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Maximum likelihood (ML) identification of state space models for linear

dynamic systems is presented in a unified tutorial form. First linear
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SECTION 1

INTRODUCTION

One of the most important problems in the study of systems (either

physical or socio-economic) is that of obtaining adequate mathematical

models to describe in some way the behavior of those systems. This is

indeed an important issue since critical decisions about what to measure, -

what to control and in what manner, are usually explicitly or implicitly

based on such models. For example, modern control theory results pertaining

to the design of optimal observers and regulators assume the knowledge of

dynamic models, usually in state space form.

The purpose of this report is to give, in tutorial form, a unified

presentation of one approach to the problem of determining mathematical

models from measurements made on the actual system. Attention is re-

stricted to one important class of models (namely linear state space

models) and one method (namely the maximum likelihood identification

method). The report is mainly addressed to readers familiar with Kalman

filtering techniques who would like to obtain a working knowledge of the

maximum likelihood approach to system identification. It is not a sur-

vey of the subject and so our references are confined to those works

that were directly used in preparing the report. Finally, we make no

claim to originality except for our declared tutorial purpose.

1.1 Overview of Issues in System Identification

It is important to distinguish between modeling and identification.

The former is .a deductive process, using physical laws or even intuitive

socio-economic relationships in establishing a model, whereas the latter

is an inductive process, using data obtained from observations of the actual

system (see Figure 1.1) for that purpose. But these are complementary in
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the sense that from physical laws one can deduce model structures and

possibly parameter ranges, while identification techniques give parameter

values and verify proposed model structures (see e.g. Schweppe [1]). Those

identified parameter values will of course depend on the system producing

the data, but also on the experimental conditions, the hypothesized model

structure (or model set), and the identification method used.

stochastic

u(t) z(t)
II I System s

user-applied user-measured
inputs outputs

data for
identification

Figure 1.1 Data Gathering for Identification Experiment

Experimental conditions include the choice of the applied inputs (e.g.

none, chosen in an open loop fashion, determined partly by some output feed-

back process, etc.). The case where no inputs are applied (and the system

is driven by stochastic inputs only) corresponds to the case traditionally

considered in time series analysis. Whenever it is possible to do so,

choosing a good set of inputs to excite the system adequately is an impor-
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tant issue which has been studied by, e.g., Mehra [2]. In some instances

one might have a feedback loop around the system to be identified. The

identification of systems under closed loop control may present significant

problems. One example, pointed out by, e.g., Astrom and Eykhoff [3], is

illustrated in Figure 1.2: An attempt to identify Ho from measurements of

u and z by correlation analysis, say, will give the estimate of H0 as being

H1 (i.e. the inverse of the transfer function of the feedback system). Note also
F

that one might not be able or not even willing (e.g. for stability reasons)

to open the loop in such cases. A good survey of identification of pro-

cesses in closed loop has been given by Gustavsson, Ljung and Soderstrom [4];

we will not discuss this problem further in this report.

w

U z

Figure 1.2 Simple Example of Closed Loop System

A model set M is a class of models describing a behavior of the

system under study and parametrized in a certain manner by a parameter

vector a. The parametrization of general multivariable systems is not

an easy task and the structural aspects of linear systems identification

are still an area of active study. However, the model set and its para-

metrization are often given from physical considerations. There are also

so-called nonparametric techniques for establishing a model (e.g., cor-
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relation and spectral analysis of time series when the system is driven

by a stochastic input only; step and frequency response analysis when a user

applied input is possible), but these will not be discussed in this report.

As for the various identification methods used to estimate values for

the different parameters, once a model set has been chosen, they generally

consist of minimizing some model-dependent function of the data (Example 1.1).

The methods vary according to the choice of that function and the criteria

for this choice range from ad-hoc considerations to tenets of statistical

optimality. An excellent survey of identification methods with an extensive

bibliography has been given by Astrom and Eykhoff [3].

Example 1.1

system

input System

M() output z(t la)

choose a to minimize

t(z(t) =z(- £ E.z(t);a) _ z (t a) 2_ E (z(t)
T=0

One can also distinguish between on-line and off-line algorithms for

system identification. In general, off-line algorithms estimate system

parameters from a given, fixed set of input-output data whereas on-line

algorithms, used when a model has to be identified in real time, update

their parameter estimate as they receive new input-output data pairs. The

boundary between on- and off-line methods is indistinct as it depends on

process speed, requirements of the method and computational resources.

Finally, we remark that the accuracy required of an identification method

depends on its particular use. For general purpose models or models tobe used in

filtering applications (Figure 1.3) one may need accurate parameter esti-
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u( t) 2u(t) System z )

statestimate Filter (a)

(tl t) 

parameter
estimate

'Identifier

Figure 1.3 Adaptive Estimation

System

Regulator ()

Identifier

Figure 1.4 Adaptive Control



mates whereas for adaptive control (Figure 1.4) one may just need a good

model of input-output behavior.

Figure 1.5 summarizes the interrelationship between the different con-

cepts discussed above. The objectives of the present report are now dis-

cussed in the context of those issues.

Modeling Experimental Actual
Conditions System

Model Set Data

identification
Method

Identified Model

Figure 1.5

1.2 Scope and Objectives of Report

As already mentioned, this report will be limited to linear state

space models and the maximum likelihood identification method. On the one
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hand, this provides for a unified presentation and on the other hand it

is felt to be an important case. Indeed, the maximum likelihood method

is generally accepted by serious practitioners as the best method if one

is not computationally constrained. It also has statistical properties

which essentially say that the method is optimal for long measurement

sequences. Furthermore, many control and estimation techniques are based

on linear state space models. So, with the goal of summarizing the present

state of maximum likelihood identification of linear state space models,

and of collecting in one place and in a unifiedfashion results scattered in

the literature, the report is based on the following outline.

Section 2 establishes the notation which will be used for linear state

space models and presents a specific formulation of the parameter identi-

fication problem in that context. Then a brief review of linear state

estimation theory is given in Section 3 with an emphasis on sensitivity

analysis (covariance analysis) and on reduced order filtering. Our motiva-

tion for this review is the fact that Kalman filtering equations are basic

to the maximum likelihood equations given in Section 5. Another reason is

our desire to use the results of the state estimation problem to provide

goals for the parameter estimation problem. Section 4 presents a brief re-

view of the classical maximum likelihood theory in preparation for Section 5.

Section 5 contains the development of the maximum likelihood identification

method for linear state space models that is the objective of this report.

We emphasize that the contents of this section have been deliberately

limited in scope in order to give a compact and user-oriented presentation.

Thus there are many topics in identification theory that will not be

treated, but only some of the most important concepts emphasized.



SECTION 2

FOMULIATION

AS was mentioned above, this report will deal with linear state space

models only. We assume that the reader is familiar with such models and

appreciates their usefulness. Our notation is the following:

State Dynamics:

x(t+l) = A(t)x(t) + B(t)u(t) + L(t)_(t) (2.1)

Measurement Equation:

z(t+l) = C(t+l)x(t+l) + 0(t+l) (2.2)

where t = 0,1,2,... is the time index

x(t) e R the state vector (non-white stochastic sequence)

u(t) E R the deterministic input sequence

r(t) s Rp the white plant noise

e(t) PRr the white measurement noise

z (t) Rr the measurement vector

Probabilistic Information:

The initial state x(O) is Gaussian with

E{x(0)} = x_(O) (2.3)

cov[x(0);x(o0) = > (2.4)

The plant noise I(t) is Gaussian discrete white noise with:

E{I(t)} = 0 (2.5)

cov (t),_ (T)] = (t) 6tT (2.6)

_(t) = ' (t) > 0 (2.7)'

The measurement noise e(t) is Gaussian discrete white noise with:

E{8(t)} = 0 (2.8)

cov[8(t) ;8(T) ] = 0(t) 6t (2.9)

--- ·- -- ~-----~~~---- ------- I-~-~~"(2.9)I
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O(t) = 0' (t) > O (2.10)

(i.e., every measurement is corrupted by white noise)

x(O) , (t), e(T) (2.11)

are independent for all t,t.

Note the use of a discrete time format which is compatible with the

way data is collected using modern digital technology.

It is assumed that the system under study has been modeled in the

above form, but that some parameters still need to be determined.

Typically those would be coefficients in the entries of the model matrices,

as illustrated by Examples 2.1 and 2.2. Note first that if we denote those

unknown parameters by the vector a, the dependancy of the model matrices can

be made explicit by the notation A(t;a), B(t;a), etc. Note also that the

system can be time varying but that a must be time invariant (at least

according to the time scale of the identification experiment).

Example 2.1

If a system is of unknown structure but we assume it is time

invariant and has a third order transfer function, we can write a

general third order model with the following matrices

0 1 0 0O

A(a ) (a)= C0 1 c 2 c3 ]

In this case, assuming that the other matrices in the model are

known, the unknown parameter vector a is

_= La 3 1 a 3 2 a33 c 1 c2 c3 ]

Note that in this case a does not necessarily correspond to any
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physical quantities, since the model chosen is in a canonical form

with no a priori structural knowledge being used.

Example 2.2

This example illustrates how an unknown physical parameter does

not usually enter the model as a single matrix element. It also

illustrates the discretization of a continuous time model in a sampled

data environment. Consider the continuous time scalar model:

x = - ax(t) + u(t)

-1
where a is an unknown time constant. It can be discretized as

follows:

-otAt t+At -a (t+
x(t+At) = e x(t) + e -a(t+At)u()dr

Assume u(T) = constant, t < T < t+At, we then get the discrete time

model

x(t+At) = A(a)x(t) + B(Uo)u(t)

where

-AAt
A(a) = e

t+At -a(t+At-T)
B(a) = = e-(t+t-) dT

The problem now is to estimate the parameter vector a using measured

values of u(t) and z(t). This can be viewed as a nonlinear filtering prob-

lem by defining the augmented state vector

x(t)
, where a(t) - a

and considering the augmented system:

x(t+l) A (t;a) o x(t)-l B(t;a L(t;a).
[=~t~lfl 1 + u(t) +(t)

a(t+l) I a(t) L 



z(t) = [C(t;C) 01 x(t)- + (t)

The problem becomes that of determining state estimates x(tlt) and a(tI t)

of x(t) and a respectively, given {z(0),z(l),...,z(t)}, and this is a non-

linear filtering problem since x(t+l) depends nonlinearly on x(t) and a.

Therefore, one possible and general approach, appealing to Kalman filter

designers because of its simplicity, is that of the extended Kalman filter

[5]. This consists of repeatedly relinearizing the equations about current

estimate values and using linear Kalman filtering to obtain new estimates.

But difficulties connected with bias and divergence of estimates often

arise in practice (see [18] for a recent analysis), so a more reliable

approach is desirable.

