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solution for the steady state probabilities of the reliable three-stage

model with exponential service time. Buzacott 12] obtained an approximate

numerical solution for a discrete time model for two machines involving

random failure and repair. Schick and Gershwin I20] obtained a closed form

solution to a similar model. In [8] Gershwin and Schick extended their

results to three machine transfer lines. Only recently Gershwin and Berman

[7] analyzed analytically and obtained a compact efficient solution for a

two machine transfer line in which service times as well as failure and

repair times are exponential. Other related studies are Buzacott [3], [4],

Hillier and Boling [13], Knott [18], Groover [11] and Buchan and

Koenisberg [5].

The exponential service time assumption that is typical to many of the

studies mentioned above, may become quite troublesome for the majority of

actual transfer lines. In this paper the service time for the two machines

is assumed to be Erlang with K (K>1) phases. The advantage of this assump-

tion is that very large classes of distributions can be approximated very

closely by Erlang distributions [17]. We also assume in this paper that

the machines are unreliable with exponential distributions for the failure

times as well as for the repair times.

First we describe the model and develop the detailed balance equations

to obtain all steady state probabilities. Next, based on the detailed

balance equations, theoretical results for some important performance

measures as efficiency of each one of the machines and production rate of

the system are obtained. Next a compact and efficient method for obtaining

all the steady state probabilities is presented. Finaly, some limit cases

are analyzed and their results indicate good agreement with intuition.
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2. THE MODEL

The transfer line is sketched in Fiqure 1. Parts (workpieces) enter

the first machine from outside the system. Each part is operated upon in

Machine 1, then proceeds to Machine 2. After being operated on in Machine

2 the part leaves the system. It is assumed that a large reservoir of

parts is available to Machine 1.

MACHINE 1 STORAGE MACINE 2
L.,p, r V N / L2P2r2

Fig. 1 Two Machine Transfer Line

Failure and repair times for Machine i are assumed to he exponential

random variables with parameters pi, ri; i=1,2 respectively. The service

time distributions for both machines i is Erlang with K(K>1) phases and

parameter Pi; i=1,2. (We let K be the same for the two machines only for

convenience). We also assume that when a machine fails the piece that

was being operated when the machine failed must start its service from

the beginning, that is from the first phase.

The capacity of the storage buffer is N units. A consequence of the

Erlang distribution assumption is that we can now find each one of the two

machines in K+1 states, since in addition to being under repair the

machines can also be operational in any one of the K phases of the Erlanq

distribution.

Let i and j represent the states of each of the two machines;
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i,j=0,1,...,K. By i=O we mean that Machine 1 is under repair and by i=m

(1<m<K) we mean that Machine 1 is operational and ready to perform the

m'th Erlang phase. There are however conditions on the storage buffer under

which a machine cannot operate even if it is operational (in any one of the

Erlang phases). Machine 1 can operate on a part only if it is operational

and storage is not full, otherwise there is no place for parts from Machine

1 to go. Machine 2 can operate on a part only if it is operational and

storage is not empty, otherwise there are no pieces for Machine 2 to

operate on. We also assume that if Machine i fails the parts go back to

the reservoir or the storage for i=1,2 respectively. We consider the

system in the steady state. Due to our assumptions we have a Markovian

model.

Let n denote the number of units in the storage plus the number of

units in Machine 2 (which can be zero or one). Let (n,i,j) be the state of

the system; n=0,1,...,N; i,j=O,1,...,K; K>1. By our assumptions Machine 2

cannot operate on a part unless n>O and Machine 1 cannot operate on a part

unless n<N. Therefore, the probability of any state with n=O and j>l or

n=N and i>1 is zero. That is,

P(O,i,j) = 0 j=2,...,K; i=0,1,...,K (2.1)

P(N,i,j) = 0 i=2,...,K; j=0,1,...,K (2.2)

It is important to observe that (2.2) includes also j>1. The reason for

this is that we don't want the first machine to operate on a piece when

there are N-1 units in the storage, one unit in Machine 2 and Machine 1 is

operational since the second machine may fail before the first machine
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completes its service which would result in N units in the storaqe and

therefore stop of production in Machine 1.

Now we can derive all the detailed balance equations of the system.

We distinguish between four sets of detailed balance equations corres-

ponding to the values of i and j.

