
Bucket Elimination Algorithm for Dynamic Controllability Checking of Simple
Temporal Networks with Uncertainty

Yuening Zhang, Brian Williams
Massachusetts Institute of Technology

77 Massachusetts Ave
Cambridge, MA 02139

Abstract

Simple Temporal Networks with Uncertainty (STNU) can
represent temporal problems where duration between events
may be uncontrollable, e.g. when the event is caused by na-
ture. An STNU is dynamically controllable (DC) if it can
be successfully scheduled online. In this paper, we intro-
duce a novel usage of bucket elimination algorithms for DC
checking that matches the state of the art in achieving O(n3)
performance. Bucket elimination algorithms exist for STNs
(path consistency and Fourier algorithms), but adapting it to
STNUs is non-trivial. As a result, consistency checking be-
comes a special case of our algorithm. Due to the familiarity
to bucket elimination algorithms, the final algorithm is easier
to understand and implement. Additionally, conflict extrac-
tion is also easily supported in this framework.

Introduction
Temporal networks are a representation widely adopted
for modeling scheduling problems, where binary inequality
constraints are placed on pairs of events. While simple tem-
poral networks (STN) [Dechter, Meiri, and Pearl1991] as-
sume full control over execution of all events, simple tempo-
ral networks with uncertainty (STNU) (Definition 1) allow
specifying received events that can only be observed by the
agents. Each received event requires specification of the du-
ration bound from its unique activated event, which is called
a contingent constraint which we differentiate from the orig-
inal requirement constraints. [Vidal1999] proposes three no-
tions of controllability for STNUs, similar to consistency
for STNs, which are weak controllability (WC), strong con-
trollability (SC) and dynamic controllability (DC). Among
these, DC is the most interesting and commonly used one
as being dynamically controllable means that an execution
policy exists that can dispatch the events based on previous
observations.

Definition 1 (STNU [Vidal1999]). An STNU is a tuple
〈Xe, Xc, Rr, Rc〉, where

• Xe is a set of executable events.
• Xc is a set of received events.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Rr is a set of requirement constraints of the form lb ≤
xj − xi ≤ ub, where xi, xj ∈ Xe ∪Xc.

• Rc is a set of contingent constraints of the form lb ≤ xj−
xi ≤ ub, where xi ∈ Xe, xj ∪Xc, and xi is the activated
event for xj .
While classic bucket elimination algorithms exist for

checking consistency of STNs, such as Fourier algorithms
[Dechter1999] and path consistency [Boerkoel and Dur-
fee2013], extending them to dynamic controllability check-
ing is non-trivial. On the other hand, efficient polyno-
mial algorithms exist for dynamic controllability check-
ing as well as its incremental version [Morris2014, Nils-
son, Kvarnström, and Doherty2016,Bhargava, Vaquero, and
Williams2017, Cairo, Hunsberger, and Rizzi2018, Bhargava
and Williams2019].

In this paper, we introduce a novel bucket elimination al-
gorithm for checking dynamic controllability that matches
the state of the art in O(n3) performance. The bucket elim-
ination framework is interesting as it presents familiarity
to people in constraint programming and AI community,
and does not require any special algorithmic design such
as recursive reverse Dijkstra’s algorithm [Morris2014], thus
is potentially easier to understand and implement. It also
presents benefits such as easy support for conflict extraction,
and has the potential to apply techniques in the bucket elim-
ination literature such as variable ordering heuristics, paral-
lelization etc.

Background
A simple temporal constraint with start event s, end event e,
lower bound lb and upper bound ub can be equivalently rep-
resented as a conjunction of two upper bound inequalities
(s − e ≤ −lb) ∧ (e − s ≤ ub). They can thus be repre-
sented by directed edges in a distance graph (DG), and con-
sistency checking is determined by finding negative cycles
in the graph [Dechter, Meiri, and Pearl1991]. An example is
shown in Figure 1.

For dynamic controllability checking, Morris [Mor-
ris2006] showed that an STNU can be represented by a la-
beled distance graph (LDG), where edges of a contingent
constraint are labelled with upper or lower cases of the ob-
served event [Morris2006], as shown in Figure 2. Dynamic



Figure 1: Left: STN, Right: DG. The STN is inconsistent,
evidenced by the negative cycle highlighted in red

controllability is verified based on the existence of semi-
reducible negative cycles (Definition 2), i.e. negative cycles
containing no lowercase edges after applying a series of re-
duction rules (Figure 6) proposed in [Morris2006]. Figure
3 shows an example of uncontrollable STNU. Our bucket
elimination algorithm for checking dynamic controllabil-
ity draws insights from Morris’s work [Morris2006, Mor-
ris2014], and uses the same principle to check dynamic con-
trollability (Theorem 1).

Figure 2: Conversion of temporal constraints to labeled
edges in a labeled distance graph

Figure 3: Let: STNU (double arrows are contingent con-
straints), Right: LDG. The STNU is not dynamically con-
trollable, as evidenced by the semi-reducible negative cycle
highlighted in red.

Definition 2 (Semi-Reducible Path). A path is reducible if
it can be transformed into a single edge by a sequence of
reductions. A path is semi-reducible if it can be transformed
into a path without lower-case edges by a sequence of reduc-
tions.
Theorem 1. (Dynamic Controllability) An STNU is dynam-
ically controllable if and only if it does not have a semi-
reducible negative cycle.

