| — | Room 14-0551
77 Massachusetts Avenue

= » Cambridge, MA 02139
Mrn_lbranes Ph: 617.253.5668 Fax: 617.253.1690
Document Services Email: docs@mit.edu

http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain color
pictures or graphics that will not scan or reproduce well.

January, 1979 LIDS-R-879

SCHEDULING OF FLEXIBLE FLOW SHOPS

by

K.L. Hitz*

This research was partially supported by National Science Foundation

Grants NSF/RANN APR76-12036 and NSF DAR78-17826, "Systems Aspects of
Flexible Manufacturing Systems".

Any opinions, findings, and conclusions
or recommendations expressed in this
publication are those of the authors,
and do not necessarily reflect the views
of the National Science Foundation.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

*On leave from Dept. of Mechanical Engineering, University of
Newcastle, NSW, Australia.

ABSTRACT

The report discusses the scheduling of production in a deterministic
Flexible Flow Shop. This is a serial arrangement of buffered multipurpose
machines connected by a conveyor system which allows fully mechanized parts
handling. Machines can be bypassed, and simultaneous processing of parts
with different machine routes is possible. The problem considered is
that of producing a range of part types in specified ratios, with known
and fixed transpcrt anq_processing times. Optimal schedules are characterized
as periodic loading squences which minimize idle time on bottleneck machines
once they have begun operating, while satisfying constraints on buffer capacity.
The computation of optimal schedules by an implicit enumeration algorithm
is discussed. Early computational results indicate that this formulation
of the scheduling problem leads to significant savings when compared to
the minimization of makespan or mean weighted finish time customary in

the scheduling literature.

ACKNOWLEDGEMENTS

I am grateful to my own University, and to Prof. M. Athans, Director
of the Laboratory for Information and Decision Systems at M.I.T., for the
opportunity of a sabbatical leave at MIT.

The research reported here is one of the results. It has been helped
along by many stimulating discussions with the members of the Manufacturing
Group at LIDS. Special thanks are due to Prof. Athans, Dr. S.B. Gershwin,
Mr. J. Ward and M. J. Ki@emia. I am also indebted to Mr. R. Hildebrand of
the C.S. Draper Laboratories, Cambridge, Mass., who independently, and some

time before me, arrived at the notion of a minimal part set.

ii

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
CHAPTER 1 INTRODUCTION
CHAPTER 2 MAXIMAL STEADY-STATE PRODUCTION IN A FLEXIBLE FLOW SHOP
CHAPTER 3 COMPUTING OPTIMAL FFS SCHEDULES
CHAPTER 4 EXTENSIONS ANLR CONCLUSIONS
4.1 Closed-Loop Control of a Flexible Flow
Shop
4.2 Fast Heuristics for Near-Optimal FFS Schedules
4.3 Conclusion
APPENDIX FORTRAN PROGRAM FOR OPTIMAL FFS SCHEDULES
Al: List of Parameters and Variables
A2: Program Listing
A3: Sample Problems and Printouts of Solutions
REFERENCES
LIST OF FIGURES
Fig. 1 A 4-Machine Flexible Flowshop
Fig. 2 Unfinished Work in a Single Machine and Its Buffer with a
Periodic Sequence of Arriving Parts
Fig. 3 Example of FFS Scheduling Problem

iii

Page

ii

15

23
23

25
27

29
30
33
52

71

13

1. INTRODUCTION

Flexible manufacturing systems [1] are networks of multipurpose,
automatic, often computer-controlled machines linked by an automateéd
transport system. Such systems are rapidly gaining interest in manu-
facturing industry. They offer one way of improving productivity in
those areas of manufacturing where each plant typically produces a
range of similar items in volumes too low to warrant the use of product-
specific mass-production machinery such as transfer lines.

The work described in this report deals with some aspects of the

problem of scheduling production in a simple type of flexible manu-
facturing system that might be called a Flexible Flow Shop (FFS). This
is a serial arrangement of multipurpose machines connected by a fixed
conveyor system. The conveyors are equipped with appropriate sensors
and switching devices so that the transport of parts from machine to
machine is fully mechanized. The first and last machines in the FFS
are loading and unloading stations where parts are loaded onto, "or
removed from, fixtures or pallets necessary for alignment in the machines
or on the conveyocr. Each internal machine of the system is assumed to
be capable of performing a range of similar operations, or sequences of
operations. Moreover, it will be assumed that a changeover from one
operation to another can be performed automatically and at negligible
cost. However, only one part at a time can be processed at each machine.
Typical examples of such machines might be NC machine tools or computer-
controlled assembly robots. At each internal machine of the FFS, the
conveyor system has by-pass links so that it is possible for parts to
visit only some of the machines in their passage through the system.
For additional system flexibility, each of the machines has an entry
buffer of specified capacity; in the sequel, these buffers will be
assumed to operate with a first-in first-out discipline. A schematic
diagram of a typical FFS is shown in Fig. 1l.

Suppose now that such a system is to be used to produce a specific

range of part types in a prescribed constant ratio, and in sufficient

-1~

87049AW049

Loading I l
Machine M2 M3 | M
Buffer B1 B2 B3 -
\infernal machines Unloading

Machine

Fig. 1 - A 4-Machine Flexible Flowshop

~3-

volume to keep the system occupied for a reasonably long time. Each
part type requires a prescribed sequence of operations, and we shall
assume that this can be expressed by specifying the sequence of machines
to be visited by each type, and the processing time required on each
machine. This means, in particular, that whenever an operation can be
carried out on more than one machine, an actual part type has been split
into a number of "artificial" ones, each of them associated with a ‘
distinct feasible machine sequence, and that appropriate production
ratios for the artificial part types have been determined independently
by considering the Yalance of work among machines (see [2] for one method
of doing this). 1In the sequel, only flow shops, or serial arrangements
of machines, will be discussed. It will always be understood, therefore,
that the machine sequence specified for each part type is compatible
with the actual serial arrangement of machines.

In the literature on production scheduling, it is usually assumed
that a setup cost is incurred in a changeover of a machine or production
line from one part type to another. The production scheduling problem
is then to determine the sizes and sequence of the batches in which
the part types should be made so as to strike the best balance between
setup costs and costs of holding in-process and finished inventory.

In the flexible manufacturing systems considered here, however, setup

or changeover costs are negligible so that an optimal mode of production
will minimize work in progress by producing the required part types
simultaneously rather than in a sequence of batches. The buffers in

the system have the purpose of reducing machine idle time due to un-
equal processing times, and of providing a cushion against short-term
machine breakdowns; their function is not to reduce the number of

setups required.

We are thus led to the following production scheduling problem:

Given a description of the system (number of machines,
buffer capacities, travel times between machines) and of
the desired production (number of part types, machine
sequence for each part type, processing times on the
machines, production ratios required), determine in what
sequence and at what intervals parts should be loaded
into the system (i.e., the first machine) so that

(i) the output of finished parts is as large as possible,
subject to the constraint that part types are produced
in the prescribed ratio, and

(ii) The steady state of maximum production in the pre-

scribed ratios is reached as quickly as possible
after startup or a momentary disturbance.

In this report, a deterministic version of this problem will be
considered. All processing and travel times are assumed known and
fixed, and all machines are considered completely reliable. For
simplicity, we shall also assume that processing and travel times are
integral multipleé‘of some fundamental time step.

With these assumptions, the problem can be formulated as a special
type of jobshop scheduling problem. There is an extensive literature
on this problem; excellent recent discussions of methods for scheduling
both flowshops (e.g., transfer lines) and general jobshops can be
found in [3], [4]1, [5]1, together with extensive references to earlier
work. Except in a very few simple cases, both flowshop and jobshop
scheduling are well known to belong to the category of hard-to-solve,
"NP-complete" combinatorial problems [3], [6], [7] which seem to be
characterized by such a dearth of structure that the only feasible
solution methods found so far are implicit enumeration type tree
searches. Particularly in the case of the jobshop problem, these
searches often require a massive computational effort for problems
of even moderate size. This seems at least in part due to the choice
of optimization criterion. In all studies known to the author,
the scheduling problem is stated as finding either the shortest total
time (makespan) or the shortest average time weighted by jobs, in
which a flowshop or jobshop can process a given fixed set of jobs.

For the systems considered in this report, this seems an un-
necessarily strict optimization criterion. We shall confine attention
to situations where the total number of parts to be produced by the
FFS in one run is so large that the system can be considered to be in
an optimal state of operation whenever it produces parts in the pre-
scribed ratio and at a steady maximum rate, both averaged over suitable

time intervals. The additional time saving possible by using schedules

which minimize makespan or average weighted finishing time, for the total
set of parts in the run, will usually be very small.

The remainder of the report focuses on the problem of characterizing
and computing loading sequences, or schedules, for the FFS which result
in optimal steady state output, subject to constraints on the duration
of startup transients, and on available buffer storages. It will be
shown that substantial computational savings can be obtained by replacing
the minimization of makespan (or mean weighted finishing time) with the
requirement that the bottleneck machine or machines be fully occupied
once they have started working.

A precise definition of what is meant by an optimal loading
sequence is given in Chapter 2. There we will also establish the simple
but basic result that loading sequences which lead to optimal steady
state production, without constraints on buffer capacities or on the
duration of start-up transients, form a very large class and are trivially
easy to compute.

In Chapter 3, we shall introduce constraints on the length of
transients as well as buffer storage, and describe an implicit
enumeration algorithm for computing optimal locading sequences. Some
initial computational results will be reported for the particular
case of unit buffer capacity at all machines.

Finally, in Chapter 4 we shall briefly discuss how the ideas
presented earlier might be extended and, in particular, how they might
be incorporated in a closed-loop system of controlling production

in a flexible manufacturing system.

2. MAXIMAL STEADY-STATE PRODUCTION IN AN FFS

Consider an FFS with X machines linked by a conveyor system such
that the travel time sz from the machine j to the input buffer of
machine % is known and fixed for all 1 < j < £ < K. Suppose that M
part types are to be produced. Let pij denote the known fixed process-
ing time required for a part of type i on machine j; Pij = 0 means that
a part of type i bypasses machine j. Suppose further that the part
types are to be produced in the ratios T i=1,2,...M: of the total
number 0 of parts produced since startup, ria parts are required to be
of type i. We shall assume throughout that the ri are rational fractions.
In some cases, particularly where the various part types are required
for assembly into a larger unit, a tighter constraint may be appropri-
ate: of every N consecutive parts produced by the system, ni are re-
quired to be of type i, where n, = riN, and where N is a reasonably

small number. This leads to tile notion of a "Minimal Part Set" @PS).

Definition: A Minimal Part Set is a set of integers {nl,nz,...nM}

such that

M
A .
n, =r, n, = ¢.N, i=1,2,...M (1)
i i o i i
1=1
and
g.c.d. {nl,nz,...nM} =1 (2)

Clearly, the system satisfies the production ratio constraints if in
every set of N consecutive completed parts, n, are of type i, i=1,2,...M.
Moreover, it is impossible to be certain that the constraints are satis-
fied without checking at least the last N parts produced. Thus the
minimum time required to produce the N parts is, in a sense, the shortest
possible response time of the system. Ideally, this will be equal to

the time T required by the bottleneck (or most heavily loaded) machine

or machines to process their share of work in an MPS. This time will

be called a Period; it is given by

-G~

-7-

T = 1<j<K T, = .P. . (3)
J i=1 - 4]

The scheduling problem studied here is to determine a loading sequence
{(Ol,tl), (Gz'tz)""}' (where (g,,t,) means that a part of type gy
is loaded into machine 1 at time tz), which will cause the system to
produce parts in the prescribed ratio and at the maximum possible rate.
Clearly, the best steady state operation obtains when the system completes
a minimal part set in every period T. This suggests the use of a periodic
loading sequence of the form '

{(cl.tl), (0,,t,), (O st) s (0] /£ +T) (O), (0], £ +2T) }

<t <...< -t <] i i
where tl t2 e tN' tN t1 T and where {01,02,...0N} is some permutation

of the items in a minimal part set. Any such sequence will be called

maximal periodic. It will be convenient to use the same phrase for

sequences in which the strict inequalities ti<ti are relaxed to

+1
ti f-ti+l; such sequences can occur when subsequences merge at a con-

veyor junction inside the system (see F2 below). In that case, the ti
will not be instants at which the part enters the system but instants
at which it passes the point where the sequence is observed.

Suppose now that the FFS has the following features:

Fl: Each machine has a FIFO buffer of unlimited capacity.

F2: The conveyor system can carry an arbitrary number of
pieces on each position. This means that no part
emerging from a machine will be delayed in its journey
to the next machine by traffic on the conveyor. It
also implies that several parts may arrive at a machine
buffer simultaneously. In order to maintain deterministic
behaviour throughout the system, it is assumed that
parts sharing a conveyor position and destined for the
same machine leave the conveyor and enter the machine's
buffer according to some arbitrary but fixed rule, e.g,
LIFO.

For a system with these features, any one of a very large class
of loading sequences will result in optimal steady-state production,

as the following theorem shows.

Theorem: In a flexible flow shop with features Fl and F2, any maximal
periodic loading sequence results, after a finite interval of time, in
an output sequence which is itself maximal periodic.

To prove the theorem, we first establish a preliminary result on

the response of a single machine.

Lemma: Suppose that parts arrive at the buffer of a machine in a periodic
sequence such that the sum of processing times of the parts arriving in
one period does not exceed the capacity of the machine. Then, after

a finite time interval, the sequence of parts leaving the machine wil

be periodic with the same period as the arrival sequence.

Proof: Let w be the sum of processing times of the parts arriving in
one period, let T denote the length of the period, and let Sy be the
instant at which the first part of the periodic input sequence arrives.
Denote by x(t) the time required by the machine to finish the part being
worked on and to process the parts waiting in the buffer just prior to

the instant t; x(t) can be regarded as a backlog of unfinished work in
the machine and its buffer. Define n as the total time the machine would
be idle in the first period, i.e., in the first T time steps after sl,
if the machine and buffer were empty Jjust prior to the arrival of the

first part at time s_:

g-1
max (sy-s,) - E ;W
n = 1<f<n+l) °27°1 & '

where n is the number of parts arriving in a period, and
where sg,‘n% are the arrival instants and processing times,

respectively, of the %-th part to arrive.

For example, in Fig. 2(b), n equals the sum of the intervals labelled
" a“ and llb" .

We distinguish two possibilities:

Case 1: The backlog of unfinished work never beccmes zero, i.e.,

x(t) > 0 for all t > Sq- Clearly, this can happen only if the machine

87049AW037

arrivals

x(t) 4

x(s1) 1

. departures
(@) W=7 and x(s,) > 7

(7 equals a+b on fig(b)
arrivals

[
L T R |

B -
NN N .
51 t
Vo Vo Vi -
departures

(b) w=T and x(s,) =0
(The input sequence is the same as in(a))

M=a+b
x(t)“ arrivals
{
Vi {
AN
S+2T 51:4—3‘7
{
) {
departures

(clw<T

Fig. 2: Unfinished Work in a Single Machine and Its Buffer
with a Periodic Sequence of Arriving Parts

®w = total work arriving in one period
T = period of input sequence
‘t‘l= beginning of periodic input sequence

vertical jumps are the processing times of arriving parts

-10-

needs a whole period to process the parts arriving in a period, i.e., if
w=T. In addition, the initial backloghx(sl) needs to be large enough
to prevent the machine from clearing its backlog sometime in the first
period: x(sl) > n. This case is illustrated in Fig. 2(a). Under these
conditions, it is obvious that for t > sl, x(t) is a periodic function
with period T, and this implies that the sequence of parts leaving the

machine is similarly periodic, beginning at the instant of departure

+ T
s x(sl) +

1 of the part arriving at s

1 1
Case 2: The backlog.of unfinished work becomes zero, i.e., the machine
and its buffer become empty, at least once after time sl: x(t) = 0 for
at least one t > S+ If w = T, this will happen during the first period
if the initial backlog x(sl) is small enough, i.e., if x(sl)<§hn.
See Fig. 2(b). On the other hand, if w < T, so that the amount of work
arriving in each period is strictly less than the capacity of the machine,
then no matter how large the initial backlog x(sl), an instant must
arrive at which the machine has cleared its backlog, and begins an idle
period of finite length. This is shown in Fig. 2(c).

