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Abstract

We present a survey of the one dimensional Finite Element Method,

and a survey of 3D problems that can be simplified to Quasi-1D models

that can be solved by the one dimensional Finite Element Method. The

ability to solve 3D problems with high fidelity with a 1D Finite Element

Method can greatly speed up computations and optimize memory usage.

In particular, we test the ability of our 1D Finite Element Method to

corroborate parameters specified in popular burger recipes, as well as

those specified in the manufacturing of xylophone bars.

1 Introduction

The heat equation, the Euler-Bernoulli beam bending equations, and the Navier-
Stokes fluid equations are all examples of Partial Di↵erential Equations (PDE’s)
that are heavily studied across engineering disciplines. Despite their ubiquity,
these are often impossible to solve without simplifying assumptions that may
alter some problems significantly; as such, numerical methods are essential for
the study of these equations. High-dimensional PDE’s, however, are notoriously
di�cult to solve in a reasonable amount of time, and it is often di�cult to find
computers that can even store the solutions [Weinan et al., 2017]. In this work,
we survey some inherently 3D problems that can be converted into 1D problems,
so that they can be solved by a simple 1D Finite Element Method, instead of
the computationally intensive 3D methods.

To begin exploring the 1D Finite Element Method, we introduce the Rayleigh-
Ritz method. The Rayleigh-Ritz algorithm is a simple finite element method
that takes in a basis for a vector space of functions and a metric, and proceeds
to find the function in the specified vector space that minimizes the distance
between it and the solution to a partial di↵erential equation of interest un-
der the specified metric [Patera, 2019n]. We seek to employ the Rayleigh-Ritz
method to develop an understanding of the evolution of temperature distribu-
tions on pots and pans while cooking. In industry, an adequate model can
improve cooking time estimates and optimize kitchen scheduling, propelling the
emerging field of robotic kitchens forward. At home, the same model can help
foster safer cooking practices seeking to prevent burns and other kitchen related
injuries.

We will also advance the theory developed from the Rayleigh-Ritz Method
to create software that can assist in the manufacturing of musical instruments
- xylophones, in particular.

2 The Rayleigh-Ritz Method for One Dimen-
sional Boundary Value Problems

A proper description of a pan’s temperature distribution time evolution requires
solving for a temperature function U that depends on 3 spatial coordinates, and
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one time coordinate. This function U : R4 ! R can be seen as a solution to
the heat equation (Eq. 1) subject to an appropriate set of boundary conditions
[Patera, 2019m].

⇢Cp
@U

@t
�r · (krU) = f (1)

Here, ⇢, Cp and k refer to the possibly space dependent density, specific heat
capacity, and thermal conductivity of the material, respectively. Furthermore, t
is the time coordinate, r is the del operator on R3, and f is an arbitrary forcing
function.

Under some special conditions, there exist solutions to the heat equation that
can be written in terms of elementary functions. Unfortunately, the geometries
bestowed upon kitchen pans do not exhibit exploitable symmetries, making
numerical methods necessary for an adequate description of the function U .
As such, the Rayleigh-Ritz method has been selected in this work to yield an
accurate approximation of the temperature distribution function.

To develop the necessary mathematical tools for a successful implementa-
tion of the Rayleigh-Ritz method, we explore the method on two simpler, one
dimensional versions of the heat equation. In both cases, we analyze a steady
state scenario (@U@t = 0) and focus on a skillet handle of length L that can be
approximated to have a uniform temperature distribution in each cross-section
so that only one spatial coordinate is necessary for describing U .

2.1 Insulated Conical Frustum

The first of the two simplified heat equations models the skillet handle as a con-
ical fustrum insulated throughout its lateral area, with conductive heat transfer
occurring at the boundary with the pan (x = 0) and convective heat trans-
fer with the air around it at the tip (x = L). In this case, the heat equation
collapses to Eq. 2 [Patera, 2019n].

�k
d

dx

✓
⇡R2

0

⇣
1 + �

x

L

⌘
2 dU

dx

◆
= 0 (2)

Subject to:

• k dU
dx |x=0

= �q
1

• �k dU
dx |x=L = ⌘

2

(U(L)� U1)

Here, k is the thermal conductivity of the skillet’s material, R
0

is a nominal
radius, ⌘

2

is the e↵ective convective heat transfer coe�cient at the tip of the
skillet handle, U1 is the ambient temperature, and q

1

is the heat flux coming
into the skillet handle from the pan.

The Rayleigh-Ritz method begins with the specification of a vector space
of functions over which we seek to find an approximation to U [Patera, 2019o].
The vector space is specified by a set of basis functions { 

1

, 
2

, ..., n}. We now
consider the functional ⇡(w) defined below.
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⇡(w) =
1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dw

dx

◆
2

dx+
1

2
(1 + �)2 ⌘

2

w(L)2 � q
1

w(0)� (1 + �)2 ⌘
2

U1w(L)

We now show that the function that minimizes ⇡(w) is the solution to our
problem [Patera, 2019o].

Proof. Let U be a solution to the posed problem. Now consider an arbitrary
function v. We now compute ⇡(U + v).

⇡(U + v) =
1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dU

dx
+

dv

dx

◆
2

dx+
1

2
(1 + �)2 ⌘

2

(U(L) + v(L))2

�q
1

(U(0) + v(0))� (1 + �)2 ⌘
2

U1 (U(L) + v(L))

Expanding the quadratic terms, we get:

1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dU

dx

◆
2

dx+

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dU

dx

dv

dx

◆
dx+

1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dv

dx

◆
2

dx

+
1

2
(1 + �)2 ⌘

2

U(L)2 + (1 + �)2 ⌘
2

U(L)v(L) +
1

2
(1 + �)2 ⌘

2

v(L)2

�q
1

U(0)� q
1

v(0)� (1 + �)2 ⌘
2

U1U(L)� (1 + �)2 ⌘
2

U1v(L)

Now note that when we group the first integral term with the 1

2

(1 + �)2 ⌘
2

U(L)2

term, the �q
1

U(0) term, and the � (1 + �)2 U1U(L) term, we get ⇡(U) by def-
inition of ⇡(U). We will simplify the second integral term using integration by
parts.

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dU

dx

dv

dx

◆
dx =


k
⇣
1 + �

x

L

⌘
2 dU

dx
v

�L

0

�
Z L

0

d

dx

✓
k
⇣
1 + �

x

L

⌘
2 dU

dx

◆
dv

dx
dx

Recall the original di↵erential equation
⇣
�k d

dx

⇣
⇡R2

0

�
1 + � x

L

�
2 dU

dx

⌘
= 0

⌘
.

Since ⇡, R
0

and k are constants, we can move them in and out of the derivative

operator. Thus, our problem requires that d
dx

⇣
k
�
1 + � x

L

�
2 dU

dx

⌘
= 0, which

makes the second integral resulting from integration by parts zero. We thus
have:

⇡(U+v) = ⇡(U)+k (1 + �)2 v(L)
dU

dx
|x=L�kv(0)

dU

dx
|x=0

+
1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2

✓
dv

dx

◆
2

dx
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+(1 + �)2 ⌘
2

U(L)v(L) +
1

2
(1 + �)2 ⌘

2

v(L)2 � q
1

v(0)� (1 + �)2 ⌘
2

U1v(L)

Note that our first boundary condition (k dU
dx |x=0

= �q
1

) converts the�kv(0)dUdx |x=0

term to q
1

v(0), which cancels out with �q
1

v(0). Likewise, the second boundary
condition (�k dU

dx |x=L = ⌘
2

(U(L)� U1)) converts the k (1 + �)2 v(L)dUdx |x=L

term to (1 + �)2 ⌘
2

v(L)U1 � (1 + �)2 ⌘
2

v(L)U(L), which also cancels out with
the � (1 + �)2 ⌘

2

U1v(L) term and the (1 + �)2 ⌘
2

U(L)v(L) term. With these
observations, we have:

⇡(U + v) = ⇡(U) +
1

2

Z L

0

k (1 + �)2
✓
dv

dx

◆
2

dx+
1

2
(1 + �)2 ⌘

2

v(L)2

Now we make note of the fact that since k > 0, (1 + �)2 > 0,
�
dv
dx

�
2

> 0
for an uncountable number of values between 0 and L (as long as v 6= 0), and
v(L) � 0, the remaining terms in the expression can only increase the value of
⇡(U + v). We thus minimize ⇡ whenever v = 0, which implies that the function
U minimizes ⇡(w).

We’re thus trying to find the function in the vector space spanned by { 
1

, 
2

, ..., n}
that minimizes ⇡(w). Let URR be the function that minimizes ⇡. Since URR is
in the vector space spanned by { 

1

, 
2

, ..., n}, we can express it as:

URR =
nX

i=1

↵i i

Plugging this representation of URR into the definition of ⇡(w), we get:

⇡(U) =
1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2

nX

i=1

nX

j=1

↵i↵j
d i

dx

d j

dx
dx+

1

2
(1 + �)2 ⌘

2

nX

i=1

nX

j=1

↵i↵j i(L) j(L)

�q
1

nX

i=1

↵i i(0)� (1 + �)2 ⌘
2

U1

nX

i=1

↵i i(L)

Using linearity of integrals and finite sums, we can rearrange the expression
to read as:

⇡(U) =
nX

i=1

nX

j=1

↵i↵j

"
1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2 d i

dx

d j

dx
dx+

1

2
(1 + �)2 ⌘

2

 i(L) j(L)

#

+
nX

i=1

↵i

h
�q

1

 i(0)� (1 + �)2 ⌘
2

U1 i(L)
i
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Since we have chosen the basis, the only degree of freedom in the optimization
that we have is the ↵i’s. We are thus looking for the set of ↵i’s that minimizes
⇡. This can be achieved if the gradient of ⇡ with respect to {↵

1

,↵
2

,↵
3

, ...,↵n}
is the zero vector in Rn. We thus require that @⇡

@↵m
= 0 8 m 2 {1, 2, 3, ..., n}.

@⇡(U)

@↵m
=

@

@↵m

2

4
nX

i=1

nX

j=1

↵i↵j

"
1

2

Z L

0

k
⇣
1 + �

x

L

⌘
2 d i

dx

d j

dx
dx+

1

2
(1 + �)2 ⌘

2

 i(L) j(L)

#3

5

+
@

@↵m

"
nX

i=1

↵i

h
�q

1

 i(0)� (1 + �)2 ⌘
2

U1 i(L)
i#

= 0

Now note that when di↵erentiating with respect to ↵m, we only care about
the terms that contain ↵m. In the double sum, there are the n that appear
when i = m, and one more for each j 6= n. It’s easy to see that the ↵m↵k terms
are linear in ↵m. Since there are two of each, these become 2↵k. Finally, there
is one ↵2

m term which becomes 2↵m upon di↵erentiation. We thus get:

nX

i=1

↵i

"Z L

0

k
⇣
1 + �

x

L

⌘
2 d i

dx

d m

dx
dx+ (1 + �)2 ⌘

2

 i(L) m(L)

#

+
⇣
�q

1

 m(0)� (1 + �)2 ⌘
2

U1 m(L)
⌘
= 0

This is now a system of n equations, which we can represent as B~↵ = G.
Here, ~↵ = [↵

1

,↵
2

, ...↵n]T , B is the n⇥ n matrix such that:

Bi,j =

Z L

0

k
⇣
1 + �

x

L

⌘
2 d i

dx

d m

dx
dx+ (1 + �)2 ⌘

2

 i(L) m(L)

and G is the vector in Rn defined such that:

Gi = q
1

 m(0) + (1 + �)2 ⌘
2

U1 m(L)

We proceed to test our program with parameters k = 0.5 W
mK , L = 1m,

� = 1, ⌘
2

= 100 W
m2K , q

1

= 100 W
m2 and U1 = 24oC.