Fundamentally, identification is a nonlinear estimation problem with

a very special structure. Therefore algorithms that exploit that structure

might be expected to yield more useful results. One such technique, the

maximum likelihood identification method, exploits the structure of the

identification problem very effectively. Indeed note that in the problem as

defined above, if a were fixed, we would have the linear state estimation

problem solved by the standard Kalman filter. But as we shall see later

in Section 5, the maximum likelihood method for estimating the parameters

of a linear dynamic system will consist of minimizing a function of

quantities which are generated by that Kalman filter. Thus we see that the

Kalman filter equations play an irmportant role in ML identification of

linear dynamic systems, and so we give a brief summary of Kalman filtering

theory in the next section.



-12-

SECTION 3

LINEAR ESTIMATION REVIEW

The purpose of this section is to collect needed results from linear

estimation theory. These results will be needed directly in Section 5 as

well as to provide goals for the parameter identification problem.

The standard estimation problem for linear state space models des-

cribed by (2.1) through (2.11) is that of determining x(tit), the best

estimate of x(t) given {z(O),z(l),...,z(t)} in the sense

E{[x i(t) - xi (t t ]2 < E{[xi(t) - xi (tIt)]2}

where xi(tit) is any other causal estimate. Assuming knowledge of all

matrices in the model, the solution to this problem is well known (e.g.

[1],[5],[6]) and is given by a discrete time Kalman filter. This involves

the following:

Off-line Calculations

* Initialization (t=0):

E(ol0) = cov[x(0);x(O) (3.1)

* Predict Cycle:

Z(t+llt) = A(t)_(t!t)A' (t) + L_(t) (t)L' (t) (3.2)

* Update Cycle:

_(t+llt+l) = Z(t+llt) - C(t+llt) C' (t+l) [C(t+l)Z(t+llt) C' (t+l) +

+ O(t+l) C-l(t+l) (t+llt) (3.3)

* Filter Gain Matrix:

H(t+l) = (t+llt+l ) C' (t+l)O (t+l) (3.4)

On-line Calculations

* Initialization (t=0):

x(o01) = E{x(0)} (3.5)
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o Predict Cycle:

x(t+llt) = A(t)X(tlt) + B(t)u(t) (3.6)

* Update Cycle:

x(t+llt+l) = X(t+llt) + H(t+l){z(t+l) - C(t+l)x(t+llt)}

updated estimate predicted estimate residual r(t+l)

(3.7)

The structure of the system dynamics and measurements and that of the

corresponding discrete time Kalman filterare shown in Figures 3.1 and 3.2

respectively. As presented above, the filter algorithm has two kinds of

equations:

* Off-line equations with which the filter gain matrix and the error

covariance matrix can be evaluated before the gathering of data.

* On-line equations which generate the state estimate.

Furthermore, one can distinguish within each kind of equation two different

cycles which can be justified in the following heuristic manner:

* A predict cycle where knowledge of the dynamics of the system is

used to obtain a predicted estimate (see equation (3.6)); and at

this point uncertainty is increased due to the plant noise input

and increased or decreased from propagation by the dynamics of the

system (see equation (3.2)).

* An update cycle where the residual between the latest observation

and the corresponding predicted observation is used to obtain an

updated estimate (see equation (3.7)); and uncertainty is decreased

due to the processing of the new observation (see equation (3.3)).

Note that the predicted observation is obtained from the predicted

state estimate by
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z(tlt-l) = C(t)^(tlt-1) ) (3.8)

and that its error covariance matrix is

S(t) - E{[z(t) - _(tlt-1)] Iz(t) - z(tlt-l)]'}

= C ' (t) + (t) (3.9)

From (3.1) through (3.9) one can also get the following form which

will be useful in the sequel

x(t+llt) = A(t)_(t t-l) + B(t)u(t) +

+ A(t)H(t)[z(t) - C(t)xk(tt-l)] (3.10)

H(t) = (tt-l) C' (t) [C(t)_(tlt-1) C' (t) + O(t)]-l

= _(tlt-1) C' (t) S W (3.11)

_(t+ljt) = A(t)Z(tlt-l) A' (t) + L(t) (t)L(t) -

- A(t)H(t)S(t)H''(t)A't) (3.12)

t-l
Finally, let z denote the set of past measurements

{z(0),z(1),...,z(t-1)}. In Section 5 we will need the conditional

probability density p_(z(t)zt) of measurement z(t) given z . But it

also follows from the above solution to the linear estimation problem that,

under the Gaussian assumption, the residuals

r(t) -- z(t) - z(tlt-1)

form an independent Gaussian sequence and that

-% -Yr' (t)r(t)
p(z(t) ) = (2r) 7 (det[S(t)] e (tr(t (3.13)

The above equations are valid for the general case of a time-varying

linear system. In the special time invariant case, the system matrices

will be constant, but the Kalman filter will still in general have a time

varying gain H(t). However, under reasonable assumptions (see, e.g., [1]),

it can be shown that the Riccati equation (3.12) has a limiting solution

as t + O, which in turn implies that the Kalman filter gain becomes con-



-17-

stant. A common procedure is to use this steady state gain instead of

the optimal time-varying gain. The resulting filter is termed the steady

state Kalman filter. Clearly, this procedure makes sense when the time

horizon of the filtering problem is large relative to the effective con-

vergence time of the Riccati equation (3.12).

The procedure of using the steady-state Kalman filter in place of

the time-varying filter has two important practical ramifications.

First, equation (3.12) can be replaced by the algebraic Riccati equation

A = A' + L=L' - AXC' (CZC' + 0) CEA' (3.14)

Equation (3.14) can be solved directly by methods more efficient than the

iteration of (3.12) to steady state. Second, since the filter gain is

constant,

H = EC' (CXC' + 0) (3.15)

implementation of the filter is greatly simplified.

Before concluding this section, note that an important assumption

underlying the theory presented above is that the actual system and the

model used for the filter are identical. But in practice, due to neglected

dynamic effects, uncertain parameter values, etc., this is never the case.

Moreover, a reduced order filter is often deliberately employed to reduce

on-line computational requirements or sensitivity to poorly known para-

meters. For these reasons, it is necessary to be able to evaluate the per-

formance of a mismatched Kalman filter, i.e., a Kalman filter based on a

model that differs from the actual system.

Suppose therefore that the true system is as previously specified (but

assuming for simplicity u(t) - 0) and that the filter used is:

x(t+llt) = Ar(t)x(tt-1l) + Ar(t)Hrr(t){z(t) - cr(t)^(tt-l)} (3.16)

r where _ is of dimension n < n. Suppose also that x is an estimate of Wx
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where W is some n xn matrix.

Example 3.1

-xx 1 0 0O

If x and filter omits x3 then W =

x2

Then, one can compute _ (tlt-l) - E4 [TW.x(t) - x(tjt-1)]tWx(t) x(tlt-l)]' }

as follows. Define

Ar (t) - Ar (t)(I - Hr (t) C r (t))

rA (t) O

Ar(t)H (t)C(t) j A (t) 

FL(t) , 0

L (t) = !

I" IA
r Hr

x0 A(t)) (t

x (t) -

-aug(t) xt

x(t)t-1)

Then, from (2.1) and (3.14)

x (t+l) = A (t)x (t) +L (t) (3.17)
-aug -aug -aug -aug _L e(t) 

If we now let r(t) be the (n+nr)x(n+nr) solution of the covariance equation

for the above augmented system, we get:

r(t+l) = A (t) r(t)A' (t) + L tug (t)L' (t) (3.18)
aug - -aug -aug -aug - aug
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and

C(tjt-1) = [W -I]_ r(t) [W -I]' (3.19)

This covariance analysis is routinely used to study the loss in

accuracy when the filter order is reduced for computational savings. The

fact that this analysis can be carried out off-line makes it an important

tool in reduced order filter design.

The preceeding equations of Kalman filtering theory (particularly (3.13))

will prove basic to the maximum likelihood identification problem considered in

Section 5. Moreover, there are some properties of Kalman filtering theory that are

important for setting goals for maximum likelihood identification theory.

First, note that the Kalman filtering equations provide an optimal data pro-

cessing algorithm in the sense that no other set of equations can give state

estimates with less mean square error. Second, note that as well as pro-

viding state estimates, a quantitative measure E(tft) of the accuracy of

those estimates is obtained. Third, note that Z(tjt) can be evaluated off-

line before any measurements are made, so that system performance with vari-

ous alternative hardware components and operating conditions can be evaluated

even before the system is built. Fourth, the filtering equations are general

purpose, applying equally well to navigation systems or power systems or to

any system that can be modeled by (2.1) - (2.11). Fifth, the sensitivity of

filter performance to modeling errors, either inadvertant or deliberate, can

be readily evaluated. These properties of Kalman filtering theory provide

desirable goals for any theory of system identification. We will see that

the maximum likelihood identification theory does attain these goals, but

only in an asymptotic sense for very long sequences of measurements.
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SECTION 4

CLASSICAL MAXIMUM LIKELIHOOD THEORY

The purpose of this section is to briefly review classical maximum

likelihood theory. By this we mean those issues of the maximum likelihood

method which were treated in the statistics literature before this method

was introduced as a tool for system identification. The problem is that of

identifying the unknown values c parametrizing the probability density

p(z ;a) of all past observations {z(O),z(l), ...,z(t)}. Since a is not a

random variable this is not, strictly speaking, a conditional density but

rather a family of density functions, one for each value of a. So, for a

fixed set of past observations z , p(z ;c) can be viewed as a function of

a, called the likelihood function. The maximum likelihood estimate a of a

is then defined to be the maximum of this function, i.e. the value of a

that is most likely to have caused the particular set of observations z

(see Figure 4.1). It is remarkable that this simple idea leads to an

p(zt; a)

I \a
a

Figure 4.1

1Note that such a probability density is induced by the model (2.1)-(2.11).
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estimate with a number of desirable properties.

To discuss properties of the maximum likelihood method, it is neces-

sary to introduce several general concepts. To this end, consider some

arbitrary estimate &(z t ) of a given the observations z . Define the bias

b(a) in the estimator a(-) by the equation

b(oO = a - E{a(zt)laC

=a. - ,(zt)p(zt;aa) dzt (4.1)

and the error covariance matrix Z(a) of the estimator a(.) by

/%^At

(a) = E(E - (zt) - b(a )( a(zt ) - b((a))' a}

=f(a - _(zt ) - b()) (a- (z - b(a))'p (z ;a)dzt (4.2)

Clearly, desirable properties of an estimator are that it be unbiased

(b(a) = 0) and that it have minimum error covariance matrix, i.e., that

the diagonal elements of Z(a) should be as small as possible. (Note that

the ith diagonal element of E(a) is the mean square error in the estimate

of a..)

In general, it is very difficult to compute either b(a) or _(a). How-

ever, for any unbiased estimator we have the following Cramer-Rao lower

bound [7].

