
Solving for Syntax

by

Sagar Indurkhya

B.Sc., Massachusetts Institute of Technology (2012)

M.Eng., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

November 9, 2020

Certified by. .
Robert C. Berwick

Professor of Computational Linguistics and Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Solving for Syntax
by

Sagar Indurkhya

Submitted to the Department of Electrical Engineering and Computer Science
on November 9, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Among the key questions that have guided research into the nature of human language for
the past sixty years, two have been particularly salient: (1) What constitutes knowledge of
language? and (2) How is that knowledge acquired? In particular, children using limited
input examples, in effect small “sample size” complexity, all acquire their native language.

This thesis attempts to answer these two questions by developing a novel, explicit, com-
putational implementation of one contemporary approach to human language known as the
Minimalist Program. It provides an answer to question (1) via the explicit axiomatization
of a declaratively specified logical model of minimalist grammars, consisting of a set of for-
mally specified principles and a single structure-building operation, along with a lexicon. By
rendering these axioms along with the lexicon as a set of constraints that are expressed us-
ing Satisfiability Modulo Theories (SMT), that must be simultaneously satisfied, the thesis
demonstrates how to “solve for syntax”: it uses an SMT-solver to computationally deduce
the syntactic derivations that associate particular input sentences with their logical forms.
In this sense, the thesis demonstrates that the proposed linguistic principles underlying such
a system, including the contemporary notion of “economy conditions” in syntax are both
coherent and consistent, and, importantly, that minimalist syntax can be placed within a
classical “parsing as deduction” framework.

This thesis then extends the system developed to address question (1) to provide an an-
swer to question (2), by modeling acquisition as the construction of a succession of lexicons,
starting from some initial, essentially empty lexicon, and then augmenting that lexicon.
To do this, it uses a set of (input sentence, skeletal “meaning”) pairs intended to reflect
minimally cognitively faithful constraints to infer what lexicon would bridge from input to
quasi-meaning forms, again using an SMT-solver. Using this approach, the thesis explicitly
demonstrates that a wide variety of syntactic sentence constructions in English can be ac-
quired in this way, sufficient to account for the infinite generative capacity of at least one
portion of English syntax. Importantly then, the thesis thus demonstrates that a contem-
porary minimalist syntactic system, with a single, fixed structure-building operation leaving
only the lexicon to vary, can serve as the foundation for a contemporary approach to lan-
guage acquisition. In this sense, the implementation serves as a concrete, computationally
realized contemporary instantiation of the model of language acquisition set out in Aspects
of the Theory of Syntax.

Thesis Supervisor: Robert C. Berwick
Title: Professor of Computational Linguistics and Computer Science and Engineering

This doctoral thesis has been examined by a Committee of the Department of
Electrical Engineering and Computer Science as follows:

Professor Robert C. Berwick .
Chairman, Thesis Committee & Thesis Supervisor

Professor of Computational Linguistics and Computer Science and Engineering

Professor Sanjoy K. Mitter .
Member, Thesis Committee

Professor of Electrical Engineering

Professor Sandiway Fong. .
Member, Thesis Committee

Associate Professor of Linguistics

This thesis is dedicated to my wife, Ramita.

Acknowledgments

This thesis would not have been possible without the support and guidance of my teachers,
colleagues, family, and friends.

To begin, I would like to express my gratitude to my wife, Ramita. This thesis would
not have happened without her love, patience, and encouragement.

I want to thank my parents, Gopal and Vandana Indurkhya, for teaching me right from
wrong and instructing me on the importance of doing good work. I would also like to thank
my brother, Aakash Indurkhya, who continually reminded me to have fun along the way.

My friends have supported and encouraged me throughout my graduate career. I want
to thank Apoorva Murarka for thirteen years of camaraderie and the many long walks on
weekends to Harvard Square when we talked about everything. I want to thank my labmate,
Beracah Yankama, for the many years of discussing scientific puzzles together over lunch.
I want to thank my friend Parama Pal for the fun conversations we had while studying
together. I would also like to give a special thank you to Nicholas Tang, Austen J. Heinz,
Nirav Lakhani, and Hattie Chung for encouraging me to pursue a career in research.

I have been lucky to participate in and learn from a wonderful community of scientists.
I would like to thank Barbara Lust, Norbert Hornstein, Charles Yang, Patrick Winston,
Aline Villavicencio, Marco Idiart, Robert Ajemian, Hector Vazquez, Annika Heuser, Gabriel
Teixeira, Basil Saeed, and Run Chen.

Throughout my graduate career, I have been guided and supported by my mentors. I am
indebted to Myra Halpin, Marvin Minsky, Thomas F. Knight, Gerald J. Sussman, Anselm
Levskaya, and Vivienne Sze.

I would also like to express my gratitude to my thesis committee members, Sandiway
Fong and Sanjoy Mitter, for their help in guiding and reviewing this thesis and for asking
many illuminating questions along the way. I am grateful to Sandiway for the many exciting
conversations in which he patiently explained to me the intricacies of syntax.

Finally, I would like to acknowledge and thank my mentor, teacher, and friend, Robert
C. Berwick, for inspiring me and guiding me throughout my graduate career. His influence
and impact on this thesis cannot be overstated. He has taught me what it means to be a
scholar and a scientist.

Contents

1 Introduction 12
1.1 Parsing . 14
1.2 Acquisition . 18
1.3 Summary of Key Ideas and Takeaways . 23

2 Modeling a Minimalist Parser with Satisfiability Modulo Theories 26
2.1 Overview . 27
2.2 Minimalist Grammars . 28
2.3 Model Definition . 39

2.3.1 The Lexicon Model . 39
2.3.2 The Derivation Model . 53
2.3.3 Constraining the Derivation Model with Interface Conditions 69
2.3.4 Connecting the Derivation Model to the Lexicon Model 81

2.4 Parsing . 82
2.4.1 Constructing the Model of the Parser 84
2.4.2 Checking the Model and Recovering a Minimalist Derivation 89
2.4.3 Evaluating the Parser . 92

2.5 Summary . 96

3 Inferring Minimalist Grammars with an SMT-Solver 105
3.1 Overview . 105

3.1.1 The System Acquires Knowledge of Language 105
3.1.2 The System Solves for Syntax . 107
3.1.3 The System Models a Child Language Learner 109
3.1.4 Psychological Fidelity . 113
3.1.5 Summary of Key Insights and Ideas 115

3.2 An Instantaneous Model of Acquisition . 116
3.2.1 Economy Considerations . 117
3.2.2 Inferring an Optimal Grammar via Model Checking 121
3.2.3 Learning a Grammar of Matrix Clause Constructions 125
3.2.4 Summary . 153

3.3 An Incremental Model of Acquisition . 154
3.3.1 Extending the Instantaneous Model 155
3.3.2 Learning Embedded Clauses . 162
3.3.3 Summary . 181

Page 6/200

4 Towards Explanatory Adequacy 183
4.1 Incorporating a Theory of Phases . 184
4.2 Extending the LF and PF Interfaces . 186
4.3 Curtailing Overgenerations . 189
4.4 Incorporating Principles of Language Learning 191
4.5 Summary . 193

Bibliography 195

Page 7/200

List of Figures

1-1 A high level system diagram that illustrates an abstract view of the compu-
tational system underlying the human language faculty. 13

1-2 A derivation for the sentence “John has told Mary a story.” that satisfies
interface conditions 𝐼26 in Table-1.1 and that may be yielded by the lexicon
listed in Table 1.3. 19

1-3 An illustration of the SMT-model constructed by the instantaneous acqui-
sition procedure to infer the lexicon listed in Table 1.3 from the Primary
Linguistic Data (PLD) listed in Table 1.1. 22

2-1 A high level system diagram that illustrates how the Human Language Faculty
(HLF) pairs meaning with sound. 28

2-2 A minimalist derivation of the sentence “What has the man eaten?” that
satisfies the LF and PF interface conditions listed under entry 𝐼1 in Table 2.4. 30

2-3 A screenshot of the MG(X)-Explorer software developed for this study. 33
2-4 A fragment of an MG derivation for the phrase “the ball.” 34
2-5 An MG derivation of the sentence “She will pass the ball.” 35
2-6 An MG derivation of the (polar) interrogative “Will he pass her the ball?” . . 37
2-7 An MG derivation of the Wh-question “What was she passed?” 38
2-8 Model Formula Diagram for the SMT-Model of the Minimalist Parser. 39
2-9 Lexicon Model Architecture Diagram. 46
2-10 Lexical Feature Sequence Diagram. 47
2-11 An illustration of how the members of the derivation node sort are organized

into overt and covert (derivation) node-sequences. 62
2-12 An MG derivation for the interrogative “Who has John given money to?” that

satisfies interface conditions 𝐼13 in Table-3.2. 71
2-13 Configurations of the Double VP-shell Structure that encode argument struc-

ture for various types of predicates. 73
2-14 Connecting a Derivation Model to the Lexicon Model. 83
2-15 Derivation output by the parser for interface conditions 𝐼2 (listed in Table 2.4)

using the lexicon in Table 2.1. 97
2-16 Derivation output by the parser for interface conditions 𝐼3 (listed in Table 2.4)

using the lexicon in Table 2.1. 98
2-17 Derivation output by the parser for interface conditions 𝐼4 (listed in Table 2.4)

using the lexicon in Table 2.1. 99
2-18 Derivation output by the parser for interface conditions 𝐼5 (listed in Table 2.4)

using the lexicon in Table 2.1. 100

Page 8/200

2-19 Derivation output by the parser for interface conditions 𝐼6 (listed in Table 2.4)
using the lexicon in Table 2.1. 101

2-20 Derivation output by the parser for interface conditions 𝐼7 (listed in Table 2.4)
using the lexicon in Table 2.1. 102

2-21 Derivation output by the parser for interface conditions 𝐼8 (listed in Table 2.4)
using the lexicon in Table 2.1. 103

3-1 The acquisition procedure constructs an SMT-model that consists of (i) a
derivation model (an SMT-formula) for each pairing of LF and PF interface
conditions in the primary linguistic data, and (ii) a lexicon model (an SMT-
formula) that is (optionally) partially specified. 111

3-2 The acquisition trajectory, over which the learner consumes the PLD, is di-
vided into stages, with each stage corresponding to a batch of the PLD. . . . 114

3-3 The Grammar Inference Module. 118
3-4 Two distinct derivations that satisfy the interface conditions stipulated in

entry 𝐼1 of Table 3.2. 133
3-5 Two distinct derivations that satisfy the interface conditions stipulated in

entry 𝐼3 of Table 3.2. 134
3-6 Two distinct derivations that satisfy the interface conditions stipulated in

entry 𝐼26 of Table 3.2. 135
3-7 Two distinct derivations that satisfy the interface conditions stipulated in

entry 𝐼27 of Table 3.2. 136
3-8 A minimalist derivation yielded by the inferred lexicon (listed in Table-3.3)

that satisfies the interface conditions stipulated in entry 𝐼13 of Table-3.2. . . . 141
3-9 Derivations yielded by the (inferred) lexicon listed in Table 3.3. 147
3-10 Statistics for the Lexicon Inferred from each Prefix Subset of the Primary

Linguistic Data (PLD). 152
3-11 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼29 of Table 3.9. 166
3-12 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼31 of Table 3.9. 167
3-13 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼32 of Table 3.9. 168
3-14 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼34 of Table 3.9. 169
3-15 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼36 of Table 3.9. 170
3-16 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼37 of Table 3.9. 171
3-17 A derivation yielded by the (final) inferred lexicon (listed in Table 3.11) that

satisfies the interface conditions stipulated in entry 𝐼38 of Table 3.9. 172

Page 9/200

List of Tables

1.1 The primary linguistic data that is processed by the (instantaneous) acquisi-
tion procedure. 15

1.2 The optimal minimalist lexicon that was inferred from the primary linguistic
data listed in Table 1.1 using the (instantaneous) acquisition procedure. . . . 17

1.3 A factored view of the optimized inferred lexicon (listed in Table 1.2) that
was the output of the (instantaneous) acquisition procedure being applied to
the primary linguistic data listed in Table 1.1. 18

2.1 An MG lexicon that the procedure for parsing may take as input. 29
2.2 Finite sorts and descriptions of the roles they play in the SMT-model of the

minimalist parser. 40
2.3 Uninterpreted functions and descriptions of the roles they play in the SMT-

model of the derivation and the SMT-model of the lexicon. 41
2.4 A corpus of (LF and PF) interface conditions that the procedure for parsing

may take as input. 85
2.5 Descriptions of model parameters for the procedure for parsing. 88
2.6 Model interpretation for the derivation of the sentence: “What has the man

eaten?” (see 𝐼1 in Table 2.4). 91
2.7 Model interpretation of the binary uninterpreted functions 𝑑 and 𝑑⋆ for the

derivation of the sentence: “What has the man eaten?” (see 𝐼1 in Table 2.4). . 93
2.8 Statistics for the derivations yielded by the parser when processing the inter-

face conditions listed in Table 2.4 using the lexicon listed in Table 2.1. 95

3.1 Descriptions of model parameters for the acquisition procedure. 122
3.2 The primary linguistic data used in the computational experiments presented

in §3.2.3. 126
3.3 A factored view of the optimized inferred lexicon (listed in Table 3.6) that was

the output of the acquisition procedure applied to the primary linguistic data
listed in Table 3.2 using the valuation of model parameters listed in Table 3.5. 127

3.4 A summary of the derivations yielded by the optimized inferred lexicon (listed
in Table 3.3). 128

3.5 Valuation of model parameters for the computational experiment carried out
in §3.2.3. 128

3.6 The optimal minimalist lexicon that was inferred from the primary linguistic
data listed in Table 3.2. 137

3.7 A suboptimal minimalist lexicon that was inferred immediately after process-
ing the primary linguistic data (listed in Table 3.2) but prior to optimization. 138

Page 10/200

3.8 Classification of the entries in the primary linguistic data. 142
3.9 A presentation of the three batches of primary linguistic data that the incre-

mental acquisition procedure successively consumes (after having consumed
the first batch of the primary linguistic data, which is listed in Table 3.2). . . 163

3.10 Valuations of optimization metrics for each run of the incremental acquisition
procedure. 165

3.11 A factored view of the final inferred lexicon that was produced by first pro-
cessing the PLD listed in Table 3.2 using the instantaneous acquisition proce-
dure, and then processing the PLD listed in Table 3.9 using the incremental
acquisition procedure. 173

3.12 A summary of the derivations yielded by the final inferred lexicon (listed in
Table 3.11) to satisfy the pairings of LF and PF interface conditions presented
in batches 2-4 of the PLD (listed in Table 3.9). 174

3.13 A summary of the unbounded set of derivations that the final inferred lexicon
(listed in Table 3.11) is able to yield. 181

Page 11/200

Chapter 1

Introduction

Human beings are unique among other species in part due to their innate endowment of a
faculty of language, referred to as the Human Language Faculty (HLF), that provides them
with the capacity to acquire and exercise knowledge of language (Berwick and Chomsky,
2016). (See Fig. 1-1 for a high level system diagram that illustrates this abstract view of
the computational system underlying the human language faculty, 𝐶𝐻𝐿𝐹 .) Knowledge of
language, for a particular language, consists of a generative grammar (i.e. a linguistic the-
ory) that specifies how a countably infinite set of interpretable hierarchical structures,1 each
pairing meaning with sound,2 may be derived via the recursive combination of terms drawn
from a finite lexicon of words, such that related interpretations are assigned structures that
are correspondingly systematically related via structural transformations (Chomsky, 1986).
Notably, every child has the capacity to acquire knowledge of any natural language if ex-
posed to the appropriate Primary Linguistic Data (PLD) during the first several years of
their life (Everaert et al., 2015). Scientific investigations of human language that attempt
to provide linguistic theories that explain these observations have been driven by two fun-
damental questions: (1) What constitutes knowledge of language? (2) How is do children
acquire knowledge of language, particularly in light of arguments from the Poverty of the
Stimulus?3 This thesis provides answer to these two questions by leveraging advances in
state-of-the-art, high-performance automatic theorem provers to develop within the frame-
work of the Minimalist Program novel procedures for language parsing and language acquisi-
tion that are grounded in the “parsing as deduction” and the “logic as grammar” frameworks
respectively.456

The thesis answers the first question, what constitutes knowledge of language, by devel-
oping an axiomatization of minimalist syntax that is expressed using a logic, Satisfiability

1Each natural language expression must be assigned zero or more (syntactic) structures, each of which is
uniquely associated with a distinct interpretations of the expression.

2Classically, natural languages are said to pair together the domains of sounds and meaning; modern
linguistics generalizes these domains to the notion of interfaces, with sound mapping to the Sensory-Motor
interface and meaning mapping to what we may call a Conceptual-Intensional interface.

3See (Berwick et al., 2011) for a review of arguments from the Poverty of the Stimulus.
4The Minimalist Program (Chomsky, 1990; Chomsky, 1995) is the leading framework in contemporary

linguistics for studying the faculty of language and is a reformulation of an earlier linguistic framework from
the 1980’s (the theory of Principles and Parameters) that seeks to assess the degree to which the design of
the faculty of language is optimal with respect to the specifications of the interface requirements of a natural
language.

5See (Pereira and Warren, 1983) for an introduction to the “parsing as deduction” framework.
6See (Rayner et al., 1988) for an introduction to the “logic as grammar” framework.

Page 12/200

Figure 1-1: Minimalist theories of syntax assert that the Human Language Faculty (HLF)
pairs meaning, which is processed by the Conceptual-Intensional (CI) System, with sound,
which is processed by the Sensory-Motor (SM) System. Within the Human Language Faculty
(HLF), the Computational System (𝐶𝐻𝐿𝐹) derives a syntactic structure the syntactic atoms
in the Lexicon via the repeated application of the recursive binary function merge; after
each step in the derivation of the syntactic structure (i.e. application of merge), relevant
information is sent to the LF Interface via Transfer, and to the PF Interface via Spellout.

Modulo Theories (SMT), and then introducing a procedure for parsing Minimalist Gram-
mars (MGs) that has been implemented as a working computer program.7 The procedure
takes as input a (partial) specification of LF and PF interface conditions and a specification
of an MG lexicon. The procedure outputs a derivation that can be yielded by the speci-
fied lexicon and that satisfies the specified interface conditions. The procedure for parsing
operates by constructing an SMT-model of a parser, based on this axiomatization of min-
imalist syntax, that is further constrained by its inputs (i.e. the interface conditions and
the lexicon). It then uses an SMT-solver to obtain a satisfiable interpretation (of this SMT-
model) from which an MG derivation can be (automatically) recovered. In this way, the
thesis demonstrates that the proposed linguistic principles underlying such a system (i.e. an
axiomatization of minimalist syntax) can be placed within a classical “parsing as deduction”
framework in which the specified interface conditions and lexicon constitute “knowns” and
the derivation (i.e. the output of the parser) constitutes the “unknown” that is being solved
for. A detailed, technical presentation of this procedure for parsing is provided in Chapter 2.

The thesis answers the second question, how knowledge of language is acquired, by devel-
oping a procedure for acquiring minimalist grammars, implemented as a working computer
program, that takes the form of a computational model of a child language learner and
accords with the criterion for models of language acquisition set out in (Chomsky, 1965).
The procedure takes as input a (possibly empty) initial lexicon and a finite sequence of
pairings of LF and PF interface conditions that stands in for the PLD that a child language
learner is exposed to. The procedure outputs a lexicon that is compatible with the given
PLD in that the output lexicon can yield, for each pair of LF and PF interface conditions
in the input sequence, a derivation that satisfies those interface conditions. (That is, the
procedure augments the input lexicon so that it can be used by the procedure for parsing
to successfully parse each pair of LF and PF interface conditions in the input sequence.)
This procedure operates by constructing an SMT-model of a (minimalist) grammar that is
an extension of the SMT-model of the parser and that is constrained by the input – i.e. the
initial lexicon and the sequence of interface conditions – and uses an SMT-solver to obtain

7See (Stabler, 1996) for an introduction to the MG formalism; see §2.2 for a review of this formalism.

§1.0 Page 13/200

a satisfiable interpretation of this SMT-model from which the smallest possible MG lexicon
(that is compatible with the input) can be (automatically) recovered an MG lexicon; in this
way, the procedure falls within the “logic as grammar” framework, with the input (initial)
lexicon and sequence of interface conditions constituting “knowns” and the output lexicon
(a superset of the initial lexicon) and derivations it yields (that satisfy the input sequence of
interface conditions) constituting the “unknowns.” The thesis then presents computational
experiments that demonstrate the capacity of the model to acquire knowledge of syntax from
psychologically plausible inputs, and that a contemporary minimalist syntactic system, with
a single, fixed structure-building operation leaving only the lexicon to vary, can serve as the
foundation for a contemporary approach to language acquisition – in this sense, the imple-
mentation serves as a concrete, computationally realized contemporary instantiation of the
model of language acquisition set out in (Chomsky, 1965). A detailed, technical presentation
of this procedure for acquisition is given in Chapter 3.

To summarize, in both the case of parsing and the case of acquisition, this thesis provides
an implemented python procedure that does the following. First, the procedure constructs an
SMT-model – i.e. a conjunction of logical formulae expressed using a first-order quantifier-
free multi-sort logic extended with the theory of uninterpreted functions with equality – and
constrains the model using the inputs to the procedure. Second, the procedure uses the Z3
SMT-solver (De Moura and Bjørner, 2008) to identify a solution to the system of equations
(i.e. a satisfiable interpretation of the SMT-model) from which the desired output may be
(automatically) recovered. It is in this sense that, colloquially speaking, the procedures for
parsing and acquisition introduced in this thesis may be said to be “solving for syntax.”

The remainder of this chapter is organized as follows: first, §1.1 previews the procedure
for parsing that will be presented in Chapter 2; then, §1.2 previews the procedures for acqui-
sition that will be presented in Chapter 3; finally, §1.3 summarizes the key ideas underlying
this thesis as well as the lessons learned.

1.1 Parsing

This thesis develops a minimalist parser, developed and implemented as a working computer
program, that aims to model the processing and comprehension of a natural language ex-
pression by the language faculty of a competent adult. The parser is a competence model –
that is, it puts aside considerations of computational performance.

The parser takes as input a pairing of LF and PF interface conditions – i.e. simply put,
a sentence annotated with interface conditions (encoding word order, predicate-argument
relations, and agreement relations) – and an MG lexicon that consists of a set of lexical
entries, each of which pairs a phonological form with a finite sequence of syntactic features
(i.e. a feature matrix). The parser outputs a derivation that may be yielded by the input
lexicon and that satisfies the supplied LF and PF interface conditions. Notably, the parser
can yield derivations that include empty categories, syntactic movement (of phrases) and
head-movement. To illustrate the problem that the procedure must solve, consider using the
procedure to parse the interface conditions listed in entry 𝐼26 in Table 1.1 using the lexicon
presented in Table 1.2. The parser must yield a derivation – i.e. a syntactic structure – that
can be assembled from the lexical entries listed in the lexicon, and that: (i) establishes the
local syntactic relations required by LF interface conditions encoding predicate-argument
structure and agreement relations, and (ii) derives the externalized form of the sentence
(“John has told Mary a story.”) listed under the PF interface condition in accordance with

§1.1 Page 14/200

ID PF Interface Conditions LF Interface Conditions

𝐼0 who has eaten/V icecream/N? 𝜃eaten[𝑠 : who, 𝑜 : icecream], 𝐴𝑔𝑟has[𝑠 : who]
𝐼1 icecream/N was eaten/V. 𝜃eaten[𝑜 : icecream], 𝐴𝑔𝑟was[𝑠 : icecream]
𝐼2 who was eating/V icecream/N? 𝜃eating[𝑠 : who, 𝑜 : icecream], 𝐴𝑔𝑟was[𝑠 : who]
𝐼3 was pizza/N eaten/V? 𝜃eaten[𝑜 : pizza], 𝐴𝑔𝑟was[𝑠 : pizza]
𝐼4 what has john/N eaten/V? 𝜃eaten[𝑠 : john, 𝑜 : what], 𝐴𝑔𝑟has[𝑠 : john]
𝐼5 has mary/N eaten/V pizza/N? 𝜃eaten[𝑠 : mary, 𝑜 : pizza], 𝐴𝑔𝑟has[𝑠 : mary]
𝐼6 was john/N eating/V pizza/N? 𝜃eating[𝑠 : john, 𝑜 : pizza], 𝐴𝑔𝑟was[𝑠 : john]
𝐼7 what was mary/N eating/V? 𝜃eating[𝑠 : mary, 𝑜 : what], 𝐴𝑔𝑟was[𝑠 : mary]
𝐼8 what was eaten/V? 𝜃eaten[𝑜 : what], 𝐴𝑔𝑟was[𝑠 : what]
𝐼9 was mary/N given/V pizza/N? 𝜃given[𝑜 : pizza, 𝑖 : mary], 𝐴𝑔𝑟was[𝑠 : mary]
𝐼10 what has mary/N given/V john/N? 𝜃given[𝑠 : mary, 𝑜 : what, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : mary]
𝐼11 mary/N has given/V john/N money/N. 𝜃given[𝑠 : mary, 𝑜 : money, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : mary]
𝐼12 who was money/N given/V to/P? 𝜃given[𝑜 : money, 𝑖 : to who], 𝐴𝑔𝑟was[𝑠 : money]
𝐼13 who has john/N given/V money/N to/P? 𝜃given[𝑠 : john, 𝑜 : money, 𝑖 : to who], 𝐴𝑔𝑟has[𝑠 : john]
𝐼14 was the boy/N sleeping/V? 𝜃sleeping[𝑠 : the boy], 𝐴𝑔𝑟was[𝑠 : the boy]
𝐼15 the boy/N has slept/V. 𝜃slept[𝑠 : the boy], 𝐴𝑔𝑟has[𝑠 : the boy]
𝐼16 john/N was told/V nothing/N. 𝜃told[𝑜 : nothing, 𝑖 : john], 𝐴𝑔𝑟was[𝑠 : john]
𝐼17 someone/N has known/V everything/N. 𝜃known[𝑠 : someone, 𝑜 : everything],

𝐴𝑔𝑟has[𝑠 : someone]
𝐼18 who was asking/V nothing/N? 𝜃asking[𝑠 : who, 𝑜 : nothing], 𝐴𝑔𝑟was[𝑠 : who]
𝐼19 nothing/N was asked/V. 𝜃asked[𝑜 : nothing], 𝐴𝑔𝑟was[𝑠 : nothing]
𝐼20 everything/N was known/V. 𝜃known[𝑜 : everything], 𝐴𝑔𝑟was[𝑠 : everything]
𝐼21 who was everything/N told/V to? 𝜃told[𝑜 : everything, 𝑖 : to who], 𝐴𝑔𝑟was[𝑠 : everything]
𝐼22 john/N has asked/V someone/N everything/N. 𝜃asked[𝑠 : john, 𝑜 : everything, 𝑖 : someone],

𝐴𝑔𝑟has[𝑠 : john]
𝐼23 what was someone/N asked/V? 𝜃asked[𝑜 : what, 𝑖 : someone], 𝐴𝑔𝑟was[𝑠 : someone]
𝐼24 who has told/V someone/N the story/N? 𝜃told[𝑠 : who, 𝑜 : the story, 𝑖 : someone], 𝐴𝑔𝑟has[𝑠 : who]
𝐼25 a boy/N was eating/V the pizza/N. 𝜃eating[𝑠 : a boy, 𝑜 : the pizza], 𝐴𝑔𝑟was[𝑠 : a boy]
𝐼26 john/N has told/V mary/N a story/N. 𝜃told[𝑠 : john, 𝑜 : a story, 𝑖 : mary], 𝐴𝑔𝑟has[𝑠 : john]
𝐼27 the story/N was told/V to a boy/N. 𝜃told[𝑜 : the story, 𝑖 : to a boy], 𝐴𝑔𝑟was[𝑠 : the story]
𝐼28 what was john/N asking/V? 𝜃asking[𝑠 : john, 𝑜 : what], 𝐴𝑔𝑟was[𝑠 : john]

Table 1.1: Primary Linguistic Data (PLD). The learner is presented with a sequence of
pairs of PF and LF interface conditions – i.e. a sequence of sentences annotated with
syntactic relations. The acquisition procedure takes the PLD as an input. The PF interface
conditions consist of a tokenized sentence, with some tokens having their category pre-
specified (indicated by a suffix of a slash followed by the category). The LF interface
conditions consists of: (i) locality constraints that include agreement (𝐴𝑔𝑟) and predicate-
argument structure (i.e. a 𝜃 grid), with the predicate indicated in the suffix and the subject,
object and indirect object components marked by “s:”, “o:” and “i:” respectively; (ii) the
type of the sentence – i.e. either declarative or interrogative – is also annotated on each
sentence, indicated by the end-of-sentence punctuation. The LF interface conditions are
entirely hierarchical/structural in the constraints they impose – i.e. the values filling the
slots consist of sets of tokens, not sequences of tokens.

a specifier-head-complement linear ordering. In particular, note that the derivation output
by the procedure (see Fig.1-2) that satisfies these interface conditions utilizes syntactic
movement to establish both a relation between the predicate “told” and the argument “John”
and an agreement relation between “John” and “has”. Note that, although a chart parser for
MGs may be used to produce such a derivation that yields the externalized (linear) form
stipulated in the PF interface conditions, it remains unclear how one can ensure that the
derivation produced also satisfies the specified LF interface conditions. A further question is

§1.1 Page 15/200

how would the parser function in the case that the LF and PF interface conditions are only
partially stipulated. For example, suppose only the LF interface conditions are provided and
we wish to use the parser to obtain a derivation that satisfies these LF interface conditions
and from which we will derive the satisfied PF interface conditions (as in the case of someone
with a thought they wish to externalize to speech). With these questions in mind, let us
now turn examine how the procedure for parsing operates, noting that the design of the
parser will enable it to answer such questions.

The parser operates by first constructing an SMT-model from the input lexicon and
interface conditions and then uses an SMT-solver to solve the model and recover the output
derivation from the solution to the model. Let us now consider this process in more detail.
First, the parser constructs an SMT-model of a minimalist derivation (i.e. a conjunction of
SMT-formulae) that centers on an axiomatization of minimalist syntax grounded in universal
principles of language (i.e. the constituent axioms form an encoding of Universal Grammar).
Then, the parser derives axioms (expressed as SMT-formulae) from the supplied interface
conditions and adds them to the model of the derivation, thereby constraining the model of
the derivation so that any derivation recovered from a solution to the model accords with
the supplied interface conditions. Next the parser constructs an SMT-model of a minimalist
lexicon and hardcodes some of the free variables in the model so that only the supplied
lexicon may be recovered from the solution to the model. The parser then forms the SMT-
model as the conjunction of the constrained derivation model, the hardcoded lexicon model,
and additional axioms that connect the model of the derivation to the model of the lexicon
so that any derivation recovered from a solution to the model must be one that can be
yielded by the supplied lexicon. Finally, the parser uses an SMT-solver to check whether or
not there exists a satisfiable interpretation of the (constructed) SMT-model – i.e. whether
or not there exists an assignment of values to the free-variables in the SMT-formulae that
make up the SMT-model such that the conjunction of the formulae evaluates to true; if
a satisfiable interpretation of the model exists, then the SMT-model identifies one such
satisfiable interpretation of the model and the derivation that constitutes the output of the
parser is (automatically) recovered from the (identified) satisfiable model interpretation.

To summarize, the parser constructs and then solves a system of logical equations in
which the lexicon and interface conditions (i.e. the inputs to the parser) are known quantities
and the derivation is an unknown quantity that will be solved for, so that the approach
taken may be described as “parsing via equation solving.” In this way, the parser is a
modern adaptation of the “parsing as deduction” framework outlined in (Pereira and Warren,
1983), with an axiomatization of minimalist grammars (MGs) in place of an axiomatization
of context free grammars (CFGs), pairings of LF and PF interface conditions replacing
strings, and an SMT-solver used instead of a Prolog engine. A declaratively specified logical
model of minimalist syntax has a particular advantage: although minimalist syntax is a
derivational theory, and thus computations are modeled as flowing bottom-up in constructing
the derivation, we can stipulate the interface conditions that are met, and the logic program
can work out deductions working backwards through the derivation as required; this is not
something a typical bottom-up (chart) parser8 can do, and it enables the model of the
minimalist parser to be adapted to the task of grammar induction.

Notably, the model may be used to search for derivations that satisfy a partial specifica-
tion of the lexicon and interface conditions, thereby enabling alternative uses of the parser

8See (Harkema, 2001) and (Niyogi and Berwick, 2005) for examples of agenda-based parsers for Minimalist
Grammars.

§1.1 Page 16/200

{eating, eaten, asking, asked, known}/𝑉 :: = 𝑥0,∼𝑥0
{given, asked, told}/𝑉 :: = 𝑥0,= 𝑥0,∼𝑥0

𝜖/𝐶𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑣𝑒 :: = 𝑥0, 𝐶
𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ::<= 𝑥0,+𝑧, 𝐶

𝜖/𝑣 ::<= 𝑥0,∼𝑥0
𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ::<= 𝑥0, 𝐶

𝜖/𝑣 ::<= 𝑥0,= 𝑥0,∼𝑥0
to/𝑃 :: = 𝑥0,∼𝑥0

{a, the}/𝐷 :: = 𝑥0,∼𝑥0,−𝑙
{a, the}/𝐷 :: = 𝑥0,∼𝑥0

{what,who}/𝐷 ::∼𝑥0,−𝑧
{what,who}/𝐷 ::∼𝑥0,−𝑙,−𝑧

{has,was}/𝑇 :: = 𝑥0,+𝑙,∼𝑥0
{sleeping, slept}/𝑉 ::∼𝑥0

{pizza, everything, john,mary, nothing, icecream, someone,money}/𝑁 ::∼𝑥0,−𝑙
{story, pizza, everything, john,mary, boy, nothing, icecream, someone,money}/𝑁 ::∼𝑥0

Table 1.2: The optimal minimalist lexicon that was inferred from the PLD listed in Table 1.1
using the (instantaneous) acquisition procedure developed in this thesis. For each entry in
the PLD, the derivation yielded by the lexicon both agrees with the interface conditions
stipulated in that entry, and also aligns with the prescriptions of contemporary theories of
minimalist syntax. Each lexical entry consists of a phonological form paired with a lexical
feature sequence (i.e. a sequence of syntactic features); a double-colon indicates that each
member of the set of phonetic forms on the left hand side is paired with the lexical feature
sequence on the right hand side. The phonetic form 𝜖 is covert (unpronounced). A feature
has: (i) a value from a finite set of categories; (ii) a type, which is either selector, selectee,
licensor or licensee, indicated by the prefix =, ∼, + and − respectively; a < or > prefixed
before a selector prefix indicates that the selector triggers left or right head-movement re-
spectively. There is also a special feature, 𝐶, that serves to indicate the completion of a
parse. See Table 1.3 for a factored view of this lexicon.

such as:

(i) parsing a given pairing of LF and PF interface conditions with only a partially specified
lexicon, as in the case of a child encountering a new verb, and recovering the (novel)
lexical entry used by the derivation output by the parser;

(ii) parsing with a specification of a lexicon and LF interface conditions, but without any
PF interface conditions supplied, as in the case of a child externalizing a thought, and
recovering the PF interface conditions satisfied by the derivation output by the parser;

(iii) parsing with a specification of a lexicon and PF interface conditions, but without any
LF interface conditions supplied, as in the case of a child parsing speech, and recovering
the LF interface conditions satisfied by the derivation output by the parser.

In this way, the model enables the study of the extent to which the lexicon and the interface
conditions constrain the space of possible derivations that a parser must search through.
More generally, a declaratively specified, logical model of a grammar enables one to focus
on developing the logical axioms that make up the model and ensuring they are faithfully
grounded in universal principles of language, while delegating to the SMT-solver the task of

§1.1 Page 17/200

ID Category Features Phonological Forms

pi
zz

a

ev
er

yt
hi

ng

jo
hn

m
ar

y

no
th

in
g

ic
ec

re
am

so
m

eo
ne

m
on

ey

st
or

y

bo
y

a th
e

to sl
ee

pi
ng

sl
ep

t

ha
s

w
as

ea
ti

ng

ea
te

n
as

ki
ng

kn
ow

n
as

ke
d

to
ld

gi
ve

n

w
ho

w
ha

t
𝜖

L1 𝑉 = 𝑥0,∼ 𝑥0 · · · · · · · · · · · · · · · · · ××× ××× ××× ××× ××× · · · · ·
L2 𝑉 = 𝑥0,= 𝑥0,∼ 𝑥0 · ××× ××× ××× · · ·
L3 𝐶𝐷𝑒𝑐𝑙. = 𝑥0, 𝐶 · ×××
L4 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0,+𝑧, 𝐶 · ×××
L5 𝑣 <= 𝑥0,∼ 𝑥0 · ×××
L6 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0, 𝐶 · ×××
L7 𝑣 <= 𝑥0,= 𝑥0,∼ 𝑥0 · ×××
L8 𝑃 = 𝑥0,∼ 𝑥0 · · · · · · · · · · · · ××× · · · · · · · · · · · · · ·
L9 𝐷 = 𝑥0,∼ 𝑥0,−𝑙 · · · · · · · · · · ××× ××× · · · · · · · · · · · · · · ·
L10 𝐷 = 𝑥0,∼ 𝑥0 · · · · · · · · · · ××× ××× · · · · · · · · · · · · · · ·
L11 𝐷 ∼ 𝑥0,−𝑧 · ××× ××× ·
L12 𝐷 ∼ 𝑥0,−𝑙,−𝑧 · ××× ××× ·
L13 𝑇 = 𝑥0,+𝑙,∼ 𝑥0 · · · · · · · · · · · · · · · ××× ××× · · · · · · · · · ·
L14 𝑉 ∼ 𝑥0 · · · · · · · · · · · · · ××× ××× · · · · · · · · · · · ·
L15 𝑁 ∼ 𝑥0,−𝑙 ××× ××× ××× ××× ××× ××× ××× ××× · · · · · · · · · · · · · · · · · · ·
L16 𝑁 ∼ 𝑥0 ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× · · · · · · · · · · · · · · · · ·

Table 1.3: Factored View of the Optimized Inferred Lexicon. This is a factored view of
the optimized inferred lexicon (listed in Table 1.2) that was the output of the acquisition
procedure being applied to the primary linguistic data listed in Table 1.1. The 27 columns
each code for a distinct phonological form; there are 26 overt phonological forms, and one
covert phonological form (i.e. 𝜖). The 16 rows each code for a distinct lexical feature
sequence. An entry in the table indicates that the pairing of the associated phonological
form and lexical feature sequence is an entry in the lexicon. Since every entry in the lexicon
can be uniquely factored apart into a pairing of a phonological form and a lexical feature
sequence, there is a one-to-one mapping between the entries in this table and the entries in
the lexicon. The rows and columns have been seriated (using the hamming distance metric)
so as to visually group together similar entries.

carrying out the appropriate deductions that constitute the model-checking process; impor-
tantly, in the case that a parse cannot be solved (i.e. there is no satisfiable interpretation
of the model), the SMT-solver can identify which model axioms – i.e. those that encode
principles of Universal Grammar or those derived from the supplied interface conditions –
contradict one another (e.g. by identifying minimum unsatisfiable cores), so that we might
gain insight into how the universal principles of language underlying these axioms are in
conflict with one another and with the conditions imposed to be satisfied at the LF and PF
interfaces respectively.

1.2 Acquisition

This thesis develops a novel procedure for inferring Minimalist Grammars that has been
implemented as a working computer program. This procedure takes as input: (i) a finite
sequence of pairings of LF and PF interface conditions (i.e. (sentence, skeletal “meaning”)
pairs) that is referred to as the Primary Linguistic Data (PLD), and (ii) a initial (minimalist)
lexicon (that may be empty). The procedure outputs a minimalist lexicon that is a superset
of the initial lexicon and that is compatible with the input PLD – i.e. it can yield, for
each pairing of LF and PF interface conditions in the PLD, a derivation that satisfies the
LF and PF interface condition; notably, the output lexicon is the smallest possible lexicon

§1.2 Page 18/200

Figure 1-2: A derivation for the sentence “John has told Mary a story.” that aligns with
form prescribed by contemporary theories of minimalist syntax. This derivation satisfies
interface conditions 𝐼26 in Table-1.1 and may be yielded by the lexicon listed in Table 1.3.
The leaf nodes are lexical items selected from the lexicon. The derivation is assembled in
a bottom-up manner via repeated applications of the structure-building operation merge.
The feature sequences displayed in non-leaf nodes have a dot, · , separating features that
have already been consumed (on the left) from those that have not (on the right). Nodes
with the same head have the same color. The dashed arrow denotes phrasal movement –
i.e. “John” moves from the specifier position of the projection of the (covert) light verb 𝜖𝑣 to
the specifier position of the tense marker “has.” The dotted arrow denotes head movement
– i.e. the lexical head “told” undergoes 𝑉 -to-𝑣 head-movement.

(with respect to the number of lexical entries and the total number of symbols appearing
in the lexicon) that includes the initial lexicon and is compatible with the input PLD. To
take an example of the problem that the procedure is tasked with solving, observe that the
procedure can infer the lexicon listed in Table 1.2 from the PLD listed in Table 1.1 and an
empty initial lexicon. This requires that the procedure identify both a set of finite sequences
of syntactic feature and associations between members of this set and members of a set of
phonological forms, with each such association coding for a lexical entry. (See Figure 1-3
for an illustration of this.) Although we might imagine solving this task ourselves by hand

§1.2 Page 19/200

when the PLD is fairly small, the problem becomes increasingly difficult as the number and
diversity of pairings of interface conditions appearing in the PLD increases. Let us now
consider in further detail how the procedure solves this problem.

The procedure operates by first constructing an SMT-model of a minimalist grammar
that is an extension of the SMT-model of a minimalist parser (introduced in §1.1), and then
using an SMT-solver to solve this model and recover the inferred lexicon from the solution
to the model. The procedure constructs a model of a (minimalist) grammar as follows.
First, the procedure constructs an SMT-model of a minimalist lexicon that is (partially)
constrained by the input lexicon so that the (inferred) lexicon recovered from a satisfiable
interpretation of the lexicon model is a superset of the input lexicon. The procedure then
processes the entries in the PLD one after another. When processing a pairing of interface
conditions in the PLD, the procedure: (i) instantiates a model of a minimalist derivation,
(ii) constrains it with SMT-formulae derived from the interface conditions, and finally (iii)
adds additional axioms that serve to connect the model of the derivation to the model of
the lexicon. Consequently, any derivation recovered from a satisfiable interpretation of the
model satisfies in the interface conditions and can be yielded by the lexicon recovered from
that interpretation of the model. In this way, the procedure constructs a model of a grammar
that consists of the model of the lexicon, a derivation model for each of the entries in the
PLD (constrained by the interface conditions listed in that entry), and axioms connecting
each derivation model to the lexicon model. Finally, the procedure uses an SMT-solver
to check whether or not there exists a satisfiable interpretation of the (constructed) SMT-
model of the grammar – i.e. whether or not there exists a lexicon that is compatible with
the input PLD. If a satisfiable interpretation of the model exists, the procedure uses the
SMT-solver to identify the interpretation of the model from which the smallest lexicon (that
is compatible with the PLD) may be recovered and then (automatically) recovers a lexicon
from the (identified) model interpretation.

The procedure may be said to be “solving for syntax” in so far as it models a grammar
as a system of (logical) equations made up of the model of the lexicon and the derivation
models, with the input lexicon and interface conditions serving as “boundary conditions.” In
effect, the procedure is the modern, minimalist theory counterpart of earlier work by (Rayner
et al., 1988) on using logic grammars to infer a lexicon, and just as the “logic as grammar”
framework adapted a “parsing as deduction” style parser to the problem of inferring a lexicon
by requiring the lexicon parse multiple strings at once, here too the procedure for inferring a
minimalist grammar (developed in this thesis) is an extension of the minimalist parser (also
developed in this thesis) that requires multiple pairings of interface conditions be parsed
at the same time by an unspecified lexicon (with this requirement serving to constrain the
model of the lexicon). Notably, the computational experiments presented in Chapter 3 of
this thesis demonstrate that when the PLD is sufficiently large (e.g. including at least four
to five entries), the inferred lexicon yields derivations that align with the prescriptions of
contemporary theories of minimalist syntax for a diverse range of expressions including active
and passive voiced declaratives, yes/no-questions, and wh-questions that involve intransitive,
transitive and ditransitive verbs; notably, these derivations include empty lexical heads and
involve various forms of syntactic movement including wh-raising, subject-raising, T-to-C
head-movement and V-to-v head-movement. Additionally, the inferred lexicon can generate
novel structures that are not yielded in satisfying any of the entries in the PLD.

Notably, this procedure takes the form of a computational model of child language learner
as prescribed by (Berwick, 1985) and accords with the criterion for a model of language
acquisition set out in (Chomsky, 1965). The initial state of the learner’s knowledge is the

§1.2 Page 20/200

input lexicon and the axiomatization of minimalist syntax (encoding UG) that is included in
each model of a derivation. The target state of the learner’s knowledge (i.e. the knowledge
of language that the learner acquires) is the (inferred) lexicon output by the procedure. The
procedure drives the state of the learner’s knowledge from the initial state to the target
state by consuming the PLD and incrementally constructing an SMT-model of a minimalist
grammar, and then solving the (constructed) model using an SMT-solver and recovering
the output lexicon from the solution. The procedure may also be adapted to incrementally
consume the PLD in batches and output a lexicon after processing each batch, with each
output lexicon a superset of the previously output lexicon, so that the procedure may be said
to model a child language learner incrementally acquiring knowledge of language; we refer
to this adaptation of the procedure as the incremental acquisition procedure, and the non-
incremental variant of the procedure as the instantaneous acquisition procedure (so called
because it models the learner “instantly” acquiring knowledge of language by processing all
of the PLD at once). It is worth pointing out that the incremental acquisition procedure
enables the learner to incrementally acquire a grammar from an arbitrarily large PLD as
only a single batch of the PLD needs to be modeled at a time; indeed, the PLD may even
be infinite in size if it is presented to the learner as a stream. The incremental acquisition
procedure also enables the computationally tractable inference of larger grammars. The
computational experiments presented in §3.3 demonstrate that the incremental acquisition
procedure may be used to incrementally acquire (i.e. infer), from psychologically plausible
input data consisting of a (small) finite sequence of simple sentences with at most one level
of embedding, including sentences with embedded declaratives, questions and (restrictive)
relative clauses, a lexicon that can yield derivations with 𝑛 levels of embedding for any 𝑛 ≥ 0
– thus the inferred lexicon can generate a countably infinite set of hierarchical structures
that pair meaning with sound, demonstrating that the acquisition procedure can infer a
lexicon that makes “infinite use of finite means.”

Finally, let us consider the instantaneous and incremental acquisition procedures from
the perspective of psychological plausibility.

• The procedure infers a lexicon from positive evidence only – i.e. no direct negative
evidence (i.e. evidence in the form of explicit corrections of mistakes) is presented to
the system, nor does the system make use of indirect negative evidence (i.e. evidence
derived from the observed absence of a particular production).

• The axiomatization of minimalist syntax underlying the model of the minimalist parser
is a part of the initial state of the acquisition procedure (corresponding to the learner’s
innate knowledge of language – i.e UG). The procedure for acquisition accords with
the Strong Continuity Hypothesis: since each SMT-model of a derivation constructed
by the procedure includes the axiomatization of minimalist syntax (that encodes prin-
ciples of UG), at each stage in the learner’s acquisition trajectory, each member of the
class of grammars (i.e. the space of satisfiable model interpretations) that the learner
has narrowed down to must accord with the principles of UG.9

• The instantaneous acquisition procedure is robust to changes in the order in which
the PLD is presented to the system.

• The incremental acquisition procedure only requires the learner have a small, finite
(potentially zero) sized memory for remembering sentences from the PLD.

9See (Lust, 1999).

§1.2 Page 21/200

Figure 1-3: The instantaneous acquisition procedure can infer the lexicon listed in Table 1.3 from the
Primary Linguistic Data (PLD) listed in Table 1.1 (and an empty initial lexicon). (See §3.2.3 of Ch. 3 for a
detailed presentation of this computational experiment.) The instantaneous acquisition procedure constructs
an SMT-model that consists of: (i) a lexicon model (an SMT-formula) that is empty, and (ii) a derivation
model (an SMT-formula) for each pairing of LF and PF interface conditions in the PLD (see derivation
models 𝐷0−𝐷28). Next, each pairing of LF and PF interface conditions, 𝐼𝑖, in the PLD is translated into an
SMT-formula that constrains the derivation model, 𝐷𝑖, so that any satisfiable interpretation of 𝐷𝑖 encodes an
MG derivation that satisfies 𝐼𝑖 – each such SMT-formula is added to the SMT-model. Then, each derivation
model is connected to the lexicon model via an SMT-formula that requires that derivation be yielded by the
lexicon, thereby constraining satisfiable interpretations of both the derivation model and lexicon model –
again, each such SMT-formula is added to the SMT-model. Finally, optimization constraints, derived from
Principles of Economy, are added to the SMT-model, thereby further constraining satisfiable interpretations
of the derivation and lexicon models. After constructing the SMT-model, an SMT-solver is used to identify
a satisfiable interpretation of the SMT-model (i.e. a solution to the system of SMT-formulae that make
up the SMT-model), and the inferred lexicon and derivation trees are then automatically recovered from
the identified interpretation of the SMT-model. By solving the SMT-model, the SMT-solver works out the
contents of the boxes shaded light-blue – i.e.: (i) what the (unspecified) syntactic feature sequences in the
lexicon are, and (ii) the associations between the syntactic feature sequences and the phonological forms
(that are obtained by scanning the PF interface conditions in the PLD).

§1.2 Page 22/200

• Following the “Semantic Bootstrapping Hypothesis”, the learner is assumed to know
“who did what to whom”, and thus each sentence is annotated with predicate-argument
structure and agreement relations (these relations are encoded within the LF interface
conditions).10

• The incremental acquisition procedure integrates language acquisition and language
processing. When processing the first batch of the PLD, if the procedure is not supplied
with an initial lexicon, then the procedure is functionally equivalent to the instanta-
neous acquisition procedure; as more batches of the PLD are processed over successive
runs of the incremental acquisition procedure, in the limit, when the learner can al-
ready parse the next PLD batch with the (up to then) acquired lexicon, the procedure
in effect becomes the procedure for parsing each entry in the PLD batch. This transi-
tion from acquisition to parsing is possible because both center on the same underlying
axiomatization of minimalist syntax (detailed in §2.3), with the difference between the
two being the degree to which the lexicon model is hard-coded with the lexicon that
the learner has acquired up until that point.

Chapter 4 explores extensions to the procedure that may serve to bring it into further
accordance with conditions of psychological plausibility.

1.3 Summary of Key Ideas and Takeaways

• The models of language parsing and acquisition developed in this thesis are grounded
in three fundamental ideas:

(i) that Merge is all you need – i.e. the simplest combinatory operation is sufficiently
expressive;

(ii) that all syntactic relations are established in the simplest possible way – i.e.
locally within a syntactic structure, via the operation merge;

(iii) that the acquired lexicon must yield derivations that are subject to Economy
Conditions – i.e. derivations must involve as few steps (i.e. merge operations)
as possible while still satisfying interface conditions pursuant to the Principle of
Full Interpretation.

This thesis, put plainly, is an attempt to see how far these three ideas can take us –
i.e. to use the models developed to evaluate the degree to which economically satisfy-
ing interface conditions uniquely determines the acquired grammar, and the extent to
which said grammar aligns with minimalist theories of syntax.

• This thesis introduces novel procedures for language acquisition that are able to use
a modern, high-performance SMT-solver to infer, from an empty initial lexicon and pri-
mary linguistic data consisting of a (small) finite sequence of ⟨sentence, skeletal-meaning⟩
pairs (i.e. pairings of LF and PF interface conditions) with at most one level of struc-
tural embedding, an MG lexicon that is compatible with the primary linguistic data
and that can generate a countably infinite set of (interpretable) hierarchical structures,

10See (Lust, 2006, Pgs. 42-43) for a review of the Semantic Bootstrapping Hypothesis.

§1.3 Page 23/200

each of which pairs meaning with sound (as demonstrated in the computational exper-
iments presented in Ch. 3). In particular, the computational experiment detailed in
§3.2 demonstrates that by solving for the optimal lexicon that is compatible with the
primary linguistic data, the system infers a grammar that aligns with contemporary
theories of minimalist syntax in so far as: (a) the grammar produces the prescribed
derivations for a variety of syntactic structures, utilizing syntactic movement (includ-
ing head-movement) and covert lexical items as needed; (b) expressions with related
interpretations are assigned derivations systematically related by structural transfor-
mations. In particular, the optimized lexicon that was inferred yields derivations for
declaratives, yes/no-questions, and wh-questions in both the active and passive voice,
and these derivations involve various forms of syntactic movement including wh-raising,
subject-raising, T-to-C head-movement and V-to-v head-movement; additionally, the
inferred lexicon includes lexical entries for covert complementizers and light-verbs.
Furthermore, the computational experiment detailed in §3.3 demonstrates that the
system can acquire, from a finite set of sentences with at most one level of embedding,
a grammar that can yield an infinite number of distinct syntactic structures. That
this idealistic model is able to recover most of the right syntax is remarkable; notably,
the acquisition procedures does this without being provided a treebank of minimal-
ist derivations that serve as examples of what the acquired lexicon should be able to
yield, and to that end, the system constitutes a scheme for unsupervised inference of
minimalist grammars.

• The lexicon model has a factored representation – i.e. it has the form of a two-
dimensional association matrix, with a set of phonological forms on one axis, a set of
lexical feature sequences on the other axis, with the entries in the matrix marking which
lexical feature sequences are associated with which phonological forms. (See Table 1.3
on for an illustration of factored representation.) The lexicon’s factored representation
allows for it to be grown along the two dimensions of the matrix separately, with the
dimension pertaining to lexical feature sequences controlling which syntactic structures
the lexicon can yielded, and the dimension pertaining to phonological forms controlling
the vocabulary of the learner. Specifically, the lexicon’s factored representation enable
us to define constraints, derived from optimization metrics grounded in Principles of
Economy, that when added to the SMT-model of the grammar, serve to minimize
the size of the lexicon with respect to the set of distinct lexical feature sequences
without factoring in how often the different phonological forms appear in the primary
linguistic data; these constraints ensure that, as the system processes the primary
linguistic data, the system only adds new lexical feature sequences to the lexicon
if the existing set of lexical feature sequences is insufficient for yielding a syntactic
structure that can satisfy a pairing of LF and PF interface conditions. In particular,
this means that if the system cannot parse an entry in the primary linguistic data, it
will only add a new lexical feature sequence to the lexicon if adding a new association
between a phonological form and an existing lexical feature sequence will not suffice.
Finally, when constraints serving to minimize the optimization metrics – i.e. minimize
the size of the lexicon and the size of the derivations it yields – are added to the
(constructed) SMT-model, the instantaneous acquisition procedure infers a lexicon
that yields derivations that accord (in form) with the prescriptions of contemporary
theories of modern syntax.

§1.3 Page 24/200

• This thesis investigates whether and how it is possible to use an interactive theorem
prover to aid in the study linguistic theory. To this end, the thesis develops procedures
that center on an axiomatization of minimalist syntax that is expressed using a logic,
SMT, and that use an SMT-solver (a kind of interactive theorem prover) for parsing
MGs and (automatically) inferring MG lexicons respectively. This enables us to focus
on developing the axioms and understanding how they are grounded in universal prin-
ciples of language while leaving it to the SMT-solver to decide how best to work out
the relevant deductions — in effect we are offloading the mechanical aspect of thinking
about linguistic theory to the solver.

(i) In the case of the procedure for parsing, we may focus on developing a minimal set
of axioms (encoding UG) that are grounded in universal principles of language and
that allow for the generation of derivations prescribed by contemporary theories of
minimalist syntax while prohibiting the “over-generation” of derivations, leaving
the automatic theorem prover to carry out the deductions involved in parsing
without us having to stipulate the particular algorithms and implementation
details of the parser.

(ii) In the case of the procedure for acquisition, the automatic theorem prover enables
us to separate out the questions of what knowledge of syntax the model of the
child language learner acquires and how the model of the child language learner
acquires it – i.e. it allows us setup computational experiments in which we focus
on specifying the learner’s initial state and the conditions that the learner’s final
state must satisfy (with respect to the primary linguistic data that the learner
processes), and leave to the solver the questions of how the language-acquisition
device goes from the initial state to the final state and what that final state is.
In particular, the interactive nature of the theorem prover enables the procedure
to incrementally construct the SMT-model of the grammar (by processing the
primary linguistic data in batches) and incrementally growing the acquired lexicon
(by solving the model after a batch of the primary linguistic data is processed).

In this way, the system lets us explore the interaction of several simple principles – i.e.
that derivations must satisfy interface conditions, that derivations are subject to econ-
omy conditions, and that all syntactic relations within a derivation are established by
merge – in the context of parsing and acquisition. Furthermore, the models underlying
the procedures for parsing and acquisition are amenable to modification and extension
by way of adding or subtracting particular axioms, and one can construct and evaluate
any hypothesis expressible as an SMT formula (really any decidable problem one can
manage to express with SMT) and evaluate against the encoded linguistic theory, as
discussed further in Ch. 4. Ultimately, the system may serve as a vehicle for better
understanding how more can be done with less, which is a line of inquiry that lies at
the heart of the Minimalist Program.

§1.3 Page 25/200

Chapter 2

Modeling a Minimalist Parser with
Satisfiability Modulo Theories

This chapter presents a Satisfiability Modulo Theories (SMT) model of a minimalist parser
that has been developed and implemented as a (working) computer program. The model
takes as input a lexicon and a specification of LF and PF interface conditions (encoding
word order, predicate-argument structure, and agreement relations), and outputs a mini-
malist derivation that can be yielded by the lexicon and that satisfies the specified interface
conditions.

This chapter first develops an SMT-model of a minimalist derivation and an SMT-
model minimalist lexicon, both of which based on the Minimalist Grammar (MG) formalism
introduced in (Stabler, 1996), using a multi-sort first-order quantifier-free logic extended with
the theory of equality and the theory of uninterpreted functions. The model of the derivation
consists of several sorts, uninterpreted functions acting over these sorts, and a set of axioms
(i.e. logical formulas constraining these functions) that an MG derivation must satisfy.
Likewise, the model of the lexicon also consists of a number of sorts, uninterpreted functions
acting over these sorts, and a set of axioms (constraining these functions) that an MG lexicon
must satisfy. The model of the lexicon is connected to the model of the derivation via an
uninterpreted function that maps projections in the model of the derivation to lexical entries
in the model of the lexicon, so as to require that the derivation be yielded by the lexicon.
When the parser is run, the specified interface conditions are (automatically) translated to
first order logic formulas that further constrain the model of the derivation, and the model
of the lexicon is “hardcoded” with the input lexicon – i.e. the model of the lexicon is further
constrained so as to require that the input lexicon is the only lexicon that may be recovered
from a satisfiable interpretation of the lexicon model. The SMT-model of the minimalist
parser is then the conjunction of the SMT-formulae encoding (i) the derivation constrained
by the specified interface conditions, (ii) the specified lexicon, and (iii) the mapping between
projections in the derivation and lexical entries in the lexicon. Checking the model of
the parser (i.e. determining whether or not the model has a satisfiable interpretation) is
equivalent to solving the decision problem of whether there exists a derivation that both
satisfies the specified interface conditions and is yielded by the input lexicon; if the answer
is yes – i.e. the model has a satisfiable model interpretation – then such a derivation can be
(automatically) recovered from the interpretation of the model, whereas if the answer is no,
then the specified interface conditions cannot be parsed using the input lexicon.

This chapter then demonstrates (i) how an SMT-solver may be used to check the model

Page 26/200

of the parser and obtain a satisfiable interpretation of the model, and (ii) how to auto-
matically recover a derivation from the model interpretation, thereby carrying out the task
of parsing. We present examples of derivations, produced by our implementation of the
parser, for sentences with a variety of syntactic structures, including wh-questions, passive
constructions, and sentences with embedded clauses. Finally, we discuss how to configure
the model of the parser so that it can handle out-of-vocabulary words, as well as the model’s
ability to parse partial specifications of interface conditions – e.g. the model can be used to
parse LF interface conditions in the absence of PF interface conditions.

2.1 Overview

Modern natural language parsers are tasked with automatically mapping an expression,
composed of a finite sequence of words, to a finite set of structures, such that each of these
structures is associated with, and is intended to reflect the underlying syntax of, a distinct
interpretation of the expression. Modern linguistic theory, specifically Minimalist theories
of syntax, focuses on modeling the Human language Faculty (HLF), a computational system
that is optimally designed for the problem of pairing sound with meaning; this is done by
identifying syntactic structures, derived from a lexicon, that satisfy interface conditions im-
posed by the Conceptual-Intentional (CI) and Sensory-Motor (SM) systems, which process
meaning (e.g. predicate-argument structure) and sound (e.g. word ordering) respectively.1

(See Fig. 2-1.) This thesis asserts that the architecture of the HLF, as prescribed by contem-
porary theories of minimalist syntax (Adger, 2003; Radford, 1997; Hornstein et al., 2005),
leads to a broader definition of the task of natural language parsing:

Given a lexicon and a specification of LF and PF interface conditions, the task
of a natural language parser is to enumerate the set of syntactic structures that
may be derived from the lexicon and that satisfy the specified interface conditions.

This chapter presents a model of a minimalist parser that adheres to this more general
definition of parsing, and that has been developed and implemented as a working computer
program.2 The implemented parser can, for example, take as input the MG lexicon listed
in Table 2.1 and the interface conditions listed under entry 𝐼1 in Table 2.4, and outputs the
MG derivation in Fig. 2-2. The model centers on an axiomatization of minimalist syntax
that closely follows the MG formalism (reviewed in §2.3) and is expressed declaratively
using a logic, Satisfiability Modulo Theories (SMT).3 We show how to further constrain

1From this perspective, contemporary NLP parsing may be re-framed as fully specifying the interface
conditions imposed by SM (i.e. the expression to parse), and then returning a syntactic structure that is
derived from the lexicon and that produces that expression; the task of recovering a logical form from the
structure is typically passed over.

2This definition asserts that a parser should be able to process input for which only interface conditions
imposed by CI are present, and still yield syntactic structures from which the surfaced expression may be
recovered – this is effectively an inversion of the standard task of a natural language parser. Such a parser
allows us to study the degree to which interface conditions imposed by the CI system determine the syntactic
structures that may be produced; this is motivated by: (i) the Syntax-Semantics duality, which asserts that
the syntactic structures associated with a natural language expression are closely aligned in form with logical
form associated with the expression; (ii) the assertion that the universal properties and principles of language
are almost entirely pertaining to the interface between the HLF and the CI system.

3An SMT-model is a logical formula expressed in first order logic with equality (optionally) extended
with background theories such as the theory of uninterpreted functions or the theory of integers. Given an
SMT model, the associated SMT problem is the decision problem of whether the formula is satisfiable. See
(Barrett and Tinelli, 2018) for further reference.

§2.1 Page 27/200

Figure 2-1: Minimalist theories of syntax assert that the Human Language Faculty (HLF)
pairs meaning, which is processed by the Conceptual-Intensional (CI) System, with sound,
which is processed by the Sensory-Motor (SM) System. The Computational System (𝐶𝐻𝐿𝐹)
derives a syntactic structure from the syntactic atoms in the Lexicon via the repeated
application of the recursive binary function merge; after each step of the derivation (i.e.
application of merge), (relevant) information is sent from 𝐶𝐻𝐿𝐹 to the LF and PF Interfaces.
(Chomsky, 1995)

the model with additional SMT-formulae automatically derived from the specified interface
conditions, thereby expressing the problem of parsing (specified interface conditions) as a
decision problem (encoded as an SMT-model); this SMT-model is evaluated using a modern,
high-performance SMT-solver4 and the derivation constituting the output of the parser is
automatically recovered from the interpretation of the model output by the SMT-solver.5

(see §2.4)
Notably, the parser developed in this chapter is a modern adaptation of the “parsing as

deduction” framework developed by (Pereira and Warren, 1983), with an axiomatization of
minimalist grammars (MGs) in place of an axiomatization of context free grammars (CFGs),
a pairing of LF and PF interface conditions replacing the input string, and deductions carried
out by an SMT-solver instead of a Prolog engine.6 The model of the parser may be viewed
as a system of (logical) equations in which the lexicon and interface conditions (i.e. the
inputs to the parser) are known quantities and the derivation is an unknown quantity that
will be solved for, so that the approach taken here may be described as “parsing via equation
solving.”

2.2 Minimalist Grammars

This study models minimalist syntax using the Minimalist Grammar (MG) formalism, a
well established formal model of syntax introduced in (Stabler, 1996) that is inspired by
(Chomsky, 1995) and for which bottom-up chart-parsers and transition based parsers have
been developed.7

This study opted to use MGs for two reasons. Firstly, the present study assumes the Mild
Context-Sensitivity Hypothesis (MCSH), which claims that natural languages are Mildly
Context-Sensitive,8 and MGs are mildly context-sensitive grammars9 and can model the

4SMT solvers are a type of automatic theorem prover that can solve an SMT problem; if a satisfiable
interpretation of the associated model exists, the solver can enumerate them explicitly.

5Our model is restricted to the quantifier free subset of SMT so that model is a decidable decision problem.
6See also (Shieber et al., 1995).
7See (Harkema, 2001), (Niyogi and Berwick, 2005), (Stanojević, 2016), and (Torr et al., 2019).
8See (Joshi, 1985), (Vijay-Shanker et al., 1987), and (Joshi et al., 1990).
9See (Michaelis, 1998) and (Michaelis, 2001).