1. Since the proposed problem is simple enough, we have an analytic function
of the form:

U(x) = U1 +
q
1

L

k

 
1 + � + k

⌘2L

(1 + �)2
�

x
L

1 + � x
L

!

To test the program we supply the exact analytic solution as  
1

(x), and
 
2

(x) = x as an extraneous basis function. We thus expect the Rayleigh-
Ritz method to output ↵

1

= 1 and ↵ = 0. We plot the results below.
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Figure 1: ↵
1

 
1

, ↵
2

 
2

and their sum plotted, where  
1

is the analytic solution
to the problem and  

2

(x) = x. We get the expected result ↵
1

= 1 and ↵ = 0.

2. We now test the method with  
0

(x) = 1,  
1

(x) = x and  
2

(x) = x2.
The next three figures illustrate what happens if we only use  

1

, only use
 
2

and  
3

, and use all 3 functions respectively. We see that once we use
three basis functions, our approximation looks remarkably similar to the
analytic solution.

Figure 2: The approximation URR compared to the analytic solution U , when
the basis function is simply  

1

(x) = 1.
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Figure 3: The approximation URR compared to the analytic solution U , when
the basis functions are  

1

(x) = 1 and  
2

(x) = x.

Figure 4: The approximation URR compared to the analytic solution U , when
the basis functions are  

1

(x) = 1,  
2

(x) = x and  
3

(x) = x2.
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3. We’ve mathematically shown that if U solves our boundary value problem,
then it must minimize the functional ⇡. Furthermore, when implementing
the minimization in code, we were able to retrieve the exact solution by
forcing the analytic solution to be in the vector space of functions over
which we are seeking approximations.

Though we weren’t able to extract the exact solution by minimizing over a
vector space spanned by polynomials, this should not be surprising since
the analytic solution is not a polynomial as long as � 6= 0. Therefore,
there is no reason to expect to be able to find a non-polynomial function
the exact solution in a vector space of polynomials. Nevertheless, the
polynomial curves we retrieved looked strikingly similar to the analytic
solution.

With these observations in mind, we have an decent amount of evidence
suggesting that our code is working adequately.

4. We now test the Rayleigh-Ritz method on the polynomial vector space of
functions outlined above, for various values of �. We test � 2 {0, 1, 5, 10, 100, 1000}.

Figure 5: The Rayleigh-Ritz solution approximated by  
1

(x) = 1,  
2

(x) = x
and  

3

(x) = x2, plotted against the analytic solutions for di↵erent values of �.
Panel A corresponds to � = 0 - the solution is exact because when � = 0,
the analytic solution is linear, which is in the space of polynomial functions
spanned by  

1

,  
2

and  
3

. Panel B corresponds to � = 1 (the same as Figure
2). Panel C corresponds to � = 5. Panel D corresponds to � = 10. Panel E

corresponds to � = 100. Panel F corresponds to � = 1000.
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We can see that the solution is fairly accurate for small �, since as dis-
cussed, the � = 0 analytic solution is actually in the space of solutions
over which we are minimizing ⇡. Thus, the lower the �, the closer we get
to a solution that is in the space of viable approximations. As � increases,
the approximation gets worse around the u = 0 point gets worse, but for
larger values of x it doesn’t change much. To make sense of this, it’s worth
looking at the analytic solution:

U(x) = U1 +
q
1

L

k

 
1 + � + k

⌘2L

(1 + �)2
�

x
L

1 + � x
L

!

More notably, its derivative tells us that

U 0(x) = �q
1

L

k

1

L (1 + � x
L )�

x
L

�
L

(1 + � x
L )

2

= � q
1

k(1 + � x
L )

2

At x = 0, the derivative will simply be � q1
k as required by the boundary

condition. However, note that as � ! 1, varying x from 0 to L causes the
derivative to drop dramatically to zero. Since Parabolas are symmetric,
the dramatic drop to zero can’t be adequately approximated without hav-
ing it dramatically rise again as soon as the lowest point in the parabola
is hit; therefore, it’s very di�cult to capture the dramatic drop to zero
slope with functions spanned by  

1

,  
2

and  
3

.

However, at larger values of x, the function seems to behave like a constant
since the derivative is approximately zero, and constant functions are in
the space of functions over which we seek to minimize ⇡. As a result,
the function doesn’t diverge much from the approximation away from the
x = 0 point.

Nevertheless, it is worthy to take note of our method’s sensitivity to the
parameter �. We now proceed to test the Rayleigh-Ritz method on an-
other model.

2.2 Right-Cylinder Thermal Fin

Our next model approximates a skillet’s handle as a right-cylinder with a cross
sectional area of Acs and lateral perimeter Pcs with a prescribed temperature at
the boundary of the handle and the pan (x = 0) and no heat transfer occurring at
its tip (x = L). In this case, the heat equation collapses to Eq. 3 [Patera, 2019o].

�kAcs
d2U

dx2

+ ⌘
3

PcsU = ⌘
3

PcsU1 (3)

Subject to:

• U(0) = U
�1

• �k dU
dx |x=L = 0
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Here, k is the thermal conductivity of the skillet’s material, ⌘
3

is the e↵ec-
tive convective heat transfer between the pan and the air, U1 is the ambient
temperature, and U

�1 is the temperature at the boundary of the skillet handle
and the pan.

We will now propose the following functional ⇡ and prove (in a less detailed
fashion than before) that the solution to the problem above minimizes this
functional [Patera, 2019o].

⇡(w) =
1

2

Z L

0

"
kAcs

✓
dw

dx

◆
2

+ ⌘
3

Pcsw
2(x)

#
dx�

Z L

0

⌘
3

PcsU1w(x)dx

Consider a function of the form U+v, where U is the solution to our problem.

⇡(U+v) =
1

2

Z L

0

"
kAcs

✓
dU

dx
+

dv

dx

◆
2

+ ⌘
3

Pcs(U(x) + v(x))2
#
dx�

Z L

0

⌘
3

PcsU1U(x)dx�
Z L

0

⌘
3

PcsU1v(x)dx

=
1

2

Z L

0

"
kAcs

✓
dU

dx

◆
2

+ ⌘
3

PcsU
2(x)

#
dx+

Z L

0

kAcs
dU

dx

dv

dx
dx+

1

2

Z L

0

kAcs

✓
dv

dx

◆
2

dx

+

Z L

0

⌘
3

PcsU(x)v(x)dx�
Z L

0

⌘
3

PcsU1U(x)dx+
1

2

Z L

0

⌘
3

Pcsv
2(x)dx�

Z L

0

⌘
3

PcsU1v(x)dx

= ⇡(U) +


kAcs

dU

dx
v

�L

0

�
Z L

0

kAcs
d2U

dx2

v(x)dx+
1

2

Z L

0

kAcs

✓
dv

dx

◆
2

dx

+

Z L

0

⌘
3

PcsU(x)v(x)dx+
1

2

Z L

0

⌘
3

Pcsv
2(x)dx�

Z L

0

⌘
3

PcsU1v(x)dx

= ⇡(U) +


kAcs

dU

dx
v

�L

0

+

Z L

0

✓
�kAcs

d2U

dx2

+ ⌘
3

Pcs(U(x)� U1)

◆
v(x)dx

+
1

2

Z L

0

kAcs

✓
dv

dx

◆
2

dx+
1

2

Z L

0

⌘
3

Pcsv
2(x)dx

= ⇡(U)+kAcsv(L)
dU

dx
|x=L�kAcsv(0)

dU

dx
|x=0

+
1

2

Z L

0

kAcs

✓
dv

dx

◆
2

dx+
1

2

Z L

0

⌘
3

Pcsv
2(x)dx

= ⇡(U)� kAcsv(0)
dU

dx
|x=0

+
1

2

Z L

0

kAcs

✓
dv

dx

◆
2

dx+
1

2

Z L

0

⌘
3

Pcsv
2(x)dx
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We finally note that if we limit the vector space to functions in it that equal
u
�1 at x = 0, then U(0)+v(0) = u

�1 , which via our first initial condition implies
that v(0) = 0. Hence:

⇡(U + v) = ⇡(U) +
1

2

Z L

0

kAcs

✓
dv

dx

◆
2

dx+
1

2

Z L

0

⌘
3

Pcsv
2(x)dx

Clearly, the last two terms are strictly positive if v 6= 0. Thus, U minimizes
⇡. We now show (again, with less rigor than before) how to set up a linear
system to minimize this new functional. We write U in terms of our basis
functions U(x) =

Pn
i=0

↵i i(x) and compute the functional.

⇡(U) =
1

2

Z L

0

2

4kAcs

nX

i=0

nX

j=0

↵i↵j
d j

dx

d i

dx
+ ⌘

3

Pcs

nX

i=0

nX

j=0

↵i↵j i(x) j(x)

3

5 dx

�
Z L

0

⌘
3

PcsU1

nX

i=0

↵i i(x)dx

We know we must set the gradient of ⇡ to zero, but we need to handle
the Dirichlet condition with a bit of care. To ensure that we only consider
functions in the vector space with f(0) = U

�1 , we select  i such that  i(0) = 0
8 i 2 {1, 2, 3, ..., n}, and  

0

(0) = 1. Hence, we know that ↵
0

= U
�1 for any of

our candidate functions. Keeping in mind that in each term in the sum each ↵
0

pair appears twice except for the ↵2

0

term which only appears once, we can get
a modified expression for ⇡(U) as follows:

⇡(U) =
1

2

Z L

0

2

4kAcs

nX

i=1

nX

j=1

↵i↵j
d j

dx

d i

dx
+ ⌘

3

Pcs

nX

i=1

nX

j=1

↵i↵j i(x) j(x)

3

5 dx

+

Z L

0

"
kAcs↵0

nX

i=1

↵i
d 

0

dx

d i

dx
+ ⌘

3

Pcs↵0

nX

i=1

↵i i(x) 0

(x)

#
dx+

1

2

Z L

0

kAcs↵
2

0

✓
d 

0

dx

◆
2

dx

+
1

2

Z L

0

⌘
3

Pcs

�
↵2

0

 2

0

(x)� U1↵0

 
0

�
dx�

Z L

0

⌘
3

PcsU1

nX

i=1

↵i i(x)dx

Noting that ↵
0

is a constant, we can now di↵erentiate with respect to ↵i 8
i 2 {1, 2, 3, ..., n}. We thus get:

@⇡

@↵k
=

nX

i=1

↵i

"Z L

0

✓
kAcs

d i

dx

d k

dx
+ ⌘

3

Pcs i(x) k(x)

◆
dx

#
�
Z L

0

⌘
3

PcsU1 k(x)dx

+

Z L

0


kAcs↵0

d 
0

dx

d k

dx
+ ⌘

3

Pcs↵0

 k(x) 0

(x)

�
dx
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To get a minimum we want @⇡
@↵k

= 0 8 k 2 {1, 2, 3, ..., n}. We thus get the

matrix equation B~↵ = G, where ~↵ = [↵
1

,↵
2

, ...,↵n]T , B is the n ⇥ n matrix
such that:

Bi,j =

Z L

0

✓
kAcs

d i

dx

d j

dx
+ ⌘

3

Pcs i(x) j(x)

◆
dx

and G is the vector in Rn defined such that:

Gi =

Z L

0


⌘
3

Pcs (U1 i(x)� U
�1 i(x) 0

(x))� kAcsU�1

d 
0

dx

d i

dx

�
dx

We now test the algorithm with values of k = 50 W
mK , L = 0.05m, U1 =

24oC, U
�1 = 50oC, Acs = 0.0001m2, Pcs = 0.04m, and ⌘

3

= 100 W
m2K .

