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0-CYCLES ON GRASSMANNIANS AS REPRESENTATIONS OF PROJECTIVE

GROUPS

R.BEZRUKAVNIKOV AND M.ROVINSKY

Rafailu Kalmanoviqu Gordinu

Abstract. Let F be an infinite division ring, V be a left F -vector space, r ≥ 1 be an integer. We
study the structure of the representation of the linear group GLF (V ) in the vector space of formal
finite linear combinations of r-dimensional vector subspaces of V with coefficients in a field.

This gives a series of natural examples of irreducible infinite-dimensional representations of
projective groups. These representations are non-smooth if F is locally compact and non-discrete.

Let F be a division ring (a.k.a. a skew field), and V be a left F -vector space. Define multiplication
in the associative unital ‘matrix’ ring EndF (V ) so that V becomes a left EndF (V )-module. In
particular, EndF (V ) is opposite to F if dimV = 1.

Assume that dimV = r + r′ > 1 for a pair of cardinals r = (r, r′). Denote by Gr(r, V ) the
set of all F -vector subspaces of V of dimension r and of codimension r′ (r-subspaces for brevity).
If r < dimV + 1 we set Gr(r, V ) := Gr(r, V ) for r′ = dimV − r. For instance, Gr(1, V ) is the
projective space P(V ) := F×\(V \ {0}); Gr(0, V ) and Gr((dimV, 0), V ) are points.

For any associative ring A, denote by A[Gr(r, V )] the set of all finite formal linear combinations∑N
j=1 aj[Lj ] with coefficients aj in A of F -vector subspaces Lj of V in Gr(r, V ).
The set A[Gr(r, V )] carries a natural structure of an A-bimodule: a·(∑i ai[Li])·a′ :=

∑
i aaia

′[Li].
Let G := GLF (V ) := AutF (V ) be the group of invertible elements of EndF (V ). The natural

G-action on Gr(r, V ) is transitive and gives rise to an A-linear G-action on A[Gr(r, V )].
Obviously, the module A[Gr(r, V )] admits a proper submodule A[Gr(r, V )]◦ formed by all finite

formal linear combinations
∑

j aj [Lj] with
∑

j aj = 0, which is nonzero if r 6= 0 and r′ 6= 0.
Our goal is to describe, for any coefficient field K, the structure of the K[G]-module K[Gr(r, V )].

Namely, for any infinite F , we show (in Theorem 4.3) that a canonical nonzero submodule M1
(constructed in Lemma 1.1) of Z[Gr(r, V )]◦ has the property that K ⊗ M1 is the only simple
submodule of each nonzero K[G]-submodule of K[Gr(r, V )].

This irreducibility result is deduced from the case of dimV = 2 (§3). It is also shown in Lemma 3.3
the irreducibility of the representation of SL2(Q) induced by any non-trivial one-dimensional rep-
resentation of a proper parabolic subgroup in SL2(Q).

The module K[Gr(r, V )]◦ coincides with K ⊗M1 if and only if either r or r′ is finite.
Several remarks on the case of finite F are collected in §5.
When F is a local field, one usually studies either unitary or smooth (i.e. with open stabilizers;

they are called algebraic in [3]) representations, while the representations considered here are non-
smooth. However, the latter representations are smooth if F is discrete and r is finite; for a field F ,
they arise as direct summands of “restrictions” of certain geometrically meaningful representations
of automorphisms groups of universal domains over F , cf. [5, §4].

1. Generators of A[Gr(r, V )]◦ for an integer r

For any ring A and any set Γ, denote by A[Γ] the set of all finite formal linear combinations∑N
j=1 aj[gj ] with coefficients aj in A of elements gj ∈ Γ.

If Γ is a group, we consider A[Γ] as associative ring with evident relations [g][g′] = [gg′], a[g] = [g]a
for all g, g′ ∈ Γ and a ∈ A. The element [1] is the unit of the ring.

The study has been funded within the framework of the HSE University Basic Research Program and the Russian
Academic Excellence Project ’5-100’. R.B. is partially supported by an NSF grant.
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The A[G]-module A[Gr(r, V )] = A⊗ Z[Gr(r, V )] is generated by [L] for any L ∈ Gr(r, V ).
The following lemma shows that, for an integer r, the A[GLF (V )]-module A[Gr(r, V )]◦ = A ⊗

Z[Gr(r, V )]◦ is generated by [L] − [L′] for any L,L′ ∈ Gr(r, V ) with dim(L ∩ L′) = r − 1.

Lemma 1.1. Let r be a pair of cardinals. Let L,L′ be r-subspaces in V with dim(L/L ∩ L′) =
dim(L′/L ∩ L′) = 1. Then the G-submodule M1 = M1(r, V ) of Z[Gr(r, V )]◦ generated by the
difference [L] − [L′] contains all differences [L0] − [L1] of r-subspaces with dim(L0/L0 ∩ L1) =
dim(L1/L0 ∩ L1) < ∞, but does not contain differences [L0] − [L1] of other pairs of r-subspaces.

In particular, M1 coincides with Z[Gr(r, V )]◦ if and only if at least one of r and r′ is finite.

