convergence inhibitors: a fine inhibitor zf and
a coarse inhibitor zc. The inhibitor zc fires whenever the number of active outputs is at
least 2

√
logn, and induces outputs to fire with probability 1/2

√
logn in the next round. In

this way, starting with any density of firing inputs kt ∈ [2
√

logn, n], within
√

logn rounds
the density will be reduced to ≤ 2

√
logn. The inhibitor zf fires whenever at least 2 outputs

fire, and induces outputs to fire with probability 1/2 in the next round. So, within
√

logn
additional rounds, with constant probability just a single output will remain firing. Again, a
full network description for general α and proof is given in Appendix B.4. J

4.2 Lower Bound: The Tradeoff Between Inhibitors and Time
We now present our main lower bound which matches Theorem 5 up to log log logn factors.

I Theorem 7. For any basic WTA network N with α inhibitors, ET (N) = Ω
(

logn logn
logα

)
and HT (N) = Ω

(
log logn

logα · logn
log log logn

)
.

Lower Bound Overview

We focus on initial output configuration Y 0 = ~0 (i.e., no output fires in the sub-round (0, 2))
which we call the reset configuration. We show that for any network N with α inhibitors there
exists at least one input X for which the expected time to reach WTA starting from the reset
configuration is Ω(log logn/ logα). If suffices to consider the case where α = O(log1/c n)
for some constant c since for α = Θ(log1/c n), the expected runtime is O(1). Throughout
this section, we say an event happens with good probability if its probability is at least
1−O(log4 n).

Our argument contains two main parts. First, we show that the inhibitors fire in a
nearly deterministic manner and hence we can treat them (up to some slack) as threshold
circuits. Equipped with this property, we then consider Θ(logn) density classes each covering
a constant multiplicative range of firing outputs. The predictable behavior of the inhibitors
is used to show that even after Ω(logn logn/ logα) rounds, the network cannot distinguish
between at least two different density classes, which yields our claim as it does not converge
to WTA for at least one class.

(1) Inhibitor classification: inhibitors are nearly deterministic for most density
classes

To address the first challenge (i.e., showing that inhibitors are predictable), we divide the set
of inhibitors Z into three classes and show the predictability property for each class separately.
The “stability” class (or “WTA preservers”) S contains inhibitors whose goal is to maintain
the WTA steady state. The “convergence” class (or “progress inhibitors”) C contains the
inhibitors that are responsible for driving fast convergence to a WTA state. Finally, the
third class R contains the remaining inhibitors whose contribution to both stability and
convergence is negligible.

Formally, for any inhibitor zi ∈ Z and j ∈ [1, n] let potj(z) = j · wout
i−b(zi) be the

potential of zi when exactly j outputs fire (I.e., if in sub-round (t, 2) the number of firing
outputs is j, then the potential of zi in sub-round (t, 3) is potj(z) and it fires in sub-round
(t, 3) with probability 1/(1 + e−potj(z))). The set S contains all inhibitors that fire in steady
state (i.e., when exactly one output is firing) with reasonably high probability. Fixing some
constant c ≥ 1, S = {zi ∈ Z | 1/(1 + e−pot1(zi)) ≥ 1/ log3c n}. The set C is comprised of
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all inhibitors zi /∈ S whose firing probability is least 1/ logc n when all n outputs fire in the
previous sub-round: C = {zi ∈ Z | zi /∈ S and 1/(1 + e−potn(zi)) ≥ 1/ logc n}8. Finally, R
contains all remaining inhibitors not in S or C.

We show that the firing states of the inhibitors can in certain cases be predicated with
good probability. The argument for each of the three classes S,C and R is different and is
presented in Appendix B.5.1. Since the inhibitors in S fire with good probability when just
one output fires, we can show that they fire w.h.p. when at least two outputs fire:

I Lemma 8 (S is predictable). Let (t, 2) be a sub-round in which at least two outputs fire,
then sub-round (t, 3), all inhibitors of S fire with probability at least 1− 1/n.

Since the firing probability of the R inhibitors is small compared to the O(log logn/ logα)
execution length that we care about, we have:

I Lemma 9 (R is predictable). Given any input X and any initial configuration, with
probability at least 1 − 1/ logc−3 n, none of the inhibitors in R fire in O(log2 n) rounds of
execution of N.

Perhaps the most surprising claim concerns the predictability of the convergence inhibitors:

I Lemma 10 (C is almost predictable). For every z ∈ C, there exists an integer k(z) ∈ [1, n],
such that for c ≥ 4:
(1) Low Density: When there are at most k(z)/2 firing outputs in sub-round (t, 2), the

probability that z fires in sub-round (t, 3) is at most 1/ logc n (i.e., with good probability,
z does not fire);

(2) High Density: When there are at least 2k(z) firing outputs in sub-round (t, 2), the
probability that z fires in sub-round (t, 3) is at least 1−1/ logc n (i.e., with good probability,
z fires).

Overall, except for the case where the number of firing outputs in sub-round (t, 2) is in the
density class K(z) = [k(z)/2, k(z)], z behaves in sub-round (t, 3) in an almost deterministic
manner. Roughly speaking, this is shown by exploiting the gap in the firing probabilities of
these inhibitors between the steady state rounds (when they fire with probability ≤ 1/ log3c n)
and the rounds in which there are sufficiently many firing outputs (where they fire with
probability ≥ 1/ logc n). The proof of Lemma 10 shows that this gap implies that the sigmoid
function which converts the number of firing inputs to z’s firing probability must be steep
enough such that z has predictable behavior outside a small range around k(z).

(2) Network prediction for nearly deterministic inhibitors

Using the predictable nature of the inhibitors, we now show that there is at least one density
class of competing inputs for which we can predict (with good probability) the behavior of
N for Ω(log logn/ logα) rounds, at the end of which the WTA state has not been reached.
We consider a set of ` = blognc inputs X = {X1, ...,X`} where Xi contains exactly 2i firing
inputs (i.e. ‖Xi ‖1 = 2i). Thus, X contains a representative input from each density class of
input vectors whose number of firing inputs is within a factor two of each other.

For any X ∈ X let R̂t(X) ∈ {1, . . . , n} be the random variable indicting the number
of firing outputs in sub-round (t, 2) starting from the initial configuration Y0 = ~0. Let
F̂t(X) ∈ {0, 1}α be the random variable indicating the firing status of the inhibitors in

8 The difference between 1/ log3c n when defining the threshold for the inhibitors in S and 1/ logc n when
defining the threshold for the inhibitors C, is crucial in the analysis.
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sub-round (t, 3). For each X ∈ X we will attempt to maintain a predicted range Rt(X) of the
number of firing outputs in sub-round (t, 2) along with a predicted inhibitor configuration in
sub-round (t, 3), Ft(X). We will let Xt ⊆ X denote the subset of inputs whose behavior we
can predict well in (all sub-rounds of) round t – specifically, for which we know R̂t(X) ∈ Rt(X)
and F̂t(X) = Ft(X) with good probability (at least 1− 1/ logn).

For any inhibitor z ∈ C, we call the range K(z) = [k(z)/2, 2k(z)]– the critical range of z
(see Lemma 10 for the definition of k(z)). If the number of firing outputs enters this range,
we will not be able to predict the behavior of z in the next sub-round with good probability.
On the other hand, as long as the number of firing outputs in sub-round (t, 2) is not in the
critical range of any z ∈ C, then the firing behavior of the inhibitors in sub-round (t, 3) can
be predicted with good probability.

We will progress through rounds, predicting the behavior of N in round t for each input in
Xt−1 based off the predictions in round t− 1. We will ensure that in any round, not too may
inputs have predicted ranges overlapping critical regions by ensuring that these predicted
ranges remain separated by constant factors and hence, at most |C| of them can overlap
K(z) for some z ∈ C.

Predicting the number of firing outputs given inhibitor states

We now describe how to predict the range Rt(X) given the prediction Ft−1(X). Our main
goal is to preserve the separation between the predicted ranges Rt(X) for sufficiently many
inputs X ∈ Xt−1.

To maintain the separation, we consider only the largest subset X samet ⊆ Xt−1 of inputs
whose predicted firing configuration for the inhibitors in the previous sub-round (t− 1, 3) is
exactly the same (i.e., inputs X with the same Ft−1(X) vector). By doing this, we guarantee
that the firing probabilities of all the outputs in sub-round (t, 2) is the same. Letting this
probability be p, the expected number of firing outputs in sub-round (t, 2) is in the range
p · Rt−1(X) for each X ∈ X samet and the separation between these ranges is preserved in
expectation. To show that the ranges are also separated with good probability, we omit
from X samet at most Θ(log logn) inputs with ranges Rt(X) containing values ≤ logc n for
some constant c. They remaining inputs thus have output ranges concentrated around
their expectation. The key point to observe is that because the inhibitors behave almost
as threshold circuits, the number of different firing configurations in sub-round (t− 1, 3) is
at most α (i.e., there are at most α different Ft−1(X) vectors for X ∈ Xt−1) and hence the
cardinality of the set X samet for which we predict the range of firing outputs in sub-round
(t, 2) is at least |Xt−1|/α.

Predicting the inhibitor states given the number of firing outputs

We next describe how to predict the inhibitor firings Ft(X) given the prediction Rt(X). Since
the convergence inhibitors are predictable when the number of firing outputs is not in any
critical range K(z), we first omit from X samet all inputs X whose predicted range Rt(X)
intersects the critical range of some z ∈ C (i.e. Rt(X) ∩ K(z) 6= ∅ for some z). We call
the resulting set Xt. Since the ranges of X samet are separated by some constant, we do not
discard more than |C| = O(α) inputs.

Overall, we predict the circuit behavior in sub-rounds (t, 2), (t, 3) with good probability
for all inputs X ∈ Xt where |Xt| ≥ |Xt−1|/α−α. Since α = O(log1/c n), we get that after
t rounds, there are |Xt| = Ω(logn/αt) inputs for which the network behaves exactly the
same in each of the t rounds with good probability. This argument proceeds as long as
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logn/αt ≥ 2, leading to the lower bound of expected time Ω(log logn/ logα) since we can
show if two inputs are not distinguished, at least one will not have reached WTA. In Appendix
B.5.2, we describe the prediction process in detail and complete the proof of Theorem 7.

High Probability Lower Bound

Finally, we show that our lower bound for expected runtime extends to a lower bound on
the high probability runtime. Our lower bound implies that “repeating" the execution of a
network that converges with constant probability Θ(logn) times to achieve a high probability
guarantee is essentially the best one can do (up to a log log logn factor).

I Lemma 11. For any basic WTA network N with α inhibitors HT (N) = Ω( logn·log logn
logα log log logn ).

Proof Sketch. Let DC = Θ
(

log logn
logα

)
and DH = DC ·

(
logn

log log logn

)
. Fix a network N with

α inhibitors and let X be the input for which, by Theorem 7, N requires at least DC rounds in
expectation starting from initial configuration C0 with input X and Y0 = ~0. In the following
proof, we will actually exploit the fact that the lower bound in Theorem 7 applies to the
time it takes to reach a WTA state with constant probability (a stronger time measure than
expected time).

We work with the execution tree T which includes all possible DH round executions of N
starting from C0. The tree T has depth DH where each layer corresponds to the configuration
of the network in each round t. Each node u at level t is labeled by an (n+ α)-length binary
vector Q(u) describing the firing states of the outputs and inhibitors in round t, i.e., the firing
states of the outputs in sub-round (t, 2) and the firing states of the inhibitors in sub-round
(t, 3). Node u has 2n+α children, with the edge to each child labeled with the transition
probability between the configuration in u to the child configuration. The root node r is
labeled with C0. The mass of node u is given by the product of edge weights on its path to r.
It is the probability of reaching u’s configuration through that execution path. We call a
node u a reset node (resp., WTA node), if in the configuration Q(u) no output fires (resp.,
exactly one output with active input fires).

To lower bound HT (N) we will show that the probability to reach a non-WTA leaf node
when starting from the root r is at least 1/n2, and thus the probability to reach a WTA leaf
node is at most 1− 1/n2 < 1− 1/nc, contradicting a w.h.p. runtime of ≤ DH rounds.

Our strategy is based on traversing the tree in an asynchronous manner from the root to
(sufficiently many) non-WTA leaf nodes with sufficiently high total probability mass. For a
given node u in layer t, we may move to a subset of its non-WTA children nodes in layer t+ 1.
We call this move a small jump. Alternatively, we may make a large jump, moving DC steps
from u and proceeding the traversal from a subset of non-WTA leaf nodes of TDC(u) (the
height DC subtree rooted at u). With each jump starting at u, we loose some probability
mass – the idea is to show that we do not loose it too quickly.

In more detail, in each step of our traversal, we maintain a collection of non-WTA nodes.
When arriving a node u in the traversal, we consider its configuration Q(u) and look at the
probability that the next round is a reset round (with 0 firing outputs) given Q(u). We show
that if the probability of having at most 1 firing outputs in the next round is ≥ 1/ log logn,
the probability of having a reset (no firing outputs) is large – i.e., ≥ 1/(log logn)3.