1. Like our previous model, the boundary value problem posed is simple
enough that it can be solved analytically, giving us:

U(x) = U1 + (U
�1 � U1)

cosh
�p

µ
�
1� x

L

��

cosh(
p
µ)

where µ = ⌘
3

PcsL2/(kAcs). We thus proceed to provide as basis functions
 
0

which is the analytic solution normalized by U
�1 (which is necessary

since we’re forcing ↵
0

to be U
�1), and  

1

(x) = x. We thus expect the
Rayleigh-Ritz method to output ↵

1

= U
�1 and ↵

2

= 0. We plot the
results below.

Figure 6: ↵
0

 
0

, ↵
1

 
1

and their sum plotted, where  
1

is the analytic solution
to the problem normalized by U

�1 and  
2

(x) = x. We get the expected result
↵
1

= 50 = U
�1 and ↵ = 0.
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2. We now test the method with  
0

(x) = 1,  
1

(x) = x and  
2

(x) = x2.
The next three figures illustrate what happens if we only use  

0

, only use
 
1

and  
0

, and use all 3 functions respectively. We see that once we use
three basis functions, our approximation looks remarkably similar to the
analytic solution.

Figure 7: The approximation URR compared to the analytic solution U , when
the basis functions are  

0

(x) = 1 and  
1

(x) = x.

Figure 8: The approximation URR compared to the analytic solution U , when
the basis functions are  

0

(x) = 1 and  
1

(x) = x.

14



Figure 9: The approximation URR compared to the analytic solution U , when
the basis functions are  

0

(x) = 1,  
1

(x) = x and  
2

(x) = x2.

3. Once again, we’ve mathematically shown that if U solves our boundary
value problem, then it must minimize the functional ⇡. Furthermore,
when implementing the minimization in code, we were able to retrieve the
exact solution by forcing the analytic solution to be in the vector space of
functions over which we are seeking approximations.

Though we weren’t able to extract the exact solution by minimizing over
a vector space spanned by polynomials, this should not be surprising since
the analytic solution is not a polynomial as long as µ 6= 0 (in which case
it’ll be a constant function). Therefore, there is no reason to expect to be
able to find a non-polynomial function the exact solution in a vector space
of polynomials. Nevertheless, the polynomial curves we retrieved looked
strikingly similar to the analytic solution.

With these observations in mind, we have an decent amount of evidence
suggesting that our code is working adequately.

4. We now test our algorithm’s sensitivity to the parameter µ. The only
parameter that appears in µ and was not specified is ⌘

3

. As a result, we
will select ⌘

3

2 {1, 80, 1000} W
m2K . These values cover the di↵erent regimes

of natural convection and correspond to values of µ of 0.02, 1.6 and 20,
respectively. We see the results in a Figure below.
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Figure 10: The Rayleigh-Ritz solution approximated by  
1

(x) = 1,  
2

(x) = x
and  

3

(x) = x2, plotted against the analytic solutions for di↵erent values of µ.
The Left Panel corresponds to µ = 0.02. The Middle Panel corresponds to
µ = 1.6. The Right Panel corresponds to µ = 20.

We observe that as µ increases, the approximation becomes less accurate.
This is because the derivative at x = 0 scales like �p

µ. As a result, larger
values of µ generate a steeper descent from U

�1 to U1, which becomes
increasingly di�cult for a parabola to approximate, since as discussed be-
fore, a steep descent to a zone of ⇡ 0 slope would signify a rapid symmetric
ascent.

3 The One Dimensional Finite Element Method

Previously, we explored the general Rayleigh-Ritz method. Now, instead of
considering optimization over an arbitrary vector space of functions, like we
have been doing, we will consider two particular vector spaces; this, will give us
the Finite Element Method in 1D.

We’re trying to approximate a function u : [0, L] ! R, so if we’re given
a mesh, or a collection of closed intervals called elements that only intersect
at the endpoints, but whose union is exactly [0, L], we can consider the two
vector spaces of piece-wise functions that are (1) linear and (2) quadratic on
each element of the given mesh [Patera, 2019f].

We now revisit the functional ⇡ we introduced in the previous chapter, and
show why this particular vector space of functions is computationally favorable.
In the previous chapter, we considered a specific functional ⇡ for each boundary
value problem. We now show a general functional form for any heat equation
problem subject to Neumann-Robin boundary conditions. That is:

� d

dx

✓
k(x)

dU

dx

◆
+ µ(x)U = f

⌦

(x) (4)

Subject to:

• k dU
dx |x=0

= �
1

U(0)� f
�1

16



• �k dU
dx |x=L = �

2

U(L)� f
�2

We propose the functional:

⇡(w) =
1

2

Z L

0

"
k(x)

✓
dw

dx

◆
2

+ µ(x)w2

#
dx+

1

2

�
�
1

w2(0) + �
2

w2(L)
�
�
Z L

0

f
⌦

(x)wdx� w(0)f
�1 � w(L)f

�2

We proceed to show that the solution to the posed problem indeed minimizes
the functional proposed above [Patera, 2019h].

Proof. Like before, we consider w = U + v, where U is the solution to the
problem.

⇡(U+w) =
1

2

Z L

0

"
k(x)

(✓
dU

dx

◆
2

+ 2

✓
dU

dx

◆✓
dv

dx

◆
+

✓
dv

dx

◆
2

)
+ µ(x)

�
U2 + 2Uv + v2

 
#
dx

+
1

2

�
�
1

�
U2(0) + 2U(0)v(0) + v2(0)

 
+ �

2

�
U2(L) + 2U(L)v(L) + v2(L)

 �

�
Z L

0

f
⌦

(x) (U + v) dx� U(0)f
�1 � v(0)f

�1 � U(L)f
�2 � v(L)f

�2

Collecting the dU
dx

2

, U2, U2(0), U2(L), f
�

U , U(0) and U(L) terms we get
⇡(U).

⇡(U+w) = ⇡(U)+
1

2

Z L

0

"
k(x)

(
2

✓
dU

dx

◆✓
dv

dx

◆
+

✓
dv

dx

◆
2

)
+ µ(x)

�
Uv + v2

 
#
dx

+
1

2

�
�
1

�
2U(0)v(0) + v2(0)

 
+ �

2

�
2U(L)v(L) + v2(L)

 �

�
Z L

0

f
⌦

(x)vdx� v(0)f
�1 � v(L)f

�2

We now integrate the dU
dx

dv
dx term of the integral with integration by parts.

Z L

0

k(x)
dU

dx

dv

dx
dx =


k(x)

dU

dx
v

�L

0

�
Z L

0

d

dx

✓
k(x)

dU

dx

◆
vdx

Invoking boundary conditions of our problem, we see that
�
(x)dUdx

�
x=L

is

just ��
2

U(L) + f
�2 and

�
(x)dUdx

�
x=0

is �
1

U(L)� f
�1 . Hence:
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Z L

0

k(x)
dU

dx

dv

dx
dx = ��

2

U(L)v(L)+f
�2v(L)��1U(0)v(0)+f

�1v(0)�
Z L

0

d

dx

✓
k(x)

dU

dx

◆
vdx

When combining it with the rest of the equation, we see that all the boundary
condition terms cancel out with other terms in the expression. Hence:

⇡(U + w) = ⇡(U) +
1

2

Z L

0

"
k(x)

✓
dv

dx

◆
2

+ µ(x)
�
v2
 
#
dx

+
1

2

�
�
1

�
v2(0)

 
+ �

2

�
v2(L)

 �
�
Z L

0

f
⌦

(x)vdx

+

Z L

0

v

⇢
� d

dx

✓
k(x)

dU

dx

◆
+ µ(x)U

�
dx

Notice that the term in curly braces in the last integral is simply f
⌦

since our
di↵erential equation dictates so. This makes the two integral terms cancel out.
We then note that the remaining terms are all square quantities of real valued
functions multiplied by positive values. Hence, adding any non-zero function to
U can only increase the value of ⇡. Hence U minimizes ⇡.

Now that we have a more general functional to minimize, we see some ad-
vantages of selecting vector spaces of piece-wise linear and piece-wise quadratic
functions over a given mesh.

Let us consider the piece-wise linear case first. Given a mesh with n elements
numbered {T

1

, T
2

, ..., Tn}, we define n + 1 basis functions {�
1

,�
2

, ...,�n+1

}. If
i 6= n+ 1, we have:

�i =

8
><

>:

1 + 1

hi
(xi,l � x) x 2 Ti

1 + 1

hi
(x� xi,l) x 2 Ti�1

(unless i=1)

0 elsewhere

where xi,l is the left endpoint of Ti and hi is the length of Ti [Patera, 2019h].
Otherwise, we have:

�n+1

=

(
1 + 1

hn
(x� L) x 2 Tn

0 elsewhere

where L is the right endpoint of the domain [Patera, 2019h]. In practice,
these functions look like triangles whose base extends two elements in the mesh
- unless it is �

1

and �n+1

, which only span one element [Patera, 2019g]. Let us
now express our approximation UFE for U in terms of these functions.

UFE =
n+1X

i=1

↵i�i

18



Plugging the expression into ⇡ gives us:

⇡(UFE) =
1

2

Z L

0

2

4k(x)
n+1X

i=1

n+1X

j=1

↵i↵j
d�i
dx

d�j
dx

+ µ(x)
n+1X

i=1

n+1X

j=1

↵i↵j�i�j

3

5 dx

+
1

2
�
1

n+1X

i=1

n+1X

j=1

↵i↵j�i(0)�j(0)+
1

2
�
2

n+1X

i=1

n+1X

j=1

↵i↵j�i(L)�j(L)�
Z L

0

f
⌦

n+1X

i=0

↵i�idx

�f
�1

n+1X

i=0

↵i�i(0)� f
�2

n+1X

i=0

↵i�i(L)

Like in the previous chapter, we find the gradient of ⇡ with respect to the
coordinates {↵i}n+1

i=1

. Using the same arguments as before we get that:

@⇡

@↵k
=

n+1X

i=1

↵i

(Z L

0


k(x)

d�i
dx

d�k
dx

+ µ(x)�i�k

�
dx+ �

1

↵i�i(0)�k(0) + �
2

↵i�i(L)�k(L)

)

�
Z L

0

f
⌦

�kdx� f
�1�k(0)� f

�2�K(L)

Since this holds for every k and we want all of these to equal zero when
optimizing, we have a system of n+ 1 linear equations, which we can represent
as A~↵ = F , where:

Ai,k =

Z L

0


k(x)

d�i
dx

d�k
dx

+ µ(x)�i�k

�
dx+ �

1

↵i�i(0)�k(0) + �
2

↵i�i(L)�k(L)

And:

Fk =

Z L

0

f
⌦

�kdx+ f
�1�k(0) + f

�2�K(L)

Here lies the advantage of using the basis functions defined above. First, we
note that by design, �i(0) = 0 for all i 6= 1 and �n+1

(L) = 0 for all i 6= n+ 1.
Thus, we can ignore the �

1

↵i�i(0)�k(0) term for all entries except A
1,1 and we

can ignore the �
2

↵i�i(L)�k(L) term for all entries except An+1,n+1

.
Furthermore, we note that by design, the support of �i only overlaps with

the support of �i�1

, �i+1

and itself. The same is true of the derivative. As a
result, Ai,k = 0 if k 62 {i � 1, i, i + 1}. This implies that A is a tri-diagonal
matrix, which means we can solve A ~↵i = F in O(n) steps instead of O(n3),
which would be the case for any arbitrary matrix [Patera, 2019g].
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Furthermore, note that if �i overlaps with �k and i 6= k, then

d�i
dx

d�k
dx

= � 1

hihk

and if i = k, then

d�i
dx

d�i
dx

=
1

h2

i
.