Proof. Let c = dim(L0/L0 ∩L1). Fix complete flags E0 = 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ec = L0/(L0 ∩L1)
and F0 = 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fc = L1/(L0 ∩ L1) and set L′

i = Ẽc−i + F̃i, where Ẽ denotes the
preimage of a subspace E ⊆ V/(L0∩L1) under the projection V → V/(L0∩L1). Then L′

0, L
′
1, . . . , L

′
c

are r-subspaces, while L′
i−1 ∩ L′

i is a hyperplane in both L′
i−1 and L′

i for each i, 1 ≤ i ≤ c.
As G acts transitively on the set of pairs (S, S′) of r-subspaces of V with dim(S/S ∩ S′) =

dim(S′/S ∩ S′) = 1, all [L′
i] − [L′

i+1] belong to the G-orbit of [L] − [L′]. As [L0] − [L1] = ([L′
0] −

[L′
1]) + ([L′

1] − [L′
2]) + · · · + ([L′

c−2] − [L′
c−1]) + ([L′

c−1] − [L′
c]), we see that M1 contains [L0] − [L1].

If either of r and r′ is finite then for any pair L0, L1 of r-subspaces of V one has dim(L0/L0 ∩
L1) = dim(L1/L0 ∩ L1) < ∞, so it is clear from the above that [L] − [L′] generates the G-module
Z[Gr(r, V )]◦.

If [L0] − [L1] ∈ M1, i.e., [L0] − [L1] =
∑N

i=1 ai([L′
i] − [L′′

i ]) with dim(L′
i/L

′
i ∩ L′′

i ) = dim(L′′
i /L

′
i ∩

L′′
i ) = 1, then rename L′

i and L′′
i in a way to get a sequence L0 = L′

0, L
′
1, . . . , L

′
n−1, L

′
n = L1

with dim(L′
i−1/L

′
i−1 ∩ L′

i) = dim(L′
i/L

′
i−1 ∩ L′

i) = 1. Then dim(L′
0/
⋂n

i=0 L
′
i) ≤ n, and thus,

dim(L0/L0 ∩ L1) is finite.
In particular, if [L] − [L′] generates Z[Gr(r, V )]◦ then L0/(L0 ∩ L1) is finite-dimensional for any

pair L0, L1 of r-subspaces of V , so at least one of r and r′ should be finite. �

2. (Endo)morphisms and decomposability

Let F be a division ring, V be a left F -vector space, r0 = (r0, r′
0), r1 = (r1, r′

1) be two pairs of
cardinals such that r0 + r′

0 = r1 + r′
1 = dimV ; we may omit r′

i if ri < dimV +1. For an r0-subspace
L in V , denote by St[L] the stabilizer of the point L ∈ Gr(r0, V ) in the group G := GLF (V ).

It is easy to see that the G-orbit of a F -vector subspace L in V is determined by the pair of
cardinals (dimL,dimV/L); the G-orbit of a pair of F -vector subspaces L,L′ in V is determined by
the quintuple of cardinals (dim(L ∩ L′),dimL/(L ∩ L′),dimL′/(L ∩ L′),dim V/L,dimV/L′).

Let A be an associative unital ring. For each triple of cardinals s = (s, s′, s′′) with s + s′ = r0
and s+ s′′ = r1 (so s′ and s′′ may be omitted if s < min(r0, r1) + 1), let

ηr0,r1
s : A[Gr(r0, V )] → A[Gr(r1, V )]

be the A[G]-morphism given by [L] 7→ ∑
L′ [L′] if the latter sum is finite and non-empty, where L′

runs over all r1-subspaces in V such that dim(L∩L′) = s, dimL/(L∩L′) = s′ and dimL′/(L∩L′) =
s′′. Such L′’s form an St[L]-orbit.

It is clear that ηr,r(r,0,0) is identical on A[Gr(r, V )] and ker ηr,00 = ker ηr,(dim V,0)
(r,0,r′) = A[Gr(r, V )]◦.

Lemma 2.1. Set R := A[G]. Let r0, r1 be two pairs of cardinals with r0 + r′
0 = r1 + r′

1 = dimF V .
Then two structures of right A-module on HomR(A[Gr(r0, V )], A[Gr(r1, V )]) coincide and it is

freely generated by
ηr0,r1
(0,r0,0) if r1 = (0,dim V );
ηr0,r1
(r0,0,r′

0)
if r1 = (dimV, 0);

ηr0,r1
(r0,0,r′

0−r′
1)

if V is infinite, while F and r′
0 ≥ r′

1 are finite;

ηr0,r1
(r1,r0−r1,0) if V is infinite, while F and r0 ≥ r1 are finite;

the identity ηr0,r0
(r0,0,0) = idA[Gr(r0,V )] if V is infinite and r0 = r1,

ηr0,r1
s for all s, σ ≤ s ≤ min(r0, r1), if V is finite, where σ := max(0, r0 − r′

1),
0 otherwise.
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The ring EndZ[G](Z[Gr(r, V )]) is commutative. If F is infinite and r0 6= r1 then, in notation
of §1, HomR(A ⊗ M1(r0, V ), A ⊗ M1(r1, V )) = 0, while EndR(A ⊗ M1(r0, V )) = A if r0 6= 0 and
r′
0 6= 0, so the R-modules A[Gr(r0, V )] and A⊗M1(r0, V ) are indecomposable if A is a field.

