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Abstract 

This report develops an exploration of the Finite Element Method from the Rayleigh-Ritz 

Method through more complex 1D problems. First, the Rayleigh-Ritz Method is explored along 

with the utilization of basis functions and the differentiation between Neumann-Robin and 

Dirichlet boundary conditions. In Chapter Two, 2nd Order models of heat transfer problems serve 

as a first exploration of the Finite Element Method in full and the considerations of error analysis. 

Chapter Three uses and discussion and model of flipping and cooking hamburgers to explore the 

class of time-dependent Finite Element problems that employ the Finite Difference-Finite Element 

Method. Chapter Four moves to bending cases with 4th order equations, using the specific example 

of determining shapes and corresponding resonant frequencies in xylophone bars. Lastly, Chapter 

Five applies the Finite Element Method to self-buckling problems in the context of a contest to 

optimize a tower shape to achieve a max height without buckling subject to certain constraints. As 

a note, figure and table numbers are local to each chapter, and any mention of lecture or a listing 

of derived equations comes directly from the MIT subject 2.S976 Lecture Notes (AT Patera, 2019) 

on MIT Stellar. 
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Chapter One – The Rayleigh-Ritz Method 

1. Introduction 

In this chapter, we explore the fundamentals of Finite Element Analysis via the Rayleigh-Ritz 

Method. This method is explored and validated through the development of code to solve two 

different models of problems. Both problems are from the area of thermodynamics, but are 

differentiated by their boundary conditions – either Neumann/Robin or Dirichlet. Through the 

testing of the developed code with different parameters and numbers of Rayleigh-Ritz ψ functions, 

a discussion of the principles of Rayleigh-Ritz and the effects of problem parameters on the 

Minimization Process can be presented. 

1.1 The Rayleigh-Ritz Method 

The Rayleigh-Ritz Method is an approximation method that given a problem and its 

corresponding energy functional (Π), finds an approximate solution (uRR) such that the quantity 

Π(𝑢𝑅𝑅) is less than any other possible Π(𝜔). The function, ω, is any other candidate function 

that meets certain problem-specific conditions, and the method develops uRR as a sum of 

unknown coefficients, 𝛼𝑖
𝑅𝑅 , multiplied by known basis functions, 𝜓𝑖. In this chapter, the 

problems explored involve heat transfer, and their corresponding solutions are functions that 

describe the temperature along a thermal fin.  

Regardless of candidate function requirements and Π functional formulation, the Rayleigh-

Ritz method requires the input of a set of basis functions. These functions can also be defined as 

shape functions, for they offer different “shapes” for the model to weight together in order to 

develop an approximate solution uRR. The number of basis functions is denoted as nRR, and a 

corresponding list of basis functions could look like the following: {𝜓1 ∈ 𝑋, 𝜓2 ∈ 𝑋, … 𝜓𝑅𝑅 ∈
𝑋}. The expansion of the Rayleigh-Ritz approximation, uRR, is the sum of the weightings of the 

individual ψ functions: 𝑢𝑅𝑅 =  ∑ 𝛼𝑖𝜓𝑖(𝑥)𝑛𝑅𝑅

𝑖=1  𝑤𝑖𝑡ℎ 𝛼𝑅𝑅 = (𝛼1
𝑅𝑅 𝛼2

𝑅𝑅 … 𝛼𝑛𝑅𝑅
𝑅𝑅). The guiding 

principle of the RR Method is that “lower is better,” with the method seeking to find a vector 

𝛼𝑅𝑅such that Π (∑ 𝛼𝑖
𝑅𝑅𝜓𝑖

𝑛𝑅𝑅

𝑖=1 ) <  Π(∑ 𝛼𝑖𝜓𝑖
𝑛𝑅𝑅

𝑖=1 ), meaning that Π(𝑢𝑅𝑅) is less than the energy 

functional evaluated with any other combination of αi’s and ψi’s.  

The Minimization Proposition, which I will not re-prove in this paper, states that the energy 

functional evaluated at the exact solution to the problem plus a perturbation (u + v) results in 

three terms, of which only the third (EIII) is non-zero. This third term is a norm that can evaluate 

the accuracy of a proposed candidate function. As a result of the Minimization Proposition proof, 

we can state the Comparison Proposition: given two approximations to u (𝑢1̃ 𝑎𝑛𝑑 𝑢2̃) such that 

Π(�̃�1) < Π(�̃�2) then 𝐸𝐼𝐼𝐼(𝑢 − �̃�1) < 𝐸𝐼𝐼𝐼(𝑢 − �̃�2). This allows us to state, in general, that 𝑢1̃ is a 

better solution than 𝑢2̃ in the EIII norm if Π(�̃�1) < Π(�̃�2). This is extremely valuable, as it has 

the practical implication that the evaluation of Π(�̃�𝑖) does not require knowledge of 𝑢, the exact 

solution to the problem. In the next section, I will describe the two models that are explored in 

this chapter as well as the variations of the Rayleigh-Ritz Method used for each depending on 

their boundary conditions. 
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1.2 Considered Models 

1.2.1 Model I 

The first considered model, Model I, describes a quasi-1D heat conduction in a conical frustum of 

length L and initial radius R0, that is insulated on the lateral surfaces and has heat flux and heat 

transfer coefficient boundary conditions on the left and right surfaces, respectively. These 

boundary conditions correspond to Neumann/Robin boundary conditions, and this type of problem 

can be solved using the standard Rayleigh-Ritz Method. The following equations describe the 

model and its boundary conditions: 

−𝑘
𝑑

𝑑𝑥
(𝜋𝑅𝑜

2 (1 +  𝛽
𝑥

𝐿
)

2 𝑑𝑢

𝑑𝑥
) = 0 𝑖𝑛 𝛺   (1)  

𝑘
𝑑𝑢

𝑑𝑥
=  −𝑞1 𝑜𝑛 Γ1          (2) 

−𝑘
𝑑𝑢

𝑑𝑥
=  𝜂2(𝑢 − 𝑢∞) 𝑜𝑛 Γ2               (3) 

The value of the temperature at 𝑥 = 0 was considered as the output of the problem (𝑠 = 𝑢(0)). 

We were also supplied with an exact solution to Equation 1 with which to test our codes, which 

can be found in Appendix A. 

For Neumann/Robin boundary conditions, the space of functions over which Π must be minimized 

is 𝐻℩(Ω), which includes candidate functions (ω) that satisfy the conditions that the integral of the 

function or its derivative squared must be finite: 

 

𝐻℩(Ω) [ ∫ 𝜔2𝑑𝑥
𝐿

0
<  ∞, ∫ (

𝑑𝜔

𝑑𝑥
)

2

𝑑𝑥 < ∞
𝐿

0
]    (4) 

The formulation of the energy functional for this problem with respect to a valid candidate 

function ω can be found in Appendix A.  

The Rayleigh-Ritz Approximation for this model follows the general formulation of  

𝑢𝑅𝑅 =  ∑ 𝛼𝑖𝜓𝑖(𝑥)𝑛𝑅𝑅

𝑖=1  𝑤𝑖𝑡ℎ 𝛼𝑅𝑅 = (𝛼1
𝑅𝑅 𝛼2

𝑅𝑅 … 𝛼𝑛𝑅𝑅
𝑅𝑅)  (5) 

The derivation of the Rayleigh-Ritz Approximation of Model I can be found in Section 2.1.1 of 

this chapter. 

1.2.2 Model II 

The second considered model describes a right-cylinder thermal fin of length L, cross sectional 

area Acs, and cross section perimeter Pcs that has temperature and zero-flux boundary conditions 

on the left and right surfaces, respectively. As a temperature is imposed as one of the boundary 

conditions, this problem is classified as having one Dirichlet boundary conditions (7) and one 

Neumann/Robin boundary condition (8). This leads to it having a slightly different formulation for 

finding 𝑢𝑅𝑅via the Rayleigh-Ritz Method. The following equations describe this model and its 

boundary conditions: 

−𝑘𝐴𝑐𝑠
𝑑2𝑢

𝑑𝑥2
= 𝜂3𝑃𝑐𝑠(𝑢 − 𝑢∞) = 0 𝑖𝑛 Ω   (6) 

𝑢 =  𝑢Γ1
𝑜𝑛 Γ1           (7) 
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−𝑘
𝑑𝑢

𝑑𝑥
= 0 𝑜𝑛 Γ2             (8) 

The heat flux into the frustum at 𝑥 = 0 was considered as the output of the problem (𝑠 =

 −𝑘
𝑑𝑢

𝑑𝑥
(𝑥 = 0)). We were also supplied with an exact solution to Equation 6 with which to test 

our codes, which can be found in Appendix B. 

For Dirichlet boundary conditions, the space of functions over which Π must be minimized is 

𝑋𝐷 , affine space. This includes candidate functions (ω) that are within 𝐻℩(Ω), but also meet the 

essential boundary condition of a set temperature at x = 0, 𝜔|Γ1
=  𝑢Γ1

. 

The formulation of the energy functional for this problem with respect to a valid candidate 

function ω can be found in Appendix B.  

The Rayleigh-Ritz Approximation for this model follows a special formulation of basis functions 

at the beginning of the method. In order to satisfy the affine space condition and imposed 

temperature boundary condition for the candidate function, 𝜓0 ∈  𝐻℩(Ω) 𝐴𝑁𝐷 𝜓0 (𝑥 = 0) = 1. 

The remaining basis functions must have a value of zero and x = 0 in order to uphold the 

temperature boundary condition. This results in a Rayleigh-Ritz expansion of  

𝑢𝑅𝑅(𝑥) =  𝑢Γ1
𝜓0(𝑥) +  ∑ 𝛼𝑖

𝑅𝑅𝜓𝑖(𝑥)𝑛𝑅𝑅

𝑖=1     (9) 

The solving for 𝛼𝑅𝑅involves the formation of two sets of matrices for two steps of matrix 

equation operations to arrive at the final answer. The derivation of the Rayleigh-Ritz 

Approximation of Model II can be found in Section 2.1.2 of this chapter. 