For i=j=O we have
K K

P(n,O,O) (rl+r 2) = C P(n,i,O)pl + X P(n,O,j)p2 , 1n<N-1 (2.3)
i=l j=l
K

p(O,O,O) (rl+r 2) = ~ P(O,i,O)Pl (2.4)
i l
K

P(N,O,O) (rl+r2)= X P(N,O,j)p 2 (2.5)
j=l

These equations represent the fact that the system enters state

(n,O,O) either from state (n,i,O) (nIN, ihO) if Mlachine 1 fails or from

state (n,O,j) (nfO, j$O) if Machine 2 fails.

For i=O, jhO,
K

P(n,O,j) (rl+V2+p2) = P(n,O,j-1)v'2 + P(n,i,j)p1 , 2<j<K, 1<n<l-1
i=l

(2.6)

K
P(n,O,1) (rl+l92+P2) = P(n+l,O,K)P2 + ~ P(n,i,1)p1 + P(n,O,O)r2,

1<n<N-1 (2.7)

K
P(O,O,1)rl = P(1,O,K)p2 + C P(O,i,l)pl + P(O,O,O)r2 (2.8)

P(N,O,j) (rl+112+p2) = P(N,O,j-1)I2, 2<j<k (2.9)

P(N,0,1) (rl+P2+p2) = P(N,O,O)r 2 (2.10)



For j=O, i7O,

K
P(n,i,O) (pl+pl+r2) = P(n,i-l,O)'l1 + . P(n,i,j)p 2,

j=l
2<i<K, l<n<N-1 (2.11)

K
P(n,l,0) (pl+pl+r 2) = P(n-1,K,O)'l + ~ P(n,l,j)p 2 + P(n,O,O)rl,

j=1
1<n<N-1 (2.12)

P(O,i,O) (pl+Pl+r2) = P(O,i-l,O)I11 , 2<i<K (2.13)

P(0,1,0) (pl+l1+r2) = P(O,O,O)rl (2.14)

K
P(N,l,O)r2 = P(N-1,K,O)I'1 +C P(N,l,j)p 2 + P(N,O,O)rl (2.15)

j=1

For i/O, jVO,

P(n,i,j) (P 1+P 2 +P 1+P2 ) = P(n,i-l,j)Fl + P(n,i,j-1)P2 ,

2<i<K; 2<j<K, 1<n<N-1 (2.16)

p(n,l,j) (P1+P2+11+P2) = P(n-l,K,j)l + P(n,l,j-1)1

+ p(n,O,j)rl, 2<j<K, 1<n<N-1 (2.17)

P(n,i,l) (pl+P2+_+12) = P(n,i-1,1)p1 + P(n+l,i,K)I'2

+ P(n,i,O)r2, 2<i<K, 1<n<N-1 (2.18)

P(n,l,1) (Pl+P2+P1+P2) = P(n-1,K,1)1l + P(n+1,1,K)P 2

+ P(n,O,1)rl + P(n,l,O)r2, 1<n<N-1 (2.19)

P(O,i,l) (pl+ll) = P(O,i-l,1)1l + P(l,i,K)P 2 + P(O,i,O)r2

2<i<K (2.20)
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p(0,1,1) (p1+p1) = P(1,1,K)p 2 + P(O,O,1)r1 + P(O,1,0)r2 (2.21)

p(N,1,j) (P2+P2) = P(N-1,K,j)iP1 + P(N,1,j-1)J12 + P(N,O,j)r1,

2<j<K (2.22)

P(N,1,1) (P2+lP2) = P(N-1,K,1)lp1 + P(N,O,1)r1 + P(N,1,0)r2 (2.23)

N K K
I I I P(n,i,j) = 1 (2.24)

n=O i=O j=O

The total number of these detailed balance equations is N(K+1)2-2K2+3.

Obviously when K or in particular N are large, computational effort becomes

very great. Later in the paper we present an efficient algorithm for

obtaining the steady state probabilities. In the next section we derive

some theoretical results based on the detailed balance equations.

3. THEORETICAL RESULTS

In this section we derive some theoretical results based on the

detailed balance equations. These results, which are an extension of

similar results in [7] help us to gain more understanding of the system.

In the following lemma we prove that some of the steady state

probabilities are zero.

