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Abstract
The project “Semantic Technologies for Situation Awareness” was concerned with detecting certain critical situations from 
data obtained by observing a complex hard- and software system, in order to trigger actions that allow this system to save 
energy. The general idea was to formalize situations as ontology-mediated queries, but in order to express the relevant situ-
ations, both the employed ontology language and the query language had to be extended. In this paper we sketch the general 
approach and then concentrate on reporting the formal results obtained for reasoning in these extensions, but do not describe 
the application that triggered these extensions in detail.
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1 Introduction

The project “Semantic Technologies for Situation Aware-
ness” was funded by the German Research Foundation as 
part of the Collaborative Research Centre “Highly adaptive 
energy-efficient computing” (HAEC) at TU Dresden [39, 
40], which was a joint effort of the faculties of Electrical and 

Computer Engineering, Computer Science, and the Depart-
ment of Mathematics, encompassing more than 20 projects. 
This project was led by Franz Baader in the first phase of the 
CRC (2011–2015) and in the second (2015–2019) by him 
together with Anni-Yasmin Turhan.

The task of our project was to develop formally well-
founded methods for achieving context-awareness under 
incomplete information, which are able to recognize com-
plex situations by means of logical reasoning. The appli-
cation motivation in this project was to equip a complex 
hard- and software system with context awareness in order 
to achieve adaptivity that enables increasing the energy 
efficiency of the overall system. For example, such a sys-
tem should be able to adapt its configuration to optimize its 
energy consumption based on knowledge about user prefer-
ences and intentions, quality of service requirements, plat-
forms, location, time, CPU and network load, etc.

The main challenges addressed in this project were thus 
how to represent context information relevant for enhanc-
ing energy efficiency in a formally well-founded way, how 
to integrate context information obtained from different 
sources into a coherent semantic view, and how to reason 
about this view in order to decide on an appropriate action, 
like moving running processes from an underutilized com-
pute node to another one with remaining capacity, to allow 
shutting down the former one. To address these challenges, 
we employed ontologies expressed in appropriate decidable, 
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logic-based languages. Since such logic-based formalisms 
are usually interpreted using an open-world semantics, they 
are well-suited in a setting where the information on the 
observed system may not be complete.

In order to apply such an ontology-based approach to con-
text recognition [3, 38], one needs to transform the raw data 
(e.g., numeric sensor information) into a corresponding sym-
bolic context representation expressed in terms of an appro-
priate application ontology. We adopted ontology-based 
data access (OBDA) [62] as general framework for realizing 
context recognition since it allows for such a transforma-
tion. In OBDA, a database is used together with an ontology, 
which contains definitions and additional constraints for the 
concepts relevant in the application domain. First, the raw 
data, such as subsymbolic sensor information, information 
on the hardware provided by the operating system, or infor-
mation from other sources, are preprocessed, aggregated and 
cleaned (by the database system) and then used to populate 
the fact base, which contains information expressed in terms 
of the ontology. Technically this pre-processing is realized 
by database queries. This framework enables us to derive 
complex context information from basic information pro-
vided by sensors and to reason about this information by 
abstracting from the actual relations in the database. The 
logical reasoning is performed over this abstract informa-
tion using the concept definitions and constraints from the 
ontology together with the fact base. More precisely, in this 
ODBA framework situations are represented by conjunctive 
queries (CQs), which are a well-known class of database 
queries. However, the data are not assumed to be complete 
(no closed-world assumption) and the queries may contain 
(unary and binary) predicates that are defined in an ontology. 
By using these predicates, the data can be enriched.

The complex contexts recognized this way can then be 
used to lower the energy consumption of the system by 
appropriately adapting it to the context. The descriptions 
of the situations1 to be recognized are given as queries for-
mulated over the vocabulary of the ontology. These queries 
are answered over the fact base, using the definitions and 
constraints contained in the ontology. The existing reasoning 
methods for OBDA are mostly rewriting-based approaches 
that transform the initial query such that it incorporates the 
relevant information from the ontology. After rewriting, the 
fact base is viewed as a data base, and the rewritten query 
can be answered over this database using standard database 
techniques.