Though the �i products don’t simplify as thoroughly, they’re still much
simpler to handle when performing numerical quadrature [Patera, 2019g].

If we consider quadratic piece-wise functions, then we must now include
mesh points in between the element boundaries of the given mesh. We have
thus meshed the domain into 2n elements, giving us 2n + 1 basis functions
[Patera, 2019i]. Here, it is convenient to refer to �i as the function that is 1 at
node i, where nodes 1 through n are the left endpoints of the original mesh, node
n+1 is the right endpoint of the entire domain, and nodes n+2 through 2n+1
are the new “midpoint” nodes. We define our basis functions as [Patera, 2019i]:

�i =

8
><

>:

(x� xi�1

)(x� xi+n) x 2 Ti�1

(unless i=1)

(x� xi+1

)(x� xi+n+1

) x 2 Ti

0 elsewhere

if i < n+ 1. If i = n+ 1, we have:

�n+1

=

(
(x� xn)(x� x

2n+1

) x 2 Tn

0 elsewhere

And if i > n+ 1, we have:

�i =

(
�(x� xi�n�1

)(x� xi�n) x 2 Ti�n+1

0 elsewhere

Though a bit more complicated, the A matrix and F vector are defined in
the exact same way. All we must handle carefully is the �i(L) term (it still is
only non zero when i = n+1, but this is now in the middle of the matrix/vector
whereas it was the last entry in the piece-wise linear case) [Patera, 2019i]. We
also note that there is more overlap between the support of the basis functions,
so the matrix will now become penta-diagonal instead of tri-diagonal. Luckily,
penta-diagonal systems can still be solved in O(n) steps [Patera, 2019g].

We still haven’t really discussed what to do in the case of Dirichlet boundary
conditions, but the procedure is quite similar to the one in the previous chapter,
so we won’t repeat it in detail. We let ↵

1

or ↵n+1

equal whatever value is
specified by at U(0) or U(L) respectively, and incorporate these terms into the
F vector [Patera, 2019g]. This reduces the number of variables in the system by
the number of Dirichlet boundary conditions. We now test our newly developed
method on the two heat transfer models of our previous chapter and a new one
that we will introduce now.
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3.1 The Wall Model

We introduce a new case study for the heat equation to test with our newly
developed Finite Element Method. Since the method hasn’t been developed
enough to handle multiple dimensions (including time), we will consider the
steady-state operations of building wall during the winter exposed to an exterior
temperature u

out

and a thermostat regulated interior temperature of u
in

.
Let x = 0 denote the exterior of the wall and x = L the interior. The

steady-state heat equation gives us:

� d

dx

✓
k
dU

dx

◆
= f (5)

Assuming that the wall has a constant thermal conductivity k and that there
are no sources of heat in the wall (i.e. f = 0), we get the simple equation:

d2U

dx2

= 0 (6)

This ordinary di↵erential equation has the general solution U(x) = C
1

x +
C

0

. To specify the values of C
1

and C
0

, we must invoke boundary conditions.
For this, we consider the convective heat transfer occurring at the interior and
exterior of the wall. Invoking convective heat transfer at the interior and exterior
of the wall, we get:

• k dU
dx |x=0

= ⌘
1

(U(0)� U
out

)

• �k dU
dx |x=L = ⌘

2

(U(L)� U
in

)

With this information, we can solve for C
1

and C
0

. First we note that
dU
dx = C

1

everywhere in [0, L]. Hence, we get the equations:

• kC
1

= ⌘
1

(C
0

� U
out

)

• �kC
1

= ⌘
2

(C
1

L+ C
0

� U
in

)

Solving this system for C
0

and C
1

, gives us the analytic solution:

U(x) =

0

@ U
in

� U
out

L+
⇣

1

⌘1
+ 1

⌘2

⌘
k

1

Ax+
k

⌘
2

0

@ U
in

� U
out

L+
⇣

1

⌘1
+ 1

⌘2

⌘
k

1

A+ U
out

(7)

3.2 Experiments and Convergence Rates

We first test our newly developed method on the Right-Cylinder Thermal Fin
model on meshes with di↵erent number of elements.
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Figure 11: The exact solution and derivative plotted against the finite element
solution for a mesh with six elements.

Figure 12: The exact solution and derivative plotted against the finite element
solution for a mesh with 384 elements.

As we can see from these two plots, the finite element approximations qual-
itatively match the shapes of the analytic solutions. Furthermore, we note that
for a mesh with more elements, the approximation looks more similar to the
analytic solution to the point that at 384 elements, the FEM approximation
and the exact solution are basically indistinguishable from each other.

To make these observations more rigorous, we take a look at a few norms
and how their error scales with the largest element in the mesh. In particular,
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we consider:

||w||H⌦ =

 Z L

0

(✓
dw

dx

◆
2

+
1

L2

w2

)
dx

! 1
2

||w||L2 =

 Z L

0

w2dx

! 1
2

||w||L1 = sup
x2⌦

|w|

Depending on whether we use piece-wise linear basis or the piece-wise quadratic
basis, we get di↵erent bounds on the asymptotic behavior of the error in these
bounds [Patera, 2019a]. In particular, we have:

||u� uFE ||H⌦ = O(hp)

||u� uFE ||L2 = O(hp+1)

||u� uFE ||L1 = O(hp+ 1
2 )

where p = 1 in the piece-wise linear case and p = 2 in the piece-wise
quadratic case [Patera, 2019a]. We test these theoretical asymptotic limits for
various meshes with a maximum element length of h

max

by plotting h
max

against
the error in a log-log plot.
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Figure 13: Log-log plots of the errors between the analytic function and the
finite element function in di↵erent norms as a function of mesh granularity,
where the mesh granularity is dictated by h

max

/L. The solid line indicates the
theoretical slope of the error based on asymptotic analysis. We also include the
error in the flux at x = 0 and its theoretical asymptotic decade in the order of
O(h4).

As seen in Figure 13, we can see that in all four cases, once �log(h
max

/L)
exceeds 2, the convergence of the error estimates, whose computations we will
review later, and the error between the analytic solution and the FEM approxi-
mation all approach a line with the specified slope. We now show the 6 element
mesh of the piece-wise quadratic approximation and the same error plots.
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Figure 14: The exact solution and derivative plotted against the finite element
solution for a mesh with six elements.

Figure 15: Log-log plots of the errors between the analytic function and the
finite element function in di↵erent norms as a function of mesh granularity,
where the mesh granularity is dictated by h

max

/L. The solid line indicates the
theoretical slope of the error based on asymptotic analysis. We also include the
error in the flux at x = 0 and its theoretical asymptotic decade in the order of
O(h4).

Note that in this case, we manage to get a more controlled oscillation with
a 6 element mesh1 that still qualitatively matches the shape of the analytic

1
Since we have a quadratic mesh, we actually have 12 elements.
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solution. Fruthermore, we note that the convergence rates of the norms still
follow the theoretical decay power functions for values of � log(h

max

/L) greater
than 2.

Given that, for this model, the FEM approximations qualitatively match the
analytic solutions, and the theoretical power rules that dictate the descent of the
errors in various norms matches our experiments, we have some confidence that
our code is working appropriately. However, we will provide some additional
models that can be used to test functionality. In particular, let us consider
systems with non-trivial k(x) and µ(x) functions.

Let us consider a problem where k(x) = k
0

ln( xL + e), µ is constant and our
solution is U

0

sin(⇡ x
L ). Using the method of manufactured solutions, we get

that f
⌦

must be the following:

f
⌦

=


k
0

ln
⇣ x

L
+ e

⌘ ⇡2

L2

+ µ

�
U
0

sin
⇣
⇡
x

L

⌘
� k

0

⇡U
0

Lx+ eL2

cos
⇣
⇡
x

L

⌘

We thus have the problem:

� d

dx

✓
k
0

ln
⇣ x

L
+ e

⌘ dU

dx

◆
+µU =


k
0

ln
⇣ x

L
+ e

⌘ ⇡2

L2

+ µ

�
sin

⇣
⇡
x

L

⌘
� k

0

⇡

Lx+ eL2

cos
⇣
⇡
x

L

⌘

Subject to:

• U 0(0) = 1

LU(0) + ⇡
LU0

• U 0(L) = 1

LU(L)� ⇡
LU0

Likewise, we can set µ(x) = µ
0

ln( xL + e) and k(x) = k, hoping to get the
same answer U(x) = U

0

sin(⇡ x
L ). We get:

�k
d2U

dx2

+ µ
0

ln
⇣ x

L
+ e

⌘
U =


k
⇡2

L2

+ µ
0

ln
⇣ x

L
+ e

⌘�
U
0

sin
⇣
⇡
x

L

⌘

• U 0(0) = 1

LU(0) + ⇡
LU0

• U 0(L) = 1

LU(L)� ⇡
LU0

We propose these problems to be used for verification of the code’s correct-
ness. We now show the same five plots for the insulated conical frustum model
and discuss its results.
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Figure 16: The exact solution and derivative plotted against the finite element
solution for a mesh with 6 elements.

Figure 17: The exact solution and derivative plotted against the finite element
solution for a mesh with 384 elements.
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Figure 18: Log-log plots of the errors between the analytic function and the
finite element function in di↵erent norms as a function of mesh granularity,
where the mesh granularity is dictated by h

max

/L. The solid line indicates the
theoretical slope of the error based on asymptotic analysis. We also include the
error in the temperature at x = 0 and its theoretical asymptotic decade in the
order of O(h2).

Figure 19: The exact solution and derivative plotted against the finite element
solution for a mesh with 6 elements.
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Figure 20: Log-log plots of the errors between the analytic function and the
finite element function in di↵erent norms as a function of mesh granularity,
where the mesh granularity is dictated by h

max

/L. The solid line indicates the
theoretical slope of the error based on asymptotic analysis. We also include the
error in the temperature at x = 0 and its theoretical asymptotic decade in the
order of O(h4).

Given that, for this model, the FEM approximations qualitatively match the
analytic solutions, and the theoretical power rules that dictate the descent of
the errors in various norms matches our experiments, we have further evidence
that our code is working appropriately. We finally take into account how our
FEM code performs on the wall model that we presented before.

Note that the solution to this model is a linear function, which is in the space
of piece-wise linear and quadratic functions over any mesh. Hence, we should
be able to retrieve the exact solution by using either the piece-wise linear or
piece-wise quadratic FEM. Let us consider the 384 element quadratic mesh,
which theoretically should be the method whose error should be smallest. We
get:
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Figure 21: The exact solution and derivative plotted against the finite element
solution for a mesh with 384 elements.

