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Abstract

Recent theoretical results show that gradient descent on deep neural networks under exponential loss func-
tions locally maximizes classification margin, which is equivalent to minimizing the norm of the weight matrices
under margin constraints. This property of the solution however does not fully characterize the generalization
performance. We motivate theoretically and show empirically that the area under the curve of the margin distri-
bution on the training set is in fact a good measure of generalization. We then show that, after data separation
is achieved, it is possible to dynamically reduce the training set by more than 99% without significant loss of per-
formance. Interestingly, the resulting subset of “high capacity” features is not consistent across different training
runs, which is consistent with the theoretical claim that all training points should converge to the same asymptotic
margin under SGD and in the presence of both batch normalization and weight decay.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.



Distribution of Classification Margins:
Are All Data Equal?

Andrzej Banburski * 1 Fernanda De La Torre * 1 Nishka Pant † 1 2 Ishana Shastri † 1 Tomaso Poggio 1

Abstract
Recent theoretical results show that gradient de-
scent on deep neural networks under exponential
loss functions locally maximizes classification
margin, which is equivalent to minimizing the
norm of the weight matrices under margin con-
straints. This property of the solution however
does not fully characterize the generalization per-
formance. We motivate theoretically and show
empirically that the area under the curve of the
margin distribution on the training set is in fact
a good measure of generalization. We then show
that, after data separation is achieved, it is pos-
sible to dynamically reduce the training set by
more than 99% without significant loss of perfor-
mance. Interestingly, the resulting subset of “high
capacity” features is not consistent across differ-
ent training runs, which is consistent with the
theoretical claim that all training points should
converge to the same asymptotic margin under
SGD and in the presence of both batch normaliza-
tion and weight decay.

1. Introduction
The key to good predictive performance in machine learn-
ing is controlling the complexity of the learning algorithm.
Until recently, there was a puzzle surrounding deep neural
networks (DNNs): there is no obvious control of complexity
– such as an explicit regularization term – in the training of
DNNs. Recent theoretical results (Lyu & Li, 2019; Pog-
gio et al., 2020a;b; Shpigel Nacson et al., 2019), however,
suggest that a classical form of norm control is present in
DNNs trained with gradient descent (GD) techniques on
exponential-type losses. In particular, GD induces dynam-
ics of the normalized weights which converge for t → ∞
towards an infimum of the loss that corresponds to a maxi-
mum margin solution.
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What remains unclear, however, is the link between the min-
imum norm solutions and expected error. In this paper, we
numerically study the behavior of the distribution of mar-
gins on the training dataset as a function of time. Inspired
by work on generalization bounds (Bartlett et al., 2017),
we provide evidence that the the area under the distribution
of properly normalized classification margins is a a good
approximate measure to rank different minima of a given
network architecture.

The intuition is that deep minima should have a margin
distribution with a relatively small number of points with
small margins. This in turn suggests a training algorithm
that focuses only on the training points that contribute to
the stability of the algorithm – that is, on data points close
to the separation boundary (once it has been established in
the terminal phase of training, i.e. after hitting 0% classifi-
cation error during training). We show, in fact, that, once
separation is achieved, good test performance depends on
improving the margin of a small number of datapoints, while
the majority can be dropped (keeping only 200 from the ini-
tial 50k in CIFAR10, for example). These results suggest
that certain points in the training set may be more important
to classification performance than others. It is then natural
to pose the following question: can we, in principle, predict
which data are more important? However, we show that the
points that mostly support the dynamics are not consistent
between different training runs due to the initial randomness.
Moreover, it turns out that before data separation, there is
no clear pattern to discern which datapoints will contribute
the most. Quite interestingly, this result is consistent with a
recent theoretical prediction(Poggio & Liao, 2019): under
stochastic gradient descent and in the presence of Batch
Normalization and weight decay, all training points should
asymptotically converge to the same margin and be effec-
tively equivalent to each other. The randomness of which
datapoints contribute the most to classification performance
is consistent with the prediction. It also suggests the con-
jecture that in overparametrized models, we should expect
the most important features learned by the network to be
dependent on random factors such as initialization.
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1.1. Related Work