Proof. The cases r1 ∈ {(0,dim V ), (dim V, 0)} are trivial, since then Gr(r1, V ) reduces to a single
point, so we may further assume r1 /∈ {(0,dim V ), (dim V, 0)}.

Fix some L ∈ Gr(r0, V ), and suppose that the St[L]-orbit of a point L′ ∈ Gr(r1, V ) is finite.
We, thus, assume that L′ 6= 0 and L′ 6= V .

• If L ∼= F⊕r0 is infinite then either (i) L ⊆ L′ or (ii) L∩L′ = 0. In the case (ii), L′ ⊆ L, since
adding different elements of L to a basis element of L′ one gets different L′’s, and therefore,
L′ = 0. If, in the case (i), V/L ∼= F⊕r′

0 is finite then all L′ containing L form a single finite

orbit; if V/L ∼= F⊕r′
0 is infinite and L′ 6= V then L′ = L.

• If V/L ∼= F⊕r′
0 is infinite then the image of L′ in V/L should be either 0 or V/L, i.e., either

(i) L′ ⊆ L or (ii) V = L+L′. In the case (i), either (a) L′ = L, or (b) L ∼= F⊕r0 is finite and
then all L′ contained in L form a single finite orbit. In the case (ii), either (a) L′ ⊇ L, or
(b) L∩L′ 6= L. (iia): L′ = V , which is excluded. (iib): any orbit is infinite. Namely, choose
a vector v ∈ L \ L′ and a collection {ei}i∈I presenting a basis of V/L; then the subspaces

Lj := L ∩ L′ ∔ 〈eji | i ∈ I〉F , where eji = ei if i 6= j, while eii = ei + v, are paiwise distinct.
• If V is finite then all orbits are finite and they are parametrized by s = dim(L ∩ L′), where
σ := max(0, r0 − r′

1) ≤ s ≤ min(r0, r1).
As the R-module A[Gr(r0, V )] is generated by [L], any R-module morphism A[Gr(r0, V )] →

A[Gr(r1, V )] is determined by the image of [L], which in turn is an element of A[Gr(r1, V )]St[L], i.e.,
a linear combination of sums of the elements of several finite St[L]-orbits in Gr(r1, V ).

One has ηr′,r′′

s′ ηr,r′
s [L] =

∑
L′ η

r′,r′′

s′ [L′] =
∑

L′
∑

L′′ [L′′] =
∑

L′′∈Gr(r′′,V )NL,L′′ [L′′], where

NL,L′′ = |{L′ ∈ Gr(r′, V ) | dim(L ∩ L′) = s, dim(L′ ∩ L′′) = s′}|.
It follows that ηr,r

s′ η
r,r
s = ηr,r

s ηr,r
s′ . In other words, the algebra EndR(A[Gr(r, V )]) is commutative if

V is finite, as soon as so is A. If V is infinite then EndR(A[Gr(r, V )]) = A.
The R-module A⊗M1(r0, V ) is generated by [L]− [L′] for any L,L′ ∈ Gr(r0, V ) with dimL/(L∩

L′) = dimL′/(L ∩L′) = 1, so any morphism ϕ from the R-module A⊗M1(r0, V ) is determined by

the image of [L] − [L′], which in turn is an element of (A[Gr(r1, V )]◦)St[L]∩St[L′] .
If F is infinite then the only proper subspaces in V fixed by St[L] ∩ St[L′] are L,L′, L ∩ L′, while

the St[L] ∩ St[L′]-orbits of other proper subspaces are infinite. This means that ϕ([L] − [L′]) =
a[L]+ b[L′]+ c[L∩L′] for some a, b, c ∈ A. Consider g ∈ G such that g(L) ⊂ L+L′, g(L) /∈ {L,L′},
g(L∩L′) = L∩L′ and g(L′) = L′. Then ϕ([L]−[g(L)]) = ϕ([L]−[L′])−gϕ([L]−[L′ ]) = a([L]−[g(L)]).
As dimL/(L ∩ g(L)) = dim g(L)/(L ∩ g(L)) = 1, the element [L] − [g(L)] is another generator of
A⊗M1, so we get EndR(A⊗M1(r0, V )) = A and the required vanishing for r0 6= r1. �

Remark 2.2. If V is finite then the morphism ηr,r′
s of §2 is dual to the morphism ηr′,r

s under the
non-degenerate symmetric bilinear pairing on K[Gr(•, V )], given by ([L], [L]) = 1 and ([L], [L′]) = 0
if L 6= L′: ((ηr,r′

s )∗[L′], [L]) = ([L′], ηr,r′
s [L]) is 1 if dim(L ∩ L′) = s, and is 0 otherwise.

3. The one-dimensional case

Lemma 3.1. Let F and K be fields, and V be a two-dimensional F -vector space. If |F | ≤ 3
assume in addition that F and K are of the same characteristic. Let P be a subgroup in SL(V ) and
ρ : P → K× be a character. Suppose that the K[SL(V )]-module Wρ := K[SL(V )] ⊗K[P ] ρ admits a
submodule W such that dimK(Wρ/W ) = 1. Then ρ = 1 and W = K[SL(V )/P ]◦.