We note that the function we retrieve, while indistinguishable from the an-
alytic solution, is not exact as illustrated by the derivative. However, note that
the maximum di↵erence between values of the derivative is in the order of 10�9;
therefore, the solution the FEM yields does generate an approximately constant
derivative despite not being exact. Nevertheless, the solution is in the space
of solutions, so by our minimization lemma, we should have gotten the exact
solution back. We now explore this phenomenon with our log-log plots for the
piece-wise linear vector space and the piece-wise quadratic vector space.
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Figure 22: Log-log plots of the errors between the analytic function and the
finite element function in di↵erent norms as a function of mesh granularity,
where the mesh granularity is dictated by h

max

/L. The solid line indicates the
theoretical slope of the error based on asymptotic analysis. We also include the
error in the flux at x = 0 and its theoretical asymptotic decade in the order of
O(h2).
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Figure 23: Log-log plots of the errors between the analytic function and the
finite element function in di↵erent norms as a function of mesh granularity,
where the mesh granularity is dictated by h

max

/L. The solid line indicates the
theoretical slope of the error based on asymptotic analysis. We also include the
error in the flux at x = 0 and its theoretical asymptotic decade in the order of
O(h4).

Interestingly, the error increases as the mesh becomes finer and obviously,
the error doesn’t follow the theoretical power laws. However, note that the
error in the norms are all less than 10�10, which is about 4 orders of magnitude
smaller than any of the errors in the previous models.

This must be the result of an e↵ect that is not taken into account when doing
the asymptotic analysis of the errors. In fact, the finer the mesh gets, the larger
the system matrices become, which decreases the numerical stability of the
floating point operations. Therefore, the error being plotted is not dominated
by the error induced by the method, like we assumed, but the error induced
by floating point operations which we don’t account for when doing the big-O
analysis. This makes sense because the errors being plotted are in the order of
machine precision. Though we get an unexpected consequence from increasing
the mesh granularity, the fact that floating point errors are the dominant source
of error indicates that we’ve e↵ectively eliminated, in this case, errors induced by
the method, giving us greater confidence in the implementation of the software.

Finally, we explore how our error estimates are computed, and what can be
done if the analytic solution is not available.

3.3 Error Estimates

In order to get an estimate for the errors in the di↵erent norms, we use the
asymptotic convergence rates listed in the previous section. By definition of
the big-O notation, we know that for su�ciently fine meshes, we can bound the
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errors by a constant times g(h) if ||u � uFE || = O(g(h)). We can approximate
this constant via [Patera, 2019a]:

Cu = max
m2{1,2,...,n}

max
x2Tm

|u00(x)|

Thus, getting an approximation for Cu can give us an upper bound on the
error on any of the norms. Furthermore, we can do a sequence of mesh refine-
ments and compare the distance between subsequent approximations to get an
upper bound on this constant Cu [Patera, 2019a]. We call these estimates the
a-posteriori estimates. In the cases where we don’t have an explicit solution, we
can use these a-posteriori approximation to verify that after some nominal value
of h/L, the error drops o↵ in a power law fashion that matches the theoretical
asymptotic behavior. If our code is implemented correctly, we can be sure that
this will occur.

The converse, however, may not necessarily true. Imagine, for example,
misplacing a decimal place such that one of the parameters is a few orders
of magnitude o↵ from what it’s supposed to be. In this case, if everything
else is implemented correctly, the error estimate would be the error between
the solution to the heat equation with the erroneous parameter and the finite
element approximation, which would still drop in the appropriate power law
fashion. So even though the error in a particular norm may be dropping in the
appropriate power law fashion, the finite element solution is converging to the
solution with the erroneous parameter, which in general, will be di↵erent form
the correct solution.

We now repeat the convergence experiments we performed in the previous
section for the right-cylinder thermal fin model in the space of piece-wise lin-
ear functions without supplying the exact solution and go through interpreting
useful information from the estimates. Plotting the error estimates, we get the
following figure.
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Figure 24: Log-log plots of the approximated errors between the analytic func-
tion and the finite element function in di↵erent norms as a function of mesh
granularity, where the mesh granularity is dictated by h

max

/L. The solid line
indicates the theoretical slope of the error based on asymptotic analysis. We
also include the error in the flux at x = 0 and its theoretical asymptotic decade
in the order of O(h4).

If we want to ensure that at no point in the domain the percent error is
no more than say 0.02, we can simply require that the L1 norm be less than
approximately 1. In Figure 24, each pink “x” mark denotes one of the meshes
used to generate uFE . We can see that the first mesh to have a log error less than
zero (which corresponds to an error of less than 1) is the 7th mesh refinement
in the uniform refinement scheme. Using the data tool-tip, we can see that the
log of the error estimate is �0.1967. Hence:

||u� uFE ||L1  0.6344

If instead, we were curious in the output (i.e. the flux of the function at
x=0) of the system at a particular mesh (say the fifth refinement), we could
look at the right-most plot. At the point where �log (h/L) = 1.982. We can
thus bound the output using the data tool-tip once again.

|U 0(0)� U 0
FE(0)|  27.714

We now repeat the experiment and get the equivalent metrics for the frustum
model.
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Figure 25: Log-log plots of the approximated errors between the analytic func-
tion and the finite element function in di↵erent norms as a function of mesh
granularity, where the mesh granularity is dictated by h

max

/L. The solid line
indicates the theoretical slope of the error based on asymptotic analysis. We
also include the error in the flux at x = 0 and its theoretical asymptotic decade
in the order of O(h4).

In this model, the first mesh in the refinement (i.e. the second mesh) is
actually already good enough to give us an L1 norm that is less than 1. In
fact:

||u� uFE ||L1  0.0747

Here, we consider the temperature at x = 0 as the output. And at the fifth
mesh, we get:

|U(0)� UFE(0)|  7.107⇥ 10�3

4 The Time Dependent Finite Element Method

We now wish to use the machinery developed in the previous two chapters and
add the possibility of having the spatial distribution of temperature depend on
time. Note that in the previous chapter, we converted the equation

� d

dx

✓
k(x)

dU

dx

◆
+ µ(x)U = f

⌦

(x) (8)

into a system of equations A~↵ = ~F , where ~↵ is the vector of coe�cients
assigned to each of the basis functions, and A, as we discussed, was either a
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tri-diagonal or penta-diagonal matrix depending on whether the basis functions
were piecewise linear or piecewise quadratic.

We now consider the general, time dependent, one dimensional heat equation

⇢(x)
@U

@t
� @

@x

✓
k(x)

@U

@x

◆
+ µ(x)U = f

⌦

(x) (9)

We now express U as a linear combination of our basis functions and allow
the coe�cients ↵ to depend on time. The idea is that at every given point in
time, the function in the vector space of functions that best approximates the
solution may be changing; however, since we’re still searching in the same space
of functions, we should still be able to express it in the basis we’ve chosen for
the space. Hence, only the coe�cients have to change. We thus note that:

@URR

@t
=

nX

i=1

@↵i

@t
�i

Furthermore, let’s assume we know the value of @↵i
@t at the point in time

where we’re interested in finding the spatial distribution of U . In that case, we
can simply lump the ⇢(x)@U@t term in the f

⌦

(x) function on the right hand side
of the equation and call this new function F

⌦

(x) [Patera, 2019l]. We now apply
the method from the previous chapter to get a matrix vector equation of the
form A~↵ = ~G. Recall from chapter two the integral expression used to calculate
~G. We can thus express ~G as [Patera, 2019k]:

Gk =

Z L
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f
⌦

�k � ⇢(x)�k

nX
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@t
�i
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Note that the right most expression corresponds to the dot product between

~̇↵ and ~Vi, the vector whose kth entry is
R L

0

⇢(x)�i�kdx. Hence:

Gk = Fk � ~Vk · ~̇↵

To construct the entire vector ~G, we have to take n dot products between
n di↵erent vectors ~Vk and ~̇↵. This is equivalent to doing M ~̇↵, where M is the

matrix whose kth row is ~Vk
T
. We thus get:

~G = ~F �M ~̇↵

Putting everything together, we get the following system of liner di↵erential
equations:

M ~̇↵+A~↵ = ~F
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Where A and ~F hold the same definitions from chapter 2 and

Mi,k =

Z L

0

⇢(x)�k�idx

To solve the system, we can chose any of numerous ODE time stepping
schemes. For the purpose of this work we’ve chosen to focus on two implicit
methods, both of which are unconditionally stable.

4.1 Survey of Time Stepping Methods

• Backward Euler

This method is a simple as implicit methods get. It makes use of the fact
that if one Taylor expands around a point tk, and seeks to evaluate the
function at tk ��t, where �t is our chosen time step, one gets:

U(tk ��t) = U(tk)� U 0(tk)�t+O(�t2)

Hence, one can approximate U 0(tk) as

U 0(tk) =
U(tk)� U(tk ��t)

�t
+O(�t)

Defining tk = (k� 1)�t and Uk = U(tk), we re-express it in a format that
more closely resembles a programmable algorithmic iteration:

U̇k =
Uk � Uk�1

�t
+O(�t)

We can see that the error in the approximation is asymptotically linear
in �t, so it certainly is consistent, but not strikingly fast at converging.
Applying this approximation to the given system of di↵erential equations
we previously derived, we get the vector iterative equation:

M

✓
~↵k � ~↵k�1

�t

◆
+A~↵k = ~F

Rearranging, we get:

✓
1

�t
M +A

◆
~↵k = ~F +

1

�t
M~↵k�1

Hence, given an initial condition ~↵
1

, we can do a linear solve of the above
system to get ~↵

2

. We can then use our result to do another linear solve
and get ~↵

3

and so until we reach the total number of steps n
steps

we chose
to solve for.
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• Crank-Nicolson

We now present a slightly more elaborate implicit method. Here, we
consider two Taylor expansions about the point tk � 1

2

�t.

U(tk�1) = U(tk�
1

2
�t)�U 0(tk�

1

2
�t)

�t

2
+
1

2
U 00(tk�

1

2
�t)
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�t

2

◆
2

+O(�t3)

U(tk) = U(tk�
1

2
�t)+U 0(tk�

1

2
�t)

�t

2
+
1

2
U 00(tk�

1

2
�t)

✓
�t

2

◆
2

+O(�t3)

Subtracting the two equations from each other gives us:

U(tk � 1)� U(tk) = U 0(tk � 1

2
�t)�t+O(�t3)

Using the same convention as before, we get the following approximation
for the derivative:

U̇k� 1
2
=

Uk�1

� Uk

�t
+O(�t2)

We can see that this approximation of the derivative error is now asymp-
totically quadratic in �t, implying that our error with this scheme will
decrease faster with �t than with backwards Euler. Applying this to our
di↵erential equation, we get:

M

✓
~↵k � ~↵k�1

�t

◆
+A~↵k�0.5 = ~F

Here, we run into the issue that our algorithm should only solve the prob-
lem at integer values of k, so the alpha vector at k�0.5 is nonsensical. For
this, we note that if we add the two Taylor expansions presented above,
we get:

Uk�1

+ Uk = 2Uk�0.5 +O(�t2)

Hence, if we approximate ↵k�0.5 as the average of Uk�1

and Uk, we get
an approximation whose error is still quadratic in �t. Hence, the error
induced by discretizating the system is still better than the Euler method.
This gives us the following method:

M

✓
~↵k � ~↵k�1

�t

◆
+

1

2
A (~↵k�1

+ ~↵k) = ~F
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Re-arranging as we did before gives us our final iteration, which we can
solve just as we did in the backwards Euler case.

✓
1

�t
+

1

2
A

◆
~↵k = ~F +

✓
1

�t
M � 1

2
A

◆
↵k�1

4.2 Verifying Convergence of the Time-Stepping Routines

To test the validity of our time stepping routines, we perform two tests on our
scheme. First, we look at how well our scheme performs when solving the semi-
infinite solid model, one of the few heat transfer models that has a transient
analytic solution [Patera, 2019l]. Then, we look at how our method performs
when solving a burger flipping problem that a third-party FEM code has already
solved succesfully.