Let t be the smallest t > Sy such that x(t) = 0, and define % by
that 2T + sl <t < (+D)T + sl. Then from time t onwards, the amount
of unfinished work in the machine and its buffer depend only on the
input sequence, and not on any initial backlog x(sl). This in turn
implies that x(t) begins being periodic at some instant during the %-th
period, and certainly no later than at time sl + 2T. However,
a periodic backlog function implies a periodic output sequence. This

proves the lemma.

Proof of Theorem: The first machine in the system is a loading station

without an input buffer. Clearly, the sequence of parts leaving

machine 1 will be maximal periodic from the instant of departure of

the first part. Now consider machine 2. The sequence of parts arriving
there is a subsequence of the maximal periodic sequence leaving machine
1, delayed by the constant travel time from the loading machine. It

follows from the lemma that after some finite time, &ay Tt the sequence of

2’

-1l

parts leaving machine 2 is also periodic with period T. This sequence
merges with the sequence of parts which bypass machine 2. Since both
have the same period T, we conclude that from time T2 onward, a maximal
periodic sequence enters the conveyor linking machines 2 and 3. The
theorem now follows from a simple repetition of this argument for each
subsequent machine.

The theorem assures us that if the system has unlimited buffer
capacity at each machine, and if only steady-state output is of interest,
the scheduling problem has a simple solution: any maximal periodic
loading sequence wiii do. After a finite time, an initially empty
system will produce a minimal part set in every period.

Of course, a poor choice of loading sequence may result in a long
transient. During this transient, the system will produce parts at less
than the maximum possible rate, and since the sequence of parts will
usually be permuted in its passage though the system, there is no assurance
that an integral number of minimal part sets will be produced during the
transient. Thus the output will in general satisfy the production ratio
constraints only if the production during the transient is ignored.

It is possible to overcome this difficulty, as well as reduce the
duration of the transient phase, by a partial preprocessing of parts which
fills the machine buffers to an appropriate level prior to starting the
maximal periodic loading sequence. This yields a heuristic scheduling
algorithm which will be discussed in more detail in Chapter 4.

First, we turn to the problem of characterizing and computing
maximal periodic loading sequences which are optimal in the sense
that they minimize undesirable start-up transients, and satisfy explicit

constraints on available buffer storage.

Definition: A maximal periodic loading sequence will be called optimal

if, when it is applied to an initially empty FFS, the following hold:
(i) specified constraints on buffer capacity are satisfied
(ii) the output sequence of completed parts is maximal

periodic from the instant at which the first part
leaves the system.

-12-

We shall use the term "loading schedule", or simply schedule, to denote
the first N components of a maximal periodic loading sequence, i.e.,

the ordered set of pairs

g = ¢, Oy)y woey (O, £}

2 N

where, as before, t, < t,
i i+

{cl. a

, 1 =1,2,... N~1, where tN - t. < T and where

1 1

2,...0&} is a permutation of the MPS.

Suppose now that parts are loaded into an initially empty FFS
according to a givenu§chedu1e_g. Let S(1,j) denote the starting time,
on machine j, of the first part of 0 to arrive at machine j, and let
C(N,j) ke the completion time, on machine j, of the last part of g to

*
be processed by machine j. Then the condition
C(NIJ) - S(llj) iTr j =1,2,...K (4)

is clearly sufficient for the schedule O to yield an optimal loading
sequence: on every machine, and for all k = 1,2,..., processing of all
the parts in the first k minimal part sets is completed before the
first part of the (k+l)-st MPS arrives. Hence the processing sequence
on every machine, including the last, is periodic from the instant at
which the first part reaches that machine.

An example of an FFS scheduling problem is given in Fig. 3, together
with an optimal schedule which satisfies the constraint of unit bufferxr
capacity at each machine. On the chart, two-digit numbers are used to
identify individual parts. For example, "52" refers to the second part of
type 5. This particular part is loaded at time 16, leaves machine 1 at time
18, bypasses machine 2 to arrive at the buffer of machine 3 at time 28, waits
there for 3 time steps while part 31 is processed, leaves machine 3 at time
36, and so on. It leaves the system at time 74.

Note that condition (4) is not necessary for optimality of a schedule.

Suppose that C(N,j) - S(1,j) > T for some schedule ¢ and some machine

*
Note . however, that this notation is not meant to imply that each machine
is visited by all N pakts in an MPS.

13

(a) Problem Data:

No of machines K
No of part types
Minimal Part Set

Travel times T,
—_—— jL

6
=5
{2,2,1,1,3}; Period T = 42

=1

Operation times

Machine

|1 2 3 4 5 1 2 3 4 5 6

2 5 1 4 6 ¢} 0 10 2

3 {10 6 2 4 7 5 4 0 2

Part

p 4|16 12 7 type 3 2 0 10 9 0 1

4 2 4 7 0 4 1

5 |21 17 12 6 5 5 o 5 7 6 1

6 |25 21 16 10 5 Total 26 30 42 38 42 13

(b} Ghannt Chart of Optimal Schedule
S = e : mpip g —
e = = :: ME T
S % — —]
= - x - — - 4[1[] '~ — - l'III' &___ — =E LF‘A
{;EM&C hﬁj’ii‘Zf e— i‘-f’%ﬁ’leg e - ma = pe——
B - : . 1 —
IS A S d-—a-"} N T ‘ Wd}' IO S

Optimal schedule ¢ = {(1,0),(5,4),(3,6),(1,10),(4,14),(5,16),(2,21),
(5,25),(2,2N }.
occupied buffer shaded areas are idle times in one period.

Rectangular blocks above machine bars indicate

~14-

j. Then j X K since otherwise the output sequence could not have a minimal
period. It may happen that the processing on machine j of the last few items
in the first MPS in the interval [S(l,3) + T, C(N,j)] does not interfere with
the processing of the first items of the next MPS in the same interval. If>
this is so for all machines for which C(N,Jj) - S{(1,j) > T, then clearly the
schedule can be repeated indefinitely; the processing of the k~th MPS will not
affect the timing of the operations for th (k+1l)-st MPS, and the system output
has the same dead beat transient response as if (4) were satisfied.

However, from now on, we shall identify optimal schedules with those that
satisfy (4), treating as negligible the possibility that the only optimal
schedules for a problem violate (4). We do this because (4) leads to a fairly
simple and efficient algorithm for computing optimal schedules; permitting
some overlap in the processing of successive minimal part sets would make the

algorithm very much more complex and computationally expensive.

3. COMPUTING OPTIMAL FFS SCHEDULES

In this chapter, we discuss the computation of schedules which satisfy
condition (4), by means of an implicit enumeration algorithm. This
algorithm can be regarded as a formal statement of the procedure one
would naturally adopt in a manual construction of optimal schedules
using Ghantt charts [3]. To simplify the exposition, we shall first restrict
the discussion to so-called permutation schedules [4]. 1In such schedules,
processing of different parts on common machines must always occur in
the order in which the parts entered the system. For example, the
schedule in Fig. 3 is not a permutation schedule: part 21 enters the
system before part 53, yet is processed on machines 3 and 4 after part
53. M

Let Tj = A nipij denote the total time required by machine j to
process its sﬁgfe of work in a minimal part set. Then U(0,j) = T-T,
is the maximum amount of time that machine j can be idle in the inteival
[s(1,3), c(N,3)] if condition (4) is to be satisfied by the schedule 0.
Thus, an alternative way of stipulating (4) is to require that in an
optimal schedule, the sum of the gaps, or idle periods, between successive
work periods must not exceed U(0,j) for j = 1,2,...K. Of course,

U(0,j) = 0 on a bottleneck machine. Let 9% denote a "partial schedule":

= {(ol, t)s Oy £)seeny (O, ¢)}

Sy k

where the Oi form a proper subset of the items in an MPS. For con-
venience, we usually take tl = 0. Let U(k,j) be the total idle time

on machine j between the work periods necessary to process gk; if only
one, or no, part of gk requires processing on machine j, set U(k,j) = O.
Then U(k,j) = U(0,j) - U(k,j) is the amount of idle time available on
machine j, and not yet "used up" by gk' We shall call 0 a feasible

13
partial schedule if

(i) at no machine, the maximum number of buffer positions
required in processing gk exceeds the buffer capacity

B,

-15-

-16=-

(ii) U(k,3j) > 0 for all j = 1,2,... K.

Suppose that in the search for an optimal schedule for a particular

problem, a feasible partial schedule ¢, has been found. We now éttempt

d 1Y
to find a feasible gk+1. Let C(k,j) be the finishing time on machine j
of the last item of 9% to be processed by machine j. Let A(k,j) denote

the earliest time at which a new part from o - gk can arrive at the
buffer of machine j, subject to the constraints that the buffer cannot
be full at time A(k,J) and that processing of the new part on machine j
cannot begin beforeitime C(k,j). (Recall that only permutation schedules
are allowed for the moment.)

The search algorithm consists of the following:

Step 1l: ILet Fl = {1,2,...M}; for k>1, Fk is the set of
part types which may still be possible in the k-th

place of an optimal schedule having gk—l in its

first k-1 places.

Step 2: 1If Fl is empty, stop; an optimal schedule does not

exist. Otherwise, select a part type 0., from Fl’

1

set tl = 0, and for all j = 1,2,...K, set U(1,]) =

U(0,j) and compute A(l,j) and C(1l,j). Set k = 1.

Step 3: Compute the set Fk+l of part types for which
n,-m, > 0, where n, and m, are the numbers of
i i i i

parts of type i in the MPS and in , respectively.

S
Step 4: If Fk+l is empty, go to step (7). Otherwise, select

: £ orit
a part type 0k+l from Fk+1 according to some priority

rule. Set S(k+l1l,j) =0 for j = 1,2,...K.

Step 5: Compute the earliest possible times S(k+1,j) at

which a part of type can begin being worked

Tk+1
on by each of the machines j in its route, subject

to the joint constraints imposed by the A(k,3j).
If Ss(k+1,3) - C(k,j) > U(k,3) for any machine j

visited by part type Ok+1' delete part type Ok+l
t 4,
from Fk+l’ and return to step

Step 6:

Step 7:

9k+1

A(k+1l,j), record F

-17-

A feasible "continuation" of O, has been found:

Zx

= {(01,0),..., (o, £), (0, Sk+l,1))}.

k

If k = N-1, stop; O is an optimal schedule.

Zk+1

Otherwise, compute and store U(k+1l,3j), C(k+1,3),

K+l for possible future reference,

replace k by k+1 and return to step 3.

A feasible continuation of o, does not exist, i.e.,

Zx

no optimal permutation schedule exists which has

as its first k entries. Delete part type Ok

from Fk. If k = 1, go to step 2. Otherwise,
replace k by k-1 and go to step 4.

The major computational effort in the algorithm is required by the

computation of the earliest possible starting times in step 6. This

(possibly iterative) computation can be accomplished by the following

block of Fortran code (LEV =k, 1 = O +17 TRTIME(J,L) = T,

1g

3¢

ag
58
2p

k 32):

S(LEV+1,1) = C(LEV,1)
MC = 1
DO 2¢ MCN = 2,K

IF(P (i ,MCN) .EQ.Z)GO TO 2¢

TEMP = S(LEV+1,MC) + P(i,MC) + TRTIME (MC,MCN)

IF(TEMP.GE.A(LEV,MCN)) GO TO 3¢

S(LEV+1,1) = S(LEV+1l,1l) + A(LEV,MCN) - TEMP
GO TO 1@

IF (TEMP.GT.C(LEV,MCN)) GO TO 4g

S (LEV+1,MCN) = C(LEV,MCN)

GO TO 59

S(LEV+1,MCN) = TEMP

MC = MCN

CONTINUE

The algorithm just described can be regarded as a fairly simple

member of the general class of branch-and-bound, or tree search,

algorithms for the solution of combinatorial scheduling problems (see

Ch. 6 of [3] for a formal survey): a partial feasible schedule 9%

is a node in the search tree, and feasible continuations

its
G4y 2TC

descendants or successor nodes. Interpreted in the branch-and-bound

~18~

framework, the algorithm has two distinctive features:

(1) Minimization of a single-valued objective function
(e.g., makespan) is replaced by searching for
schedules satisfying a set of constraints: the sums
of idle times between busy periods on each machine
must not exceed the known limits U(0,]).

(ii) During the search, the idle time on machine j of the
partial schedule {0, , (Gk+ , S(k+1,1))} is used as
a lower bound on the idle %ime on machine j of any
permutation schedule of the form
{oy s (0, 17 SGHL, 1)) ... (Oty) }.
The first of these-features by-passes the difficulty in many branch-
and-bound schemes of obtaining a tight upper bound early in the search.
In our case, perfectly tight upper bounds are known from the outset.
The second feature yields lower bounds which are easy to compute, at
least in comparison to the effort required to obtain good lower
bounds in the branch-and-bound solution of the classic permutation
flowshop problem {4].

It was hoped that these features would combine to yield a
computationally efficient algorithm. This turned out to be the case,
at least in regard to speed of computation. A program was written
in Fortran IV for the special case of unit buffer capacities at all
machines, and tested on an IBM 370/168 with a number of sizeable problems
derived from those described in [l1]. The search tree generated was
usually quite large; for problems with K = 6, M = 5 and N = 25, several
thousand nodes were usually required to find an optimal permutation
schedule, or to establish that none existed. However, the computation
time per node was only 0.7 msec on average.

It also became apparent that the restriction to permutation
schedules is too drastic in an FFS scheduling problem involving dif-
ferent processing times and part types which do not require processing
on every machine. In such cases, permutation schedules often fail
to take advantage of the key feature which can make the FFS more
efficient than a transfer line: the ability of parts to reach a
downstream machine and begin being processed there while an upstream

machine is still busy on a part which entered the system earlier. The

-19-

example in Fig. 3 is a case in point: no optimal permutation schedule
exists (the program concluded this after generating 32 nodes in the
search tree).

It seems that the simplest way of removing the restriction to
permutation schedules is to enable the algorithm to look for feasible
continuations of a partial schedule not just by adding a single part,
but by adding a group of several parts having "interlocked processing
profiles" on a Ghantt chart, i.e., which overtake each other in their
passage through the system. For example, in the schedule of Fig. 3,
parts 41 and 52 forﬁ‘a pair of interlocked parts, or a "composite part".
Together they yield a feasible continuation of the partial schedule
g, = {(1,0,(5,4),(3,6),(1,10) }.

Individually they do not: neither {o,, (4,t5)} nor {o,, (5,t5)}

are feasible for the smallest possible values of t The former con-

tinuation would force machine 3 to be idle betweenStime steps 31 and
35, while with the latter, machine 5 would be idle between times 58
and 60.

Naturally, an algorithm which can cope with such "composite parts"
is considerably more complex. It seems that the simplest program
structure is obtained when composite parts are treated as different
part types. The set of possible composites can be pre-computed. However,
the timing of the operations required to process the composite, and thus
the amount of idle time between these operations, depend on the partial
schedule to which the composite is joined and cannot be computed before-
hand. For large composites, this computation is quite complex and
time~-consuming.

The Fortran program in the Appendix is a first attempt at developing
a code which can handle composite parts. Only the special case of
unit buffer capacity is considered, and composites can consist of
only two parts. In other words, the schedules generated are restricted
to those in which no more than two successive parts can overtake each
other (once, or more frequently), and any such "crossed pair" cannot

itself be interlocked with its neighbors.

-20-

The program was tested on one small and four substantial problems;
see the Appendix for problem data and printouts. The results are

summarized below:

Nodes
Problem No.| K M N T U(0,3) Result Generated
in Search

1 (Fig. 3) | 6 5 9 42 |(16,12,0,4,0,29) Opt. Soln. 20

2 6 5 ¢ 25 119 (49,46,0,2,1,84) Opt. Soln. 370

3 6 5 25 117 (57,44,48,0,5,82) Opt. Soln. 26961

4 6 5 21 143 (75,5,38,0,25,109) | Opt. Soln. 8812

5 6 5 21 143 (75,5,38,0,1,109) pNo Opt.Soln. 1667

exists

On an IBM 370/168, the average computing time per node was 1.6 msec
(up from 0.7 for the algorithm for permutation schedules), so that a
computation time of the order of several seconds can be expected on a
powerful computer for problems of reasonable size (K <6, N <20).

It is of interest to compare this with the computational results
reported in [4] for the minimum-makespan permutation flow shop problem
with no buffer constraints. There it is stated that "fewer than half
of the 20/5 problems [20 jobs, 5 machines] could be solved within one
minute" of CPU time on a CDC Cyber 73-28 computer.