-1
(a) > I (a) (4.3)

Here I t(a) is the Fisher information matrix defined by

I t(a) - -E ln p(zt;5a)_ a (4.4)

or equivalently

Iraaa ( a J'r~ · (4.5)-It(a) = E in p(zt;)n p(zt a) .5)
. _ a
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There are several points that need to be emphasized concerning the

Cramer-Rao Lower Bound. First, note that (4.3) is equivalent to

(a) - I- (a) > 0_ _ -zt

so that in particular every diagonal element of E(a) must be no smaller

than the corresponding element of I (a). Thus the Cramer-Rao lower
-zt

bound provides a lower bound on the accuracy to which any component of

a can be estimated. A second point to be made is that the technical assump-

tions required in the derivation of the lower bound do not include any

assumptions of linearity or Gaussianess. Thus the bound is well-suited

for nonlinear problems such as the parameter identification problem for

dynamical systems. Finally, note the dependence of b(a), Z(a_), and

I t(a) on a, It is generally true that the performance of an estimator in

a nonlinear estimation problem is dependent on the quantity being esti-

mated.

The preceeding discussion is illustrated in the following example

which involves a simple version of the dynamic problems to be treated later.

Example 4.1

Consider the scalar model

x(t+l) = ax(t) , t=O

Zl(t) = x(t) + O(t) , t=O,l

where e(0) and e(1) are independent random variables with probability

density

1 -%82(t)
p(0(t)) _e2

(2r) 2

and where a and x(O) are unknown. In terms of the notation previously

defined

x(o)l

~~~~~~~~~~~~~~ 0
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and z can be conveniently arranged as

t z(o0)f [ x(O) + e(0)

LZ(Zl)j Lax(o) + 0(1)]

Then,

p(zt ) 1 e-z[(z(0)-x(0))2+ (z(l)-ax(O)) 2 ]

P(zt;a) = e27e

or

in p(zt ;) = - ln(27r) - 2[(z(O) - x(0)) 2 + (z(l) - ax(O))2]

and

n p(t;) z( ) - x(O) + a[z(l) - a x(O)]

3 _ lx(0) [z(1) - ax(O)]

0(0) + ae(1)

x(O) 8(1)

Now the Fisher information matrix can be evaluated, using (4.5)

(0)x + ae(l)
I (a) = E [E(0) + aS(l) x(0) 0(1)] 5
-z (o) e (1) J

rl+a 2 ax(O)1

2
=ax(O) x (0)

and

a

-1 1-x(O)

-t 2
_ a 1 a

X(0) X2 (0) X2(0)

From the Cramer-Rao lower bound, any unbiased estimator will satisfy:

implying

E{(x(0) - ,(0))2 } > 1

and
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a 2 1 a
E{(a- a} > 2 (o) + x2 (0)

As mentioned above, the bound depends on ac which is unknown. In

particular note the dependence on x(O). If x(O) = 0 the information matrix

is singular; which is consistent with the fact that in this case, z(l) con-

tains no information about a anymore. On the other hand, the larger Ix(O) 1

(i.e. the more the system is originally excited), the better it can be

identified.

Finally, the maximum likelihood estimate of a is the one which maxi-

mizes In p(z ;a) above:

x(0) = z(0) = (O)

and one can verify that

E{(x(O) - x(0)) 2} =

12 1 aE{(a -a^)2 Et ax(O) + e(l) + 2

ax(O) + (l) 0(1) + a
since x(0) + 0(0) x(0) x(0)

for 0(0) small relative to x(0). Thus we see that the Cramer-Rao

lower bound becomes tight as the signal-to-noise ratio increases. a

We no-< return to the statement of the classical properties of the maxi-

mum likelihood estimate. First consider an arbitrary estimator, and suppose

that this estimator is unbiased and efficient, i.e., it satisfies the Cramer-

Rao lower bound with equality. It can be shown [7], that if any such estima-

tor exists, it is necessarily a maximum likelihood estimator. Since an

unbiased, efficient estimator is clearly optimal in a mean square estimation

error sense with respect to the class of unbiased estimators, this property

does provide some motivation for using maximum likelihood estimates. Note

however that there is no guarantee that an unbiased, efficient estimate will
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exist.

Perhaps more interesting are the asymptotic properties of the maxi-

mum likelihood estimate. In the classical theory, statisticians usually

assume independent observations 1 so that

t
p(zt;) = II p(z(i);a) . (4.6)

i=O

The idea is that the observations are presumed to be the result of a se-

quence of independent experiments. The asymptotic properties of the maxi-

mum likelihood estimate are concerned with the limiting behavior as the

number of observations becomes infinite.

A crucial assumption for the asymptotic properties given below is the

identifiability condition

p(z(t)c ) ;p(z(t) ; _2) for all l . (4.7)

This assumption simply means that no two parameters lead to observations

with identical probabilistic behavior. Clearly, if the identifiability

condition is violated for some pair al1, a2 of parameters, than a1 and a2

cannot be distinguished no matter how many observations are made. (Com-

pare with example 5.3, page 54.)

Now let t denote the maximum likelihood estimate of a given z

Under the above conditions of independent observations, identifiability,

and additional technical assumptions (see [71) we have the following

results.

Consistency

at +_a with probability 1 as t + o .
This is not the case for z(t) generated by (2.1) - (2.11).

This is not the case for z(t) generated by (2.1) - (2.11).



-26-

Asymptotic Unbiasedness

E{1ta} + a as t + -c

Asymptotic Normality

a tends towards a Gaussian random variable as t + X.
-t

Asymptotic Efficiency

E{(_a - )(a _ -)} (a) as t + -c 
--- t -z

In other words, as the number of processed observations becomes infinite,

the maximum likelihood estimate at converges to the true value of a, and

the parameter estimate error at - a is asymptotically normally distributed

-1
with covariance matrix I (a) so that the Cramer-Rao lower bound is

asymptotically tight.

Notice that the independence assumption (4.6) implies an additive form

for the information matrix I (a). Specifically, we have

t() = Et iln p(z ;a)c
z _

= - E{ l aIn i=O p(z(i);a)

t= ~ -E in p(z(i);a)

i=0

: Ct+l)I (5) (4.8)

where I (a) is the information matrix for a single observation. In terms

of the asymptotic covariance matrix, we see that

Ef(&- )(&- -a)' I (a) (4.9)-t - -t ()t -Z

for large t.

Equation (4.9) is extremely important from an applications point of

view. By asymptotic unbiasedness, we know that at has expected value a
-t
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for large t. From (4.9), we can compute the standard deviation of the

error in the estimate of each component of a.. Since a is known to be
1 -t

asymptotically Gaussian, we can even compute confidence intervals, i.e.,

intervals about the estimates (a ) in which ai is known to lie with a

specified probability. Moreover, if we turn the problem around and con-

sider the issue of experimental design, we can choose the number of obser-

vations t so that any desired level of asymptotic estimation accuracy is

1 1
achieved. Note that the characteristic { behavior of the estimate error

standard deviation implies that a ten-fold increase in accuracy requires

a hundred-fold increase in the number of observations.

To conclude this section, it is useful to compare the results provided

by maximum likelihood estimation theory for the nonlinear parameter esti-

mation problem with those provided by Kalman filtering theory for the

linear state estimation problem. First, recall that the Kalman filtering

equations provide optimal estimates. The maximum likelihood estimates are

also optimal, in a slightly different sense, but only asymptotically in

general. Second, the Kalman filter provides a state covariance matrix that

provides an indication of estimate accuracy. In the maximum likelihood

theory, the inverse information matrix plays this role, but in general pro-

vides a lower bound which is only asymptotically tight. Third, recall that

the Kalman filter error covariance matrix is precomputable so that the per-

formance of various alternative hardware configurations can be evaluated

before components are procured and measurements are made. The information

matrix I t(a) is likewise precomputable without measurements, but it de-

pends on the unknown parameter a. Thus one has to assume some plausible

Note that I (a) depends on a, so the number of observations must actually
be compute-for some plausible range of values of

be computed for some plausible range of values of a.
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SECTION 5

MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR DYNAMIC SYSTEMS

In this section we finally take up the main topic of this report, the

maximum likelihood identification method for determining the parameters of

a linear-Gaussian state space model of a dynamic system. This class of

models was described in Section 2, and the general maximum likelihood method

was described in Section 4. We will see that the Kalman filtering theory

reviewed in Section 3 plays a key role in the subsequent development.

The basic difficulty in applying the maximum likelihood method to the

identification problem is that the observation process is not independent,

i.e.,

p(zt;a) / p(z(O);a).. p(z(t) ; .)

This leads to practical difficulties in the computation of the likelihood

function and the information matrix since p(z t;) is a density defined over

a high dimensional space and is cumbersome to deal with. Moreover, recall

from the previous section that the asymptotic results concerning the maximum

likelihood method were all predicated on the assumption of independent obser-

vations, so that there are theoretical difficulties as well.

The key idea in the extension of the maximum likelihood method to the

identification problem is to write the more general factorization

p(zt; a) = p(z(t)Izt-l;a) .· p(z(1) z(0) ;) p(z(0) ;a)

and to recall that (in the linear-Gaussian case) p(z(t)l-z 1;a) is charac-

terized completely by quantities computed by the Kalman filter corresponding

to a. We will see in the sequel that this simple idea will lead to methods

for computing and maximizing the likelihood function and for computing the

information matrix, as well as an extension of all the classical asymptotic

properties of the maximum likelihood estimate. We will even be able to
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examine the behavior of the maximum likelihood estimate under modeling

errors (deliberate or inadvertent), an issue that does not seem to arise

in the classical case.

5.1 Computation of the Likelihood Function

The problem is to evaluate the maximum likelihood estimate t of a