For a given p FEM scheme (that is, piecewise linear [p = 1] or piecewise
quadratic [p = 2]) and time stepping scheme, one can select a value 1/� < 1 by
which to scale �t in each mesh refinement so that the asymptotic error between
the approximated solution and the real solution at any point in time decreases
at the same rate as it would in the time independent case [Patera, 2019j]. As
such, we examine the convergence plots in the L2 norm of our approximation
to the semi-infinite model at the last time step.

Figure 26: Log-log plot of the L2 error between our approximation to the semi
infinite solid heat transfer problem at tnsteps and U(tnsteps , x) as a function of
maximum mesh size. We applied a piece-wise linear FEM scheme and leveraged
the Euler backward time stepping routine.
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Figure 26 illustrates the convergence plot in the L2 norm of the aforemen-
tioned approximation for the p = 1, Euler backward routine. The decrease in
actual error and error estimates seems to follow the quadratic power law pre-
dicted for the L2 error of a p = 1 scheme in the previous chapter, and the actual
errors are consistently below our estimated upper bounds.

Figure 27: Log-log plot of the L2 error between our approximation to the semi
infinite solid heat transfer problem at tnsteps and U(tnsteps , x) as a function of
maximum mesh size. We applied a piece-wise quadratic FEM scheme and lever-
aged the Crank-Nicolson time stepping routine.

Figure 27 illustrates the convergence plot in the L2 norm of the aforemen-
tioned approximation for the p = 2, Crank-Nicolson routine. The decrease in
actual error and error estimates seems to follow the cubic power law predicted
for the L2 error of a p = 2 scheme in chapter 2, and the actual errors are
consistently below our estimated upper bounds.

These results give us confidence that the method is behaving the way it
should. To gather more evidence, we shall now regenerate a plot created by a
third party FEM when solving the following problem [Patera, 2019l]:

• A burger is taken out of a freezer; its temperature is uniformly 4oC.

• The burger is placed on a skillet whose temperature is 180oC.

• The burger cooks until the side that is touching the pan reaches a tem-
perature of 140oC. This temperature is the temperature at which the
Maillard reaction occurs; the reaction that empirically ensures that the
burger will taste well.

• At this point, the burger is flipped. It is left cooking until the other side
of the burger reaches the Maillard temperature.

40



• Finally, the burger is taken out of the skillet and it is left to repose, exposed
to air in both sides.

Below is the time evolution of the temperature of the burger at x = 0 (the
skillet touching side), at x = L (the side exposed to air), and at x = L/2
(half-way through the burger) as generated by the third party code.

Figure 28: Time evolution plots of the burger flipping problem at x = 0, x = L/2
and x = L as generated by a Third Party FEM code.

We now reveal our results when applying a p = 1 backward Euler scheme.

Figure 29: Time evolution plots of the burger flipping problem at x = 0, x = L/2
and x = L as generated by a Third Party FEM code. The di↵erence between
our plots and those generated by the third part code is indiscernible by the
naked eye.

It is clear that the two plots look qualitatively equivalent and evaluate to
the same values at every point in time, at least to a level of precision admissible
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by the naked human eye. Upon further inspection, leveraging MATLAB’s data
tooltips reveals that up to the displayed four decimal places, there is no variation
on the function values at 30 randomly selected samples in the plots.

These plots already, with high degree of confidence, suggest that the code has
been correctly implemented, but since the third party code provided a second
plot corresponding to the spatial distribution of temperature at the final time
step, we generated the same. Once again, the graphs are indiscernible from each
other by the naked eye and MATLAB’s data tooltip.

Figure 30: A side by side comparison of the spatial distribution of temperature
at the final time generated by A) a third party code, and B) our code leveraging
a p = 1 backward Euler scheme.

4.3 Mesh Selection Based on Specifications

Let us consider the burger problem presented in the previous section. There are
a few quantities of interest when concerned with cooking a burger to perfection.
Let us consider the temperature of the burger on the skillet side just before it
gets flipped. We want this value to be close to the Maillard temperature, say
0.001oC o↵. Our goal will now be to find a mesh that ensures this will happen.

First, we’ll consider a p = 1 backward Euler scheme. Below, we can see the
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convergence plot for the desired quantity under this scheme.

Figure 31: Log-log plot of error upper bound estimates for the temperature of
the burger on the skillet side right before it gets flipped as a function of mesh
size. This plot is appropriate for a p = 1 backward Euler scheme.

Looking at our upper bound estimates, the coarsest mesh in our sequence
of mesh refinements that generates an error of at most 10�3 is the fifth mesh in
the refinement, which will have 192 elements.

Let us now consider a p = 2 Crank-Nicolson scheme. Below, we show the
convergence plot for the desired quantity under this scheme.

Figure 32: Log-log plot of error upper bound estimates for the temperature of
the burger on the skillet side right before it gets flipped as a function of mesh
size. This plot is appropriate for a p = 2 Crank-Nicolson scheme.

With this method, we achieve our desired threshold with a single mesh re-
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finement, giving us a mesh with 12 elements. Given our mesh size estimates,
we now consider the computational complexity of each of our approaches.

Assuming that solving a penta-diagonal system takes about twice as many
operations as solving a tri-diagonal one [Patera, 2019k], and nothing that both
operations are O(n) for an n⇥ n matrix, we get the following relationships:

Cp=1,BE

⇡ n
steps

· n
elem

Cp=2,CN

⇡ 2n
steps

· n
elem

where C stands for cost, or the approximate number of operations. We
further note that given the number of elements and the number of steps are
related by the values of � appropriate for each scheme [Patera, 2019j]. In both
instances, we had 20 time steps initially and a mesh with 6 elements. Hence,
after k refinements, the number of elements and steps, respectively can be cal-
culated as follows:

n
elem

= 6(2)k

n
steps

= 20�k

Now, given the meshes we selected, we know that k = 5 for the p = 1
backward Euler scheme and k = 1 for the p = 2 Crank-Nicolson scheme. Fur-
thermore, � = 4 for the p = 1 backward Euler scheme and � = 2

p
2 for the

p = 2 Crank-Nicolson scheme [Patera, 2019j]. With this information we get
that for the p = 1 backward Euler scheme:

n
elem

= 192

n
steps

= 20480

and for the p = 2 Crank-Nicolson scheme:

n
elem

= 12

n
steps

⇡ 57

We can thus have enough information to get an estimate for the number of
steps required to solve the problem in each of the methods. Plugging the values
in gives us

Cp=1,BE

= 3932160

Cp=2,CN

= 1368

Hence, despite having to solve a less sparse system, the p = 2 Crank-Nicolson
FEM scheme is way more computationally e↵ective given the high tolerance of
10�3. As such, we will proceed with this scheme for the remainder of the chapter.
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4.4 Applying The Method to a Burger Recipe

After much time developing the machinery necessary to develop a robust FEM
code, we are finally ready to apply our code to a real kitchen scenario. We will
be following Bobby Flay’s burger recipe from the Food Network, and trying to
assess if our FEM code can generate a procedure similar to the one illustrated
by Flay [Flay, 2009].

Flay instructs in his recipe to “Heat the oil in the pan or griddle over high
heat until the oil begins to shimmer. Cook the burgers until golden brown and
slightly charred on the first side, about 3 minutes for beef and 5 minutes for
turkey. Flip over the burgers. Cook beef burgers until golden brown and slightly
charred on the second side, 4 minutes for medium rare (3 minutes if topping
with cheese) or until cooked to desired degree of doneness. Cook turkey burgers
until cooked throughout, about 5 minutes on the second side” [Flay, 2009].

Furthermore, he suggests making beef patties a quarter inch thick, or 0.01905
meters [Flay, 2009]. Each of these patties is 6 ounces (0.17 kg), which, using a
value of mass density value of 1030kg/m3 gives an approximate cross sectional
area of 0.00866m2 [Flay, 2009]. Moreover, these patties are made form ground
beef, so in the time the ground beef was taken out of the fridge and the patties
were made, the patties probably reach a temperature closer to room temperature
than 0oC.

We will now run our p = 2 Crank-Nicolson simulation with these parameters,
prescribed by Flay’s recipe, and proceed to flip the burger at the suggested time
marks (3 and 7 minutes). The evolution diagram for the burger’s temperature
at x = 0, x = L/2 and x = L is illustrated below.

Figure 33: Simulation of Bobby Flay’s burger recipe from the Food Netowrk
using a p = 2 Crank-Nicolson time dependent FEM scheme.

It’s clear that with the recommended cooking times and burger dimensions
from Flay’s recipe, both sides of the burger reach literature values of the Maillard
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temperature at some point in the process of cooking, so at first glance, it seems
like our simulations corroborate Flay’s empirical observations.

Nevertheless, it’s important to realize that though our numerical approach
may be accurate to 10�3 degrees, the mathematical model is much more inaccu-
rate, and a more robust model may reveal some discrepancies between proposed
recipes and simulations. For example, several recipes instruct chefs to make an
indentation with their thumbs instead of making perfectly cylindrical patties.
Our current model doesn’t capture this more complicated geometry, and as such,
there may be discrepancies there that our FEM code has not yet been able to
capture. Another source of inaccuracy is our assumption that the heat transfer
coe�cient is constant within a stage. It’s not uncommon, while cooking, to have
bursts of smoke around the cooking food suddenly occur, specially right after
flipping a burger. These smoke currents increase convective heat transfer, which
would in turn change the value of the heat transfer coe�cient within the stage
[Karnik, 2018]. Given our current model, however, our numerical simulations
are performing as expected, and they provide evidence that corroborate cooking
recommendations from online recipes.

5 Xylophone Bar Manufacturing

We will now elaborate upon the theory developed on our previous chapters to
analyze a new problem - musical instrument manufacturing. It is well known
that sound is generated by variations in the pressure of an immersing fluid
[Karnik, 2018]; a good way to induce these pressure changes is by making a
solid immersed in the fluid oscillate at a certain frequency. This frequency is
then perceived as a pitch. As a result, most instruments are designed to have
solid parts that are easily set into oscillatory motion upon excitation. Here, we
explore xylophone bars and how varying their shape and dimension changes the
perceived frequency.

We seek to model a xylophone bar as a long, slender beam. Euler-Bernoulli
beam theory provides simple yet extremely ubiquitous models for the study of
long and slender beams [Patera, 2019e]. As such, if we model the xylophone bar
using Euler-Bernoulli beam theory, we will be able to describe the displacement
of the xylophone bar u from its neutral axis via the following equation of motion
[Patera, 2019e].

@2

@x2

✓
EI(x)

@2u

@x2

◆
�N

0

@2u

@x2

= q(x, t)� ⇢(x)
@2u
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(10)

Here, EI is the possibly space-dependent e↵ective sti↵ness, which locally
equals the product of the Young’s Modulus E and area moment of inertia I,
N

0

denotes a constant axial force, ⇢(x) is the possibly space-dependent linear
mass density of the material, and q(x, t) is a possibly space and time dependent
distributed force density.

