
	 1	

	

Applications of Finite Element
Methods

2.S976
Mohammed Aljashmi

MIT Mechanical Engineering
May 16, 2019

	 2	

Abstract

Finite Element methods is a numerical tool that allows us to solve engineering and physical
science problems. The method relies on the principles of energy functional minimization, an area of the
calculus of variations. Finite element methods have gained popularity due to their robustness and ability
to accurately represent complex geometry and utilize different materials. It relies on approximating the
solution using a combination of trial functions. The process is computationally efficient, as the partial
derivatives vanish outside the domain of the element. In this paper, we investigate different applications
of the finite element method. First, we discuss the Rayleigh-Ritz method where we investigate steady heat
transfer applications with a two different types of boundary conditions. Next, we implement the finite
element method to solve time dependent partial differential equation as we explore the process of flipping
burgers from a heat transfer and optimization perspectives. Finally, we implement the finite element
solver for a fourth order boundary value problem with its application in beam bending and structural
mechanics in general.

Chapter 1

1 The Rayleigh-Ritz Method

The Rayleigh- Ritz method is a numerical method to approximate solutions to eigenvalue
problems that are difficult to solve analytically. It uses the a governing differential equation with
suitable boundary conditions to derive the basis function coefficients. Here we discuss and
analyze two different types of boundary conditions. Neumann-Robin (NR) and Dirichlet (D)
boundary conditions. Neumann-Robin condition represents an imposed constant flux at the
boundary, whereas Dirichlet boundary condition represents a constant temperature constraint at
the boundary.
We can use the minimization of the energy functional 𝛱 to find the basis function coefficients.
Any perturbations to the energy functional will increase and deviate from the local minimum
value. Since the problems we are discussing have boundary conditions, such as fixed temperature

	 3	

or flux, the basis functions are chosen to satisfy the boundary conditions and all other basis
functions vanish at the boundary.
The energy functional 𝛱	minimization for a Dirichlet boundary value problem:

Model I:

∏ 𝑤 = 𝐾 𝑥
𝑑𝑤
𝑑𝑥

)

+ 𝜇 𝑥 𝑤) 𝑑𝑥
,

-
+	
1
2
	𝛾)𝑤 𝐿) −	 𝑓 𝑥 4

,

-
𝑤 𝑑𝑥 − 𝑤 0 𝑓67

− 	𝑤 𝐿 𝑓6) 	𝑑𝑥

−𝐾
𝑑
𝑑𝑥
	 𝜋𝑅-) 1 + 	𝛽

𝑥
𝐿
	
) 𝑑𝑢
𝑑𝑥

= 0

𝐾 <=
<>
= 	−𝑞7 on 𝛺

−𝐾 <=

<>
= 	𝜂) 𝑢 −	𝑢∝ on Gamma (2)

𝐴DE = 	 𝐾𝜋ℛ) 1 + 	𝛽
𝑥
𝐿

),

-

𝑑𝑢
𝑑𝑥

𝑑𝑣
𝑑𝑥
𝑑𝑥 +	𝜂) 𝑢 −	𝑢∝ 1 + 	𝛽 𝜋ℛ)𝑢 𝐿 𝑣(𝐿)

𝐹D = 	 𝑞7𝜋ℛ)𝑢 0 +	
,

-
𝜂)𝑢∝ 1 + 	𝛽 𝜋ℛ)𝑢(𝐿)

∝KK	= 	𝐴L7 𝐹

𝑢KK 𝑥 = 	 ∝DKK 𝜓D(𝑥)
NOO

DP7

The energy functional 𝛱	minimization for a Neumann-Robin boundary value problem:

Model II:

∏ 𝑤 = 𝐾 𝑥
𝑑𝑤
𝑑𝑥

)

+ 𝜇 𝑥 𝑤) 𝑑𝑥
,

-
+	
1
2

𝛾7 𝑤 0) +	𝛾)𝑤 𝐿) −	 𝑓 𝑥 4

,

-
𝑤𝑑𝑥

− 𝑤 0 𝑓67 − 	𝑤 𝐿 𝑓6)	𝑑𝑥

	 4	

−𝐾𝐴QR
<S=
<>S

+	𝜂T𝑃QR𝑢 −	𝜂T𝑃QR𝑢V = 0		𝑜𝑛	Ω (1)
𝑢 = 𝑢Z[\\[7	𝑜𝑛	𝛤7 (2)
−𝐾 <=

<>
= 0			𝑜𝑛	𝛤) (3)