Our work leverages bucket elimination algorithms, which
are a family of inference algorithms characterized by se-
quential processing of buckets [Dechter1999]. Bucket elim-
ination has been used to solve constraint satisfaction prob-
lems (CSP). Whereas consistency checking can be cast as
a CSP, dynamic controllability checking cannot, as it is a
temporal problem where the values of the observed events
may only be determined as they occur. Bucket elimination
algorithms have been studied for consistency checking, in-
cluding path consistency [Boerkoel and Durfee2013] and

Fourier algorithms [Dechter1999], but are limited to STNs.
Our work extends the bucket elimination framework to dy-
namic controllability checking.

Algorithm
The high-level skeleton of the bucket elimination algorithm
is illustrated in Algorithm 1. The algorithm takes a stan-
dard approach of bucket elimination algorithms — it car-
ries out inference through sequential elimination of variables
as buckets. The algorithm takes the converted input of a la-
beled distance graph from STNU, and outputs whether the
STNU is dynamically controllable, the conflict, if any, and
the elimination order. If the STNU is not dynamically con-
trollable, the returned conflict is a negative cycle in the orig-
inal uneliminated LDG that proves why the network is un-
controllable. As shown in Figure 4, nodesD andC are elim-
inated in order, after which a semi-reducible negative cycle
between nodes A and B is identified to prove that the net-
work is not controllable.

Figure 4: The algorithm eliminates one node at the time,
triangulating pair-wise edges at each step of the elimina-
tion and checking for semi-reducible negative cycles, until a
semi-reducible negative cycle is found (network is not con-
trollable) or all nodes are eliminated (controllable).

Algorithm 1: BucketElimination
Input : LDG G = 〈V,E〉
Output: Boolean feasible, conflict cf , elimination

order o
1 o← ∅
2 G′ ← G
3 while v, nc← NEXTNODE(G′) do
4 if v 6= None then
5 feasible, nc,G′ ← ELIMINATE(G′, v)
6 if ¬feasible then
7 return False, EXTRACTCONFLICT(nc), o

8 o← o ∪ v
9 else if nc 6= None then

10 return False, EXTRACTCONFLICT(nc), o

11 return True,None, o



The main bucket elimination loop (line 3 - 10) iteratively
finds the next node to eliminate. If the network is found to
be uncontrollable (line 6, 9), the algorithm terminates and
extracts the conflict (line 7, 10).

The sub-function NEXTNODE (line 3) takes the current
graph G′ and looks for the next node v to be eliminated.
If a node v is found, NEXTNODE returns the nodes v for
elimination, as is the case for nodes D and C. If not, then
NEXTNODE checks for any negative cycles consisting only
of negative-weight edges. If there is, the network is not con-
trollable, and the negative cycle nc is returned, as is the case
for the negative cycle between nodes A and B. Otherwise, it
means all the nodes have been eliminated, and the network is
controllable. In the case of consistency checking for STNs,
it simply applies heuristics such as Min-Degree [Bodlaen-
der and Koster2010] to reduce the induced tree width. For
dynamic controllability checking, the elimination order is
also constrained by a specific partial order, which we will
introduce in the next section.

Algorithm 2: Eliminate
Input : LDG G = 〈V,E〉, v
Output: Boolean feasible, negative cycle nc, LDG G′

1 Eelim ← GETBUCKET(v)
2 feasible, nc, Etri ← JOINPROJECT(v,Eelim)
3 if ¬feasible then
4 return False, nc,G
5 G′ ← ADDTIGHTEST(G,Etri)
6 G′ ← REMOVE(G′, Eelim)
7 G′ ← REMOVE(G′, v)
8 return True,None,G′

The sub-function ELIMINATE is shown in Algorithm 2.
Each node is a bucket that contains all directed edges with
the node being either the source or the target (line 1). For ex-
ample, in Figure 4, the node to be eliminated, such asD, and
its bucket of edges is highlighted in dark red. When a node
is eliminated, all the edges are joined and projected onto its
connecting nodes (line 2), as shown by the dashed edges
in Figure 4. Since our temporal constraints are binary con-
straints represented by directed edges, the operation involves
triangulation of every pair of directed edges. The triangu-
lated edges, if tightest, i.e. intuitively, no shorter or equal
distance edge with the same label exist between the nodes
(fully described in next section), are added to the graph (line
5). For example, in Figure 4, the edge from B to A labeled
with -1 is tighter than the one labeled with a : 0; hence the
latter can be removed without affecting the dynamic control-
lability of the network. Finally, the node as well as its bucket
are eliminated from the graph (line 6-7).