In this case we continue traversal only from the children of u that are reset nodes. For each
of these children v, let TDC(v) be the execution tree of depth DC rooted at v. By the lower
bound in Theorem 7, the probability to reach a non-WTA leaf node in TDC(v) starting from
Q(v) is at least a constant. So from each reset-node v, we make a large jump to the leaves of
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TDC(v). Overall, we maintain a Θ(1/(log logn)3) fraction of the probability mass of u in
making this large jump. Since such a jump can occur at most DH/DC = logn/ log log logn
times, we maintain at least a 1/(log logn)3DH/DC ≥ 1/n2 fraction of the probability mass
throughout the traversal.

On the other hand, when arriving a node u for which the probability of having at most 1
firing output in the next round is less than 1/ log logn, we make a small jump to the children
of u in which the number of firing outputs is at least 2 (and hence which are non-WTA
nodes). This jump maintains 1− 1/ log logn of the probability mass and since such a jump
can happen at most DH times, we again maintain (1− 1/ log logn)DH ≥ 1/n2 of the original
probability. Overall, through making both large and small jumps, at the end of the traversal,
we reach a set of non-WTA nodes containing at least a 1/n2 fraction of the probability mass
in the DH level execution tree. This gives us our high probability time lower bound. See
Appendix B.6 for a complete analysis and Fig. 3 for an illustration of the execution tree. J

In Appendix C, we extend our lower bounds (for both expected and high probability time)
to the case where the α auxiliary neurons can be both excitatory and inhibitory neurons.
The more general bound holds under the restriction that outputs with no active input are
not allowed to fire during the execution. Only competing outputs (that have a positive signal
from their inputs) ever fire.

5 Discussion

We hope that this paper is a starting point for further investigation into stochastic spiking
networks from an algorithmic perspective, which investigates fundamental tradeoffs between
biological resources and identifies basic building blocks and principles for algorithm design in
neural settings.

We focus on a restricted class of three layer networks, in which auxiliary neurons are not
interconnected. This models the generally restricted connectivity structure that inhibitory
neurons appear to have in biological networks and lets us give both very strong upper
bounds and matching lower bounds. Still, it would be interesting to understand the effect
of connections between auxiliary neurons. We have preliminary work showing that some
speedups are possible in these more general networks, however obtaining any non-trivial
lower bounds would be very interesting.

Studying other important primitives aside from the binary version of WTA that we focus
on would also be interesting. We again have preliminary work on non-binary WTA in which
the network must choose the input with the highest, or near highest firing rate as the winner.
There are many other problems to consider.

Our model attempts to be biologically plausible enough to capture high level behavior,
yet not be overly complex. However, many modeling assumptions are possible, and we
hope that future work explores if changes to the model can lead to significant differences in
computational power or algorithmic techniques. As an example, for simplicity we considered a
synchronous model, however, asynchrony seems to be an important part of neural computation
which would be valuable to study.

Finally, we note that significant theoretical work attempts to understand how neural
networks can learn through the modification of synapse weights as their endpoints fire more
or less frequently [46, 36]. The most common model for how synapse weights evolve is
the hebbian learning rule, which is itself the focus of a vast literature. Merging the view
of neural networks as executing algorithms given predetermined network parameters with
understanding of learning would be very interesting. Can a WTA network ‘evolve’ naturally
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via simple learning rules? How do fixed network motifs such as WTA circuits interact with
more flexible ‘learning’ networks?
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A Additional Discussion

A.1 Related Work

Spiking Neural Networks

A vast literature studies computation in stochastic spiking neural networks. Work includes
detailed models aimed at matching biological observations [12, 18], large scale simulation in
hardware and software [5, 37], attempts to understand general properties of computation in
these networks [6], the design of specific algorithms [4, 41], and theoretical investigation of
computational power [26, 15]. For instance, it has been shown that deterministic spiking
networks can simulate Turing machines and that stochastic spiking networks can implement
MCMC sampling [6]. As is popular in the biologically-inspired algorithms literature, spiking
networks have been used as heuristic ‘stochastic search’ solvers for NP-hard constraint
satisfaction problems, such as Sudoku and TSP [19].

Our model can be seen as a discrete version of the continuous model discussed in by
Maass in [30] or as a noisy version of the deterministic model in [27]. In addition to being
stochastic, in comparison to the model of [27], our response latency ∆ is constant for all
connections in the network. Additionally, we have just a single round memory – each
neuron’s membrane potential is affected just by spikes of neighboring neurons in the same
or immediately preceding round of computation. We note that if connections are allowed
between auxiliary neurons, a longer memory can be easily be implemented within our general
model.

Self-Stabilization in Distributed Computing

The notion of self-stabilization goes back to Dijkstra in 1973. A self-stabilizing system can
automatically recover following the occurrence of transient faults. The goal in this area
is to design systems that converge to a desired behavior from any arbitrary starting point
[8, 25]. Among the tremendously broad work, perhaps the most relevant to this work is
self-stabilizing algorithms for leader election [9, 11].

In a stochastic neural network, self-stabilization is a necessity. Both changes to the
given input as well as random deviations of the system from a converged state require the
network to re-converge. Hence, we insure that all our networks converge to WTA from any
initial network configuration and are self-stabilizing. This property does not hold in many
previously studied WTA implementations for spiking networks [33].
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Valiant’s Neuroidal Model

Valiant considers a model of neural computation in which abstract neurons (which he calls
neuroids) are connected via a random network of synapses [44]. He discusses how these
neurons can learn representations of real world objects whose perception stimulates the
network in certain ways. As in our model, neurons fire in response to a membrane potential
given by a weighted sum of firing neighbors. Differently, synapse weights evolve in response to
increased firing of their end points, which allows learning to occur within the network. This
learning ability is the primary focus of Valiant’s work and of follow up work on the model.
For example, recently, [35] extended understanding of how reasonably complex learning and
pattern matching tasks can be performed in this model.

Our work deviates is somewhat more ‘algorithmic’ than the work of Valiant, focusing
how basic takes can be computed using a set of neurons with a fixed set of synapses and bias
values. We do not consider how, for example, our WTA networks could form within a larger
neural circuit through learning of appropriate synapse weights. Following previous work [28]
we think of WTA networks as fundamental primitives of neural circuits on top of which high
level algorithms, such as learning algorithms, can be built.

A.2 Biological Motivation for Network Dynamics
The timing of neural spikes is determined by two biological parameters, namely, the refractory
period β and the response latency, ∆. The refectory period is the time during which stimulus
given to the neuron would not cause a second action potential. The response latency is the
delay between the time the action potential reaches the presynaptic terminal of the input
neurons and the time the postsynaptic output neuron sends out an action potential (assuming
it does). In our setting we consider the case where ∆ < β since for connected neurons in
close proximity to each other, and inhibitory neurons with primarily local connections, the
response delay is a few hundred of micro-seconds whereas the refractory time is several
milliseconds [40]. WTA networks are basic, local neural primitives that are not believed to
involve long range connections, justifying our assumption.

Every round corresponds to an interval between two pulses of the inputs (hence a round
lasts β milliseconds). At the beginning of every round, the input layer spikes (at sub-round
(t, 1) in the notation of our discrete model). The spikes generated by the inputs invoke an
alternating dynamic between the three layers in the circuit. Specifically, with a delay of
δ milliseconds after the input’s spike, the outputs spike with probability proportional to
their total synaptic strengths (in sub-round (t, 2)). As shown in equation (1), this potential
incorporates any spikes which occurred within a β millisecond preceding window – the input
spikes in sub-round (t, 1) (∆ milliseconds before), the inhibitor spikes in sub-round (t− 1, 3)
(β −∆ milliseconds before), and the neuron’s own self-excitatory output spike in sub-round
(t− 1, 2), β milliseconds before. ∆ milliseconds after the outputs spike, the inhibitors spike
in sub-round (t, 3), again incorporating spikes that occurred with a β millisecond window,
which due to their limited connectivity structure, just includes the spikes of Y in (t, 2).

B Missing Proofs and Auxiliary Claims

Throughout, we make use of the following Corollary of the Chernoff bound.

I Theorem 12 (Simple Corollary of Chernoff Bound). Suppose X1, X2, . . . , X` ∈ [0, 1] are
independent random variables. Let X =

∑`
i=1Xi and µ = E[X]. If µ ≥ 5 logn, then w.h.p.

X ∈ µ±
√

5µ logn, and if µ < 5 logn, then w.h.p. X ≤ µ+ 5 logn.
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Figure 2 Two Inhibitor WTA Network.

B.1 WTA with Two Inhibitors
Proof of Theorem 3 (Two Inhibitor Upper Bound)

Formally the parameters of the network are set as follows: assume w.l.o.g. that λ = 1/(c1 logn)
for large constant c1. For both inhibitors, set the excitatory output to inhibitor weights
to wout

s = wout
` = 1 and b(zs) = .5, b(zc) = 1.5. Thus, by equation (2) zs fires w.h.p. in

sub-round (t, 3) whenever at least one output fires in sub-round (t, 2), and zc fires w.h.p.
whenever at least two outputs fire.

Set the inhibitor to output weights to winh
s = winh

` = −1, the excitatory input to output
connection weight to winput = 3, and the excitatory output to output self-loop to wself = 2.
Finally, set the output bias to bout = 3.

The above parameters insure that only outputs corresponding to firing inputs ever fire
w.h.p. Additionally, if we have not yet reached WTA and both zs and zc fire in sub-round
(t, 3), any output that fired in sub-round (t, 2) will fire with probability 1/2 in sub-round
(t+ 1, 2). If we have reached WTA and just zs fires, any output (the winner) that fired in
round t will fire in round t+ 1 w.h.p. In either case, any output that did not fire in round t
will not fire w.h.p. in round t+ 1.

We now give a formal proof of the theorem. First note that if the input X = ~0 then in
every round, each output has potential pot(yj , t) ≤ wself −bout = −1 and so, recalling that
λ = 1/(c1 logn), fires with probability at most 1

1+ec1 logn ≤ 1/nc for some large constant
c in any round. So w.h.p. no outputs fire in each round, which is the valid output given
X = ~0 and so N trivially converges to WTA. So for the remainder of the section we focus
on the case in which X has at least one firing input. We show that N satisfies the following
conditions, which imply Theorem 3:

I Claim 13 (Stability). If N satisfies WTA in round t with ytj = 1, then N satisfies WTA in
round t+ 1 with yt+1

j = 1 w.h.p.

I Claim 14 (Convergence). Letting t = c2 logn for constant c2, for any input X with
‖X‖1 ≥ 1 and any starting configuration C0, N satisfies WTA in round Ct′ for some t′ < t,
with constant probability.

Since Claim 14 holds for any starting configuration, we can simply apply it Θ(logn) times to
show that w.h.p. within Θ(log2 n) rounds, there will be a round in which WTA is satisfied,
and hence N will converge to WTA by Claim 13. Additionally, it gives ET (N) = O(logn) as
letting c1 be the constant probability of reaching WTA in O(logn) rounds, we have:

ET (N) = O

( ∞∑
i=0

(1− c1)i · c1 logn
)

= O(logn).
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This gives us Theorem 3.

Proof of Claim 13. N satisfies WTA in round t with output yj firing, so we have

pot(zs, t) = 1 · wout
s−b(zs) = .5 and pot(zc, t) = 1 · wout

s−b(zc) = −.5.

Thus, recalling that λ = 1/(c1 logn), in round t zs fires with probability 1
1+e−.5c1 logn ≥

1 − 1/nc for large c and zc fires with probability 1
1+e.5c1 logn ≤ 1/nc for large c. So w.h.p.

just zs fires in round t. This gives that w.h.p.

pot(yj , t+ 1) = (1 ·winh
s) + (0 ·winh

`) + (1 ·wself) + winput−bout = −1 + 2 + 3− 3 = 1.

So yj fires with probability 1
1+ec1 logn ≥ 1− 1/nc in round t+ 1. In contrast, for any j′ 6= j,

yj′ does not fire in round t so we have w.h.p.

pot(yj′ , t+ 1) ≤ (1 · winh
s) + (0 · winh

`) + (0 · wself) + winput−bout = −1 + 3− 3 = −1.

Therefore y′j fires with probability ≤ 1/nc in round t+ 1 so WTA is satisfied with output yj
firing in round t+ 1 w.h.p. J

Proof of Claim 14. Recall that we only consider ‖X‖1 ≥ 1 as convergence to WTA is trivial
when X = ~0. We analyze three simple cases depending the initial configuration C0:

Case 0: No output yj with xj = 1 fires in Y0

We first consider the subcase that no output (regardless of the value of xj) fires in Y0. In this
case, pot(zs, 0) = −b(zs) = −.5 and pot(zc, 0) = −b(zc) = −1 so neither inhibitor fires w.h.p.
in round 0. So w.h.p. all outputs with firing inputs have pot(yj , 1) ≥ winput−bout = 0 and
so fire with probability ≥ 1/2 in round 1. Since, X 6= ~0, with constant probability at least
one of these outputs fires in round 1, in which case we appeal to Cases 1 and 2 below (where
we re-label C2 as the initial configuration C0.).