Following the work of (Zhang et al., 2016), which showed
that overparametrized networks trained on randomized la-
bels can achieve zero training error and expected error at
chance level, recent papers analyze the dynamics of gradient
descent methods. (Allen-Zhu et al., 2018; Du et al., 2018;
2019; Li & Liang, 2018; Zou et al., 2018) showed conver-
gence of gradient descent on overparametrized non-linear
neural networks. Empirical work shows that sharp minima
generalize better than flat minima, that the optimization pro-
cess converges to those with better generalization, (Keskar
et al., 2016; Liao et al., 2018) and that better noise stability
(stability of the output with respect to the noise injected
at the nodes of the network) correlate with lower general-
ization error (Chaudhari et al., 2019; Langford & Caruana,
2002; Morcos et al., 2018). Several lines of research propose
low complexity measures of the learned network to derive
generalization bounds. Spectrally-normalized margin-based
generalization bounds are derived in (Bartlett et al., 2017),
which we test here. Bounds obtained through a compression
framework that reduces the effective number of parameters
in the networks based on noise stability properties are de-
scribed in (Arora et al., 2018) who more recently provided
a sample complexity bound that is completely independent
of the network size (Arora et al., 2019). Our algorithms
for dataset compression are indirectly related to the data-
distillation approach introduced in (Wang et al., 2018) and
to the noise stability described in (Bartlett et al., 2017).

2. Theoretical motivations
We start with a short review of the recent theoretical findings
that inspire our numerical investigations.

2.1. Notation and Background

In this paper we assume the standard framework of super-
vised learning via Empirical Risk Minimization (ERM) al-
gorithms for classification problems. For details see Sup-
plementary Material or papers such as (Mukherjee et al.,
2006).

Deep Networks We define a deep network with K layers
with the usual coordinate-wise scalar activation functions
σ(z) : R → R as the set of functions f(W ;x) =
σ(WKσ(WK−1 · · ·σ(W 1x))), where the input is x ∈ Rd,
the weights are given by the matrices W k, one per layer,
with matching dimensions. For simplicity we consider
homogenous functions, i.e. without bias terms. In the
case of binary classification, the labels are y ∈ {−1, 1}.
The activation function is the ReLU activation. For the
network, homogeneity of the ReLU implies f(W ;x) =∏K
k=1 ρkf(V1, · · · , VK ;x), where Wk = ρkVk with the

matrix norm ||Vk||p = 1 and ||Wk|| = ρk. In the binary

case, when ynf(xn) > 0 ∀n = 1, · · · , N we say that the
data are separable wrt f ∈ F, that is they can all be correctly
classified. We define the margin of xn as ηn = ynf(xn)
and the margin of the whole dataset as the smallest of all
margins η = minnηn, corresponding to a support vec-
tor x∗. For the multi-class case, if the prediction score is
a vector {f1(x), . . . , fC(x)} for C classes, with fyn(xn)
the prediction for the true class, then the margin for xn is
ηn = fyn(xn)−max

j 6=yn
fj(xn).

Dynamics & margin maximization It has been known for
some time now that the norm ρ =

∏
k ρk diverges to infinity

as we run GD (Banburski et al., 2019; Lyu & Li, 2019;
Poggio et al., 2020b). This means that the weights Wk do
not converge in any meaningful sense, and it is only sensible
to study the convergence of the normalized weights Vk.

When we minimize exponential-type losses (like the ex-
ponential loss, logistic, or cross-entropy), we expect that,
asymptotically, the convergence to a data-separating solu-
tion only depends on data with the least negative exponents,
i.e. the points with the smallest classification margin (the
equivalent of support vectors in SVMs). Minimization of
exponential-type losses then corresponds to the problem of
maximizing the classification margin. Recent body of work
has been showing that SGD biases highly over-parametrized
deep networks towards solutions that locally maximize mar-
gin (Banburski et al., 2019; Lyu & Li, 2019; Poggio et al.,
2020b) in presence of normalization techniques (such as
batch normalization).