Proof. As index of commutator subgroup of SL(V ) is 1 if |F | > 3, and it is |F | if |F | ≤ 3, any
one-dimensional K-representation of SL(V ) is trivial. On the other hand, HomK[SL(V )](Wρ,K) =
HomK[P ](ρ,K), so the K[SL(V )]-module Wρ admits a one-dimensional quotient if and only if ρ = 1,
while W is the kernel of the degree morphism. �
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Remark 3.2. We are particularly interested in the case of a proper parabolic subgroup P .
1. Denote by ∞ the point of P(V ) fixed by P . Then SL(V )/P → P(V ), [g] 7→ g∞ is an

isomorphism of SL(V )-sets (so that [P/P ] 7→ ∞) inducing an isomorphism of K[SL(V )]-modules

Wρ
∼−→ K[P(V )] if ρ = 1.

2. Note that (i) P ∼= F× ⋉2 F where F× acts on F by squares: [a : b 7→ a2b]; (ii) [P,P ] = P u if
|F | > 3 and [P,P ] = 1 if |F | ≤ 3, where P u ∼= F is the unipotent radical of P . This shows that ρ
factors through P/P u.

If considered as K[P ]-module, Wρ splits as K[SL(V )\P ]⊗K[P ] ρ⊕ρ, where K[SL(V )\P ]⊗K[P ] ρ
is a free module over the group algebra K[P u] of P u. Namely, as the affine line P(V ) \ {∞} is
a principal homogeneous space over P u, a choice of an element O ∈ SL(V ) \ P gives rise to an

isomorphisms of left K[P u]-modules ιP : K[P u] ⊗K ρ
∼−→ K[SL(V ) \ P ] ⊗K[P ] ρ, [u] ⊗ e 7→ [uO] ⊗ e.

Let T ∼= P/P u be the torus in P fixing the class o of O on the affine line P(V ) \ {∞}. The set
{g ∈ OP : g2 = −1} consists of all elements of SL(V ) interchanging the points o and ∞ of the
projective line SL(V )/P . This is a principal homogeneous space over T . As it is non-empty, we may
further assume that O2 = −1. As (Ot)2 = −1 for any t ∈ T , we get tO = Ot−1, so the T -action on
the target of ιP corresponds to the T -action on K[P u] ⊗K ρ given by t : [u] ⊗ e 7→ [tut−1] ⊗ t−1e,
since t ◦ ιP : [u] ⊗ e 7→ [tuO] ⊗ e = [(tut−1)tO] ⊗ e = [(tut−1)O] ⊗ t−1e.

This means that the K[P ]-submodules of K[SL(V ) \ P ] ⊗K[P ] ρ correspond to the T -invariant
ideals in K[P u].

3.1. The case of SL2(Q).

Lemma 3.3. Let V be a two-dimensional Q-vector space, K be a field. Let P be a proper parabolic
subgroup in SL(V ) and ρ : P → K× be a character.

Then (i) the K[SL(V )]-module Wρ := K[SL(V )] ⊗K[P ] ρ is simple if ρ 6= 1, (ii) K[P(V )]◦ is a
unique simple submodule of K[P(V )] = W1.

Proof. By Lemma 3.1, it suffices to show that any nonzero K[SL(V )]-submodule W in Wρ has
K-codimension ≤ 1. We keep the setting of Remark 3.2 with F = Q. We identify P u ∼= Q with the
rational powers XQ of an indeterminate X, so that K[P u] ∼=

⋃
N≥1K[X1/N ,X−1].

Any ideal in K[P u] is determined by its intersections with each subalgebra K[X1/N ,X−1], and

thus, is generated by a collection of polynomials of minimal degree PN (X1/N ) for all N ≥ 1 such

that PN (0) = 1 and PN (X)|PM (XN/M ) in K[X] if M |N .

As P/P u ∼= Q× acts evidently on P u ∼= XQ, any P/P u-invariant proper ideal I = (PN (X1/N ))N≥1

in
⋃

N≥1K[X1/N ,X−1] contains PN (XM2
1 /(M2

2 N)) for all M1,M2, N ≥ 1. In particular, PN (X)
divides PN (XM2

) for all M,N ≥ 1, which implies that if PN (α) = 0 then PN (αM2
) = 0 for all

M ≥ 1, so the set {αM2}M≥1 is finite, i.e., α is a root of unity, say αMN = 1. Then PN (X)|(XMN −
1)mN for some MN ,mN ≥ 1, and thus, I contains (XMN /N − 1)mN , and therefore, I contains

(XM2
N /N − 1)mN ∈ ((XMN /N − 1)mN ), and consequently, (X1/N − 1)mN ∈ I for all N ≥ 1. Let

s ≥ 1 be such that ms ≤ mN for all N ≥ 1. Then (X1/(N2s) −1)ms ∈ I for all N ≥ 1, and therefore,

(X1/N − 1)ms ∈ ((X1/(N2s) − 1)ms) ⊂ I for all N ≥ 1.
Let J ⊂ ⋃N≥1K[X1/N ,X−1] be the ideal generated by X1/N − 1 for all N ≥ 1. As Jn/Jn+1 is a

K-vector space of dimension max(δn,0, δchar(K),0) ≤ 1 with the group P/P u acting by n-th powers,
we conclude that I coincides with Jn for some n ≥ 0.

The splitting Wρ = ρ ∔ K[SL(V ) \ P ] ⊗K[P ] ρ induces two projections π∞ : W → ρ and πaff :
W → K[SL(V ) \ P ] ⊗K[P ] ρ. As SL(V ) is transitive on P(V ), the projection π∞ is surjective. As
HomK[P ](Wρ, ρ) = K, if π∞ splits as a morphism of K[P ]-modules then W contains [1] ⊗ ρ, and
therefore, W = Wρ.