I will now move on to an explanation of the development of the code templates we were 

provided with to consider the Rayleigh-Ritz approximations of Model I and Model II. 

2. Development of Codes 

The method I used to modify the template codes given to us were to use pattern matching between 

the equations that govern the models and the general equation for the energy functional to 

determine the values of the various constants specific to each model. This allowed me to then use 

those constants to develop the needed 𝐴 𝑎𝑛𝑑 𝐹 matrices. I then added to the code my derived 

equations for 𝐴, 𝐹, 𝛼𝑅𝑅 𝑎𝑛𝑑 Π in order to ultimately calculate 𝑢𝑅𝑅.  

2.1 Mathematical Derivations 

2.1.1 Model I 

Based on the comparison of Equation 1 to the general form of the differential equation from 

lecture: 

−
𝑑

𝑑𝑥
(𝜅(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝜇(𝑥)𝑢 =  𝑓Ω(𝑥) 𝑖𝑛 Ω    (10) 

I was able to determine that for the case of Model I, 𝜅(𝑥) = 𝑘𝜋𝑅0
2(1 + 𝛽

𝑥

𝐿
)2, 𝜇(𝑥) =

0, 𝑎𝑛𝑑 𝑓Ω(𝑥) = 0. In order to pattern match the boundary conditions outlined in Equations 2 & 3, 

I needed to first scale them by 𝜋𝑅0
2(1 + 𝛽

𝑥

𝐿
)2 so that I could pattern match to 𝜅(𝑥), since only k 

was present in the original boundary condition equations. After scaling both B.C. and evaluating 

them at either x = 0 or x = L, I was able to determine via pattern matching that 𝛾1 = 0, 𝑓Γ1
=
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𝑞1𝜋𝑅0
2, 𝛾2 = 𝜂2𝜋𝑅0

2(1 + 𝛽)2, 𝑎𝑛𝑑 𝑓Γ2
= 𝜂2𝜋𝑅0

2(1 + 𝛽)2𝑢∞. This results in the following 

energy functional that is valid for Model I: 

Π1 = Π(𝜔) =
1

2
∫ [𝑘𝜋𝑅0

2(1 + 𝛽)2 (
𝑑𝜔

𝑑𝑥
)

2

]
𝐿

0
𝑑𝑥 +

1

2
[𝜂2𝜋𝑅0

2(1 + 𝛽)2𝜔2(𝐿)]                     

  −𝑞1𝜋𝑅0
2𝜔(0) − 𝜂2𝜋𝑅0

2(1 + 𝛽)2𝑢∞𝜔(𝐿)           (11) 

In order to solve for 𝛼𝑅𝑅, it is necessary to solve the matrix equation: 

𝐴 𝛼𝑅𝑅 =  𝐹     (12) 

The standard formulations for 𝐴𝑖𝑗  𝑎𝑛𝑑 𝐹𝑖 can be found in Appendices A and B for the respective 

models. Using the values of constants that I had identified above using pattern matching, the 

following equations for 𝐴𝑖𝑗  𝑎𝑛𝑑 𝐹𝑖 emerged: 

𝐴𝑖𝑗 = ∫ [𝑘𝜋𝑅0
2 (1 + 𝛽

𝑥

𝐿
)

2 𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
] 𝑑𝑥 + 𝜂2𝑘𝜋𝑅0

2 (1 + 𝛽
𝑥

𝐿
)

2

𝜓𝑖(𝐿)
𝐿

0
𝜓𝑗(𝐿) (13) 

𝐹𝑖 =  𝑞1𝜋𝑅0
2𝜓𝑖(0) + 𝜂2𝜋𝑅0

2(1 + 𝛽)2𝑢∞𝜓𝑖(𝐿)    (14) 

To modify RR_2S_sver in order to create rileyd_RR_2S_sver_Model1, I inputted the exact 

solution we were provided with as well as its derivative, and then wrote out the equations for the 

elements of the 𝐴 and 𝐹 matrices. I set all constants for the problem at the beginning of the code, 

except for β which is passed to the function. I also calculated 𝑠 = 𝑢(0), our required output for 

this problem, and then calculated the error between the Rayleigh-Ritz Approximation of the 

temperature at x = 0 to the exact solution evaluated at that point. 

2.1.2 Model II 

For Model II, I compared Equation 10 to the differential equation that describes the model (6) in 

order to determine the value of each problem specific coefficient. 

I was able to determine that for Model II, 𝜅(𝑥) = 𝑘𝐴𝑐𝑠, 𝜇(𝑥) = 𝜂3𝑃𝑐𝑠, 𝑎𝑛𝑑 𝑓Ω(𝑥) = 𝜂3𝑃𝑐𝑠𝑢∞. The 

N/R boundary condition needed to be scaled by Acs in order to be consistent in our definition of 

𝜅(𝑥), but because the right hand side of Equation 8 equals zero, the scaling mathematically does 

not end up having an effect on the solution. After scaling both B.C. and evaluating them at either 

x = 0 or x = L, I was able to determine via pattern matching that 𝛾2 = 0, 𝑓Γ2
= 0, 𝑎𝑛𝑑 𝑢 =  𝑢Γ1

. 

This results in the following energy functional that is valid for Model II: 

Π2(𝜔) =
1

2
∫ [𝑘𝐴𝑐𝑠 (

𝑑𝜔

𝑑𝑥
)

2

+ 𝜂3𝑃𝑐𝑠𝜔2]
𝐿

0
𝑑𝑥 − ∫ [𝜂3𝑃𝑐𝑠𝑢∞𝜔]𝑑𝑥

𝐿

0
        (15) 

Because of the extra condition on the ψ functions to have 𝜓0(0) = 1 and all other 𝜓𝑖(0) = 0, first 

two matrices, �̃� and �̃�, are formed using the identified coefficients in the same manner as in Model 

I: 

�̃�𝑖𝑗 = ∫ [𝑘𝐴𝑐𝑠
𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
+ 𝜂3𝑃𝑐𝑠𝜓𝑖𝜓𝑗] 𝑑𝑥

𝐿

0
   (16) 

�̃�𝑖 =  ∫ [𝜂3𝑃𝑐𝑠𝑢∞𝜓𝑖]𝑑𝑥
𝐿

0
    (17) 

Then 𝐴, 𝐹, 𝑎𝑛𝑑 𝑏 are extracted from the ~ matrices. In order to solve for 𝛼𝑅𝑅, it is necessary to 

solve the matrix equation: 
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𝐴 𝛼𝑅𝑅 =  𝐹 − 𝑢Γ1
𝑏     (18) 

Then, �̃�𝑅𝑅 is formed from 𝑢Γ1
𝑎𝑛𝑑 𝛼𝑅𝑅, and finally Π is evaluated using �̃�𝑅𝑅, �̃� and �̃�.  To modify 

RR_2S_sver in order to create rileyd_RR_2S_sver_Model2, I inputted the exact solution we were 

provided with as well as its derivative, and then wrote out the equations for the elements of the 

�̃� and �̃� matrices. I set all constants for the problem at the beginning of the code, except for η3 

which is passed to the function. I added code to extract 𝐴, 𝐹, 𝑎𝑛𝑑 𝑏 and then form �̃�𝑅𝑅 . I also 

calculated 𝑠 =  −𝑘
𝑑𝑢

𝑑𝑥
(𝑥 = 0), our required output for this problem, and then calculated the error 

between the Rayleigh-Ritz Approximation of the heat flux at x = 0 to the exact solution evaluated 

at that point. Instead of taking the numerical derivative of uRR, I simply took the derivative of the 

Rayleigh-Ritz Approximation (9), which only involves taking the derivatives of the individual ψ 

functions and multiplying them by their constant coefficients 𝛼𝑖
𝑅𝑅. 

3. Testing and Results 

3.1 Exactinclude 

The first check to make sure that the code that I modified was working, was to run the code using 

a known solution to the model to confirm that the known correct answer is returned. This was done 

using exactinclude, which passes the exact solution as 𝜓1 𝑎𝑛𝑑 𝜓2 = 𝑥. Below in Table 3.1.1 

are the results of running this command with varying values of β for Model I. 

Table 3.1.1 – Model I exactinclude 

From this data, I can tell that the model is working because regardless of the value of β, the vector of 

Rayleigh-Ritz coefficients had a value of one multiplying by 𝜓1 and a value of zero multiplying by 𝜓2. 

This means that my code is returning the exact solution with a weighting of one, and not including 𝜓2 at 

all.  
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For Model II the results are slightly different as seen in Table 3.1.2 below: 

Table 3.1.2 – Model II exactinclude 

In the case of Model II, the desired outcome is to have ψ0 multiplied by uΓ1
 and ψ1 multiplied by a 

coefficient of zero, since ψ0 is defined as the exact solution divided by uΓ1
. In my code for Model II, 

uΓ1
= 50, and from the data in Table 3.1.2 it is clear that uRRis calculated as uRR = 50 × ψ0 + 0 × ψ1 

which results in the correct exact solution being returned. Because of this, I can gain confidence that my 

codes are working correctly. 

3.2 Constlinquad  

Using constlinquad, up to three unique ψ functions can be passed to the Rayleigh-Ritz code to be 

multiplied by the best possible coefficients that the method determines. Figures 3.2.1 and 3.2.2 show 

the initial ψ functions that are passed using constlinquad and an example of the final weightings 

with coefficients that the Rayleigh-Ritz approximation calculates. 