The sub-function JOINPROJECT is shown in Algorithm 3.
It goes through each pair of edges that points into node v
and points out of node v, and triangulates them to produce
a new edge (line 9), as illustrated in Figure 4. If the edges
form a cycle, then instead of triangulating them, it checks
whether the cycle is a semi-reducible negative cycle (line 5).
If it is, the edges are returned as the negative cycle nc. The

Algorithm 3: JoinProject
Input : v, Eelim

Output: Boolean feasible, negative cycle nc, Etri

1 Etri ← {}
2 for ei in Eelim, source(ei) == v do
3 for ej in Eelim, target(ej) == v do
4 if target(ei) == source(ej) then
5 feasible← CHECKNEGCYCLE(ei, ej)
6 if ¬feasible then
7 return False, {ei, ej}, {}
8 else
9 Etri ← Etri ∪ TRIANGULATE(ei, ej)

10 return True,None,Etri

rules under which CHECKNEGCYCLE and TRIANGULATE
triangulates edges and checks controllability are introduced
next.

Dynamic Controllability Checking
We elaborate on the functions TRIANGULATE, CHECKNEG-
CYCLE, ADDTIGHTEST, and NEXTNODE, which involve
non-trivial modifications to check dynamic controllability.

Triangulation and Controllability Checking TRIANGU-
LATE and CHECKNEGCYCLE take the input of a pair of
edges, and apply a triangulation operation to produce a tri-
angulated edge or check whether the edges form a semi-
reducible negative cycle. In the degenerate case of checking
consistency, the triangulation rule simply follows from the
triangle inequality, as shown in Figure 5. CHECKNEGCY-
CLE additionally checks consistency based on evidence of a
negative cycle, that is, if x+ y < 0 in Figure 5.

Figure 5: STN triangulation rules

To check dynamic controllability, we need a different
set of triangulation rules that take care of labeled edges.
We adopt the set of symmetric reduction rules from [Mor-
ris2006], summarized in Figure 6, as well as the additional
rules in Figure 7. Example triangulations that apply these
rules can be seen in Figure 4. Similarly, CHECKNEGCYCLE
checks dynamic controllability by looking for evidence of a
negative cycle after triangulation, that is, if the sum of the
edges applicable in the triangulation is negative. Adopting
the symmetric reduction rules also requires the STNU to be
in normal form. An STNU is in normal form if the lower
bound of every contingent constraint is 0. Any STNU can
be converted into an equivalent normal form [Morris2006]
by replacing each contingent constraint of [lb, ub] with a re-
quirement constraint of [lb, lb], and a contingent constraint
of [0, ub− lb].

While the original set of rules from [Morris2006] (Figure
6) is sound, we adopt additional rules (Figure 7) because we
eliminate the parent edges after processing each node, and



Figure 6: Triangulation rules carried over from the symmet-
ric reduction rules in [Morris2006]

Figure 7: Additional triangulation rules

rules in [Morris2006] alone do not guarantee completeness
for our bucket elimination algorithm. Eliminated edges can
cause loss of information and the algorithm may fail to dis-
cover semi-reducible negative cycles. An example is shown
in Figure 8. The lower label over-approximation rule in Fig-
ure 7, together with the canonical partial elimination order
described later in this section, ensures that the transforma-
tion of the graph before and after each elimination preserves
dynamic controllability.

Figure 8: The initial labeled distance graph on the top has a
semi-reducible negative cycle highlighted in red. If we elim-
inateC andA, then notice that when eliminatingA, the rules
in Figure 6 do not specify how to triangulate eBA and eAD.
Therefore, without the lower-label approximation rule, the
algorithm would fail to detect the negative cycle.

Tightest Edges The triangulation operations create more
edges along the way and the edges may compound, resulting
in elimination being very slow. Notice that not all the edges

need to be triangulated, as some of them are dominated by
others. We reduce the number of edges that need to be con-
sidered in triangulation by defining the tightest edges. In the
degenerate case of checking STN consistency, we only need
to keep the shortest edge between two nodes. In the same
way, for checking dynamic controllability, we only need to
keep the edges that are tightest, defined in 3.

Definition 3 (Tightest Edge). For two edges ei and ej that
have the same source node and target node, edge ei is tighter
than edge ej if and only if by removing ej and keeping ei,
the dynamic controllability of the network remains the same.
Edge ei is strictly tighter than ej if and only if ei is tighter
than ej , but ej is not tighter than ei. A tightest edge is an
edge where no other edges are strictly tighter than it.

For labeled edges, we summarize how edge ei can be
tighter than ej in Figure 9. In short, for ei to be tighter than
ej , it has to satisfy two conditions: (1) ei’s weight is less
than or equal to ej’s weight, (2) either ei has no label, or ei
and ej has the same label. If two or more edges are mutually
tighter than each other, we only need to keep one of them.

Figure 9: Tighter relationship

Next Node: Canonical Partial Elimination Order
Bucket elimination algorithm allows processing of each
node and its neighboring edges only once. This restricts us
from applying the reduction rules repeatedly on an elimi-
nated edge. However, not all combination of edges are cov-
ered by the set of triangulation rules (e.g. a upper-case edge
followed by a lower-case edge), and eliminating the nodes
in arbitrary order may cause the algorithm to be incom-
plete, as shown in Figure 10. The state-of-the-art DC check-
ing algorithm in [Morris2014] walks along the edges in the
reverse direction and recursively calls Dijkstra’s algorithm
whenever an unseen negative edge is encountered. The re-
cursive call returns when the negative edge has an exten-
sion path that renders the path non-negative. Inspired by
their algorithm, our algorithm eliminates the nodes in the
order from their deepest recursive calls to the shallowest,
so that the non-negative paths from deeper recursive calls
can be used by shallower calls. As it turns out, this partial
order, defined in Definition 4, exactly reflects the reverse-
chronological order of the events happening, the same in-
sight illustrated by some incremental dynamic controllabil-
ity checking algorithms [Shah et al.2007, Nilsson, Kvarn-
ström, and Doherty2016]. An example elimination that il-



lustrates the canonical partial order constraints and the cor-
responding order of elimination is shown in Figure 11.