Now, consider we fix a value of x and we’re interested in knowing how u
evolves at that point in space over time. If we assume that u 2 L2(⌦), where
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⌦ is some interval of time (not very important), which is a valid assumption
since the system has finite energy, then by Carleson’s Theorem, we know that
there exists a Fourier series that converges to u(t) almost everywhere in time at
every point x [Lacey, 2004]. Hence, we can express u(x, t) in terms of a Fourier
series of time at every point in space. We now assume that every point in the
bar oscillates in time with the same shape and the only thing that changes from
point to point is the amplitude [Patera, 2019d]. We thus define ûk(x) to be the
amplitude of oscillation, which gives us the following representation for u(x, t).

u(x, t) =
1X

k=0

ûk(x) (ak cos(!n,kt) + bk sin(!n,kt)) (11)

Let us now assume that there are neither tension nor distributed forces in
the xylophone bar, since xylophone bars are usually free to oscillate without
any loading. To be more compact, let ũk(t) be ak cos(!n,kt) + bk sin(!n,kt).
Plugging our ansatz in Equation 11 into Equation 10, we get:
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We now note that the second derivative in time of ũk(t) is !2

n,kũk(t) for all
k 2 {0, 1, 2, ...}. We thus get:
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To make these two series equal each other at every point (x, t), we must set
each term in the sequence equal to each other [Patera, 2019d]. This gives us,
for every k, one of the following equations:
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This equation is true whenever ũk(t) = 0, which is not an interesting case,
or whenever the following set of equations are satisfied.
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@2ûk(x)

@x2

◆
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n,kûk(x) 8k 2 {0, 1, 2, ...} (12)

Note that there is no time dependence in these equations. We have thus
converted our Partial Di↵erential Equation into a system of Ordinary Di↵er-
ential Equations. However, we have introduced a set of unknowns !n,k. Note
that the !n,k values are frequencies for a set of sinusoids. We thus call these
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values the frequencies or overtones of our solution, since these oscillations are
what humans will perceive as pitch [Patera, 2019d].

The smallest non-zero frequency !n,k is what we will perceive as the pitch
of the xylophone bar [Patera, 2019d]. We call this the fundamental frequency.
The second smallest non-zero frequency !n,k is the first overtone, which in
xylophones, is often tuned to be exactly 3 or 4 times the fundamental frequency
[Caresta, 2014]. Furthermore, xylophone bars are often held together by two
strings in tension that go through the bars at certain points [Patera, 2019e]. If
there is a lot of oscillation at these points, the string will vibrate, which will
excite other bars and a↵ect their pitch. As a result, xylophone manufacturers
must know the points in the bar that oscillate the least. These points correspond
to the points where the mode shape corresponding to the fundamental frequency
equals zero (i.e. there is no displacement) [Patera, 2019e].

It’s thus clear that this representation of the Euler-Bernoulli bending equa-
tion is valuable for the design of xylophones. As such, we will develop some
finite element schemes to be able to retrieve the values of !n,k and the mode
shapes ûk(x). To begin solving for these, however, we must apply some bound-
ary conditions.

Since xylophone bars are free to oscillate, the ends of the bar will not support
neither a moment nor a force. This corresponds to the second derivative of u
and the first derivative of EI @2u

@x2 being zero at each end of the bar (x = 0 and
x = L) [Patera, 2019e]. At this point, there isn’t much we can say about the
values of !n,k or u(x, t), unless we have some information about EI(x) and ⇢(x).

A xylophone bar will often feature a small indentation in the bottom to give
it its distinctive tuning [Patera, 2019e]. To model this indentation, we track the
height of the bar H at every position x. Furthermore, we assume a variation in
the height that can be modeled as a quartic polynomial of the form of Equation
13.

H(x) = H
max

min

(
1,

"
(1� p)

✓
Ld/2 � x

Ld/2 � x⇤

◆
4

+ p

#)
(13)

Here, p denotes a design variable that takes values between 0.05 and 1 that
denotes how much material gets cut from the bar (with 1 being no material -
i.e. the bar is just a rectangular prism), H

max

is the maximum height of the
bar, Ld/2 denotes the half-way point in the bar, and x⇤ denotes the position at
which the dent begins.

Furthermore, we assume that the bar is made from a material with uniform
density ⇢, and has a uniform width W . Under these assumptions, we get the
following governing equation [Patera, 2019e].
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n,k⇢H(x)ûk (14)

Now, we have an equation that can be solved with a slightly modified finite
element method. In the next section, we will present this method and discuss
the results we obtain for !n,k, and the mode shapes ûk.
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6 Finite Element Method for Bending

Much like in the previous report, we must develop an energy functional ⇡(w)
that is minimized when w is the solution to our problem. For the problem
posed above, subject to the aforementioned boundary conditions, we propose
the following functional [Patera, 2019b].
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0
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dx�
Z L

0

!2

n,k⇢H(x)u(x)w(x)dx (15)

This functional looks a bit odd since it depends on the solution u(x) of the
problem, which means that to evaluate ⇡, we need to know what the solution
to the problem is to begin with. However, we will see that we can still minimize
⇡ without knowing u [Patera, 2019c].

Another peculiar property of this functional is that we can minimize it not
only by plugging in u, but also by plugging in u+v where v is an a�ne function of
x (i.e. of the form v = c

1

+c
2

x) [Patera, 2019b]. Although it sounds problematic
that minimizing ⇡ may get us an answer that is an a�ne shift away from the real
answer, it should not be surprising. After all, an a�ne shift of u corresponds
to being able to shift the xylophone bar up or down, and being able to rotate it
[Patera, 2019b]. Sure, solving the problem may give us an arbitrary orientation
for the xylophone bar, but the orientation will not change the frequency content
of u, which is all that we care about. We thus don’t have to worry about this
a�ne shift.

We now prove that this functional is minimized by plugging in u+ v where
v is an a�ne function of x [Patera, 2019b].

Proof. Let w = u + v, where u is the solution to our problem and v is an
arbitrary perturbation. We now evaluate ⇡(u + v). To be compact, we will
denote partial derivatives with respect to x with subscripts.

⇡(u+ v) =
1

2

Z L

0

EH3

12

�
u2

xx + 2uxxvxx + v2xx
�
dx�

Z L

0

!n,k⇢Hu (u+ v) dx

Collecting the integrals with u2

xx and u2 gives us ⇡(u). Hence:
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We now focus on the integral with the uxxvxx term. Doing integration by
parts once gives us the following.
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We now note that under the boundary conditions we assumed, uxx = 0 at
x = 0 and x = L. Thus the boundary terms vanish giving us the following.
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We now perform integration by parts once again to get the following.
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We now note that under the boundary conditions we assumed
⇣

EH3
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x
vanishes at x = 0 and x = L. Thus the boundary terms vanish giving us the
following.
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Plugging this result into the functional gives us the following.
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Combining the first integral term with the last, we get the following.
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Since u solves Equation 14, the term inside the curly braces must go to zero.
This gives us the following.

⇡(u+ v) = ⇡(u) +
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12
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We now note that the integral term can only add to the value of ⇡(u) unless
vxx = 0. Therefore this functional is minimized whenever w is u plus a function
whose second derivative is zero, also known as an a�ne function.

Like before, we now select a set of basis functions {�
1

,�
2

, ...,�N} that span
the vector space of functions over which we seek to minimize ⇡. We thus write
our approximation u

FE

as follows:

u
FE

(x) =
NX

i=1

↵i�i (16)

50



Plugging this representation of U
FE

into ⇡, gives us the following [Patera, 2019c].
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If we fix the basis functions, then ⇡ is now a function that takes in N ↵’s
and returns a number. To minimize this, we simply have to set the gradient
with respect to {↵

1

,↵
2

, ...,↵N} to zero. Without the details explaining how to
take this gradient that we presented in our previous report, we arrive at the
following set of equations.
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We can write these equations more compactly with matrices to get the fol-
lowing.

A~↵ = !2

n,kM~↵ (18)

Here, the matrix A is the matrix whose entries are defined as follows:

Ai,j =
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EH3
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the matrix M is the matrix whose entries are defined as follows:

Mi,j =

Z L

0

⇢H�i�jdx

and ~↵ = [↵
1

,↵
2

, ...,↵N ]T . Now recall that we’re interested in finding the
frequency content of the solution to Equation 10. We thus want to find the values
of !n,k that makes Equation 18 have non-zero solutions ~↵. This is equivalent
to finding the values of !n,k that make det(A� !n,kM) = 0.

Once we have these values, then we know that ~↵ must be in the nullspace of
A� !n,kM . Clearly, if ~↵ is a solution, then so are all scalar multiples of ~↵. In
order to get a unique solution, we’d need to have some information about how
the xylophone bar was struck; more specifically, we’d need two initial conditions
in time. Since we only care about the frequency content of the solution and not
the amplitudes, we just need to chose one of the solutions [Patera, 2019b]. Let
us chose the solution that satisfies the normalization constraint ~↵TM~↵ = 1.

We now make note two other considerations that we must make before
putting this method to use. First, we can expect !n,k = 0 to be a root of
multiplicity 2 for the polynomial P (!n,k) = det(A � !n,kM) [Patera, 2019c].
These correspond to the arbitrary a�ne shift that we alluded to when proving
the minimization proposition. We don’t care about the xylophone bar’s spatial
orientation, so we will simply ignore the solutions ~↵ when !n,k = 0.
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Figure 34: Plot of the four non-zero functions defined over a reference element.

Furthermore, in our previous report, we consider � functions that were piece-
wise linear or quadratic. However, these are problematic in the calculation of
our matrix A. The piecewise linear functions have a second derivative that
is zero almost everywhere, so the matrix A would be zero under this scheme.
Furthermore, it is important for our approximation to have a continuous first
derivative since we’re integrating the second derivative and the accumulation
function F (x) =

R x

0

f(x0)dx0 is continuous for any Riemann Integrable function
f . However, the piecewise quadratic elements had peaks upon which the first
derivative had jump discontinuities. As a result, we can no longer use piecewise
quadratic elements, which forces us to use piecewise cubic functions.

A reference element would have 4 non-zero functions defined over it as illus-
trated in Figure 34 [Patera, 2019c]. Each function has the property that either
it or its derivative evaluates to 1 at either the left or right endpoint, and to
zero at the other points [Patera, 2019c]. This ensures that we can evaluate U

FE

and its derivative at the nodes by looking at the coe�cients of one of the func-
tions. Finally, this set up ensures that each function only overlaps with at most
six other functions (including itself), which makes the matrices sparse and the
computations less extensive [Patera, 2019c].

We now proceed to use the developed method to design a xylophone bar
tuned to an F4 with double-octave tuning (i.e. the ratio between the first
overtone and the fundamental frequency is 4).

7 Xylophone Bar Design

To tune a xylophone bar to F4 with double-octave tuning, we want to fix an
x⇤ and H

max

and adjust p and L. For each point (p, L) we select, we will solve
Equation 18 and compare the fundamental frequency to that of F4 (2194.2768
radians per second or 349.23 Hz), and the ratio between the frequency of the
first overtone and the fundamental frequency to 4 [Patera, 2019e].

Once the two parameters have been found, we take the shape of the funda-
mental frequency, and we find its zeros. Luckily, we have access to the value of
the function at the nodes of the finite elements. We can thus find the elements
that may have a zero by going through all of the elements and multiplying the
function evaluated at the right and left endpoints. If the product is negative or
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zero, then by the intermediate value theorem, we know there must be a zero in
this element.

After flagging all the elements that contain a zero, we pick the first and
last one. The zeros found in these elements will be the ones through which
we will pass the strings. Once we’ve selected the elements, we can simply run
a root finding algorithm (like a bisection search or Newton’s method). These
algorithms usually need an initial guess; we simply supplied the method with
the halfway point of the element in question and let it run. We show our results
in Figure 35.