𝐴DE = 	 𝐾𝐴QR
,

-

𝑑𝑢
𝑑𝑥

𝑑𝑣
𝑑𝑥

+ 𝜂T𝑃QR𝑢𝑣	 𝑑𝑥

𝐹D = 	 	
,

-
𝜂T𝑃QR𝑢V𝑢 𝑑𝑥

𝑢KK 𝑥 = 	𝑢^[\\[7𝜓- 0 +	 ∝DKK 𝜓D(𝑥)
NOO

DP7

∝-KK= 	𝑢^[\\[7𝜓- 0 = 	𝑢^[\\[7	

𝐴 ∝KK= 	𝐹 −	𝑢^[\\[7𝑏

∝KK	= 	𝐴L7 𝐹 −	𝑢^[\\[7𝑏

∝KK	 = 	 ∝-KK		∝KK		

𝑢KK 𝑥 = 		 ∝`KK 𝜓D(𝑥)
NOO

DP7

By solving for 𝛼KK, the Rayleigh Ritz approximations can accurately determine the solution of
the differential equation. The Rayleigh-Ritz formulation differs for the different types of
boundary condition problems; however, it always consists of the summation of the product of the
basis functions and its Rayleigh-Ritz coefficients.

2 Results and discussion

2.1 Using the exact solution as a base function to verify results

To verify the functionality of the MATLAB code, the exact solution is used as base function. A
functioning code would yield results with error that is equivalent to the round off errors to the

	 5	

limited computer precision. It can be seen in the figure (1) and figure (2) for Model I and Model
II respectively that ∝7= 1, ∝)= 0. This is expected from a correctly functioning code as the
Rayleigh-Ritz method chooses to a coefficient of 1 of the exact solution and a coefficient of 0 for
the constant base function. Additionally, the energy functional 𝜋 for the exact solution is lower
or equal to that yielded by ‘constlinquad’.

a) Neumann-Robin approximation b) Neumann-Robin basis functions

 c) Dirichlet approximation d) Dirchilet basis functions

 Figure 1: Rayleigh-Ritz approximation providing zero error for model I and II when the
 the exact function is included

2.2 The effect of increasing the number of basis functions (𝒏𝑹𝑹) on the accuracy of the
results

Model I

	 6	

Model II

By increasing the number of base functions, Rayleigh- Ritz method has more options to choose
from to fit into the curve by minimizing the enrgy functional. It can be seen that the error
decreases as we add more base functions into the set. Furthermore, The following graphs were
generated using ‘constlinquad’ which does not use the exact solution as a base function.

Figure 2: Rayleigh-Ritz approximations and error plots for different
number of basis functions

	 7	

Next, we observe the change in our 𝛱 energy functional as we increase the number of basis
functions.

a) 𝛱 for 𝑛KK = 1 b) 𝛱 for 𝑛KK = 2

c) 𝛱 for 𝑛KK = 3
Figure 4: The effect of changing the number of basis functions on the Π energy functional

	 8	

As we can see the Rayleigh-Ritz energy functional decreases as we increase the number of base
function. This makes sense as it shows that energy is minimized when we have a greater range of
basis functions to choose from.

Model I:

The same is true for model I up to adding the linear base function, as adding more base functions
does not necessarily improve the accuracy of the Rayleigh- Ritz method. This is due to the fact
that the exact solution is linear so no higher polynomial functions are not needed to model the
solution. This becomes clear as we observe that the error doesn’t change between 1 and 2 base
functions.

Figure 5: Model I approximated with different number of basis functions

	 9	

2.3 Comparison ‘exactinlcude’ and ‘constlinquad’

Model I:

Energy Functional minimization

	

	 10	

2.4 The effect of Beta in Model I on the accuracy of Rayleigh-Ritz method

As beta increases, the curvature of the slope increases, this makes it harder for the Rayleigh-Ritz
base functions to simulate the rapid change in curvature around x = 0.0. This is only true for non-
zero positive beta. At beta = 0, the solution is linear and can be solved exactly by Rayleigh-Ritz
method since it has a linear base function.

	 11	

Figure 6: The effect of changing 𝛽 on the accuracy of the Rayleigh-Ritz approximation

2.5 The effect of 𝝁𝟎 in Model II on the accuracy of the Rayleigh-Ritz method

𝜇- represents the fin parameter that determines the rate at which the material reaches room
temperature along the length of the fin. A high 𝜇- indicates a rapid rate of decay, the rapid
change in curvature makes it hard for Rayleigh-Ritz to solve using the set of base functions
available to the method. The graphs below demonstrate the change in error for increasing 𝜂T.

	 12	

Since 𝜇- =
hijkl,S

mnkl
 , increasing 𝜂T leads to an increase in 𝜇-. As 𝜂T increases from 1 to a 100,

the relative output error increases from 0.0009 to 0.086. These eta3 correspond very roughly to
different regimes for natural convection/radiation, forced convection, and change-of-phase.