§2.2 Page 28/200

Lexicon

1. 𝜖/𝐶𝑄𝑢𝑒𝑠. :: <=𝑥, +𝑝, 𝐶 18. 𝑡ℎ𝑎𝑡 :: =𝑥, ∼𝑦
2. ℎ𝑎𝑠 :: =𝑥, +𝑞, ∼𝑥 19. ℎ𝑒 :: ∼𝑦, −𝑞
3. 𝑡ℎ𝑒 :: =𝑦, ∼𝑦, −𝑞 20. 𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑 :: ∼𝑥
4. 𝑚𝑎𝑛 :: ∼𝑦 21. 𝑘𝑛𝑜𝑤𝑛 :: =𝑦, ∼𝑥
5. 𝜖/𝑣 :: <=𝑥, =𝑦, ∼𝑥 22. 𝑒𝑣𝑒𝑟𝑦𝑜𝑛𝑒 :: ∼𝑦, −𝑞, −𝑝
6. 𝑒𝑎𝑡𝑒𝑛 :: =𝑦, ∼𝑥 23. 𝑤ℎ𝑜 :: =𝑥, +𝑝, ∼𝑦
7. 𝑤ℎ𝑎𝑡 :: ∼𝑦, −𝑝 24. 𝑙𝑜𝑣𝑒𝑑 :: =𝑦, ∼𝑥
8. 𝜖/𝑣 :: <=𝑥, ∼𝑥 25. 𝜖/𝐶𝐷𝑒𝑐𝑙. :: =𝑥, 𝐶
9. 𝜖/𝐶𝑄𝑢𝑒𝑠. :: <=𝑥, 𝐶 26. 𝑘𝑛𝑜𝑤𝑠 :: =𝑦, ∼𝑥
10. 𝑤𝑎𝑠 :: =𝑥, +𝑞, ∼𝑥 27. 𝑗𝑜ℎ𝑛 :: ∼𝑦, −𝑞
11. 𝑠ℎ𝑒 :: ∼𝑦, −𝑞 28. 𝑔𝑖𝑣𝑒𝑛 :: =𝑦, ∼𝑥
12. 𝑔𝑖𝑣𝑒𝑛 :: =𝑦, =𝑦, ∼𝑥 29. 𝜖/𝑇 :: =𝑥, +𝑞, ∼𝑥
13. 𝑚𝑜𝑛𝑒𝑦 :: ∼𝑦 30. 𝑚𝑜𝑛𝑒𝑦 :: ∼𝑦, −𝑞, −𝑝
14. 𝑤𝑖𝑙𝑙 :: =𝑥, +𝑞, ∼𝑥 31. 𝑡ℎ𝑎𝑡 :: =𝑥, +𝑝, ∼𝑦
15. 𝑤ℎ𝑜 :: ∼𝑦, −𝑞, −𝑝 32. 𝑠𝑡𝑜𝑙𝑒𝑛 :: =𝑦, ∼𝑥
16. ℎ𝑒𝑟 :: ∼𝑦 33. 𝑓𝑒𝑎𝑟𝑠 :: =𝑦, ∼𝑥
17. 𝑡𝑒𝑙𝑙 :: =𝑦, =𝑦, ∼𝑥 34. 𝑚𝑜𝑛𝑒𝑦 :: ∼𝑦, −𝑞

Table 2.1: Each listed lexical item consists of: (i) a phonological form; (ii) an optionally
specified categorical feature (e.g. entries 1 and 5); (iii) a sequence of syntactic features.
𝜖 denotes a covert phonological form. Selectional features are denoted by the prefixes =
and ∼ for selectors and selectees respectively, with the labels 𝑥 and 𝑦 used for the purpose
of argument and non-argument selection; head-movement is triggered by the presence of a
selector feature prefixed by a <=. Licensing features are denoted by the prefixes + and −
for licensors and licensees respectively; the licensing label 𝑝 is involved in wh-movement and
the formation of relative clauses, and the licensing label 𝑞 is involved in subject raising. The
special feature 𝐶 marks the convergence of a derivation. The lexicon includes verbs with
varying valencies, including intransitive verbs (e.g. entry 20), transitive verbs (e.g. entries
6, 17, 21, 24, 26, 28, 32, and 33), and ditransitive verbs (e.g. entries 12, and 17). It also
includes auxiliary verbs (e.g. entries 2, 10, and 14), determiners (e.g. entry 3), and nominals
(e.g. entries 4, 11, 13, 16, 19, 22, 27, 30, and 34).

cross-serial dependencies that arise in natural language.10 Secondly, MGs can model the
syntactic constraints that appear in contemporary syntax: (Rogers and Nordlinger, 1998)
showed that the syntactic constraints that make up UG are expressible with Monadic Second-
Order (MSO) logic, and (Graf, 2013) showed that any set of MSO-expressible constraints
over MG derivation trees can be encoded within an MG lexicon.11 Of particular relevance to
modeling theories of minimalist syntax, MGs can model displacement, a basic fact of natural
language that enables a phrase to be interpreted both in its final, surfaced position, as well as
other positions within a syntactic structure (Chomsky, 2013b) – i.e. a single phrase satisfying
multiple interface conditions often requires that it undergo syntactic movement to establish a
discontinuous structure (i.e. a chain) with multiple local relations; per the Principle of Last
Resort, movement is driven by morphological considerations – e.g. morphological agreement

§2.2 Page 29/200

Figure 2-2: A minimalist derivation of the sentence “What has the man eaten?” that satisfies
the LF and PF interface conditions listed under entry 𝐼1 in Table 2.4. This derivation was
recovered from the model interpretation presented in Table 2.6; each node in the derivation
is labeled with the index of a row in the table. The depicted structure is a multi-dominance
tree, with nodes {1, 5, 12, 7, 17, 3, 4, 15, 18, 2, 13, 14, 6, 9, 22} making up the derivation tree
from which this multi-dominance tree was derived. Lexical nodes are indicated by rectangu-
lar nodes, while derived nodes are indicated by rounded corners. Constituents with the same
color have the same head. Dashed and dotted grey arrows indicate phrasal and head move-
ment respectively; a dashed border indicates that a node is the target of phrasal-movement,
with the lower (raised) structure implicitly copied to the target position.

(Chomsky, 1995).
Let us now review the algebraic formulation of MGs presented in (Stabler and Keenan,

2003). Formally, an MG, 𝐺, is defined by a five tuple: (Σ, 𝑆𝑒𝑙, 𝐿𝑖𝑐, 𝐿𝑒𝑥,M). Σ is a finite,
non-empty vocabulary of phonological forms. A phonological form is either overt (i.e. pro-
nounced) or covert (i.e. unpronounced), and we will let 𝜖 denote a covert phonological form.
𝑆𝑒𝑙 and 𝐿𝑖𝑐 are non-empty disjoint finite sets of feature labels for selection and licensing

10See (Stabler, 2004).
11See (Morawietz, 2008, Pgs. 29-42) for a review of MSO-logic (over trees).

§2.2 Page 30/200

respectively; with these feature labels the set of syntactic features, 𝐹 , may be defined as the
union of the following four disjoint sets of syntactic features, respectively distinguished by
the symbols prefixing their members (i.e. =, ∼, +, and −):

𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟𝑠 : {=𝑓 |𝑓 ∈ 𝑆𝑒𝑙} (2.1)
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑒𝑠 : {∼𝑓 |𝑓 ∈ 𝑆𝑒𝑙} (2.2)
𝑙𝑖𝑐𝑒𝑛𝑠𝑜𝑟𝑠 : {+𝑓 |𝑓 ∈ 𝐿𝑖𝑐} (2.3)
𝑙𝑖𝑐𝑒𝑛𝑠𝑒𝑒𝑠 : {−𝑓 |𝑓 ∈ 𝐿𝑖𝑐} (2.4)

A < or > prefixed before a selector prefix – i.e. “<=” or “>=” – indicates that the selector
triggers left or right head-movement respectively.

The set of chains is 𝐻 = Σ*×𝑇𝑦𝑝𝑒𝑠×𝐹 *, with the set 𝑇𝑦𝑝𝑒𝑠 = {::, :} used to designate
whether a chain is lexical or derived (from lexical chains) respectively. The lexicon 𝐿𝑒𝑥 is
defined as a non-empty finite set of lexical chains.12 The set of expressions, 𝐸 = 𝐻+, may be
recursively combined together to produce another expression via the binary function Merge,
denoted by M.

Merge has two disjoint subcases: (i) external merge (EM), which requires that both
arguments of merge are disjoint from one another; (ii) internal merge (IM), which requires
that one of the arguments is a constituent of the other. Let 𝑠, 𝑡 ∈ Σ*, 𝑓 ∈ 𝑆𝑒𝑙, 𝑔 ∈ 𝐿𝑖𝑐,
𝛾 ∈ 𝐹 * and 𝛿 ∈ 𝐹+, and let 𝛼1, ..., 𝛼𝑘, 𝜄1, ..., 𝜄𝑙 ∈ 𝐻 for 0 ≤ 𝑘, 𝑙; then EM is defined as the
union of the three disjoint functions, {𝐸𝑀1, 𝐸𝑀2, 𝐸𝑀3}, that employ feature selection:

[s ::=𝑓 , 𝛾] [t ·∼𝑓], 𝜄1...𝜄𝑙 EM1[st : 𝛾], 𝜄1...𝜄𝑙
(2.5)

[s :=𝑓 , 𝛾], 𝛼1...𝛼𝑘 [t ·∼𝑓], 𝜄1...𝜄𝑙 EM2[ts : 𝛾], 𝛼1...𝛼𝑘, 𝜄1...𝜄𝑙
(2.6)

[s ·=𝑓 , 𝛾], 𝛼1...𝛼𝑘 [t ·∼𝑓 , 𝛿], 𝜄1...𝜄𝑙 EM3[s : 𝛾], 𝛼1...𝛼𝑘, [t : 𝛿], 𝜄1...𝜄𝑙
(2.7)

The separation of the phonetic form and the syntactic features by the symbol · designates
that the chain may be either lexical or derived. IM is defined as the union of the following
two disjoint functions, {𝐼𝑀1, 𝐼𝑀2}, that employ feature licensing:

[s :+𝑓 , 𝛾], 𝛼1...𝛼𝑖−1, [t :−𝑓], 𝛼𝑖+1...𝛼𝑘 IM1[ts : 𝛾], 𝛼1...𝛼𝑖−1, 𝛼𝑖+1...𝛼𝑘
(2.8)

[s :+𝑓 , 𝛾], 𝛼1...𝛼𝑖−1, [t :−𝑓 , 𝛿], 𝛼𝑖+1...𝛼𝑘 IM2[s : 𝛾], 𝛼1...𝛼𝑖−1, [t : 𝛿], 𝛼𝑖+1...𝛼𝑘
(2.9)

Additionally, 𝐼𝑀1 and 𝐼𝑀2 are subject to the Shortest Move Constraint (SMC): when a
licensor, 𝛼, binds to a licensee, 𝛽, it must be the case that 𝛽 is the only licensee to which 𝛼
can bind.13

12The syntactic features in the MG formalism are strictly uninterpretable, and merge deletes the pairs of
features that check each other.

13The SMC ensures that the licensor will always select the closest licensee (with respect to hierarchical

§2.2 Page 31/200

An expression is complete if its only syntactic feature is the special symbol 𝐶. The lan-
guage generated by 𝐺 consists of the complete expressions in 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝐿𝑒𝑥,M). A derivation
is defined as a sequence of expressions produced by recursive application of M to a collection
of lexical chains, and a complete derivation is one in which the concluding expression is com-
plete. To parse a sentence, a set of lexical items is selected from the lexicon and combined
together, via the recursive application of merge, into a single structure in which all of the
selectional and licensing features have been consumed; if the ordering of the phonological
forms in the resulting structure aligns with the order of the words in the sentence being
parsed, then the structure is considered to be a valid parse of the sentence. See Fig. 2-2 for
an example of an MG derivation derived from the MG lexicon listed in Table 2.1.

Having reviewed the MG formalism, we will now walk through several examples (of pro-
gressively increasing complexity) that illustrate the MG formalism. The figures associated
with these examples were developed using an agenda-based parser for MGs14 (extended with
Head Movement) that we developed to verify the lexicon and derivations produced by the
systems in this thesis – i.e. this parser serves as an external verification of the derivations
output by the SMT-model of a minimalist parser developed in this chapter; see Fig. 2-3 for
further details of this parser.

Example 1 This example illustrates how the determiner phrase:

(1) the ball

is derived from the following MG lexicon:

(2) Example-Lexicon-1

a. the :: =𝑁𝑃 , ∼𝐷𝑃
b. ball :: ∼𝑁𝑃

There are two lexical entries in (2), one corresponding to the word “the” and one correspond-
ing to the word “ball”; each lexical entry consists of a word paired with a finite, ordered
sequence of (syntactic) features, with the symbol “::” separating the phonological form on
the left from the list of syntactic features on the right. There are two types of selectional
features that appear in this lexicon: selectors, indicated by the prefix of =, and selectees,
indicated by the prefix of ∼. The lexical item for “the” has two syntactic features: the first
feature is =𝑁𝑃 and is referred to as selector 𝑁𝑃 ; the second feature is ∼𝐷𝑃 and is referred
to as selectee 𝐷𝑃 . The lexical item for “ball” has a single syntactic feature ∼𝑁𝑃 that is
referred to as selectee 𝑁𝑃 . Let us now step through the derivation of (1):

After the lexical entries for “the” and “ball” are both projected from the lexicon, because they
have appropriately matching selectional features (i.e. because the selector feature =𝑁𝑃 in
the lexical item for “the” matches the selectee feature ∼𝑁𝑃 in the lexical item for “ball”),

distance), as at each point in the derivation, there can only be one possible licensee available to be licensed;
this has the side-effect of making internal merge strictly deterministic (with respect to which licensee a
licensor will license), so that a derivation can be determined entirely from knowledge of the order in which
the various lexical heads (and projections thereof) externally merge with one another.

14See the work of (Harkema, 2001) and (Niyogi and Berwick, 2005).

§2.2 Page 32/200

Figure 2-3: A screenshot of the MG(X)-Explorer software developed for this study. In order to study
the derivations that may be generated from a given lexicon, we developed the MG(X)-Explorer soft-
ware package. MG(X)-Explorer includes: (i) a chart parser for MGs (extended with head movement)
based on (Harkema, 2001), (ii) a bottom-up generator for MGs (extended with head movement), and
(iii) a graphical user interface allowing the user to visually render and step through the derivations
generated by a given lexicon for a specified corpus of sentences. The parser and generator can each
handle both SVO and SOV orderings. This study used MG(X)-Explorer to verify that a derivation
recovered from an interpretation of the SMT-model of a (minimalist) parser can in fact be yielded
by the input lexicon.

the two lexical items are merged15 together, thereby deriving a structure for the determiner
phrase “the ball”. Note that the determiner “the” is considered to be the most significant
constituent of the phrase “the ball” (in accordance with the DP -hypothesis) and is thus the
head of the phrase “the ball”; accordingly, the lexical item for “the” projects (and thus heads
the DP “the ball”) as dictated by the presence of the selector type feature =𝑁𝑃 , whereas
the non-projecting lexical item (for “ball”) is marked by the presence of the selectee type
feature ∼𝑁𝑃 .1617 The feature sequence of the derived structure is taken from whichever of
the two constituents is the head of the derived structure – in this case, the feature sequence
is taken from the lexical item for “the”. See Figure-2-4 for the corresponding MG derivation
tree that was generated from the lexicon listed in (2).

Example 2 Consider the following sentence:

(3) She will pass the ball.
15Neither of the two lexical items for “the” and “ball” is a subset of the other, so this is an example of

external merge; the sequence of syntactic features in a lexical item is consumed from left to right and once
a feature is consumed it is deleted from the sequence of features.

16The lexical item that projects is said to select the non-projecting lexical item – in this case, the lexical
item for “the” selects (via external merge) the lexical item for “ball” and thus the lexical item for “the”
projects through the (external) merge operation.

17See (Adger, 2003, Pg. 92): “Headedness: The item that projects is the item that selects.”

§2.2 Page 33/200

Figure 2-4: The MG derivation for Example-1. Within the MG formalism, given the lexicon
listed in (2), the parser would assign (1) this derivation. For now the reader may safely
interpret the 3-tuple structure of the phonological form by concatenating the three entries.
(This 3-tuple corresponds to the specifier, head and complement entries traditional to XBar
theory) The external merge operation checks and then deletes the selectional features; the
structure resulting from merge consists of the bare phrase structure for “the ball” paired
with the remnant feature ∼𝑁𝑃 from “the”, which will enable the structure to be (externally)
merged with another structure seeking a determiner phrase.

The transitive verb “pass” has two arguments: an external argument, “She”, that corresponds
to the subject of the sentence, and an internal argument, “the ball”, that corresponds to the
object of the sentence. Let us step through the following derivation of (3) and observe how
this predicate-argument structure is modeled:

Let us examine this derivation. The lexical entry for the transitive verb “pass” is projected
from the lexicon and merges with the determiner phrase “the ball” (which was built up
in Example-1) to produce a verb phrase headed by “pass.” The lexical entry for little-𝑣
(i.e. a covert light verb) is then projected from the lexicon; it first merges with the verb
phrase headed by “pass” and then triggers 𝑉 -to-𝑣 head-movement (denoted by the dotted
movement arrow), before merging with the lexical entry for “she”.18 Next, the lexical entry
for “will” is projected from the lexicon and merges with the phrase headed covert light verb.
The subject “she” is then raised via phrasal-movement (i.e. Internal Merge), denoted by the
solid movement arrow; this is referred to as A-movement. Finally, a ∅-complementizer (see
𝜖𝐶𝑃 in (4) below) is projected from the lexicon and merges with the phrase headed by “will”
to produce a complete derivation. The corresponding MG derivation tree (see Figure-2-5)
is derived from the following lexicon:

(4) Example-Lexicon-2

a. she :: ∼𝐷𝑃 , −𝐸𝑃𝑃
b. will :: =𝑣𝑃 , +𝐸𝑃𝑃 , ∼𝑇𝑃
c. pass :: =𝐷𝑃 , ∼𝑉 𝑃
d. the :: =𝑁𝑃 , ∼𝐷𝑃
e. ball :: ∼𝑁𝑃
f. 𝜖𝑣𝑃 :: <=𝑉 𝑃 , =𝐷𝑃 , ∼𝑣𝑃
g. 𝜖𝐶𝑃 :: =𝑇𝑃 , C

18The structure built up thus far involving the two arguments, the light verb and the lexical verb is referred
to as a VP-shell structure; see Example 3 for more details.

§2.2 Page 34/200

Figure 2-5: A derivation of the expression “she will pass the ball”, generated from the lexicon
listed in (4). Here we have an example of the transitive verb “pass.” It has one external
argument, “she”, and one internal argument, “the ball”. This example includes an instance of
phrasal movement, in which the entire phrase “she” is moved, that is known as A-movement
(i.e. Subject-Raising); the dashed box indicates the landing site of the moved phrase “she”.
Note that the phrasal movement is an instance of internal merge that driven by the need to
check the licensing feature, +𝐸𝑃𝑃 , on the tense marker “will”. This example also includes
an instance of 𝑉 -to-𝑣 head movement in which just the head of the verb phrase (i.e. “pass”)
undergoes movement out of the its projection; note that little-𝑣 (i.e. 𝜖𝐶𝑃) is covert, as
indicated by the 𝜖 phonetic form. Finally, in MG(X)-Explorer, which was used to produce
this image, the special prefix <= that is used to indicate head-movement is shortened to
“<”.

Two remarks about this lexicon are in order: first, internal merge (i.e. syntactic movement)
is triggered by licensing – i.e. the need for the licensor feature +𝐸𝑃𝑃 in the lexical item
for “will” to be checked by the licensee feature −𝐸𝑃𝑃 in the lexical item for “she”; second,
head-movement is triggered when a special type of selector feature, denoted by the prefix
<=, is checked during an external merge operation – in this example 𝑉 -to-𝑣 head-movement
is triggered by the feature <=𝑉 𝑃 .

Example 3 This example illustrates a derivation of the interrogative:

(5) Will he pass her the ball?

with the derivation:

§2.2 Page 35/200

Let us examine this derivation. The ditransitive form of the predicate “pass” has a single
external argument, ”she” and two internal arguments – “her” and “the ball.” The phrasal-
structure involving a covert light-verb (i.e. 𝜖𝑣𝑃) that merges with the (lexical) verb (“pass”)
is referred to as the (Double) VP-Shell structure.19 (See Fig. 2-13 for details on how this
VP-shell structure is able to consistently assign thematic roles to the external and internal
arguments of the predicate across a wide variety of syntactic configurations.) Once the VP-
shell structure has been constructed, “will” is projected from the lexicon and merges with
it, after which A-movement is triggered, thus raising the subject “he” to its final position
in the derivation (i.e. the specifier position in the projection of the lexical head “will”).
Finally, a lexical entry for a ∅-complementizer (see 𝜖𝐶𝑃−𝑆𝑢𝑏𝑗𝐴𝑢𝑥𝐼𝑛𝑣 in (6)) is projected from
the lexicon and merges with the tense phrase, triggering subject-auxiliary verb inversion via
head-movement (see the <=𝑇𝑃 feature in (6-h)). The associated MG derivation tree in
Figure–2-6 may be derived from the following lexicon:

(6) Example-Lexicon-3

a. he :: ∼𝐷𝑃 , −𝐸𝑃𝑃
b. will :: =𝑣𝑃 , +𝐸𝑃𝑃 , ∼𝑇𝑃
c. pass :: =𝐷𝑃 , =𝐷𝑃 , ∼𝑉 𝑃
d. her :: ∼𝐷𝑃
e. the :: =𝑁𝑃 , ∼𝐷𝑃
f. ball :: ∼𝑁𝑃
g. 𝜖𝑣𝑃 :: <=𝑉 𝑃 , =𝐷𝑃 , ∼𝑣𝑃
h. 𝜖𝐶𝑃−𝑆𝑢𝑏𝑗𝐴𝑢𝑥𝐼𝑛𝑣 :: <=𝑇𝑃 , C

Example 4 In this example we will consider a passive-voice wh-question:

(7) What was she passed?

with the following derivation:

The ditransitive verb (“passed”) has two internal arguments, both of which undergo phrasal-
movement once the VP-shell structure has been constructed: (i) after the VP-shell structure
merges with the tense marker “will”, the argument “she” undergoes A-movement and is raised
to Spec-TP; (ii) once the Tense phrase is constructed in (i), a ∅-complementizer projects
from the lexicon, merges with the Tense phrase, triggers subject-auxiliary verb inversion via
V-to-v head-movement, and then finally triggers Wh-movement (i.e. raising to Spec-CP) of
the argument “what” to form a Wh-question.20 Note that the two syntactic dependencies

19For more details see (Hale and Keyser, 2002).
20Wh-fronting is triggered by the need to check an edge feature (e.g. +𝐸𝐹).

§2.2 Page 36/200

Figure 2-6: A derivation of the interrogative expression “Will he pass her the ball?” that was
yielded by from the lexicon listed in (6). Here we have an example of a ditransitive instance
of the verb “pass”, which has one external argument, “she”, and two internal arguments, “her”
and “the ball”; these three arguments are merged into a predicate-argument complex known
as the VP-shell structure (i.e. the light verb 𝜖𝑣𝑃 and the “pass”), where they are assigned
thematic roles, before possibly undergoing movement. As in Example 2, this derivation has
an instance of both A-movement and V-to-v head-movement. However, this derivation also
has an instance of T-to-C head-movement for subject auxiliary verb inversion. As in Fig. 2-
5, the (selector feature) prefix that indicates head-movement has been shortened from <=
to <.

captured by phrasal-movement are nested rather than crossed ; that this is the case is due to
the Shortest Movement Constraint. The associated MG derivation tree in Figure–2-7 may
be derived from the following lexicon:

(8) Example-Lexicon-4

a. what :: ∼𝐷𝑃 , −𝐸𝐹
b. was :: =𝑣𝑃 , +𝐸𝑃𝑃 , ∼𝑇𝑃
c. she :: ∼𝐷𝑃 , −𝐸𝑃𝑃
d. passed :: =𝐷𝑃 , =𝐷𝑃 , ∼𝑉 𝑃
e. 𝜖𝑣𝑃 :: <=𝑉 𝑃 , ∼𝑣𝑃
f. 𝜖𝐶𝑃−𝑊ℎ :: <=𝑇𝑃 , +𝐸𝐹 , C

Finally, let us consider whether an MG may be modeled with SMT. (Rogers and Nordlinger,

§2.2 Page 37/200

Figure 2-7: A derivation of the (passive-voice) Wh-question “What was she passed?” that
was yielded by from the lexicon listed in (8). In this derivation, the ditransitive verb “pass”
has no external argument but does have two internal arguments, “what” and “she”; these
two arguments are merged into the VP-shell structure and assigned their respective thematic
roles after which “she” undergoes A-movement (i.e. subject raising) and “what” undergoes
Wh-movement. Note that Wh-movement is an instance of phrasal movement that is driven
by the need to check the licensing feature, +𝐸𝐹 , on the complementizer 𝜖𝐶𝑃 . This example
is of particular interest as it involves two instances of phrasal movement that overlap in the
course of the derivation.

1998) established that the axioms of GB theory are expressible with Monadic Second Order
logic (MSO); subsequently, (Graf, 2013) produced an MSO axiomatization for MGs21, and
notes that over finite domains these constraints may be expressed with first order logic.
As this study only considers models with finite domains, we therefore can develop a finite
theory of MGs with an axiomatization based in part on the MSO axiomatization of MGs by
(Graf, 2013).

21Constraints may be encoded in an MG lexicon if and only if they are MSO expressible. (Graf, 2013)

§2.3 Page 38/200

Figure 2-8: Model Formula Diagram for the SMT-Model of the Minimalist Parser. This dia-
gram illustrates how the finite sorts and the uninterpreted functions that make up the model
are connected. The nodes represent (finite) sorts (see Table 2.2) and the arrows represent
uninterpreted functions (see Table 2.3), with solid arrows representing unary uninterpreted
functions (i.e. ℎ, 𝑝, 𝒫, ℋ, ΔN, and 𝛽N for the derivation; 𝜓, ΔΩ, 𝛽Ω, 𝜉, and 𝜅 for the
lexicon), and dotted arrows indicating a binary function (i.e. ℳ, 𝑑, and 𝑑⋆ for derivation
model; ℒ for the lexicon model). The derivation model is connected to the lexicon model
via the “bus” function, 𝜇, that maps members of the derivation node sort, N, to members of
the lexicon node sort, Ω; in particular, 𝜇 maps derivation node sequences (i.e. projections
and chains) to lexical feature sequences.

2.3 Model Definition

This section defines an SMT-model of a parser for minimalist syntax that is expressed
using a multi-sort, quantifier-free, first-order logic extended with the theory of equality
and uninterpreted functions. The model centers on an axiomatization of (a fragment of)
minimalist syntax that closely follows the MG formalism; whenever applicable, the model
axioms are grounded in universal linguistic principles that govern minimalist syntax.22

This section will introduce and detail the finite sorts, uninterpreted functions, and ax-
ioms (i.e. SMT-formulae) that make up the definition of each of these component models.
Summaries of the sorts and uninterpreted functions that make up the model are provided
in Table 2.2 and Table 2.3 respectively23. Additionally, the reader may find it helpful to
consult Fig. 2-8, which is a map of the model, showing how the various finite sorts and unin-
terpreted functions are connected and organized. Finally, the reader is strongly encouraged
to carefully review the model architecture diagrams presented over the course of this section
– i.e. Fig 2-14, Fig 2-10, Fig 2-11, and Fig 2-14; these diagrams collectively serve to ground
the manifold definitions presented in this section by illustrating how they work together to
model a minimalist lexicon and derivation.

2.3.1 The Lexicon Model

This subsection introduces and details an SMT-model of a minimalist lexicon. A minimalist
lexicon is taken to consist of a finite set of lexical entries, each of which is modeled as a 3-tuple
that consists of: (i) a finite sequence of syntactic features, which we will frequently refer to
as a “lexical feature sequences”; (ii) a syntactic category; (iii) a phonological form. The SMT-

22This work is informed by earlier work axiomatizing minimalist grammars by (Graf, 2013) and the
formalization of minimalist syntax by (Collins and Stabler, 2016).

23A full, documented presentation of the axioms can be found in the reference implementation of the
model.

§2.3 Page 39/200

Sort Description

N Nodes in a derivation – i.e. each node corresponds to a position in
a projection in the derivation.

Ω Nodes in a lexicon – i.e. each node corresponds to a location in a
lexical entry in the lexicon.

F Set of syntactic feature labels – e.g. {𝑥, 𝑦, 𝑝, 𝑞, 𝑟}.
𝑇 Set of syntactic feature types: selector (=), selectee (∼), licensor

(+) , licensee (−), 𝐶.
C Set of categories; the functional categories are C, T, v, V and the

lexical categories are P, D, N.
Σ Set of phonological forms – i.e. the union of the set of tokens in

the expressions to be parsed.
𝐵𝑜𝑜𝑙 The boolean values true and false.

Table 2.2: Finite sorts and descriptions of the roles they play in the SMT-model of the
minimalist parser. The sizes of the sorts are either determined from the model parameters
supplied by the user or are derived from the specified interface conditions. (see §2.4.1)

model of the lexicon consists of sorts, uninterpreted functions, bounding parameters, and a
set of axioms that, taken together, constitute a decision problem that is satisfiable by any
minimalist lexicon that fits within the specified bounds. Looking ahead, §2.3.4 details how
the model of the lexicon is connected to the model of the derivation, and §2.4.1 shows how a
specified input lexicon can be translated into first order logical formulas that constrain what
values the uninterpreted functions in the model can take on, thereby encoding the specified
lexicon into the model.24

The remainder of this subsection is organized as follows. We will begin by detailing the
form of the model, which follows the MG formalism closely, and situate it within contempo-
rary theories of minimalist syntax. We will then introduce the (finite) sorts that model the
component parts (e.g. features, lexical entries, phonological forms) from which the lexicon is
constructed. Finally, we will introduce the uninterpreted functions that model the relations
between the component parts that make up the lexicon, and the axioms that constrain what
interpretations each of these functions may take on. A summary of the sorts and functions
listed in this section is provided in Table 2.2 and Table 2.3 respectively; additionally, the
reader may wish to review Figure-2-8 and reference it while reading this section.

Model Form

Per minimalist theories of syntax, a lexicon is a set of atomic syntactic structures that
encodes information required by the computational system (𝐶𝐻𝐿𝐹) to assemble complex

24I.e. it is possible to hard-code the model values so that the interpretation of the lexicon model aligns
exactly with the specified lexicon; in the next chapter we will see why it is sometimes desirable, in the
context of language acquisition, not to constrain the lexicon model with a specified lexicon as the lexicon is
itself what is being solved for.

§2.3 Page 40/200

Function Signature Description

ℎ N → N Head of a node.
𝑝 N → N Parent of a node (see the solid black arrows in Fig. 2-

2).
𝑑 N× N → 𝐵𝑜𝑜𝑙 Predicate encoding the derivation tree that holds if the

former constituent (node) dominates the latter con-
stituent (node).

ℳ N× N → N Product of merging two nodes in the derivation.
𝒫 N → N Target that a node undergoing phrasal movement is

raised to (see the dashed grey arrows in Fig. 2-2).
ℋ N → N Destination of a node undergoing head-movement (e.g.

the target of the dashed grey arrows in Fig. 2-2).
𝛽N N → C Category associated with a node.
𝑑⋆ N× N → 𝐵𝑜𝑜𝑙 Predicate encoding the derived tree that is true if the

former constituent (node) dominates the latter con-
stituent (node).

ℒ N× N → 𝐵𝑜𝑜𝑙 Predicate encoding precedence relations between con-
stituents in the derived tree; this predicate is true if,
after all syntactic movement has taken place, the for-
mer constituent precedes the latter constituent (w.r.t.
SVO linearization).

ΔN N → Σ Phonological form associated with a derivation node
(i.e. associates lexical heads with phonological forms).

𝜇 N → Ω Maps derivation nodes to lexicon nodes.

𝜓 Ω → Ω Maps a lexicon node to its successor.
𝜅 Ω → F Maps a lexicon node to its syntactic feature label.
𝜉 Ω → 𝑇 Maps a lexicon node to its syntactic feature type.
Γ Ω → 𝐵𝑜𝑜𝑙 Indicates if the argument triggers head-movement.
𝛽Ω Ω → C Associates a lexicon node with a category.
ΔΩ Σ× Ω → 𝐵𝑜𝑜𝑙 Associates a lexicon node with a phonological form.

Table 2.3: Uninterpreted functions in the SMT-model of the derivation and the SMT-model
of the lexicon (separated by a horizontal line), and descriptions of the role they play in the
SMT-model of the minimalist parser.

§2.3 Page 41/200

syntactic structures that satisfy interface conditions.2526 The members of a lexicon, referred
to as lexical entries, each consists of a matrix of features, with features defined as per (Adger
and Svenonius, 2011):

A syntactically relevant property of a syntactic atom which is not shared by all
syntactic atoms and which is not derivable from some other property is a feature.

The features associated with a lexical entry encode the semantic, syntactic and phonetic
properties of that lexical entry.27 The lexical entries in the lexicon encode, with features,
all of the information that is required to assemble a syntactic structure - this is per the
Inclusiveness Condition28, which stipulates that a syntactic structure is exclusively com-
posed of elements of the atomic syntactic structures that enter into the derivation – i.e.
the features associated with the atomic syntactic structures entering into a derivation are
the only features that may appear in the derivation. Syntactically-relevant features29 – i.e.
those features that play a role in syntactic processes – may be divided into two categories:
features that are both involved in syntactic processes and interpreted at the interfaces are
referred to as interpretable features, with features interpretable at the LF or PF interface
referred to as LF or PF interpretable features respectively; features that are only involved
in syntax and not interpreted at the interfaces are referred to as uninterpretable features.
E.g. categorical features30 and phi-features of nouns are interpretable whereas case-marking
features are uninterpretable.3132 The particular role syntactic features play in a derivation
is prescribed by the particular theory of minimalist syntax used as well as the formalism
employed, but ultimately they must serve to regulate the syntactic structures the lexicon
can yield by controlling when merge can be applied, and what information is presented to
the interfaces.

Having outlined some of the broader requirements that a lexicon must satisfy per contem-
porary theories of minimalist syntax, we will next consider how the MG formalism models

25See (Chomsky, 1995, Pg. 6): “For each particular language, the cognitive system, we assume, consists of
a computational system CS and a lexicon. The lexicon specifies the elements that CS selects and integrates to
form linguistic expressions – (PF, LF) pairings, we assume. The lexicon should provide just the information
that is required for CS, without redundancy and in some optimal form, excluding whatever is predictable by
principles of UG or properties of the language in question.”

26See (Chomsky, 1995, Pg. 239): “On the simplest assumptions, the lexical entry provides, once and for
all, the information required for further computations – in particular for the operations of the phonological
component (including morphology, we assume).”

27See (Chomsky, 1995, Pg. 130): “The lexicon is a set of lexical elements, each an articulated system of
features. It must specify, for each such element, the phonetic, semantic, and syntactic properties that are
idiosyncratic to it, but nothing more.”

28See the Inclusiveness Condition (Chomsky, 1995, Pg. 228 of §4.2.1.): “A ‘perfect language’ should
meet the condition of inclusiveness: any structure formed by the computation (in particular 𝜋 and 𝜆) is
constituted of elements already present in the lexical items selected for N; no new objects are added in the
course of computation apart from rearrangements of lexical properties (in particular, no indices, bar-levels
in the sense of X-Bar theory, etc. . .).”

29See (Chomsky et al., 2019): “But informational notions such as “topic” or “focus,” like grammatical
functions or thematic roles, are properties of configurations and their syntactic/discursive context, not of
individual syntactic objects (Chomsky 1965; Hale & Keyser 1993); consequently, they should neither be
represented in the lexicon, nor in the narrow syntactic derivation (cf. Uriagereka 2003; Fortuny 2008; López
2009; Gallego 2013a, 2016)”

30E.g. C, T, v, V, D, and N. See (Chomsky, 2001).
31Here we separate phi-features, which encode gender, person, number, etc, from features that encode

case. See (Chomsky, 1995)pg. 278.
32In English, only pronomials have their case explicitly visible.

§2.3 Page 42/200

a lexicon. The MG formalism models checking theory, in which merge imposes constraints
on the relations between corresponding features in the feature matrices of the two merging
syntactic structures; in the case of (c-)selection and licensing, the two features must check
one another, which requires that the two features to have the same label.33 In particular,
the MG formalism provides syntactic features for both selection and licensing, which drive
external merge and internal merge (i.e. syntactic movement) respectively,34. Addition-
ally, the MG formalism has also been extended to include selectional features for triggering
head-movement;35 these syntactic features are strictly uninterpretable, and in effect serve as
book-keeping variables that serve a syntactic purpose strictly within the derivation, but not
exposed to the interfaces.36

Although the MG formalism is rather conservative in the types of features it includes,
and the kind of feature matrix allowed (i.e. a finite sequence of features), the formalism
is powerful enough that an MG lexicon can encode any MSO-expressible (syntactic) con-
straint (over the derivations trees the lexicon will yield),3738, and simple enough that an
axiomatization of a minimalist can be written down. The MG formalism is thus a good
starting point for modeling a minimalist lexicon, with an understanding that substantive
improvements and refinements to the formalism are required to bring it into full alignment
with contemporary minimalist syntax. To this end, the model of the lexicon developed in
this thesis will closely follow the MG formalism, with several minor modifications that we
will now go over. See Fig. 2-14 for a diagram illustrating the architecture of the lexicon
model; see Fig 2-10 for a diagram illustrating in further detail how the model represents a
single lexical feature sequence.

We will now consider the form of a lexical entry, and how these lexical entries are arranged
to form a lexicon. First, all lexical entries in the lexicon have the form:

𝑃𝐹/𝐶𝐴𝑇 :: [𝑆𝐹𝑆]

here 𝑃𝐹 is a phonological form (e.g. “dog”), 𝐶𝐴𝑇 is a categorical variable (e.g. 𝑁) that is
formally interpretable at the LF interface, and 𝑆𝐹𝑆 is a finite sequence of uninterpretable
syntactic features, either selectional or licensing (i.e. just as prescribed by the MG formal-
ism). Whereas a syntactic feature sequence may associate with more than one phonological

33The feature system adopted in this thesis is based on checking theory as presented in (Chomsky, 1995),
and not the Probe/Goal system developed in (Chomsky, 2001); see (Fong and Ginsburg, 2019) for a presen-
tation of a minimalist parser that faithfully implements the theory of phases.

34This is grounded in the Principle of Last Resort (Chomsky, 1995, Pgs. 200-201), which asserts that
(syntactic) movement is driven triggered by the need to check an uninterpretable feature.

35See (Stabler, 2001) and (Stabler and Keenan, 2003).
36For details, see (Stabler, 1998, Pg. 11): “In the first place, Chomsky (1995), Ura (1996), Collins

(1997) and others have argued that natural languages can be defined more elegantly with more elaborate
feature checking regimes. For example, Chomsky does not assume that syntactic features are disjoint from
the interpreted and phonetic ones, suggesting that there are two types of features, the -interpretable features
which are eliminated ’at LF’, and the +interpretable ones which are not (Chomsky, 1995, pp. 278-279),
where the -interpretable syntactic features may have phonological effects. It might also be desirable to allow
syntactic operations to check many features in a single step. These schemes are presumably strictly more
powerful than the ones proposed in the simple formalism above. In our formal grammars, the features are,
in effect, all -interpretable, without phonological consequences, and each operation checks and deletes exactly
two features.“

37See (Graf, 2013).
38Per (Rogers and Nordlinger, 1998), most (if not all) syntactic constraints are MSO-expressible.

§2.3 Page 43/200

form, every syntactic feature sequence is associated with exactly one categorical variable.39

Secondly, the lexicon will encode associations between phonological forms and syntactic
feature sequences, which we will sometimes refer to as a “lexical feature sequences”, by an
auxiliary table that pairs the index of a lexical feature sequences with the indices of the
phonological forms. This form of representation, which we will often refer to as a “factored
representation” of the lexicon, has two benefits: (i) it allows the lexicon to more efficiently
encode a larger number of lexical entries without having to maintain copies of lexical fea-
ture sequences or phonological forms; (ii) it enables the size of the lexicon to be optimized
by minimizing (specifically) the number of lexical feature sequences present in the lexicon,
without penalizing the number of phonological forms each lexical entry is associated with –
this will be extensively detailed in Ch.3.40

Having outlined the form of the model of the lexicon, a strategy for developing it thus
comes into view. First, we will employ a sort to model the set of lexical entries in the lexicon,
and then impose additional structure upon this sort so that its elements may be organized
into a finite set of finite sequences (of syntactic features), thereby allowing us to reference
sequences of syntactic features. Then we will employ additional finite sorts and functions to
represent: (i) the label and type of each syntactic feature (in each lexical feature sequence);
(ii) the phonetic forms and categorical variable associated with each lexical feature sequence.
Let us now see how this strategy plays out in practice.

Model Sorts

The model includes several (finite) sorts, each of which describes one of the various types of
“things” from which the lexicon is built up – i.e. the labels and types of syntactic features,
the lexical feature sequence (i.e. the sequence of syntactic features that constitutes a “feature
matrix”), phonetic features, and categorical features.

The Lexicon Node Sort. To begin, we will first introduce a sort to model the set of
lexical entries in the lexicon, and then impose additional structure upon this sort so that its
elements may be organized into a finite set of finite sequences.

Define Ω, referred to as the lexicon node sort, to be a finite sort with two distinct members
especially labeled: the terminal node, 𝜔∅, and the complete node, 𝜔𝐶 . The complete node
serves to code for the special syntactic feature 𝐶. The terminal node serves to indicate
the end of a syntactic feature sequence, and is itself not coding for any particular syntactic
feature.41 With respect to the form of an MG lexicon, each member of Ω, aside from 𝜔𝐶 and
𝜔∅, is associated (uniquely) with a syntactic feature in the lexicon; this subset, Ω−{𝜔𝐶 , 𝜔∅},
is denoted Ω

′ .
Next we will impose additional substructure upon Ω to model sequences of features. A

lexicon node sequence of length 𝑘 is defined to be a finite sequence of nodes, 𝑥1, . . . , 𝑥𝑘 ∈ Ω.
The set of node sequences in Ω is denoted 𝜆. Each member of 𝜆 corresponds to a lexical
feature sequence in the lexicon (with there being a one-to-one correspondence between the
sequence of nodes in a lexicon node sequence, and the sequence of features in a lexical

39There are far fewer distinct categories than there are distinct phonological forms; furthermore, the
number of categories in the model is fixed and independent of the input, whereas the number of phonological
forms is not fixed and may grow depending on the input.

40As we will see later, there are upper-bounds on the number of phonological forms that any given lexical
feature sequence can associate with.

41Looking ahead to §2.3.2, the terminal node serves a similar role as ⊥ ∈ N, whereas the complete node
serves a similar role as the 𝑅N ∈ N.

§2.3 Page 44/200

feature sequence). Note that 𝜔∅ and 𝜔𝐶 do not appear in any of the lexicon node sequences.
As a convention, the first node in a lexicon node sequence will sometimes stand in for the
entire lexicon node sequence itself; this is necessary because the lexicon node sequences are
not explicitly modeled themselves – i.e. there is no “lexicon node sequence sort” in the
lexicon model). Instead the lexicon node sequences are implicit in the external indexing of
the lexicon node sort (i.e. within the python program that will construct this model, the
members of the lexicon node sort are organized as a list of lists).

Sorts for Syntactic Features. Each syntactic feature in an MG lexicon has a type and
a label. The type of a feature is either selector, selectee, licensor, licensee or a special symbol
that indicates convergence of the derivation – these types are denoted by the prefixed symbols
=, ∼, +, − and 𝐶 respectively.42 In the context of parsing (as in this chapter), the label
of a feature is specified by the (input) lexicon; in the context of acquisition (as in the next
chapter), the label of a feature is one of a set of automatically enumerated feature labels
that is available to the system.43

The label of a feature is either one that was specified by the user (e.g. in the case of
an interface condition requiring that a particular feature appear at a particular point in
a derivation) or from the set of automatically enumerated feature labels available to the
system (intended for uninterpreted features).44

We will now define two sorts, the first of which encodes the type of a feature, and the
second of which encodes the label of the feature. Define 𝑇 , referred to as the lexicon node
type sort, to be a finite sort consisting of the following members: {𝜏𝑡, 𝜏𝑐, 𝜏=, 𝜏∼, 𝜏+, 𝜏−, 𝜏∅}.
Define F, referred to as the syntactic feature sort, to be a finite sort that is divided into three
disjoint subsets: the selectional feature subset, F𝑆 , the licensing feature subset, F𝐿, and a
singleton set consisting of an element, ∅F, that is referred to as the nil syntactic feature.
The nil syntactic feature, ∅F, serves to designate that a lexicon node is not associated with
a feature type, and plays a role similar to 𝜔∅ ∈ Ω; likewise, 𝜏∅ serves to designate that a
lexicon node is not associated with a feature label, and plays a role similar to ∅F. Fig. 2-10
illustrates how these two sorts will be associated with the members of the lexicon node sort
(using the model functions that we will introduce a little later on).

A Sort for Categorical Features Categories are interpretable properties (i.e. features)
of atomic syntactic structures. The model includes a sort to code for categories, including
both functional categories (i.e. {𝐶, 𝑇, 𝑣,𝐷, 𝑃}) and lexical categories (i.e. {𝑁,𝑉 }).4546

42There is also a special type of selector that triggers head-movement and is indicated by the prefix <=
or >= for left and right head-movement respectively; see (Stabler and Keenan, 2003) for more details.

43The number of automatically enumerated feature labels available to the system is specified by the user
as a model parameter. Typically more labels than are required are provided to the system as we do not
know, apriori, how many such labels the system will require.

44The number of automatically enumerated feature labels available to the system is specified by the user.
Typically more labels than are required are provided to the system as we do not know, apriori, how many
such labels the system will require.

45For a discussion of functional vs. lexical categories, see (Adger, 2003, Pg. 165), (Lust, 2006, Pgs. 184-
185), and (Chomsky, 1995, Pg. 54); note that contemporary theories of minimalist syntax at times disagree
on whether prepositions (P) are functional or lexical categories – this thesis takes them to be functional
categories, although whether P is a functional or lexical category does not substantively impact any of the
results presented in this thesis.

46This study does not deal with adjectives or adverbs, hence the absence of a lexical category “A”; note
that this does not preclude the model from being extended to handle adjectives and adverbs, and the choice
to ignore them was made for the purposes of simplifying the definition of the model.

§2.3 Page 45/200

Figure 2-9: Lexicon Model Architecture Diagram. This diagram illustrates how several of
the sorts that make up the lexicon model are connected. The left hand side column depicts
the members of the category sort (i.e. C), with each member coding for a unique categorical
feature; these features are pre-determined (formally) LF interpretable features that are
referenced by some of the axioms for interface conditions presented later in §2.3.3. The
right hand side column depicts the members of the PF node sort (i.e. Σ), with each member
coding for a phonetic feature; the phonetic features are (formal) PF interpretable features.
The middle column depicts the members of the lexicon node sort (i.e. Ω) (displayed with
their associated feature type and label) organized in rows (outlined in thin grey boxes), with
each row coding for a lexical feature sequence that consists of uninterpretable (syntactic)
features that must be checked and deleted over the course of the derivation; the filled grey
boxes are “inactive” lexicon nodes that do not code for any syntactic feature, and the bottom
two members (i.e. 𝐿𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 and 𝐿𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙) code for special members of the lexicon node
sort that signify (respectively) (i) the special symbol “C” that marks the end of a derivation,
and (ii) the end of a lexical feature sequence. Each lexical feature sequence is associated with
exactly one categorical feature (via ΔΩ), and one or more phonetic features, as indicated by
the dotted lines. The “null” sort values in the category sort and PF node sort each serve to
indicate “no assignment”, and the bottom most syntactic feature sequence properly connects
to each of them to indicate that as an inactive lexical feature sequence (i.e. an unused entry
in the lexicon), it is thus not affiliated with any phonetic form or categorical feature.

§2.3 Page 46/200

Figure 2-10: Lexical Feature Sequence Diagram. This diagram illustrates how several of the
sorts and uninterpreted functions that make up the lexicon model are organized to represent
a lexical feature sequence (specifically the top most lexical feature sequence displayed in
Fig. 2-14). The solid arrows map each member of the lexicon node sort (i.e. Ω) to its
successor (via the map 𝜓). Here, the first three members of the lexical feature sequence
appear in succession, followed by the 𝐿𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 node, which serves to indicate the end of the
sequence (the last entry in the lexical feature sequence is allocated but not used, as indicated
by it being greyed out). The dashed arrows map (via 𝜉) members of the lexicon node sort
that make up a lexical feature sequence to their respective feature labels (i.e. members of
F). Likewise, the dotted arrows map (via 𝜅) entries in the lexical feature sequence to their
respective feature type (i.e. members of 𝑇). Members of the lexicon node sort that are
not associated with any feature in particular are mapped to the ∅ feature type and label
respectively (e.g. 𝐿𝑑 and 𝐿𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙).

§2.3 Page 47/200

Define C, referred to as the category sort, to be a finite sort consisting of the following
members:

C = {c𝐶𝐷𝑒𝑐𝑙.
, c𝐶𝑄𝑢𝑒𝑠.

, c𝑇 , c𝑣, c𝑉 , c𝑃 , c𝐷, c𝑁 , c∅} (2.10)

Each member of C is indexed by either the category marked in its subscript, or for ∅ in the
case of the singleton member that serves to designate no category association.

A Sort for Phonetic Features Define Σ, referred to as the “PF node sort”, to be a
finite sort that is the union of the three disjoint subsets: Σ𝑜, which code for overt phonetic
features, the singleton set, Σ𝑐, that contains the covert phonetic feature 𝜖, and the singleton
set, {∅Σ}, that codes for the null node (standing to represent “no phonetic feature”). Each
element of Σ𝑜 is indexed by the unique word it codes for; the set of words Σ𝑜 codes for must
be supplied when the sort is initialized. Looking ahead, we will later go over this in more
detail with a specific example in §2.4.1.

Bounding the Model. The system does not know, a-priori: (i) which lexical entries (or
even how many) are in the lexicon; (ii) how many features each lexical entry has. Thus,
upper-bounds must be supplied for each of these unknown quantities; given these upper
bounds, it is then possible to compute a bound on the size of Ω. Although these bounds can
be determined by examining the lexicon that will be input into the parser (as will be done
in §2.4.1), in the next chapter on acquisition, there will often be no (input) lexicon specified
and these upper-bounds will have to be supplied by the user as model parameters.

We can compute the upper bound on the cardinality of Ω as follows. Let 𝑛𝐿 be the
maximum number of lexical items, 𝑞 be the maximum length of a lexical feature sequence.
Then the size of |Ω| is bounded above by:

|Ω| ≤ 2 + 𝑛𝐿𝑞 (2.11)

Note that the 2 appearing in (2.11) is included to account for the null node and the complete
node.

Next, we can compute an upper-bound on the cardinality of the set of selectional and
licensing feature labels as follows. Let 𝑠 be the maximum number of selectional features,
and let 𝑙 be the maximum number of licensing features. Then the size of F is bounded above
by:

|F| ≤|{∅F} ∪ F𝑆 ∪ F𝐿| = 1 + 𝑠+ 𝑙 (2.12)

The labels of selectional and licensing features, if not explicitly supplied by the user as model
parameters, are automatically generated by the system to be 𝑥1, 𝑥2, . . . , 𝑥𝑠 and 𝑦1, 𝑦2, . . . , 𝑦𝑙
respectively.

Model Axioms

The model includes both uninterpreted functions that map the model sorts to one another,
and model axioms that constrain interpretations of these functions; consequently, the axioms
collectively constrain the space of satisfiable interpretations of the lexicon model as a whole.
Fig. 2-14 and Fig. 2-10 illustrate the relations that the (uninterpreted) functions to be
introduced will establish between the members of the lexicon model sorts; intuitively, the

§2.3 Page 48/200

model axioms will serve to restrict what relations may be established. Looking ahead,
the task of the SMT-solver will be to identify satisfiable interpretations of the uninterpreted
functions that make up the lexicon model – i.e. valuations of the uninterpreted functions that
accord with the axioms. See Table 2.6 for a detailed example of a satisfiable interpretation
of the model of the minimalist parser (which this lexicon model is a component of). Finally,
before proceeding, a remark concerning notation is in order – namely, that when “(Ax.??)”
shows up at the end of a sentence, the reader should understand the sentence to be explaining
the referenced axiom – this notation will be used throughout the remainder of this chapter.

Axioms for Syntactic Features. To begin, we will introduce two uninterpreted (unary)
functions that associate members of the lexicon node sort with feature labels and feature
types.

Given a member of the lexicon node sort 𝑥 ∈ Ω, 𝜅(𝑥) is the label of the syntactic feature
assigned to 𝑥, where 𝜅 is defined to be an uninterpreted function with signature Ω → F.
Likewise, given 𝑥 ∈ Ω, 𝜉(𝑥) is the type of the syntactic feature assigned to 𝑥, where 𝜉 is
defined to be an uninterpreted function with signature Ω → 𝑇 . Several axioms constrain
interpretations of 𝜅 and 𝜉.47

𝜅(𝜔∅) = 𝜅(𝜔𝐶) = ∅F (2.13)
𝜉(𝜔𝐶) = 𝜏𝑐 (2.14)
𝜉(𝜔∅) = 𝜏𝑡 (2.15)⋀︁{︁

⟨𝜉(𝑥), 𝜏𝑐, 𝜏𝑡⟩ | 𝑥 ∈ Ω
′
}︁

(2.16)

The terminal node does not have an associated syntactic feature and the complete node
(which associates with the special feature 𝐶 in the MG formalism) associates with a special
syntactic feature that has a type but not a label (Ax.2.13). The feature types 𝜏𝑐 and 𝜏𝑡
are restricted to the complete node and the terminal node respectively (Ax.2.14, Ax.2.15);
other nodes (i.e. Ω

′) may not associate with these two feature types (Ax.2.16).
Given 𝑥 ∈ Ω, Γ(𝑥) indicates whether or not a node triggers head-movement48, where

Γ is defined to be an uninterpreted function with signature Ω → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛. Several axioms
constrain interpretations of Γ:

Γ(𝑥) → 𝜉(𝑥) = 𝜏= (2.17)⋀︁
{(𝜅(𝑥) = ∅F) ↔ (𝜉(𝑥) ∈ {𝜏∅, 𝜏𝑐, 𝜏𝑡}) | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆} (2.18)⋀︁

{(𝜉(𝑥) ∈ {𝜏+, 𝜏−}) → 𝜅(𝑥) ̸= 𝑓 | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆, 𝑓 ∈ F𝑆} (2.19)⋀︁
{(𝜉(𝑥) ∈ {𝜏=, 𝜏∼}) → 𝜅(𝑥) ̸= 𝑓 | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆, 𝑓 ∈ F𝐿} (2.20)

Only a feature of type selector can trigger head movement (Ax.2.17). Nodes involved in
licensing cannot have selectional features (Ax.2.19) and likewise nodes involved in selec-
tion cannot have licensing features (Ax.2.20). Finally, a node in a lexicon node sequence
associates with nil feature if and only if the node is not involved in selection or licensing

47Note that for some of the axioms presented below, we will sometimes evaluate set-membership with
respect to a finite set – in these cases it should be understood that such an expression can be replaced (and
is within the reference implementation) with a disjunction of equality against each member of the finite set
in question; see (Ax.2.18) for an example of an axiom in which this replacement is applicable.

48This predicate serves the purpose of allowing us to sub-type the selector feature type.

§2.3 Page 49/200

(Ax.2.18).

Axioms for Lexical Feature Sequences. Next, we will introduce an uninterpreted func-
tion that will impose sequencing relations on the nodes within each lexicon node sequence.
Given 𝑥 ∈ Ω, 𝜓(𝑥) is the successor of 𝑥, where 𝜓 is defined to be an uninterpreted function
with signature Ω → Ω. Several axioms constrain interpretations of 𝜓:⋀︁{︀

𝜓(𝑥) ̸= 𝑦 | 𝑥 ∈ 𝑠𝑖, 𝑦 ∈ 𝑠𝑗 , 𝑖 ̸= 𝑗, 𝑠𝑖, 𝑠𝑗 ∈ 𝜆2
}︀

(2.21)⋀︁
{𝜓(𝑥𝑖) ∈ {𝜔∅, 𝑥𝑖+1, 𝜔𝐶} | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆, 𝑖 < 𝑘} (2.22)⋀︁

{𝜓(𝑥) ∈ {𝜔∅, 𝜔𝐶} | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆, 𝑖 = 𝑘} (2.23)

𝜓(𝜔𝐶) = 𝜓(𝜔∅) = 𝜔∅ (2.24)

A node cannot succeed a node from another lexicon node sequence (Ax.2.21). Every node
but the last in a node sequence has the next node in the sequence as its successor (Ax.2.22,
Ax.2.23). The terminal node is the successor of both the complete node and the terminal
node (Ax.2.24). ⋀︁{︀

(𝑦 = 𝜓(𝑥)) → (𝜉(𝑦) ̸= 𝜏∅) | 𝑥, 𝑦 ∈ ⟨Ω2⟩
}︀

(2.25)⋀︁
{(𝜉(𝑥) = 𝜏∅) → (𝜓(𝑥) = 𝜔∅) | 𝑥 ∈ Ω} (2.26)

An inactive lexicon node is one that is not used in any derivation (and thus wouldn’t appear
in the extracted lexicon when the model is evaluated). Inactive nodes are not a successor
to any node (Ax.2.25) and have the terminal node as a successor (Ax.2.26).

The following axioms are derived from the observation made in (Hunter and Dyer, 2013)
that the feature sequence consists of a sequence of zero or more selectors and licensors
followed by either the special symbol 𝐶 (and nothing more) or a selectee that is in turn
followed by a sequence of zero or more licensees.⋀︁

{(𝜉(𝑥) ∈ {𝜏=, 𝜏+}) → 𝜉(𝜓(𝑥)) ̸= 𝜏− | 𝑥 ∈ 𝑠, 𝑠 ∈ 𝜆} (2.27)⋀︁
{(𝜉(𝑥) ∈ 𝜏∼, 𝜏−}) → 𝜉(𝜓(𝑥)) ∈ {𝜏−, 𝜏𝑡} | 𝑥 ∈ 𝑠, 𝑠 ∈ 𝜆} (2.28)

The successor of a Selector or Licensor cannot be a Licensee (Ax.2.27); likewise, the successor
of a Selectee or Licensee is either a Licensee or Terminal (Ax.2.28).

Axioms for Pairing Feature Matrices with Phonological Forms. Finally, we will
introduce an uninterpreted function, specifically a binary predicate, that will associate each
lexicon node sequence (each of which codes for a lexical feature sequence) with one or more
members of the PF node sort (which codes for the phonetic features).49

Given a member of the lexicon node sort, 𝑥 ∈ Ω, and a member of the PF node sort,
𝑦 ∈ Σ, that codes for a phonetic feature 𝑤, ΔΩ(𝑥, 𝑦) is true if and only if the phonetic form
𝑤 is associated with 𝑥, where ΔΩ is defined to be an uninterpreted function with signature:

ΔΩ : Σ× Ω → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

49A lexicon node sequence can associate with the “null” member of the PF node sort, ∅Σ, to indicate no
association with any phonetic feature.

§2.3 Page 50/200

The following axioms constrains interpretations of ΔΩ:⋀︁
{ΔΩ(𝑥,∅Σ) | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆, 𝑖 > 1} (2.29)⋀︁

{ΔΩ(𝑠[0],∅Σ) = (𝜉(𝑠[0]) = 𝜏∅) | 𝑠 ∈ 𝜆} (2.30)

⋀︁⎧⎨⎩ΔΩ(𝑠[0],∅Σ) ̸=

⎛⎝ ⋁︁
𝑥∈{Σ−∅Σ}

ΔΩ(𝑠[0], 𝑥)

⎞⎠ | 𝑠 ∈ 𝜆

⎫⎬⎭ (2.31)

Per the (earlier established) convention that the first node in a lexicon node sequence will
sometimes code for the entire lexicon node sequence, only the first node in a lexicon node
sequence (referred to as a the representative node) may associate with a phonetic form; all
nodes after the first node in a lexicon node sequence are not associated with any overt or
covert phonetic form (Ax.2.29). The representative node of a lexicon node sequence is active
if and only if it is not associated with ∅Σ (Ax.2.30), and every active representative node
must associate with at least one phonetic feature (Ax.2.31) — i.e. a member of the PF node
sort that is not ∅Σ.

The final set of axioms presented here serve to bound the maximum number of lexical
feature sequences that each unique phonetic feature can associate with. To this end, let
𝑘𝑜𝑣𝑒𝑟𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡 be the maximum number of lexical feature sequences an overt phonetic feature can
associate with, and let 𝑘𝑐𝑜𝑣𝑒𝑟𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡 be the maximum number of lexical feature sequences with
which a covert phonetic feature can associate. Then the following pair of axioms enforce
these bounds for overt and covert nodes respectively:

⋀︁{︃(︃
𝑘𝑜𝑣𝑒𝑟𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ≥

∑︁
𝑠∈𝜆

ΔΩ(𝑠[0], 𝑥)

)︃
| 𝑥 ∈ Σ𝑜

}︃
(2.32)

⋀︁{︃(︃
𝑘𝑐𝑜𝑣𝑒𝑟𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ≥

∑︁
𝑠∈𝜆

ΔΩ(𝑠[0], 𝑥)

)︃
| 𝑥 ∈ Σ𝑐

}︃
(2.33)

Each of these two axioms (Ax.2.32 and Ax.2.33) includes a pseudo-boolean constraint that
enforces the upper bound on the number of associations with phonetic features. These two
axioms are optional and are included for reasons that will become apparent in the next
chapter that pertains to acquisition.

This concludes the presentation of the model of the lexicon. Looking ahead to §2.4.1, it
should be noted that it is possible to recover, from a satisfiable interpretation of the lexicon
model, each of the lexical entries, and for each lexical entry, the sequence of syntactic
features.

§2.3 Page 51/200

Remark 1. Example of an Axiom. Let us walk through an example of an axiom to
clarify any confusions introduced by notation. Consider axiom (2.28), replicated below:⋀︁

{(𝜉(𝑥) ∈ 𝜏∼, 𝜏−}) → 𝜉(𝜓(𝑥)) ∈ {𝜏−, 𝜏𝑡} | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ 𝜆}

We begin by observing that the expression is a conjunction of a set of expressions formed
by enumerating over each node in each lexicon node sequence. Note that the quantification
is carried out not within the SMT-solver, but externally, in the python program that calls
out to the SMT solver; this allows us to maintain an index over the nodes in Ω (i.e. the
lexicon node sort) outside of the SMT-solver. The expressions in the conjunction are logical
implications of the form:

(𝜉(𝑥) ∈ 𝜏∼, 𝜏−}) → 𝜉(𝜓(𝑥)) ∈ {𝜏−, 𝜏𝑡}

Here 𝜉(𝜓(𝑥)) denotes the feature type of the lexical node of the successor of (the node) 𝑥,
𝜏∼ codes for the selectee feature type, 𝜏− codes for the licensee feature type, and 𝜏𝑡 codes for
the “terminal” feature type (that serves to terminates a feature sequence). Additionally, the
sub-expression:

𝜉(𝜓(𝑥)) ∈ {𝜏−, 𝜏𝑡}

is written using set-membership notation as a notational convenience – i.e. the expression
may be translated to:

(𝜉(𝜓(𝑥)) = 𝜏−) ∨ (𝜉(𝜓(𝑥)) = 𝜏𝑡)}

Finally, we present the python code that corresponds to this axiom, so that the reader may
see how the set-builder notation translates into a python comprehension:

1 s.add_conj(Implies(Or(lnT(x) == lts.Selectee ,
2 lnT(x) == lts.Licensee),
3 Or(lnT(succ(x)) == lts.Licensee ,
4 lnT(succ(x)) == lts.Terminal))
5 for x in le.nodes)

§2.3 Page 52/200

2.3.2 The Derivation Model

This subsection introduces and details an SMT-model of a minimalist derivation using a
quantifier free, multi-sort first order logic.50 In particular, this subsection will models a class
of hierarchical structures that are each assembled from a set of atomic syntactic structures
(selected from the lexicon) via the recursive application of merge. To this end, we will
specify additional sorts, functions and axioms that extend the theory developed in §2.3.1
so that in addition to modeling a minimalist lexicon, the theory also models a minimalist
derivation. Looking ahead, the model developed in this subsection will next be extended
in §2.3.2 so that a derivation may be constrained by a specified set of interface conditions,
which are translated into structural conditions (i.e. SMT-formulae) that constrain satisfiable
interpretations of the model of the derivation. After that, §2.3.4 will connect the model of the
derivation to the model of the lexicon via shared symbols, so that a satisfiable interpretation
of the model of the derivation must be one that is yielded by the lexicon retrieved from the
(satisfiable) interpretation of the lexicon model, thereby enabling the model to serve as an
MG parser.

This subsection is organized as follows: We will begin by detailing the form of the
model, which follows the MG formalism closely, and situate it within contemporary theories
of minimalist syntax. We will then introduce the (finite) sorts that model the component
parts (e.g. lexical heads, projections and chains) from which the derivation is constructed;
these sorts collectively make up the model’s domain of discourse. Finally, we will introduce
the uninterpreted functions that model the relations between the component parts that
make up the derivation, and the axioms that constrain what interpretations each of these
functions may take on - e.g. these axioms will encode bare phrase structure and restrictions
on syntactic movement.

A summary of the sorts and functions listed in this section is provided in Table 2.2 and
Table 2.3 respectively; additionally, the reader may wish to review Fig. 2-8 and reference
it while reading this section. Importantly, the reader should make sure to understand how
the derivation presented in Fig. 2-2 connects to the derivation model architecture diagram
presented in Fig. 2-11, as that is the key to developing an intuitive understanding of how
the axioms come together to form a theory of minimalist derivations.

Model Form

To begin, we will first outline the theoretical construct of a minimalist derivation in light
of contemporary theories of minimalist syntax, and then turn to considering aspects of the
MG formalism that make it an appealing vehicle for modeling a minimalist derivation.

All theories of language that align with the Minimalist Program share several defining
design characteristics. The language faculty has (at a minimum):

(i) A finite, discrete lexicon (a model of which was developed in §2.3.1) consisting of a set
of lexical entries – i.e. atomic syntactic structures – each of which encodes a feature
matrix that includes features interpretable at the PF interface (e.g. a phonological
form), features interpretable at the LF interface (e.g. a category), and uninterpretable
features.51

50The axioms in the theory must be quantifier free as the SMT-solvers cannot guarantee decidability for
problems involving universal quantifiers, so we will work with explicit quantification.

51In a minimalist theory of language, all variability in the design of a particular natural language is found
in the lexicon – this notion is formalized by the Borer-Chomsky Conjecture. See (Baker, 2008).

§2.3 Page 53/200

(ii) A recursive, binary structure building operation, merge, that combines two syntactic
structures together to derive a new syntactic structure; a syntactic structure built up
via merge is a derivation, and a derivation corresponding to a complete grammatical
expression is a complete derivation.

This subsection will develop a model of a derivation that is constructed by merge. Merge
has two distinct cases, external merge and internal merge, that are logically disjoint:52

(i) In the case of external merge, the two input structures are disjoint (i.e. neither struc-
ture is a substructure of the other). Each of the two arguments of external merge is
either (i) projected from the lexicon and referred to as a lexical structure, or (ii) derived
by an earlier merge operation and referred to as a derived structure. This thesis as-
sumes checking theory, so that external merge applies only if the features in the feature
matrices of the two structures match appropriately; the new structure (produced by
external merge) will derive its feature matrix from whichever of the two constituents
projects, and which of the two constituents projects is determined by their respective
features.

(ii) In the case of internal merge, one of the two structures is a proper substructure of the
other, with the substructure that contains the other serving as the head of the newly
derived structure (that is produced by internal merge).53 Internal merge is subject
to the principle of minimal computation in that a licensor will identify and raise the
(matching) licensee that is closest with respect to hierarchical distance. Internal merge
forms a discontinuous object - i.e. a chain - with each link (formed by internal merge)
in the chain linking the source (i.e. trace) position to the target (i.e. raised) position.54

When two syntactic structures are merged together, the resulting structure is assigned a
label, and this assignment holds over the remaining course of the derivation.55 The label of
a syntactic structure must be computed only from the properties of the constituent struc-
tures, and is typically taken to be the label of the projecting constituent structure.56 This

52See (Collins and Stabler, 2016, Pg. 47-48): “Given any two distinct syntactic objects 𝐴, 𝐵,
Merge(𝐴,𝐵) = {𝐴,𝐵}. Merge takes two syntactic objects and combines them into a single syntactic ob-
ject. [...] lexical item tokens are syntactic objects, so Merge can combine them. This is the basic structure
building operation of syntax. [...] We make no distinction between external Merge and internal Merge. They
are not two separate operations (see, e.g. (Chomsky, 2005, Pg. 12)) Rather, external Merge corresponds to
the case of Merge where 𝐴,𝐵 ∈ 𝑊 (a workspace). Internal Merge corresponds to the case of Merge where
𝐴 ∈ 𝑊 , and 𝐴 contains 𝐵.” See also (Chomsky, 1995, Pg. 243).

53Internal Merge is how Minimalist theories of language capture the notion of (syntactic) movement of
phrases.

54See (Chomsky et al., 2019): “IM thus turns Y into a discontinuous object (or chain), which can be
understood as a sequence of occurrences of Y in K.3.” See also (Chomsky, 1995, Pg. 250): “The operation
Move forms the chain 𝐶𝐻 = (𝛼, 𝑡(𝛼)), 𝑡(𝛼) the trace of 𝛼. Assume further that CH meets several other
conditions (C-Command, Last Resort, and others), to be spelled out more carefully as we proceed.”

55See (Chomsky, 1995, Pgs. 243-244): “We assume further that the label of 𝐾 is determined derivationally
(fixed once and for all as 𝐾 is formed), rather than being derived representationally at some later stage
of the derivation (say, LF). This is of course, not a logical necessity; Martian could be different. Rather,
it is an assumption about how human language works, one that fits well with the general thesis that the
computational processes are strictly derivational, guided by output conditions only in that the properties
available for computational purposes are those interpreted at the interface.”

56This thesis assumes, as in (Adger, 2003, Pg. 66) and (Radford, 2016, Pg. 20 & Pg. 28), that the label is
the category associated with the head of the constituent that projects. More generally, there is a notion of
a labeling algorithm that is tasked with computing the label for a syntactic structure – e.g. see (Hornstein
and Pietroski, 2009).