Neural Collapse Given the margin maximization results, the
natural question one might ask is which data are the ones that
contribute the most to the solution. As in the case of linear
systems, the answer clearly depends on the amount of over-
parametrization. Recent empirical observations suggest that
with overparametrization, SGD leads to the phenomenon of
Neural Collapse (Papyan et al., 2020) after data separation is
achieved. One of the Neural Collapse properties (NC1) says
that within-class activations all collapse to their class means,
implying that the margins of all the training points converge
to the same value. While this might seem unintuitive, em-
bedding N points in D-dimensional space with D � N
allows for many hyperplanes equidistant from all the points.
A recent theoretical analysis predicts that NC1(Poggio &
Liao, 2020) depends on both the use of normalization algo-
rithms (such as batch normalization) and L2 regularization
during SGD. The prediction is consistent with our results in
Figure 3.

The theory thus suggests that effectively only one example
per class is needed to describe the decision boundaries of
the learned model – and that any of the training points could
be used. We explore in this work whether this prediction is
correct.
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Figure 1. Natural and Random Labels - Margins The top figure
shows the margin of the 50k datapoints in CIFAR10 ranked by
their individual margin size for 2 convolutional networks trained
on either natural or randomized labels pass data separation and
margin convergence. The circle enlarges the numerical values
of the five datapoints with the smallest margins. In the bottom
figure, the range of the margin of the first 100 datapoints (those
with the smallest margin) was equally divided into 10 bins with
the count of data points in each bin shown. The first two bins of
the network trained with random labels have significantly more
datapoints, while the network trained with natural labels ends with
less support vectors closer to each other.

2.2. Margins, ρ and expected error

Assuming that weight decay, small initialization, and batch
normalization provide a bias towards a solution with “large”
margin, the obvious question is whether we can obtain any
guarantees of good test performance. While predicting test
performance purely from training behavior is challenging,
we use simple bounds (Bousquet et al., 2003) to predict
relative performance between different minima for the same
network architecture.

A typical generalization bound that holds with probability
of at least (1 − δ), ∀g ∈ G has the form (Bousquet et al.,

2003):

|L(g)− L̂(g)| ≤ c1RN (G) + c2

√
ln( 1δ )

2N
, (1)

where L(g) = E[`γ(g(x), y)] is the expected loss, L̂(g)
is the empirical loss, RN (G) is the empirical Rademacher
average of the class of functions G measuring its complexity,
and c1, c2 are constants that reflect the Lipschitz constant of
the loss function and the architecture of the network. The
loss function here is the ramp loss `γ(g(x), y) defined in
(Bartlett et al., 2017) as discounting predictions with margin
below some arbitrary cutoff γ (with `0 being the 0-1 error,
see Sup. Mat.).

We now consider two solutions with the same small training
loss obtained with the same ReLU deep network and corre-
sponding to two different minima with two different ρs and
different margins. Let us call them ga(x) = ρaf

a(x) and
gb(x) = ρbf

b(x) and let us assume that ρa < ρb. Using the
notation of this paper, the functions fa and fb correspond to
networks with normalized weight matrices at each layer.

We now use the observation that, because of homogeneity of
the networks, the empirical Rademacher complexity satisfies
the property RN (G) = ρRN (F), where G is the space
of functions of our unnormalized networks and F denotes
the corresponding normalized networks. This observation
allows us to use the bound in Equation 1 and the fact that
the empirical L̂γ for both functions is the same to write

L0(f
a) = L0(F

a) ≤ L̂γ + c1ρaRN (F̃) + c2

√
ln( 1

δ )

2N and

L0(f
b) = L0(F

b) ≤ L̂γ + c1ρbRN (F̃) + c2

√
ln( 1

δ )

2N . The
bounds have the form

L0(f
a) ≤ Aρa + ε and L0(f

b) ≤ Aρb + ε (2)

Thus the bound for the expected error L0(f
a) is better than

the bound for L0(f
b). Similar results can be obtained taking

into account different L̂(f) for the normalized fa and f b

under different γ in Equation 1.

Can these bounds be meaningful in practice? The solutions
a and b achieve the same training loss, which means that
they must both have different norms ρ and different dis-
tributions of classification margins. In what follows, we
show empirically that indeed we can effectively predict the
relative generalization performance using the information
of the distribution of classification margins on the training
set.