Our main extensions to this OBDA-based framework in 
phase I of the CRC HAEC were to add temporal operators to 
CQs and to allow the use of fuzzy concepts. Fuzzy concepts 
are needed to model notions without crisp boundaries (such 

as “high processor load”) in an appropriate way. Regarding 
the temporal extension, information relevant for recogniz-
ing critical situations is then stored in time-stamped fact 
bases. Raw data provided by sensors at a certain point in 
time are aggregated and abstracted into symbolic informa-
tion, and stored in the fact base with an appropriate time 
stamp. When answering temporal queries, not only the time-
stamped facts, but also the background knowledge in the 
ontology is taken into account. This ontology is global (i.e., 
supposed to hold at every point in time) and expressed in an 
appropriate Description Logic (DL) using so-called general 
concept inclusions (GCIs) [11]. The complexity of answer-
ing temporal CQs depends on the expressiveness of the DL 
and on which temporal logic provides us with the temporal 
operators in the CQs.

In phase I of the CRC we had assumed that informa-
tion from sensors and other sources is always correct. We 
dropped this assumption in phase II and thus had to cope 
with the problem that information stored in the fact base 
may be incorrect. One possible way of dealing with this 
problem is to assume that facts are true only with a certain 
probability. For this reason, we have investigated in phase II 
how to combine ontological with probabilistic reasoning. 
Alternatively, one can allow for possibly faulty information 
in the fact base, and deal with the inconsistencies that this 
may cause by employing inconsistency-tolerant reasoning 
and nonmonotonic reasoning.

In the following, we survey the results of phase  I in 
Sect. 2 and the ones obtained during phase II in Sect. 3. We 
concentrate on describing our own work within the project. 
For work by others we refer the reader to the descriptions of 
related work in the cited papers.

2  Extending DL Reasoning for Basic Context 
Recognition

Our original ideas for how to transform subsymbolic infor-
mation, such as numerical sensor values, into a logical rep-
resentation were based on the approach described in [3], 
where so-called pre-processors were used to clean and 
aggregate the raw data and populate the fact base. In paral-
lel to our own work in this direction, several other groups 
considered such a scenario, with the additional restriction 
that the pre-processors were assumed to be database queries, 
which transform the raw data into a representation using 
the concepts of an ontology [26, 62]. Since quite a num-
ber of research groups started to investigate this approach, 
called ontology-based data access [62], we decided to adopt 
OBDA as the general framework for our situation awareness 
approach. Since the systems we wanted to monitor showed 
a dynamic behavior, it was, however, clear from the outset 
that OBDA had to be extended to the temporal case. Later 1 We use the notions “context” and “situation” interchangeably.
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on, also other research groups adopted temporalized OBDA 
as a framework for achieving context-awareness [44, 58]. 
In a keynote address [2] at the Vienna Summer of Logic in 
2014 (which was one of the biggest scientific events dedi-
cated to logic to date), F. Baader presented the more general 
framework of ontology-based monitoring of dynamic sys-
tems (OBMDS), which encompasses the framework devel-
oped by our project for HAEC, but also has other interesting 
instances, e.g., ones where the behavior of the system is not 
only observable at each point in time, but its dynamic behav-
ior (i.e., how a state is transformed into its successor state) 
is formally specified using an appropriate action description 
language [14]. Our work on DL-based action description 
languages was partially funded by DFG within the Research 
Unit “Hybrid Reasoning for Intelligent Systems” [48].