Figure 10: An example where eliminating node D before B
causes the algorithm to be incomplete

Definition 4. (Canonical Partial Elimination Order) An
elimination order o is said to follow the canonical partial
elimination order if and only if

• source(e) ≺o target(e), for all e ∈ E where w(e) < 0.

where E denotes all the edges in the labeled distance graph
throughout the bucket elimination process, including orig-
inal edges and the triangulated edges, a ≺o b denotes a
precedes b in the elimination order o and w(e) denotes the
weight of the directed edge e.

Figure 11: Initially, we have D ≺o B, C ≺o A, A ≺o

B, with D, C being ready. We randomly break tie and pick
D to eliminate. This introduce edges in between B and C,
and C ≺o B. C is then eliminated, at which point there
is no more ready node, but a semi-reducible negative cycle
between A and B is detected, shown in red.

Based on the canonical partial order, we define ready
nodes in Definition 5, that are nodes ready to be eliminated.
NEXTNODE in the case of dynamic controllability checking
finds the next node that is ready, while using heuristics to
break ties to reduce induced tree width. The example in Fig-
ure 11 shows the ready nodes at each step given the canoni-
cal partial order constraints. When NEXTNODE fails to find
the next node, Theorem 2 shows that it either determines

the network is dynamically controllable or the opposite. If
the network is not controllable, NEXTNODE returns a nega-
tive cycle as the conflict. As a result of the canonical partial
elimination order, other combinations of edges for which our
set of triangulation rules do not cover will not appear in the
elimination process.

Definition 5 (Ready Nodes). A node is ready if and only if
it has no negative incoming edges, disregarding the labels.

Theorem 2 (Termination Condition). If there remain nodes
in the graph, but no ready node is found, then there are
two cases: 1) either no node has negative outgoing edges,
in which case the network is dynamically controllable, 2)
otherwise, the network is not dynamic controllable and the
remaining graph has at least one cycle with only negative-
weight edges.

Proof. The first case is simple to prove. If there is no neg-
ative edge present in the graph, then there cannot be any
negative cycles. To prove the second case, notice that if
the graph has a cycle with only negative-weight edges such
as in Figure 12, then the network is not dynamic control-
lable, because only unlabeled edges and upper-case edges
can have negative weight, meaning the negative cycle is a
semi-reducible negative cycle.

Figure 12: A cycle with only negative-weight edges.

We now prove that if there is no ready node, but some
node exists that has negative outgoing edges, then the re-
maining graph has at least one cycle with only negative-
weight edges. Suppose that in the graph there are n nodes
Vnegout with negative outgoing edges, and m + n nodes
Vnegin with negative incoming edges, where n > 0,m ≥ 0.
We know that Vnegout ⊆ Vnegin (otherwise a ready node
could have been found), and each node v ∈ Vnegout has
at least a negative incoming edge from Vnegout. Assume
by contradiction that there is no cycle with only negative-
weight edges formed by Vnegout, then suppose we have a
sub-path AC (1) as illustrated in Figure 13. Since A has an
incoming negative edge, and it cannot come from any node
inAC, it must come from a node in another sub-path (2). By
induction, we exhaust all of the n nodes in Vnegout at sub-
path (k), and the start of sub-path (k) must have an incoming
edge from some node in all the aforementioned sub-paths.
Hence a cycle with only negative-weight edges is formed,
and the network is not dynamic controllable.

Figure 13: Sub-paths will eventually form a cycle with only
negative-weight edges.



According to Theorem 2, the termination condition is met
when NEXTNODE finds no ready node. NEXTNODE then
does a final check for dynamic controllability by looking for
nodes with negative outgoing edges that form a cycle, and
returns the cycle as a conflict if the network is not control-
lable.

Correctness and Complexity Analysis
The STNU triangulation rules are sound and complete, that
is, the network preserves its dynamic controllability before
and after each elimination. As a result, the bucket elimina-
tion algorithm for checking dynamic controllability is sound
and complete. The complexity of the algorithm is O(n3),
which matches the state-of-the-art DC checking algorithm
by Morris in [Morris2014]. The full proof for the theorems
presented in this section is given in the Supplementary Ma-
terials.
Theorem 3. The triangulation rules are sound and complete
in the bucket elimination algorithm for checking dynamic
controllability.
Theorem 4. The bucket elimination algorithm for dynamic
controllability checking is sound and complete.
Theorem 5. The complexity of the bucket elimination algo-
rithm for checking dynamic controllability is O(n3), where
n is the number of nodes.

Proof. We sketch the proof here, while readers can see Sup-
plementary Materials for the full proof. The run time of the
algorithm is dominated by the total number of triangulations
done. Since only the tightest edges participate in triangula-
tion, we only consider tightest edges between two nodes.

Figure 14: Relabelling the labeled edges.