Lemma 1

P(O,i,O) = P(N,O,j) = 0 For i,j = O,1,...,K (3.1)
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Proof Equation (2.13) and (2.14) imply

P(Osi,O) = +~1+ rpl+plsr2 'P(O,O,0) i=l,...,K (3.2)
P2-1 -p1+2 p,1+r2

Equation (2.4) can be written as

Plrl K 'P l i-i
P(O,O,O)(rl+r 2) = P(O,OO ) p 1+l+r2 (3.3)

pi +1-'l r2 i=l P1 ? l~r2 (3.3)

or

P(,O,O) r2 + rlr2 + r2 + Pl+r (3.4)Pl~r 1 2 1p22 p,+p,+r,2 (314)

This implies that P(0,O,0)=O and (3.2) implies that P(O,i,O)=O for

i=l,...,K.

In a similar way from equations (2.9) and (2.10) we can derive

P(N,O,j) = 0 For j = 1,...,K.

Lemma 2 asserts that the rate of transitions from the set of states in

which Machine 2 is under repair to the set of states in which Machine 2 can

produce a piece is equal to the rate of transitions in the opposite

direction.

Lemma 2

N K N K K
r2 P(ni, P(n,i,0) = 2 P(ni (3.5)

n=O i=0 n=l i=0 j=l

Probability that Probability that machine
machine 2 is under 2 can operate on a piece
repair



Proof

Let us add equations (2.3) - (2.5) and (2.11) - (2.15).

N N-1 K
n P(n,O,O)(rl+r2) + 7 X P(n,i,O)(Pl+Ill+r 2) + P(N,l,O)r 2 (3.6)

n=O n=O i=l

N-1 K N K
: p(n,i,O)p1 + 7 7 P(n,O,j)p 2n=O i=1l n=l j=l

N-2 K K-1 N-1 K K
+ 7 X P(n,i,O)p 1 + ~ P(N-l,i,O)p1 + I I I P(n,i,j)p2

n=O i=l i=l n=l i=l j=l

N-1 K
+ X P(n,O,O)r1 + P(N-1,K,O)l 1 + 7 P(N,l,j)p2 + p(N,O,O)r1

n=O jl

This can be reduced to (3.5).

Lemma 3 establishes a corresponding result for Machine 1.

Lemma 3
N K N-1 K K

rl 7 7 P(n,O,j) = P1 7 p(n,i,j) (3.7),
n=O j=O n=O i=l j0O

Probability that Probability that Machine
Machine 1 is under 1 can operate on a piece
repair

Proof: Let us add equations (2.6) - (2.10) and (2.3) - (2.5).
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N N K
E P(n,O,O)(rl+r2) + I I P(n,O,j)(rl+iP2+P 2) + P(O,O,1)rl

n=O n=l j=l

N-1 K N K N K
:= I I P(n,i,O)pl + I I P(n,O,j)p 2 + I I P(n,O,j)p2

n=O i=l n=l j=l n=2 j=l

K-1 N-1 K K N

+ I P(l,O,j)p2 + I I I P(n,i,j)pl + I P(n,O,O)r2j=l n i i=l j=l n=l

K
+ P(IlO,K)iP2 + I P(Oil)Pl + P(O,O,O)r2 (3.8)

il

This can be reduced to (3.7)

Lemma 4 shows that the rate of transitions between the set of states

with Machine 1 in the K'th phase and n pieces in the line and the set of states

with Machine 2 in the Kth phase and n+l pieces in the line are equal for O<n<N-l.

Lemma 4

K K
kP I P(n,K,j) = 2 I P(n+l,i,K) O<n<N-1 (3.9)

j=0 i=O

Proof: First for n=O let us add all the detailed balance equations

with n=O. Using (2.1) and the results of Lemma 1 we derive (3.9) for-n=O.

Let us assume now that (3. 9) holds for n=m, O<m<N-2. We now prove for

n=m+l. Let us add all the detailed balance equations with n=m+l; O<m<N-2.

This can be reduced to (3.10).
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K K
P(m+l,K,O)pJ1 + I P(m+l,i,K) P2 + 7 P(m+I,K,j)p1

1=0 j=l

(3.10)
K K

: P(m,K,j)pl + I P(m+2,i,K)lp2j=0 i=0

But by the induction assumption

K K
'P1 I P(m,K,j) = P2 7 P(m+l,i,K) (3.11)

j=0 i=0

and therefore by substitution (3.11) in (3.10) we obtain (3.9) for

n=m+l. Finally, for n=N-1, by adding all the detailed balance equations

with n=N and by using (2.2) and Lemma 1 we derive (3.9) for n=N-1.