2.1  Temporalizing OBDA‑Based Context 
Recognition

Our initial studies [30, 42, 43] on situation recognition in the 
HAEC scenario using standard ontology languages (i.e., the 
profiles of the web ontology language OWL 2) have under-
lined that temporal information is fundamental for situation 
recognition and that the representation of fuzzy informa-
tion is important as well. Situation descriptions often need 
to refer to different time points. For instance, in order to 
express that an application has just terminated, we could 
say that it was running at the previous time point, but is 
no longer running now. Thus, instead of having a single 
fact base that describes the actual state, a snapshot of the 
relevant system properties is taken several times a minute, 
and preprocessed into a time-stamped fact base as described 
above. Overall, this yields a sequence of fact bases. Contexts 
can then be described using a temporalized query language, 
which not only considers the actual fact base, but also refers 
to previous ones.

Since the use of LTL operators within a DL ontology 
easily renders reasoning undecidable [41, 53], we limited 
the use of temporal operators to the queries. More precisely, 
in our temporalized version of OBDA one has a global2 
ontology written in a certain DL, a sequence of fact bases 
formulated using the vocabulary of the ontology, and a tem-
poral query, which is an LTL formula in which conjunctive 
queries can occur in place of the propositional variables of 
propositional LTL. Based on this overall setting, we have 
investigated several combinations of DLs and LTL. Basi-
cally, one can vary the used DL and decide whether rigid 
symbols (which do not change their interpretation over time) 
are allowed or not. As expressive DL, we first considered 
the DL ALC  and investigated the effect that rigid symbols 

have on the computational complexity of answering tempo-
ral queries [4]. As usual in research on OBDA, we distin-
guish data complexity (measured only in the size of the fact 
bases) from combined complexity (measured in the overall 
size of fact bases, ontology, and query). Without any rigid 
symbols, query answering for temporal queries has the same 
complexity as in the atemporal case for combined complex-
ity. Regarding data complexity, the same holds without rigid 
symbols and if only concepts can be rigid. If all symbols 
(i.e., also binary roles) may be rigid, the complexity of the 
query answering method for the temporal case introduced in 
[4] is higher than in the atemporal case, but in [63] we could 
show that this increase can be avoided. The results obtained 
in [4] for ALC  were extended in [5, 6] to the considerably 
more expressive DL SHQ.

As light-weight DL we considered a member of the DL-
Lite family of inexpressive DLs, called DL-Litecore , together 
with a negation-free variant of the LTL-based temporal 
conjunctive queries described above. Many members of the 
DL-Lite family (including DL-Litecore ) are first-order (FOL) 
rewritable, which ensures that (atemporal) query answer-
ing can be realized via a rewriting of the query into SQL 
and answering this SQL query over the fact base (without 
ontology). In [18], we were able to prove that this rewrit-
ing approach also works in the temporal case. This paper 
also addresses the problem that in temporalized OBDA one 
needs to keep all the fact bases obtained during the run of 
the system, which results in a huge number of fact bases if 
the system runs for a long time. For the case where all the 
temporal queries to be asked are known beforehand, we have 
devised a method that allows to compile the necessary infor-
mation about a sequence of fact bases into a single fact base, 
whose size does not depend on the length of the sequence, 
but only on the ontology and the predefined queries. In [19] 
we extended the work on temporal query rewriting in [18] 
to other DLs by introducing generic approaches for how to 
transfer rewritability from the atemporal to the temporal 
case.

For the case of LTL-based temporal conjunctive queries 
with negation, the complexity of query answering w.r.t. 
ontologies formulated in EL  or different members of the 
DL-Lite family was investigated in [22, 23].

2.2  Admitting Vagueness for Ontology‑Based 
Context Recognition

The necessity for vague information in representations of 
contexts is motivated by our use of symbolic information 
obtained from numerical sensor values. In fact, concepts like 
“high CPU load” are not well represented by a crisp repre-
sentation language where e.g. 90% load is high, but 89.9% 
load is no longer high. In a fuzzy representation, both values 

2 in the sense hat it is required to hold at all points in time.
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would belong to the concept “high CPU load” with slightly 
different membership degrees.