Assume now that the projection π∞ does not split, so then (i) 0 → Jm ⊗K[P ] ρ → W → ρ → 0,
(ii) the projection πaff is injective, i.e., the K[P ]-module W is isomorphic to a power of J . Since
the quotient of the K[P ]-module W by Jm is ρ, we get m = 1, so W ∼= K[SL(V ) \ P ] ⊗K[P ] ρ as
K[P ]-module, and thus, the K[SL(V )]-module W contains the linear combination ([1] + a[O]) ⊗ e

4
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for some a ∈ K and O ∈ SL(V )\P . Then W contains ([1]+a[uO])⊗e for all u ∈ P u, and therefore,
dimK(Wρ/W ) ≤ 1. �

3.2. The case of SL2(F ) in equal positive characteristics.

Lemma 3.4. Let F and K be fields of characteristic p > 0, and V be a two-dimensional F -vector
space. Then the K[PSL(V )]-module K[P(V )]◦ is simple.

Proof. Let M 6= 0 be a K[PSL(V )]-submodule in K[P(V )]◦, and α =
∑n

i=1 ai[xi] ∈ M for some
n ≥ 1, pairwise distinct xi ∈ P(V ) and some ai ∈ K× with

∑n
i=1 ai = 0. Let P ∼= F×2 ⋉ F be the

stabilizer of x1 in PSL(V ).
For a choice of a point O ∈ P(V ) \ {x1}, denote by β =

∑n
i=2 ai[xi − O] of K[P u] such that

βO = α − a1[x1]. Then βp−1α = ap
1 · ([x1] − [O]). As O can be chosen to be an arbitrary point of

P(V ) \ {x1}, α generates K[P(V )]◦ as K[PSL(V )]-module. �

4. The case of an infinite base skew field

Lemma 4.1. Let V be a left vector space over a division ring F , and λ be an F -linear functional on
V . Then, for any w ∈ V , the endomorphism 1−λtw ∈ EndF (V ), x 7→ x−λ(x)tw, is not invertible
for at most one value of t ∈ F .

Proof. Let µ := λ(w). Then, for any t ∈ F such that µt 6= 1, one has (1−λtw)(1+λt(1−µt)−1w) =
1 − λtw + λt(1 − µt)−1(1 − µt)w = 1. �

Lemma 4.2. For each integer s,N ≥ 1, let Ds(N) :=
∑

m≡s mod p(−1)m
(N
m

)
∈ Z. Then the matrix

∆ =




D1(N) · · · Dp−1(N)
· · · · · · · · ·

D1(N + p− 2) · · · Dp−1(N + p− 2)




is invertible over Z[1/p].

Proof. Denote by µp the set of complex p-th roots of unity. Then

Ds(N) =
1
p

∑

ζ∈µp

ζ−s(1 − ζ)N .

Fix a primitive ζ ∈ µp. Then the matrix p∆ coincides with the product



(1 − ζ)N (1 − ζ2)N · · · (1 − ζp−1)N

(1 − ζ)N+1 (1 − ζ2)N+1 · · · (1 − ζp−1)N+1

· · · · · · · · · · · ·
(1 − ζ)N+p−2 (1 − ζ2)N+p−2 · · · (1 − ζp−1)N+p−2







ζ−1 ζ−2 · · · ζ−(p−1)

ζ−2 ζ−4 · · · ζ−2(p−1)

· · · · · · · · · · · ·
ζ−(p−1) ζ−2(p−1) · · · ζ−(p−1)(p−1)


 ,

so det(p∆) is product of Vandermonde determinants:

det(p∆) =
p−1∏

j=1

(1 − ζj)N
∏

1≤j<s≤p−1

(ζj − ζs)
p−1∏

j=1

ζ−j
∏

1≤j<s≤p−1

(ζs − ζj).

As the norm in the extension Q(ζ)/Q of the element 1 − ζj is p, we see that det∆ = ±pm for an
integer m ≥ 0, so det∆ is invertible in Z[1/p]. �

4.1. A filtration. For a left vector space V over a division ring F , let G := GLF (V ) := AutF (V ).

Theorem 4.3. Let r = (r, r′) be a pair of cardinals ≥ 1, F be an infinite division ring of characteris-
tic p ≥ 0, V be a left F -vector space of dimension r+r′. Set M0 := Z[Gr(r, V )]◦ and G := GLF (V ).
Then there is a sequence of nonzero G-submodules M0 ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . such that

(1) M0/M1 is a free abelian group, vanishing if and only if at least one of r and r′ is finite;
(2) if p > 0 then the natural map Z[1/p] ⊗Mn → Z[1/p] ⊗M1 is surjective for any n ≥ 1;
(3) for any n ≥ 1 and any field K, the natural map K ⊗Mn → K ⊗M1 is surjective;
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(4) if, for an associative unital ring A, a A[G]-submodule M of A⊗M0 contains α =
∑N

i=0 ai[Li],
where L0 6⊆ ⋃N

i=1 Li, then M contains Aa0 ⊗Mn for some n depending on N .