To show that the number of triangulations is O(n3), we
relabel the edges in the following way (Figure 14): for a low-
ercase edge from A to C with label b, we relabel the edge
with bA→C , and for an uppercase edge from C to E with
labelD, we relabel the edge withDE←C . We further denote
σA→C to be the number of tightest lowercase edges of dif-
ferent labels from A to C, and similarly σE←C the number
of tightest uppercase edges of different labels from C to E.
Then, we know that given a node C,

∑
X σX→C ≤ n and∑

X σX←C ≤ n. This is because each lowercase label has
a unique start node, and each uppercase label has a unique
target node, i.e. there cannot be two edges of the same label
coming from different nodes to C, as shown in Figure 15.

To count the total number of triangulations, we ana-
lyze rule by rule while only using Cross-Case Composi-
tion as an example here. For Cross-Case Composition, if
we look at an arbitrary triangle A,B,C under triangu-
lation, from A to B we have σA→B tightest lowercase

Figure 15: Illustration for
∑

X σX→C ≤ n

edges, and from B to C we have σC←B tightest uppercase
edges, if we sum over all the triplets of nodes for triangu-
lations

∑
A

∑
B

∑
C σA→B ∗ σC←B =

∑
B

∑
A σA→B ∗

(
∑

C σC←B) ≤
∑

B

∑
A σA→B ∗ n ≤

∑
B n ∗ n =

n ∗ n ∗ n = O(n3).

Conflict Extraction
When the network is uncontrollable, extracting conflict can
explain the cause of failure and guide the adjustment of con-
straints. A conflict is a minimal set of constraints in the
STNU that makes it uncontrollable. We describe a simple
augmentation to the algorithm that supports conflict extrac-
tion, while introducing minimal overhead to the algorithm.

The procedure for conflict extraction is illustrated in Fig-
ure 16. A network is determined to be uncontrollable when
the algorithm has found a semi-reducible negative cycle
(line 6 and 9 in Algorithm 1), or more specifically, a neg-
ative cycle with no lower-label edges, highlighted in red in
top left of Figure 16. The negative cycle may involve tri-
angulated edges derived through triangulation, rather than
from the original constraints in the network. To extract the
conflict, we need to backtrack those edges to find the origi-
nal constraints in the network that produced them, as shown
in the bottom of Figure 16.

Figure 16: Rewind the semi-reducible negative cycle found
during elimination into edges that come from the original
constraints of the network. In this case, eBA labeled with -1
has parent edges eBC and eCA, and eBC in turn has parent
edges eBD and eDC . The final extracted conflict is the cycle
highlighted with solid red edges.

This requires a simple change to our algorithm. For each
triangulation operation, we record the parent edges for the
triangulated edge, i.e. the two edges that produced it accord-



ing to the triangulation rules. This means in function TRI-
ANGULATE(ei, ej) in line 9 of Algorithm 3, we additionally
mark the triangulated edge with: etri.parents ← {ei, ej}.
By default, the edges in the initial LDG have an empty
parent field. When a negative semi-reducible cycle is de-
tected, EXTRACTCONFLICT, shown in Algorithm 4, will re-
cursively unwind any triangulated edge into its parent edges,
until all the edges come from original temporal constraints
in the network.

Algorithm 4: EXTRACTCONFLICT

Input : list of edges E
Output: Unwinded conflict cf

1 cf ← {}
2 foreach e ∈ E do
3 if e.parents then
4 cf ← cf ∪ EXTRACTCONFLICT(e.parents)

5 else
6 cf ← cf ∪ {e}

7 return cf

Evaluation
To compare the bucket elimination algorithm’s performance
with the state-of-the-art dynamic controllability checker
[Morris2014], we randomly generated samples of STNUs
of the following form: The STNUs are parameterized by
the number of activities Nact, represented by contingent
constraints. Additionally, pairs of activities may be con-
strained through their start and end events with probability
of 1/(4Nact), and the end event pointing to the activity with
a higher index. All constraints have a lower bound of 0 and
an upper bound in the range of 1 to 5 with uniform probabil-
ity. For the state of the art, we tweaked the implementation
from [Bhargava, Vaquero, and Williams2017], which uses
Morris’s DC checking algorithm [Morris2014] as its under-
lying algorithm. Both our algorithm and the state-of-the-art
algorithm are written in Lisp and support conflict extraction.

Figure 17: Performance comparison of Morris’s algorithm
and our bucket elimination algorithm over 100 runs. The
right figure is only run on controllable STNUs.

Performance Comparison The runtime of both algo-
rithms under varying numbers of activities from 10 to 100
is shown in Figure 17. Each case is run over 100 randomly
generated STNUs. Both algorithms are reasonably fast and

Nact NDC Nact NDC

10 58 60 2
20 32 70 1
30 24 80 0
40 9 90 0
50 7 100 0

Table 1: Number of controllable cases NDC out of 100 ran-
domly generated STNU for varying number of activities
Nact

scale well. In the experiment shown by the figure on the left,
we did not control the STNUs to be all dynamically con-
trollable. As a result, as the number of activities increase,
most of the generated STNUs are not controllable (Table 1).
Interestingly, Morris’s algorithm tends to be slightly faster
for uncontrollable cases. When we only consider control-
lable cases, as shown by the figure on the right, the perfor-
mance of the two algorithms only differs roughly of a con-
stant scaling factor, with the implementation of our algo-
rithm being slighter faster. The difference in uncontrollable
cases may be caused by the fact that our bucket elimination
algorithm is constrained by the canonical partial elimination
order, whereas in Morris’s algorithm, the negative edges are
placed onto a priority queue, and the more negative the edges
are, the earlier they will be examined.