Thus, while the set of problems solved so far is too small to
allow an accurate assessment of the performance of the algorithm, the
results are sufficiently encouraging to warrant further development.

It seems that the difficulty of solving a problem, apart from sheer

size, depends on

(i) the range of processing times among different parts
in an MPS,

(ii) the balance of work among machines in an MPS,

(iii) the buffer capacity.

-21-

The first of these determines the amount of overtaking possible,
and hence the size of composite parts which may be necessary in con-
structing optimal schedules. The results obtained so far indicate that
unless the processing times of different parts on different machines
differ by whole orders of magnitude, it may not be necessary to consider
composites of more than three parts. Allowing pairwise overtaking already
gave a dramatic improvement in the success rate of the algorithm, even
in cases where the ratio of maximum to minimum processing times on
internal machines was as high as 5 (see problem 5 in the appendix). 1In
networks of NC machine®tools, at least, this value can be regarded as
a reasonable upper limit on the range of processing times.

The second factor, work balance among machines, affects the tightness
of the constraints. If there is a high degree of unbalance, i.e., a
large percentage cof idle time in an optimal schedule on all machines
except one bottleneck one, then in general there will exist a large number
of optimal schedules, and only a very "narrow" portion of the search
tree needs to be explored to find one. At the other extreme, when many
machines are nearly fully occupied in an optimal schedule, the search will
also be very brief: because of the tightness of the idle time constraints,
even small feasible partial schedules will in general have very few feasi-
ble descendants (see problems 1,2,5). The most difficult problems seem
to be those where the number of optimal schedules is not very large, but
where the idle time constraints are not very tight either, at least
early in the search (see problem 3). In that case, pruning of the search
tree does not begin until a substantial depth is reached, so that many
branches must be explored to a considerable depth. For this case, it
may be desirable to augment the simple feasiblity tests by calculating
a more elaborate but tighter lower bound on the idle time of any com-
pletion of a partial schedule.

The third factor, buffer capacity, is, of course, an external
constraint. However, unpublished simulation studies at MIT and the
C.S. Draper Laboratories [8] seem to indicate that the number of optimal
schedules (and hence the speed with which a search procedure can find

one) increases dramatically as the buffer capacity at internal machines

-22-

is increased. It is of interest to explore this conjecture further.
An algorithm which removes the major limitations of the program in
the Appendix is currently being developed.

The objectives in the revision are to

(1) allow buffer capacities of arbitrary size,
(ii) extend the size of composite parts to three,

(iii) avoid multiple occupancy of conveyor positions.
The present program merely avoid simultaneous
arrivals of parts at a machine buffer.

(iv) minimize ptogram complexity and overhead during
the search. The present program is not very ele-
gant or efficient; a considerable amount of un-
necessary overhead is incurred in the storage of
partial schedules, and in their modification
during backtracking steps.

(v) incorporate a number cof options if an optimal schedule does
not exist or cannot be found in a specified amount of com-
puting time. There are several possible alternatives:

(a) to compute a good completion of the longest feasible
partial schedule found, (b) to repeat the search with a

larger value of the period T, i.e., with an identicai in-
crease in the allowable idle times U(0,3) of all machines,
and (c) to repeat the search with greater buffer capacity.

Results of this revision will be presented in a sequel to this report.

4. EXTENSIONS AND CONCLUSIONS

In this chapter, we shall briefly discuss a number of desirable ex-

tensions of the ideas presented earlier, and then present some conclusions.

4.1 Closed-Loop Control of a Flexible Flow Shop

The computation of optimal schedules described so far in this report
is based on the assumption of a perfectly deterministic system model:
transport and processing times are known and fixed, machines never fail
and always produce perfect work, and parts and pallets are never in short
supply at the loading station. However, even in systems where transport
and processing times are accurately known, such as in networks using
assembly robots, NC machinz tools or automatic inspection equipment,
breakdowns will occur, Or the work done may deteriorate so that parts
will be rejected. Thus, schedules computed on the assumption of a per-
fect system will be useful only to the extent that they can be in-
corporated in a closed~loop or feedback control arrangement which can
detect deviations from optimal behavior and make appropriate corrections.

We shall briefly outline some of the problems which will need to
be solved in deriving such closed-loop control systems.

Consider first the problem of handling machine failures in an other-
wise deterministic system. In the case of transfer lines, the standard
method of reducing the effect of breakdowns is to provide buffer space
between machines [9], [10]. With such intermediate storage, the neighbors
of a broken-down machine can continue operating until the buffer up-
stream of the stoppage fills up, or the downstream buffer is depleted.
Thus the effects of short-term stoppages can be effectively localized.

It seems reasonable to expect that the provision of adequate buffer
capacity will Be just as important in an FFS as in a transfer line, at
least in the case of failures of short to medium duration. Naturally,

a schedule which is optimal for the case of full machine availability

cannot in general be maintained during a breakdown. What is needed then

is an algorithm which makes the appropriate changes in the loading sequence,
on the basis of the current buffer levels and machine states, so as to

drive the system back to optimal operation after a breakdown. It is

-23-

24~

tempting to speculate that if the diversity of part types and machine
routes is properly exploited in such an algorithm, then a good insulation
of the system against short-term individual machine breakdowns can be
obtained with less buffer capacity than would be required in a transfer
line.

The problem of breakdowns of long duration is more straightforward.
If the disabled machine is essential for all part types being produced,
then, of course, there is no alternative to shutting the system down
once buffer stocks qed storage places are exhausted. However, it may
be possible to bypass the disabled machine and to have its function
taken over by other machines. This will alter the routing for some or
all of the part types. A new allocation of items to machine routes can
then be computed (e.g., by the methods in [2]), and a new optimal schedule
generated for use during the breakdown period. The "dead~beat" response
to optimal schedules will ensure a rapid settling down to the new steady
state.

It may not be possible to maintain the original production ratios
with a breakdown in the system. 1In that case, it may be advantageous to
produce whatever mix of parts can be made efficiently with the reduced
system during the breakdown, followed by a "catch-up" phase in which the
backlog of missing parts is cleared. The problem then is to determine
what production ratios should be used in each of the two phases so that
the total production loss due to the breakdown is minimized. How to
formulate this problem in the simplest way (possibly as a small integer
programming problem) and solve it efficently, requires further investi-
gation.

Apart from machine breakdowns, an online feedback control system
must also be able to handle occasional rejection of unfinished parts.
This may occur as a result of outright machine failure, or by a gradual
deterioration of work. As a result, the total part production plus
the set of parts currently in the system may not add up to an integral
number of minimal part sets. The scheduling algorithm must then
determine how this backlog can be cleared with a minimum of idle time

on bottleneck machines.

-25-

4.2 Fast Heuristics for Near-Optimal FFS Schedules

The implicit enumeration algorithm discussed in Chapter 3 for
computing optimal schedules (and hence loading sequences) may require
more computing time or computer capacity then is available for an on-
line control system. It is therefore of interest to investigate al-
ternative algorithms in which the tight constraints on dead-beat
response, on buffer capacity, or an maximal steady-state production
are relaxed.

One possible approach is to exploit the result of the theorem
in Chapter 2, by iHitially ignoring constraints on buffer capacity.

This yields the following procedure:

Step 1{ Assume a reasonable schedule {(Ol,tl),...(ON,tN)}.
One plausible scheme is to schedule parts of each

type at roughly uniform intervals.

Step 2: Assuming unlimited buffer capacity, compute the
steady-state response of the initially empty
system to the maximal periodic loading sequence
derived from the schedule. By steady-state
response we mean the detailed processing sequence
of a minimal part set at each machine once the
system has settled down to steady state, i.e.,
once the output sequence has started being periodic
with period T. According to our theorem, this must
occur after a finite number of periods. This step

essentially requires a simulation of the system.

Step 3: Scan the steady-state response obtained in Step 2
for the maximum buffer occupancy at each machine.
If this does not exceed available buffer capacity,
stop; a feasible schedule has been found with
which a maximal period loading sequence can be
formed. If the available buffer capacity is

exceeded, attempt to modify the current schedule

-26-

so as to reduce peak buffer occupancy and return to
step 2. If no further changes are possible or apparent,

go to step 4.

Step 4: Expand the current schedule by the minimum amount of time
necessary so that the peak buffer occupancies are reduced
to match available capacity. If this time is §, say,
then the resulting schedule can be used to form a periodic
loading sequence of period T+68. This sequence will be
feasiple in that buffer constraints are satisfied, but
since ; minimal part set is produced only once every

T+6 steps, the production rate may be less than the

maximum possible.

An important feature of the optimal schedules generated by the
implicit enumeration algorithm in Chapter 3 is that the first part to
arrive at each machine does not wait in the buffer. This guarantees
that when the corresponding loading sequence is applied to an empty
system, the output sequence is immediately periodic. This is no longer
true in general for the loading sequences obtained in steps 3 or 4 of
the heuristic described above. A finite number of minimal part sets
must pass through the system before the output becomes periodic. It
may be possible to shorten this transient phase with the following
trick.

Let 2 be the number of minimal part sets processed in the transient
phase starting at tl = 0. This is obtained as a byproduct of the
computation in step 2. That computation also establishes for each machine

(1) the instant of arrival at the buffer of machine j of the

first part of the (2+1)-st minimal part set to be

processed by machine j, say aj,
(ii) the state of the buffer, i.e., the number of parts,

and their type and order, waiting at time aj.

Now suppose that it is possible to arrange a pre-processing phase in

the system prior to applying the periodic loading sequence at time

-27 -

t1 = 0, so that the buffer of machine j has the state at time aj - ay which
it would reach at time aj if the sequence were applied to an empty system.
In that case, the system will settle down to a periodic steady state
immediately after the pre-processing stage, and the output satisfies the
production ratio constraints from the instant at which the first minimal
part set is completed.

The heuristic described above is currently being developed in detail;
The important features needed will be a fast procedure for computing the
steady-state response to a periodic loading sequence (step 2), and (in
step 3) effective rules for changing a schedule so as to reduce peak
buffer requirements. fThe latter may well turn out to be less difficult
than might be expected, at least for systems in which a reasonable amount

of buffer capacity is available.

4.3 Conclusions

The system described in this report is the first step of an attempt
to find out whether on-line production control in a flexible manufacturing
system using deterministic scheduling theory is likely to be useful and
computationally feasible. The current literature on flowshop and jobshop
scheduling is certainly not encouraging: even in problems of moderate
size, the minimization of total processing time for a fixed set of jobs
is shown to require substantial computational resources.

The present study has examined a reformulation of the traditional
scheduling goals, arguing that for the case of reasonably long production
runs, schedules which quickly yield a maximum steady-state production rate
are just as acceptable as those which minimize the total duration of a
production run. At least for the flexible flow-shops considered, it appears
that the reformulation described in Chapter 2 substantially reduces the
computational burden.

The computation of such schedules by an implicit enumeration scheme
was discussed in Chapter 3. The results obtained with a first version of
this algorithm are encouraging. They indicate that in certain types of
flexible flow shops, on-line control of production based on optimal solutions
to deterministic scheduling problems may well be perfectly feasible, and
may yield significant economic benefits. Typical examples of such systems are

networks of N/C machine tools, which have fairly long but quite accurately known

-28-

processing times and are in many cases already equipped with on-line
computer facilities. Of course, the development of effective closed-
loop control algorithms, using deterministic scheduling, requires

much further research; some of the problems to be resolved were outlined
earlier in this Chapter.

More research is also needed on how to extend the ideas presented
here to systems other than flexible flow shops. Even in the case of
an FFS, the formulation of the scheduling problem used here may not
be the most natural or simple. An example might be a system having
several identical mdchines. The requirement of the present model,
that parts following different machine routes must be of different type,
can then lead to an unduly large number of part types (many of them
artifically different) and a large minimal part set. For such systems,
a scheduling model is required which allows for alterative machine
routes in a more direct fashion.

In an FFS, the part routes must be compatible with the actual
sequence of machines. 1In a general flexible manufacturing system,
arbitrary part routes are possible; a simple example is a set of machines
connected by a loop conveyor. In such systems, the computation of
optimal schedules (as defined here) is likely to be much more difficult.
It is hard to see how the fairly simple algorithm of Chapter 3 can be
extended to allow arbitrary routing of parts. A more promising approach
might be to develop a heuristic scheduling procedure along the lines
of the algorithm in Section 4.2. As a first step in this direction
it will be necessary to generalize the theorem in Chapter 2 to systems

which permit arbitrary part routes.

-29-~

APPENDIX

A FORTRAN PROGRAM FOR COMPUTING

OPTIMAL FFS SCHEDULES

-30-

Al: 1ist of Parameters and Variables

(CPS = current partial schedule)

Input data:
K X
M M
TRTIME (I,J) .
i]
‘4
JOBNO (I) n.
. i
JOBTIM J
OBTIM(I,J) Py

MAXNOD

Parameters defined from input data:

N N
MACH (T)

JOBRTE (I,L)
PERIOD T
MAXPRT (J)

CRSPR(I)

OTAKE (J, I)

REACH(I,J)

Variables

REMJOB (I)

SLACK (J) U(k,3)

no of machines
no of part types

travel time from machine i to entry
buffer of machine j.

no of parts of type i in a minimal
part set

processing time of a part of type i
on machine j.

maximum no of partial schedules
examined for possible continuation
before search is terminated.

no of parts in an MPS

no of machines visited by part of type
i

index of machine visited by a part of
type i for its L-th operation.

time required to process MPS on bottle-
neck machine without idle time.

no of parts in the MPS which must be
processed on machine J.

no of part types from which a crossed
pair can be formed with a part of
type i

index of i-th part type which can form
a crossed pair with, or overtake, a part
of type J

minimum time in which some part in the
MPS can reach machine J after its
arrival at machine i

no of parts of type i not included in
the CPS (initially, REMJOB(I) = JOBNO(I))

amount of permissible idle time on
machine J not yet used up by the CPS.

-31-

Program Symbol used

Label in text Description

LEVEL k no of parts in the CPS (=depth of search

tree). If LEVEL = N, search terminates;
an optimal schedule has been found.

PPERM (L) O2 index of part type of %-th part in the

cps (L =1,2,...LEVEL)

XPERM (L) =1 if 2-th part in the CPS either over-
takes its successor or is overtaken
by its predecessor

=0 otherwise

NCOUNT - no of nodes (partial schedules) in search

tree examined so far

BIGLEV no of parts in largest feasible partial

schedule found so far

MCPART (J) no of parts processed by machine J in

the CPS

MSCHED(I,J) index of part type of the i~th part

processed by machine J in the CPS.

START(I,J) time at which machine J begins processing

its i-th part in the current partial
schedule

FINISH(I,J) time at which machine J completes its

i-th part in the CPS.

BUFF(I,J) = if the i-th part visiting machine J

in the CPS has to wait in the entry
buffer of machine J
= 0 otherwise
NODE (L, I) = -1 if it has been discovered that the

partial schedule {PPERM(1),...PPERM(L),I}
is not feasible (1<I<M) because either
all parts of type I in the MPS are
already included in the first L parts or
because the earliest possible addition
of I uses up more idle time on some
machine than is left in a schedule
starting with {PPERM(1),...PPERM(L)},

or because all feasible continuations of
TPPERM(1),...PPERM(L),I} have been found
to have no feasible continuations them-
selves. Thus NODE stores the search tree.
If NODE (1,I) = -1 for all 1=1,2,...M,
the search is complete; an optimal
schedule does not exist.