Next consider the case when at least one output fires in Y 0, but all firing outputs
correspond to non-firing inputs. In this case, we have pot(zs, 0) ≥ 1 · wout−b(zs) ≥ .5
and so zs fires w.h.p. in round 0. As noted, in any round, any output yj with xj = 0 has
pot(yj , t) ≤ wself −bout = −1 and so does not fire w.h.p. Additionally, since every output with
xj = 1 has y0

j = 1, these outputs have pot(yj , 1) = winh
s + winput− bout = −1 + 3− 3 = −1

and so do not fire w.h.p. in round 1. So w.h.p. in round 1 no outputs fire and we are in the
first case above.

Case 1: Exactly one output yj with xj = 1 fires in Y0

By Claim 13 and the fact that outputs with xj = 0 do fire w.h.p. in any round, N satisfies
WTA in round 1 and so immediately converges to WTA.

Case 2: More than one output yj with xj = 1 fires in Y0

Let kt be the number of active outputs in round t – that is outputs corresponding to firing
inputs that fire in round t. For any round with kt ≥ 2, we have pot(zs, t) ≥ 2 wout−b(zs) = 1.5
and pot(zc, t) ≥ 2 wout−b(zc) = 1. So both inhibitors fire in round t w.h.p. Conditioning on
this event, all active outputs have:

pot(yj , t+ 1) = (1 ·winh
s) + (1 ·winh

`) + (1 ·wself) + winput−bout = −1− 1 + 2 + 3− 3 = 0
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and so fire with probability 1/2 in round t+ 1. All inactive outputs, which did not fire in
round t, do not have an active self loop and hence have pot(yj , t) = −2 and don’t fire in
round t+ 1 w.h.p. (as discussed, all outputs with xj = 0 also do not fire w.h.p. )

Conditioning on this event, with probability 1/2, kt+1 ≤ kt/2. Further,

Pr[kt+1 = 0] = 1/2kt and Pr[kt+1 = 1] = kt · (1/2kt) ≥ Pr[kt+1 = 0].

So the probability of reaching kt+1 = 1 and hence N converging to WTA is at least as high
as the probability of overshooting WTA and having no outputs firing in round t+ 1.

Conditioning on the fact that zs and zc fire in every round in which kt ≥ 2 and that no
output which was inactive in round t fires in round t+ 1, whenever kt ≥ 2 it decreases by a
factor of 1/2 in round t+ 1 with good probability. So w.h.p. within O(log(k0)) = O(logn)
rounds there is a round t with either kt = 1 or kt = 0. kt = 1 is at least as likely as kt = 0 so
with constant probability, N converges to WTA within O(logn) rounds. J

Two Inhibitor Lower Bound

I Theorem 15. For any basic WTA network N with α = 2 inhibitors,
ET (N) = Ω(logn/ log logn) and HT (N) = Ω(log2 n/ log log2 n).

The key idea is that the use of a stability inhibitor zs and a convergence inhibitor zc in the
algorithm is not just a design choice, but is required for any near-optimal two inhibitor WTA
network.

I Claim 16. For any basic WTA network N with α = 2 inhibitors and ET (N) = O(log3 n),
one inhibitor zs fires w.h.p. in sub-round (t, 3) if at least one output fires in sub-round (t, 2).
The second inhibitor zc, does not fire w.h.p. in (t, 3) if just a single output fires in (t, 2).

Proof. Assume for contradiction that both inhibitors fire with probability ω(1/nc) in sub-
round (t, 3) after just a single output fires in sub-round (t, 2). Then, after a round t in which
zts = ztc = 1, any output yj with xj = 1 and ytj = 1 must fire w.h.p. in round t + 1. This
is because once N converges to WTA, when the single winning output fires in sub-round
(t, 2), by our assumption, with relatively high ω(1/n3) probability, both zs and zc fire in
sub-round (t, 3). Even if this event occurs, the winning output must fire w.h.p. in round
t+ 1 to maintain WTA w.h.p.

However, if we let X = ~1 and Y0 = ~1, then for some constant c1, all outputs will continue
firing for ω(nc1) rounds w.h.p. even if both zs and zc fire in every round. This contradicts
our assumed O(log3 n) runtime. Hence we have that at least one of the inhibitors, which
we label zc, fires with probability O(1/nc) in sub-round (t, 3) if just a single output fires in
sub-round (t, 2).

Similarly, assume for contradiction that zs does not fire with probability ω(1/nc) in
sub-round (t, 3) if a single output fires in sub-round (t, 2). Then, it must be that even if
neither inhibitor fires in sub-round (t, 3), any output yj that did not fire in sub-round (t, 2)
(i.e. yt = 0), must also not fire w.h.p. in sub-round (t + 1, 2). This is because, by our
assumption, after WTA is reached, with probability (1−O(nc)) · ω(1/nc) = ω(1/nc) neither
inhibitor will fire in sub-round (t, 3) when just the single winning output fires in sub-round
(t, 2). Still, all non-winning outputs must continue not firing in round t+ 1 to maintain WTA
w.h.p.

However, if we let X = ~1 and Y0 = ~0, since even when neither inhibitor fires in round
t, each output does not fire in round t + 1 w.h.p. if it did not fire in round t, it will take
ω(nc1) rounds (for some constant c1) before even a single output fires w.h.p. contradicting
our assumed O(log3 n) runtime. J
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The above claim allows us to strongly constrain the behavior of the network based on the
action of the inhibitors zs and zc. Let p0 be the probability that an output yj fires in round
t+ 1 given that yt = 0, xt = 1 and zts = ztc = 0.

I Claim 17. For any basic WTA network N with α = 2 inhibitors and ET (N) = o(log2 n),
p0 = ω(1/ log2 n).

Proof. Consider X with just two firing inputs x1 = 1 and x2 = 1. For any round t in which
yt1 = yt2 = 0, the probability that y1 or y2 fires in round t + 1 is at most p0 – since the
firing of zs or zc can only decrease the probability of the outputs firing. Assuming by way
of contradiction that a p0 ≤ c1/ log2 n for some constant c1, starting from Y0 = ~0, with
constant probability, neither output will fire for Ω(log2 n) consecutive rounds, and so N
cannot converge to WTA in expected o(log2 n) rounds. J

Let pout be the probability that output yj fires in round t+ 1 given yt = 1, xt = 1 and
zts = ztc = 1.

I Claim 18. For any basic WTA network N with α = 2 inhibitors and ET (N) = o(log2 n),
pout = ω(1/ log6 n).

Proof. Consider X with Θ(log4 n) firing inputs and initial configuration Y0 where yj = 1
for all j with xj = 1. Consider some round t in which at least two outputs (corresponding
to firing inputs) have fired in all rounds t′ ≤ t. If either (or both) of zs or zc do not fire in
round t, then since they face at most as much inhibition as when the network has converged
to WTA, all outputs with firing inputs that fired in round t fire w.h.p. in round t + 1.
However, if both zs and zc do fire in round t, if pout = O(1/ log6 n) then with probability
≤ (1 − pout)Θ(log4 n) = 1 − Θ(1/ log2 n) no output corresponding to a firing input fires in
round t+ 1. Since by Claim 16 a single inhibitor firing is enough to maintain convergence to
WTA, once these outputs do not fire in some round t, they do not fire again w.h.p. until a
round in which neither zs or zc fire. Then by Claim 17 and a Chernoff bound (Theorem 12)
ω(log2 n) of them fire w.h.p.

So overall, we alternate between having many (between ω(log2 n) and Θ(log4 n)) outputs
corresponding to firing inputs and 0 outputs with firing inputs. Each time we have many
firing outputs, with probability at least 1 − Θ(log2 n) we have no firing outputs in the
next round. So it takes at least Ω(log2 n) rounds before we have a round with exactly
one valid firing output with constant probability, contradicting our assumed runtime of
ET (N) = o(log2 n). J

With the above claims in place, we are ready to prove Theorem 15. Consider X = ~1 and
initial configuration with Y0 = ~1. Let kt = ‖Y t‖1 be the number of outputs that fire in
round t. Now, if yj fires in round t, then it fires with probability at least pout in round t+ 1,
since pout is the firing probability with maximum inhibition. Let d = c1 logn/pout for some
constant c1. By Claim 18, d = O(log7 n) and since pout ≤ 1, trivially d = Ω(logn). Starting
from Y0 with all outputs firing, for t = c2

log(d/n)
log pout for sufficiently small c2 we have that any

output fires in all rounds up to t with probability θ (ptout) = ω
(
d
n

)
. So by a Chernoff bound

(Theorem 12) w.h.p. ω(d) outputs fire in all rounds t′ ≤ t.
Let tf represent the first round in which ≤ d outputs fire. By our argument above, w.h.p.

tf = Θ(log(n/d)/ log(1/pout)) = Θ(logn/ log(1/pout)) = Ω(logn/ log logn) (3)

by Claim 18. This gives us ET (N) = Ω(logn/ log logn). So it just remains to show our lower
bound on HT (N).
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Since > d outputs fire in round tf − 1, again by a Chernoff bound, w.h.p. ktf ≥ d · pout =
Ω(logn). Consider any round t > tf in which kt′ > 1 for all t′ ≤ t. If either of zs of zc do not
fire in round t, then kt+1 = kt > 1 w.h.p. Otherwise, Pr[kt+1 = 1] = kt · pout(1− pout)kt−1

and:

Pr[kt+1 = 0] = (1− pout)kt = Pr[kt+1 = 1]] · 1− pout
ktpout

≥ Pr[kt+1 = 1]] · 1
log8 n

where we use the fact that kt ≤ d = O(log7 n) and 1− pout ≥ logn or else by (3) we would
already not reach WTA w.h.p. in O(log2 n) rounds.

So, the probability that kt+1 = 0 is high (within a polylog n) factor of the probability
that kt+1 = 1. So, with probability at least Ω(1/ log8 n), tf is followed by a reset round in 0
outputs fire before a round in which a single output fires. Further, once such a reset round
occurs, then no output will fire until zs and zc don’t fire in a round (and hence inhibition is
lower than it is after convergence to WTA) in which case by Claim 17 ω(n/ log2 n) outputs
will fire. So w.h.p. there will be Ω(logn/ log logn) rounds before another round in which
≤ 1 outputs fire.

Overall, in order to have a round in which exactly 1 output fires w.h.p. requires
Ω(logn/ log(log8 n)) = Ω(logn/ log logn) resets, each taking Ω(logn/ log logn) rounds, and
giving our final lower bound of Ω(log2 n/ log log2 n).

B.2 WTA with One Inhibitor

One Inhibitor Lower Bound

I Theorem 19. For any basic WTA network N with α = 1 inhibitors, ET (N) = Ω(nc).

We fix any constant c and assume by way of contradiction that there is a network N
which converges to WTA in O(nc) rounds in expectation. Let z denote the single inhibitor
in N. We first argue that N must be at least somewhat active – given no firing activity from
the outputs Y and the inhibitor z, each output connected to an active input should fire with
reasonably high probability.

I Claim 20 (Sufficiently Active Network). If zt = 0 then each output yj with xj = 1 and
ytj = 0 fires in round t+ 1 with probability Ω(1/nc).

Proof. Let X be an input in which exactly one input xj fires and let Y 0 = ~0. The time for
N to converge to WTA is lower bounded by the time required for yj to fire at least once.

Let p0 be the probability that yj fires in round t+ 1 if ytj = 0 and zt = 0 and let p1 be
the probability that yj fires in round t + 1 if ytj = 0 and zt = 1. p1 ≤ p0, so as long as yj
does not fire in round t, it fires with probability at most p0 in round t + 1. If p0 ≤ c1/n

c

for some constant c1 then starting from C0, with constant probability, yj will not fire for
Ω(nc) consecutive rounds. By our assumption that N converges to WTA in O(nc) rounds in
expectation, we have p0 = Ω(1/nc). J

We next show that the inhibitor z must fire in round t w.h.p. whenever at least one
output fires, in order to maintain stability once WTA has been reached.

I Claim 21 (Stability). For any configuration Ct of N, if at least one output neuron fires in
round t (i.e. ‖Yt ‖1 ≥ 1), z fires in round t w.h.p.
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Proof. Consider input X = ~1. Let t be a round in which WTA is satisfied (exactly one
output yj fires while no other outputs fire). Using the notation of Claim 20, the probability
that a non-firing output fires in round t+ 1 is:

Pr[zt = 1|Yt] · p1 + Pr[zt = 0|Yt] · p0.