Figure 18: Run time scales with number of triangulations

Characterization with number of triangulations We are
also interested in knowing whether the runtime of the algo-
rithm roughly corresponds to the number of triangulations
done by the algorithm, including both CHECKNEGCYCLE
and TRIANGULATE operations.

The result is shown in Figure 18, where the experiment on
the right is only tested on STNUs that are dynamically con-
trollable. The result shows that the runtime of the algorithm
is roughly proportional to the number of triangulations.

Conclusion
We drew insights from both bucket elimination algorithms
and temporal network reasoning literature, and presented a
bucket elimination algorithm for checking dynamic control-
lability that also supports conflict extraction. The algorithm
is simpler to understand and implement, and achieves the
sameO(n3) complexity as the state-of-the-art dynamic con-
trollability checker [Morris2014], as evidenced by our em-
pirical results.



References
Bhargava, N., and Williams, B. C. 2019. Faster dynamic
controllability checking in temporal networks with integer
bounds. International Joint Conference in Artificial Intelli-
gence.
Bhargava, N.; Vaquero, T.; and Williams, B. 2017. Faster
conflict generation for dynamic controllability. In IJCAI,
4280–4286.
Bodlaender, H. L., and Koster, A. M. 2010. Treewidth com-
putations i. upper bounds. Information and Computation
208(3):259–275.
Boerkoel, J., and Durfee, E. H. 2013. Distributed reasoning
for multiagent simple temporal problems.
Cairo, M.; Hunsberger, L.; and Rizzi, R. 2018. Faster dy-
namic controllability checking for simple temporal networks
with uncertainty. In 25th International Symposium on Tem-
poral Representation and Reasoning (TIME 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence 49(1-3):61–95.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1-2):41–85.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. CP 4204:375–389.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial
Optimization Problems, 464–479. Springer.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2016. Efficient
processing of simple temporal networks with uncertainty:
algorithms for dynamic controllability verification. Acta In-
formatica 53(6-8):723–752.
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P.
2007. A fast incremental algorithm for maintaining dis-
patchability of partially controllable plans. In ICAPS, 296–
303.
Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of
Experimental & Theoretical Artificial Intelligence 11(1):23–
45.



Supplementary Materials
Theorem 1. The triangulation rules are sound and complete
in the bucket elimination algorithm for checking dynamic
controllability.

Proof. We need to prove that each rule is sound and com-
plete. For soundness, we require that the triangulation at
each step will not introduce a false positive semi-reducible
negative cycle. Therefore, we prove soundness by proving
that if there is a semi-reducible negative cycle involving the
triangulated edge, then there is indeed a corresponding semi-
reducible negative cycle in the graph before elimination.

Completeness requires that eliminating parent edges will
not cause false negative of semi-reducible negative cycles.
Therefore, we prove completeness by proving if there is a
semi-reducible negative cycle involving the parent edges in
the graph before eliminating the node, then there must be a
semi-reducible negative cycle with the triangulated edge in
the graph after eliminating the node.

First, for rules in Figure 6, soundness directly follows
from the same reduction rules from [Morris2006]. We will
now show their completeness. For the Lower Label Removal
and Label Removal completeness is obvious. In the follow-
ing proof, we will use PAB to represent a path from node A
to node B. We will use w(e) to denote the weight of edge
e, and we will abuse the notation by writing w(PAB) =∑

e∈PAB
w(e).

For Upper-Case Reduction rule, we assume by contradic-
tion that eCA and eDC are involved in a semi-reducible neg-
ative cycle, but eDA is not. This could only be possible if
there is an edge eAF with lower label b (edges labeled with
lowercase b or uppercase B has to be connected to A, be-
cause A is the activated event for the received event B) in
the semi-reducible negative cycle, but the same cycle is not
semi-reducible when eCA and eDC are replaced with eDA.
We break it down into two cases. When y ≥ 0, then the
extension subpath that is responsible for reducing of edge
eAF does not involve edge eDC , therefore, when replaced
with eDA with upper label B, the same cycle is still a semi-
reducible negative cycle. When y < 0, then D will be elim-
inated before C, hence the rule will not apply in this case.

For Lower-Case Composition rule, we assume by contra-
diction that eEA and eDE are involved in a semi-reducible
negative cycle, but eDA is not. This could only be possi-
ble if eDE is reducible but eDA is not. We know that there
exists PEF with w(PEF ) < −y. Therefore, w(PAF ) =
w(PEF )−w(eEA) < −y− x. Therefore, PAF can also re-
duce eDA, and we still find the same semi-reducible negatice
cycle with the replaced edge.