which, by definition, maximizes p(z t;a). As mentioned above, this probability

density function factors as follows:

p(zt;a) = p(z(t)lzt-;a) ... p(z(O);a)

But recall from Section 3 (equation (3.13)) that the conditional probability

density p(z( z) T- 1 ;a) of the current observations z(T) given past observations

T-1 is (in the case of linear-Gaussian state space models):

T-l -r/2 -½r' (T ; a) S (T;a) r(T;a)
p(Z(T)Jz ;a_) = (27) (det[S(T;a)])) e . . . r..

(5.1)

Since r(T;a) = z(T) - z(TIT-l;a), where ztTIT-l;a) and S(T7a)

are generated by the Kalman filter corresponding to a, the likelihood

t
function is readily computable for every ca and set of data z .

Now to simplify the manipulation of the above quantities, it

is customary to equivalently maximize In p(zt;a) instead of p(z ;a) itself.

This has the advantage of transforming the products into sums, which will

be useful when we will need to compute derivatives. It also replaces the

exponential term in (5.1) by a more amenable quadratic term. Indeed,

t
ln p(zt;a) = En pnp(z(T) zTl ;Ca)

T=O

where p(z(0) z ;a) p(z(0);a) ; and

-1In p(2( T)lz | ;a) ln(27T) - eln(det [S(T;a)] -
- ar' (T;Ca) S (T.;a)r(T;a) (5.2)

Furthermore, note that - - ln(2¶T) is a constant term independent of a.

"~ ~ 11""-"---"1"~--~--~-------~-~2
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range of values of a for pre-experimental studies. Fourth, the Kalman

filtering concept is general in the sense that it is not restricted to

any one application area. The maximum likelihood concept is even more

general as it applies to nonlinear as well as linear parameter estimation

problems. Fifth, the Kalman filtering theory permits the sensitivity of

filter performance to modeling errors to be readily assessed, However,

such a sensitivity theory does not appear to have been developed in the

classical maximum likelihood theory.

Viewed as a possible concept for application to the parameter identi-

fication problem of linear dynamic systems, maximum likelihood estimation

theory can be seen from the discussion of this section to offer great

potential. However, some questions remain. Can maximum likelihood esti-

mates and related quantities such as the information matrix be readily com-

puted for the parameters of linear dynamic systems? Are the asymptotic

properties that motivate the use of the maximum likelihood estimate valid

if the independence assumption (4.6) is relaxed? Can we determine the

asymptotic behavior of the maximum likelihood estimate under modeling errors?

We will see in the next section that the answer to all these questions is

in the affirmative.
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Therefore the maximum likelihood estimate a can be more simply evaluated
-t

by minimizing the "interesting part" of the negative log likelihood function:

(zt;) - -[in p(zt;a) + ln(27) . ..

t
= (z a) (5.3)
T=0

where

(z(T) I z-1 ;a) - Iln (det[S(T;a)]) + ½ r' (T;)S-; )r(T T;a) (5.4)

Note that the new log likelihood function C(zt;a) has two parts: a

deterministic part which depends only on S(T;a), T=O,...,t and which is

therefore precomputable (see Section 3); and a quadratic in the residuals

part, which therefore depends on the data. The steps involved in computing

(z t ;a) are summarized in Figure 5.1.

The above equations are valid for the general case of a time varying

system. Note that each evaluation of the likelihood function requires the

processing of the{ observations by a time-varying Kalman filter. A very

common practice in the case of time invariant systems is to instead use

the steady state Kalman filter. This introduces an approximation into the

computation of the likelihood function, but this approximation will be good

if the optimal time-varying Kalman filter reaches steady state in a time

that is short relative to the time interval of the observations. Of course,

use of the steady state Kalman filter greatly simplifies the calculation

of the likelihood function. As we will see in the next two sections, there

is also a great simplification in the computation of the gradient of the

likelihood function and of the information matrix.
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5.2 Maximization of the Likelihood Function

As was mentioned above, maximizing the likelihood function is equiva-

lent to minimizing (z t;a) defined in (5.3). The cases where the parameter

space in which a lies is discrete or continuous will be now discussed

separately.

5.2.1 Case 1. Discrete parameter space: _a (a ,,.

In this case one can run N parallel Kalman filters to generate (zt ;a),

k=l,...,N. The choice of X is then trivial.

As an aside, we remark that if a priori probabilities Pr{a = a} are

available, then one can also get:

Pk(t) - Pr{a= zt} (5.5)

Pr {aY = } e- (z ;- k)
(5.6)

_. (zt;_~)
E Pr{a=a_} e ;)
=1

These a posteriori probabilities can then be used to weight the corresponding

estimates x(tlt-l;k) or corresponding controls _uk (t), and therefore

generate an on-line adaptive estimate or control law. This is illustrated

in Figures 5.2 and 5.3 and is an example of the "multiple model" techniques

which can be used in many adaptive estimation and control applications (see

e.g. [8]). Notice the parallel structure of the computations which can be

exploited in advanced digital controller architectures.

5.2.2 Case 2. Continuous parameter space: a_ ( R

In this case, a numerical optimization technique is required. These general-

a (zt;aa) 2 C(zt;)
ly require Da and sometimes a D2 , respectively the gradient and
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the Hessian of S(zt ;). Thus our problem is to derive expressions for these

quantities.

(i) Gradient Evaluation

Forward Filter:

We proceed by straightforward differentiation (see,e.g., [9] for a similar

treatment). From (5.3)

t
a (zt; *1) E (z(T)z I z a) (57)

1 T=O 

where a. denotes the ith component of a. From (5.4)
1

D(-(Z(T)) Iz ;) ar (T; a)

; )-( r' (TT;D)S- (T;a) r(; a;a)
1 1T; a)

+ tr S- - ; (t ;_) 5.8)

so that one needs to evaluate and . he former is obtained by

differentiating (3.8),

ar(t; a) aC(t;a) x(tl t-l;a)
- - = - _ x (tjlt-l;a) - C(t;a) -5 

aa i ao i

From (3.10), we can obtain the filter sensitivity equations

_(t+llti) _ A.(t;_) W_(tlt-l;5) + w.(t; a) (5.10)
aai -ai -i

where

. (t; a) I aA(t;at) x(tlt-l;U) + aB(t;a) u(t) (5.1%)
a 5i a ai

A(t;i [A(t;I )H(t;a) C(t;a) (5.1)

A(t;a) - A(t;a) [I - H(t;a)C(t;a)] (5.1P)

and where, from (3.11),

i [(t;a) [(tlt-l;a)C',(t;X) ] s-(t;a)

- (ti t-l;c_)C'(tC)s-l( (t;a) as-(t;) S 1 (t;C) (5.13)
1a
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From (3.9), we have

as(t;o) = c(t;a) t (tlt-l;) (ta) + a_(t;c)
aa i 3a i eai

+ A(tat-1;ca)C' (t; c) + C(t;a) E(t I t-l; a)

(5.11)

and,from (3.12), we obtain the Riccati sensitivity equations

z(t+l t;_) = A(t;a) z(tlt-l;c) A' (t;ca) + . (t;a) + ' (t;a) (5.15)

where

t A - _

(t;A) a (t7(t-l 1;a) A' - AH_ (tlt-l;a)A'
i aci

+ % a £LL'] + %H Wa H'P' (5.16)

The derivation of (5.15) and (5.16) may not be as clear as that of (5.10) and

(5.11) and is therefore given, in more detail, in Appendix A.

Figure 5.4 summarizes the steps described above in the evaluation of

_(_(t)___ zt;) Since the recursive equations (5.10) and (5.15) run forward

Eai

in time, this approach can be referred to as the forward filter evaluation of

a- . Recalling that a is 9-dimensional, this evaluation then requires:

1 Riccati equation (3.12) or n equations

1 filter equation (3.10) or n equations

k Riccati sensitivity equations (5.15) or n 2 equations

9 filter sensitivity equations (5.10) or nZ equations

or roughly the equivalent of (Z+1) Kalman filters. While this is quite ex-

pensive computationally, it can be carried out in a straightforward fashion.
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For the case of a time invariant system and observations processed

by a steady state Kalman filter, the equations above simplify. In this

case, S(a) and H(a) are independent of t, and the time varying matrix

equation (5.15) reduces to a steady state version

- -Aa A' +Q + (5.17)

This equation is termed an algebraic Lyapunov equation, and an efficient

method for its direct solution, called the Bartels-Stewart method, is

available [17]. It is noteworthy that a major part of the computations in

this algorithm involve only operations on A which do not have to be

repeated when the equation is resolved for the different Qi.

There is also an alternate backward filter approach, with the

possibility of reduced computation, to the problem of evaluating the gradi-

ent of the likelihood function. Reexpress the forward filter equations in

the following form:

3 (z ; ) = E

aai . T=O1

t
+ F, (zT;a) a X(TTla)
T=O 3i

+ Etr (z ; ) 3 TI-l;a (5.18)

-(t+11 t;a) a t =Atrai T -tt- a ) _ _ 1

3i 1i D 
(5.19)

aZ(t+lj t;c0 - t) (tl t-i; a)az_(t+llt;) = -(t;a) A' (t; c) + .(t;ca) + Q.'(t;a) (5.15)
3aa i --- i - - -1 - - -

where

i(zt ;a) -½ tr{s-(t;_)[I-r(t;a)r'(t;)-l (t;a)]

-C··it~a,~rr ~-i~al a~LLE~.j(t;O

x2C (t; a) ((t t-l;a) (5. )

-- lsc(t;) - _'(t;a)S (t;a) x(t t-;a) (5.2Q)_ __ - ok~~
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y(zt;L) - - C' (t;a)sl (t;a)r(t;a) (5.21)

(zt ;a) - C' (t;a)S -l(t;a) [I - r(t;a)r' (t;a)S-l(t;a) ] C(t;a) (5.22)

and where (dropping the t and a arguments from matrix notations for clarify)

-i(t;a) = a - AH -- (t t-l;a)
Dai J

+ --A H + AZ(tlt-l;a) - sl C'S

I -1 DC DC 
C'S' E(tlt-l;a)C' - C'S-lCE(tlt-l;a) s r(t;a

- i . ..-js -r

+ -- u(t) (5.23)
aai -

(This form is derived in Appendix B.) The theory of adjoint equations,

briefly summarized in Appendix C, suggests the possibility of replacing the

nk + n 2 forward filter equations (5.19) and (5.15) with n + n adjoint equa-

tions running backward in time, and using the adjoint variables to evaluate

the second and third terms of (5.18). Indeed, by direct application of

Corollary 3 of Appendix C we have the following

Backward Filter

t t
iztz )= E 3z (;a)

+ A'(0;) (O;ca0) E a)k' (0~a) i

+ trA(O;a) c + Ec tAr_(t;a) (S. (T-l;a) + -i(- ;-

(5.24)

_A(T;a) = A' (T;a)c(T+l;G) + y(z ;a)

(t;) = y(z ) (5.25)

A(T;oa) = A' (T;c)A(T+l;o) A(T;a) - A' (T;O)X(T+l;O)y' (z ;c) + r_(z ;c)

A(t;a) = r(zt ;a) (5.26)

These equations run backward in time and can be referred to as the backward

filter evaluation of ii (summarized in Figure 5.5). Furthermore, in coam-
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parison with the forward filter approach, the backward filter approach