Figure 3.2.1 constlinquad Basis Functions   Figure 3.2.2 Example of 

Rayleigh-Ritz coefficient weighting 

In using both Model I and Model II, the values of Π(𝑢𝑅𝑅) approached the value Π(𝑢𝑒𝑥𝑎𝑐𝑡) with 

increasing nRR (See Table 3.3.1). This makes sense, as we discussed in class how the addition of first and 

second order polynomial ψ functions tends to increase the accuracy with which the Rayleigh-Ritz 

Method can approximate the solution. We also mentioned that going further to third and higher order 
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polynomials does not add much value as these basis functions no longer introduce novel “shapes,” but 

unfortunately I did not have time to test higher order ψ functions for this chapter. 

 

3.3 

Constlinquad vs. Exactinclude 

The Rayleigh-Ritz recipe finds the coefficients, 𝛼𝑅𝑅, such that 

Π (∑ 𝛼𝑖
𝑅𝑅𝜓𝑖

𝑛𝑅𝑅

𝑖=1

) <  Π(∑ 𝛼𝑖𝜓𝑖

𝑛𝑅𝑅

𝑖=1

) 

meaning that Π(𝑢𝑅𝑅) is less than the energy functional evaluated with any other combination of 

αi’s and ψi’s. In order to check this, we can compare the value of Π(𝑢𝑅𝑅) when using 

constlinquad, to the value of Π(𝑢𝑅𝑅) when using exactinclude (passing the exact 

solution as 𝜓1 𝑜𝑟 0), which results in the lowest possible value of Π(𝑢𝑅𝑅). 

 

Table 3.3.1 – constlinquad compared to exactinclude (β = 1, η3 = 1) 

For all values of nRR, the energy functional values are close to the lowest possible value for the 

given problem and parameters, which is the value of the energy functional when using 

exactinclude. Increasing the number of ψ functions passed to the code, decreases the error 

between the RR approximation and the exact solution, which in turn brings the value of the 

energy functional closer to the absolute minimum. This data also leads to the conclusion that 

increasing the number the number of ψ functions (for this particular set of basis functions, as 

discussed in Section 3.2) results in a better approximation of uRR. This is based on the 

Minimization Principle that states if Π(�̃�1) < Π(�̃�2) then �̃�1 is a better approximation of u than 

�̃�2, using the EIII norm. Beyond confirming the Minimization Principle, these results also give 

confidence that both the codes for exactinclude and constlinquad are working well 

because the produced similar results for Π(𝑢𝑅𝑅). 
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3.4 Changing β and η3 

Using Model I, I varied the value of β across the following values [1, 2, 3, 100, 10000]. At above 

three, the values of Π(𝑢𝑅𝑅) became so close to Π(𝑢𝑒𝑥𝑎𝑐𝑡) I that I realized I should focus on varying 

β on the order of 1. When using one basis function, I found that the difference between the exact 

solution and the Rayleigh-Ritz approximation (the error of the output) decreased with increasing 

β. This wasn’t easily observable from the graphs, but error dropped from 0.29 to 0.17 using nRR 

=1 and moving from β =1 to β = 3. A similar drop occurs when nRR = 2 (0.15 -> 0.12), but error 

decreases slightly when nRR = 3 (0.003 -> 0.02). The parameter β affects the change in cross 

sectional area along the length of the frustum in Model I. The larger β is, the greater the increase 

in cross sectional area per length of the frustum. I am not sure how this makes the solution easier 

to approximate using the Rayleigh-Ritz Method.  

Using Model II, I varied the value of η3 between 1, 80, and 10000. This results in magnitudes of 

the parameter μ0 that correspond to natural convection, forced convection, and change of phase, 

respectively. I found that increasing η3/μ0 corresponds with an increase in the difference between 

the exact solution and the Rayleigh-Ritz Approximation. These coefficients relate to the 

convective heat loss on the outer surface of the fin. I assume that as this term increases in 

magnitude, the rate of convection increases and varies more over the surface, making it harder to 

approximate.  
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Chapter Two – The FE Method for 1D 2nd-Order SPD BVPs 

1. Introduction 

In this chapter, we explore the fundamentals of Finite Element Analysis which builds off of 

the Rayleigh-Ritz Method explored in Chapter 1. The FE Analysis is explored using provided 

software and validated through the development of code to solve three different models of 

problems. All problems are from the area of thermodynamics, but are differentiated by their 

boundary conditions – either Neumann/Robin or Dirichlet – and the presence or absence of heat 

transfer coefficients. Testing of these models leads to a discussion of the principles of the Finite 

Element Method in 1D and the interpretation of whether solutions are converging or can be 

validated using error estimators. 

1.2 Considered Models 

1.2.1 Model I 

The first considered model, Model I, describes a quasi-1D heat conduction in a conical frustum of 

length L and initial radius R0, that is insulated on the lateral surfaces and has heat flux and heat 

transfer coefficient boundary conditions on the left and right surfaces, respectively. These 

boundary conditions correspond to Neumann/Robin boundary conditions, and this type of problem 

can be solved using the standard Finite Element Method. The following equations from lecture 

notes describe the model and its boundary conditions: 

−𝑘
𝑑

𝑑𝑥
(𝜋𝑅𝑜

2 (1 +  𝛽
𝑥

𝐿
)

2 𝑑𝑢

𝑑𝑥
) = 0 𝑖𝑛 𝛺              (1)  

𝑘
𝑑𝑢

𝑑𝑥
=  −𝑞1 𝑜𝑛 Γ1                    (2) 

−𝑘
𝑑𝑢

𝑑𝑥
=  𝜂2(𝑢 − 𝑢∞) 𝑜𝑛 Γ2                  (3) 

The value of the temperature at 𝑥 = 0 was considered as the output of the problem (𝑠 = 𝑢(0)). 

We were also supplied with an exact solution to Equation 1 with which to test our codes, which 

can be found in Appendix A. 

The FE Analysis solution for this model follows the general formulation of:  

𝑢ℎ(𝑥) =  ∑ 𝑢ℎ𝑖
𝜑𝑖(𝑥)𝑛𝑛𝑜𝑑𝑒

𝑖=1                          (5) 

Where nnode is the number of nodes in the finite element mesh and φ1 are the P1 shape functions 

used.  

1.2.2 Model II 

The second considered model describes a right-cylinder thermal fin of length L, cross sectional 

area Acs, and cross section perimeter Pcs that has temperature and zero-flux boundary conditions 

on the left and right surfaces, respectively. As a temperature is imposed as one of the boundary 

conditions, this problem is classified as having one Dirichlet boundary conditions (7) and one 

Neumann/Robin boundary condition (8). This leads to it having a slightly different formulation for 

finding 𝑢ℎ via the Finite Element Method. The following equations describe this model and its 

boundary conditions: 
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−𝑘𝐴𝑐𝑠
𝑑2𝑢

𝑑𝑥2
= 𝜂3𝑃𝑐𝑠(𝑢 − 𝑢∞) = 0 𝑖𝑛 Ω         (6) 

𝑢 =  𝑢Γ1
𝑜𝑛 Γ1                (7) 

−𝑘
𝑑𝑢

𝑑𝑥
= 0 𝑜𝑛 Γ2                (8) 

The heat flux into the frustum at 𝑥 = 0 was considered as the output of the problem (𝑠 =

 −𝑘
𝑑𝑢

𝑑𝑥
(𝑥 = 0)). We were also supplied with an exact solution to Equation 6 with which to test 

our codes, which can be found in Appendix B. 

The finite element solution for this model follows a special formulation of basis functions at the 

beginning of the method. This results in a finite element solution formulation of:  

𝑢ℎ(𝑥) =  𝑢Γ1
𝜑1(𝑥) +  ∑ 𝑢ℎ𝑖

𝜑𝑖(𝑥)𝑛𝑛𝑜𝑑𝑒
𝑖=1               (9) 

The solving for 𝑢ℎ involves the formation of two sets of matrices for two steps of matrix 

equation operations to arrive at the final answer.  

1.2.3 Ch2_Model_Mine 

For our third model, we developed a simple model that imposes N/R boundary conditions at both 

the left and right ends of the domain, with heat transfer coefficients that are both non-zero and 

positive. I chose to develop a model for heat transfer through a wall with uniform conductivity and 

convection happening on each side. The diagram below describes the situation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Visual Depiction of Ch2_Model_Mine. Temperatures on either side of 

a solid wall with conductivity k, are represented by uin and uout. Heat Transfer 

Coefficients γ1 and γ2 are non-zero and positive. 