Proof. Fix an arbitrary subspace U ⊂ V of dimension r − 1 and of codimension r′ + 1. Fix some
e0, e1 ∈ V that are F -linearly independent in V/U . For each sequence (ti)i≥1 in F× and all n ≥ 1,
define γn((ti)i≥1) :=

∑
I⊆{1,...,n}(−1)|I|[U + F (e0 + (

∑
i∈I ti)e1)] ∈ M0.

Note that (i) the G-orbit of γn((ti)i≥1) is independent of a particular choice of U, e0, e1, (ii)
γn+1((ti)i≥1) = (1−ξ)γn((ti)i≥1) for any ξ ∈ G identical on U+F ·e1 and such that ξe0 = e0+tn+1e1,
(iii) all γn((ti)i≥1) are nonzero if, e.g., t1, t2, . . . are either linearly independent over the prime
subfield, or all equal to 1 if p = 0.

For each n ≥ 1, let Mn be the G-submodule in M0 generated by the elements γn((ti)i≥1) for all
sequences (ti)i≥1 in F×. In particular, we have inclusions Mn ⊇ Mn+1 for all n.

Then (1) follows from Lemma 1.1: M0/M1 is the group of formal finite linear combinations∑
i ai[Li]′, where ai ∈ Z and [L]′ are classes of ‘commensurable’ r-subspaces, i.e. L0 ∼ L1 if

dim(L0/L0 ∩ L1) = dim(L1/L0 ∩ L1) < ∞.
Set γn := γn(1, 1, 1, . . . ) =

∑n
s=0(−1)s

(n
s

)
[U + F (e0 + se1)]. As any nonzero γ1((ti)i≥1) belongs

to the G-orbit of γ1, the G-module M1 is generated by γ1.
If p > 0, it follows from Lemma 4.2 that the Z[1/p]-submodule in Z[1/p] ⊗ M0 generated by

γn =
∑p−1

s=0 Ds(n)[U + F (e0 + se1)], γn+1, . . . , γn+p−2 contains γ1, which implies (2).
If ℓ := char(K) 6= p is a prime then γℓN ≡ [U + F · e0] − [U + F (e0 + ℓNe1)] = gNγ1 (mod ℓM1)

for any integer N ≥ 1 and some gN ∈ G, so Mn + ℓM1 contains γ1 for any n ≥ 1, which proves (3)
for K = Z/ℓ, and thus, for all fields K of characteristic ℓ.

By Lemmas 3.3 and 3.4, if characteristic of F is 0, or if characteristics of F and K coincide, then
the K[G]-submodule in K ⊗M0 generated by γn coincides with K ⊗M1 for any n ≥ 1.

As (2) implies the case of char(K) 6= p > 0, this completes the proof of (3).

For (4), we are going to show that, together with α =
∑N

i=0 ai[Li], any A[G]-submodule M of
A⊗M0 contains a0 ⊗ γn for some n if L0 is not contained in Li, 1 ≤ i ≤ N .

It is a folklore result that a vector space over an infinite division ring cannot be a finite union of
proper linear subspaces, see e.g. [4, Theorem 1.2]. Fix some v ∈ L0 \⋃N

i=1 Li, some w ∈ V \ L0.
For each 1 ≤ i ≤ N , fix some F -linear morphism ξi : V → F · w ⊂ V vanishing on Li but not on v.

For each subset I ⊆ {1, . . . , N}, the image of the endomorphism ξI :=
∑

i∈I ξi of V is contained
in F · w, i.e., ξI = λI · w for a linear functional λI :=

∑
i∈I λi on V , so by Lemma 4.1 there is at

most one value of t such that 1+λItw is not invertible. As F is infinite, we may therefore replace w
with a nonzero multiple, so that 1+ ξI = 1+λI ·w become invertible for all subsets I ⊆ {1, . . . , N}.

Then the element Ξ :=
∑

I⊆{1,...,N}(−1)|I|[1 + ξI ] ∈ Z[G] annihilates all [Li] for 1 ≤ i ≤ N , and

Ξ[L0] =
∑

I⊆{1,...,N}
(−1)|I|

[
L0 ∩ ker ξI ∔ F ·

(
v + (

∑

i∈I

λi(v))w

)]
.

In particular, (i) if r = 1 and λi = ti for all 1 ≤ i ≤ N then gΞα = a0⊗γN ((ti)i≥1) for any g ∈ G such

that gv = e0 and gw = e1; (ii) if
∑

i∈I λi 6= 0 for any non-empty I then Ξ[L0] = [L0] +
∑M

n=1 bn[L′
n]

for some hyperplanes L′
n 6= L0 in V ′ := L0 ∔ F · w and some bn ∈ Z.

Set V ′′ := V ′/
⋂N

n=1 ker ξn, which is of dimension ≤ N . Denote by V ′′∨ the dual space of V ′′.
Consider the canonical identification ψ : Gr(dimV ′′ − 1, V ′′) ∼−→ P(V ′′∨), sending each hyperplane
L in V ′′ to the line of all linear functionals vanishing on L. Then ψ(g−1[L]) = g∗ψ([L]) for all g ∈
GLF (V ′′) (or their lifts in GLF (V ′′)), where (g∗λ)(x) := λ(gx) for all λ ∈ V ′′∨ and g ∈ GLF (V ′′).