	 13	

Figure 7: The effect 𝜂T on the accuracy of the Rayleigh-Ritz apprximation

Chapter 2

Model I corresponds to quasi-1d heat conduction in conical frustum insulated on the lateral
surfaces with heat flux and heat transfer coefficient boundary conditions on the left and right
surfaces, respectively. The equations and boundary conditions are given by

−K d
dx

(
πR2

0

(
1 + β x

L

)2 du
dx

)
= 0 in Ω

K du
dx

= −q1 on Γ 1

−K du
dx

= η2 (u− u∝) on Γ 2

where Ω = (0 , L), Γ 1 = { 0} , Γ 2 = { L} , k, R0 , L, and η 2 are positive constants, β
is a non-negative constant and q1, u∝ are constants. The exact solution to this problem is
given by

u = u∝ + Lq1
k

(
1+β+ k

η2

(1+β)2
− (xL)

1+β(xL)

)
Model II corresponds to a right-cylinder thermal fin with temperature and zero-flux bound-
ary conditions on the left and right surfaces, respectively. The equations and boundary
conditions are given by

−KAcs
d2u

dx2
+ η3Pcsu− η3Pcsu∞ = 0 onΩ

u = uΓ1 on Γ 1

−K du
dx

= 0 on Γ 2

where Ω = (0 , L), Γ 1 = { 0} , Γ 2 = { L} , k, Acs , Pcs, and η 3 are positive constants,
uΓ2 is constant. The exact solution to this problem is given by

u = u∝ + (uΓ2 - u∝)
cosh

(√
µ0(1− x

L)
)

cosh(
√

(µ0)

14

where µ0 = η3PcsL2

kAcs

Model Mohammed corresponds to a wall isolated laterally and heat flux and heat transfer
coefficients on both left and right surfaces.

=

−K d

dx
(πR2

0

du

dx
= 0 inΩ

K du
dx

= η1 (u− uout) on Γ 1

−K du
dx

= η2 (u− uin) on Γ 2

where Ω = (0 , L), Γ 1 = { 0} , Γ 2 = { L} , k, η 1 and η 2 are positive constants. η 1

and η 2 represent the product of the cross-sectional area and heat transfer coefficient of the
outside and inside air respectively.

This problem can be solved using a circuit diagram to yield the exact solution given by

T (x) = (b− c)x+ c

where c =
η2uin
η2

+
η2uoutL

k
η2L
k

+1+ η2
η1

b = c+ η1L(c−uout)
k

1 Finite Element representation

uh (x) =
node∑
i=1

uhiΦi (x)

uhiΦi

15

vanishes except for when i = j. This makes the FE scheme computationally efficient as we
only care about neighbouring elements.

Aij =

∫ L

0

k (x)
dΦi

dx

dΦj

dx
+ µ (x) ΦiΦjdx+ γ1Φi (0)φj (0) + γ2Φi (L)φj (L)

Fi =

∫ L

0

fΩ (x) Φi (x) dx+ fΓ1Φi (0) + fΓ2Φi (L)

For Model I, we have Neuman-Robin boundary condition on the right surface of the frustum
and constant flux boundary condition on the left surface as indicated by Γ2 .

Aij =

∫ L

0

k (x)
dΦi

dx

dΦj

dx
+ µ (x) ΦiΦjdx+ γ2Φi (L)φj (L)

Fi =

∫ L

0

fΩ (x) Φi (x) dx+ fΓ2Φi (L)

Aij=Aij + γ2

F = F + fΓ2

Model II
Dirichlet boundary conditions, that is a flux and temperature boundary conditions on the
left and right surfaces, respectively.

16

A =


A11 bT

b


· · ·

... A
...

· · ·



 uh =


uΓ1

...
uh
...

 F =


F1

...
Fnx1

...



The implementation of this method involves the use quadrature points to perform numerical
integration.In this chapter, we will discuss two different formulations, p1 and p2 cases. In
the p1 case, there are two linear nodal basis functions that form an X. Every nodal function
spans 2 elements and reaches a maximum at the center node, while neighbouring functions
are at zero. This means that the coefficient of the nodal function is a valid solution at that
point. These points are connected to form a piecewise-linear , continuous function. p2 is
similar to p1 except that there are 3 quadratic nodal base functions rather than 2 linear ones.

2 Results and discussion
As a first check of the functionality of the code, we solve for the PDE representing model
II. The FEA solution is plotted along with the exact solution in the same diagram. It can
be seen in the first mesh that FE solution does not an adequate job at approximating the
solution’s behavior. This is due to the lack of sufficient number of elements to simulate
the behavior of the function. It can also be seen that the FE method does a worse job at
approximating the derivative. By refining the mesh, we are able to produce a much more
accurate solution to describe the solution behavior this is indicated by mesh 8 (after 8 mesh
size refinements). One way to verify that the code is implemented correctly is by check the
order of accuracy of Model II. The log error plot shows a convergence of order 2 which is
expected.
It can be seen from model II error plot that the coarsest mesh in which

‖u− uh‖ <= 1

is mesh 7. The plot indicates an absolute error in the L-infinity norm equivalent to 0.636
however, this is true as long as higher order terms can be neglected. To be conservative, we
can apply that error by a safety factor of 2. We can also see the decrease in the H1 norm
error, which gives us a higher certainty in the error bounds.