For Cross-Case Composition rule, we need to prove for
two cases. For the first case, the reasoning is similar to
Upper-Case Reduction rule. We assume by contradiction
that eEA and eDE are involved in a semi-reducible nega-
tive cycle, but eDA is not. This could only be possible if
there is an edge eAF with lower label b in the semi-reducible
negative cycle, but the same cycle is not semi-reducible
when eEA and eDE are replaced with eDA. Since y ≥ 0,
the extension subpath that is responsible for reducing of

edge eAF does not involve edge eDE , therefore, when re-
placed with eDA with upper label B, the same cycle is still a
semi-reducible negative cycle. For the second case, the rea-
soning is similar to Lower-Case Composition rule. we as-
sume by contradiction that eEA and eDE are involved in a
semi-reducible negative cycle, but eDA is not. This could
only be possible if eDE is reducible but eDA is not. We
know that there exists PEF with w(PEF ) < −y. Therefore,
w(PAF ) = w(PEF )−w(eEA) < −y− x. Therefore, since
B 6= C, PAF can also reduce eDA, and we still find the same
semi-reducible negatice cycle with the replaced edge.

For No-Case Reduction rule, if x ≥ 0 and y ≥ 0, then
completeness is obvious. If y < 0, the rule does not apply
because D will be eliminated before C. When x < 0 and
y ≥ 0, we assume by contradiction that eCA and eDC are
involved in a semi-reducible negative cycle, but eDA is not.
It would only be possible if eCA is responsible for reducing
away lower case labels in the cycle that eDA cannot. How-
ever, we know that for eCA to reduce away any lower label
edges in the cycle, the extension subpath must also include
eDC . This means that eAD can also reduce away any lower
label edges in the same cycle.

Next, we need to prove for the additional set of rules: the
Lower Label Over-Approximation rules in Figure 7 that they
are sound and complete.

First we prove soundness. Assume eDA is in a semi-
reducible negative cycle, then we have path PAD with
weight w(PAD) < −(x + y). Since at the time of elimi-
nation of E, E does not have incoming negative edges, we
have y ≥ 0. Therefore, w(PAD) < −(x+ y) ≤ −x.

We also know that the start node of a contingent link eEB

will always be the start node of all the lowercase edges la-
beled with lowercase b and the target node of all the up-
percase edges labeled with uppercase B as in Figure 1.
Since our canonical elimination order guarantees that the
start node of an negative edge will be eliminated before its
end node, we know that by the time E is eliminated, all in-
coming negative edges, including uppercase edges labeled
with B, will have been eliminated. Therefore, E has no in-
coming negative edges, hence no uppercase edges labeled
with B is still left in the network.

Figure 1: Elimination of E

For the first case in Figure 7, if we then replace eDA with
the original parent edges eDE and eEA, and we know that
there is an extension path of PAD with w(PAD) < −x that
has no uppercase edges with label B, we know that the low-



ercase edge eEA must be reducible by a prefix subpath1 of
PAD or PAD, according to the Lower Label Removal rule
in Figure 6. Therefore, when replaced with parent edges, the
cycle is still a semi-reducible negative cycle.

For the second case in Figure 7, in the same way, we have
w(PAD) < −(x+ y). if we consider PED as the edge eEA

extended with PAD, then from the first case, we know that
eEA can be reduced, and we have w(PED) < −y. Assume
by contradiction that eDE cannot be reduced with PED, then
there must be an edge in PED with the uppercase of the
same label as eDE , which is uppercase label C. Since eEA

does not have the same uppercase label, the uppercase la-
beled edge, some eFG, must be in PAD, and w(PEF ) ≥ −y
(if not, eAB can be reduced). If that is the case, we know that
w(PAF ) ≥ −x−y, which means that after elimination, eDA

cannot have been reduced by PAF , and the semi-reducible
negative cycle cannot exist, producing the contradiction.

For completeness, we prove that if there is a semi-
reducible negative cycle involving the eDE and eEA, then
eDA is also in a semi-reducible cycle. The first case is easy
to prove, if there is a semi-reducible negative cycle involving
wDE and wEA, then w(PAD) < −(x+ y). Therefore, after
elimination of E, wDA + w(PAD) < x+ y − (x+ y) = 0.
We still find the same semi-reducible negative cycle with
the replaced edge. For the second case, since eDE and eEA

are involved in the semi-reducible negative cycle, it means
that there is a prefix subpath PEF of the extension path
PED with w(PEF ) < −y and without any edge with up-
per case label of eDE , i.e. uppercase label C. This means
w(PAF ) = w(PEF ) − w(eEA) < −x − y, and since PEF

does not have upper case label C, PAF will not have upper
case label C. Therefore, with the added edge eDA, it can be
reduced by PAF , and we still find the same semi-reducible
negative cycle with the replaced edge.

Theorem 2. The bucket elimination algorithm for dynamic
controllability checking is sound and complete.

Proof. For soundness, at any step of the elimination, if a
semi-reducible negative cycle is found and the network is
deemed not dynamically controllable, then we know that the
original network is also not dynamically controllable, since
the reduction rules are sound and complete.