Figure 35: Plot of the fundamental frequency and the first harmonic superposed
over a diagram of the bar’s optimized shape design. The blue lines indicate the
places where our algorithm finds zeros for the fundamental frequency.

With this plot, we get a good sense that the root finding algorithm is working
as it is supposed to. The discrepancy between the blue lines and the points
where the fundamental frequency actually hits the x axis (i.e. u = 0) is not
only indiscernible by the naked eye, but also by the Matlab data tool-tip, which
is accurate to six decimal places.

While this gives us certainty that once we have a node shape, we can locate
the points where to drill the holes with high fidelity, we still have yet to check
the accuracy with which our method finds the fundamental frequency and other
overtones of our xylophone bar.

We check how well our algorithm performs when designing the F4 xylophone
bar in double-octave tuning mentioned above. We provided our algorithm the
following parameters:

• f = 349.23 Hz (or !n,k = 2194.2768 radians per second)

• f1
f = 4 (f

1

is the first overtone)

• H
max

= 0.015m
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• x⇤

L = 0.05

• p
min

= 0.05

• p
max

= 1 (the algorithm will thus search for values of p in [0.05,1])

• E = 14 GPa (Young’s Modulus of Rosewood)

• ⇢ = 835 kg
m3 (Density of Rosewood)

Our algorithm produced the following values for L, p, f and f
1

with a
posteriori error estimates.

• f = 349.2300± 5.7666⇥ 10�5 Hz

• f
1

= 1393.8± 1.4448⇥ 10�5 Hz

• L = 0.135m

• p = 0.1319

As we can see, the error upper bound on the fundamental frequency is well
below a tolerance of 10 Hz, which is about what an average human can discern
as being two di↵erent pitches [Patera, 2019d]. To get an error estimate for the
ratio between f

1

and f , we can do a sensitivity analysis. Namely, if we let
R = f

1

/f , we can write its uncertainty ✏R as follows [Sta↵, 2013].
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Plugging in the values our code produced, we arrive at the following error.

✏R = 6.603⇥ 10�7

We thus report the calculated value and uncertainty of our desired ratio.

f
1

/f = 3.99106± 6.603⇥ 10�7

Although 4 does not fall in the 95% confidence interval of our simulated
value of R, we are certainly close to it; the value of our first overtone is about 4
Hz away from the actual overtone under perfect double-octave tuning, which as
discussed, is a frequency di↵erence that the average human would have trouble
discerning.

We continue our discussion of errors by looking at convergence plots (Fig-
ures 36 and 37) for the node shapes and frequency values of the fundamental
frequency and first overtone of two di↵erent xylophone bars. The first is the one
we just reversed engineered to be an F4 with double-octave tuning; the second
is a bar that is supposed to be a C5 with quint tuning (i.e. f

1

/f = 3).
We can see that, in both figures, the a posteriori error estimates decrease

with the size of the largest mesh element in a power law fashion that is consistent
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with the asymptotic behavior predicted a priori. This gives us confidence that
the error estimators we used in our error analysis for the F4 bar are reliable.

Another indicator of the error estimators’ reliability is the di↵erence in error
between the fundamental frequency and the first overtone in the same mesh. We
expect higher frequencies to be more di�cult to approximate with finite elements
because the node shapes will changes more drastically at higher frequencies,
which becomes increasingly di�cult for polynomials to be able to approximate.

Looking at Figures 36 and 37, we can see that for any given mesh size, the
error for the node shape in all of the norms is larger for the overtone than the
fundamental frequency, and so is the numerical value of the frequency.

Figure 36: Convergence plot for the node shapes of the fundamental frequency
(Panel A) and the first overtone (Panel B) in an F4 bar with double-octave tun-
ing in 3 norms (H2, L2 and L1). To the far right in each panel is a convergence
plot for the value of the frequency.

From the convergence plots we can also tell that we are refining too much.
Sure, we’re gaining more accuracy, but recall that the average human cannot
discern pitches that are less than 10 Hz apart. Therefore, getting a frequency
error in the order of 10�7 is not necessary. In fact, it seems like refining once
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Figure 37: Convergence plots for the node shapes of the fundamental frequency
(Panel A) and the first overtone (Panel B) in a C4 bar with quint tuning in 3
norms (H2, L2 and L1). To the far right in each panel is a convergence plot
for the value of the frequency.

already puts the solution error well below the 10 Hz tolerance. It would seem
as though the original mesh of 11 elements would already be fine enough to
get us within 10 Hz of the actual frequency; however, we don’t have an error
estimate for this mesh, so as a measure of precaution, we recommend a single
refinement in order to get a reliable answer without having to do unnecessarily
many computations.

With these observations, we can be pretty confident that our finite element
approach to the xylophone design problem yields high fidelity approximations
to solutions of Equation 14. However, there may still be sources of errors sur-
rounding the model. The theory we’ve developed here is only appropriate if we
can model the xylophone bar using principles from Euler-Bernoulli beam theory.

Euler-Bernoulli beam theory assumes that cross sections perpendicular to
the neutral axis remain perpendicular to the bending line [Anand, 2011]. This
assumption begins to break down when the ratio between the length L of the
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beam and the thickness H
max

becomes small [Anand, 2011]. If we consider bars
that all have the same thickness, then we can expect to run into issues with
short bars.

Furthermore, using the Buckingham Pi Theorem, we can deduce that the
fundamental frequency is inversely proportional to the square of length of the
bar [Karnik, 2018] [Patera, 2019d]. As a result, we expect our method to be
better suited for low pitched bars, since these bars will inherently be longer.

To check how well our numerical experiments match reality, we will devote
the following section to recreating results found in the instrument manufacturing
literature.

8 Literature Comparisons

In his preprint ”Vibrations of a Free-Free Beam”, Dr. Mario Caresta analyzes
the frequency content of a rectangular prism with the following parameters
[Caresta, 2014].

• L = 1.275m

• H
max

= 0.01m

• W = 0.075m

• ⇢ = 7800 kg
m3

• E = 2.1⇥ 1011 N
m2

He reports the fundamental frequency and the frequencies of the first four
overtones in the following table [Caresta, 2014].

To verify these results, we input the following parameters into our length
and p finding algorithm.

• f = 32.8 Hz

• L, E, H
max

, and ⇢ as specified by Caresta.

• p
min

= p
max

= 1 to force the shape of the bar to be a rectangular prism.

• Random values for the desired ratio between frequencies R and x⇤ since
the shape (and consequently the ratio) is pre-determined.

After running our algorithm, we managed to generate the following figure.
Just by looking at figure 39, we can kind of tell that our algorithm found the

length of the bar to be around the same value as the one reported by Caresta.
Looking at the output values, we can further verify our agreement with Caresta’s
experiments. Our algorithm produced the following outputs.

• L = 1.2752m
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Figure 38: First five natural frequencies in Caresta’s beam as reported in his
preprint, ”Vibrations of a Free-Free Beam” [Caresta, 2014].

• f = 32.8 Hz

• f
1

= 90.4145 Hz

Our algorithm was thus able to recover the length of the beam, the funda-
mental frequency, and the frequency of the first overtone with a percent error of
less than 1% when compared to the theoretical values, and less than 3% when
compared to the experimental values. These results are valuable for they not
only give further evidence that the code is behaving as it should, but it also
gives some insight regarding the appropriateness of Euler-Bernoulli beam the-
ory when modeling oscillating bars. We can thus conclude that when looking
at long and slender beams, our finite element method can produce frequencies
that have less than 3% error when compared to experimental values.

Finally, in the subsequent section, we will propose some slight modifications
to the method we’ve presented in this paper to solve a more general problem.

9 Extensions

So far, we have assumed that inserting strings into the xylophone bar will not
a↵ect its vibration patterns, when in reality, the strings will behave as a restoring
force, which will introduce some Robin boundary conditions [Patera, 2019e].

Let us now consider a Hookean spring with constant k attached at x = L
to model a string being passed through the bar near x = L. This will add a
1

2

kw2(L) term to the energy functional, which will in turn, slightly modify our
definition of the A matrix in Equation 18. In this case, our A matrix will be
defined as follows [Patera, 2019c].
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Figure 39: Plot of the fundamental frequency and the first harmonic of our
simulation of Caresta’s rectangular prism bar.
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All we must do now is edit the matrix A and everything else can remain the
same. Luckily, we’ve defined the � functions to have the property that at every
node of the mesh, all except one � function evaluate to zero with the exception
evaluating to 1. Since the endpoint of the domain x = L is always a node of
the mesh, there is only one function � that is non-zero at x = L. In fact, if
we let �

2n�1

be the � function that is 1 at node n and �
2n be the � function

whose derivative equals 1 at node n, then if we have N nodes, there are 2N �
functions and the second to last one (i.e. �

2N�1

) will be the one that evaluates
to 1 at x = L.

Therefore, the only entry of the matrix A that changes by adding the spring
at the end of the bar is A

2N�1,2N�1

. To do this, we can simply look at the
routine that assembles the system matrix A. Currently, this function looks as
follows.

function [A_N,M_N,Minertia_N,X_N,Kax_N,F_N] =

assemble_sys_mat(approx_elem, mesh,

A_el,M_el,Minertia_el,X_el,Kax_el,F_el)

% unpack

perrow = mesh.perrow;

n_el = mesh.n_el;

n_node = mesh.n_node;

lg = mesh.lg;

n2_node = mesh.n2_node;
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lg2 = mesh.lg2;

%

A_N = spalloc(n2_node,n2_node,perrow*n2_node);

M_N = spalloc(n2_node,n2_node,perrow*n2_node);

Minertia_N = spalloc(n2_node,n2_node,perrow*n2_node);

X_N = spalloc(n2_node,n2_node,perrow*n2_node);

Kax_N = spalloc(n2_node,n2_node,perrow*n2_node);

F_N = zeros(n2_node,1);

for i = 1:n_el

A_N(lg2(:,i),lg2(:,i)) = A_N(lg2(:,i),lg2(:,i)) + A_el(:,:,i);

M_N(lg2(:,i),lg2(:,i)) = M_N(lg2(:,i),lg2(:,i)) + M_el(:,:,i);

Minertia_N(lg2(:,i),lg2(:,i)) = Minertia_N(lg2(:,i),lg2(:,i)) +

Minertia_el(:,:,i);

X_N(lg2(:,i),lg2(:,i)) = X_N(lg2(:,i),lg2(:,i)) + X_el(:,:,i);

Kax_N(lg2(:,i),lg2(:,i)) = Kax_N(lg2(:,i),lg2(:,i)) + Kax_el(:,:,i);

F_N(lg2(:,i)) = F_N(lg2(:,i)) + F_el(:,i);

end

return

end

To implement this change, all we must do is pass a parameter k to the func-
tion, which denotes the spring constant, and add the following line immediately
after the end of the “for” loop.

A_N(2*(n_el0 + 1) - 1,2*(n_el0 + 1) - 1) = A_N(2*(n_el0 + 1) -

1,2*(n_el0 + 1) - 1) + k;

We have thus presented and tested a finite element scheme that can be
reliably used to design xylophone bars that are tuned to a certain frequency
and have a specific first overtone to fundamental frequency ratio. Additionally,
we developed a method for finding the least intrusive points through which to
pass support strings, and proposed a method to more adequately capture the
e↵ects of making these strings go through the xylophone bar.

10 Appendix

In this appendix, we present a set of slides used in a presentation, displaying
another application of our developed software involving self-buckling.
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