By Claim 20 we have p0 ≥ c1/nc for some constant c1. Since N converges to WTA it must
be that w.h.p. in round t+ 1, yj continues firing and no other output fires. So we have, for
some large constant c2:

Pr[zt = 1|Yt] · p1 + Pr[zt = 0|Yt] · p0 ≤ 1/nc2

Pr[zt = 0|Yt] · c1/nc ≤ 1/nc2

Pr[zt = 0|Yt] = O(1/nc2−c)

which gives the claim as long as c < c2 since exactly one output fires in Y t. The probability
that z fires when > 1 output fires is at least as large due to the excitatory nature of the
outputs. J

Finally, by way of contradiction, we show that when z fires, any output must stop firing
with reasonably high probability. Otherwise, starting with multiple firing outputs, it will
take too long to converge to WTA. As we will see this convergence requirement conflicts
with the stability requirement of Claim 21 since it means that the winning output will stop
firing with reasonably high probability after convergence to WTA.

I Claim 22 (Convergence). If zt = 1 then yj with ytj = 1 and xj = 1 does not fire in round
t+ 1 with probability Ω(1/nc).

Proof. Let p denote the probability that an output which corresponds to a firing input and
which fires in round t does not fire in round t+ 1 given that zt = 1. We want to show that
p = Ω(1/nc).

Let X = ~1 and let t be any round in which at least two outputs fire. By Claim 21, zt = 1
w.h.p. and at least two outputs fire in round 1 with probability (1 − p)2 ≥ 1 − 2p. If we
start from Y 0 = ~1, then w.h.p. at least two outputs will fire in Θ

(
1
p

)
consecutive rounds.

By assumption N converges to WTA within O(nc) rounds in expectation so we must have
p = Ω(1/nc). J

Putting it all together, consider an execution that satisfies WTA in round t with exactly
one output yj firing. Then, by Claim 21, z fires in round t w.h.p. Thus, by Claim 22, yj
stops firing in round t + 1 with probability Ω(1/nc), in contradiction to the fact that the
network must eventually converge to WTA and have yj fire for nc1 consecutive rounds for
some large constant c1. We briefly note that the above lower bound can be matched with a
trivial single inhibitor algorithm.

I Observation 23. There is basic network N with α = 1 inhibitors with ET (N) = O(nc).

Proof. The single inhibitor z simply fires w.h.p. in round t whenever ≥ 1 outputs fire in
round t. The weights are set such that when zt = 1 and ytj = 1, yj fires in round t+ 1 with
probability 1/nc+1. If z does not fire, any yj with xj = 1 fires w.h.p.

It is not hard to see that starting with any input, we will reach a round satisfying WTA
within O(nc) rounds in expectation and after this round is reached, WTA will be maintained
for O(nc−1) additional rounds in expectation (and so O(nc−2) w.h.p.). J
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B.3 WTA with O(logn) Inhibitors
Proof of Theorem 4 (O(logn) Inhibitor Upper Bound). Recall that we assume w.l.o.g.
1/λ = c1 logn for some constant c1. We set winput = 3, wself = 2, and bout = 3. In this way,
exactly as in the two inhibitor network analyzed in Section B.1, any output yj with xj = 0
will have pot(yj , t) ≤ wself −bout = −1 in every round t and so will not fire w.h.p. in any
round.

Our network has α = dlogne inhibitors. The first is a stability inhibitor zs, which
behaves exactly as the stability inhibitor in the two inhibitor network analyzed in Section
B.1. wout

s = 1, b(zs) = 0.5 and winh
s = −1. zs fires w.h.p. in sub-round (t, 3) if ≥ 1 output

fires in sub-round (t, 2) and does not fire w.h.p. if no output fires. We also have α − 1
convergence inhibitors z1, ..., zα−1. For each zi, b(zi) = 2i − .5 and wout

i = 1. Therefore, zi
fires w.h.p. in round t whenever ≥ 2i outputs fire in the round. It does not fire w.h.p. if
< 2i outputs fire. We set the inhibitor weight from z1 to each output to be winh

1 = −1. For
each i ∈ 2, ..., α− 1 we set winh

i = −λ · log2(e).
We can see that the stability Claim 13 holds just as it does in the two inhibitor network

analyzed in Section B.1. Specifically, if just a single output yj with xj = 1 fires in some
round t, w.h.p. zs will fire while the convergence inhibitors will all not fire. So we will have:

pot(yj , t+ 1) = winh
s + winput +1 · wself −bout = −1 + 3 + 2− 3 = 1

so yj fires w.h.p. in round t+1. At the same time for j′ 6= j, since yj′ does not fire in round t:

pot(yj′ , t+ 1) = winh
s + winput +0 · wself −bout = −1 + 3 + 0− 3 = −1

so yj′ will not fire in round t+ 1. So, once a single yj with xj = 1 fires in some round t, N
will converge to WTA w.h.p. We now show that N reaches such a round in O(1) expected
time.

Consider any round t > 0 in which kt ≥ 2 outputs fire. We can assume that all these
outputs corresponding to firing inputs since as discussed, outputs corresponding to non-firing
inputs do not fire w.h.p. in any round. For some i we have kt ∈ [2i, 2i+1) and so w.h.p. in
round t, zs, z1, ..., zi fire while all other inhibitors do not fire (note that α− 1 = dlogne − 1
and so even if n outputs fire, all inhibitors fire). We thus have, w.h.p. for any active output
yj with ytj = 1 and xj = 1:

pot(yj , t+ 1) = wself + winput− bout + winh
s + winh

1 +
i∑

j=2
winh

j

= 2 + 3− 3− 1− 1− (i− 1)λ = (i− 1)λ · log2(e).

So yj fires in round t+ 1 with probability:

p(yj , t+ 1) = 1
1 + e(i−1)λ log2(e)/λ = 1

1 + 2i−1

Since kt ∈ [2i, 2i+1), we have 1 ≤ kt
1+2i−1 ≤ 4 and so can bound the probability that exactly

one output that was active in round t fires in round t+ 1 as:

kt ·
1

1 + 2i−1 ·
(

1− 1
1 + 2i−1

)kt−1
≥
(

1− 1
1 + 2i−1

)kt−1

≥
(

1− 1
1 + 2i−1

)4(1+2i−1)

≥ 1
44 .
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So, with constant probability exactly one output that fired in round t also fires in round t+1.
Any output that did not fire in round t has potential ≤ winput−bout + winh

s + winh
` = −2

and so does not fire with high probability. So, with constant probability, exactly one output
yj with xj = 1 fires, and so N converges to WTA.

We conclude by noting that, by the arguments of Claim 14 for our two inhibitor network,
with constant probability, starting with any Y0 we in fact have a round with kt ≥ 1 firing
outputs all with active inputs within constant rounds. So from any starting configuration,
we converge to WTA with constant probability in O(1) rounds. Repeating this constant
probability argument gives both ET (N) = O(1) and HT (N) = O(logn). J

Ω(logn) High Probability Runtime Lower Bound

I Theorem 24. Any basic WTA network N, with any number of inhibitors, has HT (N) =
Ω(logn).

Proof. We show that any network N requires Ω(logn) rounds before a round t in which
WTA is satisfied w.h.p. This immediately gives our lower bound on convergence time.

Consider input X = ~1 (so any output is a valid winner) and any round t such that WTA
has not been satisfied for any t′ < t. That is, in no round t′ does exactly one output yj fire.
Let Wt be the event that in round t exactly one output fires and hence WTA is satisfied. We
claim that Pr[Wt = 1 | Ct−1] ≤ c for any configuration Ct−1 of N in round t− 1 and some
universal constant c. That is, no matter the network configuration in round t − 1, WTA
will only be achieved with constant probability in the next round. Hence, as long as the
initial output configuration Y 0 is one in which WTA is not satisfied, for t = O(logn), with
probability at least (1− c)t = Ω(1/nc′), for some constant c′, WTA will not be satisfied in
any even round up to t. This gives that HT (N) = Ω(logn). There are two cases:

Network Reset

Y t−1 = ~0. In this case, no output fired in round t− 1. Since all outputs are identical w.r.t
their edge weights and bias values, conditioned on the behavior Zt−1 of the inhibitors in
round t− 1, all outputs will fire independently with some fixed probability p in round t. For
any p and any n ≥ 2, the probability that exactly 1 will fire in round t is:

Pr[Wt = 1 | Ct−1] = n · p(1− p)n−1 ≤ 1
2 .

No Reset

‖Y t−1‖1 ≥ 2 – i.e. there are at least 2 firing outputs in round t− 1. Let O1 be the set of
firing outputs in round t− 1 and O0 be the set of non-firing outputs. Conditioned on Zt−1,
any output in O1 fires independently with some probability p1 in round t and any output in
O0 fires with some probability p0. Further, p0 ≤ p1 since the only difference in membrane
potential between the neurons in O0 and O1 will be whether their excitatory self loop is
active.

For a ∈ {0, 1} let Va be the event that exactly 1 output from Oa fires in round t. Clearly,
Wt ⊆ V1 ∪ V0. For any p1, Pr[V1 | Ct−1] = |O1| · p1(1− p1)|O1|−1 ≤ 1/2 since we have not
reached WTA and so |O1| ≥ 2. If |O0| = 0, then vacuously, Pr[V0 | Ct−1] = 0 and hence
Pr[Wt | Ct−1] ≤ 1/2. Alternatively, If |O0| ≥ 2 then we also have Pr[V0 | Ct−1] ≤ 1/2 and,
since all outputs fire independently conditioned on Ct−1,

Pr[Wt | Ct−1] ≤ 1− Pr[¬(V1 ∪ V0)] ≤ 1− (1− 1/2)2 = 3/4.
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Finally, if |O0| = 1 either p0 ≤ 1/2, in which case Pr[V0 | Ct−1] ≤ 1/2 and we again have
Pr[Wt | Ct−1] ≤ 3/4 or p0 ≥ 1/2 in which case p1 ≥ p0 ≥ 1/2, and the probability that at
least two outputs from O1 fire is at least 1/4 and hence WTA is achieved with probability at
most 3/4. J

B.4 WTA with α ≥ 2 Inhibitors
Proof of Theorem 5. We first describe the network construction in detail. As in our previous
networks, we have a stability inhibitor zs that fires w.h.p. whenever ≥ 1 outputs fire in
round t. This inhibitor ensures that in round t+ 1 w.h.p. only outputs that fired in round t
(and hence have an active self loop) will fire in round t+ 1.

We set the excitatory input to output connection weight to winput = 3, the excitatory
output self-loop to wself = 2, and the output bias to bout = 3. For the stability inhibitor we
set the excitatory output to inhibitor weight wout

s 1, b(zs) = .5, and winh
s = −1 just as we

did in the two inhibitor algorithm.
We have θ groups each containing d(logn)1/θe convergence inhibitors, Z1, Z2, ..., Zθ where

we denote Zi = {zi,1, zi,2, ..., zi,d(logn)1/θe}. We set wout
i = 1 for all i ∈ Z1, Z2, ..., Zθ and

b(zi,j) = 2jdi − .5. In this way, when kt ∈
[
2jdi , 2(j+1)di

)
w.h.p. zs, Z1, ..., Zi−1, zi,1, ..., zi,j

all fire while the remaining inhibitors do not. We set winh
i,j such that

poti,j = winput + wself + winh
s−bout +

∑
{(k,l)|k<i or l≤j}

winh
k,l

satisfies:

pi,j = 1
1 + e−poti,j/λ

= c1
2jdi

for some small constant c1. For simplicity of presentation, we do not explicitly calculate
out these weights. However, it is clear that choosing correct weights pi,j decreases as most
inhibitors fire and the sigmoid function is continuous and decreases monotonically as poti
decreases. We are now ready to analyze the network behavior in detail.

No Firing Inputs

As in the two inhibitor network, any yj with xj = 0, has maximum potential is wself −bout =
−1 (even when no inhibitors fire) so and will not fire w.h.p. outside of the initial configuration
Y 0. (p(yj , t) ≤ 1

1+e1/λ ≤ 1/nc for any t since λ = 1/c1 logn). If X = ~0, this implies that a
valid WTA state in which no outputs fire will be converged to w.h.p. trivially. We now focus
on the case when ‖X ‖1 ≥ 1.

Maintaining WTA (Stability)

If just a single output yj corresponding to an active input (xj = 1) fires in round t then
w.h.p. by Claim 13 in Appendix B.1, N converges to WTA. This is because w.h.p. just zs
will fire in round t and yj has potential

pot(yj , t+ 1) = (1 ·winh
s) + (0 ·winh

`) + (1 ·wself) + winput−bout = −1 + 2 + 3− 3 = 1.

So yj fires with probability 1
1+ec1 logn ≥ 1− 1/nc in round t+ 1. In contrast, for any j′ 6= j,

yj′ does not fire in round t so has

pot(yj′ , t+ 1) ≤ (1 · winh
s) + (0 · winh

`) + (0 · wself) + winput−bout = −1 + 3− 3 = −1.
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Therefore y′j fires with probability ≤ 1/nc in round t+ 1 so WTA is satisfied with output yj
firing in round t+ 1 w.h.p.

Converging to WTA

It now just remains to show that with constant probability, within O(θ) rounds, there is at
least one round in which exactly one output yj with xtj = 1 fires. By the stability argument
above once such a round occurs, N will converge to WTA w.h.p.