Lemma 5 shows that the rate of transitions between the set of states

in which Machine 1 is in the K'th phase and the storage is not full, and the

set of states in which Machine 2 is in the K'th phase and storage is not

empty are equal.

There is an important interpretation of Lemma 5. Let us define Ei to

be the probability that Machine i can produce a piece, then

N-1 K
E1 = I I P(n,K,j) (3.12)

n=O j=0

N K
E2 = I I P(n,i,K) (3.13)

n=l i=O
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The quantity JiEi can be interpreted as the rate at which pieces emerge

from Machine i. Lemma 5 says that the rates are equal, so that equation

(3.14) below is then a conservation of flow law.

Lemma 5

llE 1 = :2E 2 (3.14)

Proof: Let us sum (3.9) from n=O to n=N-l. We get:

N-1 K N-1 K

!l1 I I P(n,K,j) = l2 I X P(n+l,i,K) (3.15)
n=O j=O n=O i=O

which is (3.14).

Ei defined in (3.12) and (3.13) for i=1,2 can be interpreted as the

efficiency of Machine i, since it is the fraction of time in which the i'th

machine produce pieces. The production rate of the system, p, can be

defined as the rate at which pieces emerge from Machine i, so that

P = p2E2 = JlE1 (3.16)

using the result of Lemma 5. In other words the production rate of the

system is equal to the production rate of each one of the two machines.

4. EFFICIENT METHOD TO CALCULATE STEADY STATE PROBABILITIES

4a. ANALYSIS OF INTERNAL EQUATIONS

We define internal states (n,Si,S 2) as states with l<n<N-l and

S1,S 2 = 0,1,...,K. We define internal equations as all the detailed
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balance equations that do not include boundary states (states with n=O or

n=N). We guess a solution to the steady state probabilities in the

internal equations, of the form

P(n,S1,S2) = CX Yll Y12 Y21 Y 22 (4.1)

where for i=1,2,

O if Si = 0
ii S= O (4.2)

1 if Si > l

0 if Si. = O
Yi = j (4.3)

Si-l -if Si > l

By substituting (4.1) - (4.3) in the internal equations (2.6), (2.11),

(2.16), (2.17) and (2.18) we get the following five nonlinear equations in

the five unknowns X, Y11, Y12, Y21, Y22-

Y11Y21(P1+P2+P1+P2 ) = Y21P1+Y11P2 (4.4)

1-YK

Y11(P+lJ1+r2 )= P1 + P 2Y22Y11 -Y2(45)

1-Y11
Y21(r1+P2+P2 ) = P2 + P1Y12 Y211-yll (4.6)

= Y12Y21P + 2+ XYr (4.7)
Xy12 y2 l ( +P 2+ + ) = Y12 11 Y21'Pl + xY12l2+ xY21r (4.7)
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K-i (4.8)
YllY22 (P1+P2+P1+iP 2) = 2211 + XY11Y 22Y21 P2 + Y11r2

These five equations in five unknowns can be reduced to a single non

linear equation in Y11 (Equation (A.1) in the Appendix 1). It is possible

to verify from (4.4) - (4.8) and (A.1) that one of the solutions of

the non linear equation is always Yll Y2 and X=l.

This equation has M(M<2K+2) solutions.

Thus the internal probabilities are expected to be of the form:

M n 1 ( 2 a2Y)
P(n,Sl,S2) = CXY Y li2) Y:yl1Y 12~Y21LY 22

n=O,1,...,N; S1,S2 = O,1,...,K

In the next subsection we analyze the boundary equations. Before that

let us refer again to the equation (A.1). It has been mentioned that the

number of distinct solutions of this equation is M(M<2+2K). Clearly the

condition whether M is less or equal to 2+2K depends on the relationship

between the parameters of the model. For example, for K=2 let us consider

equations (4.4) - (4.8). From equations (4.4) and (4.6) we can obtain that

Y12 can be written:

(-Y 1 1) [Yl (rl - P1 - + ] (4.10]
(4.10)