L= 0 otherwise

-32-

Program Symbol used
Label in text

Description

TLAST (J) Cc(k,3)

WLAST (J)

STRTL (J)

FINL (J)

STRT2 (J)

FIN2 (J)

J1 k41

J2

time at which machine J completes
the last operation in the CPS.

length of last operation on machine
J in the CPS.

tentative starting time on machine
J of a possible continuation J1
of the CPS

tentative finishing time on machine
J of a possible continuation J1 of
the CPS

tentative starting time on machine

J of part J2 in a possible continu-
ation of the CPS by a crossed pair

Jl, 32

tentative finishing time on machine
J of part J2 in a possible continu-
ation of the CPS by a crossed pair
J1l, J2

part type of possible continuation
of the CPS

part type of possible continuation
of the CPS by a 'crossed pair
Jl, J2

-33-

A2: Listing of Fortran Program

~
3

1

-34-

RELTAS™ 2.0 YAIN DATE = 79017 15,76 /17

Ao NnNAAcTNaanncn 0NN ANOnn0n0ncana

c
C

#% PLRYXTBLE FLOYSHOP - VERSION 2 *%*
WRITT=N pY: ¥, L. IIT7T7 J9TY 1978

PR2GRAM HS®S AN IMPLICIT ENTM¥RATION TO SEARCH FOR A SATURATED SCH,DULV
FOR STT@ADY -3TAT.S PPOLUCTION TN A FLOWSHOP OF AT MCST K = 9 MACHINES WITH
(1) FIXLD TEAVRL TIMZS BFTHERN MACHTINES(INCL ONE TIME STEP IN ENTRY
REFTSR OF TAUCH MACHINF EXCEPT TIL FIKST)
(?2) SINGLE-DPOSITION “NTRY BUFFIRS
(3) PY-PASS CONVEYOKXS AT ALL MACHINES EYCEPT THE FIFST AND LAST
(WHICH AT E LOADIMNG AND UNLOADING STATIONS VISITED BY ALL PARTS)

THEI % AFE UP TO M=9 ITEM TYPES TO BF PROCESSED, EACH WITH JOBYUO(I) PARTS
IN A 'MINTMAL.RART SET' (MPS) : A SMALLEST SET OF INTEGER PART NUMBERS
WHICH SATISFIES THT SPECIFIED PEODUCTION RATTIOS,.

THY TOTAL NO OF ITENS IN AN MPS MUST NOT EXCEED 99

4 SATORATED SCHEDUTLE IS ONE WHICH PROCESSES THE MPS WITHOUT IDLE TINE
ON ™H7T ROTTLY¥NFCK MACHINT(S) AND WITHIN A TIME 3N ALL OTHER MACUINES
LES5 THAY OF EQUAL TO THAT REQUIRED ON THE BOTTLENECK NMACHINE. 1OREOVER,
TH® FIPST ITIM IN A SATUPATED SCHEDULE DOES NOT %AIT IN ANY INPUT
BUF® ZF TONGTEF THAN THE MANDATOFY ONE TIME STEP.
IF F@PRATEND CVER AND OVER, A SATURATED SCHEDULE THUS GIVES MAXTIAUY
STHADY-3TATE QUT2IT, AS WELL AS A DEADBLAT IRANSIENT EESPONSE:
THT NPT TS PRRINNIC FPOM THE INSTANT AT WHICH THE FIIST PART LEAVES
TH™ SYSIt™v.
THT FOLLOS ING LIMITATIONS ADPPTY 70 THT SCHEDULES GENFRATED:
(1) “ACTT ITRY CAY CVATTAYS (AND PEFHAPS 525 ASAIN OVEFTAKIN BY) AT
MOST O™ OTHTE PIECTF, OVERTAKING CAN OCCUR ONLY WHEN BY-PASSING
A MACHIMNE; ATL BI¥FEPS ASE SINGLE-POSITICN AND FIFO. ’
(2) TiiT PTOGRNAM DOES NOT CHECK FOR P0SSIBLE CLASHES ON THE CIONVEYOR
AN A PART TLAVIS A MACHINE. HOWEVER, IT WILL AVOID STMILTANEQOIS
APRIVALS AT A MACHINT.
TF 2 SATITATED SCHETILE, PESTRICTED AS DESCRIBEID, DOES NOT EXIST OFR IS NOT
TOoUT AVTF“ GEN "EATING ﬂ\YWWD NODH=S I N THZ S=ARCH ThFE, THL LARSEST
SATIFATAN PAEFTIAL SCHEDULF FOUND TS PRINTED.

IMPLTICTT INTEGFT (A-7)

REAL L AT®,XR

LOGICAL [FSC,CROSS, TFST

COMMON//¥ , M, BIGTFY K RMI0B (9) ,MCPABT(9), MAXPRT(9), SLACK (9),
1 MAZH(9) ,CFESPR(9),0TAKE(9,9) ,REACH(9,9),J0BTIN (9,9) ,TRTINE(9,9),
2J0RPTL(G,9) ,FINT (G),FIN2 (%) ,STRTY (9) ,STR™2(3),START(99,9),FINISH (
399,9),8”??(99,9),PP“DW(QQ),XPFR“(99),LODE(°Q 9) ,TLAST (9) ,WIAST (9),
4 MSCH2oD(99,%),SRUTF (46,3%) ,SSTAPRT (99,9) ,5FI¥ (99,9) ,SCHED(99,9),
S SEAWT (9),59DPEFR (99)

DTMIHSIOY FAND(%“) ,NPAET (9) ,MSCHED (520,9) ,NBUFF(500,4) ,J0BNO(9)
NRTAD=S :

AW 2T m=6

DATA INPUT: K, ™, MAYVCD; TRTIXF; JOBNO; JOBTIM. DATA CARDS SHOULD BE FOLLOWED

T e e

-35-

51 RETRASE 2,7 MAIN DATE = 79717

BRY BRLANK CARDP IO SIACEFUL STCP.

QO

1 SEAD (NPHAD, M) ¥, M, MAXNOD
IF (K.59. 0) CALL =X IT
€ 1=% -1
Do 19 TR=1,K1
LT=LE+] -
10 2 ¥AD(IDPTAD,90D) (TR TIXP (IR ,J) ,IJ=LT ,K)
READ (NPEAD, 90 Y) (JOBXNO () ,1=1,H)
DO 21 LP=1,H _
29 RFAD (¥READ,D09) (JOBTTH (LR,J) ,I=1,X)
900 FORMAT(1CIS)
c

‘e
C DEFTNE PFORLFM PARAMFTERS: ¥,REMJOB,.JOBRTE,MACH,PERIOD,SLACK ,MAXPRT,CRSPR,

C OTAKE, REACH
c
‘ =0
D0 30 I=1,M
BREAJOB(I) =JOBNO (I)
H=2 +JOBNO (I)
L="
no 32 J=1,%
IF (JOBTIN(T,J) .EQ.D) GO TO 32
L=1+1
JORRTE(T,L)=J
32 s oNTT T
30 MACT (T) =1

P RT AN =9
no 34 HMC=1,%
STACK (MC) =*
MAXPRT (1C) =0
N0 36 PRT=1,M
TR(IVRTTH(PFT, %C) . 50.0) GO TO 36

STACK {¥C)=SLACK (¥T) +JOBNO(PRT) *JOBTI M {PRT, NC)

MAX PP (MC) =M AKX PRT(MC) +JO DO (PET)
36 CONTIKNUF
TF(SLACK (MC) .GT. PERTOD) PERIOD=SLACK (4C)
34 CONTINUE
D0 37 MT=1,K
37 SLACK(MC)=PTRIND=-SLACK (MC)

DO AC T=1,M4
CrsPE (I)=0
nO RO J=1,H

60 OTAKI(J,T) =0

no A2 J1=1,%
NT=MACH (J1) 21
STRT1(1) =9
PTN1(1) =10B™11(J1, 1)
PO 63 I=1,uT .
MC=JN3RTF (J1,1)

15/06/17

 erepemsims oo s 0 s v s 8

-36-

31 RILIAST 2.9 MATN DATE = 79117

MCK=JORPTE (11, T+ 1)
STET1(MCY) =FTN 1(MC) +TRTT MT(NC, MCH)
FINT(ACH) TSTET 1(ACN) +JOBTIY (J1, 4CH)
f3 SONTTIIE
L =0
no 64 J2=1,H
TR(J2.50.01) GO TO 64
NT=HMACH (J2) =1
STET2() =FIN1(1)
RTE2 (1) =JCETIM (J2,1) #STRT2 (1)
nO 66 I=1,NT :
MC=JOBITF (J2,1)
MCN=JOBRTE(J2,T+1)
STRT2 (NCN)="T¥2(1C) + TRTIME (MC, HCN)
FIN? (HCN)=STRT? (MCY) +JOBTIHN(J2, 4CN) -
IF(JOBTIM (T1,4CH) .EQ.0) GO TO 66
IF (STRT2 (MCH) .GE.STRT1 (MCN))GO TO 68
L=L+1
NTAK R (J1,1) =J2
GO TO 64
69 IF(STPT2 (NCN).GE.FIN1T (MCN)) GO TO 66
STRT2 (KCN) =FI N1 (MCH)
FTN2(MCN) =STIT2 (MCN) +JOBTIN (J2,MCN)
66 CONTINUE
al CONTTVUE
CRSPE (J1) =1
A2 CONT INUR

noo70 1=1,K1
I1=T+1
po 79 J3=11,K
78 RFACH(I,Jd)=1C200

ne Af 1=1,171
Do R2 TYPS=1,M
I1=1I+1 .
TIMZ=JOBTTIY(TYPE,I)
IT(TIME.PC.N)30 TO 82
vyCl=1
no &4 J=11,K
TRD=JONTIM (TYPE,J)
TP(THP,20.7)GO TO 34
TTAFP=TIMT+TETTIVE (MCL,J)
IF (TTME.TT.REACH (I, J)) REACH (I,J) =TIME
TIAZ=T1IMT+THP
MCL=.T
en CONTINUZR
22 CONTTEULD
80 CONTINIF
<
C OUTPIT PLDOBIEM DATA
C
no 72 1=1,%

15/C5 /17

-37-

351 RRIFASE 2,0 MALIN DATE = 79317 15/86 /17

72 RAND(I)=I
WP IT Y (NWETIT,992) K .
902 FTORMAT™(1HT, 'PROTILH DATALY 1HY,5X, N0 GF MACHTNES:!' ,I2)
T1=%-1
JRIPT(NRFI™, 9°4) (RPAND(I) ,I=1,K1)
a4 FORMAT (T ,5%X, ' TEAVEL TIMES RETWEEN MACHINES:',15X,'FROY /14
1™, 00 1K, 8I4)
WETTE(NYITIT,S)5)
QN5 ¥OPMAT (1H)
0N 74 T=2,K
I1=1-1
74 WPITE(NWFIT,9%6)I, (TRTI®S(L,I),L=1,11)
ang FOPMAT(IH ,40X,I2,1X,°PT4)
ARITF (NWFIT4978) M, (RAND(I) ,I=1,K)
a0f FOFXAT(IF ,5X,'0C OF ITEM TYPES:',I2/1i0,22X,'ITEM TYPE',ux,
1'NO REQD',3X,'!'DRCC. TIMES ON HC'/1H ,43X,8I4/)
WRITF(MURIT, 305)
no 76 I=1,M
76 WRITZ(WFIT,9103)1,J0BNC(I), (JOBTIM(I,J),Jd=1,K)
910 FORMAT (1H ,27X,I1,9%,I2,4%X,814)
YRITE (NWERIT,915) PEFTODR, (SLACK (1) ,-J=1,K)
615 TORMAT(1HC,16X,'PERIOD =' ,I4,6X,' SLACK(J) ', 1X,8L4)
WRTTE (MW PIT,911)
a11 FOPMAT(1FQ,'ITEM TYPT CRSPR OTAKE')
90 26 pPRT=1,M
T1=Cr&PY (PRT)
36 WETTT(NYEIT,912)PRT,I 1, (DTAKF(PRT,L) ,L=1,1I1)
912 FCTMAT(1E ,T16,18,4%X,912)
YRTTF(NETIT,917)
17 TARAAT (IR, YPTACH (MC,MCY) 1Y)
no 8k #c=1, K1
MC 1=YC+ 1
A8 HETTE(AWIIT,O16) (D EACH (MC,MCN) ,MCN=HMC1,K)
916 FORMAT (1 ,014)

’

THITTATI?Y, S¥AFCH

aan

nn o4t pe=1,N i
pPPERM (PC) =0
¥ PERM (PC) =9
DO 42 MC=1,K
MSCHTM (PC, HC) ="
STAPT (PC,¥C)=0
¥TFTSH (PC,NC) ="
RUFF (2C,MC)=0
42 CON™INUF
DO 40 PRT=1,M
NODE (PC,PIT) =0
4" CONTINI®
DO B4 MC=1,K
TIAST (M) =)
JLAST(*C) =0
$TRTT (MC) =9

-38-

1 RELTASE 2.7 MAIN DATE = 79017 15,06 /17

]

m g

Mo Pt
MR

—~ v = 3

2

44 NMCPAS

SCCTNT =1
ATGL EV=N
LRVRL=1
J1=1

N

15 CALL NEYXT(J1,72,DESC,CR0OS5S,LEVEL)

O

IF (DESC)GO TO 200
NODE(LEVIL,d1)=-1

FIRST CHOIC® OF NEXT TTEM TYPE, SELECT ONE HMOST IN ARRFARS RELATIVE TO
ONITORY SCHEDULING

aaan
g
o]
3

102 pAT"=2.
TESI=.FAIST.
DO 104 PPT=1,M ,
‘IF (NODF(LEVTI,PRT) .FQ.(=1)) GO TO 104
I T(E2IMI0R(PRT)) 176, 176, 108

106 YOLS(LEVIL,PFT)=~1
50 T 1My
119 TEST=.TP Y,

{t=1.-FLOAT (T TMJOR(PRT)) /FLOAT (JOBNO (PRT))
TF(YF L3TLFATY) GO TO 104
F1=0n6T
RATE=YR
108 CONTINGT

IF(.ZOT.TSTYG0 TG 117
20 114 T=1,"
TE(FTMIOB(I)) 115,115,116
115 NODL(LEV T +1,1)=(-1)
oo™ 1148
11A NCDR (LEVEL #1,I)=9
114 CONT INUTT
G0 T™C 177

c
€ ND CONTINHUA™ION OF T[F CUPRENT PARTIAL SCHEDNULE IS POSSIBLE. IF LEVEL=1,
C STARPCH TS COFPLETF; NG SATURATED SCHEDULE EXISTS. IF IEVEL>?, BACKTEACK IN
C STARCH TFPE™
c
117 TF{I=VEI .F2.1) GC TC 1000
110 LYVRI=LRVEL-1
JP=pPPFERY(LEVFL)
NODT(LEVTL, JT) -1
c
TP(XPESM(LEVFL) .FQ.D)GO TO 112
c

C THT LAST TWO CHAINS IN THE PAPTTAL SCHEDULE FCRM A CROSSED PAIR. BOTH ARE

a8 N Xe}

acao

anann

e X2 Ke!