By the arguments of the convergence Claim 14 for the two inhibitor network, with constant
probability, starting with any Y0 we in fact have a round with kt ≥ 1 firing outputs all with
active inputs within constant rounds. If kt = 1 then N converges to WTA and we are done.
So it suffices to consider the case when kt ≥ 2.

If kt ∈
[
2jdi , 2(j+1)di

)
then w.h.p. zs, Z1, ..., Zi−1, zi,1, ..., zi,j fire while the other inhibitors

do not and so in round t+ 1 any active output that fired in round t fires with probability
pi,j . So we have E[kt+1] ∈ [1, c12di), and, so with at least constant probability by a Markov
bound kt+1 < 2di if we set c1 to a small constant.

Additionally, in any round with kt ≥ 2 conditioning on the high probability event that
the correct inhibitors fire,

Pr[kt+1 = 1] = kt · pi,j(1− pi,j)kt−1

and:

Pr[kt+1 = 0] = (1− pi,j)kt = Pr[kt+1 = 1] · (1− pi,j)
ktpi,j

≤ Pr[kt+1 = 1] · 1
2jdi · c1/2jdi

≤ 1
c1

Pr[kt+1 = 1].

So, the probability of having exactly one output fire and hence converging to WTA is
within a constant factor of the probability or having 0 outputs fire and ‘reseting’ the network.
So overall with constant probability, we reach such a round with kt = 1 within just O(θ)
rounds. Iterating this argument gives the expected and high probability runtime bounds of
Theorem 5. J

Proof of Theorem 6. Again we have a stability inhibitor zs that fires w.h.p. in sub-round
(t, 3) whenever ≥ 1 outputs fire in sub-round (t, 2). We also have a ‘base level’ convergence
inhibitor that fires w.h.p. whenever ≥ 2 outputs fire. When just zs and z` fire in round t,
any output (with an active input) that fired in round t fires with probability 1/2 in round
t+ 1.

We then employ α− 2 additional convergence inhibitors z1, ...zα−2. For i ∈ 1, ..., α− 2 let

di = (logn)i/(α−1)
.

Letting kt be the number of outputs that fire in round t, zi fires w.h.p. in round t whenever
kt ≥ 2di . The synapse weights from the inhibitors to the outputs are chosen such that, when
kt ∈

[
2di , 2di+1

)
, and hence z1, ..., zi each active output (i.e. each yj with ytj = 1 and xj = 1)

fires with probability:

pi = c logn
di

= c logn
(logn)i/(α−1)
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in round t+ 1. This probability is enough to ensure that within few rounds, we will have
< 2di active outputs. Specifically, since kt ∈

[
2di , 2di+1

)
, for

r = log kt
log 1/pi

≤ (logn)(i+1)/(α−1)

(logn)i/(α−1) − log(c logn)
= O

(
(logn)1/(α−1)

)
with high probability, there will be a round r′ = O(r) with kt+r′ ≤ 2di . At the same time, pi
is large enough that w.h.p. we will not overshoot WTA and have 0 firing outputs in round
t+ r′. Even if kt = 2di then we have kt · pi = c logn and so, for large enough c, with high
probability, by a Chernoff bound (Theorem 12) at least O(logn) outputs fire in round t+ 1.

Overall, within O
(
(α− 2)(logn)1/(α−1)) rounds, the number of active outputs falls within

[2, 2d1 ] w.h.p. Once kt is in this range, just zs and z1 fire w.h.p. so our network is essentially
identical to the two inhibitor network described in the previous section and analyzed in
detail in Appendix B.1. We thus reach WTA with constant probability in Θ(log 2d1) =
Θ
(
(logn)1/(α−1)) additional rounds, giving our final runtime bound of O

(
α(logn)1/(α−1)).

We now formalize the above arguments. Following our earlier constructions, we set the
excitatory input to output connection weight to winput = 3, the excitatory output self-loop
to wself = 2, and the output bias to bout = 3. Set the excitatory output to inhibitor weights
wout

s = wout
` = 1, b(zs) = .5, b(z`) = 1.5, and winh

` = winh
s = −1 just as we did in the two

inhibitor algorithm.
For the additional convergence inhibitors, set wout

i = 1 for all i ∈ 1, ..., α − 2 and
b(zi) = 2di − .5. In this way, when kt < 2d1 , w.h.p. just zs and z1 fire, and each active
output in round t has potential

pot(yj , t+ 1) = winput + wself + winh
s + winh

`−bout = 3 + 2− 1− 1− 3 = 0

and so fires with probability p1 = 1/2 in round t+ 1. We set winh
i such that

poti = winput + wself + winh
s + winh

`−bout +
i∑

j=1
winh

j

satisfies:

pi = 1
1 + e−poti/λ

= c logn
2di .

As in the proof of Theorem 5, we do not explicitly calculate out these weights. Roughly,
winh

i ≈ Θ(λ log logn
α−1 ) such that when i inhibitors fire pi ≈ 1

e
−Θ( iλ log logn

α−1 )
≈ c logn

2di . It is clear
that choosing correct weights is possible as 1/2 > p1 > ... > pα−1 and the sigmoid function
is continuous and decreases monotonically as poti decreases.

By identical arguments to those in the proof of Theorem 5, we converge to WTA in
constant rounds w.h.p. if there are no firing inputs or if a single output with a firing input
fires in a round. Hence it just remains to show that with constant probability, within
O(α(logn)1/(α−1)) rounds, there is at least one round in which exactly one output yj with
xtj = 1 fires.

Again, by the arguments of the convergence Claim 14 for the two inhibitor network, with
constant probability, starting with any Y0 we in fact have a round with kt ≥ 1 firing outputs
all with active inputs within constant rounds. If kt = 1 then N converges to WTA and we are
done. So it suffices to consider the case when kt ≥ 2. In this case, as discussed if kt ∈

[
2, 2d1

)
then w.h.p. just zs and z` fire, and so each active output has potential

pot(yj , t+ 1) = (1 ·winh
s) + (1 ·winh

`) + (1 ·wself) + winput−bout = −1− 1 + 2 + 3− 3 = 0
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and fires with probability 1/2 in round t + 1. All inactive outputs, which did not fire in
round t, do not have an active self loop and hence have pot(yj , t) = −2 and don’t fire in
round t+ 1 w.h.p. (as discussed, all outputs with xj = 0 also do not fire w.h.p. )

Conditioning on this event, with probability 1/2, kt+1 ≤ kt/2 and by the arguments
in Claim 14, we converge to WTA with constant probability within O(kt) = O(d1) =
O
(
(logn)1/(α−1)) rounds.
If kt ∈

[
2di , 2di+1

)
for some i ∈ 1, ..., α − 2 then as discussed, w.h.p. zs, z`, z1, ..., zi all

fire in round t while all other inhibitors do not fire. We thus have

E[kt+1] ≥ 2di · pi = 2(logn)i/(α−1) · c logn
2(logn)i/(α−1) = c logn

By a Chernoff bound (Theorem 12), w.h.p. kt+1 falls within a constant multiplicative
factor of its expection. Thus, w.h.p. we still have kt+1 ≥ 2. At the same time, w.h.p.
kt+1 ≤ c1kt · pi for some constant c1. So overall, within r = log kt

log 1/pi = O
(
(logn)1/(α−1))

rounds, w.h.p. kt+r < 2di . Within α− 2 epochs of O
(
(logn)1/(α−1)) rounds we thus have

kt ∈
[
2, 2d1

)
w.h.p. and then reach WTA withing O

(
(logn)1/(α−1)) additional rounds with

constant probability.
Iterating this constant proability argument gives the expected and high probability

runtime bounds of Theorem 6. J

B.5 Missing Proofs for Main Lower Bound (Theorem 7)

B.5.1 Inhibitors are Nearly Deterministic for Most Density Classes

Proof of Lemma 8. By the definition of the set S, for z ∈ S it holds that z fires in sub-round
(t, 3) with probability 1/(1 + e−pot1(z)) ≥ 1/ log3c n and hence wout

z −b(z) ≥ −3c log logn.
By our no-background noise assumption that neurons do not fire w.h.p. with no external
input, we can assume b(z) ≥ 3 logn and hence have pot2(z) = 2 wout

z −b(z) ≥ 2 logn. Thus,
z fires with probability at least 1− 1/n2 in sub-round (t, 3). Overall, all the |S| ≤ O(logn)
inhibitors fire in sub-round (t, 3), with probability at least 1− 1/n as required. J

Proof of Lemma 9. In any round t, even if all n outputs fire in sub-round (t, 2), the firing
probability of each inhibitor in R in sub-round (t, 3) is at most 1/ logc n (or else the inhibitor
would fall in C). Union bounding over the first O(log logn) rounds of execution and the at
most O(logn) inhibitors in R, we get that with probability at least 1− 1/ logc−3 n, none of
these inhibitors fires in these rounds. J

Proof of Lemma 10. Let k(z) be the smallest integer in [1, n] such that z fires in sub-round
(t, 3) with probability at least 1/ logc n when k(z) outputs fire in sub-round (t, 2). By the
definition of C, when n outputs fire, z fires in the next sub-round with probability at least
1/ logc n, and hence k(z) is well defined. In addition, since z /∈ S, k(z) ≥ 2.

Part (1) of the claim follows immediately by the definition of k(z). To prove part (b), the
key idea is to exploit the following gap in the behavior of z ∈ C: since z is not in S, the firing
probability of z in steady state (with exactly one firing output) is at most 1/ log3c n. On the
other hand, when there are at least k(z) ≥ 2 active outputs, the firing probability of z is at
least 1/ logc n. This implies that the sigmoid function which converts the number of firing
inputs to z’s firing probability must be steep enough such that z fires with good probability
when ≥ 2k(z) outputs fire. By the fact that z /∈ S, pot1(z) = wout

z −b(z) ≤ −3c · log logn
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and so wout
z ≤ b(z)−3c log logn . On the other hand, by the definition of k(z), wout

z cannot
be too small since potk(z)(z) = k(z) · wout−b(z) ≥ −c · log logn so

k(z) · wout
z ≥ b(z)− c log logn. (4)

Combining this we get: k(z)b(z)−3k(z)·c log logn ≥ b(z)−c log logn and so b(z) ≥ 3c log logn.
Using that and Eq. (4), we get: pot2k(z)(z) = 2k(z) ·wout−b(z) ≥ 2b(z)−2c log logn−b(z) =
b(z)− 2c log logn ≥ c log logn. Hence, 1/(1 + e−pot2k(z)(z)) ≥ 1− 1/(logc n) as required. J

B.5.2 Detailed Description of the Prediction Process
In this section we describe the prediction process in more detail.

Inductive Assumptions

For each round t, in showing that we are able to predict the behavior of N for a large number
of inputs in round t, we make several inductive assumptions:

For two ranges of positive numbers R1 = [r1, r2] and R2 = [r3, r4] such that r1 ≤ r2 ≤
r3 ≤ r4, and a positive number a, the ranges are called a-separated if r3/r2 ≥ a. The value
of the range R1 = [r1, r2] is taken to be r1. We assume that for X ∈ Xt−1 ⊂ X the ranges
Rt−1(X) are all a separated for some constant a and have minimum value Θ(log7 n). We also
assume that our earlier predictions are accurate: for each X ∈ Xt−1, R̂t−1(X) ∈ Rt−1(X)
and F̂t−1(X) = Ft−1(X) with probability at least 1−Θ(1/ logn). We first show that these
assumptions hold for round one:

Predicting the number of firing outputs in sub-round (1, 2)

Since we consider the initial reset configuration Y 0 = ~0 we have R̂0(Xi) = 0 for all Xi. Trivially
we can set X0 = X – we deterministically know the behavior of all outputs in round 0. By our
no-background noise assumption, for every z ∈ Z, b(z) = c logn, and so w.h.p. F̂0(Xi) = 0
for all Xi (no inhibitor fires in the initialization round). Let X large1 = {Xi | 2i ≥ log9 n}
(note that |Xlarge

1 | = Θ(logn)). Let p0 be the probability that an output fires in sub-round
(t+ 1, 2) given that no inhibitor and no output fires in round t (i.e, no output has an active
self-loop). Since there are 2i active input neurons in Xi, conditioned on the high probability
event that R̂0(Xi) = 0 and F̂0(Xi) = ~0, the expected number of firing outputs in sub-round
(1, 2) is p0 ·Xi. It is not hard to show that p0 = Ω(1/ log2 n) and by combining this fact with
a Chernoff bound we have:

I Claim 25. For every Xi ∈ X large1 , w.h.p. the number of firing outputs in sub-round (1, 2),
R̂1(Xi) is in the range R1(Xi) = [(1 − 1/ log3 n) · p02i, (1 + 1/ log3 n) · p02i]. Hence, the
predicted output ranges for the inputs in X large1 are 2(1− 1/ logn) separated. Additionally
each has minimum value Ω(log7 n).

Proof. Let X1 be a vector with exactly one firing input and let yi be its corresponding
output. Starting from Y 0 = ~0, w.h.p., no inhibitor fires in round 0. If p0 < 1/ log2 n then
since p0 rate is the maximum firing probability for yj in sub-round (t + 1, 2) given that
it didn’t fire in sub-round (t, 2), the network requires Ω(log2 n) rounds until yj fires with
constant probability and so at least that long to converge to WTA. So we can work in the
case where p0 ≥ 1/ log2 n.