§2.3 Page 54/200

is a consequence of minimalist theories of syntax incorporating the theory of bare phrase
structure (BPS), which requires that:57 (i) no special (theoretical) treatment be given to
minimal or maximal projections, which are relegated to being conventions of convenience
for discussion;58 (ii) no allowance be made for notions of “bar levels” to distinguish between
intermediate projections falling between minimal and maximal projections of a lexical head;
(iii) no distinction be made between lexical items and the heads they project.5960

There are also a number of principles of minimalist syntax that restrict the derivations
that a lexicon may yield. Keeping in line with the goals of the Minimalist Program, these
principles center on simplifying the requirements made of 𝐶𝐻𝐿𝐹 , namely by: (i) restricting
the information that 𝐶𝐻𝐿𝐹 has access to and that it may present to the LF and PF inter-
faces; (ii) constraining the topology of the structures that merge may produce; (iii) requiring
that derivations be derived bottom-up and that they not involve any steps or stages that are
not strictly required to satisfy interface conditions. The most important and well established
principles are worth mentioning explicitly. The No Tampering Condition requires that
merge does not alter the arguments (i.e. the arguments are left unchanged).61 The Exten-
sion Condition requires that merge yields a new syntactic structure that strictly contains
its two arguments and doesn’t contain anything other than these two arguments.62 The In-
clusiveness Condition requires that interface levels are presented with nothing more than
lexical features that originate in the lexical items that enter the into derivation, and that
the derivation contains nothing beyond lexical items and syntactic structures derived (via
merge) from these lexical items; in particular, lexical features may be deleted (e.g. during
feature checking), but no features may appear in the derivation beyond those found in the
lexical items (e.g. there are no “bar levels” or “traces”).6364 The Principle of Full Inter-
pretation requires that there are no superfluous features within LF or PF representations

57BPS is a theory of phrase structure that succeeded and was informed by X-Bar theory, a staple of earlier
theories within the Principles and Parameters framework.

58See (Chomsky, 1995, Pgs. 242-243): “There are no such entities as 𝑋𝑃 (𝑋max) or 𝑋min in the structures
formed by 𝐶𝐻𝐿, though we continue to use the informal notations for expository purposes, along with 𝑋 ′

(𝑋-bar) for any other category. A category that does not project any further is a maximal projection 𝑋𝑃 ,
and one that is not a projection at all is a minimal projection 𝑋min; any other is an 𝑋 ′, invisible at the
interface and for computation.”

59See (Chomsky, 1995, pg. 228): “We thus have the outlines of a bare phrase structure theory that derives
fairly strictly from naturalist minimalist principles. The bare theory departs from conventional assumptions
in several respects: in particular, categories are elementary constructions from properties of lexical items,
satisfying the inclusiveness condition; there are no bar levels and no distinction between lexical items and
“heads” projected from them. A consequence is that an item can be both an 𝑋0 and an 𝑋𝑃 .”

60See (Chomsky, 1995, Pg. 245): “... phrase structure representation is ’bare,’ excluding anything beyond
lexical features and objects constructed from them...”

61Note that the No Tampering Condition implies a “copy theory of movement”, so that a raised constituent
is not replaced with a trace (which accords with the prescriptions of the theory of bare phrase structure).
See (Chomsky, 2005, Pg. 13) for further discussion of this point. See also (Radford, 2016, Pg. 348).

62See (Chomsky, 1995, Pg. 190).
63See (Chomsky, 1995, Pg. 225): “A perfect language should meet the condition of inclusiveness: any

structure formed by the computation (in particular, 𝜋 and 𝜆) is constituted of elements already present in the
lexical items selected for 𝑁 ; no new objects are added in the course of computation apart from rearrangements
of lexical properties (in particular, no indices, bar levels in the sense of X-bar theory, see note 7).”

64See (Chomsky, 2001, Pg. 2-3): “On such grounds, we try to eliminate levels apart from the interface lev-
els, and to maintain a bare phrase structure theory and the Inclusiveness Condition, which bars introduction
of new elements (features) in the course of computation: indices, traces, syntactic categories or bar levels,
and so on.”

§2.3 Page 55/200

and that every LF or PF representation produced must be interpretable.65666768 Economy
of Derivation stipulates that a derivation not involve any superfluous steps (i.e. instances
of merge) (this will be covered in greater detail later in this thesis in §3.2.1).69 Finally, the
Principle of Last Resort requires that internal merge is driven by features (and feature
checking).70

Having touched on how derivations are formulated as per (earlier) minimalist theories of
syntax, let us now make several observations about the MG formalism that will inform the
approach we will take to developing an SMT-model of a minimalist derivation.

• Every MG derivation tree is uniquely associated with a multi-dominance tree (i.e. the
(bare) phrase structures that linguists are familiar with).71 The multi-dominance tree
may be obtained from the derivation tree by appending, for each instance of internal
merge in the derivation tree, a node at the target of the movement, thereby establishing
a dominance relation over the source of movement; note that whereas the derivation
tree is not a strictly binary-branching tree (since there are unary branches indicating
the presence of internal merge) the associated multi-domimance tree is strictly binary-
branching, since every non-lexical node in the multi-dominance tree is the product of
either external merge or internal merge and has two constituent (i.e. child) nodes.72

We assume, for both the derivation tree and the multi-dominance tree, that every
65See (Chomsky, 1986, Pg. 98.) “there is a principle of full interpretation (FI) that requires that every

element of PF and LF, taken to be the interface of syntax (in the broad sense) with systems of language use,
must receive an appropriate interpretation – must be licensed in the sense indicated. None can simply be
disregarded.”

66See (Chomsky, 1995, Pg. 199): “𝜋 is a PF representation and 𝜆 an LF representation, each consisting
of “legitimate objects” that can receive an interpretation (perhaps as gibberish). If a generated representation
consists entirely of such objects, we say that it satisfies the condition of Full Interpretation (FI).”

67See (Chomsky, 1995, Pg. 151): “The analogous principle for representations would stipulate that, just as
there can be no superfluous steps in derivations, so there can be no superfluous symbols in representations.
This is the intuitive content of the notion of Full Interpretation (FI), which holds that an element can appear
in a representation only if it is properly ‘licensed.’ ”

68The Principle of Full Interpretation (FI) is a Principle of Economy of Representation – see (Chomsky,
1995, Pg. 220): “Let us now look more closely at the economy principles. These apply to both representations
and derivations. With regard to the former, we may take the economy principle to be nothing other than FI:
every symbol must receive an ‘external’ interpretation by language-independent rules.”

69See (Collins, 2001, Pg. 40): “Consider an operation OP applying in a derivation D leading to the
representations (PF, LF) (phonetic form and logical form). Economy considerations suggest that OP be as
small as possible, and be applied in a way that minimizes search. Given a series of operations that form
a derivation D, economy conditions suggest that the length or cost of the derivation must be minimized
in some way. Lastly, economy considerations suggest that the representations formed in the course of a
derivation should be as simple as possible, consisting of a minimal number of syntactic objects, each of which
is interpretable (at LF or PF).”

70See (Chomsky, 1995, Pg. 228): “A core property of 𝐶𝐻𝐿 is feature checking, the operation that drives
movement under the Last Resort condition.”

71See the discussion of “augmented derivation trees” in (Graf, 2013, Pgs. 12-24): “An augmented derivation
tree provides a record of the steps taken during the derivation and their relative order: its leafs are annotated
with the LIs a given tree is constructed from, and interior nodes are labeled with the name of the operation
that takes place at this point and the name of the two features being checked. The daughters of an interior
node are the elements that are combined by the operation the node represents. Note that an augmented
derivation tree is actually a strictly binary branching multi-dominance tree because a given subtree might be
involved in both Merge and Move.”

72This is closely related to the two-step approach of first lifting information implicitly encoded within
a derivation tree (i.e. the information encoded in the structure of the multi-dominance tree) to make the
information explicit, and then reconstructing the (derived) phrase structure tree that linguists are more
familiar with. See (Graf, 2013, Pgs. 32-50) for a review of the two-step approach of lifting an MG derivation
to its associated the multi-dominance tree and then reconstructing the “derived tree”; see also (Kobele

§2.3 Page 56/200

node has a “head”; furthermore, since the two nodes that merge cannot have the same
head, we can identify which of two constituents that merge together projects based
on the head of the product of merge. Notably, the derivation tree and the multi-
dominance tree do not explicitly encode the precedence relations between the lexical
heads entering into the derivation. The derivation tree may be obtained from the
multi-dominance tree by deleting all instances of movement.73 The derived tree can be
obtained from the multi-dominance tree by deleting all nodes in the multi-dominance
tree that were raised to a higher position (because they were the source of movement).
The multi-dominance tree is in effect a super-position of the derivation tree and the
derived tree – it is the multi-dominance tree associated with an MG derivation that will
serve as the domain of discourse in the SMT-model of a minimalist derivation that we
will develop. Throughout this thesis, we will work with these multi-dominance trees,
and refer to the associated derivation tree and derived tree with the understanding
that they are components of a multi-dominance tree.

• Each lexical item appearing in a derivation has a (bottom-up) trajectory through the
associated multi-dominance tree:

(i) the lexical item first undergoes a sequence of (zero or more) projections, driven
by either external merge (driven by a selector feature) or internal merge (driven
by a licensor feature);74

(ii) the lexical item is then either the end of the derivation (marked by the presence
of the special symbol 𝐶) or is selected by some other lexical head (driven by the
presence of a selectee feature);

(iii) finally the lexical item is optionally raised (via internal merge) one or more times
to form a chain (with each movement operation forming a link in the chain).

There are two key points to take away from this observation. First, every node in
the multi-dominance tree is associated with one of the lexical items (i.e. leaf nodes)
in the derivation – i.e. the lexical item that is the head of that node – and the
nodes associated with a lexical head may be organized as a sequence in the order
in which they appear in the multi-dominance tree (starting from the bottom); we
will refer to such a sequence as a “derivation node sequence” and observe that the
multi-dominance tree associated with an MG derivation is a structural arrangement of
derivation node sequences.7576 Second, given a multi-dominance tree associated with
an MG derivation, it is possible to recover the multiset of lexical items from which

et al., 2007). See (Morawietz, 2008, Pgs. 131-182) for a presentation of the two-step approach for multiple
context-free grammars (MCFGs), noting that MGs may be translated into MCFGs (per (Michaelis et al.,
2000)).

73A node in the multi-dominance tree is the product of internal merge (i.e. movement) if the head of one
constituent is dominated by the root node of the other constituent.

74Note that we can distinguish between whether the projection is driven by external or internal merge
based on whether the head of the non-projecting constituent is dominated by the projecting constituent.

75See (Stabler, 2013, Pg. 612): “A successful MG parse is a kind of structurally conditioned check of lexical
requirements, implemented as the traversal of a graph representing the lexicon.”

76The notion of a “derivation node sequence” is inspired by the closely related notion of “slices” (of a
derivation tree) that is employed in (Graf, 2013) Specifically, see (Graf, 2013, Pg. 28): “Just like phrase
structure trees can be decomposed into subtrees containing exactly one LI and all its projections, derivation
trees can be decomposed into subderivations that consist of an LI and all the interior nodes that check one of
the LI’s positive polarity features (i.e. selector and licensor features). These subderivations are called slices.”
See also (Graf, 2013, Pg. 29-30): “Intuitively, slices are the derivation equivalent of phrasal projection. Just

§2.3 Page 57/200

the multi-domimance tree is derived (modulo the labels of the syntactic features); to
see this, note that each node in a derivation node sequence is associated with exactly
one type of syntactic feature – i.e. selector, selectee, licensor, licensee, or the special
symbol 𝐶 – and that the feature type of a node may be determined by the location of
that node within the multi-domimance tree, so that so that given a derivation node
sequence associated with a particular lexical entry, we can recover the sequence of
syntactic feature types present in that lexical entry from the derivation node sequence.
(See Fig. 2-11 for a presentation of the derivation node sequences that are assembled to
form the derivation presented in Fig 2-2.) We can therefore construct an SMT-model
of a minimalist derivation by modeling the derivation node sequences that make up the
associated multi-dominance tree and restricting the topology of the multi-domimance
tree by using the model axioms to constrain how the derivation node sequences may be
assembled together.

We can therefore construct an SMT-model of a minimalist derivation by modeling the
derivation node sequences that make up the associated multi-dominance tree and using
the model axioms to restrict the topology of the multi-domimance tree by constraining
how the derivation node sequences may be assembled together.

• Although the axioms for external and internal merge (listed in §2.2) combine both the
building of the hierarchical structure of a derivation tree and computing the linear
ordering of the derived string, in fact the rules for linearizing an MG derivation can
be factored apart from the rules for assembling an MG derivation. This is possible
because we can first assemble an MG derivation tree without taking into consideration
the linear ordering of words, and then transform a derivation tree into a derived tree,
at which point the linear-ordering of words is accounted for. In particular, given a
minimalist derivation tree, the ordering of nodes in the associated derived tree can
be determined by observing that: (i) a head precedes its complement, and (ii) a head
is preceded by its specifier. Since the complement and specifier of a head are strictly
hierarchical relations, they may be determined entirely from the hierarchical structure
of the multi-dominance tree that pertains to the derived tree (i.e. the sub-structure
of the multi-domimance tree that corresponds to the derived tree). As a consequence,
the model axioms that constrain how the derivation node sequences may be assembled
to form a multi-dominance tree (i.e. associated with a MG derivation tree) can be
separated from the axioms involved in establishing a linear precedence over the leaf
nodes of the derived tree (obtained from the multi-dominance tree); the former set of
axioms will be presented here in §2.3.2, and the latter set of axioms will be presented
later in §2.3.4.

These observations lead us to developing an SMT-model of a minimalist derivation as out-
lined below. The model will include a finite sort (i.e. the domain of discourse) and a set of
(unary and binary) uninterpreted functions that will be used to model the multi-dominance

like every node in a phrase structure tree is either an LI or one of its projections, every node in a derivation
belongs to the slice of some LI. The slice of an LI is readily determined: its leaf is the LI itself, and for
every positive polarity feature an interior node of the appropriate type is added on top of the slice – Merge
for selector features, Move for licensor features. Hence every Minimalist lexicon can be converted into a
set of slices. These slices can be recombined to yield derivation trees, although not all combinations may
obey the requirements of the feature calculus.” Note that derivation node sequences involve both positive
and negative polarity features, along with the special symbol 𝐶, whereas “slices” involve only the positive
polarity features.

§2.3 Page 58/200

tree associated with an MG derivation tree. Members of the model sort will be organized
into derivation node sequences. The uninterpreted functions will serve to establish relations
between the nodes in the multi-dominance tree – e.g. the parent of a node, the sister of a
node, the head of a node, relations between the source and target of (syntactic) movement,
and relations between the source and target of head-movement. The model axioms will
translate the Principles of Minimalist Syntax discussed earlier into constraints that govern
how the derivation node sequences may be (legitimately) assembled together within an MG
derivation; in particular, the model includes axioms for bare phrase structure, syntactic
movement (including head-movement), and extended functional projections. Notably, this
model is concerned only with the hierarchical structure of the multi-domimance tree associ-
ated with a minimalist derivation; later in this chapter, §2.3.3 will introduce axioms requiring
the precedence relations in the derived tree (which is a substructure of the multi-dominance
tree being modeled) align with the linear ordering of the phonological forms prescribed in
the specified PF interface conditions; §2.3.4 will then introduce an uninterpreted function
that maps derivation node sequences in the derivation model to lexicon node sequences in
the lexicon model, so as to restrict which derivation node sequences may appear in a deriva-
tion (i.e. only those corresponding to a feature sequence found in a lexical entry) as well as
how the derivation node sequences may be combined together (which is dependent on the
feature labels found in the lexical entry associated with a derivation node sequence). Note
that the model is in effect a static representation of a complete derivation – i.e. the model
itself is not derivational in so far as the model does not have the notion of workspaces or
stages.

Having outlined the approach to modeling a minimalist derivation, let us now proceed
develop the model in detail.

Model Sorts

The Derivation Node Sort. The domain of discourse is defined to be a finite sort, N, a
subset of which corresponds to the set of nodes that form the multi-dominance tree associated
with a minimalist derivation; members of N will sometimes be referred to as “nodes.” (Note
again that throughout this section, whenever we reference a derivation, unless we explicitly
refer to the derivation tree or to the derived tree, it should be understand that we are referring
to the multi-dominance tree associated with that derivation.) N is the union of the following
disjoint subsets: a singleton set, the only member of which is denoted ⊥; the set of lexical
nodes, LN; the set of intermediate nodes, IN; a singleton set, the only member of which is
denoted 𝑅N. The set of lexical nodes, LN, can only serve as leaf nodes in the derivation – i.e.
these nodes are referred to as lexical nodes because they correspond to the lexical items that
are assembled together via merge to form the derivation. LN is divided into two disjoint
sets: the set of overt lexical nodes, LN

+, and the set of covert lexical nodes, LN
−. The

root node, 𝑅N, must correspond to the root node in the derivation, and the intermediate
nodes, IN, are nodes that can only appear within the derivation between the lexical nodes
and the root node. The set of derived nodes, defined as 𝐷 = IN ∪ {𝑅N}, may appear as
non-leaf nodes in the derivation. Finally, the bottom node, ⊥, serves as a “null” value for
functions and predicates acting over N: whenever an uninterpretable function is applied to
an argument outside of its domain (which may be a subset of N), the output of the function
must be the bottom node; in the case of predicates, the output will instead be False. Only
a subset of N will be used to form a derivation, with each member of this subset uniquely

§2.3 Page 59/200

corresponding to a node in the associated multi-dominance tree.77

Derivation Node Sequences. Having introduced the theory’s domain (i.e. the deriva-
tion node sort) and its relevant subsets, we will next organize the members of the derivation
node sort to reflect the structure imposed by: (i) the projection of lexical heads in accor-
dance with the theory of bare phrase structure, and (ii) the chains established by movement
of projections. The nodes in (LN∪ IN) can be grouped by their head. The nodes in one such
group, all having the same head, can be organized as a sequence of nodes, starting with the
lexical node; this sequence of nodes consists of sequence of projections (via external merge)
that starts from the given lexical head and ends in a maximal projection (which may very
well be a minimal projection as well), followed by the sequence of nodes that forms the chain
associated with the maximal projection of the given lexical head.78 The nodes that form the
chain are ordered unambiguously by the c-command relation that must hold between the
origin and target of raising.79 Each node in the sequence beyond the starting node is either
the parent of or was raised from (via movement) the node prior to it in the sequence; in the
former case, the prior node projects to its parent node (i.e. within the derivation), while in
the latter case the prior node is c-commanded by the position in the derivation to which it
will be raised. We will now formalize these points and incorporate them in to the model.

A derivation node sequence of length 𝑘 is defined to be a finite sequence of nodes,
𝑥1, . . . , 𝑥𝑘 ∈ N with 𝑥1 ∈ LN and 𝑥𝑖 ∈ IN for 1 < 𝑖. If 𝑥1 ∈ LN

+ then the derivation
node sequence is referred to as an overt derivation node sequence, whereas if 𝑥1 ∈ LN

−

then the derivation node sequence is referred to as a covert derivation node sequence. The
set of derivation node sequences (in the derivation model) is denoted S, the set of overt
derivation node sequences is denoted 𝑆+, and the set of covert derivation node sequences
is denoted 𝑆−.80 Each member of the set 𝑆+ is associated with an index (i.e. a natural
number) that corresponds to the position in the sentence of the lexical head associated with
that member;81 associating derivation node sequences with the position of the lexical head,
rather than the associated phonetic feature, is necessary so that the model axioms can refer
separately to different tokens in a sentence that are associated with the same word.8283

A derivation node sequence of length 𝑘 is organized as two consecutive subsequences of
nodes. The first subsequence of derivation nodes begins with a lexical head, and is optionally
followed by one or more nodes corresponding to the successive projections of the lexical head;
the first node in this subsequence corresponds to the minimal projection of the lexical head,
and the last node in this subsequence corresponding to the maximal projection of the lexical

77In particular, note that only subsets of LN and IN may appear in the multi-dominance tree associated
with the derivation; which particular subsets of these sets appear will be determined the SMT-solver in
accordance with the model axioms.

78Note that a chain may have zero links in the case that the maximal projection of the lexical head is
never raised.

79See (Chomsky, 1995, Pgs. 251-252).
80N.b. the derivation nodes ⊥ and 𝑅N do not appear in any of the derivation node sequences.
81N.b. these indices serve no other purpose that to distinguish one position from another, and do not

serve any other function with respect to syntax.
82This approach is based on that of (Collins and Stabler, 2016, Pg. 45): “In order to allow structures in

which a given lexical item occurs twice in a structure, the lexical items in our structures are indexed with
integers. [...] For example, in the sentence ‘The dog saw the other dog’, there are two tokens of the single
lexical item dog, tokens with different numerical indices. The integer in the lexical item token plays no other
role in the syntactic computation. For example, the integer will not be used in ’counting.’ ”

83Whenever it is clear from context, for purposes of brevity and clarity, we will directly refer to particular
overt node-sequences in a derivation model via the phonetic feature (i.e. word) with which it is associated.

§2.3 Page 60/200

head. The second subsequence of derivation nodes (immediately following the first) consists
of zero or more members, with successive members corresponding to successive links in the
chain established by the raising of the maximal projection of the lexical head. The length
of the two subsequences together is at most 𝑘, with any remaining nodes (after the two
subsequences) considered to be inactive in so far as they will not correspond to any node
in the derivation.84 In this way, a derivation node sequence captures the trajectory that a
lexical head takes through a derivation, and serves as a data structure that can be used to
represent both projections and chains in a common way.

To summarize, organizing the derivation node sort as a set of derivation node sequences
is advantageous in that it enables the model axioms to be written using the indexing scheme
of node sequences – e.g. the model axioms can quantify over all of the node sequences in the
derivation; see Figure-2-11 for an illustration of this.85 Additionally, this organization break
symmetries (in the model) in so far as restricting which members of the derivation node sort
can take on which role within a derivation – this was found to be essential to improving
run time performance enough to ensure that the SMT solver is able to check and optimize
the model in a tractable amount of time (i.e. overnight). Looking ahead, additional model
axioms will be introduced in §2.3.4 that will serve to associate derivation node sequences with
lexicon node sequences, so that the sequence of syntactic features associated with a lexical
head will align with the trajectory the lexical head takes through a derivation.

Model Axioms

Having defined the underlying sort, N, let us now turn to the task of defining functions
(operating over N) and axioms that will collectively model bare phrase structure, extended
functional projections, and syntactic movement.

84In particular, observe that not every lexical or derived node in the domain (of discourse) need be used
in the construction of a derivation – e.g. the theory may be instantiated with a very large number of
intermediate nodes as we do not know ahead of time how many nodes are required to model the instances
of phrasal movement that occur in the derivation; likewise, the number of instances of covert lexical items
(i.e. empty categories) that will be required for the derivation is not known apriori.

85In general, since we are using first order logic, any sets of sets to be quantified over must be indexed
explicitly, external to the solver; consequently, we will index the sorts for derivation nodes and lexicon nodes
in multiple ways, so that the model axioms may be written in a more transparent and comprehensible
manner.

§2.3 Page 61/200

Figure 2-11: An illustration of how the members of the derivation node sort are organized
into overt and covert node-sequences (displayed as columns, starting from the bottom and
going up) that are associated with overt and covert phonological forms respectively; Figure 2-
2 illustrates how the derivation node sequences depicted here are arranged into a derivation.
The greyed out boxes are inactive derivation nodes that do not participate in the derivation
– i.e. they do not appear in the derivation in Figure 2-2. Active nodes (depicted as white
boxes) that are in the same column have the same head. The boxes with dashed boundaries
are part of a chain, whereas the boxes with solid boundaries are projections. The root
node is 𝐷22, and as 𝐷22 has the same head as 𝐷9 and 𝐷6, it is depicted here atop the
covert node-sequence associated with covert phonological form 𝜖𝐶𝑄𝑢𝑒𝑠.

. Note that the root
node is not a part of any node sequence, and is treated as a special case in the axioms.
The node-sequence structure provides an indexing scheme that enables us to write axioms
that constrain the uninterpreted functions that operate over the derivation node sort – i.e.
the derivation node sequence associated with a particular phonological form provides an
indexing over the derivation node sort that lets us reference the projection (and potentially
chain) associated with that phonological form.

§2.3 Page 62/200

Notation

1. Given 𝑋 ⊆ N and 𝑓 : 𝑋 → N,

• the support of 𝑓 , denoted supp 𝑓 , is defined to be {𝑥|𝑓(𝑥) ̸= ⊥, 𝑥 ∈ 𝑋};
• the kernel of 𝑓 , denoted ker 𝑓 , is defined to be {𝑥|𝑓(𝑥) = ⊥, 𝑥 ∈ 𝑋};
• the image of 𝑓 , denoted im 𝑓 , is defined to be {𝑦|𝑓(𝑥) = 𝑦, 𝑥 ∈ 𝑋, 𝑦 ∈ N}.

Although many of the axioms in the model will make reference to suppℎ, they will
be limited to determining whether a given member of N is a member of suppℎ,
which can be checked by evaluating whether ℎ(𝑥) ̸= ⊥, thereby allowing us to
avoid quantifying over the possible values of suppℎ which is not allowed in a
quantifier-free first-order theory of logic.

2. Given 𝑋 ⊆ N and a function 𝑓 : 𝑋 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛,

• the support of 𝑓 is: supp 𝑓 = {𝑥|𝑓(𝑥), 𝑥 ∈ 𝑋};
• the kernel of 𝑓 is: ker 𝑓 = {𝑥|¬𝑓(𝑥), 𝑥 ∈ 𝑋}.

3. Given sets 𝑋1, 𝑋2, ..., 𝑋𝑝, let 𝑋 ′
= 𝑋1 × 𝑋2 × ... × 𝑋𝑝; then the set operation

⟨𝑋 ′⟩ is defined to be {(𝑥1, 𝑥2, ..., 𝑥𝑝)|𝑥𝑖 ̸= 𝑥𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑝, (𝑥1, 𝑥2, ..., 𝑥𝑝) ∈ 𝑋
′}.

Axioms for Bare Phrase Structure. We will now introduce and detail several uninter-
preted functions and axioms that collectively model the theory of Bare Phrase Structure
(BPS) as presented in (Chomsky, 1995).

To begin, each node in the derivation is associated with a (lexical) head - i.e. one of
the leaf nodes in the derivation; this is per the Headedness Principle, according to which
“every nonterminal node in a syntactic structure is a projection of a head word.”86 The head
of a node 𝑥 ∈ 𝑁 is ℎ(𝑥), where ℎ is defined to be an uninterpreted function with signature:

ℎ : N −→ N (2.34)

Several axioms constrain interpretations of ℎ:

suppℎ ⊆ (LN ∪𝐷) (2.35)
imℎ ⊆ {⊥} ∪ (LN ∩ suppℎ) (2.36)⋀︁

{(ℎ(𝑥) = ⊥)⊕ (ℎ(𝑥) = 𝑥) | 𝑥 ∈ LN} (2.37)⋀︁
{(ℎ(𝑥𝑖) = ℎ(𝑥0)) ∨ (ℎ(𝑥𝑖) = ⊥) | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ S} (2.38)

As every node in a derivation has a head, if a node 𝑥 ∈ N does not play a role in the
derivation then ℎ(𝑥) = ⊥. (Note that the bottom node, ⊥, does not have a head in the
derivation – i.e. ℎ(⊥) = ⊥ – as the bottom node does not correspond to a phrase in the
derivation.) A member of N need not be used (i.e. play a role in the derivation), implying
that suppℎ ⊆ N (Ax.2.35). Each leaf node in a derivation is associated with a phonological
form, and thus the head must be a leaf node that plays a role in the derivation (Ax.2.36).
If a lexical node plays a role in the derivation then it is its own head (Ax.2.37). All nodes

86This definition is taken from (Radford, 2009, Pg. 43).

§2.3 Page 63/200

in a node sequence that play a role in the derivation must have the same head, namely the
head of the beginning of the node sequence (Ax.2.38).87

Each node in the derivation also has a parent.88 The parent of a node 𝑥 ∈ N is 𝑝(𝑥),
where 𝑝 is defined to be an uninterpreted function with signature:

𝑝 : N −→ N (2.39)

Two nodes with the same parent are said to have been merged to form the parent node;
later, we will introduce a function that directly captures this relation between each parent
node and its two children in the derivation. Several axioms constrain interpretations of 𝑝:⋀︁

{𝑝(𝑥) ̸= 𝑥 | 𝑥 ∈ (LN ∪𝐷)} (2.40)

supp 𝑝 ⊆ (LN ∪ IN) ∩ suppℎ (2.41)
im 𝑝 ⊆ {⊥} ∪ (𝐷 ∩ suppℎ) (2.42)⋀︁

{⟨⊥, 𝑝(𝑥), 𝑅N⟩ → (𝑝(𝑝(𝑥)) ̸= ⊥) | 𝑥 ∈ (LN ∪ IN)} (2.43)⋀︁
{(ℎ(𝑥) ̸= ⊥) → (𝑝(𝑥) ̸= ⊥) | 𝑥 ∈ (LN ∪ IN)} (2.44)

A node in a derivation cannot be its own parent; thus the function 𝑝 has no fixed points
other than ⊥ (Ax.2.40). The root node, 𝑅N, does not have a parent (Ax.2.41). The parent
of a node in a derivation cannot be a lexical node (Ax.2.42). All intermediate nodes with
children have a parent (Ax.2.43 and Ax.2.44).

⋀︁⎧⎨⎩(𝑝(𝑥) ̸= ⊥) →

⎛⎝2 =
∑︁

𝑦∈(LN∪IN)

(𝑝(𝑥) = 𝑝(𝑦))

⎞⎠ | 𝑥 ∈ (LN ∪ IN)

⎫⎬⎭ (2.45)

⋀︁{︀
(𝑝(𝑥) = 𝑝(𝑦)) → ((ℎ(𝑝(𝑥)) = ℎ(𝑥)) ∨ (ℎ(𝑝(𝑦)) = ℎ(𝑦))) | 𝑥, 𝑦 ∈ ⟨(LN ∪ IN)2⟩

}︀
(2.46)

If a node 𝑥 in a derivation is the parent of another node 𝑦, per the Binary Branching Hy-
pothesis,89 𝑥 must be the parent of exactly two distinct nodes in the derivation (Ax.2.45),
and exactly one of the two children projects (Ax.2.46).

A parent-child relation implies dominance (otherwise known as “containment”), and the
transitive closure of this binary predicate establishes a tree structure (i.e. the derivation
tree). Accordingly, dominance relations between nodes in the derivation tree are modeled
by an additional uninterpreted binary predicate that operates over N: given 𝑥, 𝑦 ∈ N, 𝑑(𝑥, 𝑦)
denotes that 𝑥 dominates 𝑦 (i.e. successive application of 𝑝 to 𝑦 will produce 𝑥), where 𝑑 is
defined to be an uninterpreted function with signature:

𝑑 : N× N → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 (2.47)

87Given a node 𝑥 ∈ N, ℎ(𝑥) = ⊥ if and only if 𝑥 does not appear in the derivation – for this reason, many
axioms in the derivation model will use ℎ(𝑥) ̸= ⊥ as a proxy for whether the node appears in the derivation.

88The parent of the root node of the derivation is the node ⊥; this indicates that the root node does not
have a parent within the derivation.

89See (Radford, 2009, Pg. 375).

§2.3 Page 64/200

Several axioms constrain interpretations of 𝑑:

supp 𝑑 ⊆ (𝐷 ∩ suppℎ)× ((LN ∪ IN) ∩ suppℎ) (2.48)
𝑑 is irreflexive, anti-symmetric and transitive (2.49)⋀︁{︀

𝑑(𝑥, 𝑦) → (𝑥 = 𝑝(𝑦))⊕ (𝑑(𝑥, 𝑝(𝑦))) | 𝑥, 𝑦 ∈ ⟨(LN ∪𝐷)2⟩
}︀

(2.50)⋀︁
{𝑝(𝑥) ̸= ⊥ → 𝑑(𝑝(𝑥), 𝑥) | 𝑥 ∈ N} (2.51)

Lexical nodes (i.e. leaf nodes) cannot dominate any other node and the root node cannot
be dominated by any other node (Ax.2.48). The 𝑑 is a (binary) predicate that is irreflexive,
transitive and asymmetric relation over (suppℎ × suppℎ), it is therefore a strict partial
ordering over suppℎ (Ax.2.49). Parenthood implies domination (Ax.2.51), and domination
is either a direct consequence of a parent relation or is derived from the parent relation –
i.e. 𝑑 is the transitive closure of 𝑝 over suppℎ (Ax.2.50). The domination predicate will be
used in axioms related to phrasal movement so as to impose the requirement that the target
position of phrasal movement must c-command the trace position.

As mentioned earlier, two distinct nodes with the same parent node (that is not the
bottom node ⊥) are said to merge to form the parent node; to this end, the model includes
an uninterpreted binary function, ℳ, that captures this relation between sister nodes that
will be merged together, and is constrained by axioms that model the recursive structure
building operation, Merge.9091 Given two nodes 𝑥, 𝑦 ∈ N, the phrase resulting from merging
𝑥 and 𝑦 is ℳ(𝑥, 𝑦), where ℳ is defined to be an uninterpreted function with signature:

ℳ : N× N −→ N (2.52)

Several axioms constrain interpretations of ℳ:

suppℳ ⊆ ((LN ∪ IN) ∩ suppℎ)2 (2.53)
im(ℳ) ⊆ {⊥} ∪ (𝐷 ∩ suppℎ) (2.54)
ℳ is a symmetric relation (2.55)⋀︁{︀

(ℳ(𝑥, 𝑦) ̸= 𝑥) ∧ (ℳ(𝑥, 𝑦) ̸= 𝑦) | 𝑥, 𝑦 ∈ ⟨(LN ∪ IN)2⟩
}︀

(2.56)⋀︁{︀
ℳ(𝑥, 𝑦) = If (𝑝(𝑥) = 𝑝(𝑦), 𝑝(𝑥),⊥) | 𝑥, 𝑦 ∈ ⟨(LN ∪ IN)2⟩

}︀
(2.57)⋀︁

{ℳ(𝑥𝑖, 𝑥𝑗) = ⊥ | (𝑥𝑖, 𝑥𝑗) ∈ (𝑠× 𝑠), 𝑠 ∈ S, 𝑖 ̸= 𝑗} (2.58)

Every node in the derivation besides the root node can be an argument of Merge (Ax.2.53).
All non-lexical nodes in the derivation are produced by Merge (Ax.2.54). The output of
Merge doesn’t change if we permute its two arguments (Ax.2.55). If neither of the two
arguments to Merge is ⊥, then (in accordance with the Extension Condition) the output
of Merge cannot be one of the two arguments (Ax.2.56). Both arguments to merge have the
same parent (Ax.2.57). In accordance with the property of Universal Endocentricity, a node
with cannot merge with another node within the same projection (Ax.2.58).92

90See (Chomsky, 1995, Pg. 243) and (Collins and Stabler, 2016).
91The function ℳ is not strictly necessary as it can be derived from the function 𝑝 and 𝒫. However it has

been included as it allows for axioms that will be presented downstream to be expressed more concisely.
92See (Chomsky et al., 2019, Pg. 247): “The assumption of universal endocentricity carried over to the

Bare Phrase Structure model of Chomsky 1995, where MERGE(X, Y) is taken to yield a labeled object
{𝐿, {𝑋,𝑌 }, 𝐿 ∈ {𝑋,𝑌 }}.”

§2.3 Page 65/200

Axioms for Categories and Extended Projections. Categories are interpretable prop-
erties of lexical items that can project. The category that a lexical head and its projections
may associated with is constrained by the particular structural configurations that the pro-
jections of that lexical head enter into (within a derivation); in particular, per Grimshaw’s
Extended Functional Projections, the structural configurations that a lexical head may enter
into is constrained by two extended projections for the functional hierarchies 𝐶 > 𝑇 > 𝑣 > 𝑉
and 𝑃 > 𝐷 > 𝑁 .939495 Each node in the derivation is associated with a member of the cat-
egory sort, C. Given a node 𝑥 ∈ N, the category associated with the head of 𝑥 is 𝛽N(𝑥) ∈ C,
where 𝛽N is defined as an uninterpreted function with signature:

𝛽N : N → C (2.59)

Several axioms constrain interpretations of 𝛽N:⋀︁
{𝛽N(𝑥) = 𝛽N(H(𝑥)) | 𝑥 ∈ 𝐷} (2.60)⋀︁

{(𝛽N(𝑥) = c∅) = (ℎ(𝑥) = ⊥) | 𝑥 ∈ N} (2.61)

(𝛽N(𝑅N) = c𝐶𝐷𝑒𝑐𝑙.
) ∨ (𝛽N(𝑅N) = c𝐶𝑄𝑢𝑒𝑠.

) (2.62)

The category associated with a given node in the derivation is the category associated with
the head of that node (Ax.2.60). If a member of N does not play a role in the derivation,
then that member is associated with the “null” category, c∅ (Ax.2.61). The root node is
associated either with c𝐶𝐷𝑒𝑐𝑙.

in the case of a declarative, or with c𝐶𝑄𝑢𝑒𝑠.
in the case of an

interrogative (Ax.2.62). Additionally, axioms encoding the (aforementioned) two extended
projections are supplied, thus constraining what structural configurations the lexical heads
may be arranged in within a valid MG derivation. To this end, we will first define two helper
functions (entirely for convenience and brevity of exposition):

𝑖𝑠𝐶𝑜𝑚𝑝(𝑥, 𝑦) = (ℳ(𝑥, 𝑦) ̸= ⊥) ∧ (ℎ(𝑝(𝑥)) = ℎ(𝑥)) (2.63)

𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(𝛼, 𝛽) =
⋀︁

{(𝑖𝑠𝐶𝑜𝑚𝑝(𝑥, 𝑦) ∧ (𝛽N(𝑥) = 𝛼)) → (𝛽N(𝑦) = 𝛽) | (𝑥, 𝑦) ∈ ⟨LN × N⟩}
(2.64)

Then the extended projections are encoded by the following two axioms:

𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(c𝐶𝐷𝑒𝑐𝑙.
, c𝑇) ∧ 𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(c𝐶𝑄𝑢𝑒𝑠.

, c𝑇) ∧ 𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(c𝑇 , c𝑣) ∧ 𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(c𝑣, c𝑉) (2.65)

𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(c𝑃 , c𝐷) ∧ 𝑝𝑟𝑜𝑗𝐻𝑖𝑒𝑟(c𝐷, c𝑁) (2.66)

Additionally, the functional heads associated with categories 𝐶, 𝑇 , 𝑣, and 𝑃 must take on
a complement:⋀︁

{(𝛽N(𝑥) = 𝑦) → (ℎ(𝑝(𝑥)) = ℎ(𝑥)) | 𝑥 ∈ LN, 𝑦 ∈ {c𝐶 , c𝑇 , c𝑣, c𝑃 }} (2.67)

93See (Grimshaw, 2005), (Adger, 2003, Pg. 333), and (Adger and Svenonius, 2011).
94See (Lust, 2006, Pg. 198) for a discussion of the “Functional Projection Hypothesis” .
95N.b. Categories and Extended Projections are an addition made to further constrain the space of

grammars; they are not part of the original MG formalism and the associated axioms may be omitted if one
wishes to be in strict agreement with the MG formalism.

§2.3 Page 66/200

and the lexical heads of merged structures must have distinct categories:⋀︁{︀
(𝛽N(𝑥) = 𝛽N(𝑦)) → (ℳ(𝑥, 𝑦) = ⊥) | 𝑥, 𝑦 ∈ ⟨N2⟩

}︀
(2.68)

Axioms for Syntactic Movement. We will next introduce model axioms for (syntactic)
movement, a fundamental feature of language that enables a word or phrase to be displaced
from one position in a sentence (where it may receive a feature pertaining to its interpreta-
tion) to another. To this end, we will introduce an uninterpreted unary function, 𝒫, that
models the chains produced by the movement of phrases within the derivation, and an un-
interpreted unary function, ℋ, that models head movement.

To begin, we will consider the raising of maximal projections. Given a node 𝑥 ∈ N, the
phrase at 𝑥 is raised to 𝒫(𝑥) ∈ N, where 𝒫 is defined to be an uninterpreted function with
signature

𝒫 : N → N (2.69)

If the phrase at 𝑥 does not undergo raising then 𝒫(𝑥) = ⊥. Several axioms constrain
interpretations of 𝒫: ⋀︁

{𝒫(𝑥) ̸= 𝑥 | 𝑥 ∈ (LN ∪𝐷)} (2.70)

supp𝒫 ⊆ (LN ∪ IN) ∩ suppℎ (2.71)
im(𝒫) ⊆ {⊥} ∪ (IN ∩ suppℎ) (2.72)⋀︁

{𝒫(𝑥) = 𝑦 → (ℎ(𝑥) ̸= ℎ(𝑝(𝑥))) ∧ (ℎ(𝑦) ̸= ℎ(𝑝(𝑦))) | 𝑥, 𝑦 ∈ ⟨(LN ∪𝐷)× IN⟩} (2.73)⋀︁
{𝒫(𝑥) = 𝑦 → 𝑑(𝑝(𝑦), 𝑝(𝑥)) | 𝑥, 𝑦 ∈ ⟨(LN ∪ IN)× IN⟩} (2.74)

A phrase cannot move to itself and thus 𝒫 has no fixed points other than ⊥ (Ax.2.70). The
phrase with the root node as its maximal projection cannot undergo movement (Ax.2.71).
A phrase can only move to an intermediate node (Ax.2.72). Both the source and target of
raising do not project (Ax.2.73). The target of phrasal movement c-commands the source
(Ax.2.74).96

Next, we will consider the movement of minimal projections via head- movement, which
is constrained by the Head-Movement Constraint as given in (Hale and Keyser, 1993,
Pg. 55): “A head X may only move to a head Y if Y properly governs X.”9798 Given a node
𝑥 ∈ N, the head of the phrase at 𝑥 moves to incorporate with the node at ℋ(𝑥) ∈ N, where
ℋ is defined to be an uninterpreted function with signature:

ℋ : N → N (2.75)

If the head at 𝑥 does not undergo movement then ℋ(𝑥) = ⊥. Several axioms constrain
96See (Chomsky, 1995, Pg. 253) for the “C-command condition.”
97For further reference on the head-movement constraint, see (Baker, 1988) and (Stabler, 2001).
98N.b. Head movement is applied to the derived tree – this is because head-movement is meant to operate

at the PF-interface rather than in the course of the derivation itself.

§2.3 Page 67/200

interpretations of ℋ: ⋀︁
{ℋ(𝑥) ̸= 𝑥 | 𝑥 ∈ (LN ∪𝐷)} (2.76)

suppℋ ⊆ LN ∩ suppℎ (2.77)
im(ℋ) ⊆ {⊥} ∪ (LN ∩ suppℎ) (2.78)⋀︁

{(ℋ(𝑥) = 𝑦) → (ℎ(𝑝(𝑦)) = 𝑦) | 𝑥, 𝑦 ∈ ⟨LN × LN⟩} (2.79)⋀︁
{(ℋ(𝑥) = 𝑦) → (𝒫(𝑥) = ⊥) | 𝑥, 𝑦 ∈ ⟨LN × LN⟩} (2.80)⋀︁
{(ℋ(𝑥) = 𝑦) → 𝑑(𝑝(𝑦), 𝑥) | 𝑥, 𝑦 ∈ ⟨LN × LN⟩} (2.81)⋀︁

{((ℋ(𝑥) = 𝑦) ∧ (ℳ(𝑦, 𝑧) ̸= ⊥)) → (ℎ(𝑧) = 𝑥) | 𝑥, 𝑦, 𝑧 ∈ ⟨LN × LN × IN⟩} (2.82)

Only lexical nodes can undergo head-movement (Ax.2.77), and only lexical nodes may move
to incorporate with other lexical nodes (Ax.2.78), so that ℋ has no fixed points other
than ⊥ (Ax.2.76). The target location of head-movement (i.e. the receiving lexical head)
projects (Ax.2.79) and the parent of the target lexical head dominates the source lexical
head (Ax.2.81). A node that undergoes head-movement cannot also undergo phrasal move-
ment (Ax.2.80). Head-movement is a local operation: a lexical head 𝑥 can only be raised to
merge (via head-movement) with a lexical head 𝑦 if 𝑦 merges with the maximal projection
of 𝑥 (Ax.2.82).

Finally, we will present axioms that further bound the model by limiting the number of
instances of movement that may occur in a derivation – these axioms are entirely optional
and are included for the sake of performance considerations (with respect to the runtime of
the SMT-solver).

𝑘𝑝 ≥
∑︁

𝑥∈(LN∪𝐷)

(𝒫(𝑥) ̸= ⊥) (2.83)

𝑘ℎ ≥
∑︁
𝑥∈LN

(𝒫(𝑥) ̸= ⊥) (2.84)

⋀︁
{(ℋ(𝑥) = 𝑦) → (ℋ(𝑦) = ⊥) | 𝑥, 𝑦 ∈ ⟨LN × LN⟩} (2.85)

(Ax.2.83) sets an upper bound, 𝑘𝑝, on the number of instances of phrasal movement that
occur in a derivation. (Ax.2.84) imposes an upper bound, 𝑘ℎ, on the number of instances
of head-movement that occur in a derivation. (Ax.2.85) serves to restrict successive head-
movement.

Axioms for Bounding Derivation Node Sequences. Finally, let us consider a number
of axioms that serve to establish boundary conditions and otherwise establish the general
structure of the derivation node sequences; additionally, these axioms have a substantive
impact on the (runtime) performance of the SMT-solver when checking the model of the

§2.3 Page 68/200

minimalist parser.⋀︁
{(ℎ(𝑥𝑖) = ⊥) → (ℎ(𝑥𝑗) = ⊥) | (𝑥𝑖, 𝑥𝑗) ∈ (𝑠× 𝑠), 𝑠 ∈ S, 𝑖 < 𝑗} (2.86)⋀︁

{(𝑝(𝑥) = 𝑥𝑖+1) ∨ (𝒫(𝑥) = 𝑥𝑖+1) ∨ (ℎ(𝑥𝑖+1) = ⊥) | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ S, 𝑖 < 𝑘} (2.87)⋀︁
{(𝒫(𝑥𝑖) = 𝑥𝑖+1) ∨ (𝒫(𝑥𝑖) = ⊥) | 𝑥𝑖 ∈ 𝑠, 𝑠 ∈ S, 𝑖 < 𝑘} (2.88)⋀︁

{𝑝(𝑥𝑖) ̸= 𝑥𝑗 | (𝑥𝑖, 𝑥𝑗) ∈ (𝑠× 𝑠), 𝑠 ∈ S, 𝑖+ 1 ̸= 𝑗} (2.89)⋀︁
{𝒫(𝑥𝑘) = ⊥ | 𝑠 ∈ S} (2.90)

Within a derivation node sequence, the nodes that appear in the derivation form a contiguous
sub-sequence that must start with the first node in the derivation node sequence (Ax.2.86).
A node sequence is a sequence consisting of projections or links in the chain established
by successive instances of movement (of a maximal projection): given a node sequence of
length 𝑘, the parent of a node, 𝑥, must appear immediately after 𝑥 within the sequence;
likewise, the target node of phrasal movement must appear immediately after the source
node of movement (Ax.2.88, Ax.2.87 and Ax.2.89). Phrasal movement is prohibited from
appearing at the end of a node sequence (Ax.2.90).

2.3.3 Constraining the Derivation Model with Interface Conditions

A derivation outputs syntactic objects that are interfaces to the parts of the mind that
process meaning and sound – i.e. the Conceptual-Intentional system (CI) and the Sensory-
Motor system (SM);99 in this way, a derivation can be said to “link” sound and meaning
together.100 A Logical Form (LF) is a representation produced by the derivation that serves
as an interface between the derivation and CI. LF includes information pertaining to case-
marking, quantifier-scope, predicate argument structure101 and other (syntactic) information
that plays a role in interpreting the meaning of a sentence. A Phonetic Form (PF) is a rep-
resentation produced by the derivation that serves as an interface between the derivation
and SM. PF includes information pertaining to word-ordering, pronunciation, and the ap-
plication of morphological rules. In accordance with the Principle of Full Interpretation,
derivations must produce LF and PF interfaces that are interpretable by the CM and SM
systems respectively – i.e. the interfaces provide relevant information and instructions to
these systems.

It is sometimes desirable to constrain what interpretations the derivation may have,
which in turn requires constraining the logical forms and phonetic forms produced by the
derivation by way of stipulating conditions that the interfaces must satisfy – i.e. interface

99The Sensory-Motor system is sometimes referred to as the Articulatory-Perceptual system (A-P).
100See (Chomsky, 1995, Pg. 2): “A more specific assumption is that the cognitive system interacts with just

two such ’external’ systems: the articulatory-perceptual system A-P and the conceptual-intentional system
C-I. Accordingly, there are two interface levels, Phonetic Form (PF) at the A-P interface and Logical Form
at the C-I interface. This ’double interface’ property is one way to express the traditional description of
language as sound with a meaning traceable at least back to Aristotle.” For further discussion see (Adger,
2003, Pg. 145) and (Radford, 2016, Pg. 25-26).

101Argument structure here is defined as in (Hale and Keyser, 2002, Pg. 1): “We use the term argument
structure to refer to the syntactic configuration projected by nuclear items. While a lexical entry is more than
this, of course, argument structure in the sense intended here is nothing other than this. Argument structure
is determined by properties of lexical items, in particular, by the syntactic configurations in which they must
appear. There are just two syntactic relations, complement and specifier, defined so as to preclude iteration
and to permit only binary branching.“

§2.3 Page 69/200

conditions. (See Table 2.4 for examples of paired LF and PF interface conditions) The con-
straints (expressed as SMT-formulae) that are derived from LF and PF interface conditions
only reference components of the derivation model, and do not reference the lexicon model;
this is because the MG formalism lacks interpretable features (i.e. features that are inter-
pretable by the CI or SM systems). Instead derivations are to be interpreted by examining
the structural configurations entered into by the lexical heads participating in the deriva-
tion.102 The interface conditions translate into requirements on what syntactic relations are
established within a derivation; since all syntactic relations are (local) structural relations
established via merge, the interface conditions are in effect structural constraints over the
derivation. See Fig. 2-12 for a detailed illustration of how interface conditions are expressed
as structural constraints over a derivation.

A full specification of both LF and PF interface conditions can constrain the space of
derivations that the lexicon may yield more than is required – i.e. a partial specification
of the interface conditions would have sufficed to guarantee that the lexicon yields the
same derivation as it would if the interface conditions were fully stipulated. Importantly,
this property can be employed to our benefit: the model can be used in various ways by
partially constraining the interfaces in various ways – e.g. when parsing, the PF interface
conditions are available (as the surface form constitutes the expression to be parsed) but
the LF interface conditions may not be available, whereas in the externalization of thoughts,
it may be that the LF interface conditions (encoding meaning) are specified, but the PF
interface conditions are not specified. The model of the minimalist parser supports several
types of basic LF and PF interface conditions from which a partial specification of interface
conditions can be composed; We will now introduce the SMT-formulae derived from these
basic LF and PF interface conditions.

Axioms for LF Interface Conditions

The axioms encoding LF interface conditions model constrain the derivation so as to restrict
interpretations thereof at the LF interface, in turn restricting what logical forms may be
associated with that derivation. We will now introduce the constraints associated with each
of the four types of LF interface conditions that the system supports.

Predicate Argument Structure. The axioms pertaining to predicate argument struc-
ture serve to establish local syntactic relations (via merge) between a predicate (i.e. a lexical
verb) and an argument (i.e. a phrase). The system supports three types of arguments: ex-
ternal arguments, internal arguments that serve as direct objects, and internal arguments
that serve as indirect objects. The head of a phrase that is an argument of a predicate is
restricted to associating with the following categories:

C𝑎𝑟𝑔 = {𝑃,𝐷,𝑁,𝐶𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑣𝑒, 𝐶𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛} (2.91)

The predicate is located within a (double) VP-shell structure that consists of two projections:
a lower projection, the head of which is the predicate and is associated with the category 𝑉 ,
and a higher projection, the head of which is a light-verb and is associated with the category

102See (Adger and Svenonius, 2011, :) “In sum, some syntactic features might have interpretations at the
SM interface, though there are no uncontroversial examples of this. In the case of linearization, the most
likely examples involve different options in the spell-out of chains and of heads.”

§2.3 Page 70/200

Figure 2-12: An MG derivation for the (interrogative) sentence “Who has John given money
to?” that aligns with the prescriptions of contemporary theories of syntax; see 𝐼13 in Table-
3.2 for the interface conditions satisfied by this derivation. The feature sequences displayed
in non-leaf nodes have a dot, · , separating features that have already been consumed (on the
left) from those that have not (on the right). The dashed arrows denote phrasal movement.
The dotted arrows denote head movement. Nodes with the same head have the same color.
The derivation is assembled in a bottom-up manner via merge: “given” merges with “to
who” (formed by first merging “to” and “who”) and then with “money”, thus establishing
(via locality) predicate-argument relations; the resulting structure merges with a functional
head – i.e. a covert light verb – before undergoing 𝑉 -to-𝑣 head-movement and then merging
with the argument “john” in accordance with the VP-Internal Subject Hypothesis (Hale and
Keyser, 2002); the resulting structure then merges with the auxiliary verb “has”, after which
the argument “john” undergoes subject-raising from the VP-shell by (internally) merging
with “has”, thus establishing an agreement relation between “john” and “has”; next, the
head of “has” undergoes 𝑇 -to-𝐶 head-movement to merge with the covert complementizer,
𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, which indicates that the sentence is an interrogative; finally, “who” undergoes
wh-fronting by (internally) merging with 𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛. Wh-fronting (of “who”) and Subject-
raising (of “john”), instances of A’-movement and A-movement respectively, are triggered by
different licensor features, the former by +𝑟 and the latter by +𝑙. Note that This figure was
taken from an earlier presentation of the work in this thesis by (Indurkhya, 2020).

§2.3 Page 71/200

𝑣.103 Following the theory of argument structure presented in (Hale and Keyser, 1993) and
further developed in (Hale and Keyser, 2002), predicate-argument structure is determined by
the particular structural configuration entered into by the lexical heads associated with the
predicate and its arguments, and not by the thematic role associated with the arguments104 –
i.e an external argument merges with the light-verb per the VP Internal Subject Hypothesis
(VPISH),105 and internal arguments merge with the lexical verb. (See Figure 2-13 for details
of how the different types of arguments are located within the double-VP shell structure.)

We will begin by defining a number of utility macros (i.e. functions) that will be employed
in the axioms that we will later define. Given node sequence 𝑠, 𝑠[𝑖] refers to the 𝑖𝑡ℎ element
of the sequence. The node sequence associated with a word at position 𝑖 is denoted 𝑆+

𝑖 . Let
𝑊 be a set of words indexed by position in the sentence - i.e. 𝑤𝑖 ∈𝑊 is the 𝑖𝑡ℎ word in the
sentence. The set of overt lexical nodes associated with 𝑊 is denoted:

A(𝑊) = {𝑆+
𝑖 [0]|𝑤𝑖 ∈𝑊} (2.92)

Given a set 𝑌 of overt lexical nodes involved in the argument phrase (as in formula 2.92),
and a derivation node 𝑥, the following function checks both that the head of 𝑥 is contained
in 𝑌 , and that 𝑥 dominates each member 𝑌 with respect to either the derivation tree or the
derived tree:

H(𝑥, 𝑌) =

⎛⎝⋁︁
𝑦∈𝑌

(ℎ(𝑥) = 𝑦)

⎞⎠ ∧

⎛⎝⋀︁
𝑦∈𝑌

((𝑥 = 𝑦) ∨ 𝑑(𝑥, 𝑦) ∨ 𝑑⋆(𝑥, 𝑦))

⎞⎠ (2.93)

This function serves to establish that 𝑥 is the (raised maximal) projection of the head of the
(argument) phrase.

We will now introduce constraints that establish a local relation (via merge) between
a phrase that serves as an external argument of a verb phrase (VP) that serves as the
predicate. The phrase serving as the external argument phrase is translated into a set of
overt lexical nodes, denoted 𝐴; importantly, information pertaining to the (linear) ordering
of the overt phonological forms associated with the nodes in 𝐴 is not included. The VP-
shell structure is made up of the node-sequence for the projection of the light verb, 𝑠𝑣, and
the derivation node associated with the maximal projection of the lexical verb, p. Given a
derivation node a, the following formula holds true if: (i) there is a local relation established
(via merge) between p and a, and (ii) a is the (raised) maximal projection of the head of a

103See (Radford, 2009, Pg. 408): “The VP-shell analysis maintains that verb phrases can be split into (at
least) two separate projections, a lower one headed by a lexical verb, and a higher one headed by a light
verb.”

104See (Hale and Keyser, 1993): “Our basic answer to question (21a) — why there are so few thematic roles
— is that, in an important sense, there are no thematic roles. Instead there are just the relations determined
by the categories and their projections, and these are limited by the small inventory of lexical categories and
by Unambiguous Projection. While we might assign a particular thematic label — say, “agent” — to the NP
in (22), its grammatical status is determined entirely by the relation(s) it bears in the relational structure
projected by the lexical head V.”

105See (Radford, 2009, Pg. 408): “VPISH in the hypothesis that subjects originate internally within the
verb phrase.”

§2.3 Page 72/200

Figure 2-13: Configurations of the Double VP-shell Structure that encode argument struc-
ture for various types of predicates: (a) intransitive verb; (b) active-voice transitive verb; (c)
active-voice ditransitive verb; (d) passive-voice transitive verb; (e) passive-voice ditransitive
verb. The Double VP-shell Structure is made up of the projection of two lexical heads – i.e.
the projection of a (lexical) verb (i.e. V) that takes up to two internal arguments, and the
lexical projection of a (typically covert) light verb (i.e. the functional head v) that takes up
a single external argument. Arguments are interpreted as associating with thematic roles
based on their hierarchical position within the Double-VP shell structure; this association
aligns with the Uniformity of 𝜃-Assignment Hypothesis (UTAH). Specifically, an external
argument is associated with the thematic role of agent, a internal argument serving as the
direct object is associated with the thematic role of theme, and a internal argument serving
as the indirect object is associated with the thematic role of goal. (See (Adger, 2003, Pgs.
138-139) for a review of UTAH and thematic roles.) Per the VP Internal Subject Hypothesis,
one of the arguments will be raised to Spec-TP and thereby become the (structural) subject
of the sentence.

phrase containing 𝐴.

𝐴𝑟𝑔𝑒(p, a, 𝐴, 𝑠𝑣) = (𝛽N(𝑠𝑣[0]) = 𝑣)

∧ (𝛽N(p) = 𝑉)

∧ (a ∈ C𝑎𝑟𝑔)

∧H(a, 𝐴)

∧ (ℳ(𝑠𝑣[0], p) = 𝑠𝑣[1])

∧ (ℳ(𝑠𝑣[1], a) = 𝑠𝑣[2])

(2.94)

the first two terms of the conjunction – i.e. (𝛽N(𝑠𝑣[0]) = 𝑣) and (a ∈ C𝑎𝑟𝑔) – ensure that

§2.3 Page 73/200

the predicate and the light verb are associated with categories 𝑉 and 𝑣 respectively; the
third term – i.e. (𝛽N(p) = 𝑉) – ensures that the argument has an appropriate category for
arguments (see 2.91); the fourth term – i.e. H(a, 𝐴) – ensures that the argument node is the
(raised) maximal projection of the head of the argument phrase – i.e. the top-most-node
of the argument phrase structure is what merges with the predicate; the fifth term – i.e.
(ℳ(𝑠𝑣[0], p) = 𝑠𝑣[1]) – merges the little-v and V to form the double-VP shell structure,
ensuring that the light verb projects and that p is the maximal projection of the lexical verb
and is the complement of the light verb; the sixth term – i.e. (ℳ(𝑠𝑣[1], a) = 𝑠𝑣[2]) – ensures
the argument phrase merges into the specifier position of the projection of the light verb.

We can now explicitly quantify over the different possible local relations between nodes
in predicate associated derivation node sequences (p𝑖𝑑𝑥𝑠 indexes this set of derivation node
sequences) and nodes in argument associated derivation node sequences (a𝑖𝑑𝑥𝑠 indexes this
set of derivation node sequences) that can be established, checking to see if (2.94) holds in
any of these cases:⋁︁

𝑖a∈a𝑖𝑑𝑥𝑠
𝑖p∈p𝑖𝑑𝑥𝑠
𝑖a ̸=𝑖p

(︁⋁︁
{𝐴𝑟𝑔𝑒(p, a,A(𝑊𝑎𝑟𝑔), 𝑠𝑣) | a ∈ 𝑆+

𝑖a
, p ∈ 𝑆+

𝑖p
, 𝑠𝑣 ∈ 𝑆−}

)︁
(2.95)

This formula has two levels of disjunctions, intentionally factored apart (for purposes of
exposition) so that one can point out what each is iterating over: the outer disjunction is
quantifying over the possible assignments of heads of the argument phrase and predicate;
the inner disjunction is quantifying over the possible assignments of indices in the associated
node sequences (so as to pick particular derivation nodes within each node sequence).106

Next, we will introduce constraints pertaining to a phrase serving as an internal argument
that corresponds to the direct object, establishing a local relation with the projection of the
lexical verb serving as the predicate; these constraints are similar to those for the external
argument, except that internal arguments merge with the projection of the lexical verb, and
thus there is no need to directly reference the node sequence associated with the projection
of the light verb 𝑠𝑣.

𝐴𝑟𝑔𝑖1(p, a, 𝐴) = (𝛽N(p) = 𝑉)

∧ (a ∈ C𝑎𝑟𝑔)

∧ (ℎ(𝑝(p)) = ℎ(p))

∧H(a, 𝐴)

∧ (ℳ(a, p) ̸= ⊥)

(2.96)

The first term in the conjunction – i.e. (𝛽N(p) = 𝑉) – ensures that the predicate-node (i.e.
the node associated with the lexical verb) has category 𝑉 ; the second term – i.e. (a ∈ C𝑎𝑟𝑔) –
ensures that the argument node has an appropriate argument category (see 2.91); the third
term – i.e. (ℎ(𝑝(p)) = ℎ(p)) – ensures that the predicate projects; the fourth term – i.e.
H(a, 𝐴) – ensures that the argument node is the (raised) maximal projection of the head of
the argument phrase. the fifth term – i.e. (ℳ(a, p) ̸= ⊥) – ensures that the argument and
the predicate will merge. It is then possible, as it was in the case of an external argument,
to explicitly quantify over the different possible local relations between predicate associated
nodes and argument associated nodes that can be established, checking to see if (2.96) holds

106This is an example of explicit quantification.

§2.3 Page 74/200

in any of these case:⋁︁
𝑖a∈a𝑖𝑑𝑥𝑠
𝑖p∈p𝑖𝑑𝑥𝑠
𝑖a ̸=𝑖p

(︁⋁︁
{𝐴𝑟𝑔𝑖1(p, a,A(𝑊𝑎𝑟𝑔)) | a ∈ 𝑆+

𝑖a
, p ∈ 𝑆+

𝑖p
[: 2]}

)︁
(2.97)

Finally we will introduce constraints that pertain to a phrase serving as an internal
argument that corresponds to the indirect object, establishing a local relation with the
lexical verb serving as the predicate:

𝐴𝑟𝑔𝑖2(p, a, 𝐴) = (𝛽N(p) = 𝑉)

∧ (a ∈ C𝑎𝑟𝑔)

∧ (ℎ(𝑝(p)) = ℎ(p))

∧H(a, 𝐴)

∧ (ℳ(a, p) ̸= ⊥)

(2.98)

As before, we can explicitly quantify over the different possible local relations between
predicate associated nodes and argument associated nodes that can be established, checking
to see if (2.98) holds in any of these cases:⋁︁

𝑖a∈a𝑖𝑑𝑥𝑠
𝑖p∈p𝑖𝑑𝑥𝑠
𝑖a ̸=𝑖p

(︁⋁︁
{𝐴𝑟𝑔𝑖2(p, a,A(𝑊𝑎𝑟𝑔)) | a ∈ 𝑆+

𝑖a
, p ∈ 𝑆+

𝑖p
[: 2]}

)︁
(2.99)

We do not differentiate between whether a node coding for an internal argument serves as a
direct object or an indirect object here in the axioms as this distinction should be determined
via selectional features and the position of the argument within the VP-shell structure. All
three types of arguments can be headed by an empty argument node by changing “a ∈ 𝑆+

𝑖a
”

to “a ∈ 𝑠𝑎𝑟𝑔, 𝑠𝑎𝑟𝑔 ∈
(︀
𝑆− ∪ {𝑆+

𝑖a
}
)︀
” (thereby including the covert node sequences 𝑆−) in

formulas (2.95), (2.97), and (2.99) respectively. E.g. in the case of the internal argument
taking an embedded sentence headed by a covert complementizer (e.g. “Bob told Mary the
dog ran away”) or an embedded complement with inifinitival-“to” (e.g. “Bob told Mary to
eat pizza”), formula (2.99) may be modified to:⋁︁

𝑖a∈a𝑖𝑑𝑥𝑠
𝑖p∈p𝑖𝑑𝑥𝑠
𝑖a ̸=𝑖p

(︁⋁︁
{𝐴𝑟𝑔𝑖2(p, a,A(𝑊𝑎𝑟𝑔)) | a ∈ 𝑠𝑎𝑟𝑔, 𝑠𝑎𝑟𝑔 ∈

(︀
𝑆− ∪ {𝑆+

𝑖a
}
)︀
, p ∈ 𝑆+

𝑖p
[: 2]}

)︁
(2.100)

Agreement. Any of the three types of arguments can be raised to structural subject
position (i.e. Spec-T) and thereby establish an agreement relation between the (structural)
subject (i.e. a phrase serving as an argument that originated in the VP-shell) and a tense-
marker (e.g. an auxiliary verb).107 The following formula is true only if there is a locality
relation established via merge between the subject (denoted by “s” below) and the tense-

107See (Adger, 2003, Pgs. 167-170) for a review of agreement within minimalist syntax in the context of
checking theory.

§2.3 Page 75/200

marker (denoted by “t” below) it agrees with:

𝐴𝑔𝑟𝑆𝑢𝑏𝑗(t, s, 𝐴) = (ℎ(𝑝(t)) = ℎ(t))

∧ (ℳ(s, t) ̸= ⊥)

∧H(s, 𝐴)

(2.101)

The first two terms in the conjunction serves to ensure that when the subject and the tense-
marker it agrees with merge together, and that the tense-marker projects through the merge
operation; the third term serves to ensure that it is the (raised) maximal projection of the
head of the subject (phrase) that merges with the tense-marker. Observe that, as compared
with axioms (2.95), (2.97), and (2.99) that establish predicate-argument structure, axiom
(2.99) does not restrict what category the subject or the tense-marker must associate with. It
is then possible, as it was in the case of the external argument, to explicitly quantify over the
different possible (local) relations between nodes in tense-marker associated derivation node
sequences (t𝑖𝑑𝑥𝑠 indexes over this set of derivation node sequences) and subject associated
nodes (s𝑖𝑑𝑥𝑠 indexes over this set of derivation node sequences) that can be established,
checking to see if the formula above holds in any case:⋁︁

𝑖s∈s𝑖𝑑𝑥𝑠
𝑖t∈t𝑖𝑑𝑥𝑠
𝑖s ̸=𝑖t

(︁⋁︁
{𝐴𝑔𝑟𝑆𝑢𝑏𝑗(t, s,A(𝑊𝑠𝑢𝑏𝑗)) | s ∈ 𝑆+

𝑖s
, t ∈ 𝑆+

𝑖t
}
)︁

(2.102)

Axiom (2.102) is more general than axioms (2.95), (2.97), and (2.99) in so far as it quantifies
over all of the nodes in the node-sequences for the subject (phrase) and the tense-marker;
as in the case of the axioms for establishing predicate-argument structure, axiom (2.102)
can be modified to allow the subject (phrase) to be headed by an empty lexical item by
changing “s ∈ 𝑆+

𝑖s
” to “s ∈ 𝑠𝑎𝑟𝑔, 𝑠𝑎𝑟𝑔 ∈

(︀
𝑆− ∪ {𝑆+

𝑖s
}
)︀
.”

Sentence Type. End-of-sentence punctuation marks each sentence as declarative or in-
terrogative: this annotation is translated into a constraint that determines which one of the
two pre-specified categories, 𝐶𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑣𝑒 or 𝐶𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛, is associated with the root node of the
derivation (of the sentence). Consequently, the system distinguishes between derivations
for declaratives and interrogatives sentences by inspecting the category associated with the
head of the matrix clause. The system assumes that a declarative or interrogative is headed
by a covert lexical head.108109 Define a variable 𝐶𝑋 ∈ C and assign it to either c𝐶𝐷𝑒𝑐𝑙.

or
c𝐶𝑄𝑢𝑒𝑠.

depending on whether the sentence is a declarative or interrogative respectively; then
the following axiom requires that the lexical head that projects to become the root node has

108See (Adger, 2003, Pg. 333): “We proposed that C is the place where the interpretable-clause-type feature
is found. This feature determines whether a CP is interpreted as a question or as a declarative statement.
This feature is also responsible for valuing an uninterpretable-clause-type feature on T: when this feature is
strong, as in the case of Q in English, then T-to-C movement takes place, so that auxiliary inverts over the
subject.”