Then ψ identifies the image of Ξ[L0] = [L0] +
∑M

n=1 bn[L′
n] in Z[Gr(dimV ′′ − 1, V ′′)]◦ with

[q0]+
∑M

n=1 bn[qn] ∈ Z[P(V ′′∨)]◦. As we have just seen in the case r = 1 (with V ′′∨ instead of V ), for
any sequence (ti)i≥1 in F×, there is an element β ∈ Z[GLF (V ′′)] (similar to the element Ξ) such that

β([q0] +
∑M

n=1 bn[qn]) =
∑

I⊆{1,...,M}(−1)|I|[F · (e′′0 + (
∑

i∈I ti)e
′′
1)] for some F -linearly independent

e′′0 , e
′′
1 ∈ V ′′. Denote by β∗ the image of β under the anti-involution Z[GLF (V ′′)] → Z[GLF (V ′′)],
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[g] 7→ [g−1]. Then, for any linear combination β′ of elements of G identical on P(
⋂N

n=1 ker ξn) and
extending β∗, one has β′(Ξ[L0]) = γM ((ti)i≥1), and thus, β′(Ξα) = a0 ⊗ γM ((ti)i≥1). �
Corollary 4.4. Let r = (r, r′) be a pair of cardinals ≥ 1, F be an infinite division ring, K be a
field, V be a left F -vector space of dimension r + r′.

Then any nonzero K-subrepresentation of GLF (V ) in K[Gr(r, V )] contains K ⊗M1.
In particular, K ⊗M1 is the only irreducible K-subrepresentation of GLF (V ) in K[Gr(r, V )].
The following conditions are equivalent: (i) at least one of r and r′ is finite, (ii) M1 = Z[Gr(r, V )]◦,

(iii) K⊗M1 = K[Gr(r, V )]◦, (iv) K[Gr(r, V )]◦ is irreducible, (v) K[Gr(r, V )]/K⊗M1 is irreducible,
(vi) K[Gr(r, V )]/K ⊗M1 ∼= K.

5. Some remarks on the case of a finite base field

There is an extensive literature on representations of finite Chevalley groups, see e.g. [1, 2]. For
this reason we do not treat in detail the case where F is a finite field.

5.1. The case of characteristic 0 coefficient field.

Proposition 5.1. Let F = Fq be a finite field, V be a finite F -vector space, K be a field where
qn 6= q for 2 ≤ n ≤ dimV +1 (e.g., char(K) = 0), r ≥ 1 be an integer. Then the K[PGL(V )]-module
K[Gr(r, V )] is a sum of min(r,dim V − r) + 1 pairwise distinct simple submodules.

Proof. As the K[PGL(V )]-modules are semisimple, it suffices to apply Lemma 2.1 asserting that
the algebra EndK[PGL(V )](K[Gr(r, V )]) is commutative and of dimension min(r,dim V − r) + 1 as
K-vector space. �
Proposition 5.2. Let F be a finite field, V be an infinite F -vector space, K be a field of character-
istic 0, r ≥ 1 be an integer. Then both K[PGL(V )]-modules, K[Gr(r, V )] and K[Gr((dim V, r), V )],
admit unique composition series, both of length r + 1.

This follows from a description of the smooth K-representations of GL(V ) for a countable F -
vector space V given in [5, Theorem A.17]. The corresponding composition series are

0 ⊂ K ⊗ ker ηr,r−1
r−1 ⊂ K ⊗ ker ηr,r−2

r−2 ⊂ · · · ⊂ K ⊗ ker ηr,1
1 ⊂ K ⊗ ker ηr,0

0 ⊂ K[Gr(r, V )] and

0 ⊂ Φ1 ⊂ Φ2 ⊂ · · · ⊂ Φr−1 ⊂ Φr ⊂ K[Gr((dim V, r), V )], where Φn = K ⊗ ker η(dim V,r),(dimV,r−n)
(dim V,0,n) .

5.2. The case of positive characteristic coefficient field.

Proposition 5.3. Let K be a field of characteristic ℓ. Let F be a union of finite fields.

(1) Suppose that V is finite and either dim P(V ) = 1 or ℓ is not characteristic of F .
• If ℓ does not divide |P(V )| then K[P(V )] = K[P(V )]◦ ⊕ K ·∑x∈P(V )[x] is the sum of

two simple K[PGL(V )]-submodules.
• If ℓ divides |P(V )| then K ·∑x∈P(V )[x] is the only simple submodule of K[P(V )], while

K[P(V )]◦/K ·∑x∈P(V )[x] is the only simple submodule of K[P(V )]/K ·∑x∈P(V )[x].
(2) If P(V ) is infinite and either dimV = 2 or characteristic of F is not ℓ then K[P(V )]◦ is the

only simple K[PGL(V )]-submodule of K[P(V )].

Proof. We have to show that any α =
∑

x∈P(V ) ax[x] ∈ K[P(V )] generates a K[PGL(V )]-submodule

containing K[P(V )]◦, whenever not all ax are equal. As PGL(V ) is 2-transitive on P(V ), it suffices
to show that the K[PGL(V )]-submodule generated by α contains a difference of two distinct points.

For each x with ax 6= 0 fix its lift x̃ ∈ V . Choose a maximal subset B consisting of F -linearly
independent elements among x̃’s. We replace F with the subfield of F generated by the coefficients
of the elements x̃ in the base B, and replace P(V ) with the projectivization of the space spanned
by the x̃’s over the new F . We thus assume that P(V ) is finite. Then we proceed by induction of
the dimension n of P(V ).