For Xi ∈ X large we thus have the expected number of firing outputs in sub-round (1, 1) is
p0 · 2i ≥ 1/ log2 n · log9 n = log7 n. Since the random firings of the outputs are independent
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given the firing behavior of the inhibitors and since no inhibitors fire in sub-round (0, 3)
w.h.p. by a Chernoff bound (Theorem 12), we have that w.h.p. the number of firing outputs
R̂1(Xi) is in the range (1± 1/ log3 n) · p0 · 2i for all Xi ∈ X large. J

The above shows that the predicted ranges for all X ∈ X large1 are well separated, accurate,
and have high value. We can now set X1 to include any X ∈ X large1 except possibly |C| ≤ α
inputs where R1(X) overlaps a critical region K(z) for some z ∈ C. Since the remaining
ranges do not overlap any critical regions, by Lemmas 8, 9, and 10 we are able to predict
F̂1(X) with good probability, and so have all our inductive assumptions in round 1.

Predicting the number of firing outputs for t ≥ 2

We first define a subset of inputs X larget ⊆ Xt−1 for which we can predict the behavior of the
outputs in N in sub-round (t, 2). Let X samet ⊆ Xt−1 be the largest subset of inputs whose
predicted firing vector Ft−1(X) for the inhibitors in sub-round (t − 1, 3) is the same, and
denote this common firing vector by F ∗t−1. Let X larget be the set of inputs in X samet after
omitting Θ(log logn) inputs with the smallest range value in sub-round (t− 1, 2).

Eventually we will show that X larget is a reasonably large set of inputs compared to Xt−1,
and hence we can continue predicting behavior for at least some inputs for a large number of
rounds. But first we show how to predict Rt(X) for every input X ∈ X larget .

Let p be the probability that an active output (one with y(t−1,2)
j = 1) fires in sub-round

(t, 2) given that the inhibitors fired in sub-round (t− 1, 3) according to F ∗t−1. Since all inputs
in X samet have the same predicted firing vector F ∗t−1, in each of them, an active output fires
in sub-round (t, 2) with probability p. In addition, by induction for every X ∈ X samet ⊆ Xt−1,
Rt−1(X) has a minimum of Θ(log7 n) predicted firing outputs. So inhibition in sub-round
(t− 1, 3) w.h.p. must be at least as high as it is once we have converged to WTA and just a
single output is firing. Thus, any output that did not fire in sub-round (t− 1, 2) must not
fire w.h.p. in sub-round (t, 2), since non-firing outputs continue not to fire once WTA is
converged to.

So just focusing on active outputs that fire in sub-round (t, 2), for every Xi ∈ X samet , let
Rt−1(Xi) = [`i,mi] be the predicated range of firing outputs in sub-round (t− 1, 2). Then
the expected number of firing outputs in sub-round (t, 2) is in the range [p · `i , p ·mi]. For
every Xi ∈ X samet , let Rt(Xi) = [(1− 1/ log3 n) · p`i , (1 + 1/ log3 n) · pmi].

We now observe that if the expected number of firing outputs is too small for even one of
the inputs in X samet , then it implies a lower bound of Ω(logn) for ET (N). Essentially this is
because if this is the case, with good probability, 0 outputs will fire in round t, and a reset
configuration identical to Y 0 will occur. This will keep occurring, causing the network to
have large runtime.

I Observation 26. For every t ≥ 1, if there exists X ∈ X samet , such that the smallest value
of Rt(Xi) is less then 1/ log4 n, then ET (N) = Ω(logn).

Proof. Let X ∈ X samet be such that Rt(X) is less then 1/ log4 n. Then, given that the
inhibitors fire according to the prediction F ∗t−1 in sub-round (t− 1, 3), by Markov inequality,
the probability that the number of firing outputs in sub-round (t, 2) is at least 1 is less then
1/ log4 n. In other words, the conditional probability (where we condition on the prediction
for round t − 1) that a reset where 0 outputs fire happens in sub-round (t, 2) is at least
1 − 1/ log4 n. However, by our inductive assumption F̂ (X) = F ∗t−1 must be correct with
probability at least 1− 1/ logn. Hence, with probability at least 1−Θ(logn) Y t = ~0 and a
reset round occurs. With constant probability this occurs Ω(logn) times before WTA is ever
reached. The observation follows. J
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Hence, from now on, we assume the complementary case that the number of predicted
firing outputs in sub-round (t, 2) is at least 1/ log4 n for every X ∈ X samet . This allows us to
show:

I Claim 27. For every X ∈ X larget

(1) Given that the inhibitors fire according to F ∗t−1 in sub-round (t−1, 3), then with probability
1− 1/n, the number of firing outputs in sub-round (t, 2) is in the range Rt(X).

(2) The set of ranges Rt(X) for X ∈ X larget are all a-separated for some constant a.
(3) Rt(X) has value at least Ω(log7 n) for every X ∈ X larget .

Proof. Since for any X ∈ X samet the predicted number of firing outputs is Ω(1/ log4 n), and
since the ranges are constant separated by our inductive assumption that the ranges Rt−1(X)
for X ∈ Xt−1 are separated, by omitting Θ(log logn) inputs from X samet , the minimum
number of firing outputs in the predicted ranges for the remaining set of inputs, namely,
X larget is Ω(log7 n). Hence the true number of firing outputs is well concentrated around this
expectation and so we have (1) by a Chernoff bound (Theorem 12).

Further, since we increase the width of the predicted range Rt(X) by factor of at most
(1 + 1/ log3 n) compared to the range Rt−1(X), over all O(log logn) rounds of prediction, the
range is increased by at most a factor of (1 + 1/ log3 n)O(log logn) ≤ 1 +O(1/ log2 n). Since
the ranges have separation 2 in the initialization round, they remain constant separated in
round t, giving (2). J

Predicting F̂t(X) given the predicted range Rt(X)

We first define the final subset Xt ⊆ X larget of inputs for which round t is fully predicted
(i.e., both the number of firing outputs in sub-round (t, 2) and the states of the inhibitors in
sub-round (t, 3)). The set Xt contains any X ∈ X larget unless Rt(X) intersects the critical
range K(z) for some convergence inhibitor z ∈ C. By Lemma 10, the firing state of each
inhibitor z ∈ C can be predicted with good probability as long as the number of firing outputs
in previous sub-round is not in the critical range K(z) = [k(z)/2, 2k(z)]. In particular, if the
range Rt(X) falls below k(z)/2, then we predict that z does not fire in sub-round (t, 3). On
the other hand, if the range Rt(X) falls above 2k(z), then we predict that z fires in sub-round
(t, 3). Regardless of the exact number of firing outputs in sub-round (t, 2), since Rt(X) does
not intersect the critical ranges of the inhibitors of C, we can predict with good probability
the firing states of C in sub-round (t, 3) by Lemma 10. By Lemma 8, with probability at
least 1 − 1/n, all the stability inhibitors S fire in sub-round (t, 3) and by Lemma 9, with
good probability, no inhibitor in R fires. So overall we can predict all inhibitor behavior with
good probability. With the above in place we are finally have that our inductive assumptions
hold in round t. We summarize:

I Lemma 28. For every t ≥ 1 it holds that:
(Q1) For every X ∈ Xt, the predicted range of firing outputs Rt(X) satisfies:

Pr[R̂t(X) ∈ Rt(X) | F̂t−1(X) = Ft−1(X)] ≥ 1− 1/n . (5)

(Q2) The collection of predicted ranges Rt(X) for X ∈ Xt are all a-separated for some
constant a and all have value at least Ω(log7 n).

(Q3) For every X ∈ Xt, the predicted firing pattern for the inhibitors satisfies

Pr[F̂t(X) = Ft(X) | R̂t(X) ∈ Rt(X)] ≥ 1− 1/ log3 n . (6)
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The final step before giving our expected time lower bound is to show that Xt is reasonably
large, so we are able to keep predicting the behavior of N for a number of outputs round
after round. This follows from a few simple observations:

I Observation 29. |X samet | ≥ |Xt−1|/α.

Recall that X samet consists of the largest subset of Xt−1 with the same predicted inhibitor
behavior F ∗t−1 in round t− 1. Naively, there are 2α possible predictions for F ∗t−1 which gives
that |X samet | ≥ |Xt−1|/2α. In order to obtain the much stronger bound above, we again use
Lemma 10 which shows that, as long as R̂t−1(X) does not intersect the critical region of any
z ∈ C, the inhibitors behave with good probability as linear threshold circuits and so there
are only α possible predictions Ft−1(X).

Proof. Since by Lemma 10 each inhibitor z ∈ C behaves with probability 1 − logc n as a
threshold network in sub-round (t, 3) (so long that the number of firing outputs in sub-round
(t, 2) is not in the critical range K(z)), the total number of different inhibitor firing state
configurations (different Ft−1(X) vectors predicted in the previous step) is bounded by |C|.
To see this, since conditioning on the prediction Rt(X) being correct, there is at least one
firing output in sub-round (t− 1, 2), the inhibitors of S will fire w.h.p. Further the inhibitors
R never fire with good probability, so the only varying part in Fj−1(X) is the prediction for
C and as discussed there are only |C| ≤ α such possible predictions. J

I Observation 30. |X larget | ≥ |X samet | −O(log logn) .

This is immediate as X larget was derived by removing Θ(log logn) of the inputs with the
smallest predicted range values from X samet .

I Observation 31. |Xt| ≥ |X larget | −O(α) .

This follows as Xt is derived by removing all inputs from X larget where Rt(X) overlaps the
critical region of some z ∈ C. By (Q2) the Rt(X) are all constant separated so there can be
at most |C| = O(α) which overlap critical regions. We are now ready to show:

I Lemma 32. ET (N) = Ω(log logn/ logα).

Proof. We can continue predicting the behavior of N up to round t until we have |Xt| =
Θ(log logn) (at which point X larget may be empty and so we will have to stop simulation).
Further, as long as we can predict for t rounds, by Lemma 28 we will know with good
probability that at least Ω(log7 n) outputs are still firing for all X ∈ Xt. So with good
probability WTA is not reached for those inputs, giving a lower bound of Ω(t) rounds in
expectation to solve WTA.

Set t = c1 log logn/ logα for small enough constant c1 and recall that we can assume
α = O(logc2 n) for small constant c2 since otherwise our runtime bound is Ω(1) and so holds
vacuously. By Observations 29, 30, and 31 after t rounds we have:

|Xt| ≥
|X0|
αt
− t · α− t ·O(log logn)

≥ logn
logc1 n − log logn · logc2 n− (log logn)2 = Ω(log1−c1 n)

and hence can predict for at least t rounds. This completes the proof. J
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Monotonicity property of basic WTA networks.

We show that the WTA dynamic is monotone so long as there is at least one firing output.
Intuitively, we show that all basic WTA networks pick a single winner by monotonically
decreasing the number of firing outputs until just a single output is firing. The number of
firing outputs only ever increases if the network ‘overshoots’ the WTA state and has a round
in which no outputs fire.

I Lemma 33. For any basic WTA network N, as long as the number of firing outputs is
more than one, their number is monotone non-increasing. In particular, if at least one output
fires in round t, w.h.p. , an output that did not fire in that round, will not fire again in round
t+ 1.

Proof. Given input X with at least one firing input neuron, the network N must eventually
converge so that in every round exactly 1 output fires w.h.p. Consider a round t in this
steady state period. Since all outputs have the same parameters (e.g., edge weights and bias
values) and since the weight of the self-loop is positive, if output yi fires in round t, it is at
least as likely to fire in round t+ 1 as output yj for any j 6= i. Additionally, conditioned on
the configuration of the inhibitors in time t, the probability that each output fires in round
t+ 1 is independent. Hence, it must be that w.h.p., if yi fired in round t, it continues to fire
in round t+ 1 and each yj , which did not fire in round t does not fire in round t+ 1 with
high probability.

Further, consider any round t with at least one firing output. Since all connections from
the output layer are excitatory, the probability that any inhibitor in Z fires at the end of
round t is at least as large as it is in the steady state of the network, and hence any output
that does not fire in round t does not fire in round t+ 1 w.h.p. J

B.6 Complete Proof for High Probability Lower Bound (Lemma 11)
Let QY ⊆ {0, 1}n, QZ ⊆ {0, 1}α be the vectors describing the firing states of the outputs and
inhibitors in a given round. Let Q = QY ◦QZ ⊆ {0, 1}n+α be a vector describing the firing
states of the inhibitors and outputs. Let P1,j(Q) be the probability to achieve the WTA
state in round j given Q, that is the probability that exactly one output fires in sub-round
(j, 2) given that the firing states of the outputs (resp., inhibitors) in sub-round (j − 1, 2)
(resp., (j − 1, 3)) is QY (resp., QZ). Similarly, let P0,j(Q) be the probability that no output
fires in sub-round (j, 2) given Q, that is the probability that a reset event happens. Finally,
let P01,j(Q) be the probability that a reset event or a WTA event happens in round j given
that configuration in round j − 1 is Q, hence P01,j(Q) = P1,j(Q) + P0,j(Q). We begin by
claiming the following.