3. Experimental methods
In most of the numerical experiments, we used a 5-layer
neural network implemented in PyTorch and trained on
the CIFAR10 or CIFAR2 (cars and birds from CIFAR10)
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datasets using either SGD or full GD with cross-entropy
loss. The network has 4 convolutional layers (filter size 3 ×
3, stride 2) and one fully-connected layer. All convolutional
layers are followed by a ReLU activation, and for some
experiments, batch normalization. The number of channels
in hidden layers are 16, 32, 64, 128 respectively. In total,
the network has 273, 546 parameters. The dataset was not
shuffled. The learning rate was constant and set to 0.01, with
momentum set to 0.9 unless otherwise stated. Our test per-
formance is not state of the art, since we wanted to perform
neither data augmentation nor any explicit regularization to
match the theoretical setting. These results however extend
to networks with state of the art performance, see Table 1
for results on DenseNet-BC and more in Sup. Mat.

In the absence of batch normalization, the margin distri-
bution of each network is normalized by ρ, the product
of convolutional layer norms. For networks with batch-
normalization, the margin distribution was normalized by
the product of the batch-normalization layer norms and the
norm of the last fully-connected layer.

4. Margin distribution
The recent Neural Collapse (Papyan et al., 2020) results
would suggest that at convergence the margin distribution
should be flat. Convergence in the margin however is known
to be very slow (Soudry et al., 2017). In this section we
experimentally study the shape of the distribution of margins
on the whole training dataset and then go onto using it to
predict generalization performance.

4.1. Natural vs random labels

We ran numerical experiments to find the relation between
the margin, stability and generalization gap for two convolu-
tional neural networks. One was trained with natural labels
and the second one trained with randomized labels, an idea
explored in (Liao et al., 2018; Zhang et al., 2016).

In Figure 1, we took both networks after data separation and
close to margin convergence and extracted the margins for
each data point, which allowed us to sort them according
to the margin. The margins for all datapoints are larger
for natural labels than for randomized labels. Theory sug-
gests that the datapoints important for margin maximization
should be closer to each other in the feature space for ran-
domized labels than for natural labels, consistent with lower
algorithmic stability (Kutin & Niyogi, 2002) and chance
performance. To test this, we took the 100 datapoints with
the smallest margin for both networks, divided the margin
range into ten bins and counted the number of datapoints
in each bin. The first five bins for the network trained with
natural labels had less datapoints than for randomized labels,
with the first bin only having one datapoint for natural labels

while for randomized labels there were 14. This experiment
supports the idea that having a smaller set of datapoints with
small margin (the equivalent of support vectors in SVMs)
leads to both better stability and test performance. This
should be contrasted with Neural Collapse – we find that the
margin distribution after 200 epochs of SGD is far from flat,
but rather has a few small margin datapoints and a similar
number of high margin points, with a flatter middle range.

4.2. Margin distribution and generalization
performance

How can we use the information about the margin distribu-
tion to predict generalization performance? In (Liao et al.,
2018), it was shown that the training loss evaluated on the
normalized deep network allows for a reasonable prediction
of test loss, which conforms to arguments from Section 2.2.
It is natural to ask then whether the smallest normalized mar-
gin or a simple function of all the margins is a potentially
finer measure.

To probe several metrics, we ran 100 networks on a CIFAR2
classification task, where architecture and hyperparame-
ters stayed constant across all networks but the standard
deviation for random initialization was varied. This was
motivated by (Liao et al., 2018), since we wanted to obtain
networks that converge to different minima and analyze their
resulting margin distributions. We found that the area under
the curve (AUC) of the margin distribution is a good pre-
dictor of generalization performance as seen in the bottom
of Figure 2. Moreover, the shape of the margin distribution
is also a predictor: the initial curvature of the distribution
indicates how many datapoints have small margins. Our
experiments show that the number of small margin data can
predict the range of test error.