17

Figure 1: Model II FE plot before refinement

18

Figure 2: Model II FE plot after 8 refinement

19

Figure 3: Model II error plot for 9 Meshes

Correct code verification means that if the discretization error goes to zero as the mesh
increments decrease to zero and with the right order of convergence then the equations are
solved correctly. To ensure that the code is bug-free and works under more general conditions.
We need to train it where µ(x) is a non-constant. Here we propose a model similar to model
II with a variable µ(x)

−d
dx

(k(x)du
dx

+ µ(x) = fΩ in Ω

k(x)du
dx

= γ1u − fΓ1 on Γ2

−k(x)du
dx

= γ2u − fΓ2 on Γ2

Let µ(x) = ax + b

Now lets use Model II with this re-defined µ(x) :

−kAcs d
2u
dx2

+ (ax+ b)(u− u∞) = 0

20

u = uΓ1 on Γ1,

−k du
dx

= 0 on Γ2,

where Ω = (0, L),Γ1 = 0,Γ2 = L as defined for model II

Now lets use the method of manufactured solutions, assume u(x) = x2

Now we can evaluate fΩ(x) = − d
dx

(k(x)du
dx

) + µ(x)u

fΓ1 = (γ1u − k du
dx

)(x=0)

fΓ2 = (γ2u − k du
dx

)(x=L)

Now given k(x), µ(x), γ1, γ2, fΓ1 , fΓ2

Find uh using the FEA formulation described earlier, then evaluate ‖u− uh‖ and show that
it converges as the mesh size is refined and with the same order of convergence as model II.

This method of code verification helps us identify any implementation errors that might
remain hidden due to lucky coefficient cancellations.
The FE scheme was also implemented on model I from chapter 1, the field and derivative
are plotted side by side and super-imposed with the exact solution. It can be seen that the
FE scheme produces a close fit to the exact analytical solution. The convergence plots also
indicate the correct convergence rate which gives us confidence in our code. To gain more
confidence in the correction operation of our code, the FE code was used to solve model
Mohammed which represents conduction across a wall between a room and the ambient air
outside. It can be seen that the solution to this problem is a linear function. Due to the
linear nature of this function, the FE scheme is able to solve it accurately using a relatively
large mesh size. The scattered black dots in the derivative plots are due to machine precision
error as the plot is magnified. This can be seen by looking at the error plots, where the error
starts very small and close to machine precision. However, the round off error due to machine
precision are amplified as we decrease the mesh size. This is demonstrated by the increase
in error.

21

Figure 4: Model I field and derivative plots

22

Figure 5: Model I error plots

23

Figure 6: Model Mohammed Field and derivative plots

24

Figure 7: Model Mohammed error plots

We can also consider the model X for which the exact solution is unknown, although one
might assume that by running the FE code and observing convergence at the right order
that solution produced by the FE is correct this is not always true. It could be the case that
the solver is solving for a different solution so we can be converging to the wrong solution
as we do not know the exact solution and just using the previous refinement as an error
estimator.

25

Chapter 3

May 17, 2019

1 Summary and Problem Formulation

In this chapter, I will discuss the formulation and implementation of the Finite Difference-
Finite Element (Fd-FE) Method for the heat equation for N/R - N/R boundary conditions.
This method utilizes a hybrid scheme that uses a finite element procedure in space and a
finite difference procedure in time. At the end of the chapter, the results are discussed in
terms of verification of correct implementation, convergence, and computational efficiency.

I. Semi-Infinite Fin
A. Dimensional Form

ρcAdT
dt

= kAd2T
dx2
− ηlatP (T − T∞), 0 < x < L, 0 < t < tf

κAdT
dx

= ηbotA(T − T∞), x = 0, 0 < t < tf

-κAdT
dx

= 0, x = L, 0 < t < tf

T = Tic, t = 0, 0 < x < L

Assumption:
κ > 0, ρc > 0, α > 0

Bilat =
ηlat(

A
P

k
< 1 For Physical relevance

Finite Element Formulation (space)
Here, the finite element formulation is similar to that of previous chapters with the addition
of an extra term that accounts for the time derivative. uh is defined as the sum of the output
multiplied by the basis function vectors. In addition to uh we have u̇h, the derivative of uh
with respect to time.

A. Time Derivative

u(x, t) = uh(x, t) =
∑n

j=1 uhj(t)φj(x) , where n = nnode
u̇(x, t) =

∑n
j=1 ˙uhj(t)φj(x)

26

2. Semi- Discrete Equations
The A and F matrix relationship that result from using the steady state case are not ideal:
the F matrix in particular is a function of u̇ which makes it difficult to solve numerically.
This is where a new matrix called the inertial mass matrix (Minertia) is necessary. This is
used to separate the u̇h components from the incompatible F matrix into an isolated term
after the F matrix has been expanded.
Auh = F†

A =← AN

Let Ãij =
∫ L

0
k(x)dφi

dx

dφj
dx

+ µ(x)φiφjdx+ γ1φi(0)φj(0) + γ2φi(L)φj(L)