For the fuzzy representations of contexts, we intended 
to start from existing results on the decidability and com-
plexity of reasoning in fuzzy Description Logics. However, 
on closer inspection it turned out that the approach used 
for showing these results (tableau-based algorithm with a 
naive blocking mechanism to ensure termination) actually 
does not work in cases where the fuzzy ontology contains 
so-called general concept inclusion axioms (GCIs), which 
are available in all of the OWL 2 profiles that we used for 
modeling contexts. Thus, instead of being able to employ 
existing reasoners and results for fuzzy DLs, and just extend 
them by temporal logics and to query answering, we had 
to re-investigate the decidability status of fuzzy DLs with 
GCIs. Our initial investigations within this project produced 
undecidability results for several fuzzy DLs with GCIs and 
showed that the decidable cases are actually not truly fuzzy 
since decidability can be obtained by a reduction to the 
crisp case [8, 13, 17, 21]. Since within our project in HAEC 
we did not have enough time for a thorough analysis of the 
decidability status of fuzzy DLs, these initial results were 
the starting point for a separate research project funded by 
DFG and dedicated to investigating fuzzy DLs [9]. This pro-
ject achieved an almost complete classification of the border 
between decidability and undecidability for fuzzy DLs with 
GCIs.

Within our HAEC project we tried to find a practical 
approach for expressing fuzzy contexts, which trades off 
expressiveness for decidability. One possible way to pro-
ceed was to restrict the fuzzy logic such that it offers only 
a finite set of fuzzy values. In [20, 54], we combined such 
a fuzzy logic with very expressive DLs, and showed that 
answers to conjunctive queries w.r.t. an ontology expressed 
in the resulting fuzzy DL can still effectively be computed. 
A second approach developed for query answering in fuzzy 
DL-Lite performs reasoning by using query answering for 
the crisp DL as a black box procedure to obtain a rewriting 
into SQL, where numerical SQL predicates are added in a 
separate rewriting step to retrieve and compute the fuzzy val-
ues [55]. This simple approach yields correct results only for 
the Gödel semantics, which is a simple but frequently used 
semantics for fuzzy logics. The approach was implemented 
[56] and extended to fuzzy temporal query answering [64].

Instead of fuzzy logics, one can also use other means 
for expressing vague information. One such approach con-
sidered in our project are rough logics, which we adapted 
to the DL setting. In rough DLs, the vagueness informa-
tion is captured by an indiscernibility relation � , which is an 
equivalence relation over the domain. In [59] we extended 
the well-known combined approach for query answering in 
EL  [52] to the rough DL EL⊥,𝜌 and showed that the com-
plexity stays the same as for classical EL .

In the experimental evaluation of our situation recogni-
tion framework it turned out that it is useful to return not just 
answers that exactly match the query (i.e., completely satisfy 
the description of the situation), but also return answers that 
“almost” satisfy the query. In fact, situations similar to the ones 
described are usually also good candidates for an adaptation. 
This new kind of reasoning problem was defined and inves-
tigated in our project for instance queries in (variants of) the 
DL EL  [36, 37]. The approach uses concept similarity meas-
ures (CSMs), which are functions that map pairs of concepts 
to a similarity value in the interval [0, 1]. The new reason-
ing service retrieves for a given query concept Q, a CSM ∼ , 
and a threshold value t ∈ [0, 1) all those individuals that are 
instances of those concepts C that are similar to Q with degree 
greater than t, i.e., for which C ∼ Q > t holds. This form of 
retrieval supports top-k queries by decreasing thresholds. The 
approach heavily relies on properties of CSMs, which we 
investigated in [31, 32, 49] and on the computation of gener-
alizations of individuals, which were studied in [65]. Similarity 
measures can also be used to extend DLs by constructors that 
enable the approximate definition of concepts [10].