The equations that describe this model, as well as the assumed linear solution for u, are written 

below: 

−𝑘𝐴𝑐𝑠
𝑑2𝑢

𝑑𝑥2 = 0 𝑖𝑛 Ω       (10) 
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𝑘𝐴𝑐𝑠
𝑑𝑢

𝑑𝑥
= 𝛾1𝑢 −  𝛾1𝑢𝑜𝑢𝑡 𝑜𝑛 Γ1        (11) 

−𝑘𝐴𝑐𝑠
𝑑𝑢

𝑑𝑥
= 𝛾2𝑢 −  𝛾2𝑢𝑖𝑛 𝑜𝑛 Γ2            (12) 

𝑢 = 𝐵 (
𝑥

𝐿
) + 𝐶           (13) 

The value of the temperature at x = 0 was considered as the output to this problem. In order to 

test the code, we provided run_uniform_refinement with the exact linear solution to the 

problem by solving for B and C in Equation 13, by using Equations 10, 11, and 12. This resulted 

in the following values: 

 

𝐵 =  
𝛾2(𝑢𝑖𝑛−𝑢𝑜𝑢𝑡)

1+ 
𝑘𝐴𝑐𝑠
𝛾2𝐿

+
𝑘𝐴𝑐𝑠
𝛾1𝐿

            (14) 

𝐶 =  
𝑘𝐴𝑐𝑠

𝛾1𝐿
𝐵 +  𝑢𝑜𝑢𝑡           (15) 

2. Summary of Finite Element Method 

The Finite Element Method uses a similar sequence of steps as the Rayleigh-Ritz Method to solve 

complex physical models in an elemental way. After a model is describe by a differential equation 

and appropriate boundary conditions, the different constants or functions that are uniform across 

different models can be determined via pattern matching. This then allows for the formation of 

elemental matrices that do not yet take the boundary conditions of the model into account. Their 

formulations are as follows: 

𝐴𝑖𝑗
𝑁 =  ∫ [𝜅(𝑥)

𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
+ 𝜇(𝑥)𝜑𝑖𝜑𝑗] 𝑑𝑥

𝐿

0
         (16) 

𝐹𝑖
𝑁 = ∫ 𝑓Ω(𝑥)𝜑𝑖𝑑𝑥

𝐿

0
     (17) 

Next the relevant boundary conditions are applied – the example model I will use to discuss this 

has a N/R boundary condition on Γ2 and a Dirichlet boundary condition on Γ1. First, the 𝐴𝑁𝑎𝑛𝑑 𝐹𝑁 

have the N/R boundary condition added: 

�̃�𝑖𝑗 =  ∫ [𝜅(𝑥)
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
+ 𝜇(𝑥)𝜑𝑖𝜑𝑗] 𝑑𝑥

𝐿

0
+ 𝛾2𝜑𝑖(𝐿)𝜑𝑗(𝐿)  (18) 

�̃�𝑖 = ∫ 𝑓Ω(𝑥)𝜑𝑖𝑑𝑥 + 𝑓Γ2
𝜑𝑖(𝐿)

𝐿

0
   (19) 

If this problem did not have a Dirichlet condition, a N/R boundary condition would be added on 

for Γ1 and �̃� = 𝐴, �̃� =  𝐹. The matrix equation 𝐴 𝑢ℎ =  𝐹 could then be solved directly for the FE 

solution 𝑢ℎ. Since there is a Dirichlet condition, 𝐴 = �̃�(2: 𝑒𝑛𝑑, 2: 𝑒𝑛𝑑), 𝑢ℎ
0 = 𝑢ℎ(2: 𝑒𝑛𝑑), 𝐹 =

�̃�(2: 𝑒𝑛𝑑), and then 𝐴 𝑢ℎ
0 =  𝐹 − 𝑢Γ1

𝑏 can be solved for the finite element solution. In the actual 

code implementation of the FE method, everything is mapped to a reference element via quadrature 

points. 
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3. Discussion of Success of Implementation 

3.1 Convergence for Ch1_Model_II 

After implementing Ch1_Model_II in library_of_models and calling the model in 

run_uniform_refinement, the outputted figures were analyzed to determine if uh was 

converging to u which also indicated that the implementation was correct. Figures 2 and 3 show 

the output of Mesh 0 and Mesh 6 for Ch1_Model_II for both u and 
𝑑𝑢

𝑑𝑥
. With Mesh 0, it is clear 

that both the temperature field and its derivative are not being approximated well, as the individual 

shape functions (albeit weighted) can be seen in the FE Analysis plot of uh, while the FE calculated 

derivative struggles to capture the large initial slope of the temperature derivative. By Mesh 6, 

both u and 
𝑑𝑢

𝑑𝑥
 appear to be approximated exactly by the FE method. As a second check, I looked 

at the error estimates and actual error calculations in different norms between the FE solution and 

exact solution, which can be seen in Figure 4. The error in each norm ultimately decreases in 

parallel to the expected trendline, which also gives confidence that the FE solution is converging 

successfully to the exact solution for Ch1_Model_II. Lastly, looking at the map of the matrix 

that shows the location of non-zero elements, it is clear that it is tridiagonal which is expected and 

also points to correct implementation. 

Figure 2: Mesh 0 for Ch1_Model_II. Temperature on left, derivative on the right. 
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Figure 3: Mesh 6 of Ch1_Model_II. Temperature on left, derivative on the right. 

Figure 4: Estimated and Actual Error over six meshes for Ch1_Model_II 
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Figure 5: Matrix Element Map of Ch1_Model_II Matrix A 

 

3.2 Confidence in Implementation of form_elem_mat_sver 

Unfortunately, the convergence of uh to u does not guarantee that the code I edited in 

form_elem_mat_sver is bug-free for all possible instances of μ(x). In Section 3.1, I 

discussed my confidence in my implementation of form_elem_mat_sver through testing 

with Ch1_Model_II, which has μ(x) as a constant, and therefore does not test the case where 

μ(x) is a function of x. Solving a problem where μ(x) is not a constant will end up being 

complicated and messy, therefore the “method of manufactured solutions” should be utilized. I 

will consider a similar formulation to Ch1_Model_II (see Equations 6-8), but replace the 𝜇(𝑥) 

term (𝜂3𝑃𝑐𝑠) with a linear function of x (𝜂3(𝜎
𝑥

𝐿
)): 

Ω ≡ (0, 𝐿),   Γ1 = {0},   Γ1 = {𝐿} 

−𝑘𝐴𝑐𝑠
𝑑2𝑢

𝑑𝑥2 = 𝜂3𝜎
𝑥

𝐿
(𝑢 − 𝑢∞) = 0 𝑖𝑛 Ω         (20) 

𝑢 =  𝑢Γ1
𝑜𝑛 Γ1                (21)           

−𝑘
𝑑𝑢

𝑑𝑥
= 0 𝑜𝑛 Γ2      (22) 

Then a smooth solution can be arbitrarily chosen for the temperature u – in this example, 𝑢 =  𝑥3 

is used. After “manufacturing” a solution for u, 𝑓Ω(𝑥) 𝑎𝑛𝑑 𝑓Γ2
can all be calculated directly: 

𝑓Ω(𝑥) = −
𝑑

𝑑𝑥
(𝑘𝐴𝑐𝑠

𝑑𝑢

𝑑𝑥
) + 𝜂3𝜎

𝑥

𝐿
(𝑢 − 𝑢∞) 

𝑓Ω(𝑥) = −
𝑑

𝑑𝑥
(𝑘𝐴𝑐𝑠 ∗ 3𝑥2) + 𝜂3𝜎

𝑥

𝐿
(𝑥3 − 𝑢∞) = 6𝑘𝐴𝑐𝑠𝑥 + 𝜂3𝜎

𝑥

𝐿
(𝑥3 − 𝑢∞) 
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𝑓Γ2
= (−𝑘𝐴𝑐𝑠

𝑑𝑢

𝑑𝑥
) (𝑥 = 𝐿) =  −𝑘3𝐴𝑐𝑠𝐿2 

Now using these developed equations and manufactured constants, the FE method can be used to 

solve this problem for uh. Using this manufactured model with a non-constant μ(x) that is 

dependent on x, the robustness of form_elem_mat_sver can be tested using a known solution. 

3.3 Confidence in Implementation of impose_boundary_cond_sver 

Testing of modified code continued with Ch1_Model_I and Ch2_Model_Mine focused on 

impose_boundary_cond_sver. As can be seen in Figures 6 and 7, there is visible 

confirmation that the FE solution is converging for both models, as the FE solution can be seen to 

approach the exact solution over the iterative meshes. In Ch2_Model_Mine, the FE method is 

able to approximate the solution on the first mesh iteration because of its linear nature. 

Using Ch2_Model_Mine provides greater implementation confidence than Ch1_Model_I 

because the impose_boundary_cond_sver code’s job is to impose the boundary conditions 

of the supplied model. In Ch1_Model_1, 𝛾1 is equal to zero, while 𝛾2 is non-zero. If testing was 

only done with Ch1_Model_I, any errors in the code to apply the boundary condition that utilizes 

𝛾1 would not be seen. In Ch2_Model_Mine, both γ values are non-zero, so any errors in code 

imposing the boundary conditions would be visible in the solution because both γ’s are in play. 

Figure 5: Mesh 0 for Ch1_Model_I (left) and Ch2_Model_Mine (right) 
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Figure 6: Mesh 6 for Ch1_Model_I (left) and Ch2_Model_Mine (right) 

 

3.4 Determining Convergence for a Model_X 

As a sanity check of the understanding of how one can be sure convergence is achieved, an 

unknown Model_X is considered for which the exact solution u is not known. When the FE 

code is run for Model_X, it is observed that for sufficiently small h the extrapolation error 

estimators converge at the anticipated rates in all norms. At first glance, it would appear that the 

conclusion that uh is converging to the exact solution of Model_X is valid. This cannot be 

concluded absolutely, because there may have been an error in the model definition of 

Model_X, or it could be possible that a different model from Model_X was called in 

run_uniform_refinement. This would mean that the FE code is solving a different 

problem than the one thought to be being solved, and although the results are converging, the 

results are not for the correct problem! 

3.5 Accuracy and Verification of Numerical Specification 

Ch1_Model_II was considered over a sequence of 9 meshes with p = 1, and the code was run 

assuming no exact solution was available (i.e. changing probdef.exact_available from 

true to false). Error estimates in two norms were assessed without the use of a known 

solution and predictions of the upper bounds of the error estimates were made. The L∞ norm, 

which is the maximum of |𝑢(𝑥) −  𝑢ℎ(𝑥)| over all x in Ω,  was considered first and the coarsest 

mesh such that ‖𝑢 − 𝑢ℎ‖𝐿∞(Ω) < 1.00 was sought. First, I confirmed that the error estimate in 

the H1 norm was decreasing over the relevant meshes (Meshes 4+). By looking at Figure 7, 

which shows the results of running an FE Analysis of Ch1_Model_II with no known exact 

solution, the coarsest mesh with a negative value for log10(𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝐿∞𝑛𝑜𝑟𝑚) is Mesh 7 

(marked with a Datatip). This corresponds to an estimated upper error bound of 10−0.1967 =
0.63577 for the error in the L∞ norm. Next, error estimates for the error in the output were 
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explored for Mesh 5. In the error in the output norm, Mesh 5 is also marked with at Datatip in the 

farthest right plot in Figure 7. The value of the estimated error in the output in Mesh 5 is 

101.443 = 27.7332. I chose to check my estimations initially without using a safety factor. 