For completeness, we prove that if the network is not
dynamically controllable, the algorithm will report a semi-
reducible negative cycle at some point of the elimination
stage. When checking controllability at any point of the
elimination stage, we are only checking cycles of length 2
involving the eliminating node. If the original network is not
dynamically controllable, then at any point of the elimina-
tion stage, there must be a semi-reducible negative cycle in
the graph. If there is a semi-reducible negative cycle in the
graph, then the termination condition for network being con-
trollable will not hold. If the only semi-reducible negative
cycle is a cycle with only negative-weight edges, it will be

1A prefix subpath of a path is a subpath that starts from the first
node of the path [Morris2006]

reported by NEXTNODE according to the termination con-
dition. If not, a semi-reducible negative cycle will be re-
duced to a semi-reducible negative cycle of length 2 at some
point as nodes are eliminated one by one, at which point
the checking rules can correctly report the semi-reducible
negative cycle. When there is finite number of nodes in the
network, the algorithm will terminate.

Theorem 3. The complexity of the bucket elimination algo-
rithm for checking dynamic controllability is O(n3), where
n is the number of nodes.

Proof. The run time of the algorithm is dominated by the
total number of triangulations done throughout the process.
Notice that each triplet of nodes can only go through the
triangulation process once when one of the nodes is elimi-
nated, where the edges of the triplet will be matched with
the triangulation rules and the corresponding triangulation
operation will occur.

We show that the number of triangulations is O(n3).
Since only the tightest edges participate in the triangulation,
in the following proof we only consider tightest edges be-
tween two nodes. Notice that the total number of labels (dis-
regarding lower case or upper case) is less than n, given that
there can be at most n − 1 received events. Notice also that
for all lowercase edges with the same label b, they have the
same start node, and for all uppercase edges with the same
label D, they have the same target node.

Figure 2: Relabelling the labeled edges.

To show that the number of triangulations is O(n3), we
relabel the edges in the following way (Figure 2): for a low-
ercase edge from A to C with label b, we relabel the edge
with bA→C , and for an uppercase edge from C to E with
labelD, we relabel the edge withDE←C . We further denote
σA→C to be the number of tightest lowercase edges of dif-
ferent labels from A to C, and similarly σE←C the number
of tightest uppercase edges of different labels from C to E.
Then, we know that given a node C,

∑
X σX→C ≤ n and∑

X σX←C ≤ n. This is because each lowercase label has
a unique start node, and each uppercase label has a unique
target node, i.e. there cannot be two edges of the same label
coming from different nodes to C, as shown in Figure 3.

Figure 3: Illustration for
∑

X σX→C ≤ n



Now, in order to count the total number of triangulations,
we analyze rule by rule:

• For Lower Label Removal and Label Removal, they
can be considered as adding a constant operation after
each Upper-Case Reduction, Lower-Case Composition
and Cross-Case Composition operation.

• For No-Case Reduction, if we look at an arbitrary triangle
A,B,C under triangulation, since there is only one tight-
est edge from A to B and from B to C, if we sum over all
triplets of nodes for triangulations

∑
A

∑
B

∑
C 1 ∗ 1 =

O(n3)

• For Upper-Case Reduction, if we look at an arbitrary tri-
angle A,B,C under triangulation, from B to C we have
σC←B tightest uppercase edges, and fromA toB we have
only one tightest edge, if we sum over all the triplets
of nodes for triangulations

∑
A

∑
B

∑
C σC←B ∗ 1 =

(
∑

A 1) ∗ (
∑

B

∑
C σC←B) ≤ (

∑
A 1) ∗ (

∑
B n) =

n ∗ n ∗ n = O(n3).
• For Lower-Case Composition, if we look at an arbitrary

triangle A,B,C under triangulation, from A to B we
have σA→B tightest lowercase edges, and fromB toC we
have only one tightest edge, if we sum over all the triplets
of nodes for triangulations

∑
A

∑
B

∑
C σA→B ∗ 1 =

(
∑

C 1) ∗ (
∑

B

∑
A σA→B) ≤ (

∑
C 1) ∗ (

∑
B n) =

n ∗ n ∗ n = O(n3).
• For Cross-Case Composition, if we look at an arbi-

trary triangle A,B,C under triangulation, from A to
B we have σA→B tightest lowercase edges, and from
B to C we have σC←B tightest uppercase edges, if
we sum over all the triplets of nodes for triangula-
tions

∑
A

∑
B

∑
C σA→B ∗ σC←B =

∑
B

∑
A σA→B ∗

(
∑

C σC←B) ≤
∑

B

∑
A σA→B ∗ n ≤

∑
B n ∗ n =

n ∗ n ∗ n = O(n3).
• For Lower Label Over-Approximation, we can con-

sider both rules together. If we look at an arbitrary
triangle A,B,C under triangulation, from A to B
we have σA→B tightest lowercase edges, from B to
C we have σB→C tightest lowercase edges and only
one unlabeled tightest edge, if we sum over all the
triplets of nodes for triangulations

∑
A

∑
B

∑
C σA→B ∗

(σB→C + 1) = (
∑

A

∑
B

∑
C σA→B ∗ σB→C) +

O(n3).
∑

A

∑
B

∑
C σA→B∗σB→C =

∑
C

∑
B σB→C∗∑

A σA→B ≤
∑

C

∑
B σB→C ∗ n ≤

∑
C n ∗ n =

n ∗ n ∗ n = O(n3).
Hence, we have shown that the run time of the algorithm
is O(n3).

References
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. CP 4204:375–389.