@

AN oo n

-390~

31 BFITAS®E 2.9 MAT N DATE = 79™17 15/06 /17

REMOVED FLOM ™Y SCHIDULY, 3UT THE RPTIRST IS CHOGSEN AS CANDIDATE FOR A NEW
CONTINOATION SLINCT 1™ MIGH™ EITHTRR DX FFTASIELE BY ITSELF OR CAN BE CROSSED
WITH AN TH TR CHAIN 0T (77T YLIMTNATED

CROSS=, TTUT,

CALL BACKTP (CTOSS,LEVEL)
LRVRL=T"yr L~ 1

J1=DERrPY (TFVET)

GO TO 110

SIMPLE BACKTIACK STIP: ONLY ONT CHAIN IS REMOVED

112 CROSS=.FALSE,
CATT BACKTRCROSS, LEVEL)
GO TO 172

CHATN J1, OR, I® CROSS=TRUE, THE PAIR OF CRISSED CHAINS (J1,J2), PORY A
FEASIBLE CONTINUATICN OF THF PARTIAL SCHEDULE
290 (CRGSS) GO TO 202
FRM (LEVEL) =J1
TR M(TEVEL) =0
VAL=LEVIL+1
G0 TQ 27U
202 POERY(I EVFL) =d1
PPTRY (LTVYEL+ 1) =J2
YPTRA(IFVFEL) =1
KPR (ITVELH1) =1
TEYPL=T7VEL+ 2 .
294 CAIT RSCND(J1,J2,CL0SS,LEVEL)

IF
PP
XP
LE

T7S™ IF GCPTIMAL SOLUTION UAS PRZFN FOUND
IP(LFVTL.GT.N) G ™0 2079

NCOUNT =MCOUNT +1)
TR{NCOTYT.GT,MAYNOD) GC TO 3290

SFATRCH IS YOT ZONPLETT. BFTORE ATTEUPTING THE DETAILED CALCULATIONS OF
SEARTCHING #0F A PPASTSLE CONTINUATION CHAIN, CHECK WHETHER IN THE CURRENT
PARTIAL SCH~DUL®, TACH ¥YACHINE CAN BE REACHLD BY AT LLAST ONFE PART TYPE
(NOT VLT TYLJY SCHEDULLD), FFOM THL IMMEDIATELY PRICEDPING MACHINE FOR THAT
PAR™, WITHOUT RYXCTEDING THF REMAINING AVAILABLE TDLE TIME. IF NOT, THE
PAFTIATL SCHFLUIS CAMNOT [[AVE A SATUEATED COKNT INUATION; BACKTRACK IN SEAKCH
TRTE (STMNT 110)

DO 210 1CK=2,K
IF{(“CPART (MCX) SQ.MAXPRT (MCN)) .OP. (TLAST (MCN) .E3.0)) GO TO 210
Do 212 PRT=1,H
TH ((JOBTIM(PR™,NCN) .EQ.D) .OR.(KEXJOB(PRT).EQ.0)) GO TO 212
MC=MCY~1
215 mMP=JOBTIM (PRT,NC)
IF(TYP.GT.7) GO TO 214

;1

-40-~

KRILUAST 2.0 MA T DATE = 79017 15/06 /17
c
SUBFOUTTNE NRKT(J1,02,TFST, CEOSS ,LFVIL)
c
€ SURNY™TYT TERTS NHOTHLE TEL CUPRENT PARTTAL PSRMUTATION (CPP):
c <PPETM (1), .. PP EiM (LEVET)>
C HAS FRASTHLY SATURATSD CONTINUATIONS, OF THI FOEMS
c <PPTPM (1),PPESM (LEVEL) ,J1,J2> (1)
C WHHET 11 AMD J2 FORF A 'CFOSSED PAIR', OR
c <PPREF (1) ,...PPEPY (LEVFL) ,J1> (B)
C WwHPeT J1 IS ADOSD TO CPP BY ITSSLF. GIVEN J1, THE EOQUTINE PIRST ATTEMPTS
C TN TIND J2 SUCH THAT (A) TS FFASTBLE. IF SUCCESSFUL, IT RETUPNS TEST=.T.,
C CROSS=.T., J2 AND THF APPROPRIATE STARTING AND FINISHING TIX¥®S OF CHAINS
C J1 AND J2 ON THE VARIOUS FMACHINAS IN ARKAYS STRT1,FIN1,STRT2,FIN2.
C IF Y0 J2 FEXISTS,FOR WHICH (A) IS FEASIBLE, THE ROUTINE TESTS WHE THER
C (B) TS FFALSIBLE; IF SO,IT RETURNS TEST=.T., CROSS=.F. AND THE STARTING
C AND FINISHING TIMES OF CHAIN J1 IN STRT1,FIN1. IF NEITHER (A) NOR (B)
C ARE FEASIDL®, POUTINE RETURNS TUST=.F.
c
o
IMPLIC T INUTEGEER (A-2)
LOGICA, TEST,CEDSS ,
COMMON, /K ,M,BIGLEV, REMJOB(9) ,MCPART (9) ,¥ AXPET (9) ,SLACK (9),
1 MACH{9) ,CF3PP (%) ,0TAKE (9,9) ,FFACH (@ ,9) ,JOBTIN (9,%),TRTINE(9,9),
2JORE™F (9,9}, FIN1(9), FIN2(9),STRT1(9) ,STFT2(9) ,STAFT (99,9), INISH (
304q,%) ,BUTT (96 ,6) ,PDEEX (39) ,YPERY (99) ,NCLE (99,9) ,TLAST (9) ,WLAST(9),
It 4§THTN(9¢,5) ,SEUFF(99,9) , SSTART (99, 9),SFTIN(99,9) ,SCHED (99,3),
S SPAFT (), SPPEE (39)
DTYTNS IOX GAP (9)
c
C DETUPMINT IT THIFT IS A CHATY J2 WHICH OVEETAKES J1
c
IT(CRSPR(JIT %Q.) GO TO 137
JXM= CESPFR{J1)
127 nn 120 Jx=1,J0M
J2=0TAKE (J1,dX)
IF(NOPT (LY 2I+1,J2) L EQ.(-1)) GO TO 120
IT(PEMIDG(I2) .GT.0) GO TO 200
NONF(LEY RL+1,J2) = (~1)
12° coumTAnE
c
C CHAIN J1 CANYO™ BFE PAIKED WIT™H AN OVERTAKING CHAIN; TEST WHLTHER J1 CAN BE
C JOTINED T PAPTIAL SCHEDULE BY ITSELF
c

13° g2="
20) DO 101 T=1,K
STR™ (1) =9
FINT(T) =0
STRT2(I)=0
FIN2(T) ="
191 GAP(T) =1
STPT1(1) =TLAST ()
199 PTN1(1)=STETI1 (1) +JOBTTY (J1,1)
IF (J2.50.7)1G0 T0 197 .

-41-

531 RULEAS® 2.0 MAIN DATE = 79117 15/°5 /17

C=MC-1
Go ™o 218
214 TR((TLAST(MC) +TY P+ TRTIMF (MC, MCN) =TLAST {4CN)). LE.SLACK (MCH))
1 GO M 21
212 CONTINOPR
S0 7O 111
213 CoNTINOn
GO e 1N 2

onTPUT™ RCUTINT

ana

1000 WRTTFP(NWFIT,G1Q)NCOUNT
919 FORMAT (1H0O,?' NO SATURATED SCHEDILE EXISTS'/1H ,I4,' NODES WERE GEN
1EPATED?) s
1001 WRITK (MWPFIT,927°)BIGLLV, (SPPER(J) ,J=1,BIGLEV)
920 FOFMAT(1HO,' LONGEST SATURATED PARTIAL SCHEDULE HAS',IS,! ITEMS: '/
110 ,4073))
N1=BIGLAEV
no 102 J1=1, N1
PPERM(.T) =SPPER (J)
DO 1772 1I=1,K
STAPT(J,I)=SSTAFT (J,I)
NP (J,1) =SRUFF(J,I)
MSCHED(J,T)=SCUFD (J,T)
1012 WINISH (J,T)=SFIN(T,I)
20 1974 I=1,K
13748 4CPART (I)=SPALKT (1)
GO T 2210

2000 ARTTT (MITT™,INT)NCOUNT
240 TOPMAT(IHON, Y STEAFCH EXCEZEDS MAXIMUM NODE COUNT NF*,15)
LFVRL=LPVEL=~1
TR(RIGLEV.3T.LEVEL)GC TO 1091
WRIT® (NWEIT,929) LTV EL, (PPFRY(T) ,J=1, LEVFL)
H1=L7VIT
50 TO 2010

2007 N1=Y
COWRITT(MURIT,922) NCOUNT, (PPRRM(T) ,J=1,N) .
722 SORMAT (1HJ,' PIPST OPTIMAL SCUEDIJLE FOUKD AFTER GENLRATING',IS,
1t NOD®S:'/1H0,40I3)
c
2317 NLAST="TNISH (N1,K)
nNo 2920 MC=1,K
Do 2012 TYPR=1,M4
2012 NPAFT(TYPE)=0
DO 2514 TIM=1,HLAST
MSCH ™D (TIM,MC) =0
2014 NBUFF (TIM,MC)=0
LTA=1CPAL T(XC)
no 2016 PRT=1,LIM
TV PF=MSCHFD (PRT,MC)
NPAFT (TYPF)=NPART (TY?T) +1

51

2TLFAS®

20148

2614
2014
2929
2039
Q1)
932

2032
934

-42-

MALN DATL = 79217

X=1)" #7Y RN PART (TYPR)
ATK=STALT(PT T, MC)+ 1
YAY=TTHIS L (PPT, MC)

DD 2718 TT#=TN, *AX
NSCHAN (" THM, M0) =X
IP(MC.ED. 1) GO TO 2316
IF (BUTF (217,). 50.0)60 TO 2116
MAX=START(PLT, NC)
YTN=MAK~-30FF (PTT,4C) +1
DO 2719 TI¥=MIN,HUAX
NRBUF® (TIM,%C)=X

CONTINU R

CONTINUE

‘e

Do 2737 I=1,K

RAND(I) =1

WRITFE (NWEIT,939) (FAND(I) ,T=1,K)
FORAAT{150,12%, ' TINE' ,8(7X, ' MC', I 1))
YRITE (MURT™,932)

FORMAT (1110)

DO 2732 T=1,NLAST
WRTTE(NWEIT,"34) I, (NBUFF (I,J),NSCHED (I ,J) ,J=1,K)
FORYAT(1H ,12X,73,3X,8(3X,13,1X,13))
50 70 1

aun

15/06/17

.
b

1

PRLIASF

e NeNe!

e}

aaan

199

197

201

2.0 NEXT

STRU2(1) =FTA(Y)

-43-

DATE = 79017

BIN2(1)=STIT2(1) vJGLTIM(.I2, 1)

Cr0SS = (FALSE,
Mir=1
M2L=1

DO 999 MCN=2,K
MMC="CPART (1CN)

TJOBI=INRT LM (J1, MCN)
IF(J2.6T.9)GC T 201
I¥ (TJCB1) 999,999,203
TJOBR2=JOBTIN(J2,1CH)

[F(TIOB14GT.C)GO TO 202
IF!TICR2.EQ.0)GO TO 999

CYLY CUMNIN J2 VISTTS MACHINE ¥CHN

214

20
234

232

IP(TTAST (MCN) . 20.7) GO TO 204

GAF(MCN) =FIN2(42L) + TRTTME (M2L, 1CN) =TLAST (ACN)

IP (GAD (MCN) .GT.N) GO ™0 206
DIF™=TARS (5AP(MCN)) -WLAST (MCN)
IF(DIFF.LT.0)GO TO 208
TF(BOFR(NMC,%CN) . E0.2) GO TO 219
IF(NITF.T0.J) GO ™0 218

STET2 (1) =STRT2(1) +DTFP

GAP (1) =GAP (1) #DIFF
GC ™0 214

STET2 (1) =STPT2 (1) #1+4DIFF

GAD (1)=GADP (1) + 14DT FF

IT(5AP (1) =STACK (1)) 199,199,290

IF (3AP(¥CY) .G ™ SLACK (MCN)) GO TO 299
STET2 (YCN)=FIN2 (M2L) +#TETIME (42L,4CH)

T0 ™0 216

ST T2 (MCN) =TLAST (4 CY)
FIND (XCN) =STRT2 (MCH) +TJOB2

M2L=MCK
G0 ™0 999

IF(TICR2.6T.0) GO T2 210

ONLY CHAIN J1 VISITS MCN

203

232

IF (TLAST (M7Y4) LFQ.0) GO TO 224

GAP(MCYE) =FTM1(M1L) + TRTIME (M 1L, 1CN) ~TLAST (MCYN)

TF (GAP (MCY) .GT.N) GO TO 226
DIFT=IATS (GAP(MCN)) -KLAST (MCY)
IF(DIFF.LT.Q)GC TO 229

1 F (BUFF (NMC,MCN).EQ.7) GO TO 239
TR (NTFF.LQ.N)GN TO 228
STRT1({1)=S™FT1(1) +DIFF

FAP (1) =5AP (1) +DIFF -

15,05 /17

1

RELIASE 2.7 NEXT DATE = 79217
GO T 23U
230 STPT1(1) =577 1(1) + 1+#DIFF
GAP(1)=6AP (1) #1+DT7" .
234 TF(GAP (1) -SLACK (1)) 198, 198, 29"
c
226 TF(SAD (MCN) JGTLSLACK(ICN))GO 70 299
224 STRTT(MON)=FITN1(M1L) ¢+ TRTIND (M 1L, CN)
GL TO 236 .
228 STRT1 (MCN) =TLAST("CYN)
236 TINT(ECH)Y=STITT (MCN)+TJOBR
ML =NCN
50 7O G9Aa
C
C CHAINS J1 AND 173 ARF DOTH PPOCESSED ON MACHINE MCN
C
300 STRT1 (MCN)=FIK1 (M1L) +TRTIME(MIL, NCN)
FINT(MIN) =STETT(4CN) +TIJOR1
STRT2 (MCN)=FIN2 (M2 1) +TRTIME (M2L,H4CN)
PIN2(MCN) =STIT2(MCN) +TJ082
o
IF{STRT2 (KCN) .GE.STRT1(MCN))GO TO 400
C
C CHAIY J2 REZACH™S MACHINT MCN BEFORE J1
C
CPNSS=,TENR,
TFE(STNTT (4CH) oGE.TIAST(MCN))GO TO 302
C
C 327 2 AND 71 APSIVE AT MCN RFFORE TILAST(MCN). SINCE ONLY ONE 3UFFER
C BOSITICY TS AVAILARLE, LCADING OF J1 MUST BF DELAYED.
o
SETFT=TLAST(MCY)=STRTT(MCN)
STETY (1) =STET1 (1) +SHITT
AP (1) =GAP (1) +SHIFT
TS(GAP (1) -SLACK (1)) 198,158,290
C
3°2 IF(STET2(MCN).GF, TLAST(MCN))GO TO 312
C ' .
C J2 ARPIVFS BFEFORE, AND J1 A™ OR AFTER TLAST(MCN)
c
DYT®=TIAST (MCN) =STFT2 (MC¥)-WLAST (MCN)
IF(DPIFF.L™.0)G0 70 34
I F(BTFP(N1C, NCY).TQ.?) GO TO 210
IF(DIFF.GT.D)GO 70 212
3 STRT2 (MCN) =TLAST{MCN)
FIN2(MCY)=TLAST (*“CXK) +T.JOB2
c
C BOTH J2 AND J1 APRIVE AFTER TLAST
c

-44-

212 DIFF=STFT1(MCN) ~FIN2 (1CN)
IF(DTFF.GL.D)GC ™0 314
STRT1 (M2 Y) =FT N2 (MCN)
TIN1(XCK)=5TETT (CN) +TJO B
314 TF(TIAST (MCN) J3T.Y)G0 TO 318

15/06/17

0 anoan ann

AN

aanN

-45-

ALTASE 2.0 NTXT DATRE = 79017

3AP(MCY) =DTFR
GO TO 310

318 SAP (MO M) =STETT(MCYN) - TLAST (MCH) -TI0B2
319 IF (AT (MCN) .G™.STACK(MCN))GC TOC 290
M11,=MCN
MP2L=MCN

S0 TO 999
u4on TF(STPT2 (MCA) JGT.STETT(HCN))GO TO 401
STRT2(1) =STRT2(1) +1
GAP(1)=GAP (1) +1
IF(GAP(1)~SLACK (1)) 199,199, 290
e
CHATN J1 RTACHES MACHINE MCN BEFORE J2

401 TF(STLT2 {(MCN) .GF.TLAST (MCN))GO TO 402

nO™H J1 AND J2 ARRIVF AT MACHINE MCY BEFORE TLAST (HMCN).

SINCE

15/06 /17

BUFFLR POSITICX IS AVAIILABLE, LOADING OF J2 MUST BE DELAYED.