Minertia = M̃inertia

M̃ij
inertia

=
∫ L

0
ρ(x)dφidφjdx

F† = F̃† ← F†N

F†i =
∫ L

0
f †Ωφidx+ fΓ1φi(0) + fΓ2φi(L)

F†i =
∫ L

0
fΩφidx+ fΓ1φi(0) + fΓ2φi(L)−

∫ L
0
ρ(x)u̇hφidx

F†i = F̃i −
∑n

j=1(
∫ L

0
ρ(x)φiφjdx) ˙uhj y

Minertiau̇h + Auh = F 0 < t < tf
uh = (Ihuic), t = 0

III. Finite Difference Formulation (Time)
A. θ schemes: Euler Forward, Crank-Nicolson, and Euler Backward

1. System of ODE’s

x(t) : n x 1 vector;

g : n x 1 vector

xic : nx1vector

B1: n x n non-singular matrix

27

B2: n x n matrix

B1ż + B2x = g, 0 < t < tf

2. Grid in Time

∆t =
tf

ntsteps−1

tk = ∆t(k − 1), 1 < k < ntsteps

zk∆t = z(tk), 1 < k < ntsepts

3. Approximation

Here we incorporate a new variable to that determines the step size. The param-
eter θ determines the type of discretization scheme used. Euler forward, Euler
backward and Crank Nicolson have the following schemes and their correspond-
ing values of θ:

] B1zk∆t − zk−1
∆t ∆t

+ B2(θzk∆t + (1− θ(zk−1
∆t)

zk∆t = zic k = 1

θ = 0: Euler Forward (rectangle left)

θ = 1/2: Cran-Nicolson (trapezoidal)

θ = 1: Euler Backward (rectangle right)

B. Heat Equation 1. Discrete Equations:

ukh,∆t(X) ≈ u(x, tk), 1 < k < ntstepsn

Minertiaukh,∆t − uk−1
h,∆t∆t

+ A(θukh,∆t + (1−θ)uk−1
h,∆t

2 Results and Discussion

The first part of the implementation acts as a preliminary verification tool of
our mathematical model. The semi infinite plat model was run using uni-
form refinements and and error plot was obtained. The L2(Ω) error norm is
a good indicator of correct implementation as its convergence is balanced be-
tween the spacial and temporal rates of convergence. Note that [p=1, θ =1]
refers to the Euler backward scheme, whereas [p=2, θ = 1/2] refers to the Crank

28

Nicolson scheme. The alignment of true errors with the error estimators of
L2normindicatesthecorrectimplementationofthecodeinbothschemes.

Figure 2: Semi Infinite plate model: Error Plots for first numerical scheme:[p=2, θ = 1/2]

29

Figure 3: Semi Infinite plate model: Mesh 0 for first numerical scheme: [p=1, θ = 1]

30

Figure 4: Semi Infinite plate model: Mesh 3 for first numerical scheme: [p=1, θ = 1]

2.1 Burger cooking simulation results

Figure 4 shows the temperature distribution of different parts of the burger over time. The
skillet surface is heated up to 180 ◦C. The burger is then cooked for 3 minutes or 180 seconds,
then immediately flipped to cook on the other side. It can be seen, that the side of the pate,
which is now exposed to air has a temperature decay similar to that of a semi infinite plate
model. This gives us confidence in our choice of thermal models. The burger is then cooked
for another 4 minutes where the heat penetrates faster to the core of the burger as indicated
by the green line. Figure 6 demonstrates the error behavior of the numerical scheme and its
convergence properties. The slope of the error log is -1, indicating a convergence of the first
order which is expected of such a scheme.

31

Figure 5: Temperature distribution of different parts of the burgers versus time

32

Figure 6: Final Temperature Distribution in the burger

33

Figure 7: Burger Model: Error plots for the first numerical scheme : [p=1, θ = 1]

In general, we try to obtain the coarsest mesh possible that satisfies our error tolerance
and accuracy requirements. The accuracy of the solution is determined by the accuracy of
the physical system and the accuracy of the numerical scheme used to solve the equations
governing the physical system. A low accuracy physical model will not require a high ac-
curacy numerical scheme as the error would be bounded by the error due to the physical
model. Here, we require a tolerance of 0.001 ◦C. This tolerance might be too low, as burger
heat transfer models are usually low fidelity and do not require such high accuracy. We will
perform error analysis on 2 different schemes: [p=1, θ = 1] and [p = 2, θ= 1/2]. From the
error plots, it can be seen that the error error bound for the first mesh refinement of p=1
and θ = 1 is 0.001. Note that we analyze the error in the output norm.

|u(:,tf)− untstepsh,∆t |(l) ∼ 2−rl(C1
u2−l + C2

u)
r = 1 for p = 1, r=2 for p = 2.
To evaluate the coarsest mesh For P = 1, θ = 1:

34

FinalError
InitiatialError

= ε(l)

ε(1)

0.001
0.01

= 2−1∗(l)

2−1∗1

l > 4.3 −→ l = 5

To evaluate the coarsest mesh For P = 2, θ = 1/2:
0.001
0.01∗2 = 2−2∗l

2−2∗1

8(l) = 50

l> 1.9 −→ l = 2

Another area that we would like to investigate is the computational efficiency of both nu-
merical schemes. To understand the number of computations per refinement, we need to
know the number of nodes in each refinement. Given ∆t0, h0, and σ (> 1). σ a constant
used to refine the the mesh in space and time simultaneously such that the error in both
space and time is decreases to be of similar order
Consider (∆t0 , Th0)→ (∆t0/σ, Th0/2) . If we refine the mesh the mesh incrementally from 1
to l.