 

Figure 7: Error Estimates in Four Norms for Ch1_Model_II 

After making my estimations, I then changed probdef.exact_available back to true 

and ran run_uniform_refinement again. The error norm plots from this can be seen in 

Figure 8. For the L∞ norm, Mesh 7 was confirmed to be the coarsest mesh to have 

‖𝑢 − 𝑢ℎ‖𝐿∞(Ω) < 1.00. The exact error (since now u was known) was calculated to be 10−0.4563 =

0.349704. This is less than what I had estimated, so the proposed upper bound of 0.63577 is not 

violated. For the error in the output in Mesh 5, the exact error was found to be 101.503 = 31.842, 

which is larger than the predicted upper limit of 27.7332. This example shows that a safety factor 

is often needed when using FE analysis. If I had used a SF of 2 when predicting the upper error 

limit of the output, I would have predicted an upper limit of 55.4664, which is 1.7 times the actual 

error. In the case of the L∞ norm, it happened that no safety factor was needed in this case to predict 

the upper error limit. The predicted upper limit is 1.8 times the calculated error. Regardless of this 

specific case, it is a sound practice to always use a SF when utilizing FE Analysis results.  

Figure 8: Exact Errors in Four Norms for Ch1_Model_II 
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Chapter Three – The FD-FE Method for the 1D Heat Equation: Flipping Burgers 

1. Introduction 

In this chapter, we explore the fundamentals of the coupled Finite Difference-Finite Element 

Method for the heat equation. We build off of the Rayleigh-Ritz Method and time-independent 

Finite Element Method to add on a finite differences piece in order to model time dependent 

problems. In this chapter, we focus on a more complex heat transfer model: cooking hamburgers. 

This involves a time dependent process, with boundary conditions that switch as the burger is 

flipped and ultimately taken off of the cooking skillet. Both p =1 and p = 2 elements are explored, 

as well as both Euler-Backward and Crank-Nicolson Finite Difference schemes. Lastly, we utilize 

our developed hamburger model with a classic hamburger recipe found online to explore how well 

our model does under these “real-life” conditions. 

2. Summary of Finite Difference-Finite Element Method 

The Finite Difference-Finite Element Method adds on a scheme of Finite Differences to the Finite 

Element Method discussed in Chapter 2 in order to handle the class of time-dependent problems. 

For the sake of explanation of the method, the following generic heat equation model with N/R-

N/R boundary conditions and over time 0 < 𝑡 <  𝑡𝑓 will be considered: 

Ω ≡ (0, 𝐿), Γ1 ≡ {0}, Γ2 ≡ {𝐿} 

−
𝜕

𝜕𝑥
(𝜅(𝑥)

𝜕𝑢

𝜕𝑥
) +  𝜇(𝑥)𝑢 =  𝑓Ω − 𝜌(𝑥)𝑢 ̇   𝑖𝑛 Ω, 0 < 𝑡 ≤  𝑡𝑓    (1) 

 𝜅
𝜕𝑢

𝜕𝑥
=  𝛾1𝑢 −  𝑓Γ1

  𝑜𝑛 Γ1, 0 < 𝑡 ≤  𝑡𝑓               (2) 

𝜅
𝜕𝑢

𝜕𝑥
=  𝛾2𝑢 −  𝑓Γ2

  𝑜𝑛 Γ2, 0 < 𝑡 ≤  𝑡𝑓              (3) 

𝑢 =  𝑢𝑖𝑐(𝑥)  𝑖𝑛 Ω, 𝑡 = 0     (4)  

In order to maintain simplicity, the following assumptions about different components of these 

governing equations are made:  

𝜅(𝑥) > 0, 𝜌(𝑥) > 0, 𝜇(𝑥) ≥ 0, ∀𝑥 𝜖 Ω, 𝛾1 ≥ 0, 𝑎𝑛𝑑 𝛾2 ≥ 0   (5) 

Now that a time dependence is introduced, the derivative of u with respect to time must be defined. 

This is done in an incredibly straightforward way. As u is defined as the sum of a set of weighting 

factors multiplied by defined φ functions, the derivative of u can be defined by the same sum, 

except now the weighting factors as their corresponding time derivatives, written as such: 

 

�̇�(𝑥, 𝑡) ≈  �̇�ℎ(𝑥, 𝑡) =  ∑ �̇�ℎ𝑗(𝑡)𝜑𝑗(𝑥)
𝑛𝑛𝑜𝑑𝑒
𝑗=1     (6) 

Once again, we are faced with solving the equation 𝐴 𝑢ℎ =  𝐹+. This time there is an 𝐹+ because 

there is an additional term in the governing ODE that contains �̇�. The 𝐴  and 𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎matrices are 

formed as shown below:  

𝐴𝑖𝑗 =  ∫ [𝜅(𝑥)
𝑑𝜑𝑖

𝑑𝑥

𝑑𝜑𝑗

𝑑𝑥
+ 𝜇(𝑥)𝜑𝑖𝜑𝑗] 𝑑𝑥

𝐿

0
+ 𝛾1𝜑1(0)𝜑𝑗(0) +  𝛾2𝜑1(𝐿)𝜑𝑗(𝐿)      (7) 

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∫ 𝜌(𝑥)𝜑𝑖𝜑𝑗𝑑𝑥
𝐿

0
     (8) 
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The 𝐹+ can be formed the same way as in Equation 19 in Chapter 2, except with the addition of 

𝑓Γ1
𝜑𝑖(0) and the replacement of 𝑓Ω with 𝑓Ω

+
, which equals 𝑓Ω − 𝜌(𝑥)�̇�. Through substitution 

using Equation 6 and then simplifying: 

𝐹+ =  𝐹 −  𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎�̇�ℎ     (9) 

This leads to the following system of ODEs in time: 

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎�̇�ℎ + 𝐴 𝑢ℎ =  𝐹, 0 < 𝑡 ≤  𝑡𝑓    (10) 

𝑢ℎ =  (𝐼ℎ𝑢𝑖𝑐), 𝑡 = 0     (11) 

In order to solve this time-dependent system of ODE’s, we utilize a Finite Difference 

formulation. First, a grid in time is established, such that a time step, ∆𝑡 =  
𝑡𝑓

(𝑛𝑡𝑠𝑡𝑒𝑝𝑠−1)
 and a 

discrete time 𝑡𝑘 =  ∆𝑡(𝑘 − 1) where 1 ≤ 𝑘 ≤  𝑛𝑡𝑠𝑡𝑒𝑝𝑠 exist. Using these defined time steps, a 

finite difference can be formulated to approximate the time derivatives in the ODE system we 

want to solve. The two schemes we focus on in this chapter are Euler Backward, also known as 

rectangle right and indicated by 𝜃 = 1, and Crank-Nicolson, also known as trapezoidal and 

indicated by 𝜃 = 0.5. For the heat equation example laid out in Equations 1-4, the Finite 

Difference-Finite Element formulation of the system of ODEs to be solved is: 

𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎
𝑢𝑘

ℎ,∆𝑡
−𝑢𝑘−1

ℎ,∆𝑡

∆𝑡
+  𝐴 (𝜃𝑢𝑘

ℎ,∆𝑡
+ (1 − 𝜃)𝑢𝑘−1

ℎ,∆𝑡
) =  𝐹, 2 ≤ 𝑘 ≤  𝑛𝑡𝑠𝑡𝑒𝑝𝑠     (12) 

𝑢𝑘
ℎ,∆𝑡

=  (𝐼ℎ𝑢𝑖𝑐) , 𝑘 = 1    (13) 

Lastly, as a clear definition, the finite element approximation of u with mesh size h, and k time 

steps of size ∆t is approximately equal to the exact solution of u over all x locations in space, but 

at discrete times tk, such that 1 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠, or in mathematical terms: 

𝑢𝑘
ℎ,∆𝑡

(𝑥) = 𝑢(𝑥, 𝑡𝑘), 1 ≤ 𝑘 ≤ 𝑛𝑡𝑠𝑡𝑒𝑝𝑠   (14) 

3. Model semiinf_plus Implementation 

To verify that my implementation of solve_fld_output_t_sver is correct, I compared the 

exact and FD-FE approximation of u for both the [p = 1 and θ = 1] and [p = 2, θ = 0.5] cases, as 

well as the error plots for the various norms. 