12 Yll P1 (1- 11i)

Let us now compute the product of Y11Y12 using (4.10),

Yll (rl - Pi - i 1) + Pi
Y Tly 1.2 = - Pi R+Y, I (4.11)

Yll1 2 - P1 (l+Yl) (1

Obviously if we have

rl - P1 - 1 = p1 or 1i = r-P (4.12)
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then Y11Y12 = , and we must have therefore M<1+2K = 5. The conclusion

of this discussion is that assuming that (4.9) indeed presents the form of

the internal probabilities we must have the following interesting result if

(4.12) holds:

p(n,O,j) = (i ) P(n,2,j) j=0,1,2; n=1,2,...,N-1 (4.13)

Furthermore, in the next subsection we derive an expression also for the

boundary probabilities and by examining them we can get that (4.13)

satisfies also n=O and n=N. In Appendix 2 we show an example in which

(4.12) holds and (1-) =1. By following a similar discussion we can get

another condition to M<1+2K for K=2:

-2 p2 (4.14)½ 2

and then we also have

P(n,i,O) = (2) P(n,i,2) i=0,1,2, n=O,1,...,N (4.15)
P2

Finally it is important to note that many queuing theory problems

yield product form solutions. For example see Jackson [16], Gordon and

Newell [10], Basket, Chandy, Muntz and Palacious Ill and others. It is also

interesting to observe that when K=1 in (4.9) both Y11 and Y21 disappear

and the analysis gets to be less complicated; see Gershwin and Berman [7].

4b. ANALYSIS OF BOUNDARY EQUATIONS

There are a total of 2(2K+2) boundary states. The probabilities of

2(K+1) of them are specified by Lemma 1. The other 2(K+l) boundary
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probabilities are characterized by the following theorem.

THEOREM 1

(a) The steady state probabilities for the boundary states (O,K,1) and

(N,1,K) are in the internal form, i.e.,

M K-1
P(O,K,1) = I CQ Y11 , Y12, Y22Q (4.16)

Q=l

M N K-1
P(N,l,K) = I C, X, Y12Q Y21, Y22Q (4.17)

(b) The rest of the boundary states have the following steady state

probabilities:

I/+Pl '12 M K-1
P(Oil) P(O,K,l) - CX Y 12y Y Y (4.18)

K-.-i K + Kl2 Pl+P K-2-s
+ (Y11~ 1- J

P(OOl) = (PI+-) P(O,K,l) - 2 1 CX Y Y K- Y221 (4.19)

F (~K-- 1
[ K-1 (pl/ K-1 pl W p1+1 K-l-s

(P2+ ) i P2Qi+ ' (Y2KK-2 P2 2 K-2-s· ¥1~ 2l s i
[ 122
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For i=1,...,K-1

(P2+v2)K P1 M N-1 K-i (4.21)
P(N,l,0) = 2K-1 P(N,1,K) - - i C XN 1llk Y12" Y22 (

(2 r2 ' -

(P2+P'2) K - 1 K-1 K-l ( P2+V2K-1-s

K-2 2r 21Q S=l r2 12Q P2
K 2

(c) The coefficients C.; Q=1,...,M satisfy the following 2K+3 linear

equations:

M K-1
CQ1Kl119 Y12Q= 0 (4.22)

cKi- Y12 Y 1 022 1 j = 2, ...,K (4.23)
k=1

M N K-l1
1 C1Xk Y21k Y22 = 0 (4.24)

' ,N i ;Q K-1 (4.25)
1 ckX R Y 11R Y129 Y 21k Y22k = 0 i = 2,...,K

.~=1
K

l1 P(O,K,1) =2 1 P(l,i,K) (4.26)
i=O
K

112 P(N,1,K) = 1l1 X P(N-1,K,j) (4.27)
j=0

and the normalization equation

N K K
7 1 P(N,S1,S2) = (4.28)

n=O Sl=O s2=0

Proof

The expressions (4.16) - (4.21) and (3.1) satisfy all the detailed

balance equations (2.3) - (2.24) except for the equations (2.8), (2.12) for

n=1, (2.17) for n=1, (2.7) for n=N-1, (2.15), and (2.18) for n=N-l.