(∆t0
σl , Th0/2l) → (∆t0

σl+1), Th0/2l+1).

This leads to an operation count of O(L

(
h0
2l

)2
). The total number of operations = ntstepsnelements

. For p = 1, θ = 1 we get σ = 4. For p = 2, θ = 1/2, we get σ = 2
√

2. The value of σ such
that 2r/σq = 1. Lets denote the ratio of number of computations of prescribed accuracy for
[p=1 and θ =1] relative to [p = 2 and θ = 1/2] by k.

k = 4525

(2
√

2)223
= 512

The quantity was doubled because it was assumed that solving a penta-diagonal matrix
requires double the operational count compared to a tri-diagonal matrix. This states that
the latter approach is superior in terms of computational efficiency. An assumption that has
been made in calculating this ratio is that the the number of refinements needed to achieve
desired accuracy is calculated apriori and the solver will only operate on the last refinement
rather than iteratively refine until the prescribed error is reached.
Based on my literature review, when using the electric griddle, it is recommended to preheat
the electric griddle to 190 ◦C. A beef patty with a diameter of 4.5 inches and a thickness
of 0.75 inches is then then cooked for 4 minutes. The burger is then flipped and cooked for
another 4 minutes. The lowest temperature anywhere inside the patty should be above 72◦C
to ensure the bacteria is killed and the burger is safe to eat. The default simulation sets the
skillet temperature to 180◦C and the burger is cooked for 3 minutes on one side. Then, the
burger is flipped and the other side is cooked at the same skillet temperature. The center of

35

the burger (the region with the lowest temperature) takes about 400 second or 6.5 minutes to
reach the highest temperature at around 65◦C. This temperature is not high enough for safe
eating. It seems that the model is predicting that a higher skillet temperature and a longer
period is needed to cook the burger correctly. This discrepancy might indicate several flaws
in out mathematical model. First, a Dirichlet boundary condition might be less realistic than
a Neumann boundary condition in which the heat flux is imposed on the surface rather than
a temperature boundary condition. Second, another source of error could be the thickness
of the oil layer separating the patty and the skillet.

36

Chapter 4
FE Method For Beam Eigenproblems

1. Summary

I. Formulation

A. Mesh generation

B. Rayleigh- Ritz Basis Functions

The basis functions used for beam bending are known as hermitian approximations. A global and a local
grid system is used in mapping.

Two types of basis functions are used for this method: one that is either zero or one and a zero derivative
at every node, and another that is zero at every node, but the derivative is either zero or one. These basis
functions are called Hermitian () basis function, and they accounts for the two degrees of freedom at
every node.The basis functions has the following properties:

1. For nodes: 1 i -2

 = 1, = = 0

 = = = 0

Zero for x , cubic in

 = = = 0

 = 1, = = 0

 = 0 for x U

For 1 , 1 k 2:

q =

2. Basis Functions: node i

: cubic in , zero for x

 = 0

 = 0

: cubic in , zero for x

 = = 0

 , = 0

For i = , 1 k 2:

 =

3. Non- Basis Functions: node i

: cubic in , zero for x

 = 0

 = 0

: cubic in , zero for x

 = = 0

 , = 0

4. FE Representation n = 2 ()

 =

 =

 =

6. Nodal Interpretation

a. Function

For l = 1, …,

 =

b. Derivative

For l = 1 ,… ,

 =

7. Continuity

 =

 =

C. Rayleigh - Ritz Approximation

1. Minimization: n = 2 ()

 <

 : Piecewise - cubic on

 = = 0 for any ,

2. Comparison Proposition

 for any

Since

D. Discrete Equations

1. Linear System n = 2 ()

u_{h} satisfies

A = F

2. Xylophone bar problem

The tuning of the xylophone bar uses the FE-FD eigenproblem solver to determine the mode of resonant
frequency based on the material and its geometry. The quadratic cut out defined by the function H(x) is
used to tune the resonant frequency and adjust the placement of the holes within the physical structure.
The mode of resonance corresponds to the Eigen value. The first eigen value corresponds to the mode of
resonance and so on. The holes are located at the resonant frequency of the vibrating bar. By creating
holes, we created fixed nodes at which the bar cannot resonate

2.1 Geometry (Upside - Down Bar)

Figure 1: Geometry of the xylophone

Where =

 is an even integer and its set so that = 4, that way we have one design variable that we are going
to optimize.