requires:

1 Riccati equation (3.12) or n2 equations

1 filter equation (3.10) or n equations

1 adjoint Riccati sensitivity equation (5.26) or n2 equations

1 adjoint filter sensitivity equation (5.25) or n equations

or roughly the equivalent of 2 (1 forward and 1 backward) Kalman filters.

This apparently represents less computation but the storage burden is now

increased. Therefore, the relative advantages of either the forward or back-

ward filter approaches depend heavily on the particular application.

As a final comment, we note that X(t) and A(t) in the adjoint equations

have interpretations as Lagrange multipliers or costates of an optimal control

problem (see e.g. 110]).

(ii) Hessian Evaluation

The evaluation of the Hessian of 1(zt;a) proceeds, in principle, as for

the gradient. However it requires roughly the equivalent of 2 Kalman fil-

ters which is a very heavy computational constraint and so is not attempted

in practice. An alternate approach is to use the information matrix

2 (zt;)_

instead, or, as is usually done, an approximation thereof (see e.g. [9] and

Section 5.3 below).

(iii) Numerical Minimization

At this point one can use a gradient algorithm of the form:

^k+l =k -kWk a9( ;a
-, - - --

k k
O being determined by a one dimensional search and the choice of W deter-

mined by the choice of one of the following methods [20].
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Steepest Descent Method: W = I

This method is simple but has a slow convergence.

Newton-Raphson Method: V =k 24(z ;k )-1
- a2 

This has the fastest convergence but is complex and expensive.

Approximate Newton-Raphson Method:

The idea here is, as mentioned above, to approximate 2(z ; )
aa2

by its expected value I t(k ) and to further approximate

I t(k ) by the expression given in Section 5.3. This is the most

common method.

Quasi-Newton Method:

Here, W is again an approximation to ( butisbuilt up

during the minimization process which starts out like the steepest des-

cent and then switches over to become like the Newton-Raphson.

Note that the approximate Newton-Raphson method requires that the

information matrix be nonsingular. We will see below that singularity

of the information matrix implies that our model set is overparametrized.

5.3 Information Matrix

Recall that the information matrix is defined by the equivalent

expressions (4.4) and (4.5). Therefore, from (5.3), we can write the infor-

mation matrix as

(a) a2=((Tz :a) - - · (5.2 7)

It is useful to define the conditional information matrix I (a) by
-z(t) Izt -

the equivalent expressions

I ( (Z(t)i zt-;a) /1t-l
I ( E) = E -- t-
z(t)Izt'l- -

(Z(t)Lit-_ a(z;a)- (z(t) zt-l;c) I t-l 
- Da Da z ;a (5.28)
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so that we can write

-t-

-z t E z(z_- - |-1

T=0 zT=O --(T) I Z- - 1 (5 )

From (5.29), we can see that to derive an expression for I t(a), we need
-zt

to first obtain an expression for I (a) and then to compute its
z(T)IzTl -

expected value I () .
z(T z_ 1- -·

The calculation of I ( _T (a) is carried out in Appendix D, where

the equation

0 z(T)ij ·[ s (1;aj

[ (T;) (T;Ca) -_ _ ( s- (Tr a)l (5;30)
=- tr D. a-

for its ijth element is derived. Using (5.30) and the equation

Ur(T;a) Dr'(T;a)) r(T;a) Dr(T;a)E{ r(T;5 ) ~r' (T;5) }, (5.31)
CE. i - aaj ij(T;) + a (5.31)

where r(T;) denotes the mean ofr(;) and S.. (T;a) denotes the covari-
D~i Di

ance matrix between and - - , we can obtain the equation

1--l a Lr Dr(-T;c) ar' (;a) -(T;T)+
(C=) tr .... ( +

~S(T;a) -zS(T;a) -1
+ trSi.(T;ca)S (T;La) + s (T;a) S (T;) s

_ D(Cti Da -J
(5.32)

The corresponding expression for the information matrix is

t [r(T;a) ar'(T;a) 1

[ t F -i T= S(T;CS) - S ( ) -

LtrS (iT;)S (T;a) + s-()- - S (T;a) .- S (;)

(5.33)
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Evaluating S.j (T;a) and ar(T;_) is conceptually straightforward although

computationally expensive. From equation (5.9), it follows that ( and
a;U

3r(T ;e)
-( ;-) are the outputs of a 4n-dimensional linear system with state vector

33l "

consisting of x(t), x(tIt-l;_a), I;(t a t ) , and x(tlt-1;l ) with white
_ ic.mj

noise inputs _(t), e(t) and with input u(t) (Figure 5.6). Therefore, we

can solve the usual equations for the mean and covariance of this system

(see, e.g., Chapter 4 of [1]) to generate Sij. (T;a) and . We omit

the details of this computation; some of the ideas are illustrated in the

following simple example.

Example 5.1

Our system model is

x(t+l) = au(t) + E(t)

z(t) = x(t) + 0(t)

where x(O), (t), 0(s) are all independent, zero mean, and have mean

square value equal to one. The true system has the same form, with

= 1. Clearly, we have

x(tlt-l;a) = z(tlt-l;a) = au(t-l)

and

S(t) = E{[z(t) - z(tlt-l;a)]2ja} = 2

independent of a. Therefore,

ar(t;a) = u(t)

which (trivially) has mean u(t) and covariance 0. Therefore, from

(5.30),

I I (a) = (C) = u2 (T)

so that

t

I (a) = E u2 (T) 
T0O
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Although the information matrix computation in the above example is

extremely simple, it is in general quite expensive to calculate the informa-

tion matrix. The mean and covariance equations of a 4n dimensional linear

dynamic system must be propagated and the sum (5.33) accumulated to determine

filter ax
sensitivity 
equation ( i ) da;

: filter x

Figure 5.6. Linear System for Information Matrix Element Computation
Figure 5.6. Linear System for Information Matrix Element Computation
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one element of the information matrix. This calculation must be repeated

Q (Z-1)/2 times since there are that many distinct elements of the sym-

metric information matrix.

As was the case for the evaluation of the likelihood function and

its gradient, the evaluation of the information matrix simplifies somewhat

if the system is stationary and it is assumed that the likelihood function

can be evaluated by a steady state Kalman filter. As discussed previously,

this assumption introduces an approximation that is valid if the observa-

tion time interval is long compared to the time required for the optimal

Kalman filter to converge to its steady state. Under this approximation,

we have S(T;a) - S(a) and S. (T;ca) -- S.. (a) constant, and these matrices

can be evaluated by solving the steady state covariance equations for the

system of Figure 5.6. (The special form of this system can be exploited

in the computations.) The resulting expression for the information matrix

is

-Iz -) E tr r( ) r'(T;a) S-1 ]
-Z T=O T0i j i

+ (t+l) trS (a)s- (a) + s() Sl () (a) S-1

(5.34)

The first term in (5.34) cannot be simplified without further assumptions

on u(t) (e.g., u(t) periodic).

An alternative to the solution of mean and covariance equations for

determining the information matrix is to use the stochastic approximation

E tr[ar(T;a) Dr' (T;a) -1
I (a) tr - S (T;
t - =O ai aaj - -

+ ½ S(T;a) ) S( S(T;) S-l(T;0). (5.35)
--t -- -- De.--

1 J 3
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Note that the right hand side of (5.35) is a random variable that has

expected value equal to the left hand side (from (5.29) and (5.30)).

Therefore, equation (5.35) makes sense if the standard deviation of its

right hand side is much smaller than its expected value. This will be

the case, for example, if the dominant system excitation is the known input

u(t) rather than the stochastic input 6_(t) so that the first term of (5.33)

dominates the second. Alternatively, in the absense of deterministic

inputs but with the assumption of a stationary system, it can be shown

that the approximation (5.35) is good if the observation interval [0,t] is

much longer than the correlation times of -r(T;) and

Notice that all the quantities in (5.35) are evaluated during the com-

putation of the gradient ( . Thus the approximation (5.35) is

readily computed during a gradient search for the maximum likelihood esti-

mate & . In fact, (5.35) is the approximation to the information matrix-t

used in the approximate Newton-Raphson method (Section 5.2 above).

Another use of (5.35) is in on-line identification for adaptive esti-

mation and control. The idea is to extend the multiple model adaptive

algorithms briefly mentioned in Section 5.2.1 by evaluating not only

t as(zt;)
_(z OK) but also and the approximate expression for I t(a K)

for a fixed number of parameter values a , K=0,1,...,N. One can then

pick the smallest (z t;a ) and take one approximate Newton-Raphson step

away from AK to interpolate between models in the parameter space. This
-K

method, termed the parallel channel maximum likelihood adaptive algorithm,

has been applied in a number of practical problems [11]. It has two very

significant potential advantages over other modifications of the maximum

likelihood identification method for on-line applications. First, the

practice of anchoring the Kalman filters at a fixed number of points in

parameter space leads to an algorithm with a stable and predictable
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behavior; divergence problems cannot occur. Second, by careful selection

of the AK one can eliminate the problem of convergence to local minima of
-K

the likelihood function associated with on-line, recursive implementations

of the maximum likelihood method.

So far we have emphasized the role of the information matrix (or an

approximation thereof) in algorithms for numerical minimization of the

negative log likelihood function. However, the information matrix also

plays a crucial role in analyses associated with identification problems.

Indeed, we have argued that a parameter estimate is of little value with-

out an indication of its accuracy.

For the maximum likelihood parameter identification method, the Cramer-

Rao lower bound

__ 1t - tl -Ztprovides a lower bound on the accuracy of parameter estimates. As we have

shown above, the information matrix can be precomputed without actual

observations, and thus the Cramer-Rao lower bound can serve as a tool for

experimental design. The maximum accuracy of parameter estimation can be

evaluated as a function of such experimental conditions as sensor quality,

system excitation, number of observations, etc. before an identification

experiment is performed.

5.4 Asymptotic Properties

In this subsection the following assumptions are added to the linear-

Gaussian model considered so far.