Equation (2.12) for n=1, can be expressed using (4.9) and (3.1) as

M 1- 1
CYX~ (pl +pl +r2) Y12 -rl- P2 '2kY22Yl-Y 2li 0 (4.29)

,=l1

By substituting (4.5) into (4.29) we can rewrite (4.29)

M X
CQ Y (Y12P1l - Yllrl) = (4.30)

Equations (4.4) and (4.7) yield that

X K-1
--- (Y12'1 - Y11lrl) = P1Yll Y12Q For Q = 1,...,M. (4.31)

By substituting (4.31) into (4.30) we get (4.22). In a similar way,

equation (2.7) for n=N-1 using (4.6), (4.4) and (4.8) implies equation

(4.24). Equation (2.17) for n=1 can be expressed using (4.9), (2.1) and

(3.1) for j = 2,...,K as

M j-2

Ct¥ 21 Z Y22k [XYl2 Y21Q(Pl+P 2+P1l+P2) - p2XY12- r1XQ Y21 Z 0
(4.32)

But (4.32) can be expressed using (4.7) as

'PI CQ Y11Q Y12Q Y21Q Y22Q = = 2,...,K (4.33)l K CYll y Y2 1 Y22a = 0 j = 2,...,K
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which implies (4.23) from part (c) of the Lemma. In a similar way by using

(4.8), equation (2.18) for n=N-1 implies equation (4.25). Finally

equations (4.26) and (4.27) can be obtained by substituting (4.16), (4.18)

and (4.19) into equation (2.8) and (4.17), (4.20) and (4.21) into equation

(2.15). The number of equations specified by part (c) of the Lemma is 3+2K

whereas the number of the unknowns Ck is M<2+2K. Therefore only M

equations from the set (4.22) - (4.28) are required to obtain all Cr;, =

1,2,...,M. When M=2+2K then any one of the 2+2K equations (4.22) - (4.27)

can be ignored. When M<2+2K the choice of the M equation should be done

more carefully. For example when K=2 and (4.12) holds then (4.24) and

(4.25) are linearly dependent (equation (4.24) is (N1/P1) times equation

(4.25)). In this case any two equations from the set (4.22) - (4.27) such

that at least one of them is (4.24) or (4.25) can be ignored.

4cG. THE METHOD

Now we can suggest the following method to obtain all the steady state

probabilities:

STEP 1: Find Y11k, k=1,2,...,M using (A.1) in Appendix 1.
STEP 2: Obtain Yi2k, Y21 , Y22Q, Xk, k=1,2,...,M using (4.4) - (4.8).
STEP 3: Use (4.91, (3.1) and (4.16) - (4.21) to solve equation (4.28) and

M-1 equations of the set (4.22) - (4.27). (Refer to the
discussion in section 4.b), to obtain C ; 9=1,2,...M.

STEP 4: Generate all steady state probabilities using (4.9) for internal
states, (3.1) and (4.16) - (4.22) for all the rest.

The reduction in the number of computations is tremendous.

For example when K=5, N=100, the number of detailed balance equations is

3553 whereas 2+2K=12!!!
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It is easy to verify that the production rate of the system can be

derived easily by using the coefficients Ck; Q=1,2,...M without the need to

obtain all steady state probabilities first. By substituting (3.1) and

(4.9) in (3.13) we can obtain

M K-1 N
E2 : I CZY22 Y21k X (A +Y1 2kAkB+Y 12(A+X) (4.34)

where for = 1,2,...,M

X -XN

Ak l-X IF Xk 1
k - 1XIFX l(4.35)

N-l IF X, =1
and

Y K

B = ll 1l9 (4.36)

In the next section we analyze some limit cases in order to gain

better understanding of the model.

5. LIMIT CASES

In this section we analyze the behavior of the system when we let

various parameters of the system approach their limits.

First we show that the efficiency of the two machines E1 and E2 that

were defined in Section 3 can be rewritten in a different way.

Lemma 6

1 (rPpl) ( l) KP(nON) (5.1)
E1 ( +l)1

K Gil i

i=l "l+Ply

2 + ( 2) P(nfO) (5.2)

=1K (2 J
i~l +pP22
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Proof Let Si be the state of machine i, i=1,2. First we show that:

P(Si=O and nON) p1+rl (nN) (5.3)

By definition:

P(S1=O and nON)

P(SO/nN) P(SO and nN) + P(SO and nN) (5.4)

Applying Lemma 3 in (5.4) yields (5.3).