109See the Interrogative Condition stipulated in (Radford, 2009, Pg. 161) for languages such as English:
“A clause is interpreted as a non-echoic question if (and only if) it is a CP with an interrogative specifier
(i.e. a specifier containing an interrogative word).”

§2.3 Page 76/200

category 𝐶𝑋 . ⋀︁
𝑥∈LN

−

((ℎ(𝑅N) = ℎ(𝑥)) ∧ (ℎ(𝑥) = 𝑥) ∧ (𝛽N(𝑥) = 𝐶𝑋)) (2.103)

Categorical Constraints. Given the constraint that the word 𝑤𝑖 at position 𝑖 has cate-
gory 𝑐𝑖, let 𝑆+

𝑖 be the overt node sequence associated with 𝑤𝑖, and let 𝑥 be the first node in
𝑆+
𝑖 ; then the model is constrained by adding the following axiom:

𝛽N(𝑆
+
𝑖) = 𝑐𝑖 (2.104)

Looking ahead, the ability to designate the category that a token in an expression in is
associated with will play an important role in the acquisition models presented in Ch.3.

Axioms for PF Interface Conditions

The axioms encoding PF interface conditions model the effects of externalizing the derivation
to the SM system, central to which is the linearization of the overt lexical items, which must
match the (linear) surface ordering prescribed by conditions on the PF interface.110 These
axioms may be broken into three groups: (i) axioms for relating the derivation tree to the
derived tree (both of which are substructures of the associated multi-dominance tree); (ii)
axioms that encode the linear ordering, prescribed by the supplied PF interface conditions,
over the lexical heads; (iii) axioms that require that the linear ordering of overt lexical heads
established by the derived tree matches the linear ordering prescribed by the supplied PF
interface conditions. We will now introduce and detail each of these groups of axioms in turn.

Computing the linear ordering relations between the lexical heads entering into a deriva-
tion requires that the effects of syntactic movement be taken into account; this is accom-
plished by modeling the derived tree, in which all constituents are raised to their final po-
sition.111112113 Recall that the axioms previously introduced encode a derivation tree, and
in particular provide a predicate, 𝑑, that imposes a strict partial ordering over supp(ℎ). In
order to derive the derived tree from the derivation tree, we will introduce a new predicate
– i.e. an uninterpreted function – that will serve to impose a strict partial ordering over
supp(ℎ) that encodes the derived tree:

𝑑⋆ : N× N → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 (2.105)

110See (Chomsky, 2013b, Pg. 36): “Order and other arrangements are a peripheral part of language, related
solely to externalization at the SM interface, where of course they are necessary.”

111For a more formal treatment of how the derived tree is connected to the derivation tree, see (Kobele,
2011) and (Stabler, 2013, Appendix B).

112The decision to introduce and detail the axioms for the derived tree and the derivation tree separately
aligns with an observation made in (Stabler, 2013, Pg. 613): “[...] it is natural to regard MGs as folding
together two different sorts of principles: those that define the derivation tree, and those that map the
derivation to its pronounced and interpreted form. One insight that comes from this perspective is that both
of those steps, the definition of derivations (like the tree on the right, above), and the mappings to derived
structures (like the tree on the left), are very simple, finite state computations.“

113N.B. the modeling of the surface structure here diverges from contemporary minimalist syntax in that
there is no operation “Spellout” that is applied at each stage of the derivation (i.e. in between merge
operations); rather, the surface structure is constructed in parallel to the derivation tree, and may be
thought of as one single large PF interface. See (Collins and Stabler, 2016, Pg. 75) for further discussion.

§2.3 Page 77/200

Given 𝑥, 𝑦 ∈ N, 𝑑⋆(𝑥, 𝑦) denotes that 𝑥 dominates 𝑦 via one of either 𝑝 or 𝒫, after all phrasal
movement has taken place. In contrast to 𝑑, 𝑑⋆ models dominance relations encoded in the
derived tree and is referred to as derived-tree-dominance (as this dominance relation is with
respect to the derived tree in which all constituents have moved to their final destination).
Several axioms that will constrain interpretations of 𝑑⋆:

𝑑⋆ is irreflexive, anti-symmetric and transitive over (suppℎ)2 (2.106)
supp 𝑑⋆ ⊆ (𝐷 ∩ suppℎ)× ((LN ∪ IN) ∩ suppℎ) (2.107)⋀︁
{(𝑝(𝑥) ̸= ⊥) → 𝑑⋆(𝑝(𝑥), 𝑥)⊕ 𝑑⋆(𝒫(𝑥), 𝑥) | 𝑥 ∈ N} (2.108)⋀︁

{𝒫(𝑥) ̸= ⊥ → 𝑑⋆(𝒫(𝑥), 𝑥) | 𝑥 ∈ N} (2.109)⋀︁
{¬𝑑(𝑥𝑖, 𝑥𝑗) ∧ ¬𝑑⋆(𝑥𝑖, 𝑥𝑗) | (𝑥𝑖, 𝑥𝑗) ∈ (𝑠× 𝑠), 𝑠 ∈ S, 𝑖 ≤ 𝑗} (2.110)

The 𝑑⋆ is a (binary) predicate that is irreflexive, transitive and asymmetric relation over
(suppℎ × suppℎ), it is therefore a strict partial ordering over suppℎ (Ax.2.106). Lexi-
cal nodes cannot derived-tree-dominate a derived node (Ax.2.107). Axiom (2.108) requires
that every active node in the derived tree dominated (within the derived tree) either by its
parent or by the target-location of movement; axiom (2.109) requires that phrasal move-
ment implies derived-tree-dominance. Within a derivation node sequence, a node cannot
derived-tree-dominate another node that appears prior to it within the same node sequence
(Ax.2.110).

The linear ordering (over the words in the sentence) prescribed by the supplied PF
interface conditions are modeled using a precedence relation – i.e. an uninterpreted binary
predicate – over pairs of (leaf) nodes in the derived tree:114

ℒ : N× N → 𝐵𝑜𝑜𝑙 (2.111)

Given two lexical (derivation) nodes 𝑥, 𝑦 ∈ 𝐿, ℒ(𝑥, 𝑦) denotes that the lexical head 𝑥 precedes
the lexical head 𝑦 with respect to the (surfaced) linear ordering. The interpretation of ℒ is
constrained by several axioms:

suppℒ ⊆ (LN ∩ suppℎ)× (LN ∩ suppℎ) (2.112)⋀︁{︀
ℒ(𝑥, 𝑦) = (𝑖 < 𝑗) | 𝑥𝑖, 𝑥𝑗 ∈ (LN

+ × LN
+)
}︀

(2.113)

These axioms impose a particular sequential ordering, derived from the ordered sequence of
phonological forms found in the PF interface conditions, over the leaf nodes in the derived
tree. The first axiom, (2.112), establishes that the precedence operation pertains to the
ordering of lexical heads (both overt and covert); the second axiom, (2.113), establishes the
pairwise ordering relations between the overt lexical heads.

Since each overt node-sequence in a derivation model is indexed by the position of the
word (in the sentence) that it codes for115, the PF interface conditions determine what
phonetic feature each overt node sequence is associated with. To this end, we will now

114The focus is on the derived tree because we want to determine precedence relations between constituents
in the derivation after syntactic movement has taken place.

115I.e. the representative node in the node sequence codes for a lexical head that is in turn associated with
a particular word in the sentence.

§2.3 Page 78/200

introduce an uninterpreted function that will model the association between node sequences
and phonological forms. Let 𝑊 be a set of words indexed by position in the sentence – i.e.
𝑤𝑖 ∈ 𝑊 is the 𝑖𝑡ℎ word in the sentence. Recall that the (overt) derivation node sequence
associated with 𝑤𝑖 is denoted 𝑆+

𝑖 , and that 𝑆+
𝑖 [0] refers to the first element of the derivation

node sequence. Define ΔN to be an uninterpreted function with signature:

ΔN : N → Σ (2.114)

Then the following axioms constrain interpretations of ΔN:⋀︁
{ΔN(𝑆𝑖[0]) = Σ𝑤𝑖 | 𝑤𝑖 ∈𝑊} (2.115)⋀︁{︀

ΔN(𝑠[0]) ̸= Σ𝑥 | 𝑠 ∈ 𝑆−,Σ𝑥 ∈ Σ𝑜

}︀
(2.116)

ΔN(⊥) = ∅Σ (2.117)

Axiom (2.115) constrains ΔN so as to associate each word 𝑤𝑖 ∈𝑊 with an overt derivation
node sequence; by convention, this association is made between a phonetic feature and the
first member of the derivation node sequence (which codes for a lexical head). Axiom (2.116)
entails that a covert derivation node sequence cannot associate with an overt phonetic fea-
ture.116 Axiom (2.117) establishes a boundary condition requiring that the “null” node of
the derivation node sort associate with the “null” node of the PF node sort.

Finally, we will introduce axioms that require that the ordering of the (overt) leaf nodes
in the derived tree agree with the ordering over the words in the sentence (per the specified
the PF interface conditions). The following axioms require that a specifier precedes its head
and that a head precedes its complement (which accords with the SVO ordering of English);
in this way, linear ordering is derived from the structure of the derivation.

∀𝑥, 𝑦 ∈ ⟨(LN ∪ IN)2⟩
{(ℳ(𝑥, 𝑦) ̸= ⊥)

∧ (ℎ(𝑥) = ℎ(𝑝(𝑥)))

∧ (𝒫(𝑦) = ℋ(ℎ(𝑥)) = ℋ(ℎ(𝑦)) = ⊥)}

→ If

⎛⎝ ⋁︁
𝑧∈LN

(𝑥 = 𝑧),ℒ(ℎ(𝑥), ℎ(𝑦)),ℒ(ℎ(𝑦), ℎ(𝑥))

⎞⎠
(2.118)

Axiom (2.118) establishes, for every two non-root nodes 𝑥 and 𝑦 in the derivation, a con-
ditional; the antecedent in the conditional is true if 𝑥 and 𝑦 merge together, 𝑥 projects, 𝑦
is not raised, and neither 𝑥 nor 𝑦 will undergo head-movement – if the antecedent holds,
then the consequent being true implies that if the 𝑥 is a lexical head, then 𝑥 precedes 𝑦
(corresponding to 𝐸𝑀1), and 𝑦 precedes 𝑥 otherwise (corresponding to 𝐸𝑀2).

∀𝑥, 𝑦, 𝑧 ∈ ⟨(LN ∪𝐷)× IN × (LN ∪ IN)⟩
{𝑑⋆(𝑥, 𝑦) ∧ 𝑑⋆(𝑦, 𝑧) ∧ (ℋ(ℎ(𝑥)) = ℋ(ℎ(𝑦)) = ℋ(ℎ(𝑧)) = ⊥)}
→ (ℒ(ℎ(𝑥), ℎ(𝑦)) = ℒ(ℎ(𝑥), ℎ(𝑧))) ∧ (ℒ(ℎ(𝑦), ℎ(𝑥)) = ℒ(ℎ(𝑧), ℎ(𝑥)))

(2.119)

116A covert derivation node sequence need not associate with a covert phonological form as not every covert
derivation node sequence actively participates in the derivation.

§2.3 Page 79/200

Axiom (2.119) has three quantifiers 𝑥, 𝑦 and 𝑧, with 𝑥 quantifying over the nodes in the
derivation, 𝑦 quantifying over the nodes in the derivation that are neither one of the lexical
nodes nor the root node, and 𝑧 quantifying over the nodes in the derivation that are not
the root node. The antecedent of the conditional is true if none of 𝑥, 𝑦, or 𝑧 undergo
head-movement, and, with respect to the derived tree, 𝑥 contains 𝑦 and 𝑦 contains 𝑧, which
implies that 𝑥 is distinct from the surfaced phrase containing 𝑦 and 𝑧. The consequent of
the conditional being true implies that the lexical heads 𝑦 and 𝑧 must both either precede
or succeed the lexical head 𝑥, which accords with 𝑦 and 𝑧 being part of a single phrase that
either comes before or after 𝑥.

∀𝑥, 𝑦 ∈ ⟨(LN ∪ IN)2⟩
{(𝑑⋆(𝑝(𝑥), 𝑥) ∧ 𝑑⋆(𝑝(𝑥), 𝑦))
∧ (¬𝑑(𝑥, 𝑦) ∧ ¬𝑑(𝑦, 𝑥) ∧ (𝑝(𝑥) ̸= 𝑝(𝑦)))

∧ (ℋ(ℎ(𝑦)) = ⊥)}
→ ℒ(ℎ(𝑥), ℎ(𝑦))

(2.120)

Axiom (2.120) requires both that: (i) a lexical head 𝑥 precedes every node 𝑦 strictly contained
(with respect to the derived tree) by the maximal projection of the head of the complement
of 𝑥, and (ii) if the maximal projection of a lexical head 𝑥 merges into the specifier position
of the projection for a lexical head 𝑣, then 𝑥 precedes every node 𝑦 strictly contained (with
respect to the derived tree) by the sister of 𝑥 (i.e. a projection of 𝑣). To see this, observe
that the axiom explicitly quantifies over distinct pairs of non-root nodes 𝑥 and 𝑦 in the
derivation – the antecedent is true if: (i) the parent of 𝑥 strictly contains (with respect to
the derived tree) both 𝑥 and 𝑦; (ii) 𝑥 and 𝑦 do not merge and do not dominate one another
with respect to the derivation tree; (iii) 𝑦 does not undergo head movement (although 𝑥
might). (In effect, the antecedent requires that 𝑥 c-command 𝑦.)

∀𝑥′
, 𝑥, 𝑦 ∈ ⟨(LN ∪ IN)3⟩

{(𝑑⋆(𝑝(𝑥), 𝑥) ∧ 𝑑⋆(𝑝(𝑥), 𝑦) ∧ 𝑑⋆(𝑥, 𝑥′
))

∧ (¬𝑑(𝑥, 𝑦) ∧ ¬𝑑(𝑦, 𝑥) ∧ (𝑝(𝑥) ̸= 𝑝(𝑦))

∧ (ℋ(ℎ(𝑦)) = ⊥)}

→ ℒ(ℎ(𝑥′
), ℎ(𝑦))

(2.121)

Axiom (2.122) is related to (2.120) in that it asserts that under the conditions of (2.122),
if there is a third node 𝑥′ that is strictly contained (with respect to the derived tree) by 𝑥,
then 𝑥′ will precede 𝑦 – this is motivated by the observation that the entire phrase contained
by 𝑥 with respect to the derived tree (which does not contain 𝑦) precedes 𝑦.⋀︁

{(ℋ(𝑥) = 𝑦) → ℒ(𝑥, 𝑦) | 𝑥, 𝑦 ∈ ⟨LN × LN⟩} (2.122)⋀︁{︀
(ℋ(𝑥) = 𝑦) → (¬(ℒ(𝑥, 𝑧) ∧ ℒ(𝑧, 𝑦)) ∧ ¬(ℒ(𝑦, 𝑧) ∧ ℒ(𝑧, 𝑥))) | 𝑥, 𝑦, 𝑧 ∈ ⟨L3

N⟩
}︀

(2.123)

Finally, axioms (2.122) and (2.123) pertain to head movement. Supposing lexical head 𝑥 is
raised to 𝑦 (via head-movement), then: axiom (2.122) establishes that all head-movement
is suffixing – i.e. the lexical head 𝑦 must precede the lexical head 𝑥 – and axiom (2.123)
establishes that there can be no third lexical head 𝑧 (distinct from 𝑥 and 𝑦) such that 𝑧

§2.3 Page 80/200

comes between 𝑥 and 𝑦 (with respect to the linear ordering of the lexical heads).

2.3.4 Connecting the Derivation Model to the Lexicon Model

The trajectory of a lexical head through a derivation as it first (optionally) projects and then
(optionally) undergoes raising is captured via the node-sequence data structure; relatedly,
the sequence of interactions within a derivation that a lexical item undergoes is dictated by
the lexical (syntactic) feature sequence component of the associated lexical head. This raises
the possibility of developing a mapping between derivation nodes and lexicon nodes that
maps each (derivation) node sequence associated with a lexical head in the derivation to a
lexical (syntactic) feature sequence associated with a lexical entry in the lexicon, thereby
connecting the derivation model to the lexicon model. To this end, the model includes an
(uninterpreted) function that connects the model of the derivation to the model of the lexicon
and axioms constraining this function so as to establish the aforementioned mapping.117 See
Fig. 2-14 for an illustration of how the members of a derivation node sequence are connected
to members of a lexicon node sequence. We will now develop this notion formally.

To begin, we will introduce an uninterpreted function that maps nodes in the derivation
to nodes in the lexicon:

𝜇 : N → Ω (2.124)

This function will serve to map node sequences in the derivation with node sequences in the
lexicon. Several axioms constrain interpretations of 𝜇:⋀︁

{(𝑥 ∈ kerℎ) → (𝜇(𝑥) = 𝜔∅) | 𝑥 ∈ N} (2.125)⋀︁
{ΔΩ(𝜇(𝑥),ΔN(𝑥)) | 𝑥 ∈ (LN ∪𝐷)} (2.126)⋀︁{︁

Γ(𝜇(𝑦)) =
⋁︁

{ℋ(𝑥) = 𝑦 | 𝑥 ∈ LN} | 𝑦 ∈ LN

}︁
(2.127)⋀︁

{(ℎ(𝑥) ̸= ℎ(𝑝(𝑥)) ̸= ⊥) → (𝜓(𝜇(𝑥)) = If (𝒫(𝑥) ̸= ⊥, 𝜇(𝒫(𝑥)), 𝜔∅)) | 𝑥 ∈ (LN ∪𝐷)}
(2.128)⋀︁

{(𝜇(𝑥) = 𝜔𝐶) → (𝑥 = 𝑅N) | 𝑥 ∈ (LN ∪𝐷)} (2.129)

𝜉(𝜇(𝑅N)) = If (ℎ(𝑅N) = ⊥, 𝜏∅, 𝜏𝑐) (2.130)⋀︁
{𝛽N(𝑥) = 𝛽Ω(𝜇(𝑥)) | 𝑥 ∈ LN} (2.131)

Members of the derivation node sort that do not play a role in the derivation map to the
terminal lexicon node, 𝜔∅ (Ax.2.125). A derivation node sequence maps to a lexicon node
sequence only if both node sequences associate with the same phonological form – i.e. given
a node 𝑥 in the derivation, the lexicon node that 𝑥 maps to (via 𝜇) must associate with
the phonological form that 𝑥 associates with (Ax.2.126). The special selectional feature for
head movement, <=, appears in a lexical entry if and only if the associated lexical head is
the target of head movement (Ax.2.127). Non-projecting derivation nodes either undergo
movement or terminate their projection chain (Ax.2.128). Only the root node can map to

117Note that a direct mapping between the derivation nodes and lexicon nodes comports with modern
incarnations of minimalist syntax that allow dispensing with the concept of a numeration – i.e. a subset of
the lexicon that will be merged together to form a derivation is not required to be explicitly selected prior
to the derivation. See (Chomsky et al., 2019) for a discussion of this point.

§2.3 Page 81/200

the complete lexicon node (Ax.2.129), and the root node maps to the complete lexicon node
if and only if the derivation converges (Ax.2.130). A lexical node in the derivation has the
same category as the lexicon node it maps to (Ax.2.131).⋀︁

{𝒫(𝑥) = 𝑦 → 𝜉(𝜇(𝑦)) = 𝜏− | (𝑥, 𝑦) ∈ ⟨(LN ∪𝐷)× (LN ∪𝐷)⟩} (2.132)⋀︁
{𝜉(𝜇(𝑥)) ̸= 𝜏+ ∧ 𝜉(𝜇(𝑥)) ̸= 𝜏− | 𝑥 ∈ LN} (2.133)⋀︁

{ℳ(𝑥, 𝑦) ̸= ⊥ → 𝜅(𝜇(𝑥)) = 𝜅(𝜇(𝑦)) | (𝑥, 𝑦) ∈ ⟨(LN ∪𝐷)× (LN ∪𝐷)⟩} (2.134)

∀𝑥, 𝑦 ∈⟨(LN ∪𝐷)× (LN ∪𝐷)⟩
((ℳ(𝑥, 𝑦) ̸= ⊥) ∧ (ℎ(𝑥) = ℎ(𝑝(𝑥))))

→ ((𝜉(𝜇(𝑥)) = 𝜏=) ∧ (𝜉(𝜇(𝑦)) = 𝜏∼)) ∨ ((𝜉(𝜇(𝑥)) = 𝜏+) ∧ (𝜉(𝜇(𝑦)) = 𝜏−))

(2.135)

∀𝑥, 𝑦 ∈⟨(LN ∪𝐷)× (LN ∪𝐷)⟩
((ℳ(𝑥, 𝑦) ̸= ⊥) ∧ (ℎ(𝑥) = ℎ(𝑝(𝑥)))) → 𝜓(𝜇(𝑥)) = 𝜇(ℳ(𝑥, 𝑦))

(2.136)

If a node in the derivation is the target location of phrasal movement then the lexicon node it
maps to must code for a licensee feature (Ax.2.132). Lexical nodes in the derivation cannot
map to lexicon nodes involved in licensing. (Ax.2.133) When two nodes in the derivation
are merged together, they must both associate with the same (non-nil) syntactic feature
label (Ax.2.134); either the argument that projects is a selector while the other argument is
a selectee or the argument that projects is a licensor while the other argument is a licensee
(Ax.2.135). Finally, given two derivation nodes, 𝑥1, and 𝑥2, that are the arguments of merge,
if 𝑥1 projects, then 𝑝(𝑥1) = ℳ(𝑥1, 𝑥2) and the functions 𝜇, 𝑝 and 𝜓 form a commutative
diagram – i.e. 𝜓(𝜇(𝑥1)) = 𝜇(𝑝(𝑥1)) (Ax.2.136).

2.4 Parsing

This section introduces a procedure for parsing MGs (listed on Pg. 86) that uses the SMT-
model of a minimalist parser (defined in §2.3), in conjunction with an SMT-solver. The
input to the parser consists of: (i) a specification of LF and PF interface conditions to
be satisfied (see Table 2.4 for examples of such specifications); (ii) a valuation of model
parameters that serves to bound the (finite) model of the parser (e.g. see Table 2.5); (iii)
a minimalist lexicon consisting of a set of lexical entries (e.g. see Table 2.1). The output
of the parser is a minimalist derivation that may be yielded by the specified lexicon and
that satisfies the specified LF and PF interface conditions. We used the Z3 SMT-solver
(v. 4.8.6), a state-of-the-art high-performance SMT-solver with widespread application that
can both (i) evaluate (check) whether an SMT-model has a satisfiable interpretation – i.e.
a satisfiable assignment of values to the free variables in the formula that makes up the
decision problem – and (ii) identify a satisfiable interpretation of the model in the case that
it has one.118

This section is organized as follows. We will begin by detailing (in §2.4.1) how to con-
struct an SMT-model that encodes the (decidable) decision problem of whether the specified
minimalist lexicon can yield a (minimalist) derivation that satisfies the specified interface
conditions. We will then detail (in §2.4.2) how this decision problem may be evaluated by
using an SMT-solver to check the model, and in the case that there is a satisfiable interpreta-
tion of the model (implying that the decision problem may be answered in the affirmative),

118In the case of the SMT-model of the parser, identifying a satisfiable interpretation of the model requires
identifying an interpretation of each uninterpreted function that accords with the model axioms.

§2.4 Page 82/200

Figure 2-14: Connecting a Derivation Model to the Lexicon Model. This diagram illustrates
how the members of the derivation node sequence originating at node 𝐷3 in the derivation
presented in Fig. 2-2 are mapped (via the uninterpreted function 𝜇) to the members of the
lexicon node sequence corresponding to the lexical entry [𝑡ℎ𝑒/𝐷 ::= 𝑦,∼𝑦,−𝑞] based on the
model interpretation presented in Table 2.6. The mapping ensures that the trajectory the
lexical head takes through the derivation (i.e. via projection and raising) is dictated by the
lexical feature sequence associated with the corresponding lexical entry. The head (i.e. ℎ)
of each member of the derivation node sequence is the first derivation node in the sequence
(i.e. the lexical head 𝐷3). The first member in each sequence is associated with a member
of the category sort (i.e. 𝐷); likewise, the first member of the derivation node sequence is
associated with a phonological form (i.e. “the”) via the map ΔN. However the first member
of the lexicon node sequence can associate with more than one phonological form via the
map ΔΩ (in this case both “the” and “a”); this mapping is visually distinguished (from other
mappings) in this illustration via the use of a dotted arrow. Each member of the lexicon node
sequence is connected to its successor via the uninterpreted function 𝜓. Each member of the
derivation node sequence is connected to the next via either the function 𝑝 or the function
𝒫. The last members of the derivation node sequence and the lexicon node sequence – i.e.
𝐷21 and 𝐿0 respectively – map to the “nullary” nodes for the derivation node sort (i.e. 𝐷0)
and lexicon node sort (i.e. 𝐿5) respectively. Note that 𝐷0 = ⊥ and 𝐿5 = 𝜔∅. Importantly,
each derivation node sequence in the derivation model is mapped, via the function 𝜇, to one
of the lexicon node sequences (encoding a syntactic feature sequence) in the lexicon model.

§2.4 Page 83/200

how a minimalist derivation – i.e. the output of the parser – may be automatically recovered
from the interpretation of the model, thereby carrying out the task of parsing. Finally, we
will evaluate the parser (in §2.4.3) by using it to parse each entry in Table 2.4 using the
lexicon listed in Table 2.1 and produce the respective derivations listed in Table ??. Along
the way, we will illustrate how each step of the parsing procedure works using a running
example – i.e. we will show how the parsing procedure can take as input an entry, 𝐼1, listed
in Table 2.4 and the lexicon listed in Table 2.1 and output the corresponding derivation (for
𝐼1) listed in Table ??. (See Fig. 2-2 for a presentation of this derivation)

2.4.1 Constructing the Model of the Parser

Following Step-2 of the parsing procedure, the model is constructed by first initializing a lex-
icon model from the specified minimalist lexicon (see Step-3a), then initializing a derivation
model and restricting interpretations of it by via introduction of constraints derived from
the specified LF and PF interface conditions (see Step-2b), and then finally connecting the
lexicon model to the derivation model (see Step-2c). The SMT-model constructed by the
procedure employs a quantifier-free, multi-sort, first-order logic extended with the theory
of uninterpreted functions, and the associated decision problem is thereby decidable; conse-
quently, given enough time, the SMT-solver will eventually determine whether or not the
model has a satisfiable interpretation. We will now detail each of these three steps in turn.

Constructing the Lexicon Model

The procedure processes the supplied lexicon and produces an SMT-formula that models
the specified lexicon; this is accomplished in two stages.

In the first stage, the procedure processes the specified (input) lexicon and (automat-
ically) determines the size (i.e. the cardinality) of each of three sorts that are associated
with the lexicon model: the lexicon node sort, (Ω), the syntactic feature label sort (F), and
the sort of phonological forms (Σ). The size of the lexicon node sort, Ω, is computed using
the upper bound listed in equation (2.11), which is a function of product of the number
of lexical entries in the lexicon and the maximum number of syntactic features in any one
lexical entry in the specified lexicon; in the case of our running example, the lexicon has a
total of 34 lexical entries, with a lexical entry having at most 3 syntactic features (e.g. see
lexical entries 2, 3, 10, 12, 14, 15, 17, 22, 23, 29, 30, and 31 in Table 2.1), giving:

|Ω| = 2 + (34)(3) = 104 (2.137)

The sets of selectional and licensing feature labels in the lexicon – in the case of our running
example, F𝑆 = {𝑥, 𝑦} and F𝐿 = {𝑝, 𝑞} respectively – are used to compute the size of the
syntactic feature label sort, F, per equation (2.12):

|F| = |F𝑆 |+ |F𝐿|+ 1 = 2 + 3 + 1 = 6 (2.138)

(Note that there are 2 distinct selectional feature labels, 2 distinct licensing feature labels,
and 1 null syntactic feature, ∅F.) The set of phonological forms that appears in the lexicon
is used to construct the sort of phonological forms (i.e. Σ); in the case of our running
example, there are a total of 23 distinct overt phonological forms, one covert phonological

§2.4 Page 84/200

𝐼𝑖 Interface Conditions

𝐼1 PF: what has the man/N eaten/V?
LF: 𝜃eaten[𝑠 : the man, 𝑜 : what], 𝒜has[𝑠 : the man]

𝐼2 PF: was she/N given/V money/N?
LF: 𝜃given[𝑜 : money, 𝑖 : she], 𝒜was[𝑠 : she]

𝐼3 PF: who will tell/V her/N that he/N has resigned/V?
LF: 𝜃tell[𝑠 : who, 𝑜 : that he has resigned, 𝑖 : her], 𝒜will[𝑠 : who], 𝜃resigned[𝑠 : he],

𝒜has[𝑠 : he]
𝐼4 PF: she/N has known/V everyone/N who was loved/V.

LF: 𝜃known[𝑠 : she, 𝑜 : everyone who was loved], 𝒜has[𝑠 : she],
𝜃loved[𝑜 : everyone], 𝒜was[𝑠 : everyone]

𝐼5 PF: she/N knows/V that john/N has given/V money/N.
LF: 𝜃knows[𝑠 : she, 𝑜 : that john has given money], 𝜃given[𝑠 : john, 𝑜 : money],

𝒜has[𝑠 : john]
𝐼6 PF: john/N has given/V money/N that was stolen/V.

LF: 𝜃given[𝑠 : john, 𝑜 : money that was stolen], 𝒜has[𝑠 : john], 𝜃stolen[𝑜 : money],
𝒜was[𝑠 : money]

𝐼7 PF: john/N fears/V everyone/N who knows/V her/N.
LF: 𝜃fears[𝑠 : john, 𝑜 : everyone who knows her], 𝜃knows[𝑠 : everyone, 𝑜 : her]

𝐼8 PF: john/N fears/V that money/N was stolen/V.
LF: 𝜃fears[𝑠 : john, 𝑜 : that money was stolen], 𝜃stolen[𝑜 : money], 𝒜was[𝑠 : money]

Table 2.4: Parser Input: Corpus of Paired (LF and PF) Interface Conditions. PF Interface
conditions provide surface order data, and some phonological forms are associated with a
specified category (indicated by a slash followed by the category). LF Interface Conditions
include relations for agreement (denoted by 𝒜) and predicate-argument structure (denoted
by 𝜃, with the predicate indicated in the suffix); the LF interface conditions are entirely
hierarchical/structural in the constraints they impose – i.e. the values filling the slots consist
of sets of tokens, not sequences of tokens. A predicate is associated with one or more
arguments: an external argument is preceded by “s:”, an internal argument serving as a
direct object is preceded by “o:”, and an internal argument serving as an indirect object
is preceded by an “i:”. Entries with an embedded clause (i.e. 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, and 𝐼8)
have LF interface conditions stipulated for each clause. The type of the sentence – i.e.
either declarative or interrogative – is also marked in each sentence, indicated by the end-
of-sentence punctuation.

§2.4 Page 85/200

Parsing Procedure

1. The input supplied to the procedure consists of:

(a) a lexicon, 𝑙;
(b) a pair of (LF and PF) interface conditions, 𝐼, that will be parsed;
(c) a valuation of model parameters;
(d) an empty SMT-solver stack, 𝑆, with each entry on the stack an SMT-formula. (Note

that to “check the model” is to use the SMT-solver to check the conjunction of the terms
on the solver’s stack.)

2. Construct the SMT-model of the parser.

(a) Construct the model of the lexicon and constrain it with the supplied (input) lexicon:
i. initialize a lexicon model (i.e. an SMT formula), 𝑚𝑙, from the supplied model

parameters;
ii. push 𝑚𝑙 onto the stack;
iii. construct an SMT-formula, 𝑐𝑙, that restricts interpretations of the lexicon model to

align with the supplied (input) lexicon;
iv. push 𝑐𝑙 onto the stack.

(b) Construct the model of the derivation and constrain it so as to satisfy the interface
conditions:

i. initialize a derivation model (i.e. an SMT formula), 𝑚𝑑, from model parameters
and interface conditions 𝐼;

ii. push 𝑚𝑑 onto the stack;
iii. translate the interface conditions 𝐼 into an SMT–formula, 𝑚𝐼 , that constrains the

derivation model 𝑚𝑑;
iv. push 𝑚𝐼 onto the stack;

(c) Connect the model of the derivation to the model of the lexicon:
i. construct an SMT-formula, 𝑚𝑏, that connects, via shared symbols, the derivation

model, 𝑚𝑑, to the lexicon model, 𝑚𝑙;
ii. push 𝑚𝑏 onto the stack;

3. Use an SMT-solver to check the SMT-model of the parser for a satisfiable interpretation; if a
satisfiable interpretation of the model is found, recover a derivation from the interpretation.

(a) (optionally) optimize the model of the parser with respect to economy considerations by
adding axioms (2.144) and (2.145) onto the stack;

(b) check the model of the parser using the SMT-solver, and if the model is found to be
satisfiable, recover the identified (satisfiable) model interpretation;

(c) if a satisfiable interpretation of the model (i.e. a solution to the model) is identified:
i. recover the interpretation from the solver;
ii. (automatically) recover a derivation from the interpretation.

4. The output of the procedure is:

(a) if a satisfiable interpretation of the model was found, the output is a derivation, 𝑑, that
can be yielded by the supplied (input) lexicon and that satisfies the specified interface
conditions;

(b) if no satisfiable interpretation of the model was found, then the supplied (input) lexicon
cannot yield a derivation that both comports with the supplied model parameters and
that also satisfies the interface conditions.

§2.4 Page 86/200

form (𝜖), and one “null” phonological form (∅Σ) so that:

|Σ| = 23 + 1 + 1 = 25 (2.139)

Having determined the size of these three sorts, the uninterpreted functions and axioms that
make up the lexicon model (as defined in §2.3.1) can be instantiated; the procedure then
pushes the SMT-formula that makes up the lexicon model onto the SMT-solver’s stack (of
formulas).119

In the second stage, the procedure translates each lexical item listed in the lexicon into
an SMT-formula that constrains the lexicon model – i.e. the conjunction of these formulae
is appended to the lexicon model so that the specified lexicon is hte only lexicon that may
be recovered from a satisfiable interpretation of the model. Intuitively, the lexicon model is
being “hard-coded” with the values from the specified lexicon – i.e. the procedure is, in effect,
stipulating what the interpretation of the model must be, and the solver’s only task (when
checking the model) is to ensure that the interpretation is consistent with the model axioms.
Hard-coding the interpretation of a lexicon node sequence (in the lexicon model) involves:
(i) valuing the feature for each node in the lexical node sequence, and (ii) connecting the
phonological forms to the lexical node sequence. Let us see how the interpretation of a
given a lexicon node sequence [𝐿𝑖, 𝐿𝑖+1, 𝐿𝑖+2, 𝐿𝑖+3] is constrained to match lexical entry
23 in Table 2.1 (i.e. who::=𝑥,+𝑝,∼𝑦) via the introduction of two constraints (i.e. SMT-
formulae). The first constraint (2.140) assigns both the feature label and the feature type
of each of the three syntactic features in the lexical entry to the three (successive) nodes in
the lexicon node sequence:

((𝜅(𝐿𝑖) = F𝑥) ∧ (𝜉(𝐿𝑖) = 𝜏=))

∧ ((𝜅(𝐿𝑖+1) = F𝑝) ∧ (𝜉(𝐿𝑖+1) = 𝜏+))

∧ ((𝜅(𝐿𝑖+2) = F𝑦) ∧ (𝜉(𝐿𝑖+2) = 𝜏∼))

(2.140)

The second constraint (2.141) associates the head of the lexicon node sequence (here 𝐿𝑖)
with and only with the member of the sort of phonological forms that corresponds to the
phonological form present in lexical entry (i.e. “who”):

{ΔΩ(𝐿𝑖,Σ𝑘) = (Σ𝑘 = Σ𝑤ℎ𝑜)| ∀Σ𝑘 ∈ Σ} (2.141)

The procedure then pushes the conjunction of these two SMT-formulae onto the SMT-
solver’s stack.

Constructing the Derivation Model

The parser then processes the supplied (input) lexicon and interface conditions, producing
an SMT-formula that models a derivation that satisfies the supplied interface conditions.
This happens in two stages.

In the first stage, a derivation model (as defined in §2.3.2) is instantiated from the
model-parameters, which are used to determine the size of the derivation node sort. Some
model-parameters are (automatically) derived from either the supplied interface conditions
(e.g. the number of overt lexical heads is the number of words in the tokenized sentence

119The Z3 SMT-solver maintains a stack of formulas that may be pushed to and popped from; at any point
the SMT-solver can check (evaluate) the conjunction of all of the terms then on the stack.

§2.4 Page 87/200

listed in the PF interface condition), the supplied lexicon (e.g. the maximum number of
syntactic features associated with a lexical entry); the other model parameters must be
supplied by the user - e.g.: the number of covert lexical heads; the maximum number of
instances of head movement; the maximum number of instances of phrasal movement; the
maximum length of a node-sequence (see Table 2.5).120 The SMT-formulae that make up
the derivation model are pushed onto the SMT-solver’s stack.

ID Model Parameter Description

(a) Max. Num. Empty Lex. Items Upper bound on the number of empty (i.e. unpro-
nounced) lexical heads that may participate in a deriva-
tion.

(b) Max. Num. Phrasal Movements Upper bound on the number of (phrasal) movements
(i.e. internal merge operations) that occur in a deriva-
tion.

(c) Max. Num. Head Movements Upper bound on the number of head movement opera-
tions that occur in a derivation.

Table 2.5: Model Parameters for the Parsing Procedure. These parameters are all finite and
serve to bound the model of the minimalist derivation. In the case of parsing the pairing of
LF and PF interface conditions 𝐼1 through 𝐼8 in Table 2.1, parameters (a), (b) and (c) have
values 6, 6 and 4 respectively.

In the second stage, each of the supplied interface conditions are translated into an
SMT-formula that constrains the derivation model (as detailed in §2.3); the conjunction of
these formulae is pushed onto the SMT-solver’s stack. Our running example (i.e. entry 𝐼1
in Table 2.4) illustrates the four types of LF interface conditions that our model currently
supports, and how they are expressed as SMT-formulae that constrain the model:

• Predicate-Argument Structure. Each predicate-argument relation is trans-
lated into a local relation established by merging two constituents in the derivation121,
one of which is a projection of the lexical head serving as the predicate, and the other
of which is the earliest node in the derivation (with respect to a bottom-up ordering
of the nodes in the associated multi-dominance tree) that contains the set of specified
overt lexical heads that make up the argument phrase122 – e.g. in the derivation of
𝐼1 in Fig. 2-2, the argument “what” is an internal argument of the predicate “eaten”
because the lexical head for “what” (𝐷1) establishes a local relation (via EM) with the
lexical head for “eaten” (𝐷5);

• Agreement. An agreement relation is likewise translated into a locality condition
that must hold between two constituents – e.g. in the derivation for 𝐼1 as presented in

120Alternatively, some of the model parameters supplied by the user can instead be determined via heuristics
– e.g. the maximum number of instances of head-movement and phrasal movement operations permissible
is bounded below by the number of predicates stipulated in the LF interface conditions (see §3.3 for further
discussion).

121This is in accordance with Hale and Keyser’s theory of argument structure (Hale and Keyser, 1993; Hale
and Keyser, 2002), which requires that the lexical heads associated with a predicate and its arguments must
enter into particular structural configurations within a derivation.

122This containment may either be with respect to the derivation tree via 𝑑 (in the case that the argument
phrase has not undergone movement) or with respect to the derived tree via 𝑑⋆ (in the case that the argument
phrase has undergone movement).

§2.4 Page 88/200

Fig. 2-2, the phrase {"the", "man"} establishes a locality relation with “has” because
the constituent 𝐷21, which contains via 𝑑⋆ (i.e. with respect to the derived tree, as
the phrase “the man” undergoes movement) the lexical heads 𝐷3 and 𝐷4, merges with
𝐷13, which is a projection of the lexical head 𝐷2;

• Sentence Type. The end-of-sentence punctuation that marks each sentence as
declarative or interrogative is translated into a constraint that stipulates which one of
the two pre-specified categories, 𝐶𝐷𝑒𝑐𝑙. or 𝐶𝑄𝑢𝑒𝑠., is associated with the head of the
entire derivation (i.e. the lexical head that projects to the root node) – e.g. since 𝐼1 is
an interrogative, the derivation for 𝐼1 in Fig. 2-2 has the lexical head 𝐷6 marked with
the category 𝐶𝑄𝑢𝑒𝑠.;

• Categorical Labels. The two derivation nodes that are the heads of the overt
lexical entries associated with the phonological forms “man” and “eaten” (i.e. 𝐷4 and
𝐷5 in Fig. 2-2) must map (via 𝛽N) to the categorical variables 𝑁 and 𝑉 respectively.123

Turning to the PF interface, the procedure associates the 𝑖𝑡ℎ overt lexical (derivation) node
with the 𝑖𝑡ℎ word in the surface form, 𝑤𝑖:⋀︁

𝑥𝑖∈LN
+

(ΔN(𝑥𝑖) = Σ𝑤𝑖) (2.142)

Note that we do not have to provide conditions for either of the interfaces, and this is
appropriate in several contexts: (i) when parsing, it is likely the case that LF interface
conditions will not be provided124; (ii) when generating expressions from logical forms, the
LF interface conditions may be provided and the PF interface conditions are not.

Connecting the Derivation Model to the Lexicon Model

Finally, the model of the derivation is connected to the SMT-formula associated with the
lexicon by adding the axioms associated with the function 𝜇 as outlined in §2.3.4; if the
model were to be checked prior to this step, it is a possibility that the recovered derivation
(from a satisfiable interpretations of the model) satisfies the interface conditions and yet is
not yielded by the supplied lexicon. This concludes the construction of the model of the
parser.

2.4.2 Checking the Model and Recovering a Minimalist Derivation

The model of the minimalist parser constructed in Step 2 of the procedure constitutes a
(decidable) decision problem encoding the problem of whether there exists a derivation
yielded by the lexicon that satisfies the interface conditions. The parsing procedure uses
the SMT-solver to check the model – i.e. evaluate (using the solver’s decision procedure)
whether the associated decision problem is satisfiable – and determine whether the model
has a satisfiable interpretation. If the model of the minimalist parser has a satisfiable
interpretation, then the SMT-solver identifies what it is, and the output of the parser is
obtained by automatically recovering a minimalist derivation from the identified satisfiable

123Although categorical features are marked under PF interface conditions in Table 2.4 for convenience of
exposition, this study considers them to be LF interface conditions; this also holds for the end-of-sentence
punctuation that is used to denote whether the sentence is a declarative or an interrogative expression.

124Recovering the LF interface conditions is likely to motivate parsing the expression to begin with.

§2.4 Page 89/200

interpretation of the model ; the recovered (minimalist) derivation can be yielded by the
supplied (input) lexicon and also satisfies the interface conditions specified in the input.
Turning to our running example of parsing entry 𝐼1, see Table 2.6 and Table ?? for a
summary of the satisfiable interpretation (of the model) yielded by the SMT-solver, and see
Fig. 2-2 for the minimalist derivation (automatically) recovered from this interpretation.

The procedure recovers the derivation from the interpretation of the model by executing
a depth-first traversal over the associated multi-dominance tree that starts at the root node,
and reconstructs the derivation in a bottom-up manner, taking advantage of the fact that
within the MG formalism, internal merge operates deterministically due to the Shortest
Movement Condition, and thus it is the instances of external merge that are of interest. At
each step in the traversal, the following (recursive) visitor procedure is called on the visited
node:

• if the visited node 𝑥 ∈ N is a lexical node (i.e. leaf node in the derivation), then the
procedure returns the lexical item associated with this node; this lexical item may be
recovered from the lexicon node 𝜇(𝑥) as detailed in §2.3.1.

• if the visited node 𝑥 ∈ N is not a lexical node, then it must be a product of merge, and
has two distinct children nodes, 𝑐1, 𝑐2 ∈ N. Without loss of generality, let us say 𝑐1
projects and 𝑐2 does not; then 𝑥 is a product of internal merge if there is some node
𝑦 ∈ N such that 𝒫(𝑦) = 𝑐2 (i.e. indicating that 𝑐2 is raised from position dominated
by 𝑐1), and is a product of external merge otherwise.

– if 𝑥 is the product of external merge, then the procedure returns {𝑣𝑖𝑠𝑖𝑡(𝑐1), 𝑣𝑖𝑠𝑖𝑡(𝑐2)},
first visiting 𝑐2 and then visiting 𝑐1.

– if 𝑥 is the product of internal merge, then the procedure returns 𝑣𝑖𝑠𝑖𝑡(𝑐1).

Turning again to our running example, the recovery of a minimalist derivation from the
model interpretation listed in Table 2.6 is illustrated by tracing the following sequence of
derivation nodes in the derivation presented in Figure 2-2:[︀

𝐷𝐼
22, 𝐷

𝐸
9 , 𝐷

𝐼
14, 𝐷

𝐸
13, 𝐷

𝐸
18, 𝐷

𝐸
15, 𝐷

𝐿
4 , 𝐷

𝐿
3 , 𝐷

𝐸
17, 𝐷

𝐸
12, 𝐷

𝐿
1 , 𝐷

𝐿
5 , 𝐷

𝐿
7 , 𝐷

𝐿
2 , 𝐷

𝐿
6

]︀
(2.143)

A superscript of 𝐿 indicates that the node is a lexical node, whereas a superscript of 𝐸 or
𝐼 indicates that the node is the product of external merge or internal merge respectively.

In the case that there are multiple distinct model interpretations that are satisfiable, since
the model is finite, the set of distinct recoverable derivations is finite and can therefore be
enumerated as follows: after checking the model and recovering a derivation, push onto the
solver’s stack a constraint that prohibits a solution that yields the derivation just recovered;
repeat this process until the solver reports back unsatisfiable.

Optimization and Principles of Economy

The model of the parser may be extended by appending additional formulas to the model,
thereby further constraining the space of satisfiable model interpretations and thus enabling
the use of the model to search for derivations that have specific additional properties. For
example, the model may be extended to identify derivations that are optimal with respect
to a specified metric, such as the number of EM or IM operations, by adding (to the model)

§2.4 Page 90/200

Node Label 𝛽N ℎ 𝑝 𝒫 ℋ 𝜇 (𝜓 ∘ 𝜇) ΔN

𝐷0 𝐷0 𝐷0 𝐷0 𝐷0 𝐿5 𝐿5

𝐷1 𝑤ℎ𝑎𝑡/𝐷 :: ∼𝑦,−𝑝 D 𝐷1 𝐷12 𝐷19 𝐷0 𝐿37 𝐿3 what
𝐷2 ℎ𝑎𝑠/𝑇 ::= 𝑥,+𝑞,∼𝑥 T 𝐷2 𝐷14 𝐷0 𝐷6 𝐿32 𝐿36 has
𝐷3 𝑡ℎ𝑒/𝐷 ::= 𝑦,∼𝑦,−𝑞 D 𝐷3 𝐷15 𝐷0 𝐷0 𝐿9 𝐿14 the
𝐷4 𝑚𝑎𝑛/𝑁 :: ∼𝑦 N 𝐷4 𝐷15 𝐷0 𝐷0 𝐿8 𝐿5 man
𝐷5 𝑒𝑎𝑡𝑒𝑛/𝑉 ::= 𝑦,∼𝑥 V 𝐷5 𝐷12 𝐷0 𝐷7 𝐿6 𝐿33 eaten
𝐷6 𝜖/𝐶𝑞𝑢𝑒𝑠. ::<= 𝑥,+𝑝, 𝐶 𝐶𝑞𝑢𝑒𝑠. 𝐷6 𝐷9 𝐷0 𝐷0 𝐿23 𝐿7 𝜖
𝐷7 𝜖/𝑣 ::<= 𝑥,= 𝑦,∼𝑥 v 𝐷7 𝐷17 𝐷0 𝐷0 𝐿17 𝐿4 𝜖
𝐷8 𝐷0 𝐷0 𝐷0 𝐷0 𝐿5 𝐿5

𝐷9 𝜖/𝐶𝑞𝑢𝑒𝑠. :<= 𝑥 ·+𝑝, 𝐶 𝐶𝑞𝑢𝑒𝑠. 𝐷6 𝐷22 𝐷0 𝐷0 𝐿7 𝐿27

𝐷10 𝐷0 𝐷0 𝐷0 𝐷0 𝐿5 𝐿5

𝐷11 𝐷0 𝐷0 𝐷0 𝐷0 𝐿5 𝐿5

𝐷12 𝑒𝑎𝑡𝑒𝑛/𝑉 := 𝑦 · ∼𝑥 V 𝐷5 𝐷17 𝐷0 𝐷0 𝐿33 𝐿5

𝐷13 ℎ𝑎𝑠/𝑇 := 𝑥,+𝑞 · ∼𝑥 T 𝐷2 𝐷9 𝐷0 𝐷0 𝐿24 𝐿5

𝐷14 ℎ𝑎𝑠/𝑇 := 𝑥 ·+𝑞,∼𝑥 T 𝐷2 𝐷13 𝐷0 𝐷0 𝐿36 𝐿24

𝐷15 𝑡ℎ𝑒/𝐷 := 𝑦 · ∼𝑦,−𝑞 D 𝐷3 𝐷18 𝐷21 𝐷0 𝐿14 𝐿0

𝐷16 𝐷0 𝐷0 𝐷0 𝐷0 𝐿5 𝐿5

𝐷17 𝜖/𝑣 :<= 𝑥· = 𝑦,∼𝑥 v 𝐷7 𝐷18 𝐷0 𝐷0 𝐿4 𝐿35

𝐷18 𝜖/𝑣 :<= 𝑥,= 𝑦 · ∼𝑥 v 𝐷7 𝐷14 𝐷0 𝐷0 𝐿35 𝐿5

𝐷19 𝑤ℎ𝑎𝑡/𝐷 : ∼𝑦 · −𝑝 D 𝐷1 𝐷22 𝐷0 𝐷0 𝐿3 𝐿5

𝐷20 𝐷0 𝐷0 𝐷0 𝐷0 𝐿5 𝐿5

𝐷21 𝑡ℎ𝑒/𝐷 := 𝑦,∼𝑦 · −𝑞 D 𝐷3 𝐷13 𝐷0 𝐷0 𝐿0 𝐿5

𝐷22 𝜖/𝐶𝑞𝑢𝑒𝑠. :<= 𝑥,+𝑝 · 𝐶 𝐶𝑞𝑢𝑒𝑠. 𝐷6 𝐷0 𝐷0 𝐷0 𝐿27 𝐿5

Table 2.6: Model interpretation for the derivation of the sentence: “What has the man
eaten?” (see 𝐼1 in Table 2.4). Values are supplied for several of the uninterpreted functions
(e.g. ℎ(𝐷15) = 𝐷3 and 𝑝(𝐷9) = 𝐷22) that make up: (i) the derivation formula (i.e. ℎ
(head), 𝑝 (parent), 𝒫 (phrasal movement), ℋ (head movement), ΔN and 𝛽N), and (ii) the
lexicon formula (i.e. 𝜓 (successor) and 𝜇 (bus)). Each node 𝐷𝑖 is a member of the finite
sort N, and the label for each node was recovered from the model interpretation. Not all of
the members of the sort N are used in the derivation; the head and parent of a node that
is not used in the derivation, e.g. {𝐷0, 𝐷8, 𝐷11, 𝐷16, 𝐷20}, is (the bottom node) 𝐷0, a node
reserved for uninterpreted functions to map nodes that don’t play a role in the derivation.

pseudo-boolean equations that encode these metrics125, e.g.:

𝑘𝐸𝑀 ≥
∑︁

𝑥𝑖,𝑥𝑗∈N,𝑖<𝑗

(1, 𝑑(ℳ(𝑥𝑖, 𝑥𝑗), 𝑥𝑖) ∧ 𝑑(ℳ(𝑥𝑖, 𝑥𝑗), 𝑥𝑗)) (2.144)

𝑘𝐼𝑀 ≥
∑︁

𝑥𝑖,𝑥𝑗∈N,𝑖<𝑗

(1, (𝒫(𝑥𝑖) = 𝑥𝑗) ∧ 𝑑(𝑝(𝑥𝑗), 𝑥𝑖)) (2.145)

Axioms (2.144) and (2.145) are true if and only if the total number of EM and IM operations
in the derivation is less than or equal to the constants 𝑘𝐸𝑀 and 𝑘𝐼𝑀 respectively; this is how
the number of EM and IM operations in each derivation (listed in Table ??) is computed.
Given upper bounds on the number of EM and IM operations in a derivation (i.e. at most
|N|), lower bounds on the number of EM and IM operations can be identified via binary

125These SMT formulae utilize the background theory of integers that is built into the Z3 SMT-solver.

§2.4 Page 91/200

search126; in this way, the solver can search for model interpretations that are optimal with
respect to a specified metric, enabling investigations pertaining to Principles of Economy
(Collins, 2001). This is further considered in §3.1 of the next chapter.

Parsing Expressions with Out-of-Vocabulary (Phonological) Forms

The model may be applied to more general scenarios then described thus far by removing
some of the model axioms. For example, the model may be extended to parse an expression
with a phonological form that is Out-of-Vocabulary (OOV) (i.e. the form not is not listed
in the lexicon). This is accomplished by first adding the new OOV form to the PF sort
(Σ) and then removing any axiom that restricts which lexical entry (feature sequence) in
the lexicon the OOV phonological form is connected to, so that the OOV form can freely
associate with any lexical feature sequence in the lexicon model.

In the case that none of the lexical feature sequences in the lexicon suffice, the addition
of a lexical entry with a new lexical feature sequence (to the lexicon) may be sufficient
to parse the supplied (input) interface conditions. This (missing) lexical feature sequence
may be inferred by modifying the construction of the lexicon model (in Step 3a) such that
an additional lexical entries is instantiated but not constrained to take on any particular
interpretation (i.e. a blank-slate entry); then the solver will identify a satisfiable solution to
this (modified) model from which may be recovered a derivation derived (in part) from an
entirely new lexical item associated with the OOV. This process can be applied repeatedly
to incrementally grow the lexicon and thereby increase the coverage of a given minimalist
grammar; this is explored in depth in §3.3 of the next chapter.

2.4.3 Evaluating the Parser

The parser was evaluated as follows. First, we assembled the corpus of pairings of LF and
PF interface conditions listed in Table 2.4. This corpus, intended to span a diverse range of
sentence types, includes:

• interrogatives without any embedded sentences – e.g. see 𝐼1 for a Wh-question, and
see 𝐼2 for a yes/no-question;

• expressions with a covert tense marker in the matrix clause (e.g. 𝐼5), the embedded
clause (e.g. 𝐼8), or both the matrix and embedded clause (as in 𝐼7);

• Wh-question with an embedded complementizer phrase (𝐼3);

• declaratives with an embedded relative clause127 in which the antecedent is either the
subject of the embedded predicate (as in 𝐼6 or 𝐼4) or the object of the embedded
predicate (as in 𝐼7);

• expressions with verbs of varying valency – e.g.: 𝐼3 includes the intransitive verb
“resigned”, 𝐼1 includes the transitive verb “eaten”, and 𝐼2 includes the ditransitive form
of verb “given”;

126I.e. determining whether a particular value for the number of EM or IM operations is licit can be
determined by pushing the appropriate pseudo-boolean constraint (for that value) onto the solver’s stack,
checking the model for satisfiability, and then popping the stack; once a lower bound is identified, a derivation
respecting this bound may be automatically recovered (as outlined in §??) by first pushing the relevant
pseudo-boolean constraint onto the solver stack before checking the model

127These derivations accord with the wh-movement analysis of relative clauses – see §3.3.2 for further
discussion.

§2.4 Page 92/200

𝐷
0

𝐷
1

𝐷
2

𝐷
3

𝐷
4

𝐷
5

𝐷
6

𝐷
7

𝐷
8

𝐷
9

𝐷
1
0

𝐷
1
1

𝐷
1
2

𝐷
1
3

𝐷
1
4

𝐷
1
5

𝐷
1
6

𝐷
1
7

𝐷
1
8

𝐷
1
9

𝐷
2
0

𝐷
2
1

𝐷
2
2

𝐷0 ·
𝐷1 ·
𝐷2 ·
𝐷3 ·
𝐷4 ·
𝐷5 ·
𝐷6 ·
𝐷7 ·
𝐷8 ·
𝐷9 · ○○○⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · · · · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · · ⊕⊕⊕ ·
𝐷10 ·
𝐷11 ·
𝐷12 · ○○○ · · · ⊕⊕⊕ · · · · · · · · · · · · · · · · ·
𝐷13 · ○○○⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕ · · ⊕⊕⊕ ·
𝐷14 · ○○○⊕⊕⊕○○○○○○⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · ○○○ · ⊕⊕⊕⊕⊕⊕ · · · ·
𝐷15 · · · ⊕⊕⊕⊕⊕⊕ · · · · · · · · · · · · · · · · · ·
𝐷16 ·
𝐷17 · ○○○ · · · ⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · · · · · · · · ·
𝐷18 · ○○○ · ○○○○○○⊕⊕⊕ · ⊕⊕⊕ · · · · ⊕⊕⊕ · · ○○○ · ⊕⊕⊕ · · · · ·
𝐷19 · +++ ·
𝐷20 ·
𝐷21 · · · ++++++ · · · · · · · · · · +++ · · · · · · ·
𝐷22 · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ · · ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕⊕⊕⊕⊕⊕⊕ · ⊕⊕⊕ ·

Table 2.7: Model interpretation of the binary uninterpreted functions 𝑑 and 𝑑⋆ for the
derivation of the sentence: “What has the man eaten?” (see 𝐼1 in Table 2.4). An entry in
the table for row 𝐷𝑖 and column 𝐷𝑗 may be interpreted as follows: ○○○ indicates that node
𝐷𝑖 dominates 𝐷𝑗 with respect to the derivation tree but not the derived tree, +++ indicates
that node 𝐷𝑖 dominates 𝐷𝑗 with respect to the derived tree but not the derivation tree, ⊕⊕⊕
indicates that 𝐷𝑖 dominates 𝐷𝑗 with respect to both the derivation tree and the derived
tree, and · indicates that 𝐷𝑖 does not dominate 𝐷𝑗 (with respect to either the derivation
tree or the derived tree). E.g. 𝐷21 dominates 𝐷15 with respect to the derived tree but not
the derivation tree: notice in Table 2.6 that 𝒫(𝐷15) = 𝐷21, but there is no 𝑘 ∈ [0, 22] such
that 𝑝(𝐷𝑘) = 𝐷21. In contrast, 𝐷18 dominates 𝐷17 with respect to the derivation tree but
not the derived tree: notice in Table 2.6 that 𝑝(𝐷17) = 𝐷18 but there is no 𝑘 ∈ [0, 22] such
that 𝒫(𝐷𝑘) = 𝐷18. The root node of the derivation, 𝐷22, dominates all other nodes in
the derivation with respect to both the derivation tree and the derived tree. Finally, rows
𝐷1, 𝐷2, . . . , 𝐷8, being leaf nodes in the derivation, do not dominate any other nodes in the
derivation (as indicated by those rows being entirely filled with dots).

• declaratives with embedded complementizer phrases in which the embedded clause is
either in the active voice (as in 𝐼5) or in the passive voice (as in 𝐼8).

Next, we assembled a minimalist lexicon (listed in Table 2.1) that can, for each entry in
the corpus, generate a derivation prescribed by contemporary theories of minimalist syntax.
Then, we parsed each entry in the corpus using the assembled lexicon and list the derivation
recovered by the parser for each entry in Table ??); for each entry, the derivation recovered
from the parser matched the prescribed derivation. See Fig. 2-2, Fig. 2-15, Fig. 2-16, Fig. 2-

§2.4 Page 93/200

17, Fig. 2-18, Fig. 2-19, Fig. 2-20, and Fig. 2-21 for illustrations of the derivations recovered
from parsing interface conditions 𝐼1 through 𝐼8 respectively; see Table 2.8 for the statistics of
each of these derivations. The derivations associated with these sentences (as prescribed by
contemporary theories of minimalist syntax) involve a plethora of syntactic phenomenon; the
running example of parsing 𝐼1 in Table 2.4 yielded a derivation (see Fig. 2-2) that illustrates
several of these phenomenon – e.g.:

• There are two instances of syntactic movement of maximal projections: wh-movement
(i.e. an instance of A’-movement) from 𝐷1 to 𝐷19, and subject-raising (i.e. an instance
of A-movement) of a phrase 𝐷15 to 𝐷21; these two instances of syntactic movement
are nested and accord with the minimal link condition.

• there are two instances of syntactic movement of minimal projections (i.e. head-
movement): aux-raising via T-to-C head-movement of 𝐷2 to 𝐷6, and V-to-v head-
movement of 𝐷5 to 𝐷7.

• There are two empty lexical items involved in the derivation, with heads 𝐷7 and 𝐷6.

• A double-VP-shell structure for the transitive verb “eaten” is formed by 𝐷5 and 𝐷7.

Finally, we carried out two variations of this evaluation: firstly, we modified the model of
the parser by removing model axioms pertaining to enforcing LF interface conditions, and
were able to recover the same derivations as before; secondly, we modified the model of the
parser by removing model axioms pertaining to the enforcement of PF interface conditions
(i.e. enforcing the ordering of surface forms), and again were able to recover the same
derivations as before. Although the result of these two variations of the evaluation process
are not surprising, as removing model axioms only serves to increase the space of satisfiable
interpretations of the model, they serve to illustrate that the parser can be used without the
interface conditions being fully specified, and in particular that the parser can be applied
to process only a specification of LF interface conditions, which may be of utility in natural
language generation.

§2.4 Page 94/200

𝐼 𝑖
#

W
or

ds
#

E
m

pt
y

Le
x.

It
em

s
#

E
M

#
IM

𝛽
N

𝑑
ℎ

ℋ
ℳ

𝒫
𝑑
⋆

𝑝
Δ

N
ℒ

𝐼 1
5

2
6

2
31

08
56

97
6

21
33

16
35

19
2

14
80

8
41

92
74

11
6

61
24

2
58

34
34

1
𝐼 2

4
2

5
1

23
22

37
07

4
13

40
77

21
88

0
10

17
2

31
04

47
41

6
39

26
8

50
21

54
6

𝐼 3
8

3
9

3
15

17
0

60
51

60
25

73
45

2
43

91
30

12
33

80
21

36
4

83
94

52
69

10
71

11
8

41
54

90
𝐼 4

7
3

9
3

13
12

3
50

16
22

21
19

00
0

36
10

00
10

37
98

18
80

0
69

33
86

57
09

94
11

0
34

20
35

𝐼 5
7

4
10

2
13

30
4

50
17

16
21

19
08

4
36

10
00

10
39

30
18

80
0

69
34

80
57

09
91

11
0

34
20

35
𝐼 6

7
3

8
3

99
71

33
14

74
13

77
21

6
23

36
72

71
19

2
14

16
4

45
42

50
37

43
10

98
22

21
95

𝐼 7
6

5
10

3
11

67
1

41
07

52
17

21
62

6
29

27
36

86
59

6
16

40
0

56
54

70
46

57
29

10
2

27
78

32
𝐼 8

6
4

9
2

11
51

1
41

07
10

17
21

58
1

29
27

36
86

48
0

16
40

0
56

54
28

46
57

38
10

2
27

78
32

T
ab

le
2.

8:
St

at
is

ti
cs

fo
r

th
e

de
ri

va
ti

on
yi

el
de

d
by

th
e

pa
rs

er
w

he
n

pr
oc

es
si

ng
ea

ch
of

th
e

pa
ir

in
gs

of
LF

an
d

P
F

in
te

rf
ac

e
co

nd
it

io
ns

lis
te

d
in

T
ab

le
2.

4
us

in
g

th
e

le
xi

co
n

lis
te

d
in

T
ab

le
2.

1.
T

he
st

at
is

ti
cs

fo
r

ea
ch

de
ri

va
ti

on
in

cl
ud

es
:

th
e

nu
m

be
r

of
w

or
ds

in
ea

ch
pa

rs
ed

se
nt

en
ce

(i
.e

.
ov

er
t

le
xi

ca
lh

ea
ds

pa
rt

ic
ip

at
in

g
in

th
e

de
ri

va
ti

on
);

th
e

nu
m

be
r

of
em

pt
y

le
xi

ca
li

te
m

s
pa

rt
ic

ip
at

in
g

in
th

e
de

ri
va

ti
on

;t
he

nu
m

be
r

of
in

st
an

ce
s

of
ex

te
rn

al
an

d
in

te
rn

al
m

er
ge

re
sp

ec
ti

ve
ly

;
su

pp
lie

d;
th

e
nu

m
be

r
of

in
st

an
ce

s
of

va
ri

ou
s

un
in

te
rp

re
te

d
fu

nc
ti

on
s

ap
pe

ar
in

g
in

th
e

SM
T

-m
od

el
of

th
e

de
ri

va
ti

on
th

at
w

as
co

ns
tr

uc
te

d
in

th
e

pr
oc

es
s

of
pa

rs
in

g
th

e
de

ri
va

ti
on

.

§2.4 Page 95/200

2.5 Summary

This chapter presented an SMT-model of a parser for Minimalist Grammars that has been
implemented as a working computer program, and then demonstrated that this model may
be used in conjunction with an SMT-solver to parse a specification of LF and PF interface
conditions using a supplied MG lexicon. The model is (conceptually) simple in design and
serves to illustrate how an SMT-model of a (minimalist) parser can be constructed. Central
to the architecture of the model was the insight that the multi-dominance tree lifted from a
derivation tree can be viewed as an assembly of derivation node sequences, each of which is
mapped to a lexicon node sequence in the lexicon model, so that the trajectory a lexical item
takes through a derivation aligns with the syntactic feature sequence in the associated lexical
entry. Additionally, by observing that the multi-dominance tree is in effect a superposition of
both the associated derivation tree and the derived tree, we were able to separate the model
axioms that establish syntactic relations over the hierarchical structure of the derivation128

(i.e. the axioms in §2.3.2) from the axioms that establish the linear ordering prescribed by
the specified PF interface conditions over the lexical heads with overt phonological forms
in the derivation (i.e. the axioms listed §2.3.3); in this way, rules for linear-ordering, which
is performed by the Sensor-Motor (SM) system, were factored apart from the structure
dependent rules that build a derivation.

Notably, the model may be used to search for derivations that satisfy a partial specifica-
tion of the lexicon and interface conditions, thereby enabling alternative uses of the parser
such as:

(i) parsing a given pairing of LF and PF interface conditions with only a partially specified
lexicon, as in the case of a child encountering a new verb, and recovering the (novel)
lexical entry used by the derivation output by the parser;

(ii) parsing with a specification of a lexicon and LF interface conditions, but without any
PF interface conditions supplied, as in the case of a child externalizing a thought, and
recovering the PF interface conditions satisfied by the derivation output by the parser;

(iii) parsing with a specification lexicon and PF interface conditions, but without any LF
interface conditions supplied, as in the case of a child parsing speech, and recovering
the LF interface conditions satisfied by the derivation output by the parser.

In this way, the model enables the study of the extent to which the lexicon and the interface
conditions constrain the space of possible derivations that a parser must search through.
More generally, a declaratively specified, logical model of a grammar enables one to focus
on developing the logical axioms that make up the model and ensuring they are faithfully
grounded in universal principles of language, while delegating to the SMT-solver the task of
carrying out the appropriate deductions that constitute the model-checking process; impor-
tantly, in the case that a parse cannot be solved (i.e. there is no satisfiable interpretation
of the model), the SMT-solver can identify which model axioms are in conflict (e.g. by
identifying minimum unsatisfiable cores), so that we might gain insight in how the universal
principles of language underlying these axioms might contradict one another.

Finally, we note that there is much that can be done to improve and extend the model
(e.g. by adding or subtracting model axioms) so as to come into closer alignment with the

128All syntactic operations depend only on hierarchical structure; see (Radford, 2016, Pg. 155) for further
discussion of this point.

§2.5 Page 96/200

Figure 2-15: A derivation for “Was she given money?” that was output by the parser
when processing interface conditions 𝐼2 (listed in Table 2.4) using the lexicon presented in
Table 2.1. The depicted structure is a multi-dominance tree encodes both the derivation
tree (from which this multi-dominance tree was derived) as well as the derived tree. Lexical
nodes are indicated by rectangular nodes, while derived nodes are indicated by rounded
corners. Constituents with the same color have the same head. Dashed and dotted arrows
indicate phrasal and head movement respectively; a dashed border indicates that a node is
the target of phrasal-movement, with the lower (raised) structure implicitly copied to the
target position.