 [0.05, 1.00]

2.2 Governing Eigenproblem

A. Dimensional Form

 =

B. Fundamental Harmonics

 = 0 Translation ​ = 0 Rotation

 > 0 Fundamental mode

 > 0 harmonic

2.3 Finite Element Approximation

[,] , k = 1,2, … , n = 2

 = / , =

2.4 Design Problem

A. Objective

Let R

R =

Given and desired ratio

Find such that | - |

B. FE Approximation

Let =

 =

Given and desired ratio

Find such that | - |

Root finding algorithm:

For each hole, we find where the polynomial crosses the x-axis, thats where the sign of the shape function
changes. The we find the zeros in the local domain:

Thenm we need to scale to the dimensional domain:

The algortithm loops through all the elements and finds all elements in the domain:

Figure 2: Fundamental and first harmonic modes superimposed on the bar profile

Figure 2 verifies the correct implementation of the software as we can see that the fundmanetal mode
passes through the hole positions that we chose for that specific frequency.

2.5 Caresta Case

The caresta case is used as a verification tool for the correct imeplementation of the xylo bar design code.
The benefits are 2-fold: i) the calculation of the fundamental and first harmonic frequency, and ii) the
determination of the length required to realize a desired (dimensional) fundamnetal frequency.

counter = 0;
for i = 1: n_el
 if u3(lg2(1,i)).*u3(lg2(3,i)) < 0;
 counter = counter +1;
 u3_ = [u3(lg2(1,i)) u3(lg2(2,i)) u3(lg2(3,i))
u3(lg2(4,i))];
 x(counter) = fzero(@(x) u3_*hshape_fcn(x,h(i)), [0,1]);
 xhole_d(counter) = (xpts(lg(1,i)) + h(i)*x(counter))*L_d;
 end
end

Objective:

Given [from Timbre optimization] and desired funamental frequency .
We find such that:

|

Once is found, we can place the holes by finding , such that

 = = 0

To test the code:

Fundamental frequency was set to 32.8 Hz. Aspect ratio of 3, = 0.01, = 0.05,

 interval is fixed to [1,1]. This means that we are not varying and its no longer our design variable.
 = 2.1e11 Pa, = 7800 . By running the Xylophone design code with these inputs, we get

an value of 1.275 m. We also get a fundamental and harmonic frequencies of 32.8 Hz, and 90.44 Hz
respectively. Since these values correctly match the same values in the caresta case, this provides
confidence in the correct implementation of the Finite element code in both calculating the frequencies
and determining the right length.

Tuning the xylophone bar

We can now tune the xylphone to produce the pitch and frequency ratio, we desire. I decided to tune it for
an F4 pitch and a frequency ratio of 3 ("quint").

The inputs for tuning the xylophone are shown below:

By running these inputs into the xylphone design code, we get a length = 0.3265 m and = 0.6438.

frequency4_d, err_frequency4_d, L_d, xhole_d, p2opt] =
xylo_bar_design3(32.8, 3, 0.01, 0.05, [1,1], 2.1e11, 7800, true, 1)

frequency3target_d = 349.23; % pitch F4
R_target = 3; % quint
suppress = false;
Hmax_d = 0.015;
xstar = 0.05;
p2_interval = [0.6438,0.6438];
Ebar_d = 1.4e10;
rhobar_d = 835;
justcalc_L_d = true;

We already have error estimates for and . One way to find an upper and a lower bound to the

aspect ratio is using the upper and lower bounds of and .

Upper bound of = =

Lower bound of = =

3. Error Analysis

Note that the error found above is way below the hearing sensitivity of human, this makes it unecessary to
reach a refined level of discretization when a much coarser mesh will suffice.

3.1 A Priori Error Estimator

a. Smoothness Assumption

 exists for all x in (0,L), except for jumps in , at elemental boundaries.

Then

3.2 A Posteriori Error Estimator

Given Q, (), r r(Q)

Mode 1 and Mode 2 error plots are generated for the F4 pitch with a frequency of 349.23 Hz and "quint"
frequency ratio. The error in , and were found to be 5.8587e-06 and 9.9133e-05 respectively. The
plots are shown below. It can be seen that the error in norm has a slope of -2, while the error in ,
norms and the output all have slopes of -4. This trend in error convergence matches our expectations from
the theory. In general,

Figure 3: Error plots for the fundamental frequency mode of an F4 pitch

Figure 4: Error plots for the first harmonic frequency mode for an F4 pitch

Second, we analyze the error for a higher frequency, an F5 pitch with a frequency of 698.46 Hz, but the
same frequency ration of 3 or "quint". The error in , and were found to be 1.1717e-05 and 1.9827e-
04 respectively. This is slightly higher than the error induced by the lower target frequency plot. This is
expected as a higher frequency means there are steeper gradients which are harder to approximate or fit
with a finite set of polynomials.