From (2.11) - (2.14) and (2.16) - (2.21) we can obtain:

P(S1=i and nN) =:( +P1) P(Sl=i-l and nfN) (5.5)

i = 2,... ,K

or that,

P(Sl=i and nN) = ) P(Sl and nON) (5.6)

i = 2,...,K

Finally, (5.1) can be derived from (5.3) and (5.6). In a similar way (5.2)

can be also obtained.

Expressions (5.1) and (5.2) are obvious due to the conditions under

which the machines can produce a piece. For the first machine the

requirement is that the machine is operational (not under repair) and the

storage is not full which are expressed in the left and right terms of

(5.1). In addition to that given that the first machine is not under

repair it should be also in the last phase of the Erlang distribution which

is expressed in the middle term of (5.1). In a similar way we can explain

(5.2).

Let us define the isolated production rate of machine i as the

production rate machine i would have if it were not part of a system with

other machines and storage; i=1,2. Let Pi denote the isolated production

rate of machine i;
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pi = piei (5.7)

where ei is the isolated efficiency of machine i: (ei is the fraction of

time that an isolated machine i is in the K'th Erlang phase).

ei = ri K

jK /"j d i(5.8)

=l\~ +Pi/

The following lemma is the basis for the analysis.

Lemma 7

(a) Pi 0--O implies P -..-,O, Ei - e i, Ej -- O, jvi,

(b) pi - - implies P -opj, Ei 0, Ej -- ej, Jfi.

Proof From (5.7) and Lemma 5:

p!P(nVN) = p2P(nfO) (5.9)

(a) P1 - O implies P(nFO) - 0 and therefore P - O and E2 - O. But

P(nO) - 0 implies P(nWN) - 1 and therefore E1 - el. The same proof

holds when P2 approaches zero.

(b) pl - - implies P(nVN) - 0 and therefore E1 - O0. But P(nIN) - 0

implies P(n1O) -- 1 and therefore E2 -, e2 and P - P2. The same proof

holds when P2 approaches infinity.

A direct consequence of Lemma 7 (b) is:

P - aPi ifj=1,2 (5.10)
1j -00

This result is intuitive since as p1 gets larger the buffer tends to be

never empty and P(n~O) in (5.2) approaches 1. When P2 gets larger the
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buffer tends to be never full and P(nAN) in (5.1) approaches 1. These are

shown in Figures 2 and 3 for a simple example in which 1=P2=2, P1=9, P2=7,

r1=3, r2=6, K=2 and N=3. We can also observe from the figures that as the

service rate for either one of the two machines approaches zero the

production rate approaches zero as well. But this is a direct consequence

of Lemma 7(a). It is also clear since once a machine stops its production

the storage will be affected in such a way that the other machine will soon

stop its production as well.

Another consequence of Lemma 7(a) is that when the repair rate of

any machine approaches zero the production rate approaches zero. Figures 4

and 5 show the production rate as a function of the repair rate for

machine 1 and 2 respectively. It is interesting to observe that as the

repair rate for machine i approaches infinity, the production rate

approaches a constant. This constant is the result of a similar model in

which repairs for machine i are instantaneous.

A reverse situation occurs when the failure rate of a machine

approaches its limit. This is shown in Figures 6 and 7 for the same simple

example. As the failure rate of machine i approaches infinity the

production rate approaches zero; i=1,2 which is a direct consequence of

Lemma 7(a). When the failure rate approaches zero the production rate

approaches a constant. The constant for machine i is the result of a

similar model in which no failures for machine i can occur; i=1,2.

Finally from our computational experience the following result was

also observed:

P * Min {i }
N -. i=1,2 (5.11)
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Fig. 2 Production Rate vs Service Rate of the First Machine

P

0.06

0.04

0.02

0 2 4 6 8 10 12 14 / 2

Fig. 3 Production Rate vs Service Rate of the Second Machine
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Fig. 4 Production Rate vs Repair Rate of the First Machine
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Fig. 5 Production Rate vs Repair Rate of the Second Machine
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Fig. 6 Production Rate vs Failure Rate of the First Machine
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Fig. 7 Production Rate vs Failure Rate of the Second Machine
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This result is also intuitive. As N gets larger the buffer can be affected

in two different ways:

(i) If the first machine is less productive than the second one (smaller

isolated production rate) the storage will tend to be never full in (5.1).