I Claim 34. For every round j and for every vector Q ∈ {0, 1}n+α in which there are at
least two firing outputs (i.e., Q is neither a WTA state nor a reset state), and such that
P01,j(Q) ≥ Θ(1/ log logn), it holds that P0,j(Q) ≥ Θ(1/(log logn)3).

Proof. Since P01,j(Q) = P0,j(Q) + P1,j(Q), if P0,j(Q) ≥ P01,j(Q)/2, then we are done.
Hence, we can assume from now on that P1,j(Q) = Θ(1/ log logn). We will show that
P0,j(Q) ≥ P1,j(Q)/(log logn)2, which will establish our claim.

Let p be the firing probability of an active output9 in sub-round (j, 2) given Q and let
k ≥ 2 be the number of outputs that fire in round j − 1 as specified by Q. Since Q has at

9 Recall that an output is active in round j if it fires in sub-round (j − 1, 2).
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least two firing outputs, w.h.p., only active outputs (those that fire in the previous round)
can fire in the next round. The probability that the WTA state is achieved in round j

is P1,j(Q) = k · p · (1 − p)k−1 and the probability that a reset is achieved in round j is
P0,j(Q) = (1− p)k.

We consider two cases depending whether the firing probability p is large or small. First,
assume that p ≥ 0.1 and set r = c/ log logn. Since P1,j(Q) ≥ r, we have that 1− p ≥ r/k.
We also have:

k(9/10)k−1 ≥ k · p · (1− p)k−1 ≥ r,

and hence k ≤ Θ(log logn). Overall, P0,j(Q)/P1,j(Q) = (1− p)/(kp) ≥ (1− p)/k ≥ r/k2 ≥
c/(log logn)2. Next, consider the complementary case where p < 0.1. Letting y = kp/2,

y · e−y ≥ (kp/2)(1− p)k/2 ≥ (k/2)p(1− p)k−1 ≥ r/2,

hence y ≤ 2 log 1/r = Θ(log log logn). Overall,

P0,j(Q)/P1,j(Q) = (1− p)/kp ≥ Θ(1/ log log logn). J

The Execution Tree

A key tool used in this section is the notion execution tree that captures all possible transcripts
that can evolve in a window of DH rounds when starting with the initial configuration
C0. The execution tree T is a tree of depth DH where each layer j corresponds to round
j when running the network on the initial configuration C0. Each node in T is labeled
by an (n + α)-length binary vector describing the firing configurations (or states) of the
outputs and the inhibitors in a given round, and the edges are labelled by the transition
probabilities. Hence, this tree describes all the possible firing states in a span of DH rounds
when starting from the initial configuration C0 (for which the time it takes to achieve WTA
with constant probability is at least DC). The root r is labeled by the zero vector (since in
round 0, no output fires and hence w.h.p also no inhibitor fires). For every j ≥ 2, every node
u in layer j is labeled by a vector Q(u) = QY (u) +QZ(u) ∈ {0, 1}n+α describing the firing
status of the outputs and the inhibitors in round j. Hence, each node has 2n+α children
in the configuration tree. Every edge e = (π(u), u) connecting u to its parent π(u) in T is
labeled by a probability p(e) that the firing configuration in round j is Q(u) given that the
configuration in round j − 1 is Q(π(u)).

Let Td(u) be the subtree of depth d rooted at u. When d is omitted T (u) is simply the
entire subtree of u in T .

For a leaf node ` ∈ T , let P(`) = [r = u0, u1, . . . , uDH ] be the path connecting ` to the
root r in T . Let pleaf (u) be the probability that starting from r the firing configuration in
each round j ∈ {0, . . . , DH} is Q(uj). Since there is an independence between the coin flips
in every round j given the configuration in round j − 1, we get that

pleaf (u) =
DH∏
j=0

Pr[QY (uj) in round (j, 2) | QY (uj−1), QZ(uj−1) in rounds (j − 1, 2), (j − 1, 3)]

· Pr[QZ(uj) in sub-round (j, 3) | QY (uj) in sub-round (j, 2)]

=
DH∏
j=1

p(ej) where ej = (uj , uj+1).
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For a node u ∈ T , let Leaf(u) be the set of leaves in T (u) and define

pnode(u) =
∑

`∈Leaf(u)

pleaf (u) ,

and for a subset of nodes U , let pnode(U) =
∑
u∈U pnode(u). It is convenient to view pnode(u)

as the weight of tree T (u). Hence, the weight of T is 1. In the same spirit, for a given subset
of nodes Ui whose subtrees in T are vertex disjoint, we view

∑
u∈Ui pnode(u) as the weight of

the forest
⋃
u∈Ui T (u). We would like to show that:∑

u∈Leaf(r)

{pleaf (u) | u is a WTA node } < 1− 1/nc , (7)

In the next paragraphs, we will find a collection of non-WTA leaf nodes of large weight, i.e. of
weight at least 1/n2 which will establish Eq. (7) for c > 2. To do that, we iteratively traverse
the tree T from root to leaves, omitting undesired subtrees (and hence also leaf nodes)
through the journey. This traversal is done in an asynchronous manner in the following sense:
there are times that for a given node u in layer j, we move to a subset of its children in layer
j + 1, we call this move a small jump in the tree. In contrast, there are cases in which from
a given node u in layer t, we jump DC layers in the subtree T (u) and proceed the traversal
from a subset of leaf nodes in the tree TDC(u) of depth DC, we call such a move a large
jump. In the analysis part we will claim that by eliminating nodes in the tree T , we do not
loose much weight, to deal with the fact that there are two types of jumps: small and large,
we will employ an amortization claim that will enable us to bound the loss of weight layer by
layer. See Fig. 3, for an illustration of the Execution Tree.

In each iteration j ∈ {1, . . . , DH}, we maintain a collection of non-WTA nodes Uj whose
subtrees in T are vertex disjoint. The final set UDH will be a set of non-WTA leaf nodes
for which we will show that their weight is at least 1/n2. Starting with U0 = {r}, in every
iteration j ∈ {1, . . . , DH}, we have a set of nodes Uj that satisfy the following:
(A1) The subtrees T (u), u ∈ Uj , are vertex-disjoint.
(A2) The distance of each node u ∈ Uj from r is at least j.
(A3) No node in Uj is a WTA node.
In the high level, the nodes Uj+1 are the leaf nodes of subtrees rooted at the nodes u ∈ Uj .
Particularly, from each node u ∈ Uj , when constructing Uj+1, we omit part of the subtree
T (u) ⊆ T and replace u by a subset of nodes V (u) in the subtree of u in T . The nodes V (u)
are subset of the leaf nodes of the subtree Td(u)(u) of depth d(u) rooted at u. The value of
the depth d(u) is set to be either 1 or DC 10 depending on the configuration stored at node
u. That is, either the nodes V (u) are a subset of the children of u or that they are subset of
the leaf nodes of the DC-depth tree rooted at u.

In the first case where d(u) = 1, we will show that we loose only Θ(1/ log logn) of the
weight of the tree T (u), hence we keep 1 − Θ(1/ log logn) fraction of the weight. In the
second case, we will show that we keep Θ(1/ log logn) fraction of the weight of T (u). The
key observation here is to note that this cannot happen more than DH/DC times in a given
branch, since the depth of the sub-tree of u is DC. In other words, on average, we maintain
Θ(1/ log logn)1/DC of the weight per layer of the subtree TDC(u), and hence overall, after
DH iterations, we maintain 1/n2 fraction of the total weight.

We first eliminate from the tree T all nodes u such that QY (u) = ~0 but QZ(u) 6= ~0. Since
the bias value of the inhibitors in Ω(logn), we know that if no output fires in round j, then

10To be more precise it is either 1 or min{DC,DH − dist(r, u, T )}.
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w.h.p. no inhibitor fires in that round. Let T ′ be the resulting tree. We first observe that by
that step, we eliminate only 1/nc of the total weight of the tree T .

I Observation 35. The total weight of r in T ′ is at least 1− 1/nc.

From now on, we consider the tree T ′ and describe the iterative construction of the set Uj
in details. Let U0 = {r}. For j ≥ 1 given Uj , the set Uj+1 is obtained by defining for each
node u ∈ Uj , a subset of non-WTA nodes V (u) as described next.
Case 1: u is a reset node. Set the depth of the subtree to be d(u) = min{DH −
dist(u, r, T ), DC} and let V (u) be the non-WTA nodes in the leaf nodes of Td(u)(u).

Since u is not a WTA node, it remains to consider the case where the number of active
outputs in Q(u) is at least 2. Recall that P01,j(Q(u)) be the probability of achieving WTA
or reset in round t+ 1 given the configuration in round t is Q(u). We distinguish between
two cases depending on the value of P01,j(Q(u)).
Case 2.1: P01,j(Q(u)) ≥ Θ(1/ log logn). Let V ′(u) be the children of u in T that are
reset-nodes. For each reset-node w ∈ V ′(u), let V (w) be the non-WTA nodes in the leaf
nodes of Td(u)−1(w) and let V (u) =

⋃
V (w).

Case 2.2: P01,j(Q(u)) < Θ(1/ log logn). Let V (u) be the children of u that have at least 2
active outputs in Q(v) (hence d(u) = 1). This completes the definition of Uj+1.

To bound the weight of UDH , we make use of the following claims that show that we do
not loose too much weight in this traversal. Consider a node u and let NWDC(u) be the set
of non-WTA leaves of the tree TDC(u).

I Claim 36. If u is a reset node, then pnode(NWDC(u)) ≥ c′ · pnode(u), for some constant
c′.

Proof. Let j be the layer of node u. Then by the selection of the initial configuration C0,
we know that the time it takes to achieve WTA with constant probability c when starting
from C0 is strictly larger than DC. Since a reset node is labelled with this same initial
configuration, we get that pnode(NWDC(u)) ≥ c′ · pnode(u) for c′ = 1− c. J

I Claim 37. Let u be a node in layer j that satisfies Case (1) or Case (2.1), then
pnode(V (u)) ≥ Θ((1/ log logn)3) · pnode(u).

Proof. If u satisfies Case (1), the claim follows immediately by Cl. 36. We now consider the
case where u satisfies Case (2.1). Recall that in this case the number of active outputs in
Q(u) is at least 2. Let A0, A1 be the set of children of u that are reset nodes, WTA nodes
respectively. Let A0,1 = A0 ∪A1.

Then, since u satisfies Case (2.1), pnode(A0,1) ≥ Θ(1/ log logn) · pnode(u). In addition,
since in Q(u) there are at least two firing outputs, we can safely apply Cl. 34, to have that
pnode(A0) ≥ Θ(1/(log logn)2) · pnode(A1). Combining these two inequalities, we get that

pnode(A0) ≥ Θ(1/(log logn)3) · pnode(u).

Next, by using Cl. 36, for every node v ∈ A0 (which is a reset node), we have that
pnode(NWDC−1(v)) ≥ c′ · pnode(v). All together, we get that

pnode(NWDC(u)) ≥
∑
v∈A0

pnode(NWDC−1(v))

≥ c′ · pnode(A0) ≥ Θ(1/(log logn)3) · pnode(u) .

Since V (u) = A0, the claim follows. J
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Figure 3 The Execution Tree. Shown is a schematic illustration of the Execution Tree for a small
network with two inhibitors and three outputs. Every node u in layer j is labeled by a vector of
length 5 describing an optional firing state for the inhibitors and outputs in round j. Each node has
25 children – covering all possible firing behaviors in round j + 1. The weight nodes are non WTA
nodes and the black nodes are the WTA nodes. When arriving a reset node u, a large jump is made
by considering the leaf nodes of T (u). When arriving a non-WR node, a small jump is made by
considering subset of its children.

I Claim 38. Let u be a node that satisfies Case (2.2), then
∑
w∈V (u) pnode(w) ≥ 1 −

Θ(1/ log logn) · pnode(u).

Proof. By the definition of u, P01,j(Q(u)) < Θ(1/ log logn). Hence, letting V (u) be the
children of u that have at least 2 active outputs in Q(v) (hence d(u) = 1), we have that∑
w∈V (u) ≥ 1−Θ(1/ log logn) · pnode(u). J

Starting from a tree of weight 1, we would like to show that at the end of the process
after at most DH iterations, the total weight of the leaf nodes UDH is at least 1/n2. We
now use Cl. 37 and 38 to prove the lower bound. By Cl. 37, when we consider u ∈ Uj
that satisfies either case (1) or case (2.1), we keep Θ(1/(log logn)3) fraction of the weight
but enjoy a large jump of DC layers in the sub-tree T (u). Hence, on average, we keep
Θ(1/(log logn)3)1/DC fraction of the weight of T (u) per layer. By Cl. 38, in type (2), we
keep at least 1−Θ(1/ log logn) fraction of the weight of T (u) when moving from a node u
in layer i to a subset of its children V (u) in layer i+ 1. Hence, on average in every iteration,
we keep at least

max{(c/(log logn)3)1/DC , 1− c/ log logn}

fraction of the weight of the current forest. Hence, after DH = DC ·Θ(logn/ log log logn)
iterations, our total weight of the leaf set UDH is at least

(max{(c/(log logn)3)1/DC , 1− c/ log logn})DH ≥ 1/n2.