SHT ®T=TLAST (¥ CN) ~STRT2 (MCN)
STET2 (1) =STET2 (1) +SHIFT
SAP(1)=GAP(1) +SHIFT

TP (GAP (1) -SLAC¥Y (1))199,199,299

422 TR(STETT{MCM).GE. TLAST (MCN))GO TO 412
J1 MRRIVES BIFORE, AYD J2 AT OK AFTER TLAST (MCN)

DTFF=TLAST(MCY) =STET1(4CN) - HLAST (MCN)
IF(MIFF.LT.0)GO TO 404
IF(BUFF(NMC,MCN) . 2Q.7)GO TO 230
TF(RIFF.GT.O)GO TO 232

nn STETT(MCN) =TLAST(MCN)
TN (YCN)=TLAST (MCN) +TJOBA

ROTH J1 AND J2 AGRIVE AFTIF TILAST {MCN)

512 NTFP=STF™2 (MCK) =F TN 1(4CN)
TF(DIFF.GE.0)GO TO 414
STRT2 (MCN) =FT X 1 (MCN)
TIN2(FCN)=STRT2 (¥CK) +TJO B2

414 IF(TLAST (MCX) .GT.") GO TO 418
GAD (MCY¥) =DIFF
GO TO 419
418 AP (MCY) =STRT2(ACN) ~TLAST (4 CN) -TJOB1
419 TP (3AP(MCYN) .G T. SLACK (®CN)) GO TO 290
MIL=MCN :
¥AL=YCH

399 COXTINUE

CNLY ONE

299

292

2.0

mpam - .
TEST=,TROF,

FETOTN

XFXT

TR(T2.7.0)50 0 292

MODP(LTYTL+1,02) = (-1)

50 TQ 170

TIST=, PAT S%,

RETHTY
OND

-46 -

DATE

79017

15/9% /17

U

1 PTLEASE

~

noaooanNan

ann

Hr
OF
TH®

-47-

2.0 MAIN DATE = 79017 15/76 /17

SUBIOUTIEL DSCNT (J1,52, 07085 ,LEVEL)

S POTTINE TS RLACHFD WHTY INzXT™! HAS DETTRMINFD THAT J1 (IF ZROSS=.F.)
THE CEDSSED PATE 31,32 (I™ CrOSS=.T.) ARK FEASL3LE CONTINUATIONS OF
CPP, THF FOUTINF USZS S™2T1, STRT2,FINT,FIN2 T0O UPDATE APRAYS BUFF,

MCPART, ZFICT, " SCUEL,STA: T ,TINISH ,TLAST ,WLAST ,SLACK; AND SLETS

NOD

2(L*V"L,I), AND NODu(LEV-L+1,1)TIF CROSS=.T,

TAPLICI™ INTEGEP (A-2)
LOGICAL Cross
COMMON//K,%,BLGIEV ,REMIOB(9) ,MCPART(9) ,# AXPRT (9) ,SLACK(9),

1 MACH(9) ,CT §P? (9) ,OTAKF (9,9) ,SEACH (3,9) ,JOBTI¥(9,9), TRTIME(9,9),
2J0BRTE (9,9) ,FINT(9), FIN2 (9) , STRT1(9) , STRT2(9) , START ($9,9) ,FINISH (
399,%),BUPF(99,9) ,PPINK (99) ,XPEPY (99) ,NODE (99,9) ,TLAST (9) ,RTIAST (9) ,
4 MSCHFD(99,9) ,SBUTF(99,9),SSTART(99,9), SFIN(99,9),SCHED (99,9),

5 SPART({9),SPP"R(99)

REMJIOR {J1) =R FHJOB (J1) -1
TF(CPOSS) REMIOB(J2) = REAJOB(J2) =1
N2 J=1,n
IF(RMINB(J).GT.2)GO TO 4
YODE(LEVEL,J)=~1
NODF (LEVEL+1,7)=(~1)
50 ™ 2
NODT(LEV L, J) =9
NODT(TEVEL+1,J) =0
CONTINTE

TE(CFrQSS)GD TO 100

ONLY CHAIN J1 TS5 ADDED TG PARTIAL SCHEDULE

[ae]

NT=M ACH (J1)

MC =1
no 6 I=2,NT
M1L=M4C

MC=JOBPTF (I1,1)

DIFP=TTAST (MC) ~FTN1(N1L) -TRTINE (¥ 1L,¥C)
NMC=MCPAPT(4C) + 1

I7 (DIFF.AT.N)GO TO 8

BUFT(NKC, MC) =0

GO 0 R

RUFF(N4C, MC) =DIFF

6 CONTINUE

DO 17 T=1,N7
¥C=JORFTE (11,1)
T.I03=008T I4 (11, KC)
NMC=MCPART(MC) + 1
MCPAKT (MC) =¥HC
MSCHEM (NMC, MC) =J1
FINTSH(NMC, MC)=F I (4C)

by

QnNan

IASE 2.7 D5CYD

-4 8~

STAR™ (N7 ,MC) =FTH 1(MC) =TJOB
SAP=STAT T (YHC,4C)=TLAST (1C)
TIAST (MC) =FIF1(HC)

STAST(*C) =TI0D

I (MCPART (1C) JGT. 1) STACK(MC) =SLACK(MC) -GA P

1% CONTINT®

pEOIEN

ROTH J1 AND J2 ARF ADDED TO PAFTIAL SCHEDULL.
HPDATTS PUFFER OCCHPANCY
107 MiL=1

M2L=1

DO 110 HC=24K

192

107

170
108

1

NMC=MCPART (AC) +1

T F(JOBTI"(J1,4C).GT.0)GO TO 102
IP(J0BTIv (J2,%C).EQ."NGO TO 110

DIF =TI AST(AC)~-FIN2(12L)~-TRTIME (12L,NC)
M21=M

Go TO 1"8

I =(JOPTIY (J2,4C).GT.0)GO TO 104
DIFF=TLAST (MC) -FIN1(M1L) -TRTIME(M1L,MC)
ML =1C

50 ™0 198

TT(ST™PT2{MC) .I.T.STETT(MC))GO TO 106
DIFF=TLAST (MC)~-FTN1 (M1L)~-TTTINE (H1L,NC)
DTFPI=FTN1(MC) ~FIN2(#2L) ~TETIMR (M 2L,4C)
36 T0 127
ATFF=TIAST (MC) -FIN2(M2L) =TRTIME(42L,NMC)
NTEFI=TTY2(MC) =FINT (41L)-TFTINE (M 1L, 4C)
MIL=4C

H21.=MC

IF(NDIFF1.GT.Q)GO TO 199
JPFPLUMT+ 1, 5%0C) ="

30 70 19w

ANFT (VNI +1,MC) =0T FF1

IR(DTI",.5T.J)6GO0 TO 111

R T (NMC, MC) =0

5 T 11

3NPF (NKC, MC)=DIFF

11" CONTTINUF

non

273 4C=1,X

NEC=MCPAET(MC) + 1

IF (JORTI(J1,MC).GT.N)GO TO 210
TF(JORTI®(J2,HC) . EQ.") GO TO 299

mJCR=JONTIY (J 2, MC)
MCPAPT (MC) =NMC
MGCHTN (AMC, 9C) =32
STAPT(NYC,¥C) =STET2 (1C)
FINTSH (NMC,4C) =FIN2 (MC)
3AP=STRT2 (MC) - TLAST(*C)

DATE = 79017

LOOP FNDING AT

15/06/17

STANT 110

c

Cc

SAST 2

202

204

278

-49-

SCHND DATZ = 79217

TLAST(MC)="1I%2 (AC)
UTAST (1C) =TJCE
S0TY 212

IF(IOTTIM(I2,¥C).GT.7)GO TO 274

T ID3=IORT I (T, MC)

1CPAET(MC) =UNC

MSCH™D (NMC,HC) =01

STNTSH (K:HC, ¥C) =FIN1(1C)

START (NMC,HC) =7 IN1 (MC) =™ TOR
3AP=START (VKC, HC) = TLAST(1C)
TLAST (MC) =F IN1 (MC)

TIAST (MR =TJICB

IF (MCPART (#C) .GT.1) STACK (MC)=SLACK (MC) -GAP
GG T 20N

ACPAR™ (MC) = N¥C +1
IF{STFT2(%C).LT. STET1(4C)) GO TO 206

7JOB=JOB™T ¥ (J 2, MC)

A SCHAB(NYC,MC) =J1

MSCHRD (1MC+HT, MC) =T 2
START(%4C,4C) =FINT (1C) -JO BT IN (J1, HC)
PINVISH{NYC,NC) =FT¥1(4C)

START (R4 C+1,FC) =5TE T2 (MC)

FINTS I (NIC+T,HC) =F TN2 (%C)

AAP=FIN? (MC) = TLAST (4C) = TJOB=JO BTIN (J1, KC)
PTAST (MC) =T IN2 {4C)

FLAST (MC) =TJICB .

TP (ACPAIT (3C) L R0.2) GAP=STET2 (MC)-FIN1 (MC)
GO TO 20

T30 8=JOB™ IM (J1, MC)

MSCHER (NMC, MC) =02

4 SCHED(NMCHT,%C)=T1

START (NHZ ,"C)=STRT2(4C)
TIMISH(NMC,MC)=FIN2 ("C)

TINTSH (NYC+1,MC) =FTN1(4C)

STAT T(¥MC+1,1C) =FIN1(4C)~TJOB

GAP=TTX1 (MC)-TLAS™ (4C) =TJOB=-JONTI M{J2, HC)
TIAST (¥C) =FIK 1(XC)

WYAST (MC)=T.J0D

I F(CPATRT(MC) .EQ. 2) GA2=STRT1(MC)-FIN2 (MC)

SLACY (MC) =5LACK (MC) =G AP

200 CONTINTFR
RFTI RN
ENC

15/06/17

1

-50~

PELTAST 2.9 MATIN DATE = 79717 15,06 /17

]

A0 n

o]

nan

SUpReuTING BACKTF (CRCGSS ,LEVEL)

THTS UOJTINT TS RRACPED WHFY SUBFOUTINKE 'NEXTY EFTUNNS TFEST=.F.,IL #HEN
CoP <PPYPM (1), e« JOPFFHN (LEVIL)> HAS NO FEASILLE SATUEATED CONTINUATION.
TP LFVYRLOBRTSLIV, CPP IS STORUD IN APPAYS SPART, SPPLUF,SDUFF,SSTART,SFIN,
SCH"L AML LEVEL FIPLACES THY PFRVTCUS VAINLGE OF RIGLEV.

T koSS =, T, , ROUTINY DELETZS PPPERM(L®VIEL) FROM THE CPP AND UPDATES
AERAYS MCPAPT,RIMJIOB, TLAST,YLAST ,SLACK. IF CR0SS=.T., KCUTINE DILETES
BOT™TT PPREEM(LEVEL) AND PPERM(LEVEL-1) AND UPDATES THE SAME ARRAYS.

TMPLIZIT™ INTEGER (A-2)
LOGICAL CEJSS
TOMMON//K,%,BIGIFV,REMIOB (9) ,MCPART(9), % AXPRT(9) ,SLACK(9),
1 MACH(9) ,CRSPF (%) ,OTAKE(9,9) ,ESACH (0,°) ,JOBTI%(9,9),TRTIME(9,9),
2.J0R2TE (9,6) , FIN1{9), ®IN2 (9),STRT1(9) , STRT2(9) , START (99,9) ,FINISH (
399,30} ,RUFF(09,9) ,PDERY (99) ,XPFRM (99) ,NODZ (99,9),TIAST (9) ,WIAST(9),
4 BSCHED(99,9) ,SFUFF(99,9) ,SSTART (99,9), SFIN(99,9),SCHZD (99,3),
3 SPART (), SPPER(99)

IF(LEVEL.LE.BIGLEV)GO TO 19
RIGLEV=T EVFL
ne 1 a0=1,K
1 SPATT(4C) =MCPART(YC)
n0 2 I=1,LEVEL
SPPTE (T) = PREFN (I)
"0 23 =1,K
SHUFF(I,J) =RUFF(T,.d)
SSTAET (I,J) =START (I,J)
SET¥(T ,J) =FINISH(T,J)
SCHED(T,J) =MSCHTD (I,Jd)
CONT INTIR

[\

10 J2=ppU2M (LEVEL)
PRMIOR (2) =REMIGR (J2) +1
TP (CTOSS)GE T 20

ONJ.Y CHATN J2 I35 DELTTED FROM SCHEDIULE

NT=MACH (JI2)

Lo 12 J=1,N7
MC=TJOPETF (12,J)
NMC=MCPAET(NMC)
NMCL=NMC-1
MCPART(MC) =NNMCL
IF (NMCL.GT.N)GO TO 14
TLAST (FC) ="
HLAST (MC) =0,
53C TO 12

14 SLACK (MC)=5LACK (MC) +STAKT (NMC,MC)~-FINISH(NMCL,NC)

TLAS™ (MT) =FTN1ISH (NMCL, MC)
WIAST (MC)=TLAST™(MC)+STALT (NMCL, MC)

+1 RELTASE

aaa

12

PALI>

27

24
26

ol
a

co

Ty
1

0

a1

no

co
P\:'
i

-51-

~

BACK™TL DATE = 79917

NTIN R

T RN

™ OCROSSTD CHATNS ATE DYLFTED FRGY SCHYDULE

=SPPTRYM(ITVEL-1)

22 Mc=1,%

TF(JOETIA(I1, MC).GT.) GO TO 24

IF (JARTTY (J2,K8C))22,22,26
IF(JORTIY (J2,MC)) 26,26,28
NMC=*CPART (1C)

NHUC L=NMT =]

¥MCPAPT{MC) =NKCL

TF(NMCL.GT.0) GO TO 30

TI A ST (MC) =0

WLAST (¥C)=0

G0 "0 22

SIAUK (MC) =ST.ACK (MC) *START (NMC ,MC) -FINISH (NMCL, #C)
MIACT (MC) =FINISH (NMCL,NC) A
HTAST(¥C) =TLAST (MC)~STAFT (NMCL,C)
GO ™) 22

N¥C =MCPART (4C)

NNMCT =NMC-2

MCDAP T(*C)=NHCL

IP(N¥CI.T0.0) GO TN 32

SLACK (¥C) =SLACK (¥ C) # START (NMC, ¥C) -F INISH (N¥C- 1,4C)
+START (N¥C =1, #C) =FINISH (NMCL, 4C)

mIAST(FZ) =TINTSH (NMCL,MC)

YLAST (¥C) =TLAST (%C) -START (NMCL,MZ)

GO TO 22

SLACYK (MC) =SLACK {*C) +STAET (NMC,¥C) -FINISH(NAC- 1, HC)

TLAST (4C) =0

YLAST(MC) =0

NTINTT

™7 PN

T

15/06/17

-52-

A3: Sample Problems and Printouts

of Solutions

PROBLEHY DATA

: EXAMPLE, |

NO 07 AACHLINES:

€

53~

TO

ARG IF =RV N

NO FEQD

W o = BN

SLACK (J)

TRAVEI TIMES BETWSEN MACUINES:
NO OF ITEM TYPES: 5
ITEM TYPE
‘e
1
i 2
; 3
‘ 5
PERIOD = 42
ITEM TYPE CBSPR OTAKE
1 0 0
2 2 35
3 0 9
4 3 135
5 1 1
REACIH (MC,dCN):
7 12 24 32 45
, 10 25 23 38
u 12 19 26
: 13 14

q

FIRST OPTIA

1 5 3 1

AL SCHEDULY FOUND

4

TIME

OO YO REWN =

10

5

QOoOUWOoOOoOOCCOooDOoOoLUTODLULOO

AFTEK GENERATING

MCc2

OCOLOLCLOLPOOLOLLDOODCOCOO

CoCooQCoOoQ

101

w
O

FROH
1 2 3 4
5
10 6
16 12 7
21 17 12 6
25 21 16 10
PROC. TIMES ON
1 2 3 4
4 6 9 0
4 7 5 4
2 0 10 a
2 4 7 0
2 0 5 7
16 12] 4
20 NODES:
nces3 acu
9 n 0 0
0 0 Q 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
9 0 0 0
0 0 0 0
0 0 Q 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
3 501 0 2
0 501 0 0
1 €01 0 0

Huc

oEOO O [&)]

(=)

6
2
2
1
1
1
29
M¥CS
0
Y]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

QOO0 OCOQLCOLCOOOLCOOOCOODO

NC6

R R R R N e e e e N R

PROBLEM DATA: EXAMPLE, 2

NO OF HACHLUES: 6
TRAVEL II¥ES BETWEIN MACHINES:

TO
2
3
4
5
6
NO OF ITEN TYPES: S
‘ ; ITEN TYPE NO REQD
K ‘
P 1 5
s 2 5
P 3 3
, 4 2
Pl 5 10
[
j PEKIOD = 119 SLACK (J)
E ITEM TYPE CRSPR OTAKE
1 0 n
2 2 35
3 0 b
4 3 135
5 1 1
KEACH (4T, dCN) :

7 12 24 32 45
10 25 23 38

12 19 26
13 14
9

FIEST OPTIMYAL SCUEDULE POUND AFTER GENEKATING

13 1t 4 5 2 5 2 1 5 5 4 5 5

i TIME . (of) MC2

Bl

¢ 1 0 101 0 0

' 2 010 0 0

i 3 0 101 0 [¢]

: 4 9 101 0 0
5 0 301 0 0
6 0 301 0 0
7 0 102 0 0
8 0 102 0 0
9 0 122 0]
10 0 102 0 101
11 0 407 0 101
12 0 401 0 1M1
13 ¢ 501 0 101
14 3 501 0 1”1
15 02N 0 101
16 0 201 0 102
17 J 20 3 102
18 0 201 401 102
19 0 V] 401 102

FRONM
1 2
S
10 6
16 12
21 17 1
25 21 1

7

6

1

6

0

PROC. TIMES ON

1 2 3

4 6 0

4 7 5

2 g 10

2 4 7

2 0 5

49 46 9

370 YODES:
2 5 2 1
MC3 MCY

9 0 0
0 0 0
0 0 0
9 9 0
0 0 0
0 0 0
0 0 0
0 0 0
0 9 0
0 0 0
0 0 0
0 v} 0
0 0 0
Q 0 0
0 0 0
0 0 0
0 391 9
0 301 0
9 301 0

DO DOVODOVVCOODOO0OOOTO

4y

~NOoOwEQ

N

(%3]

uc

10

]

3

N

-k - DN

84

1

MC5

CODOCOODOODVOCDOCOCOO0OOOQ

DOCO0O0OQCOOOODOOCOOOCOOOO

2

MCcé

[eR+NoReoRoNoloReRelsNoNoNoRoRe NoNeNe Ne)

QOO OQCOOOOOOODIOO0OLDOLOOOO

ooooCJooOQOOOQOOOOQOooocoOouuc)ucmyoou

ooooooooooooQooooocooococooc

CLLCooocoCocToN

-54-
0

401
401
401
401

NOOoOoOLoosowo o

()
(=}
oocooOoOOoooooooOocooOpoOoOoooooOoOQOOOOOoooo

132
102
102

OOOOOOOOOOCOOOOOOOOOQOOOOoOOOOOOOOOO

371
301

LoQuooc

501
501
301
301

502

DOOOOC)OOOOOOOQOOOOOOOO

ooooooooocooooooooocoooo

v
OO WO
CONNNON

COVULOLocOoODOOO

[\¥] N
Q (=&
NOO O «d va

COOC0O00COCOCOCOCOOO !