§2.5 Page 97/200

Figure 2-16: A derivation for “Who will tell her that he has resigned?” that was output
by the parser when processing interface conditions 𝐼3 (listed in Table 2.4) using the lexicon
presented in Table 2.1. The depicted structure is a multi-dominance tree encodes both the
derivation tree (from which this multi-dominance tree was derived) as well as the derived
tree. Lexical nodes are indicated by rectangular nodes, while derived nodes are indicated by
rounded corners. Constituents with the same color have the same head. Dashed and dotted
arrows indicate phrasal and head movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the lower (raised) structure implicitly copied
to the target position.

§2.5 Page 98/200

Figure 2-17: A derivation for “She has known everyone who was loved.” that was output
by the parser when processing interface conditions 𝐼4 (listed in Table 2.4) using the lexicon
presented in Table 2.1. The depicted structure is a multi-dominance tree encodes both the
derivation tree (from which this multi-dominance tree was derived) as well as the derived
tree. Lexical nodes are indicated by rectangular nodes, while derived nodes are indicated by
rounded corners. Constituents with the same color have the same head. Dashed and dotted
arrows indicate phrasal and head movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the lower (raised) structure implicitly copied
to the target position.

§2.5 Page 99/200

Figure 2-18: A derivation for “She knows that John has given money.” that was output by
the parser when processing interface conditions 𝐼5 (listed in Table 2.4) using the lexicon
presented in Table 2.1. The depicted structure is a multi-dominance tree encodes both the
derivation tree (from which this multi-dominance tree was derived) as well as the derived
tree. Lexical nodes are indicated by rectangular nodes, while derived nodes are indicated by
rounded corners. Constituents with the same color have the same head. Dashed and dotted
arrows indicate phrasal and head movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the lower (raised) structure implicitly copied
to the target position.

§2.5 Page 100/200

Figure 2-19: A derivation for “John has given money that was stolen.” that was output by
the parser when processing interface conditions 𝐼6 (listed in Table 2.4) using the lexicon
presented in Table 2.1. The depicted structure is a multi-dominance tree encodes both the
derivation tree (from which this multi-dominance tree was derived) as well as the derived
tree. Lexical nodes are indicated by rectangular nodes, while derived nodes are indicated by
rounded corners. Constituents with the same color have the same head. Dashed and dotted
arrows indicate phrasal and head movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the lower (raised) structure implicitly copied
to the target position.

§2.5 Page 101/200

Figure 2-20: A derivation for “John fears everyone who knows her.” that was output by
the parser when processing interface conditions 𝐼7 (listed in Table 2.4) using the lexicon
presented in Table 2.1. The depicted structure is a multi-dominance tree encodes both the
derivation tree (from which this multi-dominance tree was derived) as well as the derived
tree. Lexical nodes are indicated by rectangular nodes, while derived nodes are indicated by
rounded corners. Constituents with the same color have the same head. Dashed and dotted
arrows indicate phrasal and head movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the lower (raised) structure implicitly copied
to the target position.

§2.5 Page 102/200

Figure 2-21: A derivation for “John fears that money was stolen.” that was output by
the parser when processing interface conditions 𝐼8 (listed in Table 2.4) using the lexicon
presented in Table 2.1. The depicted structure is a multi-dominance tree encodes both the
derivation tree (from which this multi-dominance tree was derived) as well as the derived
tree. Lexical nodes are indicated by rectangular nodes, while derived nodes are indicated by
rounded corners. Constituents with the same color have the same head. Dashed and dotted
arrows indicate phrasal and head movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the lower (raised) structure implicitly copied
to the target position.

§2.5 Page 103/200

prescriptions of minimalist theories of syntax – e.g.: further developing the structure of a
lexical entry’s feature matrix; modeling advances in the theory pertaining to phase-based
derivations that are driven by probe-goal machinery (which replaces checking theory); incor-
porating parameters within the model axioms so as to model differences in the (apparent)
syntax of different languages; handling adjunctions within derivations. (See Ch. 4 for a dis-
cussion of such extensions.) Although the model only covers a small subset of syntax within
the framework of earlier minimalist theories of syntax, it suffices to serve as the central
component of the acquisition models that will be developed in the next chapter.

§2.5 Page 104/200

Chapter 3

Inferring Minimalist Grammars with
an SMT-Solver

This chapter introduces a system for a inferring minimalist grammar from a small finite
sequence of (sentence, skeletal “meaning”) pairings. The system works by constructing an
SMT-model of a language-acquisition device and using an SMT-solver to solve this model
and recover a minimalist lexicon that can yield, for each sentence in the input sequence, a
derivation that accords with the prescribed meaning for that sentence. This system extends
the model of the minimalist parser developed in the previous chapter, and has the form
of a computational model of a child language learner that accords with the criterion for a
language-acquisition device set out in (Chomsky, 1965). The computational experiments
detailed in this chapter show that this system is able to infer, from psychologically plausible
input data – i.e. a small finite sequence of simple sentences with at most one level of
embedding – a grammar that aligns with contemporary theories of minimalist syntax and
that can yield an infinite number of structures encoding novel pairings of sound and meaning.

The sections of this chapter are organized as follows. First, §3.1 presents an overview of
the system, outlining the problem that the system must solve, how the system solves this
problem by “Solving for Syntax”, how the system takes the form of a child language learner,
and conditions of psychological plausibility that the system adheres to. Then, the two acqui-
sition procedures that the system may employ – i.e. an instantaneous acquisition procedure
and an incremental acquisition procedure – are detailed in §3.2 and §3.3 respectively, along
with computational experiments demonstrating their capacity to infer grammars that align
with contemporary theories of minimalist syntax.

3.1 Overview

3.1.1 The System Acquires Knowledge of Language

To begin, let us specify the task that the system must solve in terms of inputs and outputs
– i.e. what knowledge of language the system acquires, and the input from which said
knowledge is acquired.

The system takes as input: (i) an initial lexicon (which may be empty) that stands in
for knowledge the child language learner may have already acquired; (ii) a finite sequence
of pairings of LF and PF interface conditions (i.e. (sentence, skeletal “meaning”) pairs) that

Page 105/200

stands in for the Primary Linguistic Data (PLD) a child language learner is exposed to.1

Each individual pairing of LF and PF interface conditions in the PLD has the same form as
the input to the model of the parser, as detailed in §2.

The system outputs a minimalist lexicon (i.e. a minimalist grammar) consisting of a set
of lexical entries, each of which is a distinct pairing of a phonological form with a feature
sequence (which includes an associated categorical feature), and that is a superset of the
supplied initial lexicon. The (output) lexicon is able to yield, for each pair of interface con-
ditions in the PLD, a derivation that satisfies the stipulated interface conditions – i.e. the
lexicon is compatible with the PLD and may be used by the model of the minimalist parser
to parse each entry in the PLD. Furthermore, the output lexicon is one that the system de-
termines to be optimal with respect to metrics grounded in economy considerations; namely,
the system outputs the smallest possible lexicon (i.e. the system minimizes the number of
distinct lexical feature sequences and the total number of syntactic features appearing over
all of the lexical feature sequences) that has the capacity to yield a set of derivations that
satisfy the interface conditions presented in the PLD and that collectively use as few merge
operations as possible. (See §3.2.1 for more details).

The computational experiments detailed in this chapter show that the system, when
initialized with an empty lexicon, is able to:

1. Process an input PLD (listed in Table 3.2 on Pg. 126 and in Table 3.11 on Pg. 173)
consisting of (deliberately chosen to be simple) active and passive voice sentences with
at most one degree of embedding that are composed of declaratives, yes/no-questions
and wh-questions, embedded sentences and (restrictive) relative clauses, and involve
intransitive, transitive and ditransitive verbs.

2. Infer, from this input PLD, an (output) lexicon (listed in Table 3.9 on Pg. 163) that:

(i) yields for each entry in the PLD a derivation that satisfies the interface condi-
tions encoded in that entry and that accords with the derivation prescribed by
contemporary theories of minimalist syntax (see §3.2.3 for examples);

(ii) generalizes beyond the supplied PLD to yield novel structures (i.e. derivations)
pairing sound and meaning – i.e. these structures were not yielded by the gram-
mar to satisfy any of the entries in the PLD;

(iii) limits the production of structures that may be considered “overgenerations” –
see §3.2.3 for details;

(iv) yields, for any 𝑛 > 0, (grammatical) expressions with 𝑛-levels of embedding.

Importantly, these computational experiments demonstrate that the system can acquire,
from a finite set of simple sentences with at most one level of embedding, a lexicon that has
the capacity to generate an infinite number of structures pairing meaning and sound; the
acquired lexicon, taken together with the model of the minimalist parser, approximates a
descriptively adequate theory of language. Thus, the system may be said to solve (in part)
the Projection Problem.2

1The Primary Linguistic Data (PLD) is: “The actual original finite language data to which children are
exposed, and from which they must map to knowledge of a specific language; a combination of sound and
extra-linguistic experience.” (Lust, 2006, Pg. 32)

2See (Baker, 1979) for a discussion of the projection problem.

§3.1 Page 106/200

3.1.2 The System Solves for Syntax

The system outlined in this chapter is a grammar induction scheme that derives a system of
(quantifier-free first order logic) equations from the input – i.e. a PLD and an initial lexicon
– and then solves this system of equations to recover the output – i.e. a lexicon that is
compatible with the PLD and that is a superset of the initial lexicon. Let us now examine
a sketch of how the system does this.

First, let us review how the model of the parser (developed in Ch. ??) operated at a
conceptual level, such that it could be thought of as “parsing via equation solving.” The
parser took as input a lexicon and a pairing of LF and PF interface conditions. The in-
put lexicon was used to instantiate a lexicon model (i.e. an SMT-formula) and “hardcode”
its interpretation. Next, a derivation model (also an SMT-formula) was constructed, with
bounds on the size of the model derived by inspecting the interface conditions; this deriva-
tion model was then “connected” to the lexicon model by way of an uninterpreted function
mapping members of the derivation node sort to members of the lexicon node sort, and
axioms that constrained this mapping. The interface conditions were then (automatically)
translated into additional axioms that served to constrain interpretations of the derivation
model. Finally, an SMT-solver was used to “solve” this system of equations (i.e. a con-
junction of SMT-formulae) and the output of the parser – i.e. the derivation yielded by
the input lexicon to satisfy the supplied interface conditions – was automatically recovered
from the interpretation of the derivation model. To summarize, the lexicon and interface
conditions were known quantities, and the derivation was an unknown quantity that was
solved for, so that the approach may be viewed as a modern adaptation of the “parsing
as deduction” framework (Pereira and Warren, 1983), with an axiomatization of minimalist
grammars (MGs) in place of an axiomatization of context free grammars (CFGs), pairings of
LF and PF interface conditions replacing strings, and an SMT-solver used instead of Prolog.

The system outlined in this chapter, which is in effect a scheme for grammar induction,
is a modern adaptation of earlier work by (Rayner et al., 1988) on using logic grammars to
infer a lexicon. Let us assume for the current discussion that the system will take an empty
(initial) lexicon, so that the system is tasked with inferring the output lexicon. The system
can obtain the set of phonological forms appearing in the lexicon (i.e. the vocabulary) by
scanning the PF interface conditions in the PLD; the system must then infer: (i) the lexi-
cal feature sequences that appear in the lexicon, and (ii) how each lexical feature sequence
associates with each phonological form. The system will do this in a manner similar to that
of the case of parsing – namely, the system will construct a system of equations that is con-
strained by known quantities, and solve this system of equations to obtain valuations of the
unknown quantities. However, there are two important differences between the aforemen-
tioned conception of “parsing as equation solving”, and the system for grammar induction
outlined in this chapter: (i) whereas in the case of parsing the lexicon was a known quan-
tity, the lexicon is now an unknown quantity ;3 (ii) whereas in the case of parsing a single
pairing of LF and PF interface conditions was provided as a known quantity, there are now
multiple pairings of LF and PF interface conditions provided as known quantities (i.e. the
input PLD). How then can the lexicon – an unknown quantity – be inferred? The approach
taken by the system is inspired by the following insight made by (Rayner et al., 1988):

“The basic idea is as follows: a logic grammar can be viewed as the definition of a
3Specifically, the lexical feature sequences are unknown as are the associations between the phonological

forms and the lexical feature sequences.

§3.1 Page 107/200

relation between a string and a parse-tree. You can run it two ways: finding the
parse-trees that correspond to a given string (parsing), or finding the strings that
correspond to a given parse-tree (generating). However, if we view the lexicon as
part of this relation, we get new possibilities. More specifically, we can compute
the lexicons that correspond to a given string; this can in a natural way be viewed
as a formalization of “lexicon learning from example sentences”. In terms of the
“explanation-based learning” paradigm, this makes the associated parse-tree the
“explanation.” ... This is the simplest variant of the idea: assume that there
is one entry per word, and represent the lexicon as an association-list with one
entry for each word. Each sentence now constrains the possible values of these
entries to be ones which allow it to be parsed; the hope is that a conjunction of a
suitably large number of such constraints will be enough to determine the lexicon
uniquely.”

Here (Rayner et al., 1988) points out how a “parsing as deduction” style parser can be
adapted to the problem of inferring a lexicon by requiring that the lexicon in effect have to
parse multiple strings at once.

Let us now examine a rough sketch of how this insight can be adapted in a modern
setting – i.e. in the context of minimalist syntax, replacing the axiomatization of CFGs
with an axiomatization of MGs and using modern machinery – i.e. the Z3 SMT-solver in
place of Prolog: In the case of the grammar induction system outlined here, the system can
thus proceed by:

(i) instantiating a single lexicon model;

(ii) instantiating, for each pairing of LF and PF interface conditions in the PLD, a deriva-
tion model that is constrained to satisfy that pair of interface conditions;

(iii) connecting each individual derivation model to the lexicon model as was done in con-
structing the model of the parser;

(iv) adding to the model constraints derived from optimization metrics that aim to min-
imize the size of both the lexicon and the all of the derivations connected to the
lexicon.

The result of this process is an SMT-model of a grammar for which an optimal interpretable
(model) solution may be identified using an SMT-solver. Importantly, the model is con-
strained such that the obtained lexicon must be able to yield, for each pairing of interface
conditions in the PLD, a derivation that satisfies that pairing of interface conditions. See
Fig. 3-1 for an illustration of the SMT-model that the system will construct.

Experience working with the system outlined in this chapter has shown that:

• Typically, a grammar consonant with minimalist syntax cannot be inferred from just
one PLD entry by itself; rather, the experiments described later in this chapter show
that constraining the lexicon so that it must be compatible with several entries from
the PLD together is usually sufficiently constrain the lexicon model.

• There may exist more than one lexicon that is compatible with the input PLD, and
the question arises of how the system will choose between them. This is resolved
by the addition of constraints derived from optimization metrics, that enable to the
SMT-solver to identify a solution to the SMT-model that is optimal (with respect to

§3.1 Page 108/200

the metrics); this help to both narrow the space of lexicons under consideration and
also ensure that the system does not produce trivial and uninteresting lexicons – e.g.
the system could identify, for each entry in the PLD, a lexicon that is compatible
with only that entry, and then concatenate these lexicons together, resulting in a large
lexicon that does not generalize (beyond the PLD) to produce novel structures that
pair meaning and sound.

To summarize, the system constructs an SMT-model that has a satisfiable model interpreta-
tion if and only if there exists a lexicon that is compatible with both the model parameters
and the (input) PLD; if such a lexicon does exist, it can be (automatically) recovered from
a satisfiable interpretation of the model. As the constructed SMT-model is finite, and ex-
pressed with quantifier free first-order logic formulae, the associated decision problem – i.e.
whether there exists a lexicon that is compatible with both the model parameters and the
(input) PLD – is compatible with the PLD is decidable, which ensures that (given enough
time) the SMT-solver will be able to identify a satisfiable interpretation of the model if one
exists. Colloquially, we may say that the system is “Solving for Syntax.”

3.1.3 The System Models a Child Language Learner

The system takes the form of a computational model of a child language learner, with the
SMT-model corresponding to the learner’s state of knowledge, and the process of construct-
ing the SMT-model aligning with the advancing of the learner’s state. Following (Berwick,
1985), the system has three components:

1. The initial state of the learner’s knowledge, 𝑆0, consists of:

(a) a lexicon model that is (partially) constrained by the (input) initial lexicon (which
may be empty) so that a lexicon recovered from a satisfiable interpretation of the
lexicon model must include the initial lexicon as a subset;

(b) a set of constraints, 𝐶𝑈𝐺, expressed as a system of quantifier-free first-order logic
formulae, that encode principles of Universal Grammar (UG) and that serve as
axioms for deducing the class of minimalist lexicons.4

2. The target state of the learner’s knowledge is the fully constructed SMT-model. The
system uses an SMT-solver to check (i.e. solve) this model and identify a satisfi-
able interpretation of the model; the (inferred) output lexicon is then (automatically)
recovered from the (identified) satisfiable model interpretation.

3. The acquisition process that drives the system from the initial to the final state. This
process consists of:

(a) The input data that the system processes is the PLD, which consists of a sequence
of 𝑛 entries, denoted 𝐼0, 𝐼1, 𝐼2, ..., 𝐼𝑛−1, with each entry a pairing of LF and PF
interface conditions.

(b) Model parameters that bound the size of the SMT-model that the system con-
structs5 – e.g.: the maximum number of distinct lexical entries in the lexicon;
the maximum number of syntactic features an entry in the lexicon may have; the

4This is the same axiomatization of minimalist syntax underlying the model of the minimalist parser
developed in the prior chapter

5N.b. these parameters are not linguistic parameters that are prescribed by a theory of syntax.

§3.1 Page 109/200

maximum number of distinct selectional and licensing feature labels appearing
in the lexicon respectively; the maximum number of lexical items in the lexicon
that involving overt and covert phonological forms respectively.6

(c) An acquisition procedure made up of two functions:

i. A function, 𝑄, that takes as input a state, 𝑆𝑖, and an entry in the PLD, 𝐼𝑖, and
outputs the successor state, 𝑆𝑖+1. More specifically, 𝑄 produces 𝑆𝑖+1 by: first
instantiating a new derivation model, 𝐷𝑖 (which includes the axioms in 𝐶𝑈𝐺);
then constraining this derivation model by adding to 𝐷𝑖 axioms derived from
the LF and PF interface conditions listed in 𝐼𝑖; and then finally adding to
𝑆𝑖 (i.e. the SMT-model that the system has constructed up until this point)
both 𝐷𝑖 and an uninterpreted function connecting 𝐷𝑖 to the lexicon model
in 𝑆𝑖, thus resulting in the production of 𝑆𝑖+1.

ii. A function, 𝑅, that maps a state 𝑆𝑖 to a set of MG lexicons, 𝐺𝑖, with the
property that for each entry 𝐼𝑗 in the PLD, each lexicon 𝐿 ∈ 𝐺𝑖 can yield a
derivation 𝑝𝐿𝑗 that satisfies the LF and PF interface conditions listed in 𝐼𝑗 .7

More specifically, 𝑅 produces 𝐺𝑖 by first adding to 𝑆𝑖 axioms derived from
optimization metrics and then using an SMT-solver to the set of enumerate
distinct satisfiable model interpretations of 𝑆𝑖, which constitutes 𝐺𝑖.

The acquisition procedure consumes the PLD one entry at a time, using 𝑄 to drive the
initial state, 𝑆0, to the final state, 𝑆𝑛; the function 𝑅 is then applied to 𝑆𝑛 to produce a set
of MG lexicons, 𝐺𝑛, that constitutes the output of the inference procedure. The acquisition
procedure comes in two flavors:

(i) the “instantaneous” acquisition procedure, introduced in §3.2, models a child language
learner that first consume all of the PLD and only then learns a (learned) grammar
– this is of course an idealization of a language learner, as noted in (Chomsky, 1965,
Pg. 202);8

(ii) the “incremental” acquisition procedure, introduced in §3.3, is an extension of the
instantaneous acquisition procedure that models a child language learner that incre-
mentally consumes the PLD (in batches) and gradually builds up (i.e. learns) a lexicon.

See Fig. 3-2 for an illustration of both the instantaneous and incremental acquisition pro-
cedures. The instantaneous and incremental acquisition procedures have differing strong
points. The advantage of the instantaneous acquisition procedure is that the order in which
the PLD is consumed does not alter the set of lexicons that the system will output a mem-
ber of, whereas for the incremental acquisition procedure the order in which the PLD is
consumed may very well impact the set of lexicons the system will output a member of.
The advantage of the incremental acquisition procedure is that the learner needs to hold in
its memory only the batch of the PLD that is being processed, and not the entire PLD as
in the case of the instantaneous acquisition procedure; this is because at any point in the

6The valuations of these parameters may be relaxed (increased) so as to widen the space of candidate
model interpretations the SMT-solver will search over in trying to identify one that is satisfiable; however,
the relaxation of these model parameters comes at the expense of potentially increasing the runtime of the
SMT-solver.

7In the case of the initial state, 𝑆0, since there are no constraints yet imposed by the input, 𝑅(𝑆0) will
map to the set of all minimalist lexicons.

8See (Lust, 2006, Pg. 62) for a discussion of the “Instantaneous Hypothesis” of child language acquisition.

§3.1 Page 110/200

Figure 3-1: The acquisition procedure constructs an SMT-model that consists of: (i) a derivation model
(an SMT-formula) for each pairing of LF and PF interface conditions in the PLD; (ii) a lexicon model (an
SMT-formula) that is (optionally) partially specified. Each pairing of interface conditions in the Primary
Linguistic Data (PLD) is translated into an SMT-formula that constrains the associated derivation model
so that any satisfiable interpretation of the derivation model encodes a derivation (tree) that satisfies the
associated interface conditions. Each derivation model is connected to the lexicon model via an SMT-formula
that requires that the derivation be yielded by the lexicon, thereby constraining satisfiable interpretations
of both the derivation model and lexicon model. Finally, optimization constraints derived from economy
considerations further constrain satisfiable interpretations of the derivation and lexicon models. After con-
structing the SMT-model, an SMT-solver is used to identify a satisfiable interpretation of the SMT-model
(i.e. a solution to the system of SMT-formulae that make up the SMT-model), and the inferred lexicon and
derivation trees are then automatically recovered from the identified interpretation of the SMT-model. Solv-
ing the SMT-model requires that the SMT-solver work out both: (i) what the (unspecified) lexical feature
sequences (denoted by the “???”) in the lexicon are, and (ii) the associations (denoted by the blue lines)
between the lexical feature sequences and the phonological forms (obtained by scanning the PF interface
conditions in the PLD).

§3.1 Page 111/200

acquisition trajectory, the lexicon that the learner has acquired up until that point is both
compatible with all of the PLD processed up to that point, and is also guaranteed to be a
subset of the next lexicon that the learner will acquire, so that the learner need only concern
themselves with adding to the lexicon new lexical items that ensure compatibility with the
batch of the PLD being processed at that time.

Importantly, the system outlined in this chapter aligns with the conditions set out in
(Chomsky, 1965, Pgs. 30-31) that a “language-acquisition device” (i.e. a model of language
acquisition) that aims for explanatory adequacy should fulfill:910

“A child who is capable of language learning must have

(i) a technique for representing input signals
(ii) a way of representing structural information about these signals
(iii) some initial delimitation of a class of possible hypotheses about language structure
(iv) a method for determining what each such hypothesis implies with respect to each

sentence
(v) a method for selecting one of the (presumably, infinitely many) hypothesis that

are allowed by (iii) and are compatible with the given primary linguistic data

... assume tentatively that the primary linguistic data consist of signals classified as
sentences and nonsentences, and a partial and tentative pairing of signals with structural
descriptions. A language-acquisition device that meets conditions (i)-(iv) is capable
of utilizing such primary linguistic data as the empirical basis of language learning.
This device must search through the set of possible hypotheses 𝐺1, 𝐺2, . . . , which are
available to it by virtue of condition (iii), and must select grammars that are compatible
with the primary linguistic data, represented in terms of (i) and (ii). It is possible to
test compatibility by virtue of the fact that the device meets condition (iv). The device
would then select one of these potential grammars by the evaluation measure guaranteed
by (v). The selected grammar now provides the device with a method for interpreting
an arbitrary sentence, by virtue of (ii) and (iv).” (Pgs. 30-32 of (Chomsky, 1965))

Let us now consider how the various parts of the system adhere to the criterion specified in
the Aspects model of language acquisition:

• condition (i) corresponds to the PLD;

• condition (ii) corresponds to the derivation models, which encode “structural descrip-
tions” of the entries in the PLD;

• condition (iii) corresponds to 𝐶𝑈𝐺 – i.e. the axioms encoding principles of UG;

• condition (iv) corresponds to the lexicon model, which encodes a grammar, and the
function 𝑄, which translates interface conditions into the constraints that a derivation
must satisfy;

• condition (v) corresponds to the function 𝑅, which is able to identify the optimal
lexicon that is compatible with the PLD.

To summarize, the system outlined in this chapter is a computational model of a child
language learner that fulfills the conditions for a language-acquisition device set out in
(Chomsky, 1965).

9See (Lust, 2006, Pg.54) for further review of the Aspects’ acquisition model.
10See (Rizzi, 2017) for a review of “explanatory adequacy.”

§3.1 Page 112/200

3.1.4 Psychological Fidelity

The system satisfies several conditions of psychological plausibility that are briefly considered
below; later in Ch. 4, we will revisit these conditions and consider how the system may be
extended to further align with the ultimate goal of explanatory adequacy.

• The system acquires a grammar from psychologically plausible input consisting of a
(small) finite sequence of simple sentences (i.e. the PLD) that have at most one level of
embedding; these sentences were selected primarily for the purpose of demonstrating
the capabilities of this system, which is ultimately an idealized model of language
acquisition. Furthermore, following the “Semantic Bootstrapping Hypothesis”11, the
system assumes that when processing a sentence, the learner knows “who did what
to whom?”; thus each sentence is annotated with its predicate-argument structure12

and with agreement relations (these annotations are encoded within the LF interface
conditions).1314

• The system learns from positive evidence only – i.e. no direct negative evidence is
presented to the system, nor does the system make use of indirect negative evidence.15

• The system comports with the Strong Continuity Hypothesis16 – i.e. because the
system is setup to always respect the axioms in 𝐶𝑈𝐺 that encode principles of UG, at
each stage in the learner’s acquisition trajectory, each member of the class of grammars
that the learner has narrowed down to must be fully in accordance with the principles
of UG.

• The instantaneous acquisition procedure is robust to changes in the order in which
the PLD is presented to the system.

• In the case of the incremental acquisition procedure, the learner requires only a small,
finite (potentially zero) sized memory for remembering sentences from the PLD.

• The acquisition system is an extension of a language processing system, namely the
model of a minimalist parser introduced in Ch. 2. The parser and the acquisition
system are built out of the same model components – i.e. the same lexicon model, the

11See (Lust, 2006, Pgs. 42-43) for a discussion of the Semantic Bootstrapping Hypothesis; see also
(Grimshaw, 1981), (Pinker, 1984) and (Bloom, 1994).

12Predicate-argument structure is sometimes also referred to as “thematic-role structure”; see (Jackendoff,
1983) for further discussion.

13N.b. the annotations encoding predicate-argument structure do not contain any information about word
ordering.

14In the case of sentences involving embedding, the predicate-argument structure does (implicitly) encode
some hierarchical information in so far as an embedded phrase is marked as the argument of a predicate;
note however, that even when presented only with simple sentences that do not involve any embedding, as
in the case of the PLD listed in Table 3.2 (on Pg. 173), the acquisition system converges on a grammar that
aligns with contemporary theories of syntax.

15Negative evidence comes in two forms: direct negative evidence takes the form of an explicit correction
(e.g. by an adult) of the child when the child makes a mistake; with indirect negative evidence, the observed
absence of a particular form when it might otherwise be reasonably expected or circumstance serves as
evidence that the form cannot be produced. Empirical investigations indicate that direct negative evidence
is rarely if ever provided to the child, and is typically rebuffed by the child; indirect negative evidence has
also been shown to not be required by child language learners. See (Newport et al., 1977) and (Hirsh-Pasek
et al., 1984); also see (Marcus, 1993), (Lust, 2006) and (Yang, 2015) for further discussion.

16See (Lust, 1999).

§3.1 Page 113/200

Figure 3-2: The Primary Linguistic Data (PLD) is a finite sequence of interface conditions
that is presented to the learner in batches. The acquisition trajectory, over which the learner
consumes the PLD, is divided into stages, with each stage corresponding to a batch of the
PLD. At each point in the acquisition trajectory, the state of the learner is equivalent to
the SMT-formulae on the SMT-solver’s stack (of formulae), with state 𝑆𝑗

𝑖 corresponding to
the state of the learner in stage 𝑗 after consuming the first 𝑖 members of the 𝑗𝑡ℎ batch. The
initial state of the learner, 𝑆1

0 , consists of the lexicon model (an SMT-formula that may
be partially constrained by an optionally specified initial lexicon) and the derivation model
axioms that encode UG (see (A)). As the learner consumes the input (i.e. the PLD), their
state evolves (driven by the function 𝑄 as depicted in (D)), with each consumed pairing of
LF and PF interface conditions resulting in the construction of: a new derivation model,
an SMT-formula that connects the derivation model to the lexicon model, and an SMT-
formula that constrains the derivation model, requiring satisfiable interpretations thereof to
accord with the specified interface conditions; this construction is then added to the solver
stack (see (B)). When the SMT-solver checks the model, as in (C), an inferred lexicon is
automatically recovered from the identified satisfiable interpretation of the model; this is
the actualization of the function 𝑅. Each inferred lexicon is a superset of earlier inferred
lexicons, and the inferred lexicon from one stage is then used as the “initial lexicon” for
the succeeding stage, as in (E). The first stage of the acquisition procedure is detailed in
the presentation of the instantaneous acquisition procedure, so called because it simulates
the learner consuming the PLD all at once; this procedure is succeeded by the incremental
acquisition procedure, which is able to handle both the first stage, and then successive stages,
simulating the learner incrementally growing a lexicon.

§3.1 Page 114/200

same derivation model, and the same set of UG axioms – and the lexicon output by
the acquisition system may be used by the parser.

3.1.5 Summary of Key Insights and Ideas

• The computational experiments presented in this chapter demonstrate that modern
high-performance SMT-solvers can be applied to the problem of inferring a minimalist
grammar from a small sequence of (sentence, skeletal-meaning) pairs (i.e. pairings of
LF and PF interface conditions); notably, the system does this without being provided
a treebank of minimalist derivations that serve as examples of what the acquired
lexicon should be able to yield, and to that end, the system constitutes a scheme for
unsupervised inference of minimalist grammars.

• The computational experiment detailed in §3.2 demonstrates that by solving for the
optimal lexicon, the system infers a grammar that aligns with contemporary theories
of minimalist syntax in so far as: (a) the grammar produces the prescribed derivations
for a variety of syntactic structures, utilizing syntactic movement (including head-
movement) and covert lexical items as needed; (b) expressions with related interpre-
tations are assigned derivations systematically related by structural transformations.
Furthermore, the computational experiment detailed in §3.3 demonstrates that the
system can acquire, from a finite set of sentences with at most one level of embedding,
a grammar that can yield an infinite number of distinct syntactic structures. That
this idealistic model is able to recover most of the right syntax is remarkable.

• The axiomatization of minimalist syntax underlying the model of the minimalist parser
developed in the prior chapter is a part of the initial state of knowledge (corresponding
to UG) that the model of the learner at the beginning of the acquisition process. By
design, the system separates out the questions of what knowledge the model of the child
language learner acquires and how the model of the child language learner acquires it,
allowing us to specify the learner’s initial state and the conditions that the learner’s
final state must satisfy (with respect to the PLD that the learner processes) – and
leave to the SMT-solver the questions of how the language-acquisition device goes
from the initial state to the final state and what that final state is. This enables us to
focus on understanding which model axioms have what implication in an experiment
working or not, and leave the task of carrying out the appropriate deductions to the
computer. In this way, the system lets us explore the interaction of several simple
principles – i.e. that derivations must satisfy interface conditions, that derivations are
subject to economy conditions, and that all syntactic relations within a derivation are
established by merge – and see how far they can take us. Ultimately, the system may
serve as a vehicle for better understanding how more can be done with less, which is
a line of inquiry that lies at the heart of the Minimalist Program.

• The lexicon model has a factored representation – i.e. it has the form of a two-
dimensional association matrix, with a set of phonological forms on one axis, a set
of lexical feature sequences on the other axis, and the entries in the matrix marking
which lexical feature sequences are associated with which phonological forms. (See
Table 3.3 on Pg. 127 for an illustration of factored representation.) The lexicon’s
factored representation allows for it to be grown along the two dimensions of the ma-
trix separately, with the dimension pertaining to lexical feature sequences controlling

§3.1 Page 115/200

which syntactic structures the lexicon can yielded, and the dimension pertaining to
phonological forms controlling the vocabulary of the learner. Specifically, the lexicon’s
factored representation enables optimization metrics to be defined that minimize the
size of the lexicon with respect to the set of distinct lexical feature sequences without
factoring in how often the different phonological forms appear in the PLD; this en-
sures that, as the system processes the PLD, the system only adds new lexical feature
sequences to the lexicon if the existing set of lexical feature sequences is insufficient
for yielding a syntactic structure that can satisfy a pairing of LF and PF interface
conditions. In particular, this means that if the system cannot parse an entry in the
PLD, it will only add a new lexical feature sequence to the lexicon if adding a new
association between a phonological form and an existing lexical feature sequence will
not suffice.

3.2 An Instantaneous Model of Acquisition

This section introduces a computational model of language acquisition and then uses it to
infer a minimalist grammar (presented in Table 3.3) that is compatible with the primary lin-
guistic data (PLD) (presented in Table 3.2), optimal with respect to economy considerations,
and closely aligns with contemporary theories of minimalist syntax.

The acquisition procedure, implemented as a working computer program, takes the form
of a child language learner (following (Berwick, 1985)) and is in accordance with the criterion
for a language acquisition device set out in Aspects (Chomsky, 1965):

1. The procedure takes as input the Primary Linguistic Data (PLD), which consists of
a finite sequence of pairings of LF and PF interface conditions; this constitutes “a
technique for representing input signals”, thereby satisfying criterion (i) of the Aspects
model.

2. The learner processes each entry in the PLD, creating a new derivation model and
constraining it with the addition of axioms derived from the interface conditions; this
constitutes “a way of representing structural information about these signals”, thereby
satisfying criterion (ii) of the Aspects model.

3. The learner then constructs an acquisition model by first initializing an empty lex-
icon model, and then connecting each (constrained) derivation model to the lexicon
model;17 the (constructed) acquisition model serves as an “initial delimitation of a
class of possible hypothesis about language structure”, thereby satisfying criterion (iii)
of the Aspects model.

4. The learner can solve the (constructed) acquisition model (i.e. check the SMT-model
using the SMT-solver) to infer a lexicon that, for each entry of interface conditions in
the PLD, can generate a derivation that satisfies constraints derived from those inter-
face conditions; this constitutes “a method for determining what each such hypothesis
implies with respect to each sentence.”, thereby satisfying criterion (iv) of the Aspect’s
model.

17In connecting a derivation model (constrained by interface conditions) to the lexicon model, the system
incorporates the model of parsing presented in Ch. 2.

§3.2 Page 116/200

5. The learner infers an optimal grammar by further constraining the acquisition model
with the addition of model axioms derived from Principles of Economy, and then
checking the acquisition model (using the SMT-solver); this constitutes “a method for
selecting one of the (presumably infinitely many) hypothesis that are allowed by (iii)
and are compatible with the given primary linguistic data”, thereby satisfying criterion
(v) of the Aspects model.

The procedure is referred to as the “instantaneous” acquisition procedure because the lexicon
model and each connected derivation model must be solved simultaneously (using an SMT-
solver), in effect simulating a learner that has to consume the entire PLD before inferring a
lexicon; thus the procedure is guaranteed to infer the optimal grammar (that is compatible
with that PLD), so long as such a lexicon exists and the constructed (finite) model is large
enough to represent it, no matter the order in which the PLD is presented to the learner.

The remainder of this section is organized as follows. To begin, we will introduce several
optimization metrics that encode Principles of Economy (see §3.2.1). We will then introduce
a procedure for inferring grammars that are optimal with respect to these optimization
metrics (see §3.2.2). Finally, we will present a computational experiment that uses the
acquisition model to infer an optimal grammar from a small, finite set of sentences paired
with simplified representations of meaning (i.e. the PLD presented in Table 3.2), and then
analyze the inferred grammar, showing that it aligns with the prescriptions of contemporary
theories of minimalist syntax (see §3.2.3).

3.2.1 Economy Considerations

Economy Conditions, a well-established principle of minimalist theories of syntax, inform us
that the derivations yielded must be optimal in some sense – e.g. a derivation is prohibited
from involving superfluous movement operations or any application of merge not required
for the derivation to converge. (Chomsky, 1995, Pg. 266) Concurrently, the Aspects model
of language acquisition requires that an evaluation function be supplied that will identify
one of many possible grammars that is compatible with the PLD. The approach taken here
is to develop an evaluation function that selects for grammars that are optimal in the sense
prescribed by economy considerations. To this end, the acquisition model developed in
this chapter includes a number of metrics that each measure some quantitative property of
the acquisition model that is pertinent to economy considerations; these metrics enable the
system, by way of instructing the SMT-solver in the course of model-checking, to optimize
the acquisition model so as to minimize or maximize the value measured by a specified
metric. In this way, the inferred grammar will be the grammar that is optimal with respect
to the supplied metrics, and the system is thus brought into accordance with Principles of
Economy.

Let us now consider how economy conditions inform what aspects of grammar to op-
timize, and in turn what metrics will be needed. (Collins, 2001) broadly summarizes the
implications of the condition as follows:

“Consider an operation OP applying in a derivation D leading to the represen-
tations (PF, LF) (phonetic form and logical form). Economy considerations
suggest that OP be as small as possible, and be applied in a way that minimizes
search. Given a series of operations that form a derivation D, economy condi-
tions suggest that the length or cost of the derivation must be minimized in some
way. Lastly, economy considerations suggest that the representations formed in

§3.2 Page 117/200

Figure 3-3: Diagram showing the Grammar Inference Module. For each sentence in the
training corpus, there is an SMT formula encoding a minimalist parse, and each of these
formulas is connected (via shared symbols) to the SMT formula encoding a minimalist
lexicon. The model parameters limit the size of the acquisition model. The initial lexicon
is optional. The Universal Grammar axioms constrain each SMT-formula for a minimalist
parse. The optimization constraints ensure that the system finds the smallest minimalist
lexicon.

the course of a derivation should be as simple as possible, consisting of a mini-
mal number of syntactic objects, each of which is interpretable (at LF or PF).”
(Collins, 2001, Pg. 40)

This informs us that the metrics the system has should be able to minimize various properties
of the derivation model. How about the lexicon model? Consider what would happen if we
didn’t optimize the lexicon model in any way while optimizing the derivation model – e.g.
there are no upperbounds on how many selectional or licensing feature labels are available,
or how many distinct lexical entries are in the lexicon, how many features a lexical entry
may have; then the system could construct a separate lexicon for each derivation, and the
inferred lexicon could simply be the set union of those separate lexicons. Yet, the lexicon
should not include more than is necessary to yield the prescribe derivations. For this reason,
the system also includes metrics that measure the size of the lexicon.

Each metric is encoded as an SMT-formula that takes the form of a pseudo-Boolean
equation: on one side is a value that the metric can take on, and on the other side is
a calculation of the metric using the uninterpreted functions and sorts that make up the
lexicon and derivation models; the relation between the two sides may be an equality or
an inequality depending on how the metric is going to be optimized. This SMT-formula,
when added to the acquisition model, will force the SMT-solver to solve for a grammar that
satisfies the constraint on what values the metric may take, thereby enabling the inference

§3.2 Page 118/200

of optimal grammars. Let us now examine some of the metrics available to the system18,
and consider how optimizing the acquisition model with respect to a metric can enforce
compliance with an economy condition:

1. The number of active lexical feature sequences19 in the lexicon model (i.e. lexical
feature sequences used by some derivation model) is:∑︁

𝑠∈𝜆
(𝐴(𝑠0) ∧𝐵(𝑠0) ∧ 𝐶(𝑠0)) (3.1)

where 𝜆 is the set of lexical node sequences in the lexicon model, 𝑠0 is the starting
node (i.e. the first node) in the lexical feature sequence 𝑠, and:

𝐴(𝑡) = (𝜉(𝑡) = 𝜏∅) (3.2)

𝐵(𝑡) =
⋁︁
𝑝∈Σ

(ΔΩ(𝑡) = 𝑝) (3.3)

𝐶(𝑡) =
⋁︁

𝑑𝑖∈𝐷
𝑥∈LN𝑑𝑖

((𝜇𝑖(𝑥) = 𝑡) ∧ (ℎ𝑖(𝑥) = 𝑥)) (3.4)

The conjunction 𝐴(𝑠0) ∧ 𝐵(𝑠0) ∧ 𝐶(𝑠0) serves to check whether the lexical feature
sequence 𝑠 is active: 𝐴(𝑠0) checks that the starting node in a lexical feature sequence
is active; 𝐵(𝑠0) checks that the starting node must map to one of the (non-null)
phonological forms; 𝐶(𝑠0) checks that the lexical feature sequence participates in at
least one derivation by checking whether one of the derivations 𝑑𝑖 has a lexical head
that maps to the starting node via (the uninterpreted function) 𝜇𝑖. Metric (3.1)
is bounded above by a number of model parameters that collectively determine the
maximum number of lexical feature sequences that the lexicon may have.

The number of syntactic features (both selectional and licensing) over all active lexical
feature sequences in the lexicon model is:∑︁

𝑠∈𝜆
𝑥∈𝑠

(𝐴(𝑠0) ∧𝐵(𝑥)) (3.5)

where 𝐴 and 𝐵 are defined as in metrics (3.2) and (3.3) respectively. Metric (3.5) is
bounded above by the product of the maximum number of lexical entries the lexicon
may have and the maximum number of syntactic features a lexical entry may have.

Optimizing with respect to the metrics (3.1) and (3.5) reduces the total size of the
lexicon.

2. Given a derivation 𝑑, the total number of merge operations in the derivation is the
sum of the number external and internal merge operations:∑︁

𝑥∈N𝑑

(ℎ𝑑𝑖(𝑥) = 𝑥) (3.6)

18The reader may want to review the definitions of the sorts (see) and uninterpreted functions listed in
Table 2.2 and Table 2.3 respectively.

19Recall from §2.3.1 that the lexical entries in a lexicon are made up of (phonological form, lexical feature
sequence) pairs.

§3.2 Page 119/200

The number of (merge) operations in a derivation is bounded above by the product
of two parameters of the derivation: (i) the maximum node-sequence length; (ii) the
maximum number of node-sequences (both overt and covert). Given this, the total
number of merge operations across a set of derivations 𝐷 is:∑︁

𝑑𝑖∈𝐷
𝑥∈N𝑑𝑖

(ℎ𝑑𝑖(𝑥) = 𝑥) (3.7)

Metric (3.7) is bounded above by the sum of the upperbounds on number of merge
operations for each derivation in 𝐷.

Optimizing a derivation model with respect to the metric (3.5) serves to make the
derivation as economical as possible in that it minimizes the total number of structure
building operations required for the derivation to converge (this metric was also em-
ployed by the model of the parser in the prior chapter); optimizing with respect to the
metric (3.7) thus has the effect of simultaneously making every derivation connected
to the lexicon as economical as possible by minimizing the total number of operations
occurring over all of the derivations (e.g. by reducing instances of movement and
empty lexical heads).

3. The number of distinct selectional features in the lexicon is:

∑︁
𝑦∈F𝑆

⎛⎜⎝⋁︁
𝑠∈𝜆
𝑥∈𝑠

(𝜅(𝑥) = 𝑦) ∧ (𝜉(𝑥) = 𝜏∅)

⎞⎟⎠ (3.8)

Metric (3.8) is bounded above by the cardinality of the set of selectional feature labels
specified in the model parameters, and bounded below by one, as every derivation
requires at least one application of external merge to converge, and thus at least one
selectional feature must be available.

Likewise, the number of distinct licensing features in the lexicon is:

∑︁
𝑦∈F𝐿

⎛⎜⎝⋁︁
𝑠∈𝜆
𝑥∈𝑠

(𝜅(𝑥) = 𝑦) ∧ (𝜉(𝑥) = 𝜏∅)

⎞⎟⎠ (3.9)

Metric (3.9) is bounded above by the cardinality of the set of licensing feature labels
specified in the model parameters, and bounded below by zero, as a derivation does
not necessarily require any instances of internal merge to occur.

Minimizing the number of distinct selectional/licensing features labels reduces the
number of distinct symbols (i.e. feature labels) the lexicon has and, together with the
minimization of lexical feature sequences, aims to minimize the number of bits needed
to represent the lexicon (from an information theoretic viewpoint).

Whereas the number of distinct selectional features may be one and the ability to
yield desired structures will not be hampered because every selectors will be able
to select any selectee, this is not the case with licensing features, because of the
Shortest Movement Condition; notably, the minimum number of licensing features is

§3.2 Page 120/200

particularly interesting because it sets a limit on how many long distance dependencies
may all be simultaneously pairwise crossing within a derivation.

The system can optimize the acquisition model with respect to several of these metrics by
ordering and combining them together to produce a lexicographically ordered metric. The
order in which the metric are optimized by the system plays a critical role in the total effect
they have. To see this, let us consider the particular combination of metrics that will be used
in the instantaneous model of acquisition developed in this section. The system will first
optimize the acquisition model with respect to (3.1), then (3.5), followed by (3.7) and finally
(3.8) and (3.9). The order of optimization metrics applied locks in the size of the lexicon
by minimizing the number of lexical feature sequences and the number of features in the
lexicon; only after the size of the lexicon is determined does the system proceed to minimize
the number of features involved in each derivation, in effect simultaneously optimizing all
of the derivations connected to the already size-constrained lexicon model. Note that the
combination of first two optimization metrics, (3.1) and (3.5), is not impacted by the number
of syntactic structures the lexicon must yield, but rather by the set of syntactic structures
the lexicon must be able to yield; it follows that if the first two metrics are optimized,
then minimizing the number of derivation nodes will result not in a smaller lexicon. See
Table 3.7 and Table 3.6 for examples of unoptimized and optimized lexicons (that were
inferred from the same PLD) respectively, and see Figure 3-4b and Figure 3-4a for examples
of unoptimized and optimized derivations (for the same entry in the PLD) that were yielded
by the aforementioned lexicons. (Note that all of the derivations presented in both this section
and §3.3 do accord with the ordering of phonological forms listed in the associated PLD entry
– i.e. if they are redrawn with Specifier–Head-Complement linearization, then the correct
SVO ordering becomes apparent; the figures were automatically rendered using Graphviz so
that the arrows depicting syntactic movement would not overlap with the projections in the
derivation.)

3.2.2 Inferring an Optimal Grammar via Model Checking

We will now introduce an acquisition procedure (listed on Pg. 123) for inferring minimalist
grammars that are optimal with respect to supplied optimization metrics; we will then
review how this procedure takes the form of a child language learner that comports with the
criterion set out in the Aspect’s model of language acquisition.
Let us now consider details of how this procedure is implemented, and how it adheres to the
form of a child language learner, as presented in §3.1.3, focusing in particular on how steps
3 and 4 of the procedure embody the functions 𝑃 and 𝑄 respectively.

Step 3 plays the role of the function 𝑄, consuming the input from entry 𝐼𝑖 in the PLD,
and advancing the state 𝑆𝑖 to the state 𝑆𝑖+1; by repeated application of 𝑄, the learner
processes the entire PLD, driving the state of the learner from the initial state, 𝑆0, to the
final state, 𝑆𝑛. Each state 𝑆𝑖 is a system of first-order, quantifier-free logical formula that
constitutes an SMT-model, encoding the (decidable) decision problem of whether there is a
minimalist lexicon that is compatible with the PLD consumed up until that point – i.e. a
minimalist lexicon that can yield a derivation for each pair of interface conditions consumed
thus far from the PLD20; furthermore, the set of satisfiable interpretations of 𝑆𝑖 constitutes
the class of possible hypothesis of language structures from condition (iii) of the Aspects

20All logical formulas in this study, being used to encode finite models over bounded domains, are first-
order and quantifier-free; this has the benefit that these formulas are decidable.

§3.2 Page 121/200

ID Model Parameter Description

(a) Max. Num. Empty Lex. Items Upper bound on the number of empty (i.e. unpro-
nounced) lexical heads that may participate in a deriva-
tion.

(b) Max. Num. Phrasal Movements Upper bound on the number of (phrasal) movements
(i.e. internal merge operations) that occur in a deriva-
tion.

(c) Max. Num. Head Movements Upper bound on the number of head movement opera-
tions that occur in a derivation.

(d) Max. Num. Feats. per Lex. Item Upper bound on the number of features in a lexical
item.

(e) Num. Overt Lex. Items per PF Number of lexical feature sequences allocated, for each
overt phonological form in the PLD, in the lexicon
model; these lexical feature sequences may only asso-
ciate with overt phonological forms.

(f) Num. Covert Lex. Items in Lexicon Number of lexical feature sequences allocated in the
lexicon model for association with the covert phonolog-
ical form; note that these lexical feature sequences can
only associate with the covert phonological form.

(g) Max. Num. Overt PF Connections Upper bound on the number of lexical feature sequences
an overt phonological form may associate with.

(h) Max. Num. Covert PF Connections Upper bound on the number of lexical feature sequences
the covert phonological form may associate with.

(i) Selectional Feature Labels Finite set of labels for selectional features in the lexicon
model.

(j) Licensing Feature Labels Finite set of labels for selectional features in the lexicon
model.

Table 3.1: Model Parameters for the Acquisition Procedure. These parameters are all finite
and serve to bound the acquisition model. Parameters (a-d) pertain to the derivation models
and parameters (d-j) pertain to the lexicon models.

§3.2 Page 122/200

Instantaneous Acquisition Procedure

1. The input to the procedure consists of:

(a) a queue of pairs of interface conditions, referred to as the PLD, with 𝑛 > 0 entries;
(b) a valuation of model parameters;
(c) an empty SMT-solver stack, 𝑆, with each entry on the stack an SMT-formula, and the

conjunction of the entries on the stack referred to as “the acquisition model.” (Note that
to “check the acquisition model” is to use the SMT-solver to check the conjunction of
the terms on the solver’s stack.)

2. The initial state of the learner, prior to consuming the PLD, is an empty lexicon:

(a) initialize a lexicon model (i.e. an SMT formula), 𝑚𝑙 from the supplied model parameters
and the PLD;

(b) push 𝑚𝑙 onto the stack;
(c) (optional) check the acquisition model.

3. The learner processes the PLD until it is empty, incrementally constraining the lexicon model:

(a) pop an entry 𝐼𝑖 off of the queue;

(b) initialize a derivation model (i.e. an SMT formula), 𝑚𝑖
𝑑, from model parameters and

interface conditions 𝐼𝑖;
(c) push 𝑚𝑖

𝑑 onto the stack;

(d) translate 𝐼𝑖 into an SMT–formula, 𝑚𝑖
𝐼 , that constrains the derivation model 𝑚𝑖

𝑑;

(e) push 𝑚𝑖
𝐼 onto the stack;

(f) construct an SMT-formula, 𝑚𝑖
𝑏, that connects, via an uninterpreted function, the deriva-

tion model, 𝑚𝑖
𝑑, to the lexicon model, 𝑚𝑙;

(g) push 𝑚𝑖
𝑏 onto the stack;

(h) (optional) check the acquisition model.

4. The learner selects a grammar by optimizing the model:

(a) optimize the acquisition model using metric (3.1);
(b) optimize the acquisition model using metric (3.5);
(c) optimize the acquisition model using metric (3.7);
(d) optimize the acquisition model using metric (3.8);
(e) optimize the acquisition model using metric (3.9);
(f) check the acquisition model using the SMT-solver, and if the acquisition model is found

to be satisfiable, recover the identified (satisfiable) model interpretation (i.e. a solution
to the acquisition model).

5. The output of the procedure is the final state of the learner:

(a) for each entry 𝐼𝑖 in the PLD, a derivation, 𝑑𝑖, that satisfies the conditions imposed by
𝐼𝑖;

(b) the inferred minimalist lexicon that can yield each 𝑑𝑖;
(c) (Optional) the recovered model interpretation;

(d) the solver stack holds: 𝑚𝑙; 𝑚𝑖
𝑑 and 𝑚𝑖

𝐼 for 1 ≤ 𝑖 ≤ 𝑛; constraints associated with each
optimization metric.

§3.2 Page 123/200

model. The initial state, 𝑆0, consists of an empty and unconstrained lexicon model, the size
of which is determined by the valuation of (relevant) model parameters supplied in the input
(see step 2).21 The final state, 𝑆𝑛, consists of the SMT-formulae on the solver-stack after
running step 3 – i.e. the lexicon model, the derivation models, and the formulae connecting
the derivation models to the lexicon model. The procedure advances from one state to
the next by consuming an entry (i.e. a pair of LF and PF interface conditions) from the
PLD and then pushing onto the solver stack SMT-formulae that: instantiate a new model
of a (minimalist) derivation (see step 3b); require that this derivation satisfy the interface
conditions (see step 3d; and require that this derivation be produced by lexical entries drawn
from the lexicon (see step 3f). this process serves to increasingly constrain the lexicon model
by requiring that any (satisfiable) interpretation thereof must be compatible with the PLD
that the learner has processed up until that point.

Step 4 plays the role of the function 𝑅, extracting an optimal grammar from a given state
𝑆𝑖 using an SMT-solver.22 This is accomplished by first optimizing the acquisition model
to obtain optimal metric values (see steps 4a-4e), and then using the SMT-solver to infer a
lexicon, 𝐺𝑖 = 𝑅(𝑆𝑖), by solving the conjunction of the formulae in 𝑆𝑖 and additional formulae
that enforce that the optimal metric values determined (in steps 4a-4e) are respected by any
solution to the acquisition model; this conjunction is summarized in 5d. Optimization (i.e.
minimization) of the acquisition model with respect to a metric (i.e. in steps 4a-4e) is carried
out by a sub-procedure that is outline here:

1. The input to the sub-procedure is: a metric, 𝑚; an upper bound for the metric, 𝑚𝑚𝑎𝑥;
a lower bound for the metric, 𝑚𝑚𝑖𝑛; the acquisition model (i.e. the conjunction of
terms on the solver’s stack) that is to be optimized.

2. For each 𝑘 ∈ [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥]:

(a) the sub-procedure constructs an SMT-formula 𝑝𝑚,𝑘 → (𝑚 ≤ 𝑘), where 𝑝𝑚,𝑘 is a
boolean variable that serves to track whether the pseudo-boolean equation 𝑚 ≤ 𝑘
holds;

(b) the constructed formula is added to the acquisition model by pushing it onto the
solver stack.23

3. Then the optimal (i.e. smallest) value that the metric can take on is identified by
searching over the range [𝑚𝑚𝑖𝑛,𝑚𝑚𝑎𝑥], evaluating each potential metric value 𝑘 by
checking the acquisition model with the additional assertion that 𝑝𝑚,𝑘 = 𝑇𝑟𝑢𝑒.24

21Additionally the sort of phonological forms (i.e. Σ) is established by scanning the PLD and obtaining
the vocabulary as the union of the sets of overt phonological forms appearing in each PF interface condition
listed in the PLD.

22This thesis uses Z3 SMT-solver (De Moura and Bjørner, 2008), a high-performance solver for Satisfia-
bility Modulo Theories that can solve multi-sort quantifier-free first-order logic formulas that may combine
symbols from a set of additional logics defined by a number of background theories such as the theory
of uninterpreted functions with equality. Z3 centers on an implementation of the DPLL-algorithm (Davis
et al., 1962; Nieuwenhuis et al., 2006) (which integrates back-tracking search with propagation of boolean
constraints) that incorporates Conflict-Driven Clause Learning (CDCL) (Marques Silva and Sakallah, 1996;
Marques-Silva and Sakallah, 1999).

23Adding this formula to the acquisition model does not force the pseudo-boolean equation on the right-
hand side of the implication to take on a value less than or equal to 𝑘, as 𝑝𝑚,𝑘 is a free variable; whether
the acquisition model can be interpreted satisfiably when the metric takes on a value less than or equal to
𝑘 can be determined by checking the acquisition model while asserting that 𝑝𝑚,𝑘 is true.

24The search can be done with either a linear search or a binary search; the reference implementation
includes both.

§3.2 Page 124/200

4. The optimization sub-procedure concludes by pushing on to the solver’s stack the
formula (𝑝𝑚,𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙

= 𝑇𝑟𝑢𝑒), which forces any interpretation of the acquisition model
to be such that when measured, the metric 𝑚 has the value 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙.

The value of each optimization metric can be computed for an interpreted model. When
we run the solver to find a solution with metric value less than or equal to 𝑘, if the solver
finds a solution with a metric value less than 𝑘, then we can advance our search using this
information – e.g. if the found solution has a metric value of 𝑘 − 2, then there is no need
for us to run the solver looking for a solution with metric value of 𝑘 − 1.

Having defined the inference procedure, some comments and observations are in order.

• The psychological plausibility condition pertaining to finite memory is only partially
respected — i.e although the learner does need to hold all derivation models in head
to solve at once, and the grammar learned only takes up a finite amount of memory,
much smaller than size of PLD. Note that the PLD queue must have a finite number of
items, as the entire PLD must be consumed before the inference procedure can output
the inferred grammar; looking ahead, this requirement will be lifted when we turn to
the incremental acquisition procedure that will be introduced in §3.3.

• The order in which the PLD corpus is processed by the procedure does not matter
for two reasons: firstly, when the solver checks the acquisition model, it evaluates the
conjunction of all formulae on the (solver’s) stack at that point, and thus the order of
terms doesn’t impact the space of satisfiable interpretations (of the acquisition model);
secondly, the optimization metrics are symmetric under permutation of the entries in
the PLD (by commutativity of addition).

• The inferred set of lexicons 𝐺𝑖 is not enumerated explicitly – rather, it exists implicitly
in the acquisition model produced by the SMT-solver (i.e. the solution to the system
of logical formulas), and members of this set may be filtered, searched and sampled
by querying this model using the SMT-solver.

3.2.3 Learning a Grammar of Matrix Clause Constructions

We will now present a computational experiment in which the acquisition procedure intro-
duced in §3.2.2 is used to infer the minimalist lexicon listed in Table. 3.3 from the PLD
listed in Table 3.2. We will first walk through the application of the acquisition procedure,
and then evaluate and analyze the acquired (target) grammar (i.e. the inferred lexicon).

Using the Instantaneous Acquisition Procedure to Infer an Optimal Grammar.

Let us now step through the application of the acquisition procedure and see how the
particulars play out in the context of this computational experiment.

1. The input to the procedure consists of the PLD and the supplied valuation of model
parameters listed in Table 3.5. The PLD has a total of 29 entries (involving a total
of 26 distinct phonological forms), and the expressions appearing in the PLD were
selected so as to span a diverse range of (core) syntactic structures that do not include
any embedded clauses. These expressions are comprised of: predicates of varying
valency (i.e. intransitive, transitive and ditransitives verbs); arguments that are either

§3.2 Page 125/200

ID PF Interface Conditions LF Interface Conditions

𝐼0 who has eaten/V icecream/N? 𝜃eaten[𝑠 : who, 𝑜 : icecream], 𝐴𝑔𝑟has[𝑠 : who]
𝐼1 icecream/N was eaten/V. 𝜃eaten[𝑜 : icecream], 𝐴𝑔𝑟was[𝑠 : icecream]
𝐼2 who was eating/V icecream/N? 𝜃eating[𝑠 : who, 𝑜 : icecream], 𝐴𝑔𝑟was[𝑠 : who]
𝐼3 was pizza/N eaten/V? 𝜃eaten[𝑜 : pizza], 𝐴𝑔𝑟was[𝑠 : pizza]
𝐼4 what has john/N eaten/V? 𝜃eaten[𝑠 : john, 𝑜 : what], 𝐴𝑔𝑟has[𝑠 : john]
𝐼5 has mary/N eaten/V pizza/N? 𝜃eaten[𝑠 : mary, 𝑜 : pizza], 𝐴𝑔𝑟has[𝑠 : mary]
𝐼6 was john/N eating/V pizza/N? 𝜃eating[𝑠 : john, 𝑜 : pizza], 𝐴𝑔𝑟was[𝑠 : john]
𝐼7 what was mary/N eating/V? 𝜃eating[𝑠 : mary, 𝑜 : what], 𝐴𝑔𝑟was[𝑠 : mary]
𝐼8 what was eaten/V? 𝜃eaten[𝑜 : what], 𝐴𝑔𝑟was[𝑠 : what]
𝐼9 was mary/N given/V pizza/N? 𝜃given[𝑜 : pizza, 𝑖 : mary], 𝐴𝑔𝑟was[𝑠 : mary]
𝐼10 what has mary/N given/V john/N? 𝜃given[𝑠 : mary, 𝑜 : what, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : mary]
𝐼11 mary/N has given/V john/N money/N. 𝜃given[𝑠 : mary, 𝑜 : money, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : mary]
𝐼12 who was money/N given/V to/P? 𝜃given[𝑜 : money, 𝑖 : to who], 𝐴𝑔𝑟was[𝑠 : money]
𝐼13 who has john/N given/V money/N to/P? 𝜃given[𝑠 : john, 𝑜 : money, 𝑖 : to who], 𝐴𝑔𝑟has[𝑠 : john]
𝐼14 was the boy/N sleeping/V? 𝜃sleeping[𝑠 : the boy], 𝐴𝑔𝑟was[𝑠 : the boy]
𝐼15 the boy/N has slept/V. 𝜃slept[𝑠 : the boy], 𝐴𝑔𝑟has[𝑠 : the boy]
𝐼16 john/N was told/V nothing/N. 𝜃told[𝑜 : nothing, 𝑖 : john], 𝐴𝑔𝑟was[𝑠 : john]
𝐼17 someone/N has known/V everything/N. 𝜃known[𝑠 : someone, 𝑜 : everything],

𝐴𝑔𝑟has[𝑠 : someone]
𝐼18 who was asking/V nothing/N? 𝜃asking[𝑠 : who, 𝑜 : nothing], 𝐴𝑔𝑟was[𝑠 : who]
𝐼19 nothing/N was asked/V. 𝜃asked[𝑜 : nothing], 𝐴𝑔𝑟was[𝑠 : nothing]
𝐼20 everything/N was known/V. 𝜃known[𝑜 : everything], 𝐴𝑔𝑟was[𝑠 : everything]
𝐼21 who was everything/N told/V to? 𝜃told[𝑜 : everything, 𝑖 : to who], 𝐴𝑔𝑟was[𝑠 : everything]
𝐼22 john/N has asked/V someone/N everything/N. 𝜃asked[𝑠 : john, 𝑜 : everything, 𝑖 : someone],

𝐴𝑔𝑟has[𝑠 : john]
𝐼23 what was someone/N asked/V? 𝜃asked[𝑜 : what, 𝑖 : someone], 𝐴𝑔𝑟was[𝑠 : someone]
𝐼24 who has told/V someone/N the story/N? 𝜃told[𝑠 : who, 𝑜 : the story, 𝑖 : someone], 𝐴𝑔𝑟has[𝑠 : who]
𝐼25 a boy/N was eating/V the pizza/N. 𝜃eating[𝑠 : a boy, 𝑜 : the pizza], 𝐴𝑔𝑟was[𝑠 : a boy]
𝐼26 john/N has told/V mary/N a story/N. 𝜃told[𝑠 : john, 𝑜 : a story, 𝑖 : mary], 𝐴𝑔𝑟has[𝑠 : john]
𝐼27 the story/N was told/V to a boy/N. 𝜃told[𝑜 : the story, 𝑖 : to a boy], 𝐴𝑔𝑟was[𝑠 : the story]
𝐼28 what was john/N asking/V? 𝜃asking[𝑠 : john, 𝑜 : what], 𝐴𝑔𝑟was[𝑠 : john]

Table 3.2: Primary Linguistic Data (PLD). The learner is presented with a sequence of
pairs of PF and LF interface conditions – i.e. a sequence of sentences annotated with
syntactic relations. The PLD is an input to the acquisition procedure. The PF interface
conditions consist of a tokenized sentence, with some tokens having their category pre-
specified (indicated by a suffix of a slash followed by the category). The LF interface
conditions consists of: (i) locality constraints that include agreement (𝐴𝑔𝑟) and predicate-
argument structure (i.e. a 𝜃 grid), with the predicate indicated in the suffix and the subject,
object and indirect object components marked by “s:”, “o:” and “i:” respectively; (ii) the
type of the sentence – i.e. either declarative or interrogative – is also annotated on each
sentence, indicated by the end-of-sentence punctuation. The LF interface conditions are
entirely hierarchical/structural in the constraints they impose – i.e. the values filling the
slots consist of sets of tokens, not sequences of tokens.

simple uncountable nouns or more complex determiner phrases; various types of active
and passive voiced constructions including declaratives, yes/no questions (formed by
subj.-aux. inversion), and wh-questions. See Table 3.8 for further classification of the
entries in the PLD.

2. The initial state of the learner is a lexicon model that is not constrained by having to
be able to produce particular derivations to satisfy stipulated interface conditions –
i.e. the initial lexicon is a blank slate for the learner. At this point in the acquisition

§3.2 Page 126/200

ID Category Features Phonological Forms

pi
zz

a

ev
er

yt
hi

ng

jo
hn

m
ar

y

no
th

in
g

ic
ec

re
am

so
m

eo
ne

m
on

ey

st
or

y

bo
y

a th
e

to sl
ee

pi
ng

sl
ep

t

ha
s

w
as

ea
ti

ng

ea
te

n
as

ki
ng

kn
ow

n
as

ke
d

to
ld

gi
ve

n

w
ho

w
ha

t
𝜖

L1 𝑉 = 𝑥0,∼ 𝑥0 · · · · · · · · · · · · · · · · · ××× ××× ××× ××× ××× · · · · ·
L2 𝑉 = 𝑥0,= 𝑥0,∼ 𝑥0 · ××× ××× ××× · · ·
L3 𝐶𝐷𝑒𝑐𝑙. = 𝑥0, 𝐶 · ×××
L4 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0,+𝑧, 𝐶 · ×××
L5 𝑣 <= 𝑥0,∼ 𝑥0 · ×××
L6 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0, 𝐶 · ×××
L7 𝑣 <= 𝑥0,= 𝑥0,∼ 𝑥0 · ×××
L8 𝑃 = 𝑥0,∼ 𝑥0 · · · · · · · · · · · · ××× · · · · · · · · · · · · · ·
L9 𝐷 = 𝑥0,∼ 𝑥0,−𝑙 · · · · · · · · · · ××× ××× · · · · · · · · · · · · · · ·
L10 𝐷 = 𝑥0,∼ 𝑥0 · · · · · · · · · · ××× ××× · · · · · · · · · · · · · · ·
L11 𝐷 ∼ 𝑥0,−𝑧 · ××× ××× ·
L12 𝐷 ∼ 𝑥0,−𝑙,−𝑧 · ××× ××× ·
L13 𝑇 = 𝑥0,+𝑙,∼ 𝑥0 · · · · · · · · · · · · · · · ××× ××× · · · · · · · · · ·
L14 𝑉 ∼ 𝑥0 · · · · · · · · · · · · · ××× ××× · · · · · · · · · · · ·
L15 𝑁 ∼ 𝑥0,−𝑙 ××× ××× ××× ××× ××× ××× ××× ××× · · · · · · · · · · · · · · · · · · ·
L16 𝑁 ∼ 𝑥0 ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× · · · · · · · · · · · · · · · · ·

Table 3.3: Factored View of the Optimized Inferred Lexicon. This is a factored view of
the optimized inferred lexicon (listed in Table 3.6) that was the output of the acquisition
procedure applied to the primary linguistic data listed in Table 3.2 using the valuation of
model parameters listed in Table 3.5. The 27 columns each code for a distinct phonological
form; there are 26 overt phonological forms, and one covert phonological form (i.e. 𝜖). The
16 rows each code for a distinct lexical feature sequence. An entry in the table indicates that
the pairing of the associated phonological form and lexical feature sequence is an entry in
the lexicon. Since every entry in the lexicon can be uniquely factored apart into a pairing of
a phonological form and a lexical feature sequence, there is a one-to-one mapping between
the entries in this table and the entries in the lexicon. The rows and columns have been
seriated (using the hamming distance metric) so as to visually group together similar entries.

trajectory, the class of possible hypothesis – i.e. the set of satisfiable interpretations of
the acquisition model constructed thus far – is the set of all minimalist lexicons that
can accord with the bounds established by the supplied valuation of model parameters
and thus can be encoded by the lexicon model. The size of the lexicon model initialized
in Step 2 of the procedure – i.e. the size of the lexicon node sort Ω - is computed as
follows. First, after the lexicon model is initialized, all phonological forms are scraped
from the PLD so as to determine the number of distinct overt phonological forms, in
this case 26. The size of the lexicon model is then computed using the following model
parameters25:

• Model parameter (g) – i.e. “Maximum Number of Overt PF Connections” – which
has a value of 1; as there are a total of 26 distinct phonological forms, (26 × 1)
lexical feature sequences will be allocated for association with overt phonological
forms.