2.3  Incorporating Concrete Data Values

Besides temporal and vague information, we have considered 
means to represent concrete data values in our ontology lan-
guage directly. Concrete domains enable the ontology lan-
guage to refer to such concrete values, as for instance num-
bers, and compare them via built-in predicates. They can be 
used to represent and reason about numerical values, instead 
of abstracting them away by using preprocessors. Adding 
concrete domains to DLs can easily make them undecidable 
in the presence of GCIs. To retain decidability, the concrete 
domain must satisfy strong restrictions. For almost a decade, 
the restrictions formulated in [51] were the only ones known 
to preserve decidability. In [57] we extend these conditions to 
fuzzy concrete domains. An important result of our project 
is that we were able to establish new restrictions that guar-
antee decidability [27], which are orthogonal to the previ-
ously known ones, and yield decidability for some interesting 
concrete domains over the integers that were not covered by 
the restrictions in [51]. Furthermore, we have investigated 
CQ answering over ontologies that use concrete domains in 
[7], which is the foundation for reasoning with probabilistic 
concrete domains, studied in phase II (see below) and for a 
practical reasoning procedure for query answering in DL-Lite 
augmented with a concrete domain over the real numbers [1].
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3  Addressing Advanced Challenges 
for Context Recognition

In phase  II of our project, we dropped the simplifying 
assumption that the data populating the fact base is always 
free of errors. Thus, the main challenges addressed in 
phase II were to handle data that is true only with a cer-
tain probability and to develop methods that make ontology 
reasoning resilient against inconsistencies. In cooperation 
with the HAEC project headed by Christel Baier, we also 
explored how the design-time probabilistic model checking 
(PMC) techniques employed in that project can be combined 
with our run-time monitoring approach.

3.1  Incorporating Probabilities

In practice, we cannot assume that the information in our 
fact base is always correct, since the raw data may already be 
erroneous. If information on the reliability of input sources 
is available (e.g., error probabilities for sensors), then this 
can be modeled using probabilistic fact bases.

First, we considered a setting where symbolic facts are 
assigned probabilities, and thus answers to queries are true 
only with a certain probability. If the probability exceeds a 
given threshold, then the situation described by the query is 
recognized. OBDA in this setup had first been investigated 
in [45] for light-weight DLs, and we extended this work to 
more expressive DLs in [16]. To support explaining why a 
situation is recognized, we developed methods for finding 
most probable explanations for query answers [29].

If sensor values from a continuous domain are directly 
represented in the fact base, giving a probability to a single 
value does not make sense as the actual value follows a prob-
ability distribution. Thus it is more appropriate to use con-
tinuous probability distributions to deal with values obtained 
from uncertain sensor measurements. This setting was inves-
tigated in [12]. Since probabilities may be non-rational real 
numbers, we employed methods from the complexity theory 
of real functions, and defined probabilistic query entailment 
w.r.t. a given precision parameter.

Finally, our framework for probabilistic query answer-
ing was integrated with our temporal extension, yielding a 
new formal framework for specifying temporal probabilistic 
knowledge bases, and a corresponding query language [46]. 
Probabilistic temporal query answering had been consid-
ered earlier for Datalog [35], but with a query language that 
does not have temporal and probabilistic operators. Such 
operators are expedient to describe situations occurring in 
the HAEC scenario and are available in the query language 
introduced in [46].

3.2  Resilience Against Inconsistency

If no error probabilities are available, the approaches 
described in the last subsection cannot be used. Since errors 
in the raw data may then be propagated to the fact base, 
it may become inconsistent w.r.t. the ontology. In classical 
logic, inconsistencies render a fact base useless since eve-
rything follows from it. In this case, inconsistency-tolerant 
reasoning still allows to deduce consequences that are not 
affected by the error. We have investigated two approaches 
for achieving such resilience against errors in the data.