CoCooo0ocow

ahnonw
OO0 oo
- ok b

QUOoOLCLoLooOoO

OOoOOooOoOoooooOoOoooO

—ed et b e N1
CoOooow
NNONNN -

102

o0

[e = NoRoNe)

401
401
401

[V N0,)
(=]
NSO

OOOOOOOOOCOOOOOOOOOO

COOoOOCOoOODoovoco

=S NNV NV UL el s b ok b e = ah e
COCOO0OCoooOooOoOOSo
N-a-‘...\-l-l.a-—l—l_t—l.a_n-a-ﬁ_.—n

102
102
102
102
102
102
102
102
102
401
401
401
401

502

502
502
502
502
502
503
503
503
503
503

[N

(o R NeNeNoNol

— b
o
- b

102

ooooocOOOQOOQOQOooOooooc:ococoooOoooooooooooooooOooocccoOQOOOGOoooc

~56-

ho1
4901
0
0
201
201
0

N
o

OOOOQOOOOOOOOOOOOOOOOOQOOQOOOOOOOOOOOOOOOOOOOOOOOOOQONOOOOO

102
102
491
401
401
41
201
291
201
201
201
201
291
202
202
202
202
202
202
202
-0
0
103
103
103
103

LoOoOC

COTCOCOOCoOOLDOCoOOoOCcoO

Vi n
Lo Q
-k b e

S o

CooLoooooQoo

201
201

202

COCOOOOOO

v)
[N
OO & F

505
505
525
505

[« N« NeN NN

[o R N« e

DO D020 O

201
232
202
202
202
503
513

503
5903
503
503
504
504
504
504
504
504
504

505
505
535
5905
505

OO0 OCOOOVUCOOOOVLOOO

PN
QOC O
SIS V]

OCOoOocOoCoOoCOo

OO OO OCO

103
103
103
103

-
(=}
W

COOOQoOWOoOoOoLoDOoOoOCO

[»ReNoNoRoRoNoNoNoReNoRe Nl

- d ad D d b ek wd d) wd)
[cXeRe-NoReNoRoNoNoNoloNoNoNe)
NN NN b b ot od omd wd oy wd oy —

103
103
103
103
103
503
503
503
503
503
503

COO00CO0OVCOODOOOLLOOLOCOLOVLoCITOoOVOOO

-d b
[R
b b

- w
OO o
NNOOOCOL0O0Q

40

wn
o
VOQCaLUOOLVO—mOQ

oooooocoooOQOOOOooOooooOocooooo0ooooCrOoC)ooooOooOooooOooooccoooaoou

ooOcocco?OOQOOOOOOOOOGOOQOOCQCOQOCOOUOOC‘O

-57-

ooOooooOOOOoooooooooDcoOoroooccooooOooOooooDcOOooooOoOOoOooOoOooO

14

-t 4
woOOoo
o

105

205
205
205
205
235
205

[«

OO0 OO0COLPTCLLOLOOLOOOOVODOVDOoOOCOO

204

508

302
332

303
303
303
323

N
PR
o

OCOCOCOOLLULOOoCOoDCLCODCOOO

[«R=RrReleloNoloNoNoNeNo oo NN &)

203
233
203
203
204

204
20

508
508

539

v own
S oo
CRVoRY]

w
[
COoONOQOCOOC:

AN
-
[~ Ne)

510
510

303

295
235
205
295
205
205

535

506
506
506
516
506
506
506
507

507
597
537
507
507
203
203
203
203

204
204
294
508

508
508
508
508
508
509
509
509
509
509
509
509
302
302
302
302
332
302
302
302
302
519
510
510
510
510
510
510
303
303
303
303
303
303
303
303
303
205
205
205

492
402
492
402

505
505
505

OCCoCooonrocOoocO

— e b L b
cCoocoo
cosEEEEE

el ™)
(SN
vt

195 °¢

-—
oo
v

QO UOOOULOCLDOCOOoOCO

wn
(]
COCOPCOCOCHOCOCCOC

105
105
105
105
105
105
105
510
510
510
510
510
510

o)
Q
w

(%3]
[+

&
o
COOOCOoOOOVNNOoCLVOoOoNDTOFTLOSO O

w
(=]

(%)
<o

NN
o O
W

-t ol
[o
CoFsOoCOOO

50

w wn
Q- O
MOOOCOOOONOWUWOOOOORIOO

PN
[=]

~58-

¢ 105
0
n
0
0
3 510
7 303
0 205
0 205

0
I
[b]
0

COCOOO0OOOCOOOO

CODOOOCOCoOODO

NDODHOOCCOT OO0
o
o~
TODOO0OO0OCOODOCO O

COC OO CODOOD

DO ODOOO0OODO O

OO0 CoOoOQCoconOoco O

[=R=ReNoloNoReoNoNol=NoloNa)

ODDODOD~OOTO DD

DOODOCOCODCODTODOOO

152
153
154
155
156
157
158
159
169
161
162
163
164

-59-

PRCGLE™ DATA: EXAMPLE. 3

POOOF MACTINTS: A

TFAVED TIMES R

RN MACHIVYFS: FROM

™0 1 2 3 4 s
2 5
310 6
416 12 7
5 21 17 12 6
6 25 21 16 13 5
NO DF ITTM TYPRS: 5
I7FM TY PE N0 RIOD DROC. TIHES ON MC
) 1 2 3 4 5 6
+
1 5 4 6 7 10 2
2 5 4 7 5 4 0 2
3 3 2 0 10 9 o0 1
4 2 2 4 7 a2 11
5 10 1 0 0 7 6 1
PARTOD = 117 SLACK(J) 57 44 48 0 5 82
ITTH TYPF CF5PR OTAKE
1 3 n
2 2 15
3 2 45
4 3 11315
5 0)

REACH (¥ C, 4CN) ¢
7 12 17 3 41
1 25 23 135

12 19 25
13 14
6

TIEST OPTIMATL S3CUECYLF POUND AFT™FRE "SENIRATING26961 NODES:

1 3 U 1 5 5 2 5 2 1 5 5 2 5 2 1 5 4 5 2 5 1 3 5 3
TIME Mo MC2 MC3 jyiog 2 5 MC6
1 Y 101 0 0 J 0 0 ¢ 0 0 0
2 0 101 0 o] 0 0 0 0 0 0 0
3 A A . n o] 0 0 n 0 0 0
4 0 1M 0 0 0 0 0 b] 0 0 0
5 N o3I 0 9 0] 0 o} 0 0 0
3 7 3" [n n o 2 2 n 0 0
7 N oun 5 b} 0 4] 0 0 0 0 0
8 0 u4n1 n 0 0 o] 0 0 0 Q 0
9 0 n 0 o] 0 0 0 0 0 0 Q
10 o]) n 19 0 0 0 0 0 0 0
11 n 4] r o131] 2 0 [s] 0 o] 1
12 b} n n 101 0 0 0 0 0 0]
13 il n a1 0 0] a 0 Q 0
14 " n 521 1" o 2 p] n n 0 b
15 7102 431 1N 0 n 0 0 0 0 0
16 D192 D491 0) 0 0 0 n]
17 0 192 (A |) 301 0 0 0 0 0
19 0 112 ¢ a0 0 391 0 0 0] 0
19 A o5Aq Ao g 3 3 b n b] 9 0

DO OVOOCOOIDVLPLYOOLOODVLOLD

-60-

301

29 Ao [0 9 0 0 0 o 0
21 "o ¢c o 5 3IMm 9 0 0 0 n 9
22 e rog oo3r T N0 "0
23 n o a c 9 0 301 noon 0 ¢ 2 0
24 S 0 172 0 301 0 o 0 A 300
25 Yy oo c 112 5 301 a0 0 9 9 0
26 9 502 0132 01 201) 0 00 0 0
27 T2t 1R GE A A 0 A a0y
28 Y20 c o112 a4 30 0 9 "0
29 3 201 0 102 0 401 0 0 0 0 09
3n DL s n A oyon 5 9 0 0 0o 0
31 9 c o0 0 401 a0 0 0 0 0
32 9 9 a0 0 401 0o 0 0 9 a9
33 0 503 o 0 C 401 00 5 101 0 0
34 9202 ¢ o 0 o0 0 301 0 101 o 0
15 t 282 c.on o o 3Mm Q101 9 n
36 n 297 0 201 0 0 531 391 0 101 o 0
37 n 202 0 2901 0 9 501 301 0 101 0 0
38 «) 1n3 n 201 N0 501 391 0 101)
39 7 103 0 201 0 0 501 301 0 101 0 0
49 5103 N2 2 0 501 371 0 1C1)
41 0 103 0 291 0 0 501 301 0 101 0 0
42 70 0 291 o 0 501 301 0 101 9 o0
43 S 6202 N6 502 57 SR)
Yy 0o ¢ 0 202 0 N 502 501 0 0 0 0
45 SIS 0 202 0 0 572 57 0 9 0 9
4k 3 9 0 202 0 0 502 501 0 401 0 0
47 o ¢ 103 202 0 N 502 501 0 102 0 0
48 Yor 173 212 0~ 512 5M n 192 1181
49 DY 113 292 0 201 572 501 0 102 0 101
50 ST 0 103 0 201 503 502 0 102 0 9
51 S o173 " 201 503 532 n 102 0 90
52) 504 0173 0 201 503 502 0 102 0 461
33 "D 5 193 0 201 593 592 0 102 9301
34 2 . a 0 103 0 0 513 532 0 102 0 0
53 N 505 0 103 0 0 503 592 0 102 o o0
56 s o2n3 SR D202 533 5% 531 12 5 7
57 7 213 ¢ 0 8 202 0 593 0 501 0 o
58 3 193 o0 0 202 0 503 0 501 0 o
59 S 2n3 0 0202 ¢ 573 n 501 0o 90
59 noon 0o 0 202 N 533 0 501 0 0
51 69 o 0 0 9 201 593 9 5M ¢
82 0 516 00 0 0 201503 0 501 0 102
63 3 204 o 0 0 0 201 523 0 502 0 102
5U Yoty noon 500 3 20 0 592 5000
65 3 204 0 293) 7 201 0 502 0 0
66 2 294 0 293 0o 9 0 201 0 502 0 0
67 Y o1ng ro2n3 coA 9 21 0 502 0 0
6R 0 104 02933 0o 0 0 202 0 502 0 501
69 1 19 5 203 0 0 504 202 0o o 0 ¢
78 9 104 0 203 0 09 504 202 0 503 0 0
71 0 0 0203 0 9 504 292 0 503 0 0
72 ~ e n o2y 5 £ 535 534 0 503 0 9
7 S 0 204 0 0 505504 103 503 0 0
74 2 9 0 204 0 0 505504 102 503 0 502
75 ~ ~o2%u € 0 535 503 173 503 0 0
76 "y 10y 20w ¢ 0 505 504 0 103 0 o
77 00N 104 204 0 2 505 54 0 103 LT
78 "0 194 29 0 203 535 S04 0 193 0 201
79 ST 0 194 0 203 596 5395 0 103 0 201
g0 RIS A R 3 223 56 575 n 173 9 9
81 3 507 0 14 0 203 5% 505 0 103 0 503
32) un? ¢ 174 0 203 5% 305 0 103 0 202
33 A ouno 81 3~ 524 55 0 103 9 202
ay 3 59n 0 10u 0 2 5% 575 0 103 0 0
85 0 295 AR 0 204 ©Sng 505 5A4 143 a0

36
a7
&8
39
‘.)0
31
a2
1) 3
M
95
(36
37
98

130
1M1
192
193
134
195
106
17
1979
139
110
111
112

114
115
116
117
118
11a
121
21
122
123
124
125
126
127
123
129
130
131

132
133
134
135
136

137
138
139
140
141

142

143
144
145
146
147
140
149
1590
151

VIO RPODDIDPDO IHNDL V2L IIDINOLOVDODOPODIOWLDLITD S HOD o 20 P

DD VOOV ONI DL D

"5
115
302
302

510
303
N3

DO

DD PNDOIND 2DDAIDIDIODP20LP0VDILIIIVDO INDIOD 2 H DM 20D IS

|
o
-

[

2P TOID0NO00ITORONVIODIOINODIDITNONIDNIHNOC0OTNODTVOODOIP2O0DVNODODITOODIODHD ISD D

2O DODVDOOVHO 20000 DOV VOCOITOWYWIOOIDITLVOO IOOO

DVDO00NDOPVPOODOCOORCORODDILDOADDIOUL YD

W W w
D IO
wwww

303

DO D20V OOIORIVOOOVODIDODOOMNOHDLOO

DO VDO 590 IDLD DDA OHOW

3¢

fo =1 R& R e, Wo BN o]

506

303
303

S o0

DD2CDOUOODLOODO

2
104

134

OO DOINODODDODODODOOO

DOOOCODOO0ONn

504
504
5C4
504
504
504
505
505
505
505
505
5C5

506
506
576
506
506
506
1C4
104
104
104
104
104
104
104
104
104
507
507
597
567

508

509

105
105
115
105
105
510
510
510
510
510
519

PO DOODO

OOOOQoooooooOQQOOOOOooOooO.{)OoOOoOQQ'OoOOOOOOOQOOOOOC)OOOOQ’JO

7]

0 -
< <
DOOVODLOUODFEFLLL LT WWOOLO D

w
(=)

NN
oo
ww

-62~

N CODOoOCc ocom
- <

CooCoDonCc

CcCOoOCo0ocO oo

N IO~ Q -
[T ATl Foll Ca VoI [ol Vo RNV RN ¥l
— T e e e e

-63~

PROBLEM DATA: EXAMPLE. 4

NO GF MACHINES: 6

TRAVEL TIMES BETWEEN MACHINES: FR0H4
T2 1 2 3 4 5
2 5
3 10 6
4 16 12 7
5 21 17 12 [
6 25 21 16 10 g
NO OF ITE® TYEES: S
ITFH TYEE NO RECD PROC. TINES ON MC
1 2 3 4 5 6
ce
1 S 4 6 c ¢ 1C 2
2) 4 20 5 1 0 2
3 3 2 0 10 15] 2
4 2 2 4 1¢ 8 4 1
5 6 3 Q 5 8 10 1
PERIOD = 143 SLACK (J) 75 S 38 0 25 109
ITEM TYPE CRSPR OTAKRE
1 J]
2 2 35
3 2 14
[3 135
5 1 1
REACH (MC,MCN) ¢
7 12 25 32 47
10 38 23 38
12 22 31
14 20
9
FIRKST OPTIMAL SCHYDJUIE FCUND AFTER GENERATING8812 NODES:
2 3 11 5 4 3 2 85 2 5 2 ¢ 1 5 4 3 2 1 1 5
TIMNEZ MC 1 MC2 KC3 MCu4 MCS
1 N 201 0 0 C C C 0 0
2 9 201 e 0 C 0 0 s} 0
3 0 201 0 0 C o] Q 9 0
4 0 201 c 0 C 0 ¢) 0
5 0 301 c 0 0 0 0 0 0
6 0 3¢1 0 ¢ 0 0 0 0 0
7 n] ¢ 0 Q 0 J 0 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0 ¢ ¢ 0 ¢ 0 0
19 0 0 c 201 0 D] 9 0 0
11] C c2Nn 0 J 0 0 0
12 0 0 0 201 ¢ 0 ¢ 0 0
13 0 0 0 201 0 0 0 0 0
14 0 C 0 201 0 J 0 0 0
15 9] 1 0 201 0 Q G o] G
16 0 0 C 201 0 0 0 0 0
17 0 0 0 201 0 301 C 0 0
13 G 0 ¢ 291 0 301 0 b [¢]
19 0 [0 201 0 301 0 D} 0