For each hyperplane H ⊂ P(V ), let UH ⊂ PGL(V ) be the translation group of the affine space

P(V ) \H. Then (
∑

h∈UH
h)α = (

∑
x/∈H ax)

∑
x/∈H [x] + qdim P(V )∑

x∈H ax[x], where q is order of F .
7
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For the induction step in the case ℓ 6 |q (and dim P(V ) > 1), fix some hyperplane H containg points
y, z with ay 6= az and fix some η ∈ PGL(V ) such that η(H) = H, η(y) = z and η(u) = u for some

u ∈ H. Then (η−1)(
∑

h∈UH
h)α = qdim P(V )∑

x∈H(aη−1x−ax)[x] = qdim P(V )(· · ·+(ay−az)[z]+0[u]),
so we are reduced to the case of dimension n− 1.

Assume now that dim P(V ) = 1.
(1) If ℓ does not divide q+1 then there is y ∈ P(V ) such that (q+1)ay 6=∑x∈P(V ) ax. If ℓ divides

q + 1 then fix an arbitrary y ∈ P(V ) with ay 6= 0 (so that (q + 1)ay = 0 6= ∑
x∈P(V ) ax).

Fix some involution ξ ∈ PGL(V ) such that ξy 6= y. Then (ξ − 1)(
∑

h∈U{y}
h)α = (qay −∑

x 6=y ax)([ξy]−[y]) = ((q+1)ay −∑x∈P(V ) ax)([ξy]−[y]). Thus, assuming that either ℓ does

not divide q + 1 or
∑

x∈P(V ) ax 6= 0, the K[PGL(V )]-submodule generated by α contains

[ξy] − [y], and therefore, it contains K[P(V )]◦.
Assume now that ℓ divides q + 1 and

∑
x∈P(V ) ax = 0. Then −a−1

y (
∑

h∈U{y}
h)α =∑

x∈P(V )[x].
Assuming in addition that α /∈ K ·∑x∈P(V )[x], fix some z ∈ P(V ) with az 6= ay. Let

T ⊂ PGL(V ) be the torus fixing y and z. Then (
∑

h∈T h)α = (
∑

x 6=y,z ax)
∑

x 6=y,z[x] + (q−
1)ay[y] + (q − 1)az [z] = −(ay + az)

∑
x 6=y,z[x] − 2ay[y] − 2az[z].

If ℓ = 2, fix some ξ ∈ PGL(V ) such that ξy = z and ξz 6= y. Then (
∑

h∈T h)α =
−(ay +az)

∑
x∈P(V )[x]+(ay +az)[y]+(ay +az)[z], so (ξ−1)(

∑
h∈T h)α = (ay +az)([ξz]−[y]),

and thus, the K[PGL(V )]-submodule generated by α contains [ξz] − [y], and therefore, it
contains K[P(V )]◦.

If ℓ 6= 2, fix some involution ξ ∈ PGL(V ) such that ξy = z. Then (ξ − 1)(
∑

h∈T h)α =
2(ay −az)([y]− [z]), and thus, the K[PGL(V )]-submodule generated by α contains [y]− [z],
and therefore, it contains K[P(V )]◦.

(2) Any nonzero element of K[P(V )] can be considered as an element α =
∑

x∈P1(Fq) ax[x] for

a finite subfield Fq ⊂ F . Extending Fq in F if necessary, we may assume that ax = 0
for at least one x. Then it follows from (1) that any K[PGL2(Fq)]-submodule containing α
contains K[P1(Fq)]◦, and thus, any K[PGL(V )]-submodule containing α contains K[P(V )]◦.

�

Proposition 5.4. Let F = Fq be a finite field, V be an F -vector space and K be a field extension
of F . Then the K[PGL(V )]-module K[P(V )]◦ is simple if and only if dimV = 2.

Proof. Let Symn
FV := (V ⊗n

F )Sn be the n-th symmetric power of V , so dimF Symn
FV =

(dim V +n−1
dimV −1

)
.

The natural morphism of K[PGL(V )]-modules K[P(V )]◦ = K[(V \ {0})/F×]◦ → K ⊗F Symq−1
F V ,∑

x ax[x] 7→∑
x axx̃

q−1, is nonzero. One has dimK K[P(V )]◦ = |P(V )| − 1 = (qdimV − q)/(q − 1).
If dimV = 2 then dimK K[P(V )]◦ = dimK K ⊗F Symq−1

F V = q.

Assuming that (qn − q)/(q − 1) ≥
(n+q−2

n−1

)
for some n ≥ 2, let us show that (qn+1 − q)/(q − 1) >(

n+q−1
n

)
. Indeed,

(
n+q−1

n

)
=
(
n+q−2
n−1

)
(n+q−1)/n <

(
n+q−2

n−1

)
q ≤ q(qn−q)/(q−1) < (qn+1−q)/(q−1).

This implies that dimK[P(V )]◦ > dimK ⊗F Symq−1
F V if dimV > 2, and thus, the above mor-

phism is not injective, so K[P(V )]◦ is not simple.
The simplicity in the case dimV = 2 is shown in Lemma 3.4. �
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