• Model parameter (h) – i.e. “Maximum Number of Covert PF Connections” –
which has a value of 6; as there is only one covert phonological form, 𝜖, a total

25This computation enables the size of the lexicon model to be automatically determined as a function of
the PLD – c.f. simply stipulating the maximum number of lexical entries in the lexicon, which needs to be
adjusted for different PLD.

§3.2 Page 127/200

ID Category Features Input Sentence

𝐼27 𝐼16 𝐼9 𝐼3

⎧⎪⎨⎪⎩
𝐼1,

𝐼19,

𝐼20

⎫⎪⎬⎪⎭ 𝐼8

⎧⎪⎨⎪⎩
𝐼0,

𝐼2,

𝐼18

⎫⎪⎬⎪⎭ 𝐼24 𝐼26

{︃
𝐼11,

𝐼22

}︃
𝐼10 𝐼13

{︃
𝐼12,

𝐼21

}︃
𝐼23

⎧⎪⎨⎪⎩
𝐼4,

𝐼7,

𝐼28

⎫⎪⎬⎪⎭
{︃
𝐼5,

𝐼6

}︃
𝐼17 𝐼25 𝐼15 𝐼14

L1 𝑉 = 𝑥0,∼ 𝑥0 · · · 1 1 1 1 · · · · · · · 1 1 1 1 · ·
L2 𝑉 = 𝑥0,= 𝑥0,∼ 𝑥0 1 1 1 · · · · 1 1 1 1 1 1 1 · · · · · ·
L3 𝐶𝐷𝑒𝑐𝑙. = 𝑥0, 𝐶 1 1 · · 1 · · · 1 1 · · · · · · 1 1 1 ·
L4 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0,+𝑧, 𝐶 · · · · · 1 1 1 · · 1 1 1 1 1 · · · · ·
L5 𝑣 <= 𝑥0,∼ 𝑥0 1 1 1 1 1 1 · · · · · · 1 1 · · · · · ·
L6 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0, 𝐶 · · 1 1 · · · · · · · · · · · 1 · · · 1
L7 𝑣 <= 𝑥0,= 𝑥0,∼ 𝑥0 · · · · · · 1 1 1 1 1 1 · · 1 1 1 1 1 1
L8 𝑃 = 𝑥0,∼ 𝑥0 1 · · · · · · · · · · 1 1 · · · · · · ·
L9 𝐷 = 𝑥0,∼ 𝑥0,−𝑙 1 · · · · · · · · · · · · · · · · 1 1 1
L10 𝐷 = 𝑥0,∼ 𝑥0 1 · · · · · · 1 1 · · · · · · · · 1 · ·
L11 𝐷 ∼ 𝑥0,−𝑧 · · · · · · · · · · 1 1 1 1 1 · · · · ·
L12 𝐷 ∼ 𝑥0,−𝑙,−𝑧 · · · · · 1 1 1 · · · · · · · · · · · ·
L13 𝑇 = 𝑥0,+𝑙,∼ 𝑥0 1
L14 𝑉 ∼ 𝑥0 · · · · · · · · · · · · · · · · · · 1 1
L15 𝑁 ∼ 𝑥0,−𝑙 · 1 1 1 1 · · · 1 1 1 1 1 1 1 1 1 · · ·
L16 𝑁 ∼ 𝑥0 2 1 1 · · · 1 2 2 2 1 1 · · · 1 1 2 1 1

Table 3.4: Summary of Derivations. This table shows how the optimized inferred lexicon
(listed in Table 3.3) is compatible with the primary linguistic data (listed in Table 3.2). Each
of the 16 rows code for a distinct lexical feature sequence. Each of the 20 columns codes for a
distinct syntactic structure that is constructed by the lexical feature sequences coded for in
that column (with the integer values indicating how many times each lexical feature sequence
participates). The columns have been seriated (using the hamming distance metric) so as
to visually group together similar columns. This table shows that various subsets of the 16
lexical feature sequences can yield at least 20 distinct syntactic structures.

ID Model Parameter Value

(a) Maximum Number of Empty Lexical Items 2
(b) Maximum Number of Phrasal Movements 2
(c) Maximum Number of Head Movements 2
(d) Maximum Number of Features per Lexical Item 3
(e) Number of Overt Lexical Items per PF 2
(f) Number of Covert Lexical Items per PF 5
(g) Maximum Number of Overt PF Connections 1
(h) Maximum Number of Covert PF Connections 6
(i) Selectional Features Labels [𝑥0, 𝑥1, 𝑥2]
(j) Licensing Features Labels [𝑙, 𝑟, 𝑧]

Table 3.5: Valuation of model parameters for the computational experiment carried out in
§3.2.3. See Table 3.1 for a description of these model parameters.

of (1𝑥6) lexical features sequences will be allocated for association with 𝜖.

• Model parameter (d) – i.e. “Maximum Number of Features per Lexical Item” –
which has a value of 3; thus, 3 syntactic features will be allocated for each of the
lexical feature sequence that have been allocated.

The size of the lexicon model is the product of (i) the number of syntactic features
allocated per allocated lexical feature sequence, and (ii) the number of allocated lexical
feature sequences:

|Ω| = 96 = 3× ((26× 1) + (1× 6))

§3.2 Page 128/200

3. The learner then proceeds to process the PLD (arranged as a queue) one entry at a
time. After the first pair of interface conditions, 𝐼0, is taken off the queue, the learner
constructs the first derivation model, constrains it and connects it to the lexicon; the
size of the first derivation model – i.e. the size of the derivation node sort (N) – can
be calculated as a function of the following terms: (i) the number of tokens in the
sentence – in this case, 𝐼0 has 4 tokens in the expression “who has eaten icecream?” –
from which is determined the number of overt lexical items that will participate in the
derivation; (ii) the maximum number of empty lexical items that may participate in
the derivation, in this case, 2 (per model parameter (a)); (iii) the maximum number
of features per lexical item, in this case 3 (per model parameter (d)). Then the size of
the derivation model, |N|, is:

18 = 3× (4 + 2) + 2

Here 3×(4+2) is the product of the maximum number of features per lexical entry (i.e.
3) and the maximum number of lexical entries that can participate in the derivation
(4 + 2) (the addition of 2 arising from the inclusion of the root node and the bottom
node).2627

The learner next proceeds to process, one by one, the remaining entries in the PLD.
As each remaining entry in the PLD is processed, a new derivation model is initialized,
constrained by the LF and PF interface conditions listed in that entry, connected to the
lexicon model via an uninterpreted function, and added to the solver’s stack, thereby
growing the acquisition model. Each new derivation model, being tasked with parsing
a particular entry in the PLD, will have a different size, as the number of tokens in
each entry can vary; furthermore, each derivation model has its own separate set of
sorts and uninterpreted functions, and must be connected to the lexicon model with
its own bus (i.e. the uninterpreted function 𝜇 that maps nodes in the derivation model
to nodes in the lexicon model), so that no two derivation models affect one another in
any way except that they are both constrained by the same lexicon model. As each
derivation model is connected to the lexicon, thereby further constraining the class of
satisfiable interpretations of the lexicon model, the solver is being tasked with having
to figure out how to do more with a lexicon that is bounded in size.

4. Having processed the PLD and constructed the acquisition model (i.e. the lexicon
model and the derivation models connected to it), the learner next proceeds to add
constraints derived from the optimization metrics to the acquisition model (in Step 4),
thereby enabling the SMT-solver to infer the optimal grammar. Let us consider the
application of each step of this scheme for optimizing the acquisition model; for each
metric (including this one), after determining the optimal metric value, the acquisition
model is constrained to take on that particular value.

(a) The learner proceeds to optimize the acquisition model using metric (3.1), so as
to minimize the number of lexical entries. The metric is bounded above by the
maximum number of lexical entries in the lexicon model, established in the prior

26See §?? for further details.
27Note that, up until this point, the procedure has a operated in a manner similar to the procedure for

parsing, aside from the lack of a supplied lexicon that is used to constrain the lexicon, and the size of the
lexicon model being computed as a function of supplied model parameters rather than, in the case of parsing,
the supplied lexicon.

§3.2 Page 129/200

step to be:
32 = (26× 1) + (1× 6)

and the metric is bound below by 1 as the lexicon must have at least one lexical
feature sequence. Upon evaluating compatibility of optimization metric values
between these bounds, the learner determines that the minimal metric value is 16,
implying that there is no possibility of the learner inferring a lexicon with fewer
than 16 lexical feature sequences as that is the minimal number of lexical feature
sequences required for a lexicon to be compatible with the PLD.28 A constraint
enforcing that interpretations of the acquisition model have this metric value is
then added to the solver stack, thereby restricting the class of solutions to the
acquisition model to those in which the lexicon has exactly 16 lexical feature
sequences.

(b) The learner next proceeds to optimize the acquisition model using metric (3.5)
so as to minimize the number of syntactic features (i.e. selectional and licensing
features) in the lexicon. This metric is bounded above by the product of the
number of lexical entries (i.e. 16) and the maximum number of features (i.e. 3),
which comes out to 48.29 This metric is bounded below by the product of the
minimum number of features per lexical item (i.e. 1) and the minimum number
of lexical items (i.e. 16), which comes out to 16. Upon evaluating compatibility
of optimization metric values between these bounds, the learner determines the
minimal metric value to be 33. A constraint enforcing that interpretations of the
acquisition model have this metric value is then added to the solver stack, thereby
restricting the class of solutions to the acquisition model to those in which the
lexicon has exactly 16 lexical feature sequences and exactly 33 selectional and
licensing features.

(c) The learner then proceeds to optimize the acquisition model with metric (3.7) so
as to minimize the number of merge operations in each derivation.30 This metric
has an upperbound of 585, which is the sum of the maximum size of the derivation
node sort in each derivation model, and a lower bound of 29, which is equal to
the number of entries in the PLD, as there must be a derivation model for each
entry in the PLD, and each derivation must have a non-empty derivation node
sort. Upon evaluating compatibility of optimization metric values between these
bounds, the learner determines the minimal metric value to be 425. A constraint
enforcing that interpretations of the acquisition model have this metric value is
then added to the solver stack.

(d) The learner next optimizes the acquisition model using metric (3.8), so as to min-
imize the number distinct of selectional feature labels in the lexicon; this metric
is bounded above by 3, which is the size of the set of selectional feature labels in
the supplied valuation of model parameters, and is bounded below by 1 because

28Although the optimal metric value was identified, we the optimal lexicon was not inferred; rather, we
are just checking for satisfiability so as to determine whether it is possible for the model to comport with
the metric taking on a particular value.

29If instead we use the maximum number of lexical entries - i.e. 32 – then the metric is instead bounded
above by 96; however, whenever possible the system tries to take advantage of knowledge obtained in prior
optimization steps.

30This is in accordance with Principles of Economy, having the effect of removing spurious movement
operations that occur in the derivation; see 2 and 3.2.1 for further discussion.

§3.2 Page 130/200

there must be at least one instance of external merge in a derivation. The learner
determines that only 1 selectional feature is required; this is expected as there is
no requirement preventing the lexicon from yielding a particular derivation, only
a requirement that the lexicon generate a finite set of derivations that satisfy the
interface conditions specified in the PLD. A constraint enforcing that interpreta-
tions of the acquisition model have this metric value is then added to the solver
stack.

(e) Finally, the learner optimizes the acquisition model using metric (3.9), so as to
minimize the number of licensing feature labels in the lexicon; this metric is
bounded above by 3, which is the size of the set of licensing feature labels in the
supplied valuation of model parameters, and is bounded below by 0 because it
might be the case that no instances of internal merge are required. The learner
determines that only 2 licensing features are required; this is anticipated as there
are entries in the PLD that may be satisfied by derivations involving a crossing
of wh-raising and subject-raising, which will require differing licensing features,
pursuant to the Shortest Movement Condition. A constraint enforcing that in-
terpretations of the acquisition model have this metric value is then added to the
solver stack.

Having completed the process of optimizing the acquisition model, the acquisition
model is next checked using the SMT-solver and found to be satisfiable. It must
therefore be the case that whatever the particular inferred lexicon turns out to be, it
will have exactly 16 lexical items, 33 syntactic features in the lexicon (not including
the special feature 𝐶), a single selectional feature, and two licensing features; likewise,
the derivations produced to satisfy the interface conditions in the PLD will require a
total of 425 nodes in total over all of the derivations.

5. Finally, the SMT-solver identifies a satisfiable interpretation of the (optimized) acqui-
sition model, and the learner automatically recovers from this model interpretation
both the (optimal) inferred lexicon, and the particular derivations that the inferred
lexicon yields (to satisfy the interface conditions in the PLD).31

The (optimal) inferred lexicon, listed in Table 3.6, shows us which lexical feature sequences
can be associated with which phonological forms. The (optimal) inferred lexicon comports
with the optimization constraints applied in steps (4a)-(4e) – i.e. the lexicon has: 16 distinct
lexical feature sequences, as determined by counting the number of rows in the factored lex-
icon view, a total of 33 syntactic features (not counting the special feature 𝐶) among the
lexical feature sequences, one selectional feature (𝑥0), and two licensing features ({𝑙, 𝑧}).
The factored representation of the lexicon, made explicit in the presentation of the lexicon
in Table 3.3, is motivated both by (a) performance considerations of model checking – i.e.
the larger the lexicon model is made, the more the solver slows down – and (b) psychologi-
cal plausibility conditions, in so far as the factored representation allows for a more efficient
encoding of the lexicon as compared to the standard representation of the lexicon.32 (This

31An agenda-based MG parser (Harkema, 2001) was used to verify that the recovered (inferred) lexicon
can be used to parse each sentence listed in the PLD and recover the same derivation as was recovered. See
Fig. 2-3 in Ch. 2.2 for further details about this parser.

32In the standard representation of an MG lexicon, each pairing of a phonological form and a lexical
feature sequence is listed explicitly, so that the same phonological form may be listed more than once; in
the factored representation, a phonological form can only be listed once.

§3.2 Page 131/200

will be covered in more detail later in this section when we evaluate and analyze the in-
ferred lexicon.) Notably, the factored representation of the lexicon allows for a division of
labor between the optimization metrics in so far as metrics (3.1) and (3.1) serve to mini-
mize the lexical feature sequences appearing in the lexicon, while the associations between
phonological forms and lexical feature sequences are minimized by metric (3.8).

Additionally, the Summary of Derivations (see Table 3.4) lists, for each entry in the PLD,
the particular lexical feature sequences (from the recovered lexicon) that participate in the
(recovered) derivation that satisfied the interface conditions listed in that entry; although
this view does not show us how the lexical items combine together (via merge), it does show
us which lexical items were involved.

Evaluation and Analysis of the Inferred Grammar.

Let us now evaluate what knowledge of syntax the learner has acquired from the primary
linguistic data via the acquisition procedure. The optimized inferred lexicon and the sum-
mary of derivations, listed in Tables 3.3 and 3.4 respectively, will be the subjects of the
evaluation and analysis, which will center on evaluating the inferred lexicon with respect to
its strong generative capacity – i.e. whether: (i) the lexicon yields, for each entry in the
primary linguistic data, the prescribed derivation; (ii) the lexicon yields, for expressions with
related interpretations, structures that are systematically related via a transformation; (iii)
the lexicon has the capacity to generalize beyond experience, yielding structures distinct
from the derivations the lexicon yields in parsing entries in the primary linguistic data; (iv)
the lexicon avoids producing ungrammatical expressions. We will consider each of these four
points in turn.

The inferred lexicon conservatively associates 26 overt phonological forms with 16 lexical
feature sequences, yielding derivations (for the entries in the PLD) that comport with con-
temporary theories of minimalist syntax33, employing syntactic movement to enable a phrase
to satisfy multiple syntactic relations and utilizing empty (covert) lexical items for represent-
ing (little) 𝑣 and 𝐶.34

For example, the derivation (presented in Fig. 3-8) yielded by the (optimized) inferred
lexicon to satisfy the interface conditions stipulated in entry 𝐼13 of the PLD (listed in Table-
3.2) demonstrates several of the syntactic phenomenon that are correctly modeled as pre-
scribed by minimalist theories of syntax, including: A’ movement (Wh-fronting for question
formation); 𝑉 -to-𝑣 head-movement (as part of the predicate-argument structure within the
derivation; see (Hale and Keyser, 2002)); 𝑇 -to-𝐶 head-movement (i.e. subj-auxiliary verb
inversion; see (Pesetsky and Torrego, 2001)); and A-movement (subject raising). See Fig-
ure 3-9 for additional examples of derivations yielded by the (optimized) inferred lexicon that
involve a transitive verb: 3-9a and 3-9b are declaratives; 3-9c and 3-9d are yes/no-questions;
3-9e and 3-9f are wh-questions. Of these examples, Figures 3-9a, 3-9c, and 3-9e are for
active-voice expressions, and Figures 3-9b, 3-9d and 3-9f are for passive-voice expressions.

In yielding derivations that satisfied each of the 29 pairs of interface conditions listed
in the PLD, the lexicon generated a total of 20 distinct syntactic structures, three of which

33E.g. See the presentations in (Hornstein et al., 2005), (Adger, 2003), and (Radford, 1997).
34Although the formulae derived from interface conditions to constrain derivation model do not distinguish

between overt and covert lexical items, they do sometimes restrict the category of a constituent involved in
a syntactic relation.

§3.2 Page 132/200

(a) Correct derivation yielded by the optimal (inferred) lexicon.

(b) Incorrect derivation yielded by the unoptimized (inferred) lexicon.

Figure 3-4: Two derivations that satisfy entry 𝐼1 in the PLD (i.e. “Icecream was eaten.”); (3-
4a) and (3-4b) are yielded by the optimized and unoptimized inferred lexicons respectively.
(3-4a) comports with theory whereas (3-4b) does not.

§3.2 Page 133/200

(a) Correct derivation yielded by the optimal (in-
ferred) lexicon.

(b) Incorrect derivation yielded by the unopti-
mized (inferred) lexicon.

Figure 3-5: Two derivations that satisfy entry 𝐼3 in the PLD (i.e. “Was pizza eaten?”); (3-
5a) and (3-5b) are yielded by the optimized and unoptimized inferred lexicons respectively.
(3-5a) comports with theory whereas (3-5b) does not.

§3.2 Page 134/200

(a) Correct derivation yielded by the optimal (inferred) lexicon.

(b) Incorrect derivation yielded by the
unoptimized (inferred) lexicon.

Figure 3-6: Two derivations that satisfy entry 𝐼26 in the PLD (i.e. “John has told Mary a
story.”); (3-6a) and (3-6b) are yielded by the optimized and unoptimized inferred lexicons
respectively. (3-6a) comports with theory whereas (3-6b) does not.

§3.2 Page 135/200

(a) Correct derivation yielded by the optimal (inferred) lex-
icon.

(b) Incorrect derivation yielded by the unoptimized (inferred) lexicon.

Figure 3-7: Two derivations that satisfy entry 𝐼27 in the PLD (i.e. “The story was told to
a boy.”); (3-7a) and (3-7b) are yielded by the optimized and unoptimized inferred lexicons
respectively. (3-7a) comports with theory whereas (3-7b) does not.

§3.2 Page 136/200

{eating, eaten, asking, asked, known}/𝑉 :: = 𝑥0,∼𝑥0
{given, asked, told}/𝑉 :: = 𝑥0,= 𝑥0,∼𝑥0

𝜖/𝐶𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑣𝑒 :: = 𝑥0, 𝐶
𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ::<= 𝑥0,+𝑧, 𝐶

𝜖/𝑣 ::<= 𝑥0,∼𝑥0
𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 ::<= 𝑥0, 𝐶

𝜖/𝑣 ::<= 𝑥0,= 𝑥0,∼𝑥0
to/𝑃 :: = 𝑥0,∼𝑥0

{a, the}/𝐷 :: = 𝑥0,∼𝑥0,−𝑙
{a, the}/𝐷 :: = 𝑥0,∼𝑥0

{what,who}/𝐷 ::∼𝑥0,−𝑧
{what,who}/𝐷 ::∼𝑥0,−𝑙,−𝑧

{has,was}/𝑇 :: = 𝑥0,+𝑙,∼𝑥0
{sleeping, slept}/𝑉 ::∼𝑥0

{pizza, everything, john,mary, nothing, icecream, someone,money}/𝑁 ::∼𝑥0,−𝑙
{story, pizza, everything, john,mary, boy, nothing, icecream, someone,money}/𝑁 ::∼𝑥0

Table 3.6: The optimal minimalist lexicon that was inferred from the PLD listed in Ta-
ble 3.2. For each entry in the PLD, the derivation yielded by the lexicon both agrees with
the interface conditions stipulated in that entry, and also aligns with the prescriptions of
contemporary theories of minimalist syntax. Each lexical entry consists of a phonetic form
paired with a lexical feature sequence (i.e. a sequence of syntactic features); a double-colon
indicates that each member of the set of phonetic forms on the left hand side is paired with
the lexical feature sequence on the right hand side. The phonetic form 𝜖 is covert (unpro-
nounced). A feature has: (i) a value from a finite set of categories; (ii) a type, which is either
selector, selectee, licensor or licensee, indicated by the prefix =, ∼, + and − respectively;
a < or > prefixed before a selector prefix indicates that the selector triggers left or right
head-movement respectively. There is also a special feature, 𝐶, that serves to indicate the
completion of a parse. See Table 3.3 for a factored view of this lexicon.

occur thrice, three of which occur twice, and the remaining occurring just once;35 this was
accomplished using only 16 distinct lexical feature sequences. The clusters in the column
labels of Table 3.4 (i.e. the Summary of Derivations) show that sentences with the same
syntactic structures prescribed by the theory use same lexical items; thus, the system is
consistent in how it interprets sentences with the same underlying syntactic structure.

To put the analysis of the optimized inferred lexicon into context, let us briefly consider
a suboptimal lexicon, listed in Table 3.7, that was inferred without any optimization con-
straints applied – i.e. the lexicon that was inferred at the very end of Step 3 of the procedure
(i.e. immediately after the PLD was consumed and prior to optimization).36 The unopti-
mized lexicon has 20 distinct lexical feature sequences, 44 syntactic features (not counting
the special symbol 𝐶), one selectional feature label, and two licensing feature labels. For a
subset of the entries in the PLD, the optimal inferred lexicon yields derivations that accord
with the theory and the unoptimized lexicon yields derivations that do not – e.g. the deriva-

35A lower bound of 20 was obtained by counting the number of columns in the factored input sequence
view; subsequently it was manually confirmed that there are exactly twenty distinct syntactic structures.

36We can short circuit the procedure at any time to check the acquisition model, so that if something goes
wrong we can isolate the bug down to a particular derivation; this is reminiscent of how in the chapter on
parsing, we could check the acquisition model after adding each individual axiom, so as to identify, in the
case of the solver declaring the acquisition model to be unsatisfiable, which axiom was responsible.

§3.2 Page 137/200

𝜖/𝐶𝐷𝑒𝑐𝑙. :: = 𝑥0, 𝐶
𝜖/𝐶𝑄𝑢𝑒𝑠. ::<= 𝑥0, 𝐶
𝜖/𝐶𝑄𝑢𝑒𝑠. ::<= 𝑥0,+𝑧, 𝐶

𝜖/𝑣 :: = 𝑥0,∼𝑥0
𝜖/𝑣 ::<= 𝑥0,= 𝑥0,∼𝑥0

{a, the}/𝐷 :: = 𝑥0,∼𝑥0,−𝑙
who/𝐷 ::∼𝑥0,−𝑧

a/𝐷 :: = 𝑥0,= 𝑥0,∼𝑥0
the/𝐷 :: = 𝑥0,∼𝑥0

{has,was}/𝑇 :: = 𝑥0,+𝑙,∼𝑥0
was/𝑇 :: = 𝑥0,+𝑧,∼𝑥0

{eaten, told}/𝑉 :: = 𝑥0,+𝑙,∼𝑥0
{given, asked, told}/𝑉 :: = 𝑥0,= 𝑥0,∼𝑥0

{sleeping, slept}/𝑉 ::∼𝑥0
{asking, asked, eating, eaten, known}/𝑉 :: = 𝑥0,∼𝑥0

{everything, john,mary, nothing, someone,money}/𝑁 ::∼𝑥0,−𝑙
{pizza,what,who, icecream}/𝑁 ::∼𝑥0,−𝑙,−𝑧

{someone,money, story, pizza, everything, john, boy, nothing, icecream, to}/𝑁 ::∼𝑥0
what/𝑁 ::∼𝑥0,−𝑧

to/𝑃 :: = 𝑥0,∼𝑥0

Table 3.7: A suboptimal minimalist lexicon that was inferred immediately after processing
the PLD (listed in Table 3.2) but prior to optimization – i.e. this is the lexicon recovered from
a satisfiable interpretation of the model checked in Step 3h of the instantaneous acquisition
procedure. For each entry in the PLD, the derivation yielded by the lexicon both agrees with
the interface conditions stipulated in that entry. Each lexical entry consists of a phonetic
form paired with a lexical feature sequence (i.e. a sequence of syntactic features); a double-
colon indicates that each member of the set of phonetic forms on the left hand side is paired
with the lexical feature sequence on the right hand side. A feature has: (i) a value from
a finite set of categories; (ii) a type, which is either selector, selectee, licensor or licensee,
indicated by the prefix =, ∼, + and − respectively; a < or > prefixed before a selector
prefix indicates that the selector triggers left or right head-movement respectively. There is
also a special feature, 𝐶, that serves to indicate the completion of a parse.

tions that were yielded by the unoptimized lexicon for entries 𝐼1 and 𝐼3 (presented in Figures
3-4b and 3-5b respectively) both have the problem of an argument phrase merging with a
verb first as a complement, and then (illicitly) merging again with the same verb as a spec-
ifier. The derivations that were yielded by the unoptimized lexicon for entries 𝐼26 and 𝐼27
(presented in Figures 3-6b and 3-7b respectively) both have the problem of a misbehaving
determiner “a”: in the case of the derivation for 𝐼26, one internal argument (“Mary”) incor-
rectly originates within the other internal argument (“a story”); in the case of the derivation
for 𝐼27, “to” is incorrectly associated with category 𝑁 and merges into the specifier position
of the “a”. Additionally, the unoptimized lexicon yields derivations that (inappropriately)
employ licensors for mixed purposes: +𝑧 is used both to trigger wh-movement, but also to
trigger subject-raising (necessitated by agreement) as in Figures 3-4b and 3-5b; +𝑙 is used
both to trigger subject raising, but also is used to drive syntactic movement that enables an
internal argument to (illicitly) merge twice with a predicate as seen in Figures 3-4b, 3-5b
and 3-7b. Finally, the unoptimized lexicon yields the derivations in Figures 3-4b, 3-5b and
3-7b that do not include 𝑉 -to-𝑣 head-movement. To summarize, in each of these deriva-

§3.2 Page 138/200

tions yielded by the unoptimized lexicon, the interface conditions are satisfied, yet they are
suboptimal with respect to economy considerations as compared to the derivations yielded
by the optimized lexicon – e.g. the unoptimized lexicon yields the derivations in Figures
3-4b, 3-5b and 3-6b that involve 6, 6, and 9 merge operations respectively, as opposed to
the derivations yielded by the optimized lexicon (for those same PLD entries) that have 5,
5, and 8 merge operations respectively.37

Turning back to the evaluation and analysis of the optimized inferred lexicon, let us
examine the factored view of the inferred lexicon, listed in Table 3.3. This table was seriated
along both the rows and columns using the Google OR Tools library so as to (visually) group
together similar rows and columns, and thereby display clusters of (syntactically) similar
words; upon analyzing these clusters, it was determined that the inferred lexicon correctly
associates phonological forms with lexical and functional categories, and that phonological
forms can be clustered by the syntactic roles they take on (i.e. phonological forms can be
clustered by lexical feature sequences):

{story, boy} /𝑁 :: {L16} (3.10)
{pizza, everything, john, mary, nothing, icecream, someone, money} /𝑁 :: {L15,L16} (3.11)

{a, the} /𝐷:: {L9,L10} (3.12)
{who, what} /𝐷:: {L11,L12} (3.13)

{to} /𝑃 :: {L8} (3.14)
{has, was} /𝑇 :: {L8} (3.15)

{sleeping, slept} /𝑉 :: {L14} (3.16)
{eating, eaten, asking, known} /𝑉 :: {L1} (3.17)

{asked} /𝑉 :: {L1,L2} (3.18)
{told, given} /𝑉 :: {L2} (3.19)

There are clusters for: nominal arguments that cannot undergo subject raising (3.10);
nominal arguments that can optionally under go subject raising (via syntactic movement
triggered by agreement) (3.11); determiner phrases that can optionally undergo subject
raising (triggered by agreement) but does not undergo wh-raising (3.12); determiners that
may first optionally undergo subject raising, and then must undergo wh-raising (hence they
may undergo movement twice) (3.13); prepositions used in (non-dative-shifted) ditransitives
(3.14); tense markers that require agreement (3.15); intransitive verbs (3.16), transitive
verbs (3.17), ditransitive verbs (3.18), and verbs that can be either transitive or ditransitive
(3.19).

Finally, the entries in the primary linguistic data may be classified using three parame-
ters: the valency of the verb, the voice of the verb, and the type of sentence (i.e. declarative,
yes/no-question or wh-question).

• The valency of the verb is determined by which one of three lexical feature sequences
appears in the derivation: L14 for intransitive verbs, L1 for transitive verbs, and L2

for ditransitive verbs. To see why, consider that L14, L1, and L2 are the only lexical
feature sequences that were assigned the categorical variable 𝑉 , and that they have 0,
1 and 2 selector features (i.e. ∼𝑥0 vs. = 𝑥0,∼𝑥0 vs. = 𝑥0,= 𝑥0,∼𝑥0) respectively;
since a selector feature (i.e. = 𝑥0) enables the projection of the lexical head to merge
with an (internal) argument, L14, L1, and L2 can thus merge with zero, one or two
internal arguments respectively.

37Both lexicons yield derivations for 𝐼27 that involve 9 merge operations.

§3.2 Page 139/200

• The voice of the verb is determined by which one of two lexical feature sequences
appears in the derivation: L7 for active voice and L5 for passive voice. To see why,
consider that L5 and L7 are the only two lexical feature sequences to be assigned the
categorical variable 𝑣 (i.e. light verb), and that they have 1 and 2 selector features
(i.e. <= 𝑥0,∼𝑥0 vs. <= 𝑥0,= 𝑥0,∼𝑥0) respectively; the first selector feature, <=
𝑥0, merges with the verb to form a double-VP shell (and then triggers 𝑉 -to-𝑣 head-
movement), and the presence of a second selector feature (i.e. = 𝑥0) enables the
projection of the lexical head to merge with an (external) argument. Thus L5 does
not merge with an external argument whereas L7 does, so that the former codes for
passive-voice and the latter codes for active voice.38

• The sentence type is determined by which one of three lexical feature sequences ap-
pears in the derivation: L3 for a declarative, L6 for a yes/no question and L4 for a
wh-question. To see why, consider that: (i) L3 is the only lexical feature sequence
associated with the category 𝐶𝐷𝑒𝑐𝑙.; (ii) L6 and L4 are the only lexical feature se-
quences associated (appropriately) with the category 𝐶𝑄𝑢𝑒𝑠. and although they both
have a selector feature, <= 𝑥0, that merges with a TP and then triggers 𝑇 -to-𝐶 head-
movement (modeling subject aux. verb inversion as traditionally required by both
yes/no-questions and wh-questions), only L4 has a licensor feature +𝑧 that serves to
trigger wh-raising.

Every derivation (yielded by the inferred lexicon so as to satisfy the entries listed in the
PLD) has exactly one member from each of these three groups of lexical feature sequences,
thereby enabling the classification of the entries in the PLD with respect to these three
parameters by way of checking for the presence of particular lexical feature sequences as
described above. Table 3.8 presents a summary of this classification of the PLD; notably,
some of the entries in the table are empty – i.e. there are no expressions in the PLD that
are active-voiced wh-questions with either intransitive or ditransitive verbs. We will soon
see that the lexicon can yield structures that would fill those empty entries; to do so, we
will first examine how the structures in Table 3.8 are related via transformations.

Expressions with related interpretations have systematically related structures. Plainly, this
means that derivations for sentences with related meanings (e.g. a declarative and the
yes/no-question that may be formed from it) should be related to one another via some pro-
cedure that transforms the derivation for one into the derivation for the other in a consistent,
predictable and productive manner (e.g. aux-raising, or in the parlance of minimalist theo-
ries of syntax, T-to-C head-raising). Let us see how the inferred lexicon, and the particular
derivations it yielded, embody this notion in a formal setting.

Abstracting away the particular phonological forms associated with particular lexical
feature sequences, a structure (i.e. a derivation) is coded for by the multiset of lexical
feature sequences that participate in it.39 Then structures assigned to expressions with
related interpretations are systematically related by way of transformations that map one
structure to another via the addition and subtraction of particular lexical feature sequences

38Here it is assumed that by the VP Internal Subject Hypothesis, the external argument (that is present
in active-voiced constructions but not in passive-voiced constructions) is to be found in the specifier position
of the light-verb.

39I.e. if two derivations have the same structure but different phonological forms, we will still consider
them the same for the purposes of this present discussion.

§3.2 Page 140/200

Figure 3-8: A minimalist derivation yielded by the inferred lexicon (listed in Table-3.3) that satisfies
the interface conditions stipulated in entry 𝐼13 of Table-3.2 – i.e. “Who has John given money to?”
This derivation accords with the derivation prescribed by contemporary theories of syntax. The
feature sequences displayed in non-leaf nodes have a dot, · , separating features that have already
been consumed (on the left) from those that have not (on the right). The dashed arrows denote
phrasal movement. The dotted arrows denote head movement. Nodes with the same head have the
color. The parse is assembled in a bottom-up manner via merge: “given merges with “to who” (formed
by first merging “to” and “who”) and then with “money”, thus establishing (local) syntactic relations
encoding predicate-argument structure; the resulting structure merges with an empty lexical node
with category 𝑣, undergoing 𝑉 -to-𝑣 head-movement before merging with the argument “john” in
accordance with the VP-Internal Subject Hypothesis (Hale and Keyser, 2002); the resulting structure
then merges with the auxiliary verb “has”, after which the argument “john” undergoes subject-raising
from the VP-shell by (internally) merging with “has”, thus establishing morphological agreement
between “john” and “has”; next, the head of “has” undergoes 𝑇 -to-𝐶 head-movement to merge with
the covert complementizer, 𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, which indicates that the sentence is an interrogative; finally,
“who” undergoes wh-fronting by (internally) merging with 𝜖/𝐶𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛. Wh-fronting (of “who”) and
Subject-raising (of “John”), instances of A’-movement and A-movement respectively, are triggered
by different licensor features (pursuant to the Shortest Movement Condition), the former by +𝑧 and
the latter by +𝑙.

§3.2 Page 141/200

Voice Valency Sentence Type Entries

active intransitive declarative {𝐼15}
active intransitive yes/no-question {𝐼14}
active intransitive wh-question {}
active transitive declarative {𝐼17, 𝐼25}
active transitive yes/no-question {𝐼5, 𝐼6}
active transitive wh-question {𝐼0, 𝐼2, 𝐼4, 𝐼7, 𝐼18, 𝐼28}
active ditransitive declarative {𝐼11, 𝐼22, 𝐼26}
active ditransitive yes/no-question {}
active ditransitive wh-question {𝐼10, 𝐼13, 𝐼24}
passive intransitive declarative N/A
passive intransitive yes/no-question N/A
passive intransitive wh-question N/A
passive transitive declarative {𝐼19, 𝐼20, 𝐼1}
passive transitive yes/no-question {𝐼3}
passive transitive wh-question {𝐼8}
passive ditransitive declarative {𝐼16, 𝐼27}
passive ditransitive yes/no-question {𝐼9}
passive ditransitive wh-question {𝐼12, 𝐼21, 𝐼23}

Table 3.8: Classification of the entries in the primary linguistic data.

– e.g. the derivations for a declarative and a yes/no-question are systematically related by
a transformation that raises the auxiliary verb. Furthermore, transformations must adhere
to the following conditions:

1. A transformation can be applied to a structure only if: (a) the transformation does
not require the deletion (subtraction) of a lexical feature sequence from the structure
that is not is present in that structure to begin with; (b) it must be possible to
derive a complete derivation from the multiset of lexical feature sequences that is the
output of the transformation, with no lexical feature sequences not participating in
said derivation.

2. Two transformations may be composed together (i.e. as successive application) to
form a single transformation by summing the additions and subtractions of lexical
feature sequences in the two transformations – e.g. the transformation for forming
a yes/no-question from a declarative may be composed with the transformation for
forming a wh-question from a yes/no-question to yield a transformation that forms a
wh-question directly from a declarative.

We will now identify several examples of transformations that hold between structures for
related entries in the primary linguistic data – in particular, we will identify transforma-
tions for forming yes/no-questions from declarative expressions, for forming wh-questions
from yes/no-questions, and for passivization. Note that in the following analysis of transfor-
mations, a (syntactic) structure will be referenced by the PLD entry it satisfies – e.g. 𝐼15 will
be used to reference the derivation yielded by the inferred lexicon to satisfy entry 𝐼15 in the
PLD; this notational convention is a convenience that helps in comparing the differences be-
tween (syntactic) structures by comparing the columns in the Summary of Derivations listed
in Table 3.4.

§3.2 Page 142/200

• Active Voice: Declarative → (Yes/No)-Question → Wh-Question.
Let us first consider structural transformations for forming a yes/no-question from a
declarative via aux. raising and for forming a wh-question from yes/no-question via
wh-raising. We will consider examples involving intransitives, transitives and ditran-
sitives verbs, all in the active voice.

1. (𝐼15, 𝐼14). 𝐼15 is a active-voice declarative with an intransitive verb. 𝐼14 is a active-
voice yes/no question with an intransitive verb. The transformation [𝐼15 → 𝐼14] is
accomplished by replacing L3 with L6; to the see this relation via transformation,
note that we can substitute (in 𝐼14) “was” for “has” and “sleeping” for “slept” as
they are in the same PF clusters, so that we can then go from “has the boy slept?”
to “the boy has slept” by replacing L3 with L6.

2. (𝐼17, 𝐼5, 𝐼2𝑜𝑟𝐼4). 𝐼17 is an active-voice declarative with a transitive verb. 𝐼5 is
an active-voice yes/no-question with a transitive verb. 𝐼5 may be formed from
𝐼17 by replacing L3 with L6. Two wh-questions may be formed from 𝐼5 via the
application of (wh-raising) transformations that raise the external and internal
argument respectively: (i) the transformation [𝐼5 → 𝐼2] in which the wh-question
𝐼2 is formed from 𝐼5 by replacing L6 with L4, and replacing L15 with L12; (ii)
the transformation [𝐼5 → 𝐼4] in which the wh-question 𝐼4 is formed from 𝐼5 by
replacing L6 with L4, and replacing L16 with L11.

3. (𝐼5, 𝐼0). 𝐼5 is an active-voice yes/no-question with a transitive verb. 𝐼0 is an
active-voice wh-question with a transitive verb. The transformation [𝐼5 → 𝐼0] is
accomplished by replacing L6 with L4, so as to move from a yes/no question to a
wh-question, and replacing L15 with L12, so as to replace the nominal argument
that was raised to structural subject position with a wh-word that first undergoes
subject raising before undergoing wh-raising.

4. (𝐼17, 𝐼0). 𝐼17 is an active-voice declarative with a transitive verb. 𝐼0 is an active-
voice wh-question with a transitive verb. The transformation [𝐼17 → 𝐼0] is accom-
plished by replacing L3 with L4, so as to move from a declarative to a wh-question,
and replacing L15 with L12, so as to replace the nominal argument that underwent
subject raising with a wh-word that undergoes subject raising before wh-raising.

5. (𝐼6, 𝐼7). 𝐼6 is a yes/no-question with a transitive verb. 𝐼7 is a wh-question with
a transitive verb. The transformation [𝐼6 → 𝐼7] is accomplished by replacing 𝐿6

with 𝐿4, and replacing L16 with L11, the latter having the effect of replacing the
internal argument that serves as the direct object with a wh-word.

6. (𝐼11, 𝐼10). 𝐼11 is a declarative with a ditransitive verb. 𝐼10 is a wh-question with
a ditransitive verb. The transformation [𝐼11 → 𝐼10] is accomplished by replacing
𝐿3 with 𝐿4 and replacing L16 with L11, so as to substitute a wh-word for the
internal argument serving as the direct object.

7. (𝐼26, 𝐼24). 𝐼26 is a declarative with an (active) ditransitive verb. 𝐼24 is a wh-
question formed from 𝐼26 by raising the external argument. The transformation
[𝐼26 → 𝐼24] is accomplished by replacing 𝐿3 with 𝐿4 and replacing L12 with L15.

The transformation for aux-raising is to subtract L6 and add L3 – denote this (L6 −
L3). The two transformations observed for wh-raising from a yes/no-question are
(L4 − L6 + L15 − L12) and (L4 − L6 + L11 − L16) respectively; the applicability of

§3.2 Page 143/200

these wh-raising transformations depends on which argument is to be the raised wh-
word. Finally, the transformations for aux-raising and wh-question formation may be
composed to produce the transformation seen in directly going from a declarative to
a wh-question in the case of [𝐼17 → 𝐼0] – e.g.:

[𝐼17 → 𝐼0] = (L4 − L3 + L12 − L15) (3.20)
= (L6 − L3) + (L4 − L6 + L12 − L15) (3.21)
= [𝐼5 → 𝐼0] ∘ [𝐼17 → 𝐼5] (3.22)

where the transformations [𝐼17 → 𝐼5] and [𝐼5 → 𝐼4] are for aux-raising and wh-raising
(of the external argument) respectively.

• Passive Voice: Declarative → (Yes/No)-Question → Wh-Question.
We will next demonstrate that the transformations applied to active-voice construc-
tions may also be applied to passive-voice constructions. The following examples
involving transitives and ditransitives are all in the passive-voice:40

1. (𝐼1, 𝐼3, 𝐼8). 𝐼1 is a passive-voice declarative with a transitive verb, 𝐼3 is a passive-
voice yes/no question with a transitive verb, and 𝐼8 is a passive-voice wh-question
with a transitive verb. The transformation [𝐼1 → 𝐼3] is accomplished by replacing
𝐿3 with 𝐿6; [𝐼3 → 𝐼8] is accomplished by replacing 𝐿6 with 𝐿4 and L12 with L15.

2. (𝐼16, 𝐼9, 𝐼21𝑜𝑟𝐼23). 𝐼16 is a passive-voice declarative with a ditransitive verb, and 𝐼9
is a passive-voice yes/no with a ditransitive verb. The transformation [𝐼16 → 𝐼9]
is accomplished by replacing L3 with L6. Two wh-questions may be formed from
𝐼9 (by raising each of the two internal arguments): the wh-question 𝐼21 is formed
from 𝐼9 by replacing L6 with L4, adding L8 so as to include “to”41, and replacing
L16 with L11; the wh-question 𝐼23 is formed from 𝐼16 by replacing L3 with L4,
and L16 with L11.

The transformations for aux. raising and wh-raising identified in the analysis of active-
voice expressions apply in the case of passive-voice expressions as well.

• Passivization (i.e. Active Voice → Passive Voice).
Finally, let us consider how passive-voiced expressions are formed from their active-
voiced brethren, both in the case of transitive and ditransitive verbs.

1. (𝐼17, 𝐼1). 𝐼17 is an active-voice declarative with a transitive verb, and 𝐼1 is a
passive-voice declarative with a transitive verb. The transformation [𝐼17 → 𝐼1] is
accomplished by: (i) replacing 𝐿7 with 𝐿5, so as to remove the external argument
slot in the VP-shell structure; (ii) removing L16, so as to remove the nominal that
didn’t undergo subject raising.

2. (𝐼5, 𝐼3). 𝐼5 is an active-voice yes/no question with a transitive verb, and 𝐼3 is a
passive-voice yes/no question with a passive transitive verb. The (passivization)

40We will not consider intransitives here as intransitives have no internal argument, only an external
argument, whereas passives require an internal argument and cannot have an external argument (per the
VP Internal Subject Hypothesis).

41To see the role played by 𝐿8, consider the transformation [𝐼10 → 𝐼13]. 𝐼10 is a question formed by wh-
raising of internal argument of ditransitive, and 𝐼13 is a question formed by wh-raising of internal argument
of alternating form of ditransitive; the only addition to 𝐼10 to form 𝐼13 is that of L8 for introducing the
prepositional phrase – i.e. the minimal change that could be.

§3.2 Page 144/200

transformation [𝐼5 → 𝐼3] is accomplished by replacing 𝐿7 with 𝐿5 and deleting
L16.

3. (𝐼0, 𝐼8). 𝐼0 is an active-voice wh-question with a transitive verb, and 𝐼8 is a
passive-voice wh-question with a transitive verb. The (passivization) transfor-
mation [𝐼0 → 𝐼8] is accomplished by replacing 𝐿7 with 𝐿5 and deleting L16; the
wh-word that was serving as the structural subject (prior to undergoing wh-
raising) can no longer originate in the external argument position in the VP-shell
structure (as L5 is a little-v that cannot accept an external subject) and will thus
instead originate in the internal argument position.

The transformation for passivization is the same in the case of declaratives and yes/no-
questions for transitive verbs, and is the same for declaratives for both transitive and
ditransitive verbs; in the case of passivization of a wh-question, the details of the
transformation depend on which of the arguments undergoes subject raising, which
undergoes wh-raising, and which of the two internal arguments is to become the new
structural subject.

Having identified transformations that form yes/no-questions from declaratives, wh-questions
from yes/no-questions, and passive-voiced expressions from active-voiced expressions, let us
consider three circumstances in which the composition of these transformations is commu-
tative:

(i) passivization of a declarative followed by aux-raising has the same effect as aux-raising
followed by passivization;

(ii) passivization of a yes/no question followed by wh-raising of an internal argument has
the same effect as wh-raising of an internal argument followed by passivization;

(iii) transforming a declarative into a yes/no-question, which in turn is then transformed
into a wh-question (via raising of an internal argument), before undergoing passiviza-
tion, has the same effect as first undergoing passivization, and then forming first a
yes/no-question and then a wh-question.

These three scenarios are demonstrated by the following commutative diagram, in which each
arrow is a transformation, with the horizontal arrows, left to right, encoding the transfor-
mations for aux-raising (to form a yes/no-question) and wh-raising (to form a wh-question)
respectively, and the vertical arrow encoding a transformation for passivization (see Fig. 3-9
for the associated derived trees)).

𝐼17
(L6−L3)−−−−−→ 𝐼5

(L4−L6+L15−L12)−−−−−−−−−−−−→ 𝐼0⎮⎮⌄(L5−L7−L16)

⎮⎮⌄(L5−L7−L16)

⎮⎮⌄(L5−L7−L16)

𝐼1
(L6−L3)−−−−−→ 𝐼3

(L4−L6+L15−L12)−−−−−−−−−−−−→ 𝐼8

The commutative diagram of transformations, in conjunction with the transformations being
invariant with respect to the particular phonological forms involved in a structure, enables
the productive application of transformations to structures that the transformation in ques-
tion has thus far not been applied to; importantly, these transformations (and compositions
thereof) may be used to generate novel structures (i.e. structures that were not yielded in

§3.2 Page 145/200

the course of processing the primary linguistic data), as we will see next.

The lexicon can productively generalize to form novel sentences and novel syntactic struc-
tures. Plainly speaking, this means that the inferred lexicon can (i) parse expressions that
do not appear the PLD, and (ii) yield derivations that are not associated with entries in
the PLD. We will provide examples that demonstrates the inferred lexicon’s capacity to
produce novel sentences and novel structures; notably, some of these examples can be sys-
tematically generated via the application of the earlier identified transformations. Note that
these derivations are presented inline in a bracketed form that only shows the external merge
operations; the full derivation can be recovered from a specification of the external merge
operations in the derivation because, in the minimalist grammar formalism, internal merge
operations happen automatically and deterministically in the course of a derivation – see §2.2
for a discussion of how this is a consequence of the Shortest Movement Condition (SMC).

Looking at Table 3.8, we see that two of the rows are absent of entries: (i) no active-
voice wh-question with an intransitive verb appears in the PLD; (ii) no active-voice yes/no-
question with a ditransitive verb appears in the PLD. The first case can be ameliorated by
observing that the inferred lexicon can parse the expression “Who was sleeping?” and yield
the following derivation:{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
𝑤𝑎𝑠

L13

{︂{︂
𝑤ℎ𝑜

L12

}︂{︂
𝜖𝑣
L7

{︂
𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔

L14

}︂}︂}︂}︂}︂
In this derivation, “who” is a wh-word that serves as an external argument to the intransitive
verb “sleeping”, is then raised to merge with the tense marker “was”, thereby serving as the
structural subject, and finally undergoes wh-raising so as to form a wh-question. This
structure can be produced by consecutively applying two transformations to 𝐼14 (“Has the
boy slept?”): firstly, substitute the determiner phrase “the boy” with the nominal phrase
“john” by replacing L9 and L16 with L12; secondly, apply the transformation for wh-raising
by replacing L6 with L4. The second case can be rectified by observing that the inferred
lexicon can parse the (yes/no) question “Has Mary given John money?” and yield the
following derivation:{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L6

{︂
ℎ𝑎𝑠

L13

{︂{︂
𝑚𝑎𝑟𝑦

L15

}︂{︂
𝜖𝑣
L7

{︂
𝑗𝑜ℎ𝑛

L16

{︂
𝑔𝑖𝑣𝑒𝑛

L2

𝑚𝑜𝑛𝑒𝑦

L15

}︂}︂}︂}︂}︂}︂
In this derivation, “given” is a ditransitive verb and “Has” is a tense-marker that undergoes
aux. raising via T-to-C head-movement. Observe that this structure can be produced by
applying the transformation for forming a yes/no-question from a declarative – i.e. replac-
ing L3 with L6 – to the structure associated with the entry 𝐼26 (“Mary has given John
money.”). The inferred lexicon thus has the capacity to yield at least one derivation for each
classification in Table 3.8.

The inferred lexicon can also yield a number of novel structures in which determiner
phrases undergo (syntactic) movement in ways not seen in processing the derivations that
the lexicon yielded to satisfy the interface conditions listed in the PLD. Let us consider
examples involving the transitive verb “eaten”:

§3.2 Page 146/200

(a) 𝐼17: “Someone has known everything.” (b) 𝐼20: “Everything was known.”

(c) 𝐼5: “Has Mary eaten pizza?” (d) 𝐼3: “Was pizza eaten?”

(e) 𝐼0: “Who has eaten icecream?” (f) 𝐼8: “What was eaten?”

Figure 3-9: Derivations yielded by the (inferred) lexicon listed in Table 3.3.

§3.2 Page 147/200

1. “Has the boy eaten the pizza?”{︂
𝜖𝐶𝑄𝑢𝑒𝑠.

L6

{︂
ℎ𝑎𝑠

L13

{︂{︂
𝑡ℎ𝑒

L9

𝑏𝑜𝑦

L16

}︂{︂
𝜖𝑣
L7

{︂
𝑒𝑎𝑡𝑒𝑛

L1

{︂
𝑡ℎ𝑒

L10

𝑝𝑖𝑧𝑧𝑎

L16

}︂}︂}︂}︂}︂}︂
2. “Was the pizza eaten?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L6

{︂
𝑤𝑎𝑠

L13

{︂
𝜖𝑣
L5

{︂
𝑒𝑎𝑡𝑒𝑛

L1

{︂
𝑡ℎ𝑒

L9

𝑝𝑖𝑧𝑧𝑎

L16

}︂}︂}︂}︂}︂
3. “What has the boy eaten?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
ℎ𝑎𝑠

L13

{︂{︂
𝑡ℎ𝑒

L9

𝑏𝑜𝑦

L16

}︂{︂
𝜖𝑣
L7

{︂
𝑒𝑎𝑡𝑒𝑛

L1

𝑤ℎ𝑎𝑡

L11

}︂}︂}︂}︂}︂
These three expressions and their associated derivations are related as follows: (1) is an
active-voice yes/no-question with a determiner phrase (“the boy”) that originates as the ex-
ternal argument in the double-VP shell structure (per the VP Internal Subject Hypothesis)
before being raised to structural subject position and agreeing with “has”; (2) is a pas-
sivization of (1), with the determiner phrase (“the pizza”) raised from the internal-argument
position in the VP-shell to become the (structural) subject of the expression; (3) is a wh-
question formed from (1) by replacing the determiner phrase (“the pizza”) with a wh-word
(“what”) that originates in the internal-argument position of the VP shell and undergoes
wh-raising.

Having considered novel structures involving determiner phrases that are arguments of
a transitive verb, let us consider the case for ditransitives. Observe that there were only two
entries in the PLD with two or more determiner phrases – 𝐼25 and 𝐼27 – and that both of these
were declaratives. The inferred lexicon can generate yes/no-questions and wh-questions that
involve ditransitive predicates with at least two determiner phrases serving as arguments:

1. “Has the boy told the story to the boy?”{︂
𝜖𝐶𝑄𝑢𝑒𝑠.

L6

{︂
ℎ𝑎𝑠

L13

{︂{︂
𝑡ℎ𝑒

L9

𝑏𝑜𝑦

L16

}︂{︂
𝜖𝑣
L7

{︂{︂
𝑡ℎ𝑒

L10

𝑠𝑡𝑜𝑟𝑦

L16

}︂{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

{︂
𝑡ℎ𝑒

L10

𝑏𝑜𝑦

L16

}︂}︂}︂}︂}︂}︂}︂}︂
2. “Who has told the story to the boy?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
ℎ𝑎𝑠

L13

{︂
𝑤ℎ𝑜

L12

{︂
𝜖𝑣
L7

{︂{︂
𝑡ℎ𝑒

L10

𝑠𝑡𝑜𝑟𝑦

L16

}︂{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

{︂
𝑡ℎ𝑒

L10

𝑏𝑜𝑦

L16

}︂}︂}︂}︂}︂}︂}︂}︂
3. “What has the boy told to the boy?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
ℎ𝑎𝑠

L13

{︂{︂
𝑡ℎ𝑒

L9

𝑏𝑜𝑦

L16

}︂{︂
𝜖𝑣
L7

{︂
𝑤ℎ𝑎𝑡

L11

{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

{︂
𝑡ℎ𝑒

L10

𝑏𝑜𝑦

L16

}︂}︂}︂}︂}︂}︂}︂}︂
4. “Who has the boy told the story to?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
ℎ𝑎𝑠

L13

{︂{︂
𝑡ℎ𝑒

L9

𝑏𝑜𝑦

L16

}︂{︂
𝜖𝑣
L7

{︂{︂
𝑡ℎ𝑒

L10

𝑠𝑡𝑜𝑟𝑦

L16

}︂{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

𝑤ℎ𝑜

L11

}︂}︂}︂}︂}︂}︂}︂

§3.2 Page 148/200

5. “Was the story told to the boy?”{︂
𝜖𝐶𝑄𝑢𝑒𝑠.

L6

{︂
𝑤𝑎𝑠

L13

{︂
𝜖𝑣
L5

{︂{︂
𝑡ℎ𝑒

L9

𝑠𝑡𝑜𝑟𝑦

L16

}︂{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

{︂
𝑡ℎ𝑒

L10

𝑏𝑜𝑦

L16

}︂}︂}︂}︂}︂}︂}︂
6. “Who was the story told to?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
𝑤𝑎𝑠

L13

{︂
𝜖𝑣
L5

{︂{︂
𝑡ℎ𝑒

L9

𝑠𝑡𝑜𝑟𝑦

L16

}︂{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

𝑤ℎ𝑜

L11

}︂}︂}︂}︂}︂}︂
7. “What was told to the boy?”{︂

𝜖𝐶𝑄𝑢𝑒𝑠.

L4

{︂
𝑤𝑎𝑠

L13

{︂
𝜖𝑣
L5

{︂
𝑤ℎ𝑎𝑡

L12

{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

{︂
𝑡ℎ𝑒

L10

𝑏𝑜𝑦

L16

}︂}︂}︂}︂}︂}︂}︂
The yes/no-question listed in (1) has 9 tokens, which is longer than any expression appear-
ing in the PLD; additionally, (1) demonstrates both triple use of a lexical feature sequence
(i.e. L10), and triple use of a phonological form (i.e. “the”), both of which were not seen
in any derivation yielded for entries in the PLD. Any one of the arguments in (1) may be
replaced with a wh-word that undergoes wh-raising: raising the (wh-word replacement of
the) subject, direct object, and indirect object in (1) produces the wh-questions in (2), (3),
and (4) respectively. The inferred lexicon can also parse passive variants of these expres-
sions, yielding novel structures: the yes/no-question listed in (5) is formed by passivizing
(1); (6) is a wh-question formed from (5) by raising the wh-word “who” from the internal
argument position of “told” that corresponds to the indirect-object; (7) is a wh-question
formed from (5) by raising the wh-word “what” from the internal argument position of “told”
that corresponds to the direct-object.

Having considered several cases of novel syntactic structures that the (optimal) inferred
lexicon can yield, let us now briefly consider three kinds of ungrammatical expressions that
the optimal inferred lexicon will not generate.42

(i) The optimal inferred lexicon will not yield a Wh-question in which there is Wh-fronting
of the object but no subject-auxiliary verb inversion – e.g. the lexicon will not produce
the ungrammatical expression:

(1) * “What John has eaten?”

To see why, observe that L4 is the only lexical feature sequence in the lexicon that
triggers Wh-raising (via the licensor feature +𝑧), and L4 has the selectional feature
<= 𝑥0 that triggers 𝑇 -to-𝐶 head-movement (i.e. aux-raising).

(ii) The optimal inferred lexicon will not yield a derivation involving a ditransitive verb
in which there is no 𝑉 -to-𝑣 head-movement – e.g. the lexicon will not produce the
following (ungrammatical) expression:

(2) * “Has John someone asked everything?”
42Note that the three ungrammatical expressions presented are variants of the three grammatical expres-

sions listed in entries 𝐼12, 𝐼22 and 𝐼1 of the PLD respectively.

§3.2 Page 149/200

To see why, observe that the axioms (in the derivation model) enforcing extended
functional projections (see §2.3.2 for details) require that the projection of the lexical
verb (“asked”) merge into the complement position of the projection of a light-verb,
and both of the lexical feature sequences that code for light-verbs – i.e. L5 and L7 –
have the selectional feature <= 𝑥0 that triggers 𝑉 -to-𝑣 head-movement.

(iii) The optimal inferred lexicon will not yield a derivation in which an argument is not
raised to structural subject position – e.g. the lexicon will not produce the following
(ungrammatical) expression:

(3) * “Was eaten icecream.”

To see why, observe that the axioms enforcing extended functional projections require
the presence of a tense-marker; however there is only one lexical feature sequence, L13,
that is associated with the category 𝑇 (and can therefore serve as a tense-marker),
and L13 has a (licensor) feature +𝑙 that triggers subject-raising.

Further Examination of the Instantaneous Acquisition Procedure.

Having analyzed the optimal lexicon that was inferred by using the instantaneous acquisition
procedure to process the PLD, let us now briefly examine the acquisition procedure itself by
considering an extension of the computational experiment presented earlier in this chapter –
specifically, we will examine the (optimal) inferred lexicons that the procedure outputs after
processing only entries 𝐼0 through 𝐼𝑘 in the PLD, for values of 𝑘 up to and including 28. This
examination is motivated by two questions about the procedure. First, does processing only
a subset of the PLD produce an (optimal) inferred lexicon that yields derivations different
than those yielded by the lexicon inferred when processing the entire PLD? Second, as the
procedure processes increasingly larger subsets of the PLD, under what circumstances do
increases in the range of information present in the subset of the PLD – i.e increases in the
number of distinct phonological forms in the PLD and increases in the number of distinct
syntactic features needed to satisfy the interface conditions in the PLD – translate into
increases in the size of the inferred lexicon, and what role do the optimization metrics play
in this? Let us now turn to detailing the specifics of this examination.

To begin, let 𝐿𝑘 denote the optimal lexicon inferred after processing only the first entries
𝑘 + 1 of the PLD listed in Table 3.2, so that 𝐿0 is the optimal lexicon inferred by the
procedure if it only processes the first entry in the PLD (i.e. 𝐼0), and 𝐿28 is the optimal
lexicon inferred by the procedure if it processes the entire PLD. Next, for each value of 𝑘,
let 𝐿′

𝑘 denote the subset of 𝐿28 that is involved in satisfying the first 𝑘 + 1 entries in the
PLD – note that the subset 𝐿′

𝑘 can be obtained from the Summary of Derivations listed
in Table 3.4 by identifying the subset of lexical feature sequences involved in the columns
for 𝐼0, ..., 𝐼𝑘. Finally, to measure the range of information present in the subset of the PLD
being processed, we will define, for each value of 𝑘, the following two values: (i) let 𝑆𝑘 be the
number of distinct syntactic structures (abstracting away from the particular phonological
forms appearing in these structures) required to satisfy the first 𝑘 + 1 entries of the PLD;
(ii) let 𝑃𝑘 be the number of distinct phonological forms that appear in the first 𝑘+1 entries
of the PLD.

We will now consider, for each value of 𝑘, the statistics of 𝐿𝑘 and 𝐿′
𝑘 – i.e. the number

of distinct lexical feature sequences and the total number of syntactic features appearing

§3.2 Page 150/200

across these lexical feature sequences; note that these two statistics are the valuations of
the first two metrics (3.1 and 3.5) that are optimized in Step 4 of the acquisition procedure.
The statistics for each inferred lexicon are presented in Fig. 3-10, along with the statistics
for the subsets of 𝐿28. Let us now touch on several observations about these statistics.

(i) For 𝑘 < 4, 𝐿𝑘 is smaller than 𝐿′
𝑘 (with respect to both the number of distinct lexical

feature sequences and the total number of syntactic features found in those lexical fea-
ture sequence), suggesting that the acquisition procedure is prone to “over-optimizing”
when restricted to processing a small amount of PLD (in this case four or fewer entries
of the PLD) – i.e. for 𝑘 < 4, 𝐿𝑘 yields derivations that technically satisfy the interface
conditions listed in 𝐼0 − 𝐼𝑘, but that do not accord with the derivations prescribed by
contemporary theories of syntax. For values of 𝑘 ≥ 4, 𝐿𝑘 and 𝐿

′
𝑘 are the same size,

suggesting that when the size of the PLD is large enough – i.e. when the value of 𝑘 is
large enough – the acquisition procedure produces the same lexical entries (in order to
yield derivations that satisfy the first 𝑘+1 entries of the PLD) that it would have after
processing the entire PLD. Taken together, these two observations suggest that the
acquisition procedure might be modified to (sequentially) process the PLD in batches
that are just large enough for the acquisition procedure to avoid “over-optimizing”, so
that a lexicon might be grown in stages, thereby avoiding the problem of the learner
having to retain the entire PLD in memory before inferring the lexicon all at once;
looking ahead, modifying the acquisition procedure in this manner is precisely what
will be done in the next section.

(ii) The size of 𝐿′
𝑘 does not increase unless 𝑆𝑘 increases – this is because the first two

metrics that the procedure optimizes (i.e. metrics 3.1 and 3.5) seek to minimize the
size of the lexicon so that the number of distinct lexical feature sequences (and the total
number of syntactic features in the lexicon) is only increased if the current number of
them is insufficient to yield derivations that satisfy the entries in the PLD – thus if
𝑆𝑘 does not increase (i.e. 𝑆𝑘 = 𝑆𝑘−1), then the size of the lexicon will not grow (i.e.
𝐿

′
𝑘 = 𝐿

′
𝑘−1).

(iii) Sometimes 𝑆𝑘 > 𝑆𝑘−1 but the size of 𝐿′
𝑘 is the same as 𝐿′

𝑘−1 (e.g. as when 𝑘 = 5,
𝑘 = 10 or 𝑘 = 26), which implies that the lexical feature sequences in 𝐿′

𝑘−1 that were
used to satisfy 𝐼0− 𝐼𝑘−1 suffice for deriving a new syntactic structure that satisfies 𝐼𝑘;
notably, when 𝑘 ≥ 4, 𝐿𝑘 and 𝐿′

𝑘 are the same size and thus the lexicon inferred after
processing the first 𝑘+1 entries of the PLD can yield a (novel) syntactic structure (to
satisfy 𝐼𝑘).

(iv) Sometimes 𝑃𝑘 > 𝑃𝑘−1 but the size of 𝐿′
𝑘 is the same as 𝐿′

𝑘−1 (e.g. as when 𝑘 = 5,
𝑘 = 11 or 𝑘 = 15), which implies that the set of lexical feature sequences in 𝐿′

𝑘−1 suffice
to yield a derivation that satisfies 𝐼𝑘; importantly, if 𝑘 ≥ 4 and 𝐿𝑘−1 = 𝐿𝑘, then the
only updates to 𝐿𝑘−1 required to produce 𝐿𝑘 are: (a) extending the vocabulary to
include the new phonological forms, and (b) creating new associations between some
of the lexical feature sequences in 𝐿𝑘−1 (that are required to satisfy 𝐼0 − 𝐼𝑘−1) with
the (new) phonological forms that were added to the vocabulary. This suggests that
eventually, once the learner has acquired all of the lexical feature sequences needed to
yield the syntactic structures appearing in their language43, the lexicon will only be

43Although in this section the lexicon inferred by the instantaneous acquisition procedure can only produce

§3.2 Page 151/200

Figure 3-10: Statistics for the Lexicon Inferred from each Prefix Subset of the Primary
Linguistic Data (PLD). For each prefix subset 𝐼0 . . . 𝐼𝑘 of the PLD, the x-axis indicates the
index of the last entry in that prefix subset, and the y-axis indicates the values for the
relevant statistics associated with each prefix subset, so that the statistics above position
𝑘 on the x-axis pertain to the lexicon inferred from entries in the prefix subset 𝐼0 . . . 𝐼𝑘 of
the PLD. The chart shows, for each prefix subset 𝐼0 . . . 𝐼𝑘 of the PLD, both the number of
distinct lexical feature sequences that appear in the (optimal) lexicon inferred (using the
acquisition procedure) from that subset of the PLD, as well as the (total) number of syntactic
features that appear in those lexical feature sequences; these two statistics measure the size
of the inferred lexicon. The chart also shows, for each prefix subset 𝐼0 . . . 𝐼𝑘 of the PLD,
both the number of distinct lexical feature sequences in the full lexicon – i.e. the (optimal)
lexicon that was inferred from the entire PLD – that were involved in the derivations yielded
by the full lexicon to satisfy the entries in the prefix subset, as well as the (total) number
of syntactic features that appear in these lexical feature sequences. Finally, for each prefix
subset 𝐼0 . . . 𝐼𝑘 of the PLD, the chart also shows two measures of the amount of information
in that prefix subset – namely, the number of distinct syntactic structures needed to satisfy
the interface conditions listed in the prefix subset, and the number of distinct phonological
forms appearing in that subset.

§3.2 Page 152/200

updated with respect to the learner’s vocabulary and the associations between lexical
feature sequences and phonological forms – this is akin to an adult speaker who does
not learn new syntax after childhood, but continues throughout their life to learn new
words in the open categories (e.g. nouns, verbs, adjectives and adverbs).

This examination demonstrates that given only a small subset of the PLD, the acquisition
procedure is still able to solve for syntax and infer a productive lexicon.

This examination demonstrates that the acquisition procedure is able to solve for syntax
given only a small subset of the PLD, and that the acquisition procedure can infer productive
lexicons from small subsets of the PLD.

3.2.4 Summary

The computational experiment presented in this section demonstrates that, given a sequence
of interface conditions, it is possible to use a modern, industrial strength SMT-solver to infer,
from an empty initial lexicon and a system of first-order logic equations that were derived
from the specified sequence of interface conditions, a lexicon that yields derivations that
satisfy the stipulated interface conditions. Furthermore, when we introduced optimization
constraints that sought to minimize the size of the lexicon and the size of the derivations
it yields, we found that the instantaneous acquisition procedure infers a lexicon that yields
derivations that accord (in form) with the prescriptions of contemporary theories of mod-
ern syntax. In particular, the optimized lexicon that was inferred yields derivations for
declaratives, yes/no-questions, and wh-questions in both the active and passive voice, and
these derivations involve various forms of syntactic movement including wh-raising, subject-
raising, T-to-C head-movement and V-to-v head-movement. Additionally, the inferred lexi-
con includes lexical entries for covert complementizers and light-verbs.