These results are shown in Figure 2: on the top we can see
the sorted margin distributions of 7 representative networks
for each minima (there are 10,000 datapoints in CIFAR2).
For smaller test errors, the normalized margin distribution
contains higher values, higher curvature, and starts off with a
higher slope relative to the margin distributions of large test
error (larger initialization). In the middle, we counted the
number of datapoints with small margins for each network
(using a margin cutoff of 0.01 above the smallest margin,
which corresponds to setting γ = 0.01 in the ramp loss) and
calculated the average test error for networks with different
ranges of small margin points. As shown, we find that larger
proportion of small margin data results in higher averages
of test error. On the bottom, we divided the 100 networks
into sorted bins of 10 and calculated the average AUC and
average test error for γ = 0.1. We see that the larger the
margin AUC, the better the test performance.

In Section 2.2 we derived bounds for two different minima
and asked if these bounds could be meaningful in practice.
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Figure 2. Different Minima - Margin Distributions 100 conv nets
(as in Section 3) were initialized with varying standard deviation
(from 0.01 - 0.05) so that they converge to different test errors.
The top figure shows the margin distribution of 7 representative
networks for each test performance. The middle image shows
all 100 networks divided into bins given their number of small
margin data and the average test error of these ranges. The bottom
provides evidence that the AUC of the margin distribution is a
predictor of generalization performance. Here we plotted the
result with a cutoff of γ = 0.1.

These experiments suggests that the shape of the margin
distributions and area under it can indeed effectively predict
relative generalization performance.

4.3. Time evolution of the margin distribution

Do these results mean that we are finding no NC1? On the
left of Figure 3, we find that in the presence of both regular-
ization and batch normalization, the distribution of margins
does indeed get flatter with time. In further experiments we
found however that without either L2 regularization or batch
normalization, such flattening is not apparent, see Sup. Mat.
This is in line with all the experiments in (Papyan et al.,
2020) using both of these techniques, and suggests that Neu-
ral Collapse relies on both regularization and normalization
in agreement with the theoretical predictions of (Poggio &

Liao, 2020).

To further explore the relationship of margin distribution in
the context of Neural Collapse, we visualize and analyze the
margin distribution for individual classes. On the top-right
of Figure 3, we observe that for some classes, the margin
distribution shifts and flattens more than for other classes.
For class-label 9, the margin distribution shifts and flattens
more over time (going from blue at epoch 0 to green at
epoch 200) than for class-label 3. This effect is absent if we
do not use batch normalization, as shown in the bottom right.
Thus, although margin distributions of individual classes
are potentially shifting the margin distribution at different
scales, this is dependent on batch-normalization and regu-
larization (see Sup. Mat. for regularization experiments), as
suggested in (Poggio & Liao, 2020).

5. Compressing the training set dynamically
As suggested by the notion of stability (Kutin & Niyogi,
2002), datapoints close to the separation boundary are cru-
cial for good test performance. Data with large margin,
however, do not contribute to stability. It has been long
observed that training long past the time of achieving the
separation of the data (i.e. 0% training error) leads to im-
proved test performance. This has been understood (Soudry
et al., 2017) to result from the fact that while the training
classification accuracy converges fast, the margin converges
much slower. As we keep training the network past separa-
bility, the margin keeps improving (Banburski et al., 2019;
Lyu & Li, 2019; Shpigel Nacson et al., 2019) (see also the
Sup. Mat.), with the largest contributions to this improve-
ment coming from the datapoints with the current smallest
margin.

These theoretical considerations suggest that after we have
separated the data, we should be able to safely drop training
datapoints with large margin. The question now is: how
much can we compress, without spoiling the generaliza-
tion performance? We can see in Figure 4 that gradually
removing all but 200 datapoints with the smallest margin
has no impact on the test performance for a well perform-
ing network (solid red line), if we start removing the data
after separation has been achieved. More interestingly, we
get a very minimal drop in performance (∼ 2%) when we
keep only 20 datapoints in the training set. We find that
minima that perform better can be compressed more. Figure
6 compares two minimizers with different test performance:
we can readily see that further removal of datapoints leads
to more degradation of performance for the network with
worse test error, as compared to the better performing net-
work. We thus have a demonstration that, at finite times,
larger number of small margin data leads to worse test per-
formance.
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Figure 3. Margin Distribution over Time A convolutional network (using the architecture and parameters in Section 3) was trained on
CIFAR10, the margin distribution was recorded and sorted at every epoch. On the left, we see the margin distribution of all 50,000
datapoints from epoch 1 (dark-blue) to epoch 200 (light-green) as indicated by the color bar on the far-right. To explore the results in
neural collapse, we visualize the margin distribution of individual classes for networks trained with batch normalization and without.
Some class-labels seem to have more of an effect on the distribution for that label than others but this is dependent on batch normalization.