<3
o
[)}

COOCOUROOUOCOROOCODLOOO
COOOODOOOOO0O0OCoOOoO
SO OOUWOLOLULWLLLDLLOOCOLT

Qooooooooﬁoo'oo-JOc)OooOoooououcooooooo:‘zoOOoOooOoOoooooooOooOcuoaOooo

1C2

QooooCoolCandoo

(5, M%)
[N
& &£

504

(]

SO O

|
(o)}
=8
I

OCO0O0ONDECOODoOONnO

—
[Nt
NN

oo

401
401
401

202

cCoDoodCo0oao

[(SISESE SR SN N SN)
OODOLULAO
Whhwwwwww

203
2C3

204

204
2C4

201

202
202
202
202

202
202
202
202
202
202
202
202
203
203
203
203
203
203
203
203
203
203
203
203
2903
203
203

273
203

w
o
OooOoNDoOooOnOOOOOQOnOooOonOoOOOOQ

&
[}
-

461

nmeE s &
oOCoo
N oas s s

502

nunwn
D0 O
NN

502
5C2
502
502
592

CooDoc O

503
503
503
503

coocoOCo

501
501
S01
501

302
3¢2
302
302
362
302
302
302
401
un1
401
401
401
401
401
401
401
un1
502
562

502
502
202
202
202
202
2C2
503
503
503
503
503

O(‘)CJOOGQ—IOOOOOOOOOOCOOOOOOOOOOO()QOC)CO

nwun
OO
- b b

W
o

OO NOQLOOLOOCUOCULUOULOONOODOODOO

QOULOCOOCLVOOMmOOO

w
<
-

301
301
301
301
391
301
301
301
301
301
301
301
391
301

332
302
332
302
302
332
302
392
502
502
532
502

ocoooooooOoooooo:)Ooooaooooor:a0000000000000

- s =
S RN R
[eNeN SN CR VNN

(S8}
(=
QOO0 OO0 O

s FEE
QO™
-t wd s b

o

- -
oc
—

101
101
101
101
101
101
101
101
1C2
102
102
1¢2
102
102
102
102
102
102
501
501
501
5¢C1
501
501
501
5C1
501
501
401

OOOOCJOOQOOOOOOO—IODOOOOOOOCID(JCOOOOOOCJC)OOOOOOOOOOOOOOQOO‘)OOOOOOO(}OOO

CJC'OOC'OQO(‘)C&OOOOOOOOOOOOOQOOOGOOQOOOC{JCC)O

(%]
o
-

129

139
131
132
133
134

149

151

ooooooc'uoooo‘oouoouooo::ooooooocOocOooOcOOoOofbooOoooo«‘)ooOoooo~>ooOooo

205
104

- b
[=ReNo)
s e e

CHO0OODnOOMNDO

OQONOOMNMLODOVDOD O

DOO0ODTODLODO0OLHOO

-65~

204

N
S
=4

&
[&)
ooQOooOoomoOoooﬁoooooOoQOoOOoooOooooo

104

194 .

104
104
04
104
104
104
104
04

- 104

194
124
104
104
134
105
15
135
1C5
195
105

COHNOO

293
203
204
204
204
294
234
204
294
204
204
274
204
204
204
204
234
204
204

204

103

OCOoO0OCO60

504

(O, % NE,]
O Do
s

(%]
[
COOUNMOUDOOONCOOOOOORPoTG O

303
3C3

492
492
4c2
4n2
4¢2

&
o
[N}

402

&
o
[\

CO0O0OVDOOCOOOOOO

504

402

205

202

292 5

202

503

533 ¢

503
503
503
593
€23
503
503

QOCOOO

203
203

504
504
504
504
504
504
504

LnO0oO0CUCODCTCHOOO W

nLuwn
OO0 O
[, %]

>

504
504
524
504
504
S04
504
204
204
204
204
204
204
204
204
204
204
505
505
505
505
505
505
595
505
303
333

OOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-TDOO(\OOOCOOOC‘

P i P RS S G)
COOODWLO D
wWWwwwwww

-
(o]
oW

4¢1

C
502
502
502
502
502
502
5¢2
502
502

103

50

wn
<

;)
< .
COOOFOOOOOLOOLLOCOOCOOOCOO

<

WQOOOOOO0LOOGCLCOOOO

1O OO0 OWLWOLLOCOULLOONOOOOLSOO

w
[
[

&
<
COOCOOCOCOOLTC OO -

[SV
ocCco
NN

OCOUOOLOLOONODCO

N
o
&

~

(S,
< O
OO &EFE

152

150

1€4
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
189
181
182
183
184

186
187
1188
139
190
191
192
193
194

196
197
198
199
200
201

COROOOCOLPOUL POV IVDOTCOVOOROLROTO0OYCOOODVLLYELIODO L

COCOOONTOIIN0O RO P RP000mNn00ORe00n0onIPCODnoOanDOa O

]
N
T

Ia)
—
o
n

ooOQOOOOoootao.noocOoooQooooooooOooOQOQmOoooooco Do O

OoOOQOOOOOOOOOOoOOQOOOOOOOOOOOQOOOOOOOOOQOOOOOOOO

oOOOOOQO()OOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOO

506
506
506
5C6

<

oOOOOoOOoOOOOOOQOC)OOOOOQOOOOOOOQOOOOoOuoOQOO

506
506
506
500
506

OO COOHOOLWROODVLDOLODOMOOIOCDLOODLOC

3933
333
303
323
303
303
33
235
275
295
205
235

205
205
205
295
506
506
506
506

[C RS NE NE,)
OOUOOo
(<2l AN« W)}

OO0 O

492
402
ug2
402
usc2
402

104

ooono

506
506
506

OO

OO0 O0

505

505
505
565
505
505
535
505
402
402
492
43

104
104
164
104
104
104
104
1G4
104
104
105

105
165

506
506
506
506
506
506
506
506

o

[+ RoNoYoNe)

OOOOOC.OOOOC&OOOOC'OOOOOOOOOOOOOOOOOOOOOOCQOOCJOOOOOOO

O

-
CUGOOOCOUOWWOCOOOO

oo o

(@]
o

PROBLEM DATA:

-5 -

EXAmMPLE, &

NO OF MACHINES: 6
TPAVEL TIMES BETWEEN MACHINES:

NO OF ITEM TYPES: 5

ITTN

: e
i
i
t
: PERIOD =
ITRY TYPE CRSPR OTAKE
1 0 0
2 2 35
3 2 14
4 3 135
S 1 1
REACH (MC, MNCN)
7 12 25 32 47
10 38 23 38
i 12 22 31
! 14 20
' 9

NO SATURATED SCHEDULE
1667 NODES WERE GENERATED

2

1

5

TIME

- od D i wd wh g b
NAOAMEWNLOVENAOWNEWN

™

2

3

!‘

5

6

TYPE NO REQD
1 5
2 5°
3 3
L 2
S 6

143 SLACK (J)

FXISTS

LONGFST SATURATED PARTIAL SCHEDULE HAS
5

2 5 2 1 1 3 1
MC 1 MC2

0 291 0 0
2 201 0 0
0 27 0 0
0 201 0 0
0 0 0 0
0 0 0 0
2 n 0 0
0 0 0 0
0 n 0 0
0 0 0 201
0 0 0 201
0 0 0 201
0 0 0201
0 n ¢ 201
0 0 0 201
0 0 0 201
2 0 n 231

6
19

4
0
10
15
0
8

0

DO OO0DOQOOOO0OO0OOVO

1

1

FROY
1 2 3
5
10 6
16 12 7
21 17 12
25 21 16
PROC. TIMES ON MC
1 2 3
4 6 0
4 20 5
2 0 10
2 4 10
3 0 5
75 5 38
18 ITEMS:

3 2 5 4
MC3 MC4
0 0 0
0 0 0
c 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0) 0

5 6
0o 2
n 2
8 2
4 1
0 1
1 109
MCS

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[c-R=RoReNoRoReRoNoNaleNoYoReRoNa]

NC6

R e N)

00OV

COVYWOORPOOOCOUOVOOYPO0O0ODIOOVYOOIDIOIDIOODOO DD P20 0VD00OCOVYOUVYODOVOPOOLOLOOPOO 20020

QDO COo

101
101
LI
102
102
102
102
531
501
501
502
502
502
301
301
401
401
202
272
202
202

PDOVI200

503
503
503

203

203
203
203

n

103

-t ok
(= e
wWww

OO0V DHO0ODOWD

OCDOO0DOPODPDODoDOO

102
102

OP0OPOODVDOROCDOOOD0COOYVOONS

203
203
203
203
203
203
203
193
13
103
103
1”3
103
103
113
103
103
103
103
n3
103
103

-68-

201
201
201
201
271
201
201
291
20
201
201
201

101
101
M1
101

101

101

102
M2
102
102
12
102

401
401
401
401
292
202
202
202
202
202
202
202
272
202
202
202
202
22
202
202
292
202
202
202
203
203
203
203
203
203
203
293
203
203
203
203
203
203
203

OOV COODO IR0 O

502
502
301
371
101
301
301

401
401
471
401
401
401
401
401
503
503
593
503
503
503
503
503
503
503

202
202
202

[eReReNoX=le]

COVOCOOCLOICOODOoO

NN
e X
-

201
201
20

501
501
501
501
501
502
502
502
502
502
301
301
301
301
3C1
301
301
301
301
301
401
401
401
401
401
401
401
401
401
401
503
503
503
503
503
202
202
202
202
202

OOOOOOQOQOOQOOOOOQOOOOOOOOOOOOOOOOOOO

w v \n
DO O
- -

www
QOO
b -h b

DODOVOOLOO

QOO0 OOCODOODOVOODOLOLODOODODLIODOD

NN
[RoNe)
- -

201
201
201
201
201
20
201
501
501
501
501
511
501
501
501
502
502
502
502
502
502
502
592
301
301
301
301
301
301
301
311

301

COO0COLPOOOOVOOPCTOODOOORCOCCOCODOCCCOHOOOHOOOS

NN
D oo
NN

102

[SX+Xe X~

502
502
502
502

COOCOOVODO0OOCOOOORCOIOOODOROCPOOOODOHOOO

102
102
102
102
102
501
501
501
501
501
501
501
501

501

'OOOOOOOOOOooocdoOOOOOOOOOOQOQOOOOOQOOooooooooooOOOOOOOOOOQQOOOOOOO

T e e e =

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
143

DO0O0OIOIVOODPDOQPORPOORVOVOOIODVDOODPOOVOIdI0OVYVOOOOVOOVYOoOOOOVOOYOoOOOO 2000000200

302

POoOCOO P00 IOV 0OP00PD0I2070200P0000 2002000020

103
103
1”3
103
193
104
104
"y
194

— b
20
&8

DOORPOLODOODOODOOoOT O

102
42
402
402
4n2

SEEtesFEEEeEE
OOV OIgO0OO
PNV NNNON

D000 D00 20000 DODOoDOCO

-69-~

203
203
203
203
203
103
103
103

204
204
208
208
208
204
204
204
204
204
204
204
204
204
204
204
204
204

SEEE&EN
QOO0 Oo
OO N s

QOUCOOIDOOIOOLOOODOCO

CVOOCOOPOLOC

w
Q
N

302
302
302

COOCHOOOLDOOCOOD

DOPODVDOODONODOODODOCOOTODOCOOCY

DO 2000 OC D00

303
303
303
303
303
303
303
303
363
303

Noann
COO0O0oO
EsEEs

COOoO0OoO0QPo00C0

[SN
o o
& &

204

S 8ENNN
DPOOO
NN S

402
402
uc?2
402
402
402
402
ue 2

503
593
5903
503

202
292
292
202
202
202

N
(=]
QOOCOO0OVCOCOOOUOOOODOVLVLIOO0OOCOLOOIOCON

w
Q
w

303
303
303
303
504
504
504
504
594
504
504
504
504
5974
504
504
574
S04
504
204
204
204

301
301
301
301
301
503
503
513
503
503
5973
503
503
202
202
292
202
202

202
202
202
202
203
203
203
203
203
203
203
203
203
203
302
302
302
302
302
302
302
302

302
302
3C2
302
302
302
303
303
303
303
3233
303
303
303
303
303
303
303
363
303
303
504
504
504

4091
4M
401
401
401
401
401
401
401

301

105
105
105
105
105
105

302
302
302
392
302
302
372
302

o900 o

502
502
502
502
502
502
502
502
502
502
401
401
401
401
301
301
301
301
301
301
301

503
593
503
503
503
503
503
503
503
503
103
103
103
103

103

103
103
103
103
103
104

104 .

104
104
104
104
104
104
104
104
105
105
105
105
105
105
105
105
105
105
302
302
302
302

OO0QOOOOODVOOOCOOOCYLOCOOOIOCOOOCOOOLOOVOOOOOLOODOOCODOLOLOLOCOOCOODLOOCRCOOD

COQOQOUOOCOwOOONOCOCOCOLCOCORaLOOLUOoO

w W
(o W)
-

-70-

0550000302200000033000000“&.“0002
o oo oo oo [=]
- mm mm o Ny = 4

00000000000000000000000000000000

222233333333444“4“0“&02222000000

QO OO0 OO0V OODOO0OO

3333333333335555555555“““4

00030000000322222222220000000000

(=] oOcoCoCoOoO0
™ N T oy

U“U“QQU-«»QB4““““00000000000000000

OCOCO0CnnCoCCoConn

MUY NNNNNNN NS

nwunwQQOO0000000000000000000000000

[sReoleRe Nl

NN

00000000000000000000000000000000

00000000000000000000000000.000000

OCCOOCOOC OO0 OCOeCoo

Qon\.00000000000090000000000,000000

COCCOCOOccoCc CCOCCcOPOO0CoCCe PO

OA,AJOOOOQO03000000000000000000000
*

150
151
152
153
154
155
156
157
158
159
169
151
162
163
164
165
166
167
168
169
172
171
172
173
174
175
176
177
178
179
180
131

10.

-71-

REFERENCES

M. Athans, N.H. Cook, S.B. Gershwin, et al., "Complex Materials
Handling and Assembly Systems"

Interim Reports: ESL~IR-~740, ESL-IR-771 (1977)

Final Report: ESL-FR-834-1 (1979)

Laboratory for Information and Decision Systems, M.I.T.

J. Kimemia, S.B. Gershwin, "Multicommodity Networks Flows Optimization
in Flexible Manufacturing Systems", Report No. ESL-FR-834-2,
Laboratory for Information and Decision Systems, M.I.T. (1978)

E.G. Coffman, Jr., (Ed.), "Computer and Job/Shop Scheduling Theory"
J. Wiley & Sons, N.Y., 1976.

B.J. Lageweb, J.K. Lenstra, A.H.G. Rinnoy Kan, "A General Bounding
Scheme for the Permutation Flow Shop Problem", Operations Research,
Vol. 26, nc. 1, Jan.-Feb. 1978, pp. 53-67.

"Job-Shop Scheduling by Implicit Enumeration”, Management
Science, Vol. 24, No. 4, Dec. 1977, pp. 441-450.

T. Gonzalez, S. Sahni, "Flowshop and Jobshop Schedules: Complexity
and Approximation", Operations Research, Vol. 26, no. 1, Jan.-Feb.
1978, pp. 36-52.

P.C. Kanellakis, "Algorithms for a Scheduling Application of the
Asymmetric Traveling Salesman Problem", Report No. ESL-FR-834-5,
Laboratory for Information and Decision Systems, M.I.T. (1978)

R. Hildebrand (C.S. Draper Laboratory, Cambridge, Mass.) Private
Communications.

J.A. Buzacott, L.E. Hanifin, "Models of Automatic Transfer Lines
with Inventory Banks - A Review and Comparison", AIIE Trans.,
Vol. 10, no. 2, June 1978, p. 197-207.

I.C. Schick, S.B. Gershwin, "Modelling and Analysis of Unreliable
Transfer Lines with Finite Interstage Buffers”, Report No. ESL-FR-834-6,
Laboratory for Information and Decision Systems, M.I.T. (1978)