Remarkably, the inferred lexicon is composed of a small set of lexical feature sequences,
each of which associate with various subsets of the learner’s vocabulary (including both
overt and covert phonological forms), and these lexical feature sequences may be combined
in many different ways to yield a variety of syntactic structures. Furthermore, these lexical
feature sequences can be put into new combinations with one another so as to yield novel
structures that were not produced in the course of satisfying the interface conditions listed in
the PLD. In particular, novel structures were produced not only by substituting phonological
forms with other phonological forms that are in the same cluster (i.e. word class), but also
by employing the lexical feature sequences to take on syntactic roles that they had not in
the context of any derivation yielded by the inferred lexicon (in order to satisfy an entry in
the PLD).

We also saw that the acquisition procedure can infer, from a small sequence of interface
conditions, a lexicon that yields the same derivations (to satisfy this small sequence of inter-
face conditions) as a lexicon inferred from a larger sequence of interface conditions of which
the smaller sequence is a subset. This suggests a way to address the instantaneous acquisi-
tion procedure’s requirement that the learner store the entire PLD in their memory before
inferring the entire lexicon at once – namely, that a lexicon may be acquired incrementally
by processing the PLD in small batches – and the next section will introduce an incremental
acquisition procedure that takes this approach, enabling it to process a larger PLD while

a finite number of (novel) syntactic structures, in the next section the incremental acquisition procedure will
be used to infer a finite lexicon that can generate a countably infinite set of distinct syntactic structures.

§3.2 Page 153/200

respecting the condition of psychological plausibility that the learner has a limited memory
for remembering the particular interface conditions that appear in the PLD.

3.3 An Incremental Model of Acquisition

This section introduces an incremental procedure for acquisition that is formed by extending
the instantaneous acquisition procedure (previously introduced in §3.2.2) to: (i) take as an
(optional) input a lexicon that represents the learner’s current state of knowledge prior to
running the procedure – i.e. the assumption that the initial state of the learner is an empty
lexicon is relaxed; (ii) incrementally process the primary linguistic data (PLD) in batches
and output an optimized lexicon after each batch is processed that is both compatible with
all of the PLD that has been processed up to that point, and includes the input lexicon
as a subset. These two extensions allow for the lexicon that was output by the procedure
after processing one batch of the PLD to serve as the (input) initial lexicon to the procedure
when processing the subsequent batch of the PLD. The incremental acquisition procedure can
thus be run repeatedly so as to sequentially consume the PLD in batches and incrementally
acquire a lexicon; in this manner, the incremental theorem prover (i.e. the SMT-solver) may
be used to learn a grammar in stages.

When the incremental acquisition procedure processes the first batch of the PLD and
no initial lexicon is supplied (as was the case in the experiment carried out in §3.2.3),
then the incremental acquisition procedure is functionally equivalent to the instantaneous
acquisition procedure. As the acquisition trajectory proceeds, the learner converges on a
lexicon that includes all of the lexical feature sequences needed to yield the derivations
that satisfy the pairings of interface conditions enumerated in the PLD (just as a child
eventually will, and inevitably does, lock onto the grammar of their first language); the
learner can then focus on learning novel associations between phonological forms and lexical
feature sequences (as a human does over the course of their entire life). In the limit, the input
lexicon will suffice to process the batch of PLD entries that the learner must process, and the
incremental acquisition procedure will, in effect, become the procedure for parsing – i.e. the
incremental acquisition procedure will output the parse of each entry in the PLD batch with
the supplied lexicon, and the output (inferred) lexicon will be the (input) supplied lexicon.
Thus, we see that the parsing procedure and the instantaneous acquisition procedure are both
edge cases of this more general procedure for incremental acquisition, thereby satisfying the
psychological plausibility condition that the language acquisition system and parsing systems
be co-integrated.

The remainder of this section is organized as follows: §3.3.1 motivates the aforementioned
two extensions by pointing out deficits of the instantaneous acquisition procedure, and then
presents the incremental acquisition procedure and detail how it works; §3.3.2 then presents
a computational experiment that serves to demonstrate the capacity of the system to infer,
from a corpus of sentences with at most one level of embedding, a grammar that can yield
structures for sentences with unbounded embedding – i.e. the inferred lexicon can parse
sentences with embedded sentences and (restrictive) relative clauses, enabling the learner
to create and parse an unbounded set of novel structures and handle sentences with an
arbitrary level of embedding.

§3.3 Page 154/200

3.3.1 Extending the Instantaneous Model

The incremental acquisition procedure (listed on Pg. 157) is an extension of the instantaneous
acquisition procedure (developed in §3.2.2), that continues to take the form of a computa-
tional model of a child language learner that adheres to the criterion for model of language
acquisition set out in (Chomsky, 1965, Pg. 30-31).

The incremental acquisition procedure solves two problems that arise when using the
instantaneous acquisition procedure. First, in the case of the instantaneous acquisition pro-
cedure, whatever grammar 𝐺𝑖 is inferred from state 𝑆𝑖 (i.e. the SMT-model constructed after
processing the first 𝑖 entries in the PLD), a subsequently inferred grammar 𝐺𝑖+1 inferred
from state 𝑆𝑖+1 (derived from the first 𝑖 + 1 entries in the PLD) may not be a superset of
𝐺𝑖 – indeed, it is possible that 𝐺𝑖 and 𝐺𝑖+1 are disjoint; consequently, the knowledge of
language that the learner acquired previously may not in any way help the learner acquire
new knowledge of language, and there is no guarantee that previously acquired knowledge of
language will even be retained by the learner.44 Second, as the size of the PLD is increased,
the size of the SMT-model constructed by the instantaneous acquisition procedure also in-
creases (since a derivation model must be constructed for each entry in the PLD), and the
runtime of the solver (as it checks the model) quickly becomes intractable.

The incremental acquisition procedure addresses these two problems by consuming the
PLD in batches. Upon consuming a batch of the PLD and a specification of a lexicon learned
up until that point, the procedure creates a lexicon model and hardcodes it (i.e. values free-
variables in the SMT-formula) to ensure that the lexicon that will be inferred is a superset
of the specified (input) lexicon. The procedure then creates a derivation model for each
entry in the batch of the PLD, and “attaches” (only) these derivation model to the lexicon
model. Finally, the model is checked and a lexicon is inferred, just as in the instantaneous
acquisition procedure. As the (output) inferred lexicon is a superset of the lexicon specified
in the input to the procedure, the incremental procedure can be applied repeatedly, taking
the output lexicon from one run of the procedure as the input lexicon for the next run of
the procedure, so as to incrementally acquire a lexicon that is able to parse all of the entries
in the PLD consumed up to that point; in this way, the learner is building upon previously
acquired knowledge of language, and the first problem with the instantaneous acquisition
procedure is resolved. Furthermore, since derivation models were only created for the entries
in the batch of the PLD being processed, the size of the model is proportional to the size
of the batch (of the PLD), and not the size of the entire PLD, thus resolving the second
problem with the instantaneous acquisition procedure.

The incremental acquisition procedure also introduces the capability to checkpoint the
state of the learner – i.e. it serializes the state of the learner such that later the procedure
may be run starting from the checkpoint; importantly, this has a practical consequence – the
procedure may be run from the same checkpoint (i.e. input lexicon) with different batches,
thereby allowing one to experiment and understand how the particular entries in the PLD
affect the inferred grammar.

To summarize, the incremental acquisition procedure may initially be used just as the
instantaneous acquisition procedure was, with an empty set supplied as the initial lexicon
when processing the first batch of the PLD; the learner may then consume additional batches

44This is because, as the PLD is consumed one entry at a time, the SMT-solver is simply iteratively
constructing an SMT-model, and each time the solver is instructed to check the model, there is no guarantee
that the solver will use the lemmas it proved earlier in prior check of the model – i.e. the solver is in effect
re-solving the model from scratch.

§3.3 Page 155/200

of the PLD by rerunning the incremental acquisition procedure and using the lexicon output
from the prior run of the procedure as the input lexicon for the next run of the procedure.
In this way, the learner is able to incrementally consume an arbitrarily large primary linguis-
tic data in batches by repeatedly running the incremental acquisition procedure, each time
outputting its state – i.e. the lexicon acquired up until that point – at the end of each run
of the procedure. Having outlined the basic form of the incremental acquisition procedure,
some clarifying comments and observations are now in order.

Relaxing Model Parameters.
This procedure introduces two new questions pertaining to parameter-setting that must be
addressed on each run of the procedure.

First, the system must determine how many entries from the PLD to include in the next
batch of interface conditions to be consumed. To address this point, this thesis assumes, as
a condition of psychological plausibility, that the number of entries to process on each run
of the acquisition procedure, referred to as that run’s acquisition window, should be fairly
limited – i.e. no more than say 4-5 entries; this is taken to be a middle ground between the
computationally-expensive approach of consuming the entire PLD at once as a single batch
(employed by the instantaneous model), and consuming the one sentence at a time – i.e. by
shrinking acquisition window to a single pair of interface conditions to be presented to the
learner – which can lead the inference procedure astray when it “over-optimizes” to handle
a single derivation.45 Although the incremental acquisition procedure in effect updates the
learner’s lexicon after consuming a batch of entries in the PLD, this does not preclude the
learner from attempting to parse (using the lexicon they already have) each entry in the
PLD one at a time as it is consumed.

Second, the system must determine how to value model parameters that govern the size
of the SMT-model that the procedure will construct and then check (using an SMT-solver);
this task is made difficult by the fact that the system does not know, a-priori, how large
the PLD will be, or how large the target lexicon will be. This thesis takes the approach of
re-valuing these model parameters each time the incremental acquisition procedure is run,
based on the particulars of the batch of the PLD that is about to be processed and the size
of the input lexicon, so that the acquisition trajectory need not be constrained by the model
parameters used in prior runs of the procedure. In particular, given that the incremental
acquisition procedure is intended to “incrementally grow” the lexicon as each batch of entries
in the PLD is consumed, the size of the model must be gradually increased as more of the
PLD is consumed, and the model parameters that constrain the size of the model must be
“relaxed.” The nuance here is that the system must not relax the model parameters much
more than necessary so as to avoid constructing a model that is much larger than needed and
thus unnecessarily increasing the time taken by the SMT-solver to check the model. Let us
now consider how these valuations are determined for the lexicon model and the derivation
models.

1. Relaxing Parameters that Constrain the Lexicon Model.

The lexicon model that the procedure will construct must be, at a minimum, large
enough to hold the lexicon supplied in the input to the procedure – i.e. the procedure
must allocate enough lexical feature sequences, and enough features per lexical feature
sequence, such that the lexicon model can be hard-coded with the supplied lexicon,

45See Figure 3-10 and the relevant discussion at the end of §3.2.3.

§3.3 Page 156/200

Incremental Acquisition Procedure

1. The input consists of:
A. a queue of pairs of interface conditions, referred to as the PLD, with 𝑛 > 0 entries;
B. a valuation of model parameters;
C. an empty SMT-solver stack, 𝑆, with each entry on the stack an SMT-formula, and

the conjunction of the entries on the stack referred to as “the acquisition model.”
(Note that to “check the acquisition model” is to use the SMT-solver to check the
conjunction of the terms on the solver’s stack.)

D. (optional) an initial lexicon;
2. The initial state of the learner, prior to consuming the PLD, is either the lexicon supplied

in the input if one was, and otherwise an empty lexicon:
A. initialize a lexicon model (i.e. an SMT formula), 𝑚𝑙 from the supplied model param-

eters, the PLD, and the initial lexicon if one was supplied;
B. push 𝑚𝑙 onto the stack;
C. (optional) check the acquisition model.

3. The learner consumes the PLD until it is empty, incrementally constraining the lexicon
model:
A. pop an entry 𝐼𝑖 off of the queue;
B. initialize a derivation model (i.e. an SMT formula), 𝑚𝑖

𝑑, from model parameters and
interface conditions 𝐼𝑖;

C. push 𝑚𝑑 onto the stack;
D. translate 𝐼𝑖 into an SMT–formula, 𝑚𝑖

𝐼 , that constrains the derivation model 𝑚𝑖
𝑑;

E. push 𝑚𝑖
𝐼 onto the stack;

F. construct an SMT-formula, 𝑚𝑖
𝑏, that connects, via an uninterpreted function, the

derivation model, 𝑚𝑖
𝑑, to the lexicon model, 𝑚𝑙;

G. push 𝑚𝑖
𝑏 onto the stack;

H. (optional) check the acquisition model.
4. The learner selects a grammar by optimizing the model:

A. optimize the acquisition model using metric (3.1);
B. optimize the acquisition model using metric (3.5);
C. optimize the acquisition model using metric (3.7);
D. optimize the acquisition model using metric (3.8);
E. optimize the acquisition model using metric (3.9);
F. check the acquisition model using the SMT-solver, and if the acquisition model is

found to be satisfiable, recover the identified (satisfiable) model interpretation (i.e.
a solution to the acquisition model).

5. The output of the procedure is the final state of the learner:
A. for each entry 𝐼𝑖 in the PLD, a derivation, 𝑑𝑖, that satisfies the conditions imposed

by 𝐼𝑖;
B. the inferred minimalist lexicon that can yield each 𝑑𝑖;
C. (Optional) the recovered model interpretation;
D. the solver stack holds: 𝑚𝑙; 𝑚𝑖

𝑑 and 𝑚𝑖
𝐼 for 1 ≤ 𝑖 ≤ 𝑛; constraints associated with

each optimization metric.

§3.3 Page 157/200

thereby guaranteeing that the (output) inferred lexicon is a superset of the input
lexicon;46 additionally, the size of the PF node sort must be larger than the number of
distinct phonological forms in the supplied lexicon and the PLD. If it is the case that
all of the entries in the (input) PLD batch can be parsed with the supplied lexicon,
then the lexicon model need not be any larger than what was stipulated above. If this
is not the case – i.e. some subset of the PLD batch cannot be parsed with the supplied
lexicon – then one of the following three scenarios holds:

(a) new phonological forms appear in the input PLD batch and they are added to the
existing vocabulary (present in the supplied lexicon), and no new lexical feature
sequences need to be added to the supplied lexicon – in this case, the SMT-
solver must work out how to associate these new phonological forms with the
lexical feature sequences already found in the supplied (input) lexicon so that the
inferred lexicon yields derivations that satisfy the entries in the PLD batch;47

(b) no new phonological forms appear in the input PLD batch, but one or more new
lexical feature sequences must be added to the supplied lexicon and associated
with the existing phonological forms – in this case, the SMT-solver is tasked with
both identifying what these new lexical feature sequences should be, and how
they should associate with the existing phonological forms, so that the inferred
lexicon yields derivations that satisfy the entries in the PLD batch;

(c) the input PLD batch includes new phonological forms that must be added to
the existing vocabulary and new lexical feature sequences must be added to the
lexicon – in this case, the SMT-solver must identify what new lexical feature
sequences are needed and also what new associations to establish between the
lexical feature sequences and the (both old and newly added) phonological fea-
tures so that the inferred lexicon can satisfy the entries in the PLD batch.48

In the each of these three cases, the system must consider how many additional as-
sociations to allow between each phonological form and each lexical feature sequence;
note that whether a phonological form can form a (new) association with a lexical fea-
ture sequence may depend on whether the lexical feature sequence is associated with
an open (i.e. functional) category or a closed (i.e. lexical) category. In the second
and third case, the system must additionally consider how many new lexical feature
sequences the inferred lexicon shall be allowed to have, how many features each of
these lexical feature sequences should be allowed to have, and what member of the
Category sort each new lexical feature sequence should be associated with.

2. Relaxing Parameters that Constrain the Derivation Model.

The size of each of the derivation models that the procedure will construct is deter-
mined as it was in the construction of the SMT-model of the minimalist parser – i.e. by
inspecting the particulars of the interface conditions that the derivation must supply
(see §2.4.1 for the details of this). In the case of the incremental acquisition procedure,
which is intended to be used to learn a grammar from sentences with one or more levels

46The hardcoding of the lexicon model – i.e. the valuation of free-variables in the SMT-formula that is the
lexicon model — is done just as it was for the SMT-model of the parser. See §2.4.1 for further discussion.

47This case is closely related to how the parsing model may handle out-of-vocabulary phonological forms
during parsing.

48The instantaneous acquisition procedure deals with this case as it starts with an empty lexicon.

§3.3 Page 158/200

of embedding present, the following additional heuristic was used: when more than
one predicate is detected in either the LF or PF interface conditions49, the system will
increment, for each additional predicate detected, the values of the following model
parameters:

(a) the number of covert (empty) lexical items allocated is increased by 2;
(b) the maximum number of instances of phrasal movement increased by 2;
(c) the maximum number of instances of head movement allowed is increased by 2.

This heuristic is motivated by the assumption that there is an upper-bound on the
resources required by a single extended functional projection C-T-v-V; assuming each
additional predicate requires its own extended functional projection, the system can
thus establish an upper-bound on the resources required by the derivation as the sum
of the resources required by each of the extended functional projections that will make
up the derivation.

Ultimately, strategies for relaxing the model parameters (prior to consuming each batch of
the PLD) must balance the need to (incrementally) grow the lexicon in concert with the re-
quirement that the model not become so large that model-checking becomes intractable. An
approach that future efforts to extend this system would do well to consider is to only grow
the lexicon when the system is not required to introduce more than a very small handful
of new phonological forms and lexical feature sequences; in this approach, the incremental
acquisition procedure will only be able to learn new syntax that it almost already knows.

Ordering of the (PLD) Batches Does Matter.
In the case of the instantaneous acquisition procedure, if model parameters are relaxed
enough, an optimal lexicon that is compatible with the PLD, if one exists, can be iden-
tified given enough time for the solver to check the model. The situation is different with
the incremental acquisition procedure, which opts to choose a particular strategy for how to
construct and solve the model in stages in exchange for losing the guarantee of finding an
optimal lexicon. Let us consider a simplified scenario that illustrates why consuming the
PLD incrementally in batches (as opposed instantaneously consuming the entire PLD in a
single batch) can result in the learner acquiring a suboptimal lexicon with respect to the
number of lexical entries in the lexicon.50

To begin, suppose the learner will consume a PLD, 𝐼1, 𝐼2, ..., 𝐼𝑛, in two consecutive
batches, 𝐴 = [𝐼1, ..., 𝐼𝑘] and 𝐵 = [𝐼𝑘+1, ..., 𝐼𝑛]. After consuming 𝐴, the learner has acquired
a lexicon 𝐿𝐴. Suppose the learner then proceeds to consume 𝐵, and learns a set of additional
lexical items51, denoted 𝐿𝐵, resulting in a new lexicon, 𝐿𝐴𝐵, that is a proper superset of
𝐿𝐴. Let 𝐿′

𝐴𝐵 be the lexicon that would be inferred if the learner consumed the PLD all
at once, using the instantaneous acquisition procedure, and let 𝐿′

𝐴 and 𝐿
′
𝐵 be subsets of

𝐿
′
𝐴𝐵 needed to yield the derivations that satisfy entries in 𝐴 and 𝐵 respectively. Observe

that |𝐿𝐴| ≤ |𝐿′
𝐴| because 𝐿𝐴 is the minimal set of entries required to yield the derivations

required to satisfy 𝐴 – i.e. entries in 𝐿′
𝐴 must produce derivations required to satisfy 𝐴, but

49For the purposes of this heuristic, a predicate is taken to be either: (i) an overt phonological form
associated with the categorical variable “V” (in the case of PF interface conditions), or (ii) a annotation of
predicate-argument structure (in the case of LF interface conditions).

50Note that here we are referring to the number of distinct lexical feature sequences in the lexicon, factored
apart from their associations with phonological forms.

51Observe that when the learner consumes 𝐵, it already has access to all of the lexical entries in 𝐿𝐴.

§3.3 Page 159/200

may also need to participate in some of the derivations required to satisfy 𝐵, which may
require additional lexical entries. We can thus write:

|𝐿𝐴𝐵| = |𝐿𝐴 ⊔ 𝐿𝐵| = |𝐿𝐴|+ |𝐿𝐵| ≤ |𝐿′
𝐴|+ |𝐿𝐵| (3.23)

Then it is the case that:

|𝐿′
𝐴𝐵| ≤ |𝐿𝐴𝐵| (3.24)

because the instantaneous acquisition procedure will identify the optimal lexicon.
Let us now consider the circumstances under which the inequality 3.24 becomes strict,

thereby indicating that the incremental acquisition procedure did not acquire the optimal
lexicon. We begin by combining 3.23 and the strict form of 3.24 to obtain:

|𝐿′
𝐴𝐵| < |𝐿𝐴𝐵| ≤ |𝐿′

𝐴|+ |𝐿𝐵| (3.25)

|𝐿′
𝐴𝐵| < |𝐿′

𝐴|+ |𝐿𝐵| (3.26)

|𝐿′
𝐴𝐵| − |𝐿′

𝐴| < |𝐿𝐵| (3.27)
(3.28)

Next we observe that as 𝐿′
𝐴 ⊆ 𝐿

′
𝐴𝐵, it is the case that:

|𝐿′
𝐴𝐵 ∖ 𝐿′

𝐴| < |𝐿𝐵| (3.29)

The term on the left hand side of equation 3.29 is the number of entries in 𝐿
′
𝐴𝐵 that only

participate in derivations that satisfy entries in 𝐵, whereas the term on the right hand side
of the equation is the number of entries the learner newly acquired in processing 𝐵 (using
the incremental acquisition procedure). The difference |𝐿𝐵|− |𝐿′

𝐴𝐵 ∖𝐿′
𝐴| is referred to as the

cost of 𝐴 with respect to 𝐵 and is denoted 𝐶(𝐴,𝐵). When 𝐶(𝐴,𝐵) > 0, the lexicon inferred
by the learner using the incremental acquisition procedure will be sub-optimal (with respect
to the number of distinct lexical feature sequences) as compared to the lexicon inferred by
the learner using the instantaneous acquisition procedure; this occurs when the learner learns
a lexicon from 𝐴 that may be considered “over-optimized” in so far as it does not include
lexical entries that could have been used later when processing 𝐵.52

The ordering in which the learner consumes the batches may also affect whether or not
the learner acquires a suboptimal lexicon, with different orderings potentially resulting in
different degrees of sub-optimality. To see why this is the case, let us consider the earlier
scenario of the PLD being divided into batches 𝐴 and 𝐵, but now consider two different
incremental learners: learner 𝑋 will first process 𝐴 then process 𝐵 as before, and learner 𝑌
will first process 𝐵 then process 𝐴. Let us now identify three cases in which the ordering of
the batches can affect the optimality of the lexicon:

(i) If learners 𝑋 and 𝑌 each acquire a lexicon that is optimal with respect to the opti-
mization metrics (i.e. both lexicons have the same size as the optimal lexicon inferred
by the instantaneous acquisition procedure), the ordering of the batches matters only
if there is more than one lexicon that is optimal with respect to the optimization
metrics.53

52See Figure 3-10 and the relevant discussion at the end of §3.2.3.
53In practice, the case of there being several distinct lexicons that are each optimal with respect to the

§3.3 Page 160/200

(ii) If one of 𝑋 or 𝑌 acquired a suboptimal lexicon and the other did not, then the ordering
matters.

(iii) Suppose that both learners acquire suboptimal lexicons (i.e. 𝐶(𝐴,𝐵) > 0 and 𝐶(𝐵,𝐴) >
0). If 𝐶(𝐴,𝐵) = 𝐶(𝐵,𝐴), then again, the relative ordering does not matter as a sub-
optimal lexicon would be inferred in any case; however, without loss of generality,
suppose 0 < 𝐶(𝐴,𝐵) < 𝐶(𝐵,𝐴). In this case the learner, 𝑋, consuming a presenta-
tion of the PLD with less cost, 𝐶(𝐴,𝐵), will obtain a less suboptimal lexicon (relative
to learner 𝑌).

In the latter two of these cases, whether or not the ordering of the two batches will result in
the acquisition of a suboptimal lexicon is dependent on the cost of each of the two ordering
presentations. Since there is no guarantee that the presentation of the PLD made to the
learner will have batches that all have pairwise equivalent cost, we must conclude that the
ordering of the batches can affect the optimality of the inferred lexicon, even if some of the
orderings result in the acquisition of an optimal lexicon.

Optimization Metrics Remain as Before.
The optimization metrics used in the instantaneous acquisition procedure may also be used
in the incremental acquisition procedure without any modification so long as the supplied
(input) lexicon is exactly the lexicon output from the prior run of the incremental acquisi-
tion procedure. To see why this is the case, consider that (optimization) metrics (3.1) and
(3.5) both have as a lower-bound the valuations of those metrics from the prior run of the
incremental acquisition procedure, since the lower-bounds for these two metrics are entirely
determined by the size of the supplied (input) lexicon. Metric (3.7) remains unchanged
because the lower-bound is established by the number of merge operations used by the ear-
lier derivations in the PLD, and since those derivations cannot be changed (as the PLD
consumed in earlier batches and the derivations yielded to satisfy the entries in said PLD
are not retained in the learner’s memory), only the merge operations that occur in the new
derivations (that are yielded by the newly inferred lexicon) are a variable factor. Finally,
metrics (3.8) and (3.9) remain unchanged because the lower-bound is determined by the set
of selectional and licensing feature labels in the supplied (input) lexicon, and will only be in-
creased if it is determined when processing the new batch of PLD that new licensing features
are required (as a consequence of the Shortest Movement Condition in the MG formalism);
the lower bound on the number of selectional features will not change as, without evidence
of what derivations cannot be yielded, one selectional feature will continue to suffice.54 That
the optimization metrics may remain the same without the learner retaining knowledge of
the derivations yielded in the past is important for conditions of psychological plausibility.

optimization metrics has not been observed.
54Inference can be carried out with only one selectional feature provided, without collapsing the number

of lexical items after optimizing the grammar, because the Category variables associated with lexical entries
and the axioms encoding extended projections work together to rule out the ruling of (some) overgenerations,
a task that is otherwise delegated to the selectional features.

§3.3 Page 161/200

3.3.2 Learning Embedded Clauses

We will now illustrate how the incremental acquisition procedure works by using it to acquire
a grammar that is able to parse sentences with embedded sentences and relative clauses.55

The presentation is organized as follows. To begin, we will introduce the input to the
procedure, which consists of: (i) the lexicon learned in §3.2 (see Table 3.3), which was only
able to yield derivations with Degree-0 embedding – i.e. derivations that produce sentences
without any subordinate clauses;56 (ii) the PLD, listed in Table 3.9, which is organized in
three batches, and in which every entry has at most one degree of embedding. Following
this, we will detail how the procedure is used to drive the state of the learner from the
initial state (i.e. the input lexicon) to the final state (i.e. the final outputted lexicon).
We will then present the output of the procedure, a lexicon (listed in Table 3.11) that is
a superset of the input lexicon, and that can yield, for each entry in the processed PLD,
a derivation that satisfies the stipulated interface conditions. Finally, we will prove that
this (outputted) lexicon is able to yield a syntactic structure with Degree-𝑛 embedding
(i.e. 𝑛-level deep embedding) for any 𝑛 ≥ 0, thereby demonstrating that the incremental
acquisition procedure can infer, from a small, finite set of derivations with Degree-0 or
Degree-1 embedding, a lexicon that can generate an unbounded set of syntactic structures,
which the initial input lexicon could not do. This demonstrates that the acquisition model
can infer a lexicon that makes “infinite use of finite means,” a key goal of linguistic theory.

Initial Conditions and Input Data.

The initial state of the learner is the (input) lexicon, listed in Table 3.3, that was inferred by
using the instantaneous acquisition procedure to process the PLD listed in Table 3.2. The
learner is now tasked with processing new primary linguistic data, listed in Table 3.9, that
consists of 11 entries (i.e. entries 𝐼29 to 𝐼39) divided into three batches; these three batches
should be understood to follow the “first batch” of primary linguistic data – i.e. entries 𝐼0
to 𝐼28 listed in Table 3.2.

Let us now examine the entries that make up these three new batches of primary linguistic
data. The second batch of primary linguistic data (i.e. entries 𝐼29 to 𝐼34) consists of sentences
with a complementizer phrase (CP) serving as an argument within the matrix clause; the
complementizer phrase may be an embedded sentence, as in the case of 𝐼31 (square brackets
are used to designate the embedded clause):

(4) “Mary has told John [that icecream was eaten].”

or an embedded question, in the case of 𝐼32:

(5) “Mary has asked John [whether she was eating pizza].”

The third batch of primary linguistic data (i.e. entries 𝐼35 and 𝐼36) includes sentences in
which a restrictive relative clause serves as an argument and the nominal antecedent is not

55(Note that, as in §3.2, all of the derivations presented in this section do accord with the ordering of phono-
logical forms listed in the associated PLD entry – i.e. if they are redrawn with Specifier–Head-Complement
linearization then the correct SVO ordering becomes apparent; the figures were automatically rendered us-
ing Graphviz so that the arrows depicting syntactic movement would not overlap with the projections in the
derivation.)

56A subordinate clause is a clause that is embedded as a constituent of a matrix sentence, and that
functions like a noun, adjective of adverb. A nominal clause is a type of subordinate clause that functions
as a noun phrase.

§3.3 Page 162/200

Batch 𝐼𝑖 Interface Interface Conditions

PF john/N has asked/V whether pizza/N was eaten/V.
𝐼29 LF 𝜃asked[𝑠 : john, 𝑜 : whether pizza was eaten], 𝐴𝑔𝑟has[𝑠 : john], 𝜃eaten[𝑜 : pizza], 𝐴𝑔𝑟was[𝑠 : pizza]

PF mary/N was told/V that john/N has eaten/V pizza/N.
𝐼30 LF 𝜃told[𝑜 : that john has eaten pizza, 𝑖 : mary], 𝐴𝑔𝑟was[𝑠 : mary], 𝜃eaten[𝑠 : john, 𝑜 : pizza], 𝐴𝑔𝑟has[𝑠 : john]

PF mary/N has told/V john/N that icecream/N was eaten/V.
𝐼31 LF 𝜃told[𝑠 : mary, 𝑜 : that icecream was eaten, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : mary], 𝜃eaten[𝑜 : icecream], 𝐴𝑔𝑟was[𝑠 : icecream]

PF mary/N has asked/V john/N whether she/N was eating/V pizza/N.
𝐼32 LF 𝜃asked[𝑠 : mary, 𝑜 : whether she was eating pizza, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : mary], 𝜃eating[𝑠 : she, 𝑜 : pizza], 𝐴𝑔𝑟was[𝑠 : she]

PF who has mary/N told/V that she/N was eating/V icecream/N?
𝐼33 LF 𝜃told[𝑠 : mary, 𝑜 : that she was eating icecream, 𝑖 : who], 𝐴𝑔𝑟has[𝑠 : mary], 𝜃eating[𝑠 : she, 𝑜 : icecream], 𝐴𝑔𝑟was[𝑠 : she]

PF who was asked/V whether mary/N has given/V john/N money/N?

2

𝐼34 LF 𝜃asked[𝑜 : whether mary has given john money, 𝑖 : who], 𝐴𝑔𝑟was[𝑠 : who], 𝜃given[𝑠 : mary, 𝑜 : money, 𝑖 : john],
𝐴𝑔𝑟has[𝑠 : mary]

PF who has told/V john/N everything/N that mary/N was asked/V?
𝐼35 LF 𝜃told[𝑠 : who, 𝑜 : everything that mary was asked, 𝑖 : john], 𝐴𝑔𝑟has[𝑠 : who], 𝜃asked[𝑜 : everything, 𝑖 : mary],

𝐴𝑔𝑟was[𝑠 : mary]
PF was someone/N given/V everything/N that she/N has eaten/V?

3
𝐼36 LF 𝜃given[𝑜 : everything that she has eaten, 𝑖 : someone], 𝐴𝑔𝑟was[𝑠 : someone], 𝜃eaten[𝑠 : she, 𝑜 : everything], 𝐴𝑔𝑟has[𝑠 : she]

PF mary/N has seen/V everyone/N who john/N was eating/V.
𝐼37 LF 𝜃seen[𝑠 : mary, 𝑜 : everyone who john was eating], 𝐴𝑔𝑟has[𝑠 : mary], 𝜃eating[𝑠 : john, 𝑜 : everyone], 𝐴𝑔𝑟was[𝑠 : john]

PF john/N has seen/V someone/N who was eating/V icecream/N.
𝐼38 LF 𝜃seen[𝑠 : john, 𝑜 : someone who was eating icecream], 𝐴𝑔𝑟has[𝑠 : john], 𝜃eating[𝑠 : someone, 𝑜 : icecream],

𝐴𝑔𝑟was[𝑠 : someone]
PF john/N has seen/V someone/N who was eaten/V.

4

𝐼39 LF 𝜃seen[𝑠 : john, 𝑜 : someone who was eaten], 𝐴𝑔𝑟has[𝑠 : john], 𝜃eaten[𝑜 : someone], 𝐴𝑔𝑟was[𝑠 : someone]

Table 3.9: A presentation of the three batches of primary linguistic data (PLD) that the
incremental acquisition procedure successively consumes (after having consumed the first
batch of the PLD, which is listed in Table 3.2). All of the sentences listed here involve one
degree (level) of embedding. Batches 2 presents sentences in which the embedded clause
is a declarative (e.g. 𝐼31) or an interrogative (e.g. 𝐼34). Batch 3 and 4 present sentences
in which the embedded clause is a (restrictive) relative clause. In the case of LF interface
conditions that show how an embedded clause is an argument, the listed phrase is to be
interpreted as a multi-set of phonological forms – e.g. in 𝐼35, the multi-set of phonological
forms {𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔, 𝑡ℎ𝑎𝑡,𝑚𝑎𝑟𝑦, 𝑤𝑎𝑠, 𝑎𝑠𝑘𝑒𝑑} serves as an internal argument of the lexical
verb “told”; thus the LF interface conditions do not include any information about the
linear ordering of the words that make up the sentence, they only provide information that
constrain hierarchical relations.

raised to structural subject position within the relative clause.57 Note that for each of the
two entries, the derivation yielded has the antecedent nominal phrase raised directly from
an internal argument position (without first being raised to structural subject position). In
the case of 𝐼35, the antecedent is raised from within a passive-voice construction:

(6) “Who has told John [everything that Mary was asked]?”

whereas in the case of 𝐼36 the antecedent is raised from within an active-voice construction:

(7) “Was someone given [everything that she has eaten]?”

The fourth batch of primary linguistic data (i.e. entries 𝐼37 to 𝐼39) also includes sentences
with a relative clause serving as an argument, although now some of the entries have the
antecedent nominal phrase “someone” raised to structural subject position within the relative
clause, as is the case in 𝐼38:

57Restrictive relative clauses typically appear immediately after an antecedent (pro)nominal phrase and
serve the purpose of identifying or defining (i.e. restricting interpretations of) the antecedent.

§3.3 Page 163/200

(8) “John has seen [someone who was eating icecream].”

and 𝐼39:

(9) “John has seen [someone who was eaten].“

From Inputs to Outputs: Stepping Through the Procedure.

The learner will successively process these three (new) batches of primary linguistic data
over three consecutive runs of the incremental acquisition procedure, with the output lexicon
from one run serving as the input lexicon for the next run, and the output of the third
run of the incremental acquisition procedure constituting the final inferred lexicon (listed in
Table 3.11).58 A summary of the derivations yielded by each of the successively inferred
lexicons is presented in Table 3.12. Both Table 3.11 and Table 3.12 are structured so as to
clearly delineate the new lexical feature sequences that are learned after the learner processes
each batch of the primary linguistic data. Valuations of the optimization metrics from each
run of the incremental acquisition procedure are listed in Table 3.10. Let us now examine
each of the three runs of the incremental acquisition procedure in greater detail.

To begin, the first run of the incremental acquisition procedure involves processing the
second batch of the primary linguistic data, and the learner acquires (i.e. infers) a lexicon
with 17 distinct lexical feature sequences – i.e. L1 to L17. The input lexicon, consisting of
lexical feature sequences L1 to L16, is a strict subset of the (newly inferred) output lexicon,
with only a single new lexical feature sequence, L17, being learned. This new lexical feature
sequence serves as a lexical head that projects into a CP; see Figures 3-11, 3-12, 3-13 and
3-14 for examples of derivations, yielded by the (newly) inferred lexicon, that use L17 to
satisfy entries in the second batch of the primary linguistic data (specifically 𝐼29, 𝐼31, 𝐼32
and 𝐼34 respectively).59

The second run of the procedure processes the third batch of the primary linguistic data,
with the learner acquiring a lexicon with 19 distinct lexical feature sequences – i.e. L1 to
L19. The input lexicon, being the lexicon output by the preceding run of the procedure, has
17 distinct lexical feature sequences – i.e. L1 to L17 – and is a strict subset of the output
lexicon, with two new lexical feature sequences introduced: L18 and L19. L18 serves as a
lexical head that projects into a CP, and L19, serving as a lexical head for the antecedent,
will be raised to the specifier position of this CP. (see Figure 3-15 for an illustration of this)

The third and final run of the procedure processes the fourth and final batch of the
primary linguistic data, with the learner acquiring a lexicon with 20 distinct lexical feature
sequences – i.e. L1 to L20. The single new lexical feature sequence that has been learned –
i.e. L20 – is a lexical head that can play the role of an antecedent (of a relative clause) that

58N.b. if the incremental acquisition procedure were to be run on the “first batch”, the outcome would be
no different than using the instantaneous acquisition procedure since the input lexicon for this run would be
an empty lexicon; that is why here we pickup the learner’s acquisition trajectory starting with the second
application of the procedure in detail.

59As was the case in §3.2.3, the illustrations of the derivations yielded by the lexicon are not depicted
in specifier-head-complement ordering so that the (drawn) arrows can depict movement of maximal and
minimal projections without obscuring other elements of the derivation; the reader should observe that if
these derivations are drawn in the with the convention of specifiers preceding heads and heads preceding
complements, then it becomes apparent that these derivations do accord with the linear (SVO) ordering
of the phonological forms listed in the PF interface conditions they purport to satisfy. See Figure 3-13 for
an illustration of a derivation that happens to be drawn so as to accord with the spec-head-comp ordering
convention.

§3.3 Page 164/200

Batch Optimization Metrics
(3.1) (3.5) (3.7) (3.8) (3.9)

1 16 33 425 1 2
2 17 35 158 1 2
3 19 40 58 1 2
4 19 43 79 1 2

Table 3.10: Valuations of Optimization Metrics for each run of the Incremental Acquisition
Procedure. Valuations of the optimization metrics for the first batch (of primary linguistic
data) were determined in §3.2.3 using the instantaneous acquisition procedure. Valuations
of these same metrics for processing batches 2-4 using the incremental acquisition procedure
are introduced here. Metrics (3.1) and (3.5) count the number of total number of distinct
lexical feature sequences and total number of syntactic features in the lexicon respectively;
the values for these metrics never decrease as each additional batch of primary linguistic
data is processed as each run of the incremental acquisition procedure only adds to the
input lexicon. Metric (3.7) counts the total number of nodes across all derivations yielded
by the inferred lexicon to satisfy the batch of primary linguistic data being processed during
that run; consequently, the valuation of this metric fluctuates over runs of the incremental
acquisition procedure as the number of entries in the batch and the size of the entries in the
batch (i.e. number of overt phonological forms) fluctuates. Metrics (3.8) and (3.9) count
the number of distinct selectional and licensing features appearing in the inferred lexicon.
See §3.2.1 for further discussion of these metrics.

is first raised to structural subject position (i.e. Spec-TP) before within the relative clause
before finally being raised to the specifier position of the CP that heads the relative clause;
see Figure 3-17 for a derivation yielded by the (final) inferred lexicon that illustrates this
arrangement.

Having outlined the process by which the learner incrementally acquires a lexicon by pro-
cessing the primary linguistic data in batches, we will now turn to more carefully analyzing
the lexicon that the learner has acquired, and the derivations it yields.

Evaluation and Analysis of the Inferred Grammar

The (learned) lexicon is able to produce sentences with embedded complementizer phrases.
Acquiring the capacity to yield such sentences requires a small addition to the grammar – i.e.
the single (new) lexical feature sequence L17.60 This new lexical feature sequence had to be
learned when processing the second batch of primary linguistic data because the (existing)
three lexical feature sequences that project into complementizer phrases that head the main
clause of a sentence – i.e. L3, L4 and L6 – have the special feature 𝐶 that designates that
their maximal projection is the head of the entire derivation, and therefore they cannot be
used to head an embedded complementizer clause. Looking ahead, the acquisition of this
single new lexical feature, acquired after processing the second batch, will endow the learner
with the capacity to generate an unbounded set of syntactic structures. (See Pg. 178 for a
proof of this)

60This lexical head projects into a CP that doesn’t distinguish between embedded sentences and questions,
as the system only considers the distinction between the categories 𝐶𝐷𝑒𝑐𝑙. and 𝐶𝑄𝑢𝑒𝑠. when interpreting the
CP that heads the matrix clause.

§3.3 Page 165/200

Figure 3-11: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼29. This derivation produces the sentence: “John has asked whether
pizza was eaten.”

§3.3 Page 166/200

Figure 3-12: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼31. This derivation produces the sentence: “Mary has told John that
icecream was eaten.”

§3.3 Page 167/200

Figure 3-13: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼32. This derivation produces the sentence: “Mary has asked John
whether she was eating pizza.”

§3.3 Page 168/200

Figure 3-14: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼34. This derivation produces the interrogative: “Who was asked
whether Mary has given John money?”

§3.3 Page 169/200

Figure 3-15: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼36. This derivation produces the interrogative: “Was someone given
everything that she has eaten?”

§3.3 Page 170/200

Figure 3-16: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼37. This derivation produces the sentence: “Mary has seen everyone
who John was eating.”

§3.3 Page 171/200

Figure 3-17: The derivation yielded by the final inferred lexicon to satisfy the LF and PF
interface conditions in 𝐼38. This derivation produces the sentence: “John has seen someone
who was eating icecream.”

§3.3 Page 172/200

ID Category Features Phonological Forms

w
ha

t
w

ho
th

at
w
he

th
er

ha
s

w
as

sh
e

ev
er

yt
hi

ng
so

m
eo

ne

ic
ec

re
am

m
on

ey
m

ar
y

pi
zz

a

jo
hn

no
th

in
g

bo
y

st
or

y

gi
ve

n

to
ld

as
ke

d
kn

ow
n

se
en

as
ki

ng

ea
ti

ng
ea

te
n

to ev
er

yo
n
e

sl
ee

pi
ng

sl
ep

t

th
e

a 𝜖

L1 𝑉 = 𝑥0,∼ 𝑥0 · · · · · · · · · · · · · · · · · · · ××× ××× ××× ××× ××× ××× · · · · · · ·
L2 𝑉 = 𝑥0,= 𝑥0,∼ 𝑥0 · · · · · · · · · · · · · · · · · ××× ××× ××× · · · · · · · · · · · ·
L3 𝐶𝑑𝑒𝑐𝑙. = 𝑥0, 𝐶 · ×××
L4 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0,+𝑧, 𝐶 · ×××
L5 𝑣 <= 𝑥0,∼ 𝑥0 · ×××
L6 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0, 𝐶 · ×××
L7 𝑣 <= 𝑥0,= 𝑥0,∼ 𝑥0 · ×××
L8 𝑃 = 𝑥0,∼ 𝑥0 · ××× · · · · · ·
L9 𝐷 = 𝑥0,∼ 𝑥0,−𝑙 · ××× ××× ·
L10 𝐷 = 𝑥0,∼ 𝑥0 · ××× ××× ·
L11 𝐷 ∼ 𝑥0,−𝑧 ××× ××× ·
L12 𝐷 ∼ 𝑥0,−𝑙,−𝑧 ××× ××× ·
L13 𝑇 = 𝑥0,+𝑙,∼ 𝑥0 · · · · ××× ××× ·
L14 𝑉 ∼ 𝑥0 · ××× ××× · · ·
L15 𝑁 ∼ 𝑥0,−𝑙 · · · · · · ××× ××× ××× ××× ××× ××× ××× ××× ××× · · · · · · · · · · · · · · · · ·
L16 𝑁 ∼ 𝑥0 · · · · · · · ××× ××× ××× ××× ××× ××× ××× ××× ××× ××× · · · · · · · · · · · · · · ·

L17 𝐶𝑑𝑒𝑐𝑙. = 𝑥0,∼ 𝑥0 · · ××× ××× ·

L18 𝐶𝑑𝑒𝑐𝑙. = 𝑥0,+𝑧,∼ 𝑥0 · ××× ××× ·
L19 𝑁 ∼ 𝑥0,−𝑧 · · · · · · · ××× · · · · · · · · · · · · · · · · · · ××× · · · · ·

L20 𝑁 ∼ 𝑥0,−𝑙,−𝑧 · · · · · · · · ××× ·

Table 3.11: A factored view of the final inferred lexicon that was produced by first pro-
cessing the PLD listed in Table 3.2 using the instantaneous acquisition procedure, and then
processing the PLD listed in Table 3.9 using the incremental acquisition procedure. Each
row indicates the phonological forms that are paired with the listed category and features in
the lexicon. The columns have been seriated (using the hamming distance metric) so as to
visually group together similar entries. The rows are divided by horizontal lines to indicate
which lexical features sequences were inferred from which batch of the PLD: L1 − L16 for
the first batch (i.e. 𝐼0 to 𝐼28); L17 for the second batch (i.e. 𝐼29 to 𝐼34); L18 − L19 for the
third batch (i.e. 𝐼35 to 𝐼36); L20 for the fourth (and final) batch (i.e. 𝐼37 to 𝐼39). Notably,
L17 and L18 code for complementizers that can serve as the head of arguments, thereby
enabling the inferred lexicon to generate sentences with embedded clauses – i.e. L17 enables
embedded sentences and L18 enables embedded relative clauses. There are 31 distinct overt
phonological forms in the lexicon. As compared with the lexicon inferred by the instanta-
neous acquisition procedure (listed in Table 3.3), this new lexicon introduces five new overt
phonological forms: “that”, “whether” and “she” were learned when processing the second
batch; “seen” and “everyone” were learned when processing the fourth batch.

The lexicon is also able to produce sentences with (restrictive) relative clauses. Specifically,
the inferred grammar yields derivations that align with the Wh-Movement Analysis for
restrictive relative clauses in which the antecedent originates within the relative clause in
an argument position, thereby establishing a relation with the predicate within the relative
clause, and is then subsequently raised to the specifier position of the complementizer phrase
heading the relative clause, thereby achieving the proper word ordering (i.e. the antecedent
immediately precedes the remainder of the relative clause). To ground this analysis, let us
take a look at the derivation yielded by the lexicon to satisfy the interface condition listed in
entry 𝐼36 of the Table 3.9, as illustrated in Figure 3-15. This derivation is externalized as the
sentence: “Was someone given everything that she has eaten?” The antecedent “everything”
originates as the complement of the lexical verb “eaten” inside the relative clause, before
being raised to the specifier position of the projection of the lexical head “that”.

§3.3 Page 173/200

ID Category Features Input Sentence
𝐼29 𝐼30 𝐼31 𝐼32 𝐼33 𝐼34 𝐼35 𝐼36 𝐼37 𝐼38 𝐼39

L1 𝑉 = 𝑥0,∼ 𝑥0 2 1 1 1 1 · · 1 2 2 2
L2 𝑉 = 𝑥0,= 𝑥0,∼ 𝑥0 · 1 1 1 1 2 2 1 · · ·
L3 𝐶𝐷𝑒𝑐𝑙. = 𝑥0, 𝐶 1 1 1 1 · · · · 1 1 1
L4 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0,+𝑧, 𝐶 · · · · 1 1 1 · · · ·
L5 𝑣 <= 𝑥0,∼ 𝑥0 1 1 1 · · 1 1 1 · · 1
L6 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0, 𝐶 · · · · · · · 1 · · ·
L7 𝑣 <= 𝑥0,= 𝑥0,∼ 𝑥0 1 1 1 2 2 1 · 1 2 2 1
L8 𝑃 = 𝑥0,∼ 𝑥0 · · · · · · · · · · ·
L9 𝐷 = 𝑥0,∼ 𝑥0,−𝑙 · · · · · · · · · · ·
L10 𝐷 = 𝑥0,∼ 𝑥0 · · · · · · · · · · ·
L11 𝐷 ∼ 𝑥0,−𝑧 · · · · 1 · · · · · ·
L12 𝐷 ∼ 𝑥0,−𝑙,−𝑧 · · · · · 1 1 · · · ·
L13 𝑇 = 𝑥0,+𝑙,∼ 𝑥0 2 2 2 2 2 2 2 2 2 2 2
L14 𝑉 ∼ 𝑥0 · · · · · · · · · · ·
L15 𝑁 ∼ 𝑥0,−𝑙 2 2 2 2 2 1 1 2 2 1 1
L16 𝑁 ∼ 𝑥0 · 1 1 2 1 2 1 · · 1 ·

L17 𝐶𝑑𝑒𝑐𝑙. = 𝑥0,∼ 𝑥0 1 1 1 1 1 1 · · · · ·

L18 𝐶𝑑𝑒𝑐𝑙. = 𝑥0,+𝑧,∼ 𝑥0 · · · · · · 1 1 1 1 1
L19 𝑁 ∼ 𝑥0,−𝑧 · · · · · · 1 1 1 · ·

L20 𝑁 ∼ 𝑥0,−𝑙,−𝑧 · · · · · · · · · 1 1

Table 3.12: A summary of the derivations yielded by the final inferred lexicon (listed in
Table 3.11) to satisfy the pairings of LF and PF interface conditions presented in batches 2-4
of the PLD (listed in Table 3.9). The derivations yielded to satisfy the interface conditions in
each batch (of the PLD) use the new lexical feature sequences introduced by the acquisition
procedure after processing that batch. Each of the derivations make use of the lexical feature
sequences that were inferred when processing the first batch of the PLD – i.e. 𝐼0− 𝐼28, both
for constructing the matrix clause for the derivation, but also for constructing the embedded
clause.

Although the lexicon is consistent in handling restrictive relative clauses in this way –
i.e. the antecedent can always be identified as the specifier of the complementizer that heads
the relative clause – this analysis does not align with the Antecedent Raising Analysis of
restrictive relative clauses (Donati and Cecchetto, 2011) that many contemporary theories
of minimalist syntax have adopted.61 One explanation of this divergence in analysis of re-
strictive relative clauses is that the incremental acquisition procedure developed in this thesis
is prone to over-optimizing – i.e. inferring the optimal lexicon that is compatible with the
PLD leads the learner to acquire a lexicon in which the fewest number of new lexical feature
sequences are introduced (beyond those lexical feature sequences already present in the input
lexicon). The Wh-Movement Analysis only requires that three new lexical feature sequences
(L18, L19, and L20) be introduced. In contrast, the Antecedent Raising Analysis requires
four new lexical feature sequences to be introduced: L18, which codes for the complemen-
tizer that heads the relative clause; a covert nominal that can take L18 as its complement,
and that will then merge into the complement position of the projection of a determiner;
variants of L19 and L20 (both of which coded for the antecedent) that are extended with

61See (Radford, 2016, Pgs. 398-430) for a comparison of the Wh-Movement Analysis and Antecedent
Raising Analysis of (restrictive) relative clauses.

§3.3 Page 174/200

a licensee feature that enables them to undergo antecedent raising to the specifier position
of the (aforementioned) nominal lexical feature sequence.62 Thus, the learner opts for the
Wh-Movement Analysis, as it requires fewer lexical feature sequences be introduced.

The inferred grammar can also yield novel sentences that employ the newly acquired phono-
logical forms – e.g.:

(10) “She has seen John.”

This sentence is produced by the following derivation:63{︂
𝜖𝐶𝐷𝑒𝑐𝑙.

L3

{︂
ℎ𝑎𝑠

L13

{︂
𝑠ℎ𝑒

L15

{︂
𝜖𝑣
L7

{︂
𝑠𝑒𝑒𝑛

L1

𝐽𝑜ℎ𝑛

L16

}︂}︂}︂}︂}︂
The lexicon inferred by the instantaneous acquisition procedure was already able to yield
derivations of this form, as can be seen by the use (exclusively) of lexical feature sequences
that were already present in that lexicon; what is new is that after using the incremental
acquisition procedure to process the remaining three batches of the PLD, the learner has
acquired knowledge of several new phonological forms, and learned to associate them with
the (aforementioned) previously learned lexical feature sequences.

The inferred lexicon is able to yield derivations in which a CP or a (restrictive) relative
clauses can serve as an internal argument, so long as the embedded clause is not required to
be undergo raising to structural subject position. Let us consider three examples of novel
constructions the inferred lexicon can yield that illustrate this point. Firstly, the inferred
grammar can yield constructions with a ditransitive verb in which the internal argument
corresponding to the direct object is a relative clause – e.g.:

(11) “John has told [everything that Mary has known] to someone.”

If we let the phrase “everything that Mary has known” be designated by 𝑅𝛼, then this sentence
is produced by the following derivation:{︂

𝜖𝐶𝐷𝑒𝑐𝑙.

L3

{︂
ℎ𝑎𝑠

L13

{︂
𝐽𝑜ℎ𝑛

L15

{︂
𝜖𝑣
L7

{︂
𝑅𝐷

𝛼

{︂
𝑡𝑜𝑙𝑑

L2

{︂
𝑡𝑜

L8

𝑠𝑜𝑚𝑒𝑜𝑛𝑒

L16

}︂}︂}︂}︂}︂}︂}︂
where

𝑅𝐷
𝛼 =

{︂
𝑡ℎ𝑎𝑡

L18

{︂
ℎ𝑎𝑠

L13

{︂
𝑀𝑎𝑟𝑦

L15

{︂
𝜖𝑣
L7

{︂
𝑘𝑛𝑜𝑤𝑛

L1

𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔

L19

}︂}︂}︂}︂}︂
Secondly, the inferred grammar can yield constructions with a ditransitive verb in which the
internal argument corresponding to the indirect object is a relative clause – e.g.:

(12) “John has asked [someone who has eaten nothing] a story.”

Letting the phrase “someone who has eaten nothing” be designated by 𝑅𝛽 , this sentence is
62See (Radford, 2016, Pg. 420) for an example that illustrates the Antecedent Raising Analysis of restrictive

relative clauses; note that this illustration corresponds to a slight refinement of the original analysis given
in (Donati and Cecchetto, 2011).

63Note that, as in §3.2.3, derivations presented inline are in a bracketed form that only shows the external
merge operations; the full derivation can be recovered from a specification of the external merge opera-
tions in the derivation because, in the minimalist grammar formalism, internal merge operations happen
automatically and deterministically in the course of a derivation – see §2.2 for a discussion of how this is a
consequence of the Shortest Movement Condition (SMC).

§3.3 Page 175/200

produced by the following derivation:{︂
𝜖𝐶𝐷𝑒𝑐𝑙.

L3

{︂
ℎ𝑎𝑠

L13

{︂
𝐽𝑜ℎ𝑛

L15

{︂
𝜖𝑣
L7

{︂
𝑅𝐷

𝛽

{︂
𝑎𝑠𝑘𝑒𝑑

L2

{︂
𝑎

L10

𝑠𝑡𝑜𝑟𝑦

L16

}︂}︂}︂}︂}︂}︂}︂
where

𝑅𝐷
𝛽 =

{︂
𝑤ℎ𝑜

L18

{︂
ℎ𝑎𝑠

L13

{︂
𝑠𝑜𝑚𝑒𝑜𝑛𝑒

L20

{︂
𝜖𝑣
L7

{︂
𝑒𝑎𝑡𝑒𝑛

L1

𝑛𝑜𝑡ℎ𝑖𝑛𝑔

L16

}︂}︂}︂}︂}︂
Thirdly, the inferred grammar can also yield sentences that have both an embedded com-
plementizer clause and an embedded (restrictive) relative clause as (internal) arguments –
e.g.:

(13) “Mary has given [everything that John was given] to [someone who was sleeping].”

Designating the phrase “everything that John was given” by 𝑅1 and the phrase “someone
who was sleeping” by 𝑅2, this sentence is produced by the following derivation:{︂

𝜖𝐶𝐷𝑒𝑐𝑙

L3

{︂
ℎ𝑎𝑠

L13

{︂
𝜖𝑣
L5

{︂
𝑅𝐷

1

{︂
𝑔𝑖𝑣𝑒𝑛

L2

{︂
𝑡𝑜

L8
𝑅𝐷

2

}︂}︂}︂}︂}︂}︂
where

𝑅𝐷
1 =

{︂
𝑡ℎ𝑎𝑡

L18

{︂
𝑤𝑎𝑠

L13

{︂
𝜖𝑣
L5

{︂
𝐽𝑜ℎ𝑛

L15

{︂
𝑔𝑖𝑣𝑒𝑛

L2

𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔

L19

}︂}︂}︂}︂}︂
and

𝑅𝐷
2 =

{︂
𝑤ℎ𝑜

L18

{︂
𝑤𝑎𝑠

L13

{︂
𝑠𝑜𝑚𝑒𝑜𝑛𝑒

L20

{︂
𝜖𝑣
L7

𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔

L14

}︂}︂}︂}︂
Having considered several cases of novel syntactic structures that the (optimal) inferred
lexicon can yield, let us now briefly consider two cases of ungrammatical forms that the
inferred lexicon will not generate.64

(i) The inferred lexicon will not yield a derivation in which the complementizer that heads
an embedded clause triggers head-movement:65

(14) * “She has known [that has John eaten pizza].”

To see this, observe that neither of the lexical feature sequences that serve to connect
an embedded clause to the matrix clause (i.e. the lexical feature sequences L17 and
L18 that are associated with the phonological form “that”) have the (selector) feature
<= 𝑥0 that triggers T-to-C head-movement (c.f. L4 or L6 which do have the feature
<= 𝑥0).

(ii) The inferred lexicon will not yield a derivation in which an argument in the embedded
clause is (directly) raised to agree with the tense-marker in the matrix clause, so that
the following interrogative cannot be produced by the lexicon:

(15) * “Has John told Mary [that money was given to ���John]?”
64Note that these two cases pertain specifically to derivations with embedded clauses and are distinct from

the three cases described in §3.2.3.
65Cf. the grammatical expression “She has known [that John has eaten pizza].”

§3.3 Page 176/200

To see this, first observe that no lexical feature sequence has two instances of the
licensee feature −𝑙 that enables subject-raising to Spec-TP; this rules out the pos-
sibility of an argument originating from within the embedded clause being raised to
first check the licensor of the embedded TP and subsequently being raised (again) to
check the licensor of the TP in the matrix clause. Next, observe that the single lexi-
cal feature sequence for tense markers, L13 (associated with phonological forms “has”
and “was”), has a licensor feature, +𝑙, that triggers internal merge and requires an
appropriate licensee be raised and check the licensor. Consequently, for the argument
“John” (associated with L15) in the embedded clause to be raised to Spec-TP in the
matrix clause, it would have to form either a crossing or nested (i.e. overlapping)
movement operation with respect to the phrase “money” that lands at Spec-TP within
the embedded clause; such an arrangement is ruled out by the Shortest Movement
Condition, which requires that the embedded-TP must be able to determine which in-
ternal argument will be raised to its specifier position based on the label of the licensee
feature alone, and this is impossible as the lexical feature sequences for “John” and
“money” both have the same licensee feature −𝑙.66 (Note that “John” and “money” are
both associated with the same lexical feature sequence, L15.)

Yielding an Unbounded Set of Syntactic Structures

One of the distinguishing characteristics of the human language faculty is the capacity to
generate, from a finite set of words, a countably infinite set of (interpretable) hierarchical
structures that pair meaning and sound. One can now prove that the inferred lexicon has
this capacity, and that in particular, this lexicon can yield, for any 𝑛 > 0, a derivation with
Degree-𝑛 embedding (i.e. a derivation with 𝑛 levels of embedding); consequently, there is
no upper-bound on how many levels of embedding the structures the lexicon can yield may
have. Importantly, the inferred lexicon was acquired from a small, finite set of sentences
with at most one level of embedding, thereby demonstrating the capacity of the incremental
acquisition procedure to generalize from a limited set of examples.

66See §2.2 for details about the Shortest Movement Condition.

§3.3 Page 177/200

P
r
o
o
f-

A
:
E
m

b
ed

d
ed

-S
en

te
n
ce

E
xp

an
si

on
.

T
hi

s
is

a
pr

oo
fb

y
in

du
ct

io
n

th
at

sh
ow

s
th

at
fo

r
an

y
𝑛
>

0,
th

e
in

fe
rr

ed
le

xi
co

n
ca

n
yi

el
d

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g,
th

er
eb

y
es

ta
bl

is
hi

ng
th

at
th

e
in

fe
rr

ed
le

xi
co

n
ca

n
ge

ne
ra

te
an

un
bo

un
de

d
se

t
of

di
st

in
ct

sy
nt

ac
ti

c
st

ru
ct

ur
es

.
T
o

be
gi

n,
co

ns
id

er
th

e
se

nt
en

ce
:

(1
6)

“A
bo

y
ha

s
to

ld
so

m
eo

ne
th

e
st

or
y.

”

T
hi

s
se

nt
en

ce
ca

n
be

ge
ne

ra
te

d
fr

om
th

e
in

fe
rr

ed
le

xi
co

n
vi

a
th

e
fo

llo
w

in
g

de
ri

va
ti

on
w

it
h

D
eg

re
e-
0

em
be

dd
in

g:
{︂ 𝜖 𝐶 L

3

{︂ ℎ𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏𝑜
𝑦

L
1
6

}︂{︂
𝜖 𝑣 L
7

{︂ 𝑠𝑜𝑚
𝑒𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜𝑙
𝑑

L
2

{︂ 𝑡ℎ𝑒 L
1
0

𝑠𝑡
𝑜𝑟
𝑦

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂
T

hi
s

de
ri

va
ti

on
w

it
h

D
eg

re
e-

0
em

be
dd

in
g

co
ns

ti
tu

te
s

th
e

ba
se

ca
se

of
th

is
in

du
ct

iv
e

pr
oo

f.
N

ex
t,

co
ns

id
er

th
e

fo
llo

w
in

g
ru

le
fo

r
ex

pa
nd

in
g

th
is

se
nt

en
ce

:
re

pl
ac

e
th

e
ar

gu
m

en
t
“t
he

st
or

y”
w

it
h

th
e

(c
om

pl
em

en
ti

ze
r)

ph
ra

se
“t
ha

t
a

bo
y

ha
s

to
ld

so
m

eo
ne

th
e

st
or

y”
.

Fo
rm

al
ly

,t
hi

s
ru

le
ca

n
be

w
ri

tt
en

as
:

{︂ 𝑡ℎ𝑒 L
1
0

𝑠𝑡
𝑜𝑟
𝑦

L
1
6

}︂ →
{︂ 𝑡ℎ𝑎

𝑡

L
1
7

{︂ ℎ𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏𝑜
𝑦

L
1
6

}︂{︂
𝜖 𝑣 L
7

{︂ 𝑠𝑜𝑚
𝑒𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜𝑙
𝑑

L
2

{︂ 𝑡ℎ𝑒 L
1
0

𝑠𝑡
𝑜𝑟
𝑦

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂
Im

po
rt

an
tl

y,
th

is
(s

ub
st

it
ut

io
n)

ru
le

ca
n

be
ap

pl
ie

d
be

ca
us

e
th

e
fe

at
ur

es
ex

po
se

d
by

th
e

he
ad

of
th

e
ph

ra
se

on
th

e
le

ft
ha

nd
si

de
–

(i
.e

.
∼
𝑥
0

in
L
1
0
)

ar
e

th
e

sa
m

e
as

th
e

fe
at

ur
es

ex
po

se
d

by
th

e
he

ad
of

th
e

ph
ra

se
on

th
e

ri
gh

t
ha

nd
si

de
(i

.e
.
∼
𝑥
0

in
L
1
7
).

A
pp

ly
in

g
th

is
ru

le
to

th
e

ba
se

-c
as

e
de

ri
va

ti
on

yi
el

ds
th

e
fo

llo
w

in
g

de
ri

va
ti

on
w

it
h

D
eg

re
e-
1

em
be

dd
in

g:
{︂ 𝜖 𝐶 L

3

{︂ ℎ
𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏𝑜
𝑦

L
1
6

}︂{︂
𝜖 𝑣 L
7

{︂ 𝑠𝑜
𝑚
𝑒𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜
𝑙𝑑

L
2

{︂ 𝑡ℎ
𝑎
𝑡

L
1
7

{︂ ℎ
𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏𝑜
𝑦

L
1
6

}︂{︂
𝜖 𝑣 L
7

{︂ 𝑠𝑜
𝑚
𝑒𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜
𝑙𝑑

L
2

{︂ 𝑡ℎ
𝑒

L
1
0

𝑠𝑡
𝑜𝑟
𝑦

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂}︂}︂
}︂}︂}︂

}︂
w

hi
ch

in
tu

rn
pr

od
uc

es
th

e
se

nt
en

ce
:

(1
7)

“A
bo

y
ha

s
to

ld
so

m
eo

ne
[t
ha

t
a

bo
y

ha
s

to
ld

so
m

eo
ne

th
e

st
or

y]
.”

Su
cc

es
si

ve
ap

pl
ic

at
io

ns
of

th
is

ru
le

yi
el

ds
de

ri
va

ti
on

s
w

it
h

in
cr

ea
si

ng
de

gr
ee

s
of

em
be

dd
in

g
–

e.
g.

w
he

n
ap

pl
ie

d
tw

ic
e

in
su

cc
es

si
on

to
th

e
ba

se
ca

se
de

ri
va

ti
on

,t
he

ru
le

pr
od

uc
es

th
e

fo
llo

w
in

g
de

ri
va

ti
on

w
it

h
D

eg
re

e-
2

em
be

dd
in

g:

{︂ 𝜖 𝐶 L
3

{︂ ℎ𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏
𝑜
𝑦

L
1
6

}︂{︂
𝜖
𝑣

L
7

{︂ 𝑠𝑜
𝑚

𝑒
𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜
𝑙𝑑

L
2

{︂ 𝑡ℎ
𝑎
𝑡

L
1
7

{︂ ℎ𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏
𝑜
𝑦

L
1
6

}︂{︂
𝜖
𝑣

L
7

{︂ 𝑠𝑜
𝑚

𝑒
𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜
𝑙𝑑

L
2

{︂ 𝑡ℎ
𝑎
𝑡

L
1
7

{︂ ℎ𝑎
𝑠

L
1
3

{︂{︂
𝑎 L
9

𝑏
𝑜
𝑦

L
1
6

}︂{︂
𝜖
𝑣

L
7

{︂ 𝑠𝑜
𝑚

𝑒
𝑜
𝑛
𝑒

L
1
6

{︂ 𝑡𝑜
𝑙𝑑

L
2

{︂ 𝑡ℎ
𝑒

L
1
0

𝑠
𝑡𝑜

𝑟
𝑦

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂}︂}︂
}︂}︂}︂

}︂}︂}︂
}︂}︂}︂

}︂

w
hi

ch
in

tu
rn

pr
od

uc
es

th
e

se
nt

en
ce

:

§3.3 Page 178/200

(1
8)

“A
bo

y
ha

s
to

ld
so

m
eo

ne
[t
ha

t
a

bo
y

ha
s

to
ld

so
m

eo
ne

[t
ha

t
a

bo
y

ha
s

to
ld

so
m

eo
ne

th
e

st
or

y]
].”

T
hi

s
le

ad
s

to
th

e
in

du
ct

iv
e

st
ep

:
gi

ve
n

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g
th

at
w

as
pr

od
uc

ed
by

th
e

re
pe

at
ed

ap
pl

ic
at

io
n

of
th

e
ex

pa
ns

io
n

ru
le
𝑛

ti
m

es
to

th
e

ba
se

-c
as

e
de

ri
va

ti
on

(w
it

h
D

eg
re

e-
0

em
be

dd
in

g)
,a

pp
ly

in
g

th
e

ru
le

on
ce

m
or

e
to

th
is

de
ri

va
ti

on
w

it
h

D
eg

re
e-

𝑛
em

be
dd

in
g

yi
el

ds
a

de
ri

va
ti

on
w

it
h

D
eg

re
e-
(𝑛

+
1)

em
be

dd
in

g;
th

is
is

th
e

ca
se

be
ca

us
e

th
e

ex
pa

ns
io

n
ru

le
ha

s
th

e
pr

op
er

ty
th

at
th

e
le

ft
ha

nd
si

de
of

th
e

ru
le

is
fo

un
d

w
it

hi
n

th
e

ri
gh

t
ha

nd
si

de
of

th
e

ru
le

,s
o

th
at

th
e

ru
le

m
ay

be
ap

pl
ie

d
re

pe
at

ed
ly

,e
ac

h
ti

m
e

re
pl

ac
in

g
th

e
ar

gu
m

en
t

“t
he

st
or

y”
w

it
h

th
e

ph
ra

se
“t
ha

t
a

bo
y

ha
s

to
ld

so
m

eo
ne

th
e

st
or

y”
an

d
th

er
eb

y
in

cr
ea

si
ng

th
e

de
gr

ee
of

em
be

dd
in

g
by

on
e.