This approach is indirectly related to data distillation that
has been studied in (Wang et al., 2018). There, the authors
noticed that it is possible to train a CIFAR10 classifier on
just 10 synthetic datapoints and achieve 54% accuracy on
the test set. Unlike in the case of data distillation however,
here we first train the network to the point of separability
and by gradually removing datapoints achieve no signifi-
cant drop in performance up to keeping ∼ 200 datapoints.
These results strongly suggest a novel training scheme for
speeding up convergence, in which we remove most of the
training data (those with large margin) right after reaching
separation. Rapid compression of the dataset down to 100
examples hurts performance, but keeping 200 points only
leads to ∼ 2.89% reduction of accuracy for our CNN archi-
tecture trained with SGD, a batch-size of 50 and a learning
rate of 0.01, see Figure 5. A more thorough search of the
hyperparameter space reveals that with large learning rates
and small batch size, compression of CIFAR10 down to 200
data can lead to drop in performance as low as 0.18% for
our CNN and 0.11% for DenseNet-BC, as seen in Table 1.
For more details on the experiments, see Sup. Mat.

5.1. Similar Initialization Leads to Different Important
Data

It might be tempting to try to understand why certain dat-
apoints seem to drive the dynamics in the terminal phase
of training (post data separation). After all, we can see in
Figure 4 that minima of different levels of test performance

Table 1. Drop (in %) of test performance after compression.
CONVOLUTIONAL NETWORK (CIFAR10) WITH SGD

BATCH SIZE
LEARNING RATE

10−1 10−2 10−3

200 18.29 25.15 X
100 2.55 22.18 11.810
50 1.68 4.84 11.55
20 0.45 4.21 8.99
10 1.75 0.86 6.48
1 0.18 0.46 1.91

DENSE NETWORK (CIFAR10)
OPTIMIZER ADAM SGD

BATCH SIZE
LEARNING RATE

10−1 10−2 10−3 10−1 10−2 10−3

200 7.25 2.78 4.11 1.54 5.99 33.31
100 1.88 0.95 2.70 0.72 3.94 3.60
50 0.12 0.85 1.72 0.11 2.38 4.08

have a totally different set of small margin data. The con-
verse does not seem to be however true, as can be seen in
Figure 6, where we initialized the network several times
from the same statistical distribution (normal with std 0.01).
We find that the initial randomness propagates through the
training procedure, leaving us with similarly performing
minima (3.54% and 4.65% test errors) with different small-
est margin data.

On the top of Figure 6, we can see the training and test
error of two networks trained on CIFAR2. The vertically
vectorized images at each epoch represent the overlapping
set of the 20 datapoints with thee smallest margins (”support
vectors”) between the two networks. Visually, we can see
there are not many overlapping datapoints. The bottom plot
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Figure 4. Data Points Removal Algorithm Networks (A) and (B) were randomly initialized from a normal distribution with std of 0.01
and 0.09, respectively. This leads the networks to converge to different minima with different test errors (∼ 13%). After data separation
and full convergence, the algorithm ranks the datapoints based on their margin size and starts removing datapoints during further training,
removing those with highest margins at every point. At every blue and green point, a set of points were removed, with the numbers
displaying the amount of datapoints left in the training set. The right side zooms in to show that the test error does not significantly
change until 100 datapoints are left (by 0.68% for (A) and 1.43 % for (B)). The test error changes more when there are only 20 datapoints
left for both (A) and (B). The figure inserts show these 20 datapoints for both networks. The two sets are different, showing that the
networks converged to infima with different support.