(ii) If the first machine is more productive than the second one the

storage will tend to be never empty in (5.2). For our simple example the

first machine is less productive and indeed as shown in Figure 8 the

production rate of the system approaches the isolated production rate of

the first machine. If we refer again to (5.10) we can conclude-that

instantaneous service rate for the more productive machine or infinite

buffer storage size leads to the same production rate.
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APPENDIX 1

EQUATION FOR Y

Equation (A.1) for Yll was obtained from equations (4.4) - (4.8) by

means of the MACSYMA system (MACSYMA, 1977). The following notation applies

to this equation.

A = Y

M2 = 

P1 = P1

P2 = P2

PRl = r

R2 = r2

The computer printout of the equation is shown on the page following.
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K - 1
(1 - A) A M1 M2 (A (RI - P1 - Mi) + M1)

K
/((1 - A ) P1 (A (P2 + P1 + M2 + M1) - M1)

(i - A) M2 (P2 + P1 + M2 + Mi) (A (Ri - P1 - Mi) + M1)

K
(1 - A ) P1 (A (P2 + P1 + M2+ MD1) - M1)

(1 - A) M2 (A (R1 - P1 - M1) + M1) A M2 RI
…)______________._ ))

K A (P2 + PI + M2 + Mi) - M1
A (1 - A ) P1 -

A M2 - K A M2 K
P2 (-------------------------- ) (1 -(------------------------- )

A (P2 + P1 + M2 + M1) - Mi A (P2 + P1 + M2 + M1) - Mi

((P2 + P1 + M2 + M1) (A (P2 + Pi + M2 + Mi) - M1)

A M2 A M2 (R2 - P2 - M2)
(- ) (-------------------------- + M2)

A (P2 + Pi + M2 + M1) - Mi A (P2 + Pi + M2 + M1) - Mi

A M2 K
/(M2 P2 (1 - ( ----------------------- ) ))

A (P2 + P1 + M2 + M1) - M1

A M2
- M1 (A (P2 + Pi + M2 + Mi) - Ml) (1 - --------------------------

A (P2 + P1 + M2 + M1) - Mi

A M2 (R2 - P2 - M2)
(-------------------------- + M2)/(A M2 P2
A (P2 + P1 + M2 + M1) - M1

A M2 K
(1 (--------------------------) ))- A R2)

A (P2 + P1 + M2 + M1) - M1

A M2
/((A (P2 + P1 + M2 + M) - M1) (1 - --------------------------

A (P2 + P1 + M2 + M1) - M1

A M2 (R2 - P2 - M2)
(-------------------------- 1 M2))
A (P2 + P1 + M2 + M1) - M1

--0 (A.1)
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APPENDIX 2

In the following example K=2, N=8, p1=1, p2=2, P1=1, P2=3, r1=3, r2=2. If we observe

Table 1 we can see that p(n,O,j) = p(n,2,j) j=0,1,2; n=1,2,...,8. But this is obvious if

we apply the condition stated in equation (4.12): P 2 

TABLE 1: STEADY STATE PROBABILITIES FOR THE CASE:

l1 = 1, V2 = 2, Pl = 1, P2 = 3, r1 = 3, r2 = 2, K = 2, N = 8

n/(i,j) 00 10 20 01 02 11 12 21 22

0 0 0 0 0.0196 0 0.0344 0 0Ao196 0

1 0.0122 0.0229 0.0122 0.00615 0.00246 0.0135 0.0049 0.00615 0.00246

2 0.0136 0.0268 0.0136 0.00655 0.00261 0.013 0.00518 0.00655 0.00261

3 0.0149 0.0295 0.0149 0.00718 0.0286 0.0142 0.00565 0.00718 0.00286

4 0.0163 0.0323 0.0163 0.00787 0.00313 0.0156 0.0062 0.00787 0.00313

S 0;0179 0.0354 0.0179 0.00862 0.00343 0.0171 0.00679 0.00862 .00343

6 0.0196 0.0389 0.0196 0.00938 0.00375 0.0188 0.00747 0.00938 0.00375

7 0.0207 0.0439 0.0207 0.00915 0.00385 0.0226 0.00864 0.00915 0.00385

8 0 0.096 0 0 0 0.0402 0.0169 0 0