C Extension to Excitatory Auxiliary Neurons

In this section, we consider the more general case where the auxiliary neurons can be either
excitatory or inhibitory. Let α denote their number. We assume that outputs with no active
input are not allowed to fire. Hence, in a given sub-round (t, 2), we consider two types of
outputs that might fire: active outputs – those that fire in the previous round and hence
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have a positive feedback via the self-loop; and inactive outputs – those that did not fire
in the previous round. Whereas in the inhibitory case, we could show that the dynamic is
monotonic – hence incative outputs do not fire with high probability, here it is not the case.
Specifically, it might be the case that the level of inhibition during the process to achieve the
WTA state is lower than that in steady-state and hence inactive outputs (outputs that did
not fire in the previous rounds) join the game in later rounds. In our lower bound proofs,
we heavily used the monotonicity property as it allowed us focus only on the active outputs
(those that fired in the previous rounds) and totally neglect the inactive ones. In this section,
we revise the claims that are based on the monotonicity lemma and adapt the proof to the
general case of excitatory and inhibitory neurons.

C.1 Extensions for the Lower Bound for Expected Time

We classify the auxiliary neurons as before into three classes S,C and R. Note that all the
proofs that concern the predictability of the inhibitors, i.e., Lemmas 8,9,10 depend only on
the potential functions of the inhibitors and not on their effect on the outputs. Since the
excitatory auxiliary neurons have exactly the same potential functions, the proofs follow
immediately.

The main adaptation is in the second part where we use the predictability of the auxiliary
neurons to predict the network for at least one input configuration. We proceed by bounding
the gap in potentials between active outputs and inactive outputs by showing that the weight
of the self-loop is large.

I Observation 39. wself ≥ 2c · logn.

Proof. In the steady state situation, there exists one leader u that fires in each round w.h.p.
1 − 1/nc for polynomially many rounds. On the other hand, all other outputs v that do
not have the positive feedback from the self-loop fire with probability 1/nc. Hence for such
a round t in steady state, we have: pott(u) ≥ c logn and pott(v) ≤ −c logn. We get that
wself = pott(u)− pot(v) ≥ 2c logn. The observation follows. J

An immediate corollary of that is the following:

I Corollary 40. Consider a sub-round (t, 2) and let Ft−1 be the firing configuration of the
auxiliary neurons in sub-round (t − 1, 3). If the firing probability of an inactive output v
(output that did not fire in the previous sub-round (t− 1, 2)) in sub-round (t, 2) is at least
1/nc, then the firing probability of an active output u in sub-round (t, 2) is ≥ 1− 1/nc.

Proof. Since all outputs have the same connections to the auxiliary neurons, only difference in
the potential of an inactive output and an active output is the weight of the self-loop. Hence,
pott(u) = pott(v) + wself ≥ −c logn+ 2c logn ≥ c logn, where the first inequality follows by
plugging Obs. 39 and using the fact that the firing probability of v is 1/(1+e−pott(v)) ≥ 1/nc.
Thus, u fires with probability 1/(1 + e−c logn) = 1− 1/nc. J

We now consider the second part of the lower bound where we predict Ω(log logn/ logα)
rounds of the network for at least one density input class. Since in the zero round no-output
fires and w.h.p. also no auxiliary neuron is firing (since their bias value is ω(logn)), predicting
the number of firing outputs in round 1 is exactly the same as in the only-inhibitor case.
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Predicting the number of firing outputs in round t ≥ 2

We first define a subset of inputs X larget ⊆ Xt−1 for which we can predict the behavior of
the outputs in the network N in round t. Let X samet ⊆ Xt−1 be the largest subset of inputs
whose predicted firing vector Ft−1(X) for the auxiliary neurons in round t− 1 is the same,
and denote this common firing vector by F ∗t−1. Let X larget be the set of inputs in X samet

after omitting Θ(log logn) inputs with the smallest range value in round t− 1. Eventually
we will show that X larget is a reasonably large set of inputs compared to Xt−1, and hence we
can continue predicting behavior for at least some inputs for a large number of rounds. But
first we show how to predict Rt(X) for every input X ∈ X larget .

Let p′ be the firing probability that an inactive output (one with yt−1
j = 0) fires in

sub-round (t, 2) given that the inhibitors fired in sub-round (t − 1, 3) according to F ∗t−1.
Since all inputs in X samet have the same predicted firing vector F ∗t−1, in each of them, an
inactive output fires in sub-round (t, 2) with probability p′. Let p be the corresponding firing
probability of an active output. We now consider two cases depending on the value of p′. If
p′ < 1/nc, we predict that no inactive output fires in that round. Note that this prediction
holds with probability ≥ 1− 1/nc−1. In such a case we only predict the range for the active
outputs in the exact same manner as before. Note that when we predicted the range of firing
active outputs in the previous section, we did not use the fact that the auxiliary neurons are
inhibitory, only that all competing outputs whose cardinality is to be estimated fire with the
same probability in that round.

Next, we consider the more interesting case where p′ ≥ 1/nc, that is the inactive outputs
have a fair chance of firing in sub-round (t, 2). Here, we make use of Lemma 40 that says
that with probability at least 1− 1/nc−1, all active outputs (i.e., that fired in round t− 1)
fire in sub-round (t, 2) as well. Let k = 2i be the number of active inputs in the vector X.
Let Et−1 = E(R̂t−1(X) | Ft−2(X)) be the expected number of firing outputs in sub-round
(t − 1, 2) given the predicted firing vector Ft−2(X). Then, the expected number of firing
outputs in sub-round (t, 2) is

E(R̂t(X) | Ft−1(X)) = Et−1 + p′ · (k − Et−1) = (1− p′) · Et−1 + p′ · k.

I Claim 41. Let X1,X2 ∈ Xt be such that ||X1 ||1 ≥ 2||X2 ||1. Then

E(R̂t(X1) | Ft−1(X1)) ≥ 2E(R̂t(X2) | Ft−1(X2)).

Proof. We will prove by induction on the number of rounds t. Let kj = ||Xj ||1 and
Ej,t = E(R̂t(Xj) | Ft−1(Xj)) for j ∈ {1, 2}.

Since X1,X2 ∈ Xt, it holds that X1,X2 ∈ X` for every ` ∈ {1, . . . , t} hence F`(X1) =
F`(X2) for every ` ∈ {1, . . . , t}. For the base of the induction of round t = 1, this clearly
holds since E0,t = p0 · kj , j ∈ {1, 2}, where p0 is the firing probability of an output where in
the previous round no one fired. Assume the claim holds up to round t− 1. We have that
Ej,t = Ej,t−1 + p′ · (kj − Ej,t−1) = (1 − p′)Ej,t−1 + p′kj , for j ∈ {1, 2}. By the induction
assumption for t − 1, we get E1,t−1 ≥ 2 · E2,t−1 and by definition k1 ≥ 2 · k2, overall
E1,t ≥ 2E2,t as required. J

We get that the expected number of firing outputs (conditioned on the predictions) are
2-separated. Now, we can claim exactly as before that all these expected values should be
Ω(1/ log4 n) as otherwise there is at least one input configuration for which there is a reset
(i.e., in the next round no output fires) for Ω(logn) times (see Obs. 26).

Since all expected predictions for the number of firing outputs are Ω(1/ log4 n), by
removing the Θ(log logn) inputs from X same (i.e., as given by set X large), we get that all



N. Lynch, C. Musco, and M. Parter 15:43

expected numbers of firing outputs are Ω(log7 n) and hence the random variables R̂t(X) are
well concentrated around their expectation. The remaining proof goes exactly the same as in
the inhibitory-case.

C.2 Extensions for the Lower Bound for High Probability Time
We define the weak WTA state to be state in which exactly one active output is firing (but
possibly many inactive firing outputs). Whenever we use the notion of WTA nodes in the
proof of Lemma 11, we now use the notion of weak WTA nodes instead. The definition of a
reset node remains as is, i.e., a node u such that in its configuration Q(u) no output (of any
type) fires.

Note that the lower bound proof for the expected time implies that there is an input X0
such that with a good probability after t = Ω(log logn/ logα) rounds there are still Ω(logn)
competing outputs. After t+ 1 rounds, either we can assume w.h.p. that no inactive output
fires or that all the Ω(logn) active outputs fire. Hence, the lower bound implies that after t+1
rounds, with good probability, the number of firing active outputs is Ω(logn), implying that
the network is in a weak WTA state. Let P1,j(Q) be the probability that exactly one active
output fires in sub-round (j, 2) given that the auxiliary neurons fire in round j − 1 according
to Q. Similarly, let P0,j(Q) be the probability that no active output fires in sub-round (j, 2)
given Q. Finally, let P01,j(Q) be the probability that at most one active output fires in round
(j, 2) given that configuration in round j− 1 is Q, hence, P01,j(Q) = P1,j(Q) +P0,j(Q). Since
we consider only the active outputs, Cl. 34 follows as is. We now claim the following.

I Corollary 42. For every round j and for every vector Q ∈ {0, 1}n+α in which there are at
least two active firing outputs and such that P01,j(Q) ≥ Θ(1/ log logn), it holds that there is
a (total) reset in round j (i.e., no output fires) with probability at least Θ(1/(log logn)3).

Proof. Since in Q there are at least two firing active outputs, by Cl. 34, P0,j(Q) ≥
Θ(1/(log logn)3). Hence the probability that no active output fires is at least Θ(1/(log logn)3).
We now claim that the probability that also no inactive output fires is at least 1− 1/nc−1.
Hence, by the independence between the output decisions (given the firing states of the
inhibitors), we get that the probability that no output fires is at least Θ(1/(log logn)3) as
required.

Assume towards contradiction that inactive output fires with probability ≥ 1/nc. By Cor.
40, we get that an active output fires with probability at least 1− 1/nc. Since in the previous
round there are at least two firing active outputs, we get that with probability ≥ 1− 1/nc
there are at least two firing outputs in sub-round (j, 2), contradiction to the assumption that
P01,j(Q) ≥ Θ(1/ log logn).

Thus we get that each inactive output fires with probability < 1/nc, and with probability
≥ 1− 1/nc no inactive output fires. The claim follows. J

Equipped with Cor. 42 and the lower bound for expected time, we can now use the execution
tree to show that the weight of non weak-WTA nodes is at least 1/n2. The same idea
generally holds up to few adaptations. Recall that in our execution tree traversal, at step j
we obtain a collection of non weak WTA nodes. That is nodes u with configuration Q(u)
which either there are at least two active outputs that are firing. For j ≥ 1 given Uj , the set
Uj+1 is obtained by defining for each node u ∈ Uj , a subset of non weak WTA nodes V (u)
as described next.
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Case 1: u is a reset node. Set the subtree depth d(u) = min{DH − dist(u, r, T ), DC}
and let V (u) be the non weak WTA nodes in the leaf nodes of Td(u)(u). By the lower bound
proof, the set V (u) captures 1− 1/ logn of the probability mass in T (u).

Since u is a non weak WTA node, it remains to consider the case where the number of
active firing outputs in Q(u) is at least 2. Recall that P0,1(Q(u)) is the probability that in sub-
round (j, 2) at most one active output fires given that the configuration in round j−1 is Q(u).

Case 2.1: P0,1(Q(u)) ≥ Θ(1/ log logn). Let V ′(u) be the children of u in T that are
reset-nodes. For each reset-node w ∈ V ′(u), let V (w) be the non-WTA nodes in the leaf
nodes of Td(u)−1(w) and let V (u) =

⋃
V (w).

By Cl. 42, since the number of firing active outputs in Q(u) is at least 2 and since
P0,1(Q(u)) ≥ Θ(1/ log logn), the probability for a (total) reset in the next round is at least
Θ(1/(log logn)3) and hence V ′(u) captures Θ(1/(log logn)3) of the probability mass in T (u).
This will allow us to follow the same argument as before when following the case 2.1.

Case 2.2: P0,1(Q(u)) < Θ(1/ log logn). Let V (u) be the children of u that have at
least 2 active outputs in Q(v) (hence d(u) = 1). Since P0,1(u) ≤ Θ(1/ log logn), we capture
1−Θ(1/ log logn) of the weight of the tree T (u). This completes the definition of Uj+1. The
argument that uses this case follows now the exact same line. In sum, either we capture only
Θ(1/ log logn) of the probability mass in such a case we have a large jump in the tree or
that we capture 1−Θ(1/ log logn) of the probability mass. As before using the amortization
argument, overall the number of non weak WTA nodes can be bounded by ≥ 1/n2. The
completes the extension to excitatory auxiliary neurons.
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