Figure 5: Error plots for the fundamental frequency mode of an F5 pitch

Figure 6: Error plots for the fundamental frequency mode of an F5 pitch

Second, we analyze the error for the same frequency, an F4 pitch with a frequency of 698.46 Hz, but with a
different frequency ratio of 4 or "double-octave". The error in , and were found to be 1.1717e-05
and 3.9173e-06 respectively. This is slightly higher than the error induced by the lower target frequency
plot. This is expected as a higher frequency means there are steeper gradients which are harder to
approximate or fit with polynomials.

The code is based on the slender beams model where L >> H. Since is the same for all xylophone
bars, the validity of the model depends on the value of L is inversely proportional to the target frequency,
this means that for higher frequencies, the slender beam model might not be valid anymore.

We can incoprorate in our xylophone model the effect of the support strings which are thresaded through
the two holes in each xylophone bar. The bar is modelled as a beam of length L with a lumped Hookean
spring attached to the right end. The boundary conditions are the following:

The spring term introduces a "Robin" boundary condition. We can adjust the formulation by adding the
term to the energy functional . The new stiffnes matrix is given by:

where:

 is formed by direct stiffness summation; where incorporates the natural boundary conditions and A
unincorporates the essential boundary conditions. In this case, where all the boundary condiitons are
natural, A = .

Implementation:

and

%% impose_boundary_cond.m
gam_Gamma2 = probdef.gam_Gamma2;
rightside_node = ttomap_fcn(n_el0+1,1);

if(Dir(1,2) == true)
 bEnodes = [bEnodes,rightside_node];
 uDir = [uDir,u_Gamma2(1)];
 n = n - 1;
else
 F(rightside_node) = F(rightside_node) + f_Gamma2(1);
 A(rightside_node) = A(rightside_node,rightside_node) + gam_Gamma2(1);
end

%% library_of_models.m
302 probdef.gam_Gamma2 = [+ks; 0];

BUCKLING EIGEN PROBLEM

SELF BUCKLING

!"
!#" $% !

"&
!#" = (− !

!# * !&!#
& = &+ = 0	 at	x	=	0
&++ = $%&++ + = 0 at x = 1

And Normalization of u

12

OPTIMIZATION PROBLEM

• Optimizing for the Radius Function

• Let R(x) = 1 + #(%) for G(x) > -1

• Parametrization:

• #'()*+	-)./01(%, 34, 35)
• Constraints:

a) Fixed Volume: 67 = 9 ∫ ;7
5<=

>
x@ dx@

b) Minimum Radius: 1 + # % ≥ 	;./C

c) Smooth G(x): #D(%) < F.)G

H # % 	I% = 0
4

>

• Objective:

• Maximize	"# subject to Control Volume, Material constraint, CS:

1. Minimize $% over &': $%()*

2. Choose "#()* =
+,-./01	21
3	4	5	6

'/3

• Figure of Merit:
81
-./

81,,:;
-./ (for a fixed volume) = +,-./

+,,,,:;
-./

'/3

OPTIMIZATION PROBLEM

CHOOSING SHAPE FUNCTIONS

• Choose a set of G(x) basis functions to satisfy constraints

• ! Odd
Symmetric By construction

• Choice of functions:

• Polynomial

• Hyperbolic

• Control parameters:

• "#
• "$, '()*ℎ	,-	*./01(*(,0	2,03

4 5 6)6 = 0
#

9

FE METHOD FOR SELF BUCKLING

! "#$ = %#&'("#$

\"# = 0; 0;	⋯

	!./0 =	!./1 = 	∫ 34 5 6789
6(7

678:
6(7

;
$ dx	

"#>

Rows and columns 1 & 2 removed ? !	=	!	@ 		
&'(= 	&'(0

Imposing Boundary
condition

RESULTS

! ", $%, $& = $% 3 " − 0.5 %% + 5 " − 0.5 . − 3 " − 0.5 / + " − 0.5 + $&(tanh " − 0.5 − " − 0.5)
FOM = 1.69

ERROR ESTIMATES

Order of convergence = 4

!" 	− !	~	&'
ℎ
ℎ)

*
	+,	ℎ → 0	

20*1 = 1
16

1

A priori Estimate

A Posteriori Estimate

!"/6 	− !~	Δ"
6
8		+,	ℎ → 0

log6 Δ"8 ~ log6 &' 	− 4=	+,	ℎ → 0	

	Final_project
	Chapter 4
	FE Method For Beam Eigenproblems
	1. Summary
	I. Formulation
	C. Rayleigh - Ritz Approximation

	2. Xylophone bar problem
	2.1 Geometry (Upside - Down Bar)
	2.2 Governing Eigenproblem
	2.3 Finite Element Approximation
	2.4 Design Problem
	2.5 Caresta Case
	3.1 A Priori Error Estimator
	3.2 A Posteriori Error Estimator

	Mohammed_Chapter 5