As seen in Figure 1, for both cases of p and θ, 𝑢𝑘
ℎ,∆𝑡

(𝑥) has appeared to converge to 𝑢(𝑥, 𝑡𝑘) by 

Mesh 3. Then in Figure 2, the error estimation plots for the L2(Ω) norm are shown. I can tell that 

the implementation of solve_fld_output_t_sver is correct because the slopes of the error 

plots are as expected. For the L2(Ω) norm, the negative of the slope of the error plot is equal to 

𝑟 = 𝑝 + 1. Therefore, for p = 1 the slope is -2, and for p = 2, the slope is -3. This is the behavior 

that is seen in the plot in Figure 2. 
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Figure 1: Plots of FD-FE Approximation for Semi-Infinite Fin at the 3rd Mesh refinement 
for      p = 1, θ = 1 (top) and p = 2, θ =0.5 (bottom) 

Figure 2: Error vs. Mesh Size for for Semi-Infinite Fin for p = 1, θ = 1 (left) and p = 2,    
θ =0.5 (right) 

4. Implementation of make_probdef_burger 

To confirm that my implementation of the problem definition for the burger case study described 

in “Heat Equation: Study Cases”, I compared my results to the given figures Figure BurgerTest1 

and Figure BurgerTest2. In Figure 3, the burger temperatures on the skillet side, air side, and mid-

burger are plotted with the marked critical temperatures. A comparison of the instructor provided 

data and data created using my implementation of make_probdef_burger shows that they 

are in agreement. The same agreement can be seen in Figure 4 which compares the given and 

calculated internal temperature of the burger at time tIII.  
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Figure 3: Comparison of Given Data and Data from Student Implementation of 

make_probdef_burger showing burger temperatures at skillet side, air side, and 

mid-burger 
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Figure 4: Comparison of Given Data and Data from Student Implementation of 

make_probdef_burger showing the temperature throughout the burger at the time at 

which the burger was served (tIII) 

5. Discussion of Error & Computation Time 

As a next step, I explored the error in the output for [p = 1 and θ = 1] and for [p = 2, θ = 0.5]. First, 

I determined which mesh refinement corresponded to the coarsest FE mesh for which the error in 

the output (i.e. the burger temperature at the skillet side just before the flip) is less than 0.001°C. 

To determine the threshold criteria in the log scale of the error plots we output from MATLAB, I 

first solved log10 0.001 = 𝑥 for 𝑥 =  −3. Therefore, any y-values on the output error plot such 

that 𝑥 < −3, mark a mesh with an output error less than 0.001°C. Figure 5 shows the output error 

plots for the cases [p = 1 and θ = 1] and for [p = 2, θ = 0.5]. The slopes of the output error log plots 

are equal to -2p, and in Figure 5, the p = 1 case is on the left. For p = 1, the coarsest mesh to have 

less than 0.001°C error is 5th refinement with an error of 0.00036°C. For the p = 2 case, the coarsest 

mesh with acceptable error was the 2nd refinement with an error of 0.00013°C. In the case of output 

error, the value calculated using 10log10(𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡) is multiplied by 2. An error tolerance of 

0.001°C is excessively small, as our mathematical model itself is not able to meet this tolerance. 

This small tolerance is used her to highlight the potential advantages of higher order methods, but 

these advantages themselves are often more apparent only at tighter error tolerances. 

Next, I explored the ratio of computational time for both cases [p = 1 and θ = 1] and for [p = 2, θ 

= 0.5]. To calculate computation time for each case, the below equation was used: 

𝑡𝑐𝑜𝑚𝑝 = ∆𝑡0𝜎𝑙 × 𝑛𝑒𝑙2
𝑙(× 2)*     (15) 

*An extra factor of two is added in the p = 2 case because we assume that the operation count to 

solve a penta-diagonal system is twice the operation count to solve a tri-diagonal system. For [p = 

1 and θ = 1] on the coarsest mesh with acceptable error (5th refinement),  

∆𝑡0 = 20, 𝜎 = 4, 𝑛𝑒𝑙 = 6, 𝑙 = 5 and 𝑡𝑐𝑜𝑚𝑝 = 20 ∗ 45 × 6 ∗ 25 = 3,932,160 

For [p = 2 and θ = 0.5] on the coarsest mesh with acceptable error (2nd refinement),  

∆𝑡0 = 20, 𝜎 = 2√2, 𝑛𝑒𝑙 = 6, 𝑙 = 2 and 𝑡𝑐𝑜𝑚𝑝 = 20 ∗ (2√2)2 × 6 ∗ 22 = 3,840 
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Therefore, the ratio of computational time for the prescribed accuracy of 0.001 for [p = 1 and θ = 

1] relative to [p = 2, θ = 0.5] is 
3,932,160

3,480
= 1,024. This is a huge difference in computation time, 

with the [p = 1 and θ = 1] case being much more computationally costly than the [p = 2, θ = 0.5] 

case. Even with a penta-diagonal system to solve, the overall cost for the [p = 2, θ = 0.5] case is 

lower because it is able to reach the prescribed accuracy in fewer refinements than the [p = 1, θ = 

1] case. 

Figure 5: Output Error plots for the [p = 1 and θ = 1] (left) and [p = 2, θ = 0.5] (right) 
cases 

6. Comparison of Model to Recipe 

For a final check of the burger flipping model we developed, I found a recipe online and ran our 

MATLAB FD-FE Model using the parameters outlined in the recipe to see if we obtained 

simulation results that agreed with predicted recipe results. The recipe I used was from the New 

York Times’ Cooking Section1 and outlined the following problem parameters: 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 4𝑖𝑛 = 0.1016𝑚, 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 0.5𝑖𝑛 = 0.0127𝑚, 𝑡𝐼 = 120 𝑠, 𝑡𝐼𝐼 = 60 𝑠 

There was no tIII outlined in this recipe, so I started by keeping the tIII from our original simulation 

of 540 seconds. In Figure 6 are the initial results of temperature over time and internal temperature 

distribution in the burger at the serving time using the recipe parameters are shown. It is clear, that 

this combination of times does not appear to make for a good burger in the end, according to our 

simulation, as when served, the entire burger is at least 5°C below the target serve temperature. 

The temperature at the middle of the burger does not get above the done temperature, but this is 

perhaps consistent with the way in which people prefer to cook their burgers to rare. The two sides 

                                                           
1 Sifton, Sam. “Deconstructing the Perfect Burger.” The New York Times, The New York Times, 25 June 2014, 

cooking.nytimes.com/recipes/1016595-hamburgers-diner-style. 



Riley Davis, 05/16/2019 

 
26 

of the burger also do not reach the Maillard temperature, which leads to the nice charring of the 

meat and brings out flavor. This does not make sense, as one would expect a burger recipe would 

ensure that the correct temperatures are reached for maximum taste. 

Figure 6: Final temperature distribution and temperature at different locations over time 
in burger using recipe parameters and tIII =540 seconds 

In an attempt to make the serve temperature be a more desirable distribution, I changed tIII down 

to 90 seconds, since the recipe did not specify a repose time. The plots that result after this change 

can be seen in Figure 7. Even though the range of temperatures in the burger when it is served is 

now greater, more of the burger is above the desired serve temperature, which I believe is more 

important for burger taste and enjoyment. These shorter repose time results are more in line with 

the results from using our initial parameters for simulation. The mid-burger temperature is also 

always rising until the burger is served, instead of beginning to drop before the burger is even 

served. 
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Figure 6: Final temperature distribution and temperature at different locations over time 
in burger using recipe parameters and tIII = 90 seconds 
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Chapter Four – The FE Method for 1D 4th-Order BVPs (Bending): Xylophone 

1. Introduction 

This chapter uses the application of tuning a xylophone bar to apply the FE Method for 1D 

4th-Order BVPs with Bending. This method is developed with the task of finding the hole locations 

in a xylophone bar, such that the strings through those holes do not move when the beam is 

vibrating at its fundamental mode. The results of the developed method are then compared with 

the results of a different method of solving the same model (Caresta Pre-Print). Finally, the errors 

in the results of these tests are discussed, as well as potential modifications to the software in order 

to include the effects of the support springs. 

2. Summary of Finite Element Method for Beam Eigen-problems 

For Beam Eigen-problems, the equation describing the stress-strain relationship in a beam is 

solved using eigenvalues. This equation is as follows: 

𝜕2

𝜕𝑥2
(𝛽(𝑥)

𝜕2𝑢

𝜕𝑥2
) − 𝑁0

𝜕2𝑢

𝜕𝑥2
= 𝑞(𝑥, 𝑡) − 𝜌𝐴𝑐𝑠(𝑥)

𝜕2𝑢

𝜕𝑡2
 

Four boundary conditions and two initial conditions are needed. Using a modal representation, 

q(x,t) = 0 and 𝑢(𝑥, 𝑡) =  ∑ (𝑐1
(𝑘) cos(𝜔𝑛

(𝑘)𝑡) + 𝑐2
(𝑘) cos(𝜔𝑛

(𝑘)𝑡))𝑢(𝑘)(𝑥)∞
𝑘=1 . Using Hermitian 

Basis Functions, uh is defined as 𝑢ℎ = ∑ 𝑢ℎ𝑗𝜑𝑗(𝑥)
2∗𝑛𝑛𝑜𝑑𝑒
𝑗=1 . The 𝐴 𝑎𝑛𝑑 𝐹 matrices are formed per 

page 8 of the “Bending Natural Frequencies” notes. The final Eigen-problem is solved for 𝜆ℎ
(𝑘)

 

after being defined as 𝐴𝑢ℎ
(𝑘)0 = 𝜆ℎ

(𝑘)𝑀𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑢ℎ
(𝑘)0.  

3. Summary of Xylophone Bar Problem 

The xylophone problem sets up a solid bar of wood that will be carved out to vibrate with a desired 

fundamental frequency that has a certain ratio to the first harmonic frequency of the bar. A drawing 

of the bar and its parameters taken from page 1 of the “Bending Study Case Xylophone” notes is 

shown below: 

Figure 1: Diagram of Xylophone Case Study 
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The carving out of the bar begins at a point xd
* from the edge of the bar and is governed by a 

function that depends on the design variable p2 such that 𝑝2 𝜖 [0.05, 1.00]. The governing Eigen-

problem for this model is: 

𝑑2

𝑑𝑥𝑑
2

(
𝐸𝑑𝑊𝑑𝐻𝑑

3(𝑥𝑑)

12

𝑑2𝑢𝑑
(𝑘)

𝑑𝑥𝑑
2

) = 𝜆𝑑
(𝑘)

𝜌𝑑𝑊𝑑𝐻𝑑(𝑥𝑑)𝑢𝑑
(𝑘) 

The bar is physically supported by two strings in tension that pass through holes placed on the 

nodes of the fundamental frequency so as to minimize the force on the bar.  