Figure 5. Compression After Data Separation During training,
right after data separation, datapoints with the large margins were
removed, leaving either 100 or 200 datapoints with the smallest
margins. When the dataset is compressed to 200 datapoints the test
error increases slightly but plateaus to a good test performance
for the network architecture (2.89 % change).

shows the percentage of overlapping datapoints in the 200
smallest margin datapoints of the networks. Although over
time the percentage of overlapping data increases, only 63
percent of the same datapoints in this bin of 200 are present
in both networks at margin convergence (last epoch).

Not only does the randomness at initialization play a role,
but even more importantly, we find that for a given training
run, we cannot reasonably predict which data are going to
support the dynamics the most until just before data sep-
aration takes place, since only 40 percent of the support
vectors at margin convergence are present at data separa-
tion, see Sup. Mat. Figure 7 shows the margins of 600
datapoints (200 smallest, 200 in the middle and the largest
ones) throughout training. We see from this that before data
separation happens, it seems impossible to discover using
only the margin information which datapoints will end up
having the smallest margin.
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Figure 6. Same Initialization - Different small margin data-
points Two networks were initialized from the same margin dis-
tribution (standard deviation 0.01) and trained on CIFAR2. Both
networks converge to similar minima but the exact datapoints with
the smallest margins differ. On the top, the errors are depicted and
the vectorized images (cars and birds) represent the overlapped
datapoints in the smallest 20 – there are only a few overlapping
points. The percentage of overlapping datapoints for the smallest
200 margins are depicted at the bottom (60 % of them overlap).

6. Discussion and Conclusions
Recent theoretical results (Lyu & Li, 2019; Poggio et al.,
2020b; Shpigel Nacson et al., 2019) have shown that gradi-
ent descent techniques on exponential-type loss functions
converge to solutions of locally maximum classification
margin for overparametrized deep networks. In this paper
we studied the distribution of margins on the entire training
dataset and demonstrated that the area under the distribution
is a good approximate measure for ranking different minima
of the same network.

Inspired by the recent theory(Poggio & Liao, 2020) predict-
ing various properties of Neural Collapse (Papyan et al.,
2020), we investigated the prediction that none of the train-
ing data contribute more towards good generalization per-
formance than others, at least asymptotically. We found that
while on long timescales the distribution does get flatter,
the dynamics effectively depends only on a few datapoints.
Once separation sets in, we can successfully compress most
of the training datapoints (removing those {xn, yn} with
largest margins from the training set), going down from
50k examples to less than 200, without compromising on
performance. In fact, since the property NC1 implies that
we could in principle compress the training dataset down to
one datapoint per class, very much in line with the distilla-
tion results of (Wang et al., 2018). Thus, in the presence of
SGD and both batch normalization and L2 regularization

Figure 7. Visualization of the 200 smallest, middle and largest
margins over time. Data separation occurs at epoch 40. This
network was trained with a batch size of 1 using SGD with a
learning rate of 0.01. There is no clear way of predicting which
datapoints will have smallest margin before data separation.

(all three seem important for Neural Collapse to happen), we
expect that all data are equally important to classification.

In practice, we find that the compressed dataset we can ob-
tain is highly dependent on the randomness of initialization.
An obstacle to effectively predicting a good compressed set
is the fact that the relevant datapoints only emerge around
the time of data separation. This means that the algorithm
for compressing the training dataset does not provide a mas-
sive speed boost, as one could hope. More importantly
however, these results cast doubt on the endeavour of inter-
preting the features that a network learns – we can expect
that the randomness of which training points contribute the
most to the solution of the optimization problem implies that
the ”high capacity” features most relevant to classification
are also random and inconsistent between different training
runs.

The results in this article motivate potential more fine-
grained investigations into the early pre-separation dynam-
ics – if we could earlier predict the compressed dataset, we
would have a way to drastically speed up training. Addi-
tionally, it would be interesting to understand why dataset
compression is so successful with small batch size and large
learning rate – is it connected to the suggestion in (Poggio
& Cooper, 2020) that small batch SGD is more likely to find
global minima of the loss?
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