* The system is time invariant.

* The noise processes are stationary.

We will see in the next section that under certain conditions this bound

is asymptotically tight.



-50-

* A steady state filter is used to compute the likelihood function.

Furthermore, let a denote the true parameter which is assumed to belong

to M. Then, the asymptotic properties of maximum likelihood identifica-

tion mentioned in Section 4 apply as follows.

5.4.1 Consistency (lim a = a )
t+O -t -O

In Section 4 we discussed the consistency of maximum likelihood esti-

mates for independent, identically distributed observations. Recall that

the basic condition for consistency was that no parameter has the same

single observation likelihood function as the true observation. Since the

conditional likelihood function p(z(t)zt ;a) is the analog for dependent

observations of the single observation likelihood function, it is reason-

able to conjecture that an identifiability condition of the form

p(z(t) lzt-i;a) p(z (t) Iz ;0

or equivalently

V(z(t) zt-l';a) V (z(t)lzt-l;a)

for all a 3 4 E M would be sufficient for consistency. This is essentially

the situation for the case we are considering, except for some difficulties

associated with the presence of the inputs u(t). We will see that the

above inequalities can be checked in terms of quantities associated with

the steady state Kalman filters corresponding to a and a0.

Recall that t minimizes C(z ;Ca) which depends on a through the Kalman

filter residuals r(t;a) as well as their covariance S(aO). Rewrite (5.8) as

D (z(T) IzT-1 ;_) 
1 r(T;a))

)r' (T;(x ) (5) S i --

+ ½ trI(I- Sl(a)r(T;a)rI(T;a))Sl() ()

where the first term is the ith component of the gradient of

Recall the stationarity and steady state assumptions made above.
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I(z(T) IzS-1;a) holding S(c) fixed and the second term is the ith component

of the gradient holding r(T;a) fixed. We then see that the maximum likeli-

hood technique involves minimizing a weighted quadratic criterion in the

residuals as well as fitting the residuals second moment to their presumed

covariance S(a), precomputed through the algebraic matrix Riccati equation

corresponding to a. One would therefore expect that if, for some a - a0,

r(t;a) and S_() are respectively identical to r(t;a 0) and S(a 0 ), a0 will

not be identifiable.1

Now by virtue of the stationarity assumptions made above we can con-

sider the frequency domain description of the steady state Kalman filter

as shown in Figure 5.7. Let

G(y;a) - c()(c I - A(a))- B(a)

and

H _(; _) - c()(a - A(a_))- A(a)H(a) + I

Then

r(y;c_) = - H(y;)- G(y;a)u(y) + H(y;a) z(y) (5.36)

and, in view of our discussion above, it comes as no surprise that it is

necessary for consistency to have

G(y;a) 4 G(y; 0ao) (5.37)

or

H(Y;a) 2 (H(y;a) (5.38)

or

S(a) # S(a0) (5.39)

for all a # a0, a_ E M since otherwise some other parameter would have the

same likelihood function as the true parameter.

We use the phrases "ac is identifiable" and "the maximum likelihood esti-
mate is consistent" imate is consistent" interchangeably.
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z r

A
z

Jr = transform variable

Figure 5.7 Frequency Domain Description of the Steady State Kalman Filter
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Let us now raise the question of the sufficiency of those conditions

and let us restrict our attention to the case where u(t) - 0 (or equiva-

lently, G(y;a) E- Va£ M). In [13], Caines shows that, under assumptions

of stationarity of the inputs and outputs of the system (which in our

present case follows from stability), at converges into the set M0 of para-

meters minimizing E{C(z(t) I z-1;) i} Note that under our present assump-

tions this is a time invariant function of a. It is also implicitly shown

in [13] that if condition (5.38) is satisfied, then a0 is the only element

of Mo and consistency of at follows. This says that if the steady state

Kalman filter transfer function H(y;a 0) corresponding to a0 is different

from that corresponding to aa -0, then at is consistent. If, however,

these transfer functions are the same and condition (5.38) does not hold,

then condition (5.39) is necessary and sufficient for consistency. This

result is shown in Appendix F and is illustrated by the following example.

Example 5.2

Consider the system

x(t+l) = t) ; W(t) - N(0,-)

z(t) = x(t) + (t) ; 0(t) N(O,E)

where a contains unknown parameters in A and 0. Clearly

_(tlt-1;a) = (0Stlt-l;a) = 0 Va M

so that

H(Y;a) = I and G(y;a) = 0 VaE M

However,

s(a) = ( (a) + 0(a)

so that at will converge to a0 if and only if

s(a) # S(a ) va 0 a ,IaEM

The case where general deterministic inputs u(t) are present requires a
more elaborate analysis which is briefly sketched out in Appendix E.
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The above discussion has considered global identifiability, but one

can also define a notion of local identifiability. The following examples

will clarify this point.

Example 5.3

x(t+l) = ax(t) + bu(t)

z(t) = cx(t)

a' = [ a b c ]

cb

and one cannot identify c and b, only their product cb. ·

Example 5.4

xl (t+l) = a xl(t) + E(t)

x2 (t+l) = a2x 2 (t) + E(t) ; a1 / a2

z(t) = xl( t) + x2 (t)

and if al and a2 have their true values exchanged they give rise

to the same E{(z(t)lzt l;Oa)} thus making the two sets of values

indistinguishable. a

Note in example 5.4 that there exist neighborhoods about the true

values of al1 and a2 such that the maximum likelihood method will be con-

sistent if restricted to these neighborhoods. On the other hand, in exam-

ple 5.3 no such neighborhoods about the true values of c and b can be

found. The situation in example 5.4 is termed local identifiability and

often suffices for practical purposes.

Local identifiability can be investigated by determining the rank of

the information matrix. Indeed, under the above cited assumptions of

Determination of rank is a difficult problem for which a sophisticated

numerical analytic technique is required. The singular value decom-

position approach is recommended [17].
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Caines [13] and u(t) - 0,1 we formally have, for some neighborhood of a0

E{C(z(t) tz l;a)} - E{(z(t)Izt-l ;
_ _ - 0- G= 0

(a - a )' E 2(z(t)lz ;)t-
- -o Do =o

_2 '~t-l-)
+ h (a - a I 0 a CZ (t2 Z ;a) } (O -wo

+ h.o.t. (5.40)

But the first term after the equality sign vanishes for a = aG and the

matrix of the second term is I (at ) by definition.2 Therefore, in
_z(t) .z~t- io

view of the above consistency results, the positive definiteness of

I z(t)t (a0) is a sufficient condition ([20]) for aG to be a unique local

tt-
minimum of E{C(z(t)_z ;_a)} and for Ot to be locally consistent.

So far we have discussed identifiability conditions for the consistency

(global and local) of maximum likelihood identification under assumptions

of stationarity and steady state Kalman filters. We now briefly address

the other asumptotic properties mentioned in Section 4 under the same

assumptions and conditions.

5.4.2 Asymptotic unbiasedness

As indicated in Section 4, this follows from consistency since, under

very general technical conditions,

lim Efi _tG0 } = E{lim & = a

5.4.3 Asymptotic normality

As t-+ , & tends to a Gaussian random vector with mean a0 and covari-

See footnote p. 53.See footnote p. 53.

2 Under the present assumptions I (at) is a time invariant quantity
(s(t)ee also Section 5.3).

(see also Section 5.3).
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-1
ance I ( 0). This was shown in [14] under general conditions of smooth-

-t -o

ness and boundedness of the innovations. As argued in Section 4, this also

allows us to compute confidence intervals for ai0 about the estimate at which

is a useful tool in applications.

5.4.4 Asymptotic efficiency

lim E{(- t - ) (a - 0)'
t->co -t o -t - - z t -0o

follows from asymptotic normality. In conjunction with asymptotic unbias-

ness, this means that the Cramer-Rao lower bound is achieved for a large

number of observations.

Note that under the assumptions of this section, we have from (5.34),

for u(t) _ 0

I () = (t+l) tr[j (a ) ( 0) S --- S (a S ( 0 )]-zt _0 13 -0- (-0 ) + i -- - j -- 

= (t+l) I ((a 
z(t) l z t-O o

and here again, in terms of the asymptotic covariance matrix

E (6 )(& a ')} I -1()
E(t - -t - t -z(t) I t-l (o)

This generalizes equation (.4.91 and plays a similar role from an applications

point of view.

The asymptotic efficiency property of ML estimates is quite important.

It says, for the special case of very long observation sequences, that the

maximum likelihood identification method is an optimal method in the sense

that it gives unbiased parameter estimates with minimum error covariance

matrix. Note that the asymptotic efficiency property agrees with our earli-

er statement that the Cramer-Rao lower bound tends to be tight when the

signal-to-noise ratio is high; the large number of observations effectively

permits us to average the noise down to a low level.

Finally, we recall our discussion of Section 5.3, where we pointed
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out that since the information matrix is precomputable it can play an

important role in experimental design. The fact that the inverse informa-

tion matrix is an asymptotically tight lower bound to the error covariance

matrix provides additional support for that discussion.

5.5 Maximum Likelihood Estimation Under Modeling Errors

One is often in a situation where the true system is not a member of

the model set in use. This might happen inadvertently, as in the case

where one is ignorant of the true system's order, or deliberately, as in

the case where one uses lower order models to reduce the computational

burden. As we have seen, maximum likelihood identification requires

repeated solution of the Kalman filtering problem which is a significant

computational burden if the dimension of the models considered is large;

so there is indeed a great incentive to work with reduced order models.

'The previous analysis does not apply to this situation and the question

of convergence of the ML estimate has to be reanalyzed in the present context.

One possible approach to this problem has been suggested by Baram and

Sandell ([15]) and relies on some information theoretic concepts which will

now be summarized.

5.5.1 Information definition and properties