 The design objections are to meet a target ratio, R, of the first harmonic frequency to the 

fundamental frequency. The goal is to find an optimal value for p2 (p2opt) such that the 

difference between the calculated ratio and the target ratio is less than a prescribed tolerance. This 

ratio, R, can either be equal to 3 for “quint” tuning, or 4 for “double-octave” tuning. 

4. Explanation of Algorithm for Fundamental Node Identification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Plot from xylo_bar_design3 showing successful location of fundamental 
frequency nodes 

In order to find the nodes of the fundamental frequency, the locations where the fundamental 

frequency has deflection of zero need to be identified. First, for each of the two holes, the elements 

where the fundamental mode crosses zero are found by checking if the product of the values of the 

mode at the two end nodes (mcheck) of an element is less than zero. A negative value of mcheck 

indicates that the element being checked contains a zero. Then, the summation: 

∑ 𝑢ℎ
(3)

𝑙𝑔2(𝑙,𝑚∗)
�̂�𝑙𝑚∗�̂�ℎ𝑜𝑙𝑒)4

𝑙=1  is computed by forming a 1 by 4 matrix of uh
(3) and then multiplying 

it by hshape_fcn(x,h(mstar(hole))). Then the function fzero is used to find the zero 
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of the sum function. Lastly, the zeros �̂�ℎ𝑜𝑙𝑒 are scaled to the global dimensional domain via 𝑥ℎ𝑜𝑙𝑒 =

(𝑥lg(1,𝑚∗) + ℎ𝑚∗
�̂�ℎ𝑜𝑙𝑒) ∗ 𝐿𝑑. As confirmation that this algorithm is working correctly, I present 

Figure 2, which shows the plot provided by the function xylo_bar_design3. 

5. Validation via Caresta Pre-Print 

The purpose of this section is to compare the results of our analysis with those derived using 

a different method that included experimental results. For the Caresta Test, the same physical 

parameters that Caresta used were passed to xylo_bar_design3 while keeping 

justcalc_L_d as true. This had the program determine the length of the bar that was needed 

to achieve the required frequency, but kept the beam completely solid and not at all hollowed out, 

like it is with a xylophone piece. The parameters passed for the Caresta test are as follows (using 

given beam data and Theoretical natural frequencies): 

Parameter Variable Name Value 

Target Fundamental 

Frequency 

frequency3target_d 32.80 Hz 

Target Ratio Fundamental/ 

First Harmonic 

R_target 2.7573 

Height of Beam (constant)  H_max_d 0.01m 

Carving Function 

Parameters 

P2_interval [1.0, 1.0] 

Young’s Modulus of Beam  Ebar_d 7800 kg/m3 

Boolean for Optimization 

of Shape 

Justcalc_L_d true 

Table 1: Parameters Passed to xylo_bar_design3 for Caresta Test 

In return, xylo_bar_design3 returned a calculated value for the length of the bar to meet the 

required fundamental frequency and tuning requirements, as well as the fundamental frequency 

and first harmonic for the calculated length. The following were the results of running this code: 

𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝐹𝑟𝑒𝑞 = 32.8 𝐻𝑧, 1𝑠𝑡 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = 90.4145 𝐻𝑧, 𝐿𝑒𝑛𝑔𝑡ℎ = 1.2752𝑚 

This results in the following errors between the given Caresta results (including that the bar has 

length 1.275m) and the results of this code. 

𝐸𝑟𝑟𝑜𝑟𝑅_𝑡𝑎𝑟𝑔𝑒𝑡 = −7.7845 × 10−4, 𝐸𝑟𝑟𝑜𝑟𝐿𝑑
= 1.8704 × 10−4 

These results allow me to confirm that xylo_bar_design3 is successfully completing the 

expected calculations of fundamental frequency and first harmonic, as well as the length of a beam 

required to be tuned to a certain frequency. Because these results were obtained using an 

independent method from what was implemented in xylo_bar_design3, I can use them as 

verification that my code is computing results as expected. 
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6. Tuning a Xylophone Bar & the Associated Errors 

To test the process of tuning a xylophone bar including the binarychop function (i.e. going 

beyond the Caresta test), the following parameters were passed to xylo_bar_design3: 

frequency3target_d = 349.23; %pitch of F4 

R_target = 4; 

Hmax_d = 0.015; 

xstar = 0.05; 

p2_interval = [0.05,1.0]; 

Ebar_d = 1.4e10; %in Pa 

rhobar_d = 835; %in kg/m^3 

justcalc_L_d = false; %enables optimization and binarychop 

suppress = true; 

The results of this tuning included a p2opt value of 0.1391 and an L_d of 0.135m. The output 

plot can be seen below in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Results of Xylophone Tuning with frequency3target_d = 349.23 and 

R_target = 4 

This figure verifies the correct functionality of binarychop because the lines indicating the 

zeros for holes cross exactly over the points at which the fundamental mode has zero modal 
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deflection. This indicates that the holes are correctly placed, as they will not hinder the vibration 

of the bar at its fundamental frequency. 

The following list is the resulting output frequencies, their errors, the harmonic-fundamental 

frequency ratio, and its error: 

frequency3_d = 349.2300 

err_frequency3_d = 5.7685e-05 

frequency4_d = 1.3938e+03 

err_frequency4_d = 1.4453e-05 

4d_3d = 3.9911 

err_4d_3d* = [3.991128190712825, 3.991129097903609]  

*in form [lower bound, upper bound] 

To determine the error of the ratio of the first harmonic frequency to the fundamental frequency, 

a method of adding and subtracting the errors of the two frequencies are employed. A simple 

depiction of the ratio is: 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦4_𝑑 ± 𝑒𝑟𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦4_𝑑

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑 ± 𝑒𝑟𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑
 

In order to determine the error of this ratio, I chose to determine the bounds of the ratio. This ratio 

is smallest, when err_frequency4_d is subtracted from the first harmonic, and 

err_frequency3_d is added to the fundamental. The ratio is greatest when 

err_frequency4_d is added to the first harmonic and err_frequency3_d is subtracted 

from the fundamental. An expression of the lower and upper bounds of the ratio is therefore as 

below: 

[ 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑 − 𝑒𝑟𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑 + 𝑒𝑟𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑 + 𝑒𝑟𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑 − 𝑒𝑟𝑟_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦3_𝑑
 ] 

7. Discussion of Error 

I do believe that the FE error estimators used in this program are reliable. There are no 

abnormalities seen in the error plots generated when tuning a xylophone. As can be seen in Figures 

4-7, the error markers have the same slope as the predicted slope lines and there are no upward 

deviations in the middle of a series of mesh refinements, which would indicate a potential problem. 

These results are consistent across both the fundamental and first harmonic frequencies, as well as 

across program runs with different values of frequency3target_d. 

I believe, that for the same mesh, the FE error will be greater for frequency4_d compared to 

frequency3_d, which is confirmed by the results in Figures 4-7. Errors for frequency3_d 

are only on the order of 0.0001-0.00001, while the errors of frequency4_d are on the order of 

0.01-0.001. 
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Figure 4: Error plots for Fundamental for frequency3target_d = 349.23Hz 

Figure 5: Error plots for First Harmonic for frequency3target_d = 349.23Hz 
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Figure 6: Error plots for Fundamental for frequency3target_d = 698.46Hz 

Figure 7: Error plots for First Harmonic for frequency3target_d = 609.46Hz 
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As the sensitivity of the untrained human ear is 10 Hz, I believe the mesh refinements are too fine 

in comparison to the sensitivity of the humans distinguishing between the different modes of the 

xylophone bar. This is a comparison of 10 to 0.01 (at the greatest errors in frequency) and 10 to 

0.00001 (for the smallest errors in frequency). 

Additional error is introduced by the treatment of the xylophone bar as an Euler-Bernoulli beam. 

Because of this, the predictions of xylo_bar_design3 will be more accurate for longer beams 

rather than shorter beams, as Hmax_d is assumed to be the same for all bars. This is because Euler-

Bernoulli Beam Theory assumes long and slender beams. Longer beams correspond to bars tuned 

to lower frequencies. This can be verified by the fact that a bar tuned to 349 Hz has a length of 

0.135m, while a bar tuned to 698 Hz has a length of 0.095m. 

8. Inclusion of Support Springs 

In order to modify the energy functional by the addition of a 
1

2
𝑘𝑠𝜔2(𝐿) term, which represents a 

lumped Hookean spring attached to the right end of the beam, the red term below needs to be added 

to the 𝐴 matrix: 

𝐴𝑖𝑗 = ∫ 𝐸𝐼
𝑑2𝜑𝑖

𝑑𝑥2

𝑑2𝜑𝑗

𝑑𝑥2
𝑑𝑥

𝐿

0

+ 𝑘𝑠𝜑𝑖(𝐿)𝜑𝑗(𝐿), 1 ≤ 𝑖, 𝑗 ≤ 2 ∗ 𝑛𝑛𝑜𝑑𝑒 

The line of code to make this addition needs to be added in the function 

impose_boundary_condition.m in the folder UG_FE_1d_bend_sver. The addition should 

be added after line 42 and should read: 

A(rightside_node, rightside_node) = A(rightside_node, rightside_node) + ks 

As rightsside_node is equal to ttomap_fcn(n_el0 + 1,1), this accesses the node at the 

right end of the bar and the first degree of freedom, which is deflection. This is the 𝜑5 function, 

which is the only non-zero function at the rightside_node (and is equal to 1). Therefore, the term 

added is only ks rather than 𝑘𝑠𝜑𝑖(𝐿)𝜑𝑗(𝐿) 𝑎𝑠 𝜑5(𝐿) = 1. 
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SELF-BUCKLING

With N<0 and P defined as P = -N, the dimensional 

equations for our self-buckling study case can be 

written as:

𝑑2

𝑑𝑥𝑑
2 𝐸𝑑𝐼𝑑

𝑑2𝑤𝑑

𝑑𝑥𝑑
2 +

𝑑

𝑑𝑥𝑑
𝑃𝑑

𝑑𝑤𝑑

𝑑𝑥𝑑
= 𝑞𝑑

Through non-dimensionalizing and applying boundary 

conditions, the following Self-Buckling Eigenproblem

emerges to be solved:

𝑑2

𝑑𝑥2
(𝑅4

𝑑2𝑢

𝑑𝑥2
) = 𝜆 −

𝑑

𝑑𝑥
(𝑃

𝑑𝑢

𝑑𝑥
) , 0 < 𝑥 < 1

𝑢 0 = 𝑢𝑥 0 = 0, 𝑢𝑥 1 = (𝑅4𝑢𝑥𝑥)𝑥 = 0,

[1] 2.S976 Notes “Buckling Eigenproblems”



FE METHODS OF SELF-BUCKLING

To solve Self-Buckling Problems, the Finite Element method sets up the 
following Eigenproblem:

𝐴 𝑢0
ℎ
= 𝜆ℎ𝐾

𝑎𝑥 𝑢0
ℎ

That solves for 𝜆ℎ = 𝛾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

Such that:

𝑢ℎ = 0; 0; 𝑢0
ℎ

𝐴 = ሚ𝐴 3: 𝑒𝑛𝑑, 3: 𝑒𝑛𝑑 , 𝐾𝑎𝑥 = ෩𝐾𝑎𝑥(3: 𝑒𝑛𝑑, 3: 𝑒𝑛𝑑)

ሚ𝐴𝑖𝑗 = න
0

1

𝑅4(𝑥)
𝑑2𝜙𝑖

𝑑𝑥2
𝑑2𝜙𝑗

𝑑𝑥2
𝑑𝑥

෩𝐾𝑎𝑥
𝑖𝑗 = න

0

1

𝑃(𝑥)
𝑑𝜙𝑖

𝑑𝑥

𝑑𝜙𝑗

𝑑𝑥
𝑑𝑥



BUCKLING OPTIMIZATION PROBLEM

Using the finite element method to solve for 𝜆(1) = 𝛾𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the objective of the 

optimization problem for our stated buckling problem is: 

• To maximize Ld subject to constraints CV, CM, CS:

Such that – γc is maximized over p1 as γc
opt

And Ld
opt is chosen such that 𝐿𝑑

𝑜𝑝𝑡 = (
𝛾𝑐

𝑜𝑝𝑡𝐸𝑑𝑉𝑑

4𝜋𝜌𝑔
) 1/4

The constraints of the optimization problem are defined as:

Fixed Volume (CV) 0
1
𝐺 𝑥 𝑑𝑥 = 0

Minimum Relative Radius (CM) 𝑅 𝑥 ≥ 𝑅𝑚𝑖𝑛 = 0.2

Gradual Variation (CS) 𝐺′(𝑥) ≤ 𝑆𝑚𝑎𝑥 = 10.0



CHOSEN “BEST SOLUTION”

𝐺 𝑥 = −𝑝1 ∗ 0.5 ∗ sin 𝑥 − 0.5
w𝑖𝑡ℎ 𝑝𝑜𝑝𝑡 = 4

𝑮 𝒙 = −𝟐𝐬𝐢𝐧(𝒙 − 𝟎. 𝟓)
𝑭𝑶𝑴 = 𝟏. 𝟒𝟖



VERIFICATION OF REQUIREMENTS



VOLUME CONSTRAINT

To satisfy the volume constraint:

න
0

1

𝐺 𝑥 𝑑𝑥 = 0

න
0

1

−2 sin 𝑥 − 0.5 𝑑𝑥 = 2න
0

1

sin 0.5 − 𝑥 𝑑𝑥

𝑢 = 0.5 − 𝑥, 𝑑𝑢 = −𝑑𝑥

2න
−1/2

1/2

sin 𝑢 𝑑𝑢 = 0



MINIMUM RELATIVE RADIUS 

To satisfy the minimum radius constraint:

𝑅 𝑥 ≥ 𝑅𝑚𝑖𝑛 = 0.2

𝐺 𝑥 ≥ −1 + 𝑅𝑚𝑖𝑛
2 = −1 + 0.22 = −0.96

𝑜𝑣𝑒𝑟 0 ≤ 𝑥 ≤ 1

max 𝐺 𝑥 = 0.95885

m𝑖𝑛 𝐺 𝑥 = −0.95885

Which is greater than -0.96!



GRADUAL VARIATION

To satisfy the gradual variation constraint:

𝐺′(𝑥) ≤ 𝑆𝑚𝑎𝑥 = 10.0

𝐺′ 𝑥 = −2 cos 𝑥 − 0.5
𝐺′(𝑥) 𝑀𝐴𝑋 = 2

Which is less than 10.0!



FINITE ELEMENT ERROR

• Error appears to be converging, with no 

pathologies nor indications of finite-

precision effects

• Maximum error is 0.000565, which is much 

smaller than 0.01

• To determine if error is converging at the 

expected slope:

• Let 𝑓 𝜆 = 𝐹𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑀𝑒𝑟𝑖𝑡
• The error of 𝑓 𝜆 = 𝑓 𝜆 + 𝜖 − 𝑓 𝜆
• Sensitivity Analysis Indicates that the 

error of the Figure of Merit depends 

on 𝑓′ 𝜆 ∗ 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝜆
• The error in 𝜆 corresponds to the 

error in sout from theory from lecture 

notes – this corresponds to a slope of 

the error estimator convergence of -4
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 Appendix A: Model I  

 

−𝑘
𝑑

𝑑𝑥
(𝜋𝑅𝑜

2 (1 +  𝛽
𝑥

𝐿
)

2 𝑑𝑢

𝑑𝑥
) = 0 𝑖𝑛 𝛺 

 𝑘
𝑑𝑢

𝑑𝑥
=  −𝑞1 𝑜𝑛 Γ1 

−𝑘
𝑑𝑢

𝑑𝑥
=  𝜂2(𝑢 − 𝑢∞) 𝑜𝑛 Γ2 

Exact Solution 

𝑢 =  𝑢∞ +
𝑞1𝐿

𝑘
(

1 +  𝛽 + 
𝑘

𝜂2𝐿

(1 + 𝛽)2
−

(
𝑥
𝐿)

(1 + 𝛽
𝑥
𝐿)

) 

𝑑𝑢

𝑑𝑥
=  

−𝑞1𝐿2

𝑘(𝛽𝑥 + 𝐿)2
 

Standard Energy Functional for Neumann/Robin Boundary Conditions 

Π(𝜔) =
1

2
∫ [𝜅(𝑥) (

𝑑𝜔

𝑑𝑥
)

2

+  𝜇(𝑥)𝜔2]

𝐿

0

𝑑𝑥 

+
1

2
(𝛾1𝜔2(𝑥) +  𝛾2𝜔2(𝐿)) − ∫ 𝑓Ω(𝑥)𝜔𝑑𝑥

𝐿

0

− 𝜔(0)𝑓Γ1
− 𝜔(𝐿)𝑓Γ2

 

Entries of 𝐴 and 𝐹 

𝐴𝑖𝑗 = ∫ [𝜅(𝑥)
𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
+ 𝜇(𝑥)𝜓𝑖𝜓𝑗] 𝑑𝑥 + 𝛾1𝜓𝑖(0)

𝐿

0
𝜓𝑗(0) + 𝛾2𝜓𝑖(𝐿)𝜓𝑗(𝐿) 

𝐹𝑖 =  ∫ [𝑓Ω(𝑥)𝜓𝑖]𝑑𝑥 +  𝑓Γ1
𝜓𝑖(0) +  𝑓Γ2

𝜓𝑖(𝐿)
𝐿

0

 

 

Appendix B: Model II 

−𝑘𝐴𝑐𝑠

𝑑2𝑢

𝑑𝑥2
= 𝜂3𝑃𝑐𝑠(𝑢 − 𝑢∞) = 0 𝑖𝑛 Ω 

𝑢 =  𝑢Γ1
𝑜𝑛 Γ1 

−𝑘
𝑑𝑢

𝑑𝑥
= 0 𝑜𝑛 Γ2 

Exact Solution 
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𝑢 =  𝑢∞ + (𝑢Γ1
− 𝑢∞)

cosh (√𝜇0 (1 −
𝑥
𝐿))

cosh (√𝜇0)
 

𝑑𝑢

𝑑𝑥
=

−√𝜇0(𝑢Γ1
− 𝑢∞)sinh (√𝜇0 (1 −

𝑥
𝐿))

𝐿√𝜇0

 

Standard Energy Functional for Dirichlet Boundary Conditions 

Π(𝜔) =
1

2
∫ [𝜅(𝑥) (

𝑑𝜔

𝑑𝑥
)

2

+  𝜇(𝑥)𝜔2]

𝐿

0

𝑑𝑥 +
1

2
𝜔2(𝐿) − ∫ 𝑓Ω(𝑥)𝜔𝑑𝑥

𝐿

0

− 𝜔(𝐿)𝑓Γ2
 

Entries of �̃� and �̃� 

�̃�𝑖𝑗 = ∫ [𝜅(𝑥)
𝑑𝜓𝑖

𝑑𝑥

𝑑𝜓𝑗

𝑑𝑥
+ 𝜇(𝑥)𝜓𝑖𝜓𝑗] 𝑑𝑥

𝐿

0
 + 𝛾2𝜓𝑖(𝐿)𝜓𝑗(𝐿) 

�̃�𝑖 =  ∫ [𝑓Ω(𝑥)𝜓𝑖]𝑑𝑥 +  𝑓Γ2
𝜓𝑖(𝐿)

𝐿

0

 

 

 

 