First, together with the distinguished female post-doc 
researcher of the CRC, Camille Bourgaux, we have extended 
atemporal CQ answering under the so-called repair seman-
tics [15, 50] to the temporal setting. To be more precise, we 
have investigated the complexity of reasoning in light-weight 
DLs [24, 25] under different types of repair semantics, also 
taking rigidity of concepts and roles into account, and were 
able to show that the complexity often does not increase 
compared to the case of classical temporal reasoning.

The second approach to deal with erroneous data con-
sidered in our project is to use non-monotonic variants of 
DLs, such as defeasible DLs. In addition to (strict) GCIs 
these logics use defeasible GCIs that “typically” hold, but 
which may be defeated by other information. Semantics and 
reasoning methods for defeasible DLs introduced in previous 
work mostly ignored defeasible information for anonymous 
objects introduced by quantifiers. This severe limitation was 
overcome by our novel reasoning methods for defeasible 
subsumption and defeasible instance checking in the light-
weight defeasible DL EL⊥ [60, 61].

3.3  Linking Context Recognition and Probabilistic 
Model Checking

In Christel Baier’s project “Formal Methods for Quantitative 
Analysis and Optimization of Energy Models”, probabilistic 
model checking was employed at design-time to verify cer-
tain temporal properties of all possible runs of the HAEC 
system. Our context recognition system observes the HAEC 
system at run-time. Both approaches use the notion of a criti-
cal situation, which is formalized in logic. In fact, also the 
model checker identifies situations to be avoided or in which 
an adaptation is required.

Together with members of the group investigating prob-
abilistic model checking, we have developed an approach 
for integrating situation recognition and PMC: situations 
and constraints on the system behavior are modeled in our 
ontology, from which we generate formulas to be used in 
PMC. This enables the PMC-based analysis to be consistent 
with our situation descriptions, and allows us to determine 
off-line, based on the PMC analysis, which situations are 
most relevant for adaptations towards energy-savings. This 
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framework, described in [33], was recently investigated in 
regard to different semantics that can handle inconsistencies 
between the two components in [34].

This approach also facilitates the use of temporal system 
properties verified by PMC as additional probabilistic and 
temporal background knowledge in our ontology. To this 
end, the language used by PMC (i.e., temporal formulas 
describing properties of system states) needs to be trans-
lated into the ontology and the query language. To some 
extent this is possible using the query language developed 
for probabilistic temporal query answering [46] mentioned 
earlier.

3.4  Other Cooperation

The stimulating environment within the CRC also lead 
to cooperation with other projects that was not directly 
motivated by situation recognition. For example, together 
with the operating systems group of TU Dresden, we con-
ducted an empirical study [47] of the energy consumption 
of standard ontology reasoners using a standard corpus of 
ontologies and state-of-the-art DL reasoners. Besides pro-
viding a detailed picture of the energy consumption of DL 
reasoning, our study also explored the relationship between 
computation power of the CPU, reasoning time, and energy 
consumption. Together with the group of Markus Krötzsch, 
we developed a technique for rewriting ontologies formu-
lated in Horn-SRIQ into Datalog programs, which resulted 
in a much better performance [28].

4  Conclusions

In this report, we have presented the results obtained in the 
project “Semantic Technologies for Situation Awareness”, 
which was part of the DFG-funded Collaborative Research 
Center “Highly Adaptive Energy-efficient Computing” from 
2011–2019. Though motivated by the need to save energy in 
large compute and data servers of the future, our ontology-
based framework for situation recognition can, of course, 
also be employed in other applications. In addition to devel-
oping the general framework and prototypical implementa-
tions for parts of it, the project has also produced a host of 
fundamental results on the decidability and complexity of 
various extensions of DLs, e.g. with fuzzy logic, temporal 
logic, non-monotonic logic, and probabilistic logic. It has 
also triggered a growing interest of other groups in tempo-
ralized OBDA and its use for complex situation recognition.
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