The analysis presented in this part is general, applying to anymodel setM,

finite or nonfinite, and requires no assumptions of Gaussianess or stationarity.

Recall the probability density of past to present observations

( t c) = p(z(t)lzt-l;a) ... p(z(O);a)

where _ can now be any element of T - AU{*} and where * denotes the "true"

parameter. If for some pair of parameters all, a2 we have

p(Zt a ) > (zt;a
- -1 -' -2

then it is natural to say that the information in the observations contained
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t
in z favors a- over a2. The above equation is equivalent to

in p(z t; ) > in p(Z3 ;C2)-z -i -

or

In ___1 > 0
p(zt ; )

Therefore, In P(zt- l) can be regarded as a measure of information in z
p(zt; )

- -2
favoring -1 over a2. Similarly,

t-1 t-1
in P_(zt;-) - in P = in p(z(t)I zt 1;l)

p(zt;2a ) p(zt-l; ) p(z(t)st

can be regarded as a measure of the new information in z(t) favoring a1 over

~2' Finally define,

EJ (c ;c) E Elln P _ tft;- 1 (5.41)
th -i -p(z(t) zt-l;a- o

the expected new information in z(t) favoring al over a2.

Note that the expected value in (5.41) is taken with respect to the

true probability measure. So J t(a;a ) can only be computed if the true

probability is known. But it is still useful as an analytical tool as will

be shown later.

Now some of the properties of Jt(1;V2) are presented. The proofs can

be found in [15].

i) For any acy M,

Jt(*;a) > 0 (5. 42)

with the equality holding if and only if

p(zt;*) = p(z t a) a.s.

I.e., on the average, the true model is always favored by

the observations.
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ii) lJt(_i'i~ = 

IJt( Iitt(a ;a 0)

I Jt(_ai;) = I t' (ai;al + IJt(_ j;e)

I.e.,

dt(a i;-j ) Jt(ai;a) (5.43)

constitutes a pseudo metric on T or an information distance

between a and a..
-1 -

5.5.2 Application to linear systems

Returning now to the linear-Gaussian case with stationary system and

model, consider the true system described by equations of the form (2.1)

through (2.11) assuming u(t) - 0 (i.e. only noise inputs). This true system

can then be specified by the n* dimensional time invariant matrices:

{A(*) ,L(*IC(*) *),(*),(*) (5.44)

and the n dimensional model set by

M(a) = {(A(a),L(a),C(a),_(a) ,O(a)); aE MI{} (5.45)

As before

S(t;a) - E{(z(t) - ( (t;z(t) - ))'}

= E{r(t;a)r' (t;a,)} (546)

denotes the predicted observation error covariance assuming that a is the

true parameter. If each model in (5.45) is detectable and controllable (see

[6]) the steady state limit

S (a) = lim S(t;a) (5.47)

exists and has a finite positive definite value.

Furthermore, let

, t; ) _= (rt; a) r' t a).a (5.48)
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denote the observation error covariance of the predictor corresponding to

a when in fact the model corresponding to * is the correct one. Here again,

let

S(a) = lim a (t;a) (5.49)
-- t0 S, (t;_)

be the steady state limit if it exists. S,(a) is generated by solving the

covariance equation for the (n* + n ) linear system described in Appendix G.

(One will note the similarity to the reduced order filter computations in

equations (3.16) through (3.18)).

Finally, assume that the residuals sequence r(t;a) is ergodic (a suf-

ficient condition would be the stability and observability of the corres-

ponding stationary model M(a)). Then, the conditional probability density

t-l
of z(t) given the past observations z corresponding to a model M£c)

is given by (541) and the information distance between two models M(ai) and

M(a 2 ) can be derived as follows. From (5.41) and (5.3)

Jt(Q-i;2 ) = E*{C(z(t) Izt- 1;a (Z it-1 (5.50)
t -;V2 -2 E,{~(z t)z _ 1 }

where, under the additional steady state assumptions used in Section 5.4,

E,*{Cz(t) Iz_- ;a)} = ½ in det[S(a)] + ½ tr[S- (C)S, (a)] (5.51)

is a time invariant function of a, as argued in Section 5.4.1. We also have

from (5.41) through (5.43)

J(_ ;a ) = J(*;a ) - J(*;_ )-- 2 -2 -l

= d(*;a 2) - d(*;a ) (5.52)

where d(*;c) is the information distance between * and a.

It can then be shown that, under the above assumptions of stationarity

and ergodicity (see [16]), maximum likelihood estimates on the compact para-

meter set M converge almost surely to a0 where

d(*;a 0 ) < d(*;a) (5.53)

for all a E M.

This means that maximum likelihood estimates converge to the parameter
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in M closest to the true model. This also represents a generalization of

the consistency result of Section 5.4.1. Indeed, in view of (5.50) - (5.52),

condition (5.53) holds if and only if

E, {(z(t)lz ;a _)} < E {~(z(t) zt-l; (5.54)-0 - _ _ _
and the same identifiability issues as those discussed in Section 5.4.1 are

relevant here to a0 which satisfies (5.53). In other words, the consistency

and identifiability properties connected with the true parameter in Section

5.4.1 generalize here to the parameter which minimizes the information dis-

tance to the true parameter.

Recall now that this section was concerned with linear stationary

Gaussian models with only noise inputs. Here again, as mentioned in Section

5.4, the presence of deterministic inputs complicates the analysis. Indeed,

the information distance defined above, depends in this case on u as illus-

trated by the following simple example.

Example 5.5-

Consider the true model:

X1 (t+l)l [1 0 1 +

Lx2(t+2) -1 x2[t) 2

y(t) = xl (t) + x2(t )

and the lower order models

M(a1) : lx(t+l) = x(t) + ul(t) + u2(t)

y(t) = x(t)

and

M(a) : x(t+l) = - x(t) + ul(t) + u2 (t)

y (t) = x(t)

Then if u (t) - 1 and u (t) - 0
1 2
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Then if ul (t) - 1 and u2(t) - O

J(ol;21 ut) > 0

forcing the choice of M(al); and if ul(t) - 0 and u2(t) - 1

J(2;cl u t) > 0

forcing the choice of M(a2) . This makes sense since in each case we

are exciting only one of the two modes of the true system. I

The convergence analysis in the presence of deterministic inputs as well as

the other asymptotic properties of maximum likelihood estimates mentioned

in Section 5.4 will not be discussed in this report.
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SECTION 6

SUMMARY AND CONCLUSIONS

In this report, we have given a brief introduction to the maximum

likelihood method for identifying the parameters of a linear-Gaussian state

space model. We have ignored or only mentioned briefly a number of impor-

tant issues including approximate maximum likelihood identification of non-

linear systems, special cases of the basic formulation that can be imple-

mented with less computation, determining the best model order, and many

others. Rather, we have concentrated on the issues of computing and inter-

preting the maximum likelihood estimate of the unknown parameters in a

general linear-Gaussian state space model of fixed order. Our most basic

conclusions were the following

* Maximum likelihood theory provides asymptotically optimal estimates

in the sense that they are asymptotically unbiased and achieve the

Cramer-Rao lower bound.

* A quantitative measure of estimation accuracy is provided by the

Cramer-Rao lower bound which is asymptotically tight.

· Asymptotic accuracy of parameter estimates canbe determined off-line

by computation of the Cramer-Rao lower bound so that various alter-

native experimental conditions can be evaluated before data is

gathered.

* The maximum likelihood equations are general-purpose, valid for any

linear state space model and involving compuations familiar to Kal-

man filter designers.

* The asymptotic sensitivity of the maximum likelihood estimates to

modeling errors, either inadvertant or deliberate, can be readily

assessed.
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It seems to us that the above properties are essential for any ade-

quate theory of system identification. It is notable that these properties

of the maximum likelihood method for the nonlinear parameter identification

problem are similar to the properties of the Kalman filtering method for

the linear state estimation problem. Kalman filtering theory has become

a basic tool for off-line studies of system performance during preliminary

design studies by covariance simulation, and for on-line integration of

multisensor systems. We feel that maximum likelihood theory will become

a basic tool for off-line problems of identification experiment design and

for processing of experimental data to extract estimates of system

parameters.
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APPENDIX A

DERIVATION OF THE RICCATI SENSITIVITY EQUATION (5.15)

Consider the Riccati Equation (3.12)

E(t+l It;a.) = A(t;a)C(t! t-1;a)A' (t;_a) + L(t;ca) (t;_a)L' (t;a)

- A(t;a)H(t;a)S(t;a)H'(t;a)A'(t;a)

Dropping the arguments and underscores from the matrix notations for clarity,

differentiate with respect to ai and use (5,13) for 2a

ax (t+l t;a) A (tl t-l;a) Al + [L L'
aai aai aai

- AHC 3 (tl t-l; a) A'

- A D(t t-l;a) C'H'A'
aai

- A a. z(tl t-l;a)A'
I

- AZ(tlt-l;a) aI H'A'

DS
+ AH DSH'A'

ci(.

1aa. (tj t-l;a) [I - C'H']A'

+ A[I - HC] 7(tlt-1;a) DA' (A.1)

Substituting for D from (5.14) and using the definition of A in (5.12),

The first, third, fourth terms and the first substituted term in

(A.1) group into:

D(tj t-l;a A-

The eighth and ninth terms into:

aA z(tl t-l;a) A' + AZ(tlt-l;a) gA'
1 i

The fifth, sixth terms and the third and fourth substituted terms

into:
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APPENDIX B

DERIVATION OF THE FORWARD FILTER EQUATIONS (5.18) TO (5.23)

As in Appendix A, the arguments and underscores are dropped from matrix

notations for clarity.

Consider equation (5.8)

9?(z(t)1zt;00 - 1 r [-1 S
1a) -1 as -1..(Z(t)Izt; = r'S- 1 r _- !r'S- a S S- r + tr S1 9S

-1 Dr ]1
= r'S 1 a + tr S (I - rr'S ) aa.

1 1

And substitute forLa- from (5.9) and S- from (5.14).
1 1

5(z(t)lzt;;a) -1 DC A a(tl I t-l;a)
-a -= r'S aa x(tt-l; a) - C -

+ trS (I - rr'S-l)(C (tl t-1;a) c' +

+ C z(tl t-l; a)C' + CZ(tl t-1;a) ac' ]

= r trS - S -rr'S - 1 ) 2CE(tI t-l;a) c + LO-

- r'S - x(t

aai
- r'S-1C s (tI t-1;c)

+ ½tr[C (S 1 - 1S rr'S- l1 a(tct-1;c) ]

where for the first term the identity

tr(AB) = tr(A'B')

was used, and for the last term the identity

tr(AB) = tr(BA)

was used.

Equation (5,18) with (5.20), (5.21) and (5.22) now follow.
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-AH L- (tj t-l; c)A' - A(tl t-l;_) 1- H'A'

Finally the second term and the second substituted term remain as:

[L L's ] + AH (5. H'A'

Equations (5.15) and (5.16) now follow.
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Consider now equations (5.10) and (5.11). Using (5.12) we can reex-

press (5.11) as

i(t;a) = -- [A(I- HC) ](t It-1;a) + [AH] z + u
1 1 1

DA DC \, 3 B
Aa AH - )x(tlt-1;a) + [AH]r + u

But, from (5.13) and (5.14) we have

9 A A E C'-1 + A9cl -1 C -1 C Z C'-1
[AH] = H + A CS + AC'S A C C'S

_ AC'S- 1 a0 S-1 AC'S-1 -c C's-1

1 1

-1 DC, -1
- AZC'S -c Z- s

The second and fourth term group into

- Z -1
A a C'S.

and equation (5.19) with (5.23) now follow.
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APPENDIX C

ADJOINT COMPUTATIONS

Some properties of adjoint equations are discussed.

Lemma:

Suppose J = <c,x> where Ax = b, A invertible.

Then J = <X,b > where A*X = c.

Proof:

J = <c,A lb >=<(A-1)*c,b>= <X,b>

where (A- ) *c (A*) -1c= 

or A*X = c.

Corollary 1

T
Suppose J = C t

t=O

where xt+ Ax +ut x0 given.

Then J2 _ x + -t ut

t=l

where _t =AXt+1+ X c
-t -t-t+l -t -T -T

Proof:

I 0 0 · 0 00 xO

-A0 I 0 . 0 0 0 x1 u0

-AT_2 I O

0-AT_ I UTj



From the lemma

UT_1

where

I -A0 0 . . . 0 X c

o I -A 1 . . 0 1 c0

T-

I c
T T

i.e.re T AC

t -A - _tt t+ ct

Corollary 2

Suppose J = ) trCtXt , symmetric
t=0

where X =AX AX + U , X given and symmetric, U symmetric.

Then J = tr(AX0 ) +T trXt Ut)+

where = A' A A +C A C

Proof:

Define formally the operator

(X0',X'''''PXT) -(X'-AoXoA0 + X 1i''' ,-AT-1XT- 1 l XT)
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and the inner product

T
<(C0,C1 CT ), (X0,X1, ....,X T ) > tr[CtXt]

t=0

Evaluate J = <(C ,C1,...,CT), (X0 ,X ... XT) >

subject to -W(X ... ,XT) = (X0 ,U ,.^..^,UT_)

From the lemma,

J = <(A0OA 1 ... AT ) , (x0', ··· T- 1 ) >

where *(oA 1 ... ,T) = (COCl

But ,*(Ao0,Al ),...T = (A0 - AA A 1 A. .. 'AT - T-1 AT -1 T)

indeed: <9?(Xo,Xl, ... X T ) (A oAl . .'' T ) >

= troX0A0O + tr E tr[(-At_ XtlA' t + xt)A t
t=l

= tr[X A 0 ] + tr[-X ~' At + x A0 0 2.~ t-t-1 t-- tAtt=1

=tr [X . X A'! AAI + tr[Xx. A - X A'A A ] +00 0010 11 1121

.. + tr[XT_ 1- _-XT -1 A' AT- + tr[X AT

T-1

= tr[X t( t - At t+l At ) ] + tr [XTAT]
t=0

-< (X0,X 1i -X),Y*(Al.. .,AT ) >

Corollary 3

T
Suppose- J E {c +t tr CtX C symmetric

t=0

where x Ax AXc + t x givenft+i =-t-t -t-t-t 0

and l -- t- X given and symmetric, U symnetric,Xt+ 1 = A tXt t + - t

Then J=X x +tr[Ax]- +x + tr[] + { t ut11 + tr tUtl]}
t=l

where Xt = At Xt+l + c t ' T = c T

and At A A A -AAt+ ' +C CT-t -t t+l-t -t -t+l-t -t -T -T
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Proof:

Define formally the operator

Z(x ,x 1 ... ,x T X X,X1... , x T) -- (x0, -A0x 0 + AoX0C 0 + x 1 ... -AT1XT 1

+ T-1T-1 X +xX,- ATXoA O + XiX, -A X A +X)-T-l T-1 T 000 1T-l T-1T-1 T

and the inner product on n R x n R
i=o i=o

<(c0 ,c 1 ... ,c TC , 1 ...,cT) , (XOx 1 ... ,xT x 0 ,X..., T >)>

T

- Ct Xt + tr[CtXt]}
t=0

Evaluate J = <(c ,cl,....,CC,C ,...,C T), (x ,xl,...,XT T ,..., T)>

subject to

J(x ... ,XT ,X ,..., X T) = (XOuO...,UT -1,X 0, U 0...UT 1)

From the lemma,

J < (0,0,0,... ,TA 0,A1 ,... AT) , (x,u 0,... ,U Tl X0 ,U 0 ,...U T-1)>

where (,...,T,,... = (cO!...,CT COF .'.CT) 

0Bt TO T 0 01 T-l T-1TXTO A A010

01 T-l T-lTT-l T-T

Indeed <?(x' ...x TX O' .X T) , (A ... ',TA'... AT)>

T

x0 A0 + Z (- Atl 1
+xt'l +A t t

t=l

T

+ tr[XoA ] + Z tr[(- At_lXt Al + xt)At]
t=l

x', Ox~_0A _Xt + tr[X t l AX c' 1] + X Xt
+ trXA ] + tr- t-1 t t-1 xt t

+ tr[XOA0] + L tr[- Xt_lAt_lAtAt_l + XtA t]



= x (o - A1) + X1 (X1 - AX2) + '" + XTT

+ tr[X (A AAlAo + A'XlC))]+ ... + tr[XTAT ]

T-1

E X' (It - A'Xt ) + xT
t t t+lt=O

T-1

+ E tr([Xt (A A A+ At t+l c t )] + tr[XTAT]
t=O

= <(x0 '''''XT'Xl'''X T)' 0*(X0' '''XT'A0 '' '' T)>
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APPENDIX D

DERIVATION OF THE INFORMATION MATRIX EQUATION (5.30)

Here again, the arguments and underscores are dropped from matrix

notations for clarity. From (5.28)

S7z(Ti ( E { (z(T) CI Z ;a) a (z (T)|z ;a) T0 l; (D.l)
--i za j D-i D e.j

and from (5.8)

=(- E rS Dr arrS- 1 rs S lr + <tr[S-1 D_])
Da D (Y. Da.i 1 1

[ a3-] L a1 I
+ (r'S 1S - S(rS- 1 3r ,t- 1 .D -1 r 1

J J

(D.2)

(-r'S -s )(rS-1 a S Dr)

+ j

+I (rtS - 1 D asr -)( r Sl S- 1r)

Da. 3D .1 3

Thrfoe usn th identities

I 3

+ tr[S-1 Dr S-1 DS)

+ (tr[S- D i)a 2 r'S - S'r-1 DSS IS ; (D)D

3

Therefore, using the identities
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E{(c'x)(x'Ax)} = 0

E{(x'Ax)(x'Ax) } = (tr[_A]) + 2 tr[EAEA]

for x~N(O,Z) , A = A'

the fourth, fifth, sixth and eighth terms of (D.3) are zero and (D.3) re-

duces to:

i~rZT -- ij ai as -

+ ,rLDS StraS S-] +2 t-S S S as S )

[ Da.] t 3a]+- 1 t¼r[ S tr- S_-]

-4 tr s i tr] ] (D.4)which is .1 I a)ras r -1tr S ~S

eZ(I)|Z ~~~trFi S tr[ + a SS D O ] (D.5)

-- ic- isj

which is (5. 30).
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APPENDIX E

CONSISTENCY IN THE PRESENCE OF DETERMINISTIC INPUTS

We have already argued in Section 5.4.1 that condition (5.37) could be

necessary for &t to be consistent. However, we shall now see that its suf-

ficiency depends on additional assumptions on the deterministic inputs u(t).

Note that in the presence of such inputs, E{~(z(t)lztl ;o)} is not, in

general, time invariant and the global convergence result generalizes

as follows. In [21], Ljung shows that t converges into the
-t

set Mo(t) of parameters minimizing
t

lim 1 1: E{~(z(t)|z ;a)
t__>C0 t+l =

and this set depends in general on the input signal. In view of (5.36) it

is therefore reasonable to expect condition (5.37) to be sufficient if the

input u(y) is general enough to excite all modes of the system. No rigorous

proof of this will be given in this report. However, we shall take a closer

look at the following special case.

In [12], Ljung uses the prediction error parameter estimate obtained by

minimizing a scalar function of the matrix

t 

T=0

where R(T) is some positive definite weighting matrix, and shows that under

general conditions of bounded fourth moments of the residuals r(t;a), search

over models leading to stable Kalman filters and overall system stability,

this prediction error estimate converges into the set of models that give

the same output prediction as the true system in the sense:

lim inf tl ^z(T;a ) - (;a i 
t- t+l =O -

Here again this set depends in general on the input signal and will be con-

tained in the set of all models with same input-output relation as true
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model, if the input is general enough to excite all modes of the system.

It is shown in [12] that a sufficient condition would be for u(t) to be

independent of the process noise and be persistently exciting. It is

also shown in [12] that the above prediction error identification method

includes the maximum likelihood method only in the cases where S is com-

pletely known (i.e. independent of a) or S is completely unknown (i.e. all

its elements are free and part of a). In those cases S(a) is not computed

through a Riccati equation and consistency of &t follows if (5.37) or (5.38)

hold.

As for local consistency, by the same argument as above, equation (5.40)

is not in general time invariant and so the local identifiability result of

Section 5.4.1 must be generalized as follows. In [19], Tse shows that local

identifiability of the true parameter a0 follows from positive definiteness

(non-singularity) of the average information matrix

im 1 I (a

t =O -Z) -I -

and here again we will note that this result depends in general on the input

signal u(t).

u(t) is persistently exciting if, for all M, there exists 6(M) and N (M)

such that
I< 1N U1
-I < -Z u W M(t) < (I
N 1-N -M

for N> NO and where

u0L(t) - [u'(t) ... u'(t-M)]
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APPENDIX F

ON CONDITION (5.39)

We first prove the following lemma

Lemma:

Let A and B be two real symmetric rXr positive definite matrices, then

ln(det[A]) + tr[A B] > ln(det[B])+ r (E.1)

with equality holding if and only if A = B.

Proof:

(E.1) is equivalent to

tr[A-1B] - ln(det[B]) + ln(det[A]) > r

tr[A-lB] - net[] > r

tr[A B] - ln(det[A B]) > r

Let A 2 denote the real symmetric positive square root of A and XA-A BA 2

then X is a real symmetric positive definite matrix with eigenvalues

X.(X)> O0, i= l,...,r, tr[X] = i(X) and det[XJ = n] x.(X) so that

(E.1) is equivalent to

tr[X] - ln(det[X] > r

or

[Xi(X) - in Xi(X)] > r

Since for any scalar x> 0

x - in x > 1

with equality holding if and only if x= 1 (E.1) follows, with equality

holding if and only if

(X) = 1 Vi = l,...,r

Since X is real symmetric equality holds if and only if

X - A-BA- =

_ _ _ _ _~`----- I--~-
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or

A = B .

Now recalling our discussion in Section 5.4.1, if (5.38) does not

hold for some a # a0 then

E{r(t;_)r' (t;C_) I)0} = E{r(t;ao0)r' (t;ao0)I|_0
} _ S((ao)

and

E{t(z(t)jzt- I;a)jo} = ln(det[S(a)])+ ½ tr[s-l(a)S(aO0)]

But

E{f(z(t)jzt- ;G)I0 } = ln(det[S(oO)])+ ½ tr[S (_ )S(0 )]

= 2 ln(det[S(a )])+ -

and, under the assumptions of Section 5.4.1, S(aO) and S(a) are real sym-

metric positive definite matrices. Therefore, from the lemma above,

E{c(z(t)|z - 1 ;a_) IC 0} > E{(z(t)jzt ;_0 ) o0}

with equality holding if and only if S(a) = S(a0).

This means that if (5.38) does not hold, condition (5.39) (S(a) S(a_))

is necessary and sufficient for O-0 to be the only element of M0 from which

consistency of at follows.
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APPENDIX G

DERIVATION OF S*(0C) (EQUATION 5.49)

Consider the (n* + n ) dimensional dynamic equation generating simultane-

ously the true state x(t;*) and the estimate ^(t t-l;a) corresponding to the

reduced order model M(a):

x(t+l;*) * x(t;*) 1Ft)
-- = A* + L * (E.1)

Lx^(t+l1t;a) L(tlt-;) - 8(t)

where

A(*) 0

A* - (E.2)

A(01)H(1)aC(*) A (a) [I - H (C()] ]

L(*) 0

L A (E. 3)

H(C) = (tl t-l; _) C' (C) [C()a)Z(ti t-l;a)C' (a) + _@(u] (E.4)

(obtained directly from equations (2.1), (2.2), (3.10) and (3.11)).

Also, let

-* = r - (*)) and C* = [C(*) -C(a)] (E.5)

Then
x(t;*) 

* (t) -E x' (t;) ] (E.6)

is generated by the Lyapunov equation

7* (t+l) = A* Z* (t) A*' + L* 7*L*' (E.7)
-OCa -0-0t -aO -a.- -a0

Let * = lim 7. (t) (E.8)
-a- tCo -a.

denote its steady state value. This limit exists if A* has all its eigen-

values inside the unit circle.
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Finally

s,(c) = c* * c*' + (*)(E.9)
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