It
fo

llo
w

s
th

at
fo

r
an

y
𝑛
>

0,
th

e
ex

pa
ns

io
n

ru
le

ca
n

be
ap

pl
ie

d
re

pe
at

ed
ly
𝑛

ti
m

es
to

th
e

ba
se

ca
se

de
ri

va
ti

on
to

pr
od

uc
e

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g,
an

d
th

us
th

e
in

fe
rr

ed
le

xi
co

n
ca

n
ge

ne
ra

te
an

un
bo

un
de

d
se

t
of

di
st

in
ct

sy
nt

ac
ti

c
st

ru
ct

ur
es

.
Se

e
T
ab

le
3.

13
fo

r
a

su
m

m
ar

y
of

th
e

de
ri

va
ti

on
s
de

sc
ri

be
d

in
th

is
pr

oo
fa

s
w

el
la

s
a

fo
rm

ul
a

fo
r
ge

ne
ra

ti
ng

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g
fo

r
an

y
𝑛
>

0.

P
r
o
o
f-

B
:
R

el
at

iv
e

C
la

u
se

E
xp

an
si

on
.

T
hi

s
is

(a
no

th
er

)
pr

oo
fb

y
in

du
ct

io
n

th
at

sh
ow

s
th

at
fo

r
an

y
𝑛
>

0
,t

he
in

fe
rr

ed
le

xi
co

n
ca

n
yi

el
d

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g
–

in
th

is
pr

oo
f,

th
e

ex
pa

ns
io

n
ru

le
w

ill
ce

nt
er

ar
ou

nd
su

bs
ti

tu
ti

ng
si

m
pl

e
ar

gu
m

en
ts

w
it

h
m

or
e

co
m

pl
ex

re
la

ti
ve

cl
au

se
s.

T
o

be
gi

n,
co

ns
id

er
th

e
se

nt
en

ce
:

(1
9)

“M
ar

y
ha

s
gi

ve
n

ev
er

yt
hi

ng
to

Jo
hn

.”

T
hi

s
se

nt
en

ce
ca

n
be

ge
ne

ra
te

d
fr

om
th

e
in

fe
rr

ed
le

xi
co

n
vi

a
th

e
fo

llo
w

in
g

de
ri

va
ti

on
w

it
h

D
eg

re
e-
0

em
be

dd
in

g:
{︂ 𝜖 𝐶 L

3

{︂ ℎ𝑎
𝑠

L
1
3

{︂ 𝑀
𝑎
𝑟𝑦

L
1
5

{︂ 𝜖 𝑣 L
7

{︂ 𝑒𝑣𝑒
𝑟𝑦
𝑡ℎ
𝑖𝑛
𝑔

L
1
6

{︂ 𝑔𝑖𝑣
𝑒𝑛

L
2

{︂ 𝑡𝑜 L
8

𝐽
𝑜ℎ
𝑛

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂
T

hi
s

de
ri

va
ti

on
w

it
h

D
eg

re
e-
0

em
be

dd
in

g
co

ns
ti

tu
te

s
th

e
ba

se
ca

se
of

th
is

in
du

ct
iv

e
pr

oo
f.

N
ex

t,
co

ns
id

er
th

e
fo

llo
w

in
g

ru
le

fo
r

ex
pa

nd
in

g
th

is
se

nt
en

ce
:

re
pl

ac
e

th
e

ar
gu

m
en

t
“J

oh
n”

w
it

h
th

e
re

la
ti

ve
cl

au
se

“s
om

eo
ne

w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
Jo

hn
”.

Fo
rm

al
ly

,t
hi

s
ru

le
ca

n
be

w
ri

tt
en

as
:

𝐽
𝑜ℎ
𝑛

L
1
6

→
{︂ 𝑤ℎ

𝑜

L
1
8

{︂ ℎ𝑎
𝑠

L
1
3

{︂ 𝑠𝑜𝑚
𝑒𝑜
𝑛
𝑒

L
2
0

{︂ 𝜖 𝑣 L
7

{︂ 𝑒𝑣𝑒
𝑟𝑦
𝑡ℎ
𝑖𝑛
𝑔

L
1
6

{︂ 𝑔𝑖𝑣
𝑒𝑛

L
2

{︂ 𝑡𝑜 L
8

𝐽
𝑜ℎ
𝑛

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂
Im

po
rt

an
tl

y,
th

is
(s

ub
st

it
ut

io
n)

ru
le

ca
n

be
ap

pl
ie

d
be

ca
us

e
th

e
fe

at
ur

e
ex

po
se

d
by

th
e

he
ad

of
th

e
ph

ra
se

on
th

e
le

ft
ha

nd
si

de
–

(i
.e

.
∼
𝑥
0

in
L
1
6
)

ar
e

th
e

sa
m

e
as

th
e

fe
at

ur
e

ex
po

se
d

by
th

e
he

ad
of

th
e

ph
ra

se
on

th
e

ri
gh

t
ha

nd
si

de
(i

.e
.
∼
𝑥
0

in
L
1
8
).

A
pp

ly
in

g
th

is
ru

le

§3.3 Page 179/200

to
th

e
ba

se
-c

as
e

de
ri

va
ti

on
(w

it
h

D
eg

re
e-
0

em
be

dd
in

g)
yi

el
ds

th
e

fo
llo

w
in

g
de

ri
va

ti
on

w
it

h
D

eg
re

e-
1

em
be

dd
in

g:
{︂ 𝜖 𝐶 L

3

{︂ ℎ𝑎
𝑠

L
1
3

{︂ 𝑀
𝑎
𝑟
𝑦

L
1
5

{︂ 𝜖 𝑣 L
7

{︂ 𝑒𝑣
𝑒𝑟

𝑦
𝑡ℎ
𝑖𝑛

𝑔

L
1
6

{︂ 𝑔𝑖𝑣
𝑒𝑛

L
2

{︂ 𝑡𝑜 L
8

{︂ 𝑤ℎ
𝑜

L
1
8

{︂ ℎ𝑎
𝑠

L
1
3

{︂ 𝑠𝑜
𝑚
𝑒𝑜

𝑛
𝑒

L
2
0

{︂ 𝜖 𝑣 L
7

{︂ 𝑒𝑣
𝑒𝑟

𝑦
𝑡ℎ
𝑖𝑛

𝑔

L
1
6

{︂ 𝑔𝑖𝑣
𝑒𝑛

L
2

{︂ 𝑡𝑜 L
8

𝐽
𝑜
ℎ
𝑛

L
1
6

}︂}︂}︂
}︂}︂}︂

}︂}︂}︂
}︂}︂}︂

}︂}︂

w
hi

ch
in

tu
rn

pr
od

uc
es

th
e

se
nt

en
ce

:

(2
0)

“M
ar

y
ha

s
gi

ve
n

ev
er

yt
hi

ng
to

[s
om

eo
ne

w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
Jo

hn
].”

Su
cc

es
si

ve
ap

pl
ic

at
io

ns
of

th
e

ex
pa

ns
io

n
ru

le
yi

el
d

de
ri

va
ti

on
s

w
it

h
in

cr
ea

si
ng

de
gr

ee
s

of
em

be
dd

in
g

–
e.

g.
ap

pl
yi

ng
th

e
ru

le
tw

ic
e

in
su

cc
es

si
on

to
th

e
ba

se
ca

se
de

ri
va

ti
on

yi
el

ds
a

de
ri

va
ti

on
w

it
h

D
eg

re
e-
2

em
be

dd
in

g
th

at
pr

od
uc

es
th

e
se

nt
en

ce
:

(2
1)

“M
ar

y
ha

s
gi

ve
n

ev
er

yt
hi

ng
to

[s
om

eo
ne

w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
[s

om
eo

ne
w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
Jo

hn
]].

”

an
d

ap
pl

yi
ng

th
e

ru
le

th
re

e
ti

m
es

in
su

cc
es

si
on

to
th

e
ba

se
ca

se
de

ri
va

ti
on

yi
el

ds
a

de
ri

va
ti

on
w

it
h

D
eg

re
e-
3

em
be

dd
in

g
th

at
pr

od
uc

es
th

e
se

nt
en

ce
:

(2
2)

“M
ar

y
ha

s
gi

ve
n

ev
er

yt
hi

ng
to

[s
om

eo
ne

w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
[s

om
eo

ne
w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
[s

om
eo

ne
w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
Jo

hn
]]]

.”

T
hi

s
le

ad
s

us
to

th
e

in
du

ct
iv

e
st

ep
:

gi
ve

n
a

de
ri

va
ti

on
w

it
h

D
eg

re
e-
𝑛

em
be

dd
in

g
th

at
w

as
pr

od
uc

ed
by

th
e

re
pe

at
ed

ap
pl

ic
at

io
n

of
th

e
ex

pa
ns

io
n

ru
le
𝑛

ti
m

es
to

th
e

ba
se

-c
as

e
de

ri
va

ti
on

(w
it

h
D

eg
re

e-
0

em
be

dd
in

g)
,a

pp
ly

in
g

th
e

ex
pa

ns
io

n
ru

le
on

ce
m

or
e

to
th

is
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g
w

ill
yi

el
d

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
(𝑛

+
1)

em
be

dd
in

g;
to

se
e

w
hy

th
is

is
th

e
ca

se
,

no
te

th
at

th
e

ex
pa

ns
io

n
ru

le
ha

s
th

e
pr

op
er

ty
th

at
th

e
le

ft
ha

nd
si

de
of

th
e

ru
le

is
fo

un
d

w
it

hi
n

th
e

ri
gh

t
ha

nd
si

de
of

th
e

ru
le

,
so

th
at

th
e

ru
le

m
ay

be
ap

pl
ie

d
re

pe
at

ed
ly

,
ea

ch
ti

m
e

re
pl

ac
in

g
th

e
ar

gu
m

en
t

“J
oh

n”
w

it
h

th
e

re
la

ti
ve

cl
au

se
“s

om
eo

ne
w
ho

ha
s

gi
ve

n
ev

er
yt

hi
ng

to
Jo

hn
”

an
d

th
er

eb
y

in
cr

ea
si

ng
th

e
de

gr
ee

of
em

be
dd

in
g

by
on

e.
It

fo
llo

w
s

th
at

,f
or

an
y
𝑛
>

0,
th

e
ex

pa
ns

io
n

ru
le

ca
n

be
ap

pl
ie

d
re

pe
at

ed
ly
𝑛

ti
m

es
to

th
e

ba
se

-c
as

e
de

ri
va

ti
on

to
pr

od
uc

e
a

de
ri

va
ti

on
w

it
h

D
eg

re
e-
𝑛

em
be

dd
in

g,
an

d
th

us
th

e
se

t
of

st
ru

ct
ur

es
th

e
in

fe
rr

ed
le

xi
co

n
ca

n
ge

ne
ra

te
is

un
bo

un
de

d.
Se

e
T
ab

le
3.

13
fo

r
a

su
m

m
ar

y
of

th
e

de
ri

va
ti

on
s

de
sc

ri
be

d
in

th
is

pr
oo

f
as

w
el

la
s

a
fo

rm
ul

a
fo

r
ge

ne
ra

ti
ng

a
de

ri
va

ti
on

w
it

h
D

eg
re

e-
𝑛

em
be

dd
in

g
fo

r
an

y
𝑛
>

0
.

§3.3 Page 180/200

ID Category Features Expansions
𝐴0 𝐴1 𝐴2 𝐴𝑛 𝐵0 𝐵1 𝐵2 𝐵𝑛

L1 𝑉 = 𝑥0,∼ 𝑥0 · · · · · · · ·
L2 𝑉 = 𝑥0,= 𝑥0,∼ 𝑥0 1 2 3 𝑛+ 1 1 2 3 𝑛+ 1
L3 𝐶𝐷𝑒𝑐𝑙. = 𝑥0, 𝐶 1 1 1 1 1 1 1 1
L4 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0,+𝑧, 𝐶 · · · · · · · ·
L5 𝑣 <= 𝑥0,∼ 𝑥0 · · · · · · · ·
L6 𝐶𝑞𝑢𝑒𝑠. <= 𝑥0, 𝐶 · · · · · · · ·
L7 𝑣 <= 𝑥0,= 𝑥0,∼ 𝑥0 1 2 3 𝑛+ 1 1 2 3 𝑛+ 1
L8 𝑃 = 𝑥0,∼ 𝑥0 · · · · 1 2 3 𝑛+ 1
L9 𝐷 = 𝑥0,∼ 𝑥0,−𝑙 1 2 3 𝑛+ 1 · · · ·
L10 𝐷 = 𝑥0,∼ 𝑥0 1 1 1 1 · · · ·
L11 𝐷 ∼ 𝑥0,−𝑧 · · · · · · · ·
L12 𝐷 ∼ 𝑥0,−𝑙,−𝑧 · · · · · · · ·
L13 𝑇 = 𝑥0,+𝑙,∼ 𝑥0 1 2 3 𝑛+ 1 1 2 3 𝑛+ 1
L14 𝑉 ∼ 𝑥0 · · · · · · · ·
L15 𝑁 ∼ 𝑥0,−𝑙 · · · · 1 1 1 1
L16 𝑁 ∼ 𝑥0 3 5 7 2𝑛+ 3 2 3 4 𝑛+ 2

L17 𝐶𝑑𝑒𝑐𝑙. = 𝑥0,∼ 𝑥0 · 1 2 𝑛 · · · ·

L18 𝐶𝑑𝑒𝑐𝑙. = 𝑥0,+𝑧,∼ 𝑥0 · · · · · 1 2 𝑛
L19 𝑁 ∼ 𝑥0,−𝑧 · · · · · · · ·

L20 𝑁 ∼ 𝑥0,−𝑙,−𝑧 · · · · · 1 2 𝑛

Table 3.13: A summary of the unbounded set of derivations that the final inferred lexicon is
able to yield. Derivations 𝐴𝑖 correspond to Degree-𝑖 embedding constructions as described in
Example-A (see Pg. 178). Derivations 𝐵𝑖 correspond to Degree-𝑖 embedding constructions
as described in Example-B (see Pg. 179). Notably, the columns for 𝐴𝑛 and 𝐵𝑛 provide
formulas for generating derivations with Degree-𝑛 embedding.

3.3.3 Summary

By extending the instantaneous acquisition procedure to take an input lexicon and requiring
that the inferred lexicon be a superset of the input lexicon, the incremental acquisition
procedure can incrementally learn a lexicon by processing a PLD in small batches, thereby
obviating the psychologically implausible requirement that the learner to store the entire
PLD in memory, as was the case for the instantaneous acquisition procedure.

Notably, the incremental acquisition procedure enables the learner to incrementally ac-
quire a grammar from an arbitrarily large PLD as only a single batch of the PLD needs to
be modeled at a time; indeed, the PLD may even be infinite in size if it is presented to the
learner as a stream. This enabled us to carry out computational experiments involving the
processing of a PLD that was larger than the PLD processed in §3.2.3 and that included sen-
tences with a single level of (structural) embedding in the form of both embedded sentences
and embedded (restrictive) relative clauses.

The incremental acquisition procedure also enables the computationally tractable infer-
ence of larger grammars. To see this, let us assume that on each run of the incremental
acquisition procedure after the first, the learner already has knowledge of most of the lexi-
cal entries needed to process the next batch of PLD (this knowledge being supplied in the

§3.3 Page 181/200

input lexicon that was the output of the prior run of the procedure); then on each run of
the procedure, the majority of the lexicon model is hard-coded with the supplied (input)
lexicon, with only a small allocation of lexical feature sequences remaining unconstrained so
that they are available to be used for new syntactic roles as required to produce derivations
that the supplied lexicon could not yield.

Importantly, the computational experiment in §3.3.2 demonstrated that the incremental
acquisition procedure can generalize from a small set of expressions with at most one level of
embedding and infer an (optimal) lexicon that can (provably) generate a countably infinite
set of interpretable hierarchical structures that pair meaning with sound, including structures
with unbounded depth of (structural) embedding; remarkably, this inferred lexicon only has
four additional lexical feature sequences beyond the sixteen in the lexicon inferred in §3.2.3.

Finally, the incremental acquisition procedure integrates language acquisition and lan-
guage processing. When processing the first batch of the PLD, if the procedure is not
supplied with an initial lexicon, then the procedure is functionally equivalent to the instan-
taneous acquisition procedure; as more batches of the PLD are processed over successive
runs of the incremental acquisition procedure, in the limit, when the learner can already
parse the next PLD batch with the (up to then) acquired lexicon, the procedure in effect
becomes the procedure for parsing each entry in the PLD batch. This transition from ac-
quisition to parsing is possible because both center on the same underlying axiomatization
of minimalist syntax (detailed in §2.3), with the difference between the two being the degree
to which the lexicon model is hard-coded with the lexicon that the learner has acquired up
until that point.

§3.3 Page 182/200

Chapter 4

Towards Explanatory Adequacy

This thesis has shown how a logic engine may be used to drive procedures for parsing and
acquisition. The SMT-models constructed by the procedures for parsing and acquisition are
flexible by design and may be extended by adding or removing axioms and the uninterpreted
functions and sorts that they constrain. Furthermore, the procedures for parsing and acqui-
sition only employ a small subset of the capabilities of modern SMT-solvers, which support
a variety of background theories – e.g. theories for real and integer arithmetic, arrays, al-
gebraic datatypes and strings – that we can leverage when extending the models developed
in this thesis.123 It is therefore worthwhile to briefly consider, as this final chapter does,
several ways in which the SMT-models underlying parsing and acquisition may be extended,
by leveraging the diverse capabilities of modern SMT-solvers, so as to better align them with
the goal of modeling a linguistic theory that meets the condition of explanatory adequacy,
which is the gold standard for a scientific theory of language acquisition. Let us now briefly
review what meeting the condition of explanatory adequacy requires, and what motivates
the meeting of this condition.

A linguistic theory meets the condition of explanatory adequacy if it can explain how to
select a descriptively adequate grammar based on the primary linguistic data (PLD) from
which a child acquires knowledge of language.4 A grammar for a particular language is said
to be descriptively adequate if it can provide, for each sentence in that language, a structural
representation from which the (linguistic) facts about that sentence may be systematically
recovered,5 and a theory of linguistics is descriptively adequate if it provides a descriptively
adequate grammar for each natural language.6 Note that descriptive adequacy is a necessary

1See (Bjørner et al., 2018) for a survey of the background theories supported by the Z3 SMT-solver and
other capabilities thereof.

2See (Dutertre and de Moura, 2006) for details of the linear-arithmetic solver underlying Z3.
3See (Fichte et al., 2020) for an analysis of the impact hardware and algorithm improvements have had

on performance increases for SAT-solvers (which make up the core of modern SMT-solvers).
4See (Chomsky, 1965, Pg. 25): “A linguistic theory must contain a definition of ’grammar,’ that is, a

specification of the class of potential grammars. We may, correspondingly, say that a linguistic theory is
descriptively adequate if it makes a descriptively adequate grammar available for each natural language. ...
To the extent that a linguistic theory succeeds in selecting a descriptively adequate grammar on the basis of
primary linguistic data, we can say that it meets the condition of explanatory adequacy.”

5In particular, a descriptively adequate grammar has strong generative capacity. See (Berwick, 1984) for
a review of strong generative capacity.

6See (Chomsky, 1965, Pg. 24): “A grammar can be regarded as a theory of a language; it is descriptively
adequate to the extent that it correctly describes the intrinsic competence of the idealized native speaker. The
structural descriptions assigned to sentences by the grammar, the distinctions that it makes between well-
formed and deviant, and so on, must, for descriptive adequacy, correspond to the linguistic intuition of the

Page 183/200

condition for a theory of linguistics to meet the condition of explanatory adequacy, but it
is not sufficient, as there may be multiple (distinct) grammars that meet the condition of
descriptive adequacy for a particular natural language. A theory of linguistics that meets
the condition of explanatory adequacy is able to select, by means of an evaluation function,
which of these descriptively adequate grammars is acquired by the child language learner.

A theory of linguistics that meets the condition of explanatory adequacy is desirable
because it provides a solution to the logical problem of language acquisition, sometimes
referred to as Plato’s Problem, which asks how a child is able to acquire language pursuant
to a Poverty of the Stimulus7 In (Chomsky, 1986), Chomsky addresses Plato’s Problem
by proposing that a child language learner is innately endowed with Universal Grammar
(UG), a set of constraints on the space of possible generative grammars that compensates
for the lack of discriminating evidence in the PLD. Hence, if the procedure for acquisition
can be extended to meet the condition of explanatory adequacy, then we can use it to run
(computational) experiments by carefully setting up particular input lexicon and PLD, and
understanding how the axioms that underlie 𝐶𝐻𝐿𝐹 and that encode and the principles of
learning impact the acquired target grammar. Additionally, we can use the procedure for
acquisition in computational experiments that help us understanding how language might
be acquired in a staged manner – i.e. are there specific axioms (encoding particular rules
or learning principles) that appear or disappear in particular stages of a child’s language
acquisition trajectory?8

To this end, the extensions outlined in this chapter form a roadmap for extending the
models developed in this thesis for language processing and language acquisition so that
they may more faithfully implement a theory of linguistics that meets the condition of
explanatory adequacy. (Note that the extensions may be considered independently of one
another, and each extension does not assume that any of the other extensions have been
implemented.)

4.1 Incorporating a Theory of Phases

This section outlines how the SMT-model of the derivation and the SMT-model of the lex-
icon (detailed in §2.3) may be modified so as to incorporate a theory of phases (Chomsky,
2001; Chomsky, 2008) that supports a Probe/Goal-system employing feature valuation.9

native speaker. ... a linguistic theory is descriptively adequate if it makes a descriptively adequate grammar
available for each natural language.”

7Poverty of the Stimulus is the name given to the observation that children reliably acquires a language
from input data that does not in of itself contain sufficient information for the child to derive knowledge of
that language. (Chomsky, 1986; Chomsky, 2013a) See (Legate and Yang, 2002; Crain and Pietroski, 2002;
Berwick et al., 2011; Berwick et al., 2013; Lasnik and Lidz, 2017) for detailed reviews of arguments from the
Poverty of the Stimulus and challenges thereto.

8With respect to engineering-oriented applications, meeting the condition of descriptive adequacy trans-
lates to building a better parser that avoids overgenerating while accounting for the facts of language, so
that we can confidently use the PF and LF representations recovered from a derivation in downstream ap-
plications. Meeting the condition of explanatory adequacy enables the procedure for acquisition to infer
a generative grammar for a language from a relatively small corpus without needing a treebank of deriva-
tions; notably, the grammar learned by the acquisition procedure could be used to generate a treebank of
minimalist derivations.

9This approach is informed by the work presented in (Chesi, 2004; Chesi, 2007) on formally incorporating
phases into the Minimalist Grammar framework.

§4.1 Page 184/200

We will begin by briefly reviewing the Probe/Goal-system and then consider what modifi-
cations to the models of the lexicon and the derivation are necessary for implementing the
Probe/Goal-system.

The Probe/Goal-system involves a probe with an unvalued feature that searches for a
goal with a valued feature, with the requirement that the types of the unvalued feature
match the type of the valued feature; the goal then moves to merge with the probe (i.e. the
probe is the target of movement), with the (unvalued) feature on the probe being assigned
the value of the (valued) feature on the goal; finally, the feature on the probe that has been
valued is “deleted” in so far as it is not available for interpretation at the LF interface or
in later syntactic computations, although it may be interpreted at the PF interface. The
valued and unvalued features (in the Probe/Goal-system) correspond to the interpretable
and the uninterpretable features (in checking theory) respectively. Note that uninterpretable
features do not enter into a derivation already valued as in checking theory; rather, they
enter into a derivation unvalued, and must eventually be valued and then “deleted” by an
interpretable feature. In this way, the Probe/Goal based system allows for feature valuation,
which reduces the size of the lexicon by reducing the number of distinct feature matrices
present within the lexicon.

Implementing the Probe/Goal-system requires that the lexicon model be modified by: (i)
associating with each lexical item a “set” of “value-able” features that are either valued (i.e.
being assigned a feature label) or unvalued, with each feature being associated with a “feature
type” (e.g. person, number, case, gender, tense), and (ii) associating each lexical item with
a “set” of c(onstituent)-selectional features, each of which is associated with a “feature label”
and is either a “selector” or a “selectee.” An unvalued feature may be assigned the value
of a valued feature if they both have the same “feature type.” Notably, these modifications
entail that lexical feature sequences are no longer sequentially ordered.

The derivation model is then modified as follows. First, we take external merge to be
driven by the argument (of the merge operation) that projects having a c-selectional “selec-
tor” feature that selects a “selectee” feature in the other argument subject to the constraint
that the selector and selectee features both have the same feature label. Whenever external
merge takes place, the system tries, for each unvalued feature in the argument that projects
(i.e. the probe), to assign it the value of one of the “valued” features in the selected argu-
ment (i.e. the goal) if the unvalued and valued feature both have the same feature type;10

importantly, the system will require that an unvalued feature may only be valued once in
the derivation and that it must be valued as soon as such an opportunity arises. Next, we
take all instances of internal merge to be driven by the projection of a lexical head – i.e. a
probe – with an unvalued feature identifying a subordinate node in the derivation – i.e. a
goal – the head of which is associated with a valued feature that may value the unvalued
feature (thus requiring that the valued and unvalued feature both have the same feature
type); as in the case of external merge, when a goal is raised to merge with the probe that
identified it, the system tries, for each unvalued feature in the argument that projects (i.e.
the probe), to assign it the value of one of the “valued” features in the selected argument
(i.e. the goal) if the unvalued and valued feature both have the same “feature type”. In
this way, there are no more “licensing features” as are found in the conventional Minimalist
Grammar framework. Finally, the constraints derived from interface conditions (that are
added to the derivation model) are modified such that: (i) the LF interface can only read a
value-able feature if it was already valued when it entered into the derivation (as from the

10Note that this implies that a goal may value more than one unvalued feature on a probe.

§4.1 Page 185/200

perspective of the LF interface, “unvalued” features are deleted as soon as they are valued
within a derivation); (ii) the PF interface can read a value-able feature so long as it has
been valued at some point in the derivation.

Let us next review the theory of phases and consider what modifications need to be made
to the model of the derivation so as to incorporate this theory.

The theory of phases centers on the assertion that derivations are (cyclically) built in
phases, with a phase made up of a domain headed by either a complementizer (𝐶) or
a (transitive) light-verb (𝑣). After a phase is constructed, the complement of the phase
head is sent out to the interfaces, and is unavailable for later syntactic computations in
the derivation. The Phase Impenetrability Condition (PIC) stipulates that the domain of
a phase cannot be accessed by (syntactic) operations outside of the phase domain; such
operations can only access the phase head or specifiers of the projection of the phase head.
Notably, this entails that a probe cannot search past a phase-head, thereby restricting
movement operations to be local within a phase domain. The PIC entails that 𝐶𝐻𝐿𝐹 (i.e.
the computational system underlying the Human Language Faculty) operates with a limited
memory capacity for representing structures in so far as it places strict limits on how much
of a derivation it constructs at a time.

The PIC may be implemented by adding to the derivation model a unary uninterpreted
function, 𝜑N, with signature:

𝜑N : N → N (4.1)

that is constrained (by model axioms) so as to associate each node, 𝑥 ∈ N, in a derivation
with the closest phase head that dominates it.11 Specifically, if the parent of 𝑥 is a phase
head – i.e. 𝑝(𝑥) associates with the category 𝐶 or the category (transitive) 𝑣 – then 𝑝(𝑥)
is the closest phase head that dominates 𝑥, so that 𝜑N(𝑥) = ℎ(𝑝(𝑥)); alternatively, if the
parent of 𝑥 is not a phase head, then the closest phase head that dominates the parent of
𝑥 is also the closest phase head that dominates 𝑥, so that 𝜑N(𝑥) = 𝜑N(𝑝(𝑥)). (Note that
the root node of the derivation must be handled as a special case as 𝑝(𝑅N) = ⊥.) Then the
PIC may be expressed as an axiom that requires that in an instance of movement from a
source (i.e. goal) node 𝑠 ∈ (LN ∪𝐷) to a target node 𝑡 ∈ (LN ∪𝐷) (that merges with the
probe that matched the goal), if 𝜑N(𝑠) ̸= 𝜑N(𝑡) then 𝑡 must merge with the projection of
the closest phase head that dominates 𝑠 (i.e. the phase boundary for the domain in which
𝑠 is located), so that

(ℎ(𝑝(𝑡)) = 𝜑N(𝑠)) ∧ (𝛽N(ℎ(𝑝(𝑡))) ∈ {c𝐶 , c𝑣𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒}) (4.2)

(Note that if 𝜑N(𝑠) = 𝜑N(𝑡), then the source and target of movement are both in the same
phase domain.)

4.2 Extending the LF and PF Interfaces

This section considers how the diversity of representations that the LF and PF interfaces
can process (as detailed in §2.3.3) may be expanded.

To begin, we observe that the LF interface conditions were all translated into constraints
(i.e. axioms expressed as SMT-formulae) that required a (local) structural relation between

11If the node 𝑥 does not participate in the derivation – i.e. ℎ(𝑥) = ⊥ then we let 𝜑N(𝑥) = ⊥.

§4.2 Page 186/200

two constituents be established by an instance of merge (e.g. between a predicate and an
argument). However there are a number of syntactic phenomenon that require a different
structural relation, c(onstituent)-command, be established between two constituents within
a syntactic structure.12 The c-command relation is defined as follows: given two distinct
nodes 𝑥 and 𝑦 in a syntactic (tree) structure, 𝑥 c-commands 𝑦 if and only if 𝑥 does not
dominate 𝑦, 𝑦 does not dominate 𝑥, and the parent of 𝑥 dominates 𝑦.13 C-command may
be readily expressed using the components of the derivation model as follows:14

c-command(𝑥, 𝑦) = (¬𝑑(𝑥, 𝑦) ∧ ¬𝑑(𝑦, 𝑥) ∧ 𝑑(𝑝(𝑥), 𝑦)) ∨ (¬𝑑⋆(𝑥, 𝑦) ∧ ¬𝑑⋆(𝑦, 𝑥) ∧ 𝑑⋆(𝑝(𝑥), 𝑦)) (4.3)

If we include LF interface conditions that translate into constraints expressed using the
c-command relation, then the following additional syntactic phenomena may be modeled:15

1. Co-reference. An anaphor (e.g. a reflexive pronoun) that is bound to (i.e. co-referenced
with) an antecedent must be c-commanded by that antecedent (corresponding to Prin-
ciple A of Binding Theory); note that if the LF interface is extended to handle co-
reference relations, axioms encoding Principle B and C of Binding Theory16 should
also be added, in the form of axioms expressed as SMT-formulae, to the derivation
model.

2. Quantifier Scope. A pronoun bound to a quantifier (e.g. “all,” “some,” “every”) must
fall within the scope of the quantifier that it is bound to; as the constituents in a
syntactic structure that are in the scope of a quantifier phrase are those that are c-
commanded by the quantifier phrase, it follows that a pronoun bound to a quantifier
must be c-commanded by that quantifier.

3. Negative Polarity Items and scope interaction. A negation particle that licenses a
negative polarity item (e.g. “all”, “any”, “a single”) must c-command that negative
polarity item.

Extending the LF interface in this way will both enable us to specify, as input to the
acquisition procedure developed in this thesis, primary linguistic data that can include
a more diverse range of sentences, and also enable a broader range of use cases for the
procedure for parsing (developed in this thesis) by enabling quantifier scope, licensing of
negative polarity items, and resolutions of co-reference to be (automatically) recovered from
an inspection of the LF interface conditions satisfied by a derivation yielded by the parser
(e.g. when only PF interface conditions, and not LF interface conditions, are stipulated as
input to the parser).

Turning next to extensions of the PF interface, we observe that the axioms presented
in §2.3.3 are intended to derive a specifier-head-complement (SHC) linear-order (in which

12The c-command relation was explicitly introduced in (Reinhart, 1976). See (Sportiche et al., 2013) for
a review of the c-command relation.

13N.b. the c-command relation may be derived from sisterhood and immediate-dominance relations that
are established by merge.

14Note that this c-command definition involves “domination” with respect to the derivation tree or the
derived tree.

15Note that constraints derived from LF interface conditions involving the c-command relation can be
expressed using the sorts and uninterpreted functions already present in the derivation model; in particular,
these constraints may be expressed without requiring the introduction of any new sorts or uninterpreted
functions in the derivation model, and without requiring any modification or addition to the axioms in the
derivation model.

16See (Chomsky, 1981) for a presentation of Binding Theory.

§4.2 Page 187/200

the specifier precedes the head, and the head precedes its complement) over the phonolog-
ical forms appearing in the derivation, which enables the parser to be used with an SVO
(i.e. subject-verb-object) language such as English. However, many human languages (e.g.
French, Hindi, Japanese) have an SOV (subject-object-verb) ordering that corresponds to
a linearization procedure in which specifiers come before a head and its complement, and
a complement comes before its head.17 Notably, the difference between the two orderings
is whether the head comes before or after its complement; within the (linguistic) theory
of Principles and Parameters, this observation is captured by the “Head-Directionality” pa-
rameter.18 The PF interface may be extended to handle both SVO and SOV languages as
follows:

1. Add to the SMT-model of the lexicon19 a boolean (free) variable, param𝐻𝐷, that codes
for the Head-Directionality parameter ; the system models a head-initial or head-final
language depending on whether param𝐻𝐷 is valued True or False respectively. In the
case of the procedure for parsing, the value of param𝐻𝐷 may be set (via a model
parameter supplied as input to the procedure) if we know whether the language of
the expression being parsed is head-initial or head-final. In the case of the procedure
for acquisition, the value of param𝐻𝐷 may be left unspecified (as in the case of a
child language learner who does not know beforehand whether its first language will
be head-initial or head-final), and its value may be recovered from the (satisfiable)
interpretation of the model identified by the SMT-solver.

2. Modify axioms (2.118), (2.119), (2.120) and (2.122) (listed in §2.3.3) by parameterizing
them on param𝐻𝐷 (via the introduction of conditional terms), such that, if param𝐻𝐷 is
valued True (because the language is head-initial), the axioms remain as they currently
are (i.e. heads appear before their complement), and otherwise the axioms require that
a head appears after its complement (because the language is head-final).

This extension not only enables us to use the procedure for parsing on a larger set of
languages (by manually specifying the value of param𝐻𝐷), but also presents an opportunity
to run acquisition experiments in which try to learn how much primary linguistic data a
child must consume before it “decides” the valuation of param𝐻𝐷.20 In this way, extending
the PF interface to handle both SVO and SOV languages serves to increase the descriptive
adequacy (and by extension, the explanatory adequacy) of the theory of linguistics implicitly
modeled by the acquisition procedure.

17In fact, a majority of (documented) human languages have an SOV ordering (a total of 564 languages),
with SVO being the second most popular ordering among human languages (with a total of 488 languages).
(This information was obtained by searching for feature “81A” in the World Atlas of Language Structures
(Dryer and Haspelmath, 2013).)

18The theory of Principles and Parameters asserts that the language acquisition device selects one of the
possible human languages by setting the values of a finite set of parameters. See (Ayoun, 2005, Pg. 79) for
a comprehensive review of proposed linguistic parameters – e.g. the Null-Subject Parameter as detailed in
(Rizzi, 1982; Rizzi, 1986) and later reviewed in (Rizzi, 2011).

19We assume the Borer-Chomsky hypothesis (Borer, 1984), and consequently, take all parameters to be
located within the lexicon.

20The approach taken by this extension may be adapted to incorporate other linguistic parameters into
the models developed in this thesis, in which case the acquisition procedure might also be employed to carry
out experiments that seek to understand the order in which the parameters are set by the language learner.

§4.3 Page 188/200

4.3 Curtailing Overgenerations

As we observed in §3.2 and §3.3, the lexical entries that make up the inferred lexicon may
be productively combined in new ways, so as to generate derivations not produced in the
course of processing the primary linguistic data. However, this capacity may also enable the
learner to generate a derivation that yields (via Spellout) an ungrammatical surface form
or incorrectly establishes a pairing between logical form (LF) and phonological form (PF)
representations. Such a derivation is referred to as an overgeneration; the production of an
overgeneration is considered erroneous (with respect to meeting the condition of descriptive
adequacy), and is to be avoided. To that end, this section considers how the instantaneous
acquisition (presented in §3.2.2) can be modified so as to identify a grammar that both
respects the optimization constraints employed by the acquisition procedure while seeking
to reduce the set of overgenerations that the inferred lexicon may generate.

Let us now outline a particular kind of overgeneration that we seek to rule out. Some
overgenerations may be ruled out when selecting lexical items from the lexicon – i.e. by
prohibiting selection of lexical items that are not involved in a complete derivation that fully
satisfies the specified interface conditions. However, even after selecting lexical entries from
the lexicon, an overgeneration may still be produced: given a multi-set of lexical entries, 𝐿,
that are all combined together, using merge, to generate a derivation that satisfies specified
interface conditions, a derivation generated by 𝐿 that does not satisfy the specified interface
conditions constitutes an overgeneration. E.g. suppose the following lexical entries have
been selected from the lexicon:

what/𝑁 :: ∼ 𝑥0,−𝑝 (4.4)
has/𝑇 :: = 𝑥0,+𝑞,∼ 𝑥0 (4.5)
the/𝐷 :: = 𝑥0,∼ 𝑥0,−𝑞 (4.6)

man/𝑁 :: ∼ 𝑥0 (4.7)
eaten/𝑉 :: = 𝑥0,∼ 𝑥0 (4.8)

𝜖/𝑣 :: <= 𝑥0,= 𝑥0,∼ 𝑥0 (4.9)
𝜖/𝐶𝑞𝑢𝑒𝑠. :: <= 𝑥0,+𝑝, 𝐶 (4.10)

These lexical entries can be combined (via merge) to produce the following derivation that
satisfies the interface conditions listed in entry 𝐼1 of Table 2.4 and associates the (grammat-
ical) surface form “What has the man eaten?” with its standard interpretation (i.e. that
“the man” is the subject of “eaten” and agrees with “has”, and that “what” is the object of
“eaten”):

[CP what [𝐶′ has+𝜖Cques. [𝑇𝑃 [𝐷𝑃 the man] [𝑇 ′ has [𝑣𝑃 [DP the man] [𝑣′ eaten+𝜖𝑣 [𝑉 𝑃 eaten what]]]]]]]
(4.11)

However, these lexical entries can also be combined to produce the following derivation that
is similar to (2-2), but has the (initial) positions of the arguments “the man” and “what”
swapped within the double VP-shell structure:

[CP what [𝐶′ has+𝜖Cques. [𝑇𝑃 [𝐷𝑃 the man] [𝑇 ′ has [𝑣𝑃 what [𝑣′ eaten+𝜖𝑣 [𝑉 𝑃 eaten [DP the man]]]]]]]]
(4.12)

This structure is an overgeneration because it does not satisfy the specified interface condi-
tions, pairing the (grammatical) surface form “What has the man eaten?” with an incorrect

§4.3 Page 189/200

interpretation in which “what” is mislabeled as the subject of “eaten” and “the man” is misla-
beled as the object of “eaten”. The production of such an overgeneration may be overlooked
so long as the learner is generating an expression for some particular interpretation that they
have in mind, in which case the learner stipulates a-priori known LF interface conditions
that suffice to rule out the production of the overgeneration. However, in the context of
recognition, where the PF interface conditions (encoding word-ordering) to be satisfied are
presented to the learner and the LF interface conditions are not known21, the learner is not
prohibited from producing the overgeneration and then recovering from it an incorrect inter-
pretation. This motivates the development of an extension of the instantaneous acquisition
procedure that rules out this scenario from arising even in the absence of the LF interface
conditions that would otherwise restricted the illegitimate production.

We can prohibit the production of such overgenerations by adding the following con-
straint to the instantaneous acquisition procedure that seeks to minimize the number of
ways in which lexical items may be combined by merge:

Two features appearing in a derivation, one a selector and the other a selectee,
may not have the same label unless at least one of the following two conditions
are met:

(i) the two features together drive an instance of external merge at some point
in the derivation;

(ii) at least one of the labels is not in the matrix clause of the derivation.

Condition (i) follows from external merge being driven by a constituent with a selector
feature selecting an constituent with a selectee feature, subject to the constraint that the
selector and selectee features both have the same feature label. Condition (ii) serves to ensure
that if the same lexical entry is to participate multiple-times in a derivation – e.g. once in
the matrix clause and once in an embedded clause – that a contradiction does not arise from
the system requiring that the two copies of the lexical entry have different feature labels.22

Note that although this constraint increases the number of selectional features present in
the inferred lexicon, the constraint derived from optimization metric (3.8) (defined in §3.2.1)
will ensure that the inferred lexicon uses as few distinct selectional features as possible while
respecting the constraint introduced in this extension.23

This approach is motivated by the notion that a lexical feature sequence in a minimalist
grammar should correspond to a trajectory through a derivation that is specific to the kind
of lexical items will be merged with – e.g. a lexical feature sequence for a determiner that
be selected as an external argument (by a light-verb) should be different from the lexical
feature sequence for a determiner that can be selected as an internal argument (by a lexical
verb). This will prevent, in the case that only PF (and not LF) interface conditions are
input to the parser (as in the case of recognition), the possibility of the set of lexical entries
that is able to construct a “correct” derivation (i.e. from which the correct logical form may

21Indeed, discovering what LF interface conditions are satisfied may well be what motivates the parser to
be used for the task of recognition to begin with.

22Condition (ii) may be checked, with respect to whether a node 𝑥 in the derivation (that corresponds
to a feature) by verifying that the only complementizer head that c-commands 𝑥 is the root node of the
derivation.

23This extension requires that a substantively larger set of selectional features be made available to the
SMT-model, and that the size of the lexicon, with respect to the number of lexical feature sequences, also be
increased; these changes require increasing the values of several of the model parameters that are supplied
as input to the acquisition procedure.

§4.3 Page 190/200

be recovered) also being able to produce an overgeneration (more specifically, a derivation
from which an incorrect logical form may be recovered).

With this approach, we expect the resulting, modified set of lexical entries (a subset of
the inferred lexicon) to look something like the following:

what/𝑁 :: ∼ 𝑥0,−𝑝 (4.13)
has/𝑇 :: = 𝑥4,+𝑞,∼ 𝑥5 (4.14)
the/𝐷 :: = 𝑥2,∼ 𝑥3,−𝑞 (4.15)

man/𝑁 :: ∼ 𝑥2 (4.16)
eaten/𝑉 :: = 𝑥0,∼ 𝑥1 (4.17)

𝜖/𝑣 :: <= 𝑥1,= 𝑥3,∼ 𝑥4 (4.18)
𝜖/𝐶𝑞𝑢𝑒𝑠. :: <= 𝑥5,+𝑝, 𝐶 (4.19)

Observe that every lexical entry has been modified such that every instance of external
merge occurring in the prescribed derivation is driven by a unique selectional feature label
(requiring the introduction of five new selectional feature labels), thereby preemptively ruling
out the production of any derivation that does not satisfy both the LF and PF interface
conditions; in particular, this rules out the production of both the overgeneration associated
with the incorrect interpretation of the surface form “what has the man eaten”, and the
overgeneration associated with the meaningless (ungrammatical) expression “what has the
eaten man?” (which satisfies neither the PF nor or the LF interface conditions listed in 𝐼1
of Table 2.4).

To summarize, by eliminating the production of a class of overgenerations, the imple-
mentation of this extension would improve the strong generative capacity of the lexicon
inferred by the instantaneous acquisition procedure, thereby improving the descriptive ade-
quacy of the inferred lexicon (which is a precondition for the acquisition procedure to meet
the condition of explanatory adequacy).

4.4 Incorporating Principles of Language Learning

Finally, let us consider how a principle of language learning, the Tolerance Principle (Yang,
2016), may be incorporated into the acquisition procedures introduced in this thesis.24

The acquisition procedures introduced in this thesis are conservative in so far as the
(inferred) lexicon they output only associates a phonological form with a lexical feature
sequence if the lexical entry formed by that pair appears in a derivation that was used to
satisfy one of the entries (i.e. a pairing of LF and PF interface conditions) in the primary
linguistic data that was the input to the procedure. However, there are times when pro-
ductivity is justified by the (positive) evidence that a child obtains from primary linguistic
data: if the child obtains sufficient (positive) evidence from the PLD, they may be justified
in assuming that a phonological form associating with one lexical feature sequence (pro-
ductively) implies that the phonological form also associates with a second lexical feature

24The procedures for acquisition developed in this thesis most closely align with the Triggering Model
of language acquisition (Gibson and Wexler, 1994; Berwick and Niyogi, 1996; Niyogi and Berwick, 1996),
in which the learner is identified with a single grammar in the hypothesis space – if the current grammar
fails to parse an input sentence, a different grammar is selected. This model of language acquisition has the
benefit that, under certain conditions established in formal learning theory (Gold, 1967), the learner will
converge to a single grammar; however, this model suffers from being vulnerable to noise in the input data.

§4.4 Page 191/200

sequence. This is illustrated by the classic example, introduced by (Baker, 1979), of children
learning for which (ditransitive verbs) dative alternations are possible. Specifically, there are
many ditransitive verbs that take two internal arguments – one a direct argument and the
other an indirect argument headed by a (dative) prepositional phrase (e.g. “I will give the
money to the museum.”) – and some of these ditransitive verbs (e.g. assign, extend) have an
alternate form in which the dative prepositional phrase is shifted (e.g. “I will give the mu-
seum the money.”), while others do not (e.g. donate, introduce, return).25 Notably, children
are able to learn that sentences with certain ditransitive verbs may under go dative-shift,
while also rarely making the mistake of producing the dative shift form of a sentence with
a (ditransitive) verb for which this is not possible; furthermore, children appear to acquire
this knowledge without relying on (direct or indirect) negative evidence.

Let us now put this problem into the context of the procedure for parsing using a lexicon
output by the procedure for acquisition. Suppose there exist two distinct lexical feature
sequences in the lexicon, L𝛼 and L𝛽 , with L𝛼 used for the standard construction of a ditran-
sitive verb and L𝛽 used for the alternative (dative shift) construction of a ditransitive verb.
Suppose now that the acquisition procedure, in processing the PLD, has seen 𝑁 (distinct)
phonological forms that have been associated with L𝛼 and 𝑀 (distinct) phonological forms
that are associated with both L𝛼 and L𝛽 (note that 𝑀 ≤ 𝑁). Then the question is: should
a (ditransitive) verb that has only been observed to associate with L𝛼 also associate with
L𝛽 , and if so, how does the quantity of evidence – i.e. the values of 𝑀 and 𝑁 – impact
this conclusion? Fortunately, this problem has been studied in detail and an answer to this
problem is provided by the Sufficiency Principle, which follows directly from the Tolerance
Principle:26

“A (strong) prediction of the derivational account would be that verbs that appear
in one construction should be automatically extendable to other construction.
This can be formalized quantitatively. Suppose that there are 𝑁 lexical items
that participate in construction A, out of which 𝑀 also appear in construction B.
Following the Sufficiency Principle, if 𝑁−𝑀 < 𝜃𝑁 , then learners are justified to
conclude that construction A and B are productively implicational” (Yang, 2016,
Pg. 205)

Here the threshold, 𝜃𝑁 , above which one construction (productively) implies another is
defined as:

𝜃𝑁 =
𝑁

ln𝑁

The Sufficiency Principle may be incorporated into the procedure for parsing as follows:

1. Associating each lexical feature sequence, L𝑎, with an integer variable, 𝑁𝑎 that is
constrained to count the number of distinct phonological forms that associates with

25See (Levin, 1993) for a comprehensive classification of ditransitive verbs that can and cannot serve as
the predicate in a double-object construction (via dative-shift).

26Notably, Tolerance Principle-based models of language acquisition go beyond Variational models of
language acquisition (Yang, 2002). In a Variational model of language acquisition, the learner uses general
learning mechanisms to search the hypothesis space given by UG – that is, this model views language
learning as a probabilistic process; the learner has a probability distribution over the parameters of the
space of grammars; the distribution changes in response to input stimulus. However, while a Variational
model of language acquisition is a probabilistic process that can tolerate noise in the primary linguistic
data (to a degree) but cannot distinguish between exceptions and noise, a Tolerance Principle based model
of language acquisition is able to distinguish between noise and exceptions without having to maintain
probability distributions.

§4.4 Page 192/200

that lexical feature sequence. (This association may be implemented via a unary
uninterpreted function that maps members of the lexicon node sort to integers.)

2. Associating each distinct pair of lexical feature sequences (L𝑎,L𝑏) with an integer
variable 𝑀𝑎,𝑏 that is constrained to count the number of distinct phonological forms
that associates with those two lexical feature sequences. (This association may be
implemented via a binary uninterpreted function that maps pairings of members of
the lexicon node sort to integers.)

Given this, if in addition the Sufficiency Principle is satisfied – i.e. the following inequality
holds:

𝑁𝑎 −𝑀𝑎,𝑏 <
𝑁𝑎

ln𝑁𝑎

then the parser will assume that a phonological form that associates with L𝑎 will also asso-
ciate with L𝑏.27 As the incremental acquisition processes the PLD in batches and outputs
a sequence of (successively) inferred lexicons, the values of 𝑁𝑎 and 𝑀𝑎,𝑏 may increase, and
as they do, whether the Sufficiency Condition is satisfied may fluctuate, and consequently
whether the child assumes that a phonological form associating with L𝑎 also implicates as-
sociation with L𝑏 will also fluctuate. In this way, adopting the sufficiency principle provides
a mechanism for a child to decide both: (i) whether there is sufficient evidence to start
(productively) applying a rule (i.e. that association with one lexicon feature sequence impli-
cates association with another lexicon feature sequence), and (ii) whether to back-off from
an earlier the decision to start applying the rule.28 Finally, note that the approach outlined
in this section may be expanded, so as to refine the conditions under which a (productive)
generalization is considered, by requiring that multiple specific lexical feature sequences be
associated with a phonological form before inferring that the phonological form also asso-
ciates (productively) with another lexical feature sequence; here we have only considered
the simplest case of association with one lexical feature sequence implies another.

4.5 Summary

Implementing the extensions outlined in this chapter will serve to bring the procedures
for parsing and acquisition developed in this thesis into closer alignment with the goal of
(faithfully) modeling linguistic theories that meet the conditions of descriptive adequacy and
(more importantly) explanatory adequacy, and this has ramifications for the applications of
these models to problems of engineering and science. More broadly, the approach this thesis

27Note that these integer variables and the inequality encoding the Sufficiency Principle utilize the theory
of linear-arithmetic for integers and real numbers.

28For example, as detailed in (Yang, 2016, Pg. 211-212), when at first the number of ditransitive
communication-verbs (e.g. ask, admit, declare, report, teach, tell) that a child has learned is small enough
(and consequently the threshold of the Sufficiency Principle is small), the child may believe there to be suffi-
cient evidence for them to assert that all communication-verbs can appear in the double-object construction
(e.g. the child will assert that the verb “say” can appear in the sentence “I said her no.” even though they
have (likely) never heard an adult produce that sentence); however, later, as the child learns more (ditransi-
tive) communication-verbs (and consequently the threshold of the Sufficiency Principle increases), the child
will come to understand that there is no longer sufficient evidence for them to assert that all communication-
verbs can appear in double-object constructions, and will instead lexicalize the list of communication-verbs
that they know can appear in double-object constructions (because they have heard adult speakers produce
double-object constructions with those particular communication-verbs).

§4.5 Page 193/200

has taken in developing models of language processing and language acquisition is inspired
by the Strong Minimalist Thesis, which asserts that:

“language is an optimal solution to interface conditions that FL must satisfy; that
is, language is an optimal way to link sound and meaning, where these notions
are given a technical sense in terms of the interface systems that enter into the
use and interpretation of expressions generated by an I-language.”
(Chomsky, 2008)

By way of enabling and disabling the axioms underlying the SMT-models constructed by
the procedures for parsing and acquisition, it is possible to carry out experiments (using
an interactive SMT-solver) that aim to determine which of these axioms are superfluous,
as the purpose they serve is instead accounted for by the requirement of the system to
accord with the facts of language are redundant, and thereby gain insight into whether the
(universal) linguistic principles, from which the model-axioms are derived, are justified or
may be discarded. Additionally, as LF and PF interface conditions are translated into axioms
that constrain the model, in the case that the procedure cannot infer an MG lexicon (because
no valid interpretation of the model can be identified by the SMT-solver), the solver may
be used to trace the provenance of the impeding constraints back to specific axioms derived
from the interface conditions, so that we may better understand how the identified axioms
conflict with out axiomatization of minimalist syntax, and consequently, better understand
how the constraints imposed by the requirement to satisfy interface conditions may conflict
with the stipulations of the principles of UG. In this way, the procedures for parsing and
acquisition developed in this thesis, and the SMT-models underlying them, may serve as a
vehicle for running computational experiments that evaluate theories of syntax within the
framework of the Minimalist Program.

Ultimately, it is our hope that after reading this thesis, you the reader will have your own
questions to ask of the models of language processing and language acquisition developed
herewithin, and that you will be able to use an interactive theorem prover (such as the Z3
SMT-solver) to query these models and gain insight into the workings of the computational
system underlying the human language faculty.

§4.5 Page 194/200

Bibliography

Adger, D. (2003). Core syntax: A minimalist approach, volume 33. Oxford University
Press Oxford.

Adger, D. and Svenonius, P. (2011). Features in minimalist syntax. The Oxford handbook
of linguistic minimalism, pages 27–51.

Ayoun, D. (2005). Parameter Setting in Language Acquisition. Bloomsbury Publishing.

Baker, C. L. (1979). Syntactic theory and the projection problem. Linguistic Inquiry,
10(4):533–581.

Baker, M. C. (1988). Incorporation: A theory of grammatical function changing. University
of Chicago Press.

Baker, M. C. (2008). The macroparameter in a microparametric world. The Limits of
Syntactic Variation, 132.

Barrett, C. and Tinelli, C. (2018). Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer.

Berwick, R. C. (1984). Strong generative capacity, weak generative capacity, and modern
linguistic theories. Computational Linguistics, 10(3-4):189–202.

Berwick, R. C. (1985). The acquisition of syntactic knowledge. MIT Press.

Berwick, R. C. and Chomsky, N. (2016). Why only us: Language and Evolution. MIT
Press.

Berwick, R. C., Chomsky, N., and Piattelli-Palmarini, M. (2013). Poverty of the stimulus
stands: Why recent challenges fail. In Rich languages from poor inputs, pages 19–42. Oxford
University Press.

Berwick, R. C. and Niyogi, P. (1996). Learning from triggers. Linguistic Inquiry, pages
605–622.

Berwick, R. C., Pietroski, P., Yankama, B., and Chomsky, N. (2011). Poverty of the
stimulus revisited. Cognitive Science, 35(7):1207–1242.

Bjørner, N., de Moura, L., Nachmanson, L., and Wintersteiger, C. M. (2018). Programming
z3. In International Summer School on Engineering Trustworthy Software Systems, pages
148–201. Springer.

Bloom, P. (1994). Language Acquisition. MIT Press.

Page 195/200

Borer, H. (1984). Parametric syntax: Case studies in Semitic and Romance languages,
volume 13 of Studies in Generative Grammar. Foris Publications, Holland.

Chesi, C. (2004). Phases and cartography in linguistic computation: Toward a cognitively
motivated computational model of linguistic competence. PhD thesis, Università degli Studi
di Siena.

Chesi, C. (2007). An introduction to phase-based minimalist grammars: why move is
top-down from left-to-right. Studies in Linguistics.

Chomsky, N. (1965). Aspects of the theory of syntax. MIT Press.

Chomsky, N. (1981). Lectures on Government and Binding. Studies in generative grammar.
Foris.

Chomsky, N. (1986). Knowledge of language: Its nature, origin, and use. Greenwood
Publishing Group.

Chomsky, N. (1990). Some Concepts and Consequences of the Theory of Government and
Binding. MIT Press.

Chomsky, N. (1995). The Minimalist Program. Volume 28 of Current studies in linguistics
series. MIT Press.

Chomsky, N. (2001). Derivation by phase. In Kenstowicz, M., editor, Ken Hale: A life in
language, pages 1–52. MIT Press.

Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36(1):1–22.

Chomsky, N. (2008). On phases. Current Studies in Linguistics Series, 45:133.

Chomsky, N. (2013a). Poverty of the stimulus: Willingness to be puzzled. In Rich languages
from poor inputs, pages 61–67. Oxford University Press.

Chomsky, N. (2013b). Problems of projection. Lingua, 130:33–49.

Chomsky, N., Gallego, Á. J., and Ott, D. (2019). Generative grammar and the faculty
of language: insights, questions, and challenges. Catalan Journal of Linguistics, pages
229–261.

Collins, C. (2001). Economy conditions in syntax. The Handbook of Contemporary Syntactic
Theory, pages 45–61.

Collins, C. and Stabler, E. (2016). A formalization of minimalist syntax. Syntax, 19(1):43–
78.

Crain, S. and Pietroski, P. (2002). Why language acquisition is a snap. The Linguistic
Review, 19(1-2):163–183.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397.

Page 196/200

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin,
Heidelberg. Springer-Verlag.

Donati, C. and Cecchetto, C. (2011). Relabeling heads: A unified account for relativization
structures. Linguistic Inquiry, 42(4):519–560.

Dryer, M. S. and Haspelmath, M., editors (2013). WALS Online. Max Planck Institute for
Evolutionary Anthropology, Leipzig.

Dutertre, B. and de Moura, L. (2006). A fast linear-arithmetic solver for DPLL(T). In Ball,
T. and Jones, R. B., editors, Computer Aided Verification, pages 81–94, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Everaert, M. B., Huybregts, M. A., Chomsky, N., Berwick, R. C., and Bolhuis, J. J. (2015).
Structures, not strings: linguistics as part of the cognitive sciences. Trends in Cognitive
Sciences, 19(12):729–743.

Fichte, J. K., Hecher, M., and Szeider, S. (2020). A time leap challenge for sat-solving.
In Simonis, H., editor, Principles and Practice of Constraint Programming, pages 267–285,
Cham. Springer International Publishing.

Fong, S. and Ginsburg, J. (2019). Towards a minimalist machine. In Berwick, R. C. and
Stabler, E. P., editors, Minimalist Parsing, pages 16–38. Oxford University Press.

Gibson, E. and Wexler, K. (1994). Triggers. Linguistic Inquiry, 25(3):407–454.

Gold, E. M. (1967). Language identification in the limit. Information and control,
10(5):447–474.

Graf, T. (2013). Local and transderivational constraints in syntax and semantics. PhD
thesis, University of California at Los Angeles.

Grimshaw, J. (1981). Form, function, and the language acquisition device. The logical
problem of language acquisition, 165:178.

Grimshaw, J. B. (2005). Words and structure. CSLI Publications.

Hale, K. and Keyser, S. J. (1993). On argument structure and the lexical expression of
syntactic relations. In Hale, K. and Keyser, S. J., editors, The view from Building 20:
Essays in linguistics in honor of Sylvain Bromberger, pages 53–109. MIT Press.

Hale, K. and Keyser, S. J. (2002). Prolegomenon to a theory of argument structure, vol-
ume 39 of Linguistic Inquiry Monographs. MIT Press.

Harkema, H. (2001). Parsing Minimalist Languages. PhD thesis, University of California
Los Angeles.

Hirsh-Pasek, K., Treiman, R., and Schneiderman, M. (1984). Brown & Hanlon revisited:
Mothers’ sensitivity to ungrammatical forms. Journal of Child Language, 11(1):81–88.

Hornstein, N., Nunes, J., and Grohmann, K. K. (2005). Understanding minimalism. Cam-
bridge University Press.

Page 197/200

Hornstein, N. and Pietroski, P. (2009). Basic operations: Minimal syntax-semantics. Cata-
lan Journal of Linguistics, 8(1):113–139.

Hunter, T. and Dyer, C. (2013). Distributions on minimalist grammar derivations. In
Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), pages 1–11.

Indurkhya, S. (2020). Inferring minimalist grammars with an SMT-solver. Proceedings of
the Society for Computation in Linguistics, 3(1):476–479.

Jackendoff, R. (1983). Semantics and cognition, volume 8. MIT press.

Joshi, A. K. (1985). Tree adjoining grammars: How much context sensitivity is required
to provide a reasonable structural description? Natural Language Parsing, pages 206–250.

Joshi, A. K., Shanker, K. V., and Weir, D. (1990). The convergence of mildly context-
sensitive grammar formalisms. Technical Reports (CIS), page 539.

Kobele, G. M. (2011). Minimalist tree languages are closed under intersection with recog-
nizable tree languages. In International Conference on Logical Aspects of Computational
Linguistics, pages 129–144. Springer.

Kobele, G. M., Retoré, C., and Salvati, S. (2007). An automata-theoretic approach to
minimalism. Model Theoretic Syntax at 10, pages 71–80.

Lasnik, H. and Lidz, J. L. (2017). The argument from the poverty of the stimulus. The
Oxford Handbook of Universal Grammar, pages 221–248.

Legate, J. A. and Yang, C. D. (2002). Empirical re-assessment of stimulus poverty argu-
ments. The Linguistic Review, 19(1-2):151–162.

Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Uni-
versity of Chicago press.

Lust, B. C. (1999). Universal grammar: The strong continuity hypothesis in first language
acquisition. In Ritchie, W. C. and Bhatia, T. K., editors, Handbook of child language
acquisition, pages 111–155. Academic Press.

Lust, B. C. (2006). Child language: Acquisition and growth. Cambridge University Press.

Marcus, G. F. (1993). Negative evidence in language acquisition. Cognition, 46(1):53–85.

Marques Silva, J. P. and Sakallah, K. A. (1996). Grasp - a new search algorithm for
satisfiability. In Proceedings of International Conference on Computer Aided Design, pages
220–227.

Marques-Silva, J. P. and Sakallah, K. A. (1999). Grasp: a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521.

Michaelis, J. (1998). Derivational minimalism is mildly context-sensitive. In International
Conference on Logical Aspects of Computational Linguistics, volume 98, pages 179–198.
Springer.

Michaelis, J. (2001). Transforming linear context-free rewriting systems into minimalist
grammars. Logical Aspects of Computational Linguistics, pages 228–244.

Page 198/200

Michaelis, J., Mönnich, U., and Morawietz, F. (2000). Algebraic description of derivational
minimalism. Algebraic Methods in Language Processing, 16.

Morawietz, F. (2008). Two-Step Approaches to Natural Language Formalism, volume 64.
Walter de Gruyter.

Newport, E., Gleitman, H., and Gleitman, L. (1977). Mother, id rather do it myself: Some
effects and non-effects of maternal speech style. In Snow, C. E. and Ferguson, C. A.,
editors, Talking to Children, pages 109–149. Cambridge University Press.

Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). Solving sat and sat modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of
the ACM (JACM), 53(6):937–977.

Niyogi, P. and Berwick, R. C. (1996). A language learning model for finite parameter
spaces. Cognition, 61(1-2):161–193.

Niyogi, S. and Berwick, R. C. (2005). A minimalist implementation of Hale-Keyser incor-
poration theory. In UG and External Systems: Language, Brain and Computation, pages
269–288. John Benjamins Publishing.

Pereira, F. C. N. and Warren, D. H. D. (1983). Parsing as deduction. In Proceedings of
the 21st Annual Meeting on Association for Computational Linguistics, ACL ’83, pages
137–144. Association for Computational Linguistics.

Pesetsky, D. and Torrego, E. (2001). T-to-c movement: Causes and consequences. Current
Studies in Linguistics Series, 36:355–426.

Pinker, S. (1984). Language Learnability and Language Development. Harvard University
Press.

Radford, A. (1997). Syntactic theory and the structure of English: A minimalist approach.
Cambridge University Press.

Radford, A. (2009). An introduction to English sentence structure. Cambridge University
Press.

Radford, A. (2016). Analysing English sentences: A minimalist approach (Second Edition).
Cambridge University Press.

Rayner, M., Hugosson, A., and Hagert, G. (1988). Using a logic grammar to learn a
lexicon. In Coling Budapest 1988 Volume 2: International Conference on Computational
Linguistics.

Reinhart, T. M. (1976). The syntactic domain of anaphora. PhD thesis, Massachusetts
Institute of Technology.

Rizzi, L. (1982). Negation, wh-movement and the null subject parameter. An Annotated
Syntax Reader, page 169.

Rizzi, L. (1986). Null objects in italian and the theory of pro. Linguistic Inquiry, 17(3):501–
557.

Rizzi, L. (2011). On the elements of syntactic variation. Studies in Linguistics, 4:142–162.

Page 199/200

Rizzi, L. (2017). The concept of explanatory adequacy. In The Oxford Handbook of Uni-
versal Grammar. Oxford University Press.

Rogers, J. and Nordlinger, R. (1998). A descriptive approach to language-theoretic com-
plexity. MIT press.

Shieber, S. M., Schabes, Y., and Pereira, F. C. (1995). Principles and implementation of
deductive parsing. The Journal of Logic Programming, 24(1-2):3–36.

Sportiche, D., Koopman, H., and Stabler, E. (2013). An introduction to syntactic analysis
and theory. John Wiley & Sons.

Stabler, E. (1996). Derivational minimalism. In International Conference on Logical Aspects
of Computational Linguistics, pages 68–95. Springer.

Stabler, E. P. (1998). Acquiring languages with movement. Syntax, 1(1):72–97.

Stabler, E. P. (2001). Recognizing head movement. In International Conference on Logical
Aspects of Computational Linguistics, pages 245–260. Springer.

Stabler, E. P. (2004). Varieties of crossing dependencies: structure dependence and mild
context sensitivity. Cognitive Science, 28(5):699–720.

Stabler, E. P. (2013). Two models of minimalist, incremental syntactic analysis. Topics in
Cognitive Science, 5(3):611–633.

Stabler, E. P. and Keenan, E. L. (2003). Structural similarity within and among languages.
Theoretical Computer Science, 293(2):345–363.

Stanojević, M. (2016). Minimalist grammar transition-based parsing. In International
Conference on Logical Aspects of Computational Linguistics, pages 273–290. Springer.

Torr, J., Stanojevic, M., Steedman, M., and Cohen, S. B. (2019). Wide-coverage neural
a* parsing for minimalist grammars. In Proceedings of the 57th annual meeting of the
Association for Computational Linguistics, pages 2486–2505.

Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural de-
scriptions produced by various grammatical formalisms. In Proceedings of the 25th Annual
Meeting on Association for Computational Linguistics, ACL ’87, pages 104–111, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Yang, C. (2002). Knowledge and learning in natural language. Oxford University Press.

Yang, C. (2015). Negative knowledge from positive evidence. Language, 91(4):938–953.

Yang, C. (2016). The Price of Productivity: How Children Learn and Break the Rules of
Language. MIT Press.

Page 200/200

	Introduction
	Parsing
	Acquisition
	Summary of Key Ideas and Takeaways

	Modeling a Minimalist Parser with Satisfiability Modulo Theories
	Overview
	Minimalist Grammars
	Model Definition
	The Lexicon Model
	The Derivation Model
	Constraining the Derivation Model with Interface Conditions
	Connecting the Derivation Model to the Lexicon Model

	Parsing
	Constructing the Model of the Parser
	Checking the Model and Recovering a Minimalist Derivation
	Evaluating the Parser

	Summary

	Inferring Minimalist Grammars with an SMT-Solver
	Overview
	The System Acquires Knowledge of Language
	The System Solves for Syntax
	The System Models a Child Language Learner
	Psychological Fidelity
	Summary of Key Insights and Ideas

	An Instantaneous Model of Acquisition
	Economy Considerations
	Inferring an Optimal Grammar via Model Checking
	Learning a Grammar of Matrix Clause Constructions
	Summary

	An Incremental Model of Acquisition
	Extending the Instantaneous Model
	Learning Embedded Clauses
	Summary

	Towards Explanatory Adequacy
	Incorporating a Theory of Phases
	Extending the LF and PF Interfaces
	Curtailing Overgenerations
	Incorporating Principles of Language Learning
	Summary

	